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Abstract—Wireless sensor and actor networks (WSANs) con-
sist of fixed sensor nodes and mobile actor nodes. Data is
generated at the sensor nodes, and collected at the more powerful
actor nodes. We consider the problem of finding the location
for K actor nodes such that every sensor node is within d-
hop from an actor node, where K and d are parameters of
the problem. Our approach distinguishes itself in obtaining the
minimum transmission radius necessary for such coverage to be
possible. We provide an exact solution by via an integer-linear-
programming formulation (ILP), and evaluate two heuristic
approaches.

I. INTRODUCTION

Wireless sensor networks (WSNs) have attracted the atten-

tion of many researchers due to the complexity in their network

design and operation. A WSN is a collection of wireless sensor

nodes that have constrained resources, such as battery power,

and are deployed in a region of interest. In general, it is

a data gathering network where sensor nodes are static and

responsible for sampling their surroundings and reporting their

data to predefined sink node [1].

As technology advances, WSNs has evolved into more

complex systems. Originally, many papers considered a single

sink node whose location is fixed. However, a mobile sink is

useful in many applications, and can improve the performance

of the network. Examples of applications benefiting from a

mobile sink include battlefield monitoring and the prevention

of wild fires [2]. Recently, improved hardware technology

allows wireless sensor and actor networks (WSANs), which

have attracted much interest. These consist of a set of wireless

sensor nodes and a set of movable actors. Actors are powerful

devices (e.g., unmanned vehicles, mobile robots), which may

have the ability to change their location; although more

powerful than sensor nodes, the energy in actors is still limited.

When a sensor node gathers data for specific event, it

sends the information to an actor. Actors make decisions

for various issues and perform appropriate actions based on

the received information from sensor nodes and from other

actors [3]. Moreover, multiple mobile actors improves network

performance by increasing network lifetime and reducing data

latency.

In WSANs, one major challenge is choosing the location of

actors to achieve various network goals, such as maximizing

sensor coverage, minimizing data collection delay, or balanc-

ing the load among actors. In general, each sensor node sends

its data to other sensor nodes or actors that are located within

its maximum transmission range.

In general, there are two cases to model for sensor commu-

nication, single-hop and multi-hop. In single-hop communica-

tion, each sensor node is within communication range of at

least one actor. In multi-hop communication, data from some

sensor nodes may have to traverse several other sensor nodes

before reaching an actor node; this is usually due to a smaller

transmission radius of the sensor nodes. Because the resources

at sensor nodes are limited, and a longer transmission range

implies more energy consumption, it is desirable to use multi-

hop communication in WSANs.

Also, although all sensor nodes initially have same resource

or battery, some nodes may consume more energy because an

amount of communication is different among nodes because

of their proximity to a point of interest. In the worse case, the

network topology is reconstructed due to losing connectivity

for sensor nodes with weak transmission power.

The number of hops between a sensor node and an actor

also play an important role due to data latency [4]. That is,

information from sensor nodes can be sent to actors within a

given time constraint by being aware of the fact that latency

of data is often proportional to the number of hops [5].

We are interested in minimizing the transmission range, but

not at the expense of a significant increase in hop count. Thus,

we focus instead on fixing an upper bound d on the number

of hops that a sensor node may need to reach an actor, and

finding the smallest transmission range rmin that satisfies this

constraint.

We define the problem more formally as follows. We are

given a set S of n sensors, s1, . . . sn, which are randomly

deployed in a two-dimensional plane. A total of K actors,

t1, . . . tn are to be placed on the field. An actor placement F
is a function that defines the location of each actor. An upper

bound d is given on the allowed hop count from any sensor

node to its closest actor.
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Let min-hops(S,F , r) be the minimum number of hops

from any sensor node to any actor assuming each actor and

sensor have a transmission range of r. Let min-radius(S,F)
be the smallest value of r such that min-hops(S,F , r) ≤ d.

Then, F is said to be a solution iff, for any actor placement

F ′,

min-radius(S,F) ≤ min-radius(S,F ′)

II. MINIMIZING SINGLE-HOP TRANSMISSION RANGE

Although we are interested in the multi-hop problem, we

first discuss existing work on the single-hop version of the

problem, and then return to the multi-hop version. Thus,

consider finding the minimum radius rmin such that all sensor

nodes are within a distance rmin from at least one of K actors

(i.e., d = 1). This single-hop problem is equivalent to the

euclidian p-center problem [9][10][11], whose solution may

be obtained as follows.

Note that the problem is non-trivial because there are an

infinite number of locations where actors may be placed (any

point on the plane), and there are an infinite number of radii

r to consider, since we do not assume r is discrete. At first

glance, it appears to be a daunting task. However, although

NP-hard, the problem is NP-complete, and a solution can

be found by carefully selecting a finite set of possible actor

locations and a finite set of radii. It can be shown [8][10] that

the optimum radius rmin must belong to a finite set R(S),
where |R(S)| ∈ O(n3). Also, for any r, if all sensor nodes

can be covered by the actors using radius r, then the same

can be accomplished if actor locations are chosen from some

finite set P (S, r), where |P (S, r)| ∈ O(n2). I.e., if there is a

solution with radius r, then there is also a solution with actor

locations chosen from P (S, r).
To solve the problem, assume there exists a procedure,

solve(S,K, r), to determine if, for a given radius r, it is

possible to cover all sensor nodes with K actors. Obvi-

ously, if r ≥ r′ and solve(S,K, r′) is successful, then

so will solve(S,K, r). Hence, a binary search is performed

over the elements of R(S) to find the smallest r satisfying

solve(S,K, r). This yields the optimum radius rmin.

The complexity of the problem arises not from the bi-

nary search (O(log n) steps), but from performing procedure

solve(S,K, r). As mentioned above, for a given radius r, a so-

lution must exist by selecting actor positions from set P (S, r),
which is finite. Thus, solve(S,K, r) may be implemented by

testing all subsets of P (S, r) of cardinality K, which has

exponential complexity.

Due to space restrictions, we do not discuss why P (S, r) ∈
O(n2) (See [6][9] for details). Briefly, however, we discuss

why R(S) ∈ O(n3).
Consider a subset S′ of sensor nodes, and consider the

smallest circle that covers each node in S′. In Fig. 1, we

consider all possible cases. Fig. 1. (a) shows when the edge

of the circle touches three or more sensors (drawn larger for

clarity). Note that any three points in the plane define a unique

circle that touches these three points. Fig.1. (b) shows when

the smallest circle touches two nodes at opposite ends of its
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Fig. 1. Minimum circles covering a set of points.

diameter. Fig. 1. (c) shows the degenerate case where |S′| = 1
and the radius is zero. Let R(S) be the circles defined by all

triples, doubles, and singletons that can be obtained from the

set S of sensor nodes. Note that |R(S)| ∈ O(n3). Thus, there

are O(n3) minimum circles (and their corresponding radii)

that cover subsets of S. Also, note that any solution (i.e., with

radius rmin) must contain at least one actor whose sensors

are at the edge of its range, otherwise, the transmission range

could be diminished. Hence, rmin ∈ R(S).

III. MINIMIZING MULTI-HOP TRANSMISSION RANGE

We next consider the multi-hop problem, i.e., when d > 1.

We argue that an approach similar to the single-hop problem

is applicable, as follows.

Consider a solution F , when d > 1. Let t be an actor,

and St the subset of sensor nodes that are covered in F by

t in one-hop. From the earlier definition of R(S), the radius

necessary for t to cover St must be already included in R(S).
However, some sensor nodes will not communicate directly

with an actor, and hence, the transmission range necessary to

reach their next hop sensor may not be in our earlier definition

of R(S). Thus, we add to R(S) the distance between every

pair of sensor nodes (a total of O(n2) values), to cover all

possible next-hop choices for each sensor node. Note that

R(S) remains O(n3), and its increase in size will only affect

the binary search, so no significant complexity increase occurs.

It can be shown that the canonical locations in P (S, r) will

also generate a solution when d > 1. Due to space restrictions,

this is shown in [7]. Thus, we can implement solve(S, d,K, r)
by exploring all subsets of size K from P (S, r) and check if

all sensors can reach an actor within d-hop.

Below, we present an ILP formulation for solve(S, d,K, r),
and two heuristic approximations.

IV. ILP FORMULATION FOR solve(S, d,K, r)

The following notation is used in our ILP formulation.

• P : set of potential locations for the actors.

• m: number of potential locations for actors, m = |P |.
• i: index for a sensor node, 1 ≤ i ≤ n.

• h: index for possible next-hop positions,

1 ≤ h ≤ m for potential actor locations,

m+ 1 ≤ h ≤ m+ n for sensor nodes.
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• p: index for a potential position in the set P ,

1 ≤ p ≤ m.

• d: given hop bound.

• r: maximum transmission range of sensor nodes.

• δi,h: euclidean distance from sensor node i to possible

next-hop h.

• Uh: integer variable indicating the order of nodes in the

path,

U1 = ... = Um = 0 and 1 ≤ Um+1, ..., Um+n ≤ d.

Also, we define the following binary variables.

Xi,h =

{

1, if if there is next hop from i to h

0, otherwise.

Zp =







1, if potential position p is chosen as

one of the K positions

0, otherwise.

Our objective function is to minimize total distance between

sensor nodes and actors on condition that each sensor node can

communicate with at least one actor within at most d-hop.

Hence, we minimize the following value

n
∑

i=1

m+n
∑

h=1

δi,h ·Xi,h

subject to the following constraints.

m
∑

p=1

Zp = K

m+n
∑

h=1

Xi,h = 1, (∀i, i 6= h)

δi,h ·Xi,h ≤ r, (∀i, ∀h)

Xi,p ≤ Zp, (∀i, ∀p)

Uh − Ui + d ·Xi,h ≤ d− 1, (∀i, ∀h)

V. HEURISTIC FOR solve(S, d,K, r)

In this section, we present two heuristics to approximate the

minimum transmission radius that covers all sensors within d-

hop. We simply refer to them as greedy-1 and greedy-2. We

borrow greedy-1 from [10][4]. We then introduce our greedy-2

heuristic, and their relative performance is evaluated in Section

VII.

The basics of greedy-1 are as follows. A total of K itera-

tions, one per actor, are performed. The first actor position is

chosen randomly from P (S, r), and all sensor nodes within d

hops from the chosen location are removed from the graph. At

every iteration step, a new position is chosen from P (S, r) that

is the farthest away from all previously chosen positions. The

sensor nodes within d-hop are then removed from the graph.

The heuristic accepts r if all sensor nodes are removed from

the graph after K iterations. The detailed steps are presented

below.

Algorithm 1 (S, d,K, r)

1: L← ∅
2: T ← S

3: for p = 1 to K do

4: if p = 1 then

5: set Lp to a random element from P (S, r).
6: else

7: set Lp to the member of P (S, r) such that Lp is the

farthest one away from elements of L

8: end if

9: L← L ∪ {Lp}
10: Td ← subset of T within d-hop of Lp

11: T ← T − Td

12: end for

Our greedy-2 algorithm also performs K iterations, one per

actor. However, it chooses actor positions based on the number

of sensors that can be reached in one hop of radius r from

said position. I.e., at each step, we choose the actor position

that would maximize the number of neighbors of the actor.

The sensor nodes within d-hop are then removed from the

graph. The heuristic also accepts r if all sensor nodes are

removed from the graph after K iterations. Its detailed steps

are presented below.

Algorithm 2 (S, d,K, r)

1: L← ∅
2: T ← S

3: for p = 1 to K do

4: choose Lp from P (S, r) such that Lp has the most

neighbors from T within range r

5: L← L ∪ {Lp}
6: Td ← subset of T within d-hop of Lp

7: T ← T − Td

8: end for

VI. APPROXIMATION TO THE OPTIMUM RADIUS

Above, we discussed how to obtain a finite number of radii

that can be used to determine the minimum radius to connect

each sensor node to some actor node within d-hop, provided

there is a heuristic that finds the locations of the actors when

given a fixed radius r.

Finding these actor locations is NP-hard [12]. However, of

the two heuristics discussed earlier (Algorithm 1 and 2), it was

shown in [4] that Algorithm 1 is within a factor of two from

the optimal. That is, Algorithm 1 is guaranteed to place the

actors such that the maximum number of hops from a sensor

to an actor is no more than twice the optimal. Because of

this, by combining the binary search over the radii with the

actor placement heuristic in Algorithm 1, we are guaranteed

to obtain a minimum radius rmin that is no more than twice

the optimal radius rmin, simply as follows.

Assume that rmin is given as input to Algorithm 1. By

definition of rmin, there is a placement of actors such that

229



3 4 5 6 7 8 9 10
60

70

80

90

100

110

120

130

140

150

160

170

180

Number of actors

S
m

a
lle

s
t 
ra

n
g
e

Greedy 1

Greedy 2

Optimum using ILP

Fig. 2. Comparison of the smallest node transmission range with the number
of nodes = 50 and hop bound = 2 by greedy-1, greedy-2 and ILP

every sensor node reaches an actor in d-hop. Thus, from [4],

Algorithm 1 will return a placement of actors such that every

sensor reaches an actor within (2 · d)-hop. Hence, the same

actor placement can reach all sensors within d-hop if we

use a radius r, where r ≥ 2 · rmin (by skipping alternating

nodes along the path). Therefore, when a radius r successfully

completes a step of the binary search, we are guaranteed to

obtain an actor placement satisfying the d-hop constraint, and

we thus radius r is no more than twice the optimal.

VII. EXPERIMENTAL EVALUATION

In this section, we simulated our experiments in a square-

shaped sensor area of size 500 × 500 m2. Initially, all

sensor nodes are randomly deployed in the sensing field. We

implemented our simulations with numbers of sensor nodes

50 and 100 respectively. Furthermore, the number of actors

ranges between 3 and 10 and we considered 1-hop, 2-hop,

3-hop as hop bound d.

In the first simulation, we implemented the greedy-1,

greedy-2 and ILP. The comparison is shown in Fig. 2. If

the number of actors increases, the node transmission ra-

dius decreases as a whole for greedy-1, greedy-2 and ILP.

Moreover, we can check that greedy-2 significantly shows

better performance than greedy-1. That is, greedy-2 is closer

than greedy-1 to optimum based on ILP. For instance, for K

= 7, although the transmission radius by greedy-1 is about

111, greedy-2 has about 95 for transmission range. By this

simulation, we verify the theorem that greedy-1 is never more

than twice the optimum, as predicted in Section VI.

In the second scenario, we have run our greedy-2 approach

with 1-hop, 2-hop and 3-hop as d-hop bound. We can check

the result for the number of sensor nodes is 100 in Fig. 3.

When the number of actors increases, the transmission range

decreases as the first simulation. Also, if the network has

bigger d-hop bound, it has smaller node transmission range

though the bigger d-hops bound increases data latency. It

follows that there is a trade-off between node transmission

range and hop bound.
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Fig. 3. Smallest node transmission range by different hop bound with the
number of nodes = 100 using greedy-2

VIII. CONCLUDING REMARKS

In this paper, we proposed a heuristic approach whose goal

is to find the smallest node transmission range for K actors to

cover a collection of sensor nodes within d-hop in WSANs.

Moreover, the minimum transmission range rmin is guaranteed

to be found using the ILP formulation presented above. As

future work, we consider a heterogeneous environment where

the transmission range for each sensor can be different. We

will also investigate whether the heuristic in Algorithm 2,

which behaves on average better than Algorithm 1, is able

to guarantee a solution within a constant of the optimum.
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