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Chapter 1

Introduction

1.1 Brief History of Calculus

e Greeks

o Zeno's Paradox (500 BC). One can essentially trace the origins of
calculus back to the ancient Greeks. The central concept behind calculus
is the idea of limits. The notion is manifested in a number of paradoxes
proposed by Zeno of Elea. The most famous is the paradox of Achilles and
the tortoise. Achilles chases a tortoise but by the time the man reaches
the point where the tortoise was, the tortoise has moved by smaller by
finite amount. This process repeats itself over and over again, so how can
Achilles catch the turtle? The dichotomy paradox is similar but easier to
illustrate. A person moves from a point A to a point B, say, 1 km away.
Before the person gets to the point B he must travel 1/2 the distance,
and from there, 1/4 of the distance, and then 1/8, and so on. Since the
sum 1/2+1/4+1/8 + ... never ends, how is it possible for the man to
get to point B?

TP
o
B

Fig. 1.1: Dichotomy paradox

o Archimedes (250 BC). with Archimedes’ method of
exhaustion. The illustration shows the foundation of the
method of exhaustion to compute the area of a circle. The
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CHAPTER 1. INTRODUCTION

idea is to divide the area into central isosceles triangles subtended by a regular
polygon, and approximate the area of the circle by the sum of the simpler
areas of the isosceles triangles. One continues this process by summing the
areas of central triangles of regular polygons of larger and larger number of
sides, until the area of the circle not counted is “exhausted”. It is an incredible
achievement, that by the method of exhaustion, Archimedes found formulas
for the area and circumference of a circle, the volumes and surface areas of
spheres, cylinders and cones. It will take us the entire semester to derive the
latter by the techniques of calculus.

e Kepler

o Kepler (1610). Modified the heliocentric theory of

Copernicus and introduced new empirical laws for the or-

bits of planets.

First law. Planets move on elliptical orbits with the sun at one of the foci.
Second law. Planets sweep equal areas in equal time.

Third law. The square if the periods is proportional to the cube of the distances.

e Galileo (1620). Galileo Galilei

— Was the first person to build a telescope.
— Discovered the first moons in our solar system beyond our own.
— Introduced the notion of velocity and acceleration.

— Introduced the notion than in vacuum, al objects fall at the same
rate.

— In his study of kinematics, he discovered the principle of relativity for
inertial frames of reference: “It is impossible to conduct a mechanical
experiment that will determine whether we are moving (at a constant
velocity) or at rest.”

e Descartes (1630). The main contribution of René Descartes in the context
of the history of calculus, was the invention of the eponymously called
Cartesian coordinate system. The calculus course should really be called
calculus and analytical geometry. The analytic geometry aspect is built
on the foundations developed by Descartes. It was in Descartes to whom
Newton was referring when said “If I have been further, it is because I
was standing on the shoulders of giants.”

e Newton (1667)

Isaac Newton published Principia Mathematica in 1667.

Compiled exiting knowledge and established the subject of classical
mechanics.

— Co-invented calculus with the goal of providing a mathematical foun-
dation for Kepler’s laws.

— In the process, introduced the universal law of gravitation.
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— Did pioneering work on optics
e Leibniz (1675)

— Gottfried Leibniz independently co-invented calculus with Newton
about 1675 but did not publish any results until 1684.

— Introduced intuitive notation for derivatives and inntegration,
— Used differentials in the development of calculus.

— The product rule for differentiation is attributed to Leibniz.

1.2 Brief overview of Calculus

This course is divided into two major topics: Differential calculus and in-
tegral calculus. For each of these topics, we study some applications in the
physical sciences and engineering.

1.2.1 Differential Calculus

One of the first things we learn in coordinate geometry is that a straight
line has equation y = mx + b, where m is the slope and b the y-intersect. The
question is how to generalize the notion of a slope of a line to slope of curve.
By slope of a curve at a particular point £ = a, we must mean the slope of the
tangent line to the curve at that point. The problem is that to find the slope
of a line, we need two points.

The process envisioned by Newton and Leibniz is this. Pick
another point x = b on the curve near the point with = = a.
Then it makes sense to find the slope of the secant line
passing through those to points. The closer b is to a, tho
closer the secants lines are to the slope of the tangent line.

The slope of the tangent line is obtained by a limit process of the slopes of the
secants, as b gets arbitrarily close to a, as illustrated in the picture. The slope
of the tangent of a function y = f(z) at a point x = a is called the derivative
f'(a) at that point. The slope at any point z is another function f/(z).

1.2.2 Integral Calculus

The second major topic is integral calculus. The foundations of the theory
are very easy to explain.

Let y = f(z) which for now we assume to be positive.
The problem is to find the area under the curve between
x = a and x = b. In general, the area formulas we learn in
geometry will not do. Instead, the divide the interval [a, b]
into n pieces of width Az and approximate the area under
the curve by the sums of the areas of the rectangles with
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base Ax and height given by the value of the function at some point in each
subinterval. In the figure here, we have chosen to evaluate the heights at the
right endpoints of the subintervals. Of course, the sum of the areas of the
rectangles gives only an approximation of the area under the curve, but the
approximation gets better and better as we increase the number of rectangles.
The area we seek is called the integral of f(x) over [a, b]. The integral is obtained
by a limit process in which we let n be arbitrarily large, or equivalently, we let
Ax approach zero.



Chapter 2

Limits and Derivatives

2.1 Tangents and Velocity

The most fundamental concept in kinematics is that if a particle is moving
on a straight line at a constant velocity v, then, the position z(t) along that line
is given by the equation x(t) = vt +b. The number b is the position coordinate
at time ¢ = 0.

In coordinate geometry, we have a linear equation in which
the slope v = Ax /At is the velocity and b is the z-intersect
in an z-t coordinate plane. We would like to consider the
case where the trajectory of the particle is given by a more
general curve z(t). It makes sense to identify the slope of
the curve at time ¢ with the slope of the tangent to the £ t+At

curve at that point. Our goal then, is to find a process to
determine the slope of the line tangent to a curve at a particular point with

coordinate (t,z(t). The problem is that find the slope of line one needs two
points, and here we only have the point of tangency. The idea in calculus is
to pick a point nearby with coordinate ¢t + At. We denote the corresponding
change of the z-coordinate by Axz. the line passing through the points (¢, z(¢))
and (¢t + At, z(t + At)) is called a secant line. The slope of the secant line is
given by

Az x(t+ At) — 2(1)
Mace = Ay = At

The slope of the secant line is called the average velocity of the curve between the
two points. If At is small, the slope of the secant line gives an approximation to
the slope of the tangent line. As the value of the increment At becomes smaller
and smaller so that the second point gets closer and closer to the given point,
the slope of the secant line gets closer to the slope of the tangent line we seek.
We define the slope of the tangent line 2/ (t) as

2/ (t) = lim Ar _ lim at+ A —2(t) x(t)

At—0 At At—0 At (2'1)
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It is common to denote independent coordinate increment by h = At. The
quantity 2’(t) is called the instantaneous velocity at time ¢. The expression
lim,, ,, is read as the limit as At approaches 0, meaning that At becomes
arbitrarily close to 0, but it is not equal to 0; else we would only have one
point and the notion of slope would make no sense. We defer to a later section
to write a precise definition of limits. One of the goals in this chapter is to
understand how to estimate or compute a derivative

a) Graphically

b) Numerically

¢) Analytically

2.1.1 Example Estimate graphically and numerically the value of the deriva-
tive of z(t) = t? at t = 1.

Solution: First step is to graph the function. In Maple, the simple command
to plot(¢?) displays the function on an automatically generated window range.

4 4
/ /

/)

Y,

Y,

Fig. 2.1: Derivative of t? at t =1

However, it it by far more clear to include in the graphic a sequence of secant
lines with slope approaching the tangent line, as shown in figure 2.1. Of course,
the generic Maple code to produce such a figure is more elaborate. The code
used here appears in the appendix 4.1.2. Inspection of graph of the tangent
line allow us to estimate the slope as approximately Ax/At ~ 2. Of course this
is a very crude approximation which ia not to be trusted beyond one or two
significant figures.

A numerical estimate of the slope of the tangent is obtained by evaluating
the slope of secant lines at ¢ = 1 and ¢ + At. A good choice is to pick dt to be
an integer power of 0.1. This is easily done in a graphing calculator, but it is
more efficient to use a Maple code as shown in the appendix 4.1.1

t m (sec) t m (sec)

1.100000 2.100000 0.900000 1.900000
1.010000 2.010000 0.990000 1.990000
1.001000 2.001000 0.999000 1.999000
1.000100 2.000100 0.999900 1.999900
1.000010 2.000010 0.999990 1.999990
1.000001 2.000000 0.999999 1.999999
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Although not a proof, evaluation of the slopes of the secant lines as the second
point approaches t = 1 from the left and from the right, gives a compelling
argument that the slope of the tangent line at ¢ = 1 is 2. That is, the velocity
2'(t) at t =11s 2.

2.1.2 Example Estimate graphically and numerically the value of the deriva-
tive of 2(t) =t3 —t+1at t = 1.

Solution: Using maple code 4.1.2 with input function x(t) = 3 —t + 1, we
obtain the graph 2.2. In the graph of the tangent line in red, we have At = 1
and Az = 2, so geometrically, a rough guess for the derivative is 2. As before,

Fig. 2.2: Derivative of t3 —t+ 1l att =1

we evaluate the slopes of the secant lines using the maple code 4.1.1 for the
given function. The table of values is given by

t m (sec) t m (sec)

1.100000 2.310000 0.900000 1.710000
1.010000 2.030100 0.990000 1.970100
1.001000 2.003001 0.999000 1.997001
1.000100 2.000300 0.999900 1.999700
1.000010 2.000030 0.999990 1.999970
1.000001 2.000003 0.999999 1.999997

Our educated guess is that the velocity at t =1 is /(1) = 2.

2.1.3 Example Estimate graphically and numerically the value of the deriva-
tive of x(t) = sin(t) at t = 0.

Solution: Using maple code 4.1.2 with input function z(t) = 3 —t + 1, we
obtain the graph 2.3. In the graph of the tangent line in red, we have At = 7/8
and Az ~ 0.40, so geometrically, a rough guess for the derivative is 1.02. Using

Fig. 2.3: Derivative of sin(t) at t =0

Maple to valuate the slopes of the secant lines we obtain the following table
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t m (sec) t m (sec)

0.100000 0.998334 —0.100000 0.998334
0.010000 0.999983 —0.010000 0.999983
0.001000 1.000000 —0.001000 1.000000
0.000100 1.000000 —0.000100 1.000000

It is safe to guess that 2/(0) = 1. This means that if |¢| is small, then sine
function sin(t) is approximately equal to ¢. The smallest the value of [¢], the
better the approximation sin(¢) ~ 1. Try this on a graphing calculator for a
small value of ¢ such as ¢ = 0.00214. We get sin(0.00214) ~ 0.0021399984.
Numerical Differentiation

In real-life applications in science and engineering,
we often encounter functions defined by data. The
data might not be modelled by an easily recognizable
formula. In these cases it is necessary to calculate
derivatives by a numerical scheme called the method

of differences. Suppose the data is given by a discrete
function x(t), and ¢t = a is a data point that has left and right neighbors. with

coordinates (@ — h) and a+ h. As shown in the picture, the best approximation
to the slope of the tangent is given be the slope of the secant line between the
two adjacent points, that is

v w(a+h)—x(a—h)
z'(a) = o (2.2)

Suppose there are n data points. One can index the n data points by natural
numbers £ = 1...n. The formula above can be easily generalized for all but
the end-points so it can be implemented by computers. The formula is called
the method of central differences. If needed, for the endpoints, one can use
obvious “backward” or “forward” differences.

2.1.4 Example .

The table below shows the position of a particle for the first 8 seconds:
t 1 2 3 4 5 6 7 8

x | 1.89 | 1.98 | 2.12 | 2.24 | 2.45 | 2.73 | 2.94 | 3.12
stantaneous velocity at time ¢t = 5.

Solution: Simple.

Estimate the in-

2.73 —2.24
") g 22 27
7 () 64

2.2 Limit of Function

2.2.1 Definition (Non-Rigorous intuitive definition) Let y = f(z), and ¢ be
a real number. We say that
lim f(z) =L,

r—cC

if f(x) is close to L whenever x is sufficiently close to ¢. Equivalently,

| — ¢l small = |f(z)—L| small
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The concept here is easy to understand intuitively, but it lacks mathematical
rigor because it is not clear how “close” is “sufficiently close.”

2.2.2 Example Find 1in12(2 + (x 4 2) cos(z + 2)).
T—

Fig. 2.4: Limit example
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Chapter 3

Differentiation Rules
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Chapter 4

Appendix

4.1 Maple Codes

4.1.1 Slope of Secants Numerically

The non-obvious part of this code is the syntax for formatting the string output
of the printf command. In the argument %9.6f, the digit 9 is the spacing and
the digit 6 is the number of decimals. The lines of a do-loop are separated by
”Shift-Enter”.

> restart;
> Digits = 12
> with(plots);
> a:= 1.0: b:= 2.0: n:= 6: h:= 0.1:
> f = x —> evalf(x"2);
> printf(”\n x m (sec) x m (sec)\n”);
printf (”? \n”);
for i to n do
X[i] = ath"1i;
X2[i] := a—h"1i;
Y[i] = (FX[i])~f(a))/h"i;
YV2[i] = (£(X2[i])—F(a))/(—h"i);

printf(?%9.6f %9.6f %9.6f%9.6f\n” X[i],Y[i],X2[i],Y2[i]);
end do;

t m (sec) t m (sec)

1.100000 2.100000 0.900000 1.900000
1.010000 2.010000 0.990000 1.990000
1.001000 2.001000 0.999000 1.999000
1.000100 2.000100 0.999900 1.999900
1.000010 2.000010 0.999990 1.999990
1.000001 2.000000 0.999999 1.999999

13
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4.1.2 Slope of Secants Graphically
Generic worksheet to plot a function on an interval [0,b], the tangent at t = a
and n secants. Input function here is f(t) = ¢2.

restart :

with (plottools): with(plots): with(student):
a = 1: b = 2: n = 4:

Delta x:=(b—a)/n

fi=t —> t°2
slope:= (a, yl, b,
msec:= X —> slope(a7
plotf— plot (f(t), t
tgt:=plot (f(a)+eval (di
thickness=2):
plotSec:=plot ([seq(f(a
i=1l..n)

— (y2 —y1)/(b — a):
a), f(x)):

0 .. b, color = black, thickness = 3):
ff(f(x),x),x =a)x(x —a),x =a..b,

)+msec(a+1 Delta x)(x — a),
| ,x=a..b):
Points:= {}:
for i to =n do:
Points:= Points {\bf union}
{pointplot ([a+i Delta x,f(a+i Delta x)],
symbol=solidcircle , symbolsize=20)};

od:
p0:=plot (0, .b, color=black):
p2:=plot ([t ( ),t a..b], color=black):

p3::plot([b t,t=f(a)..f(b)], color=black):
display(plotf7 Points, tgt, plotSec, p0, p2, p3,
tickmarks=[3, 6])




