

THE MATHEMATICAL FOUNDATION OF IMAGE COMPRESSION

By

Lisa A. Soberano

A paper submitted in partial fulfillment of the requirements of the Honors Program in the
Department of Mathematic and Statistics.

Approved By:

Examining Committee ____________________________

Faculty Supervisor

Department Chair

Honors Council Representative

Director of the Honors Scholars Program

The University of North Carolina at Wilmington

Wilmington, North Carolina

May 2000

 2

The Mathematical Foundation
of Image Compression

Lisa A. Soberano

 May 2000

 3

Acknowledgments

 In eigth grade I was privileged to have an algebra teacher, Mr. Pat Boullion, who

saw beyond my average grades and recognized my potential as a math student. Not only

was he a friend to me, but he challenged me to do my best and helped me to believe in

myself. Without his influence in my life, my appreciation and love of mathematics

would not be as great as it is now.

I have found that it is hard to come by teachers that are dedicated to their students

is such a profound way as Mr. Boullion was to me. Amazingly, in my sophmore year of

college at UNCW, I was fortunate enough to have Dr. Russell Herman as my Differential

Equations professor. It was in this course that I learned that Dr. Herman challenges his

students to understand mathematics, but he does so by giving his students as much of his

time as he expects them to devote to their studies of mathematics. Since that semester, I

have continually brought my questions to Dr. Herman, aware that he is eager to help me

discover the world of mathematics.

 It is in Dr. Herman that I have found not just a wonderful professor, but a good

friend. I would like to thank Dr. Herman for his time and effort teaching and training me

in mathematics. Also I would like to thank him for his advice, assistance, prompting, and

encouragement throughout this yearlong honors project. Without the contributions of his

Matlab programs in the Fractal Transform section of Appendix A, my honors project

would be incomplete.

I would like to thank my honor's committee, including Dr. Kenneth Gurganus,

Dr. Russell Herman, Dr. Gabriel Lugo, and Dr. Harry Smith for supporting me and for

making this research project valuable experience for me. In addition, I extend thanks for

 4

the countless hours that they each spent rereading and commenting on the many drafts of

this honors thesis.

I would like to thank my husband, Robby, for having faith in me, uplifting me

when I am down, for pushing me when I want to stop, and for teaching me how to take a

break and have fun.

Most importantly, I would like to give God the glory for all of the efforts I have

put into this project. If not for God's awesome creation of the universes, I would not have

the zeal for mathematics that I have.

"For since the creation of the world God's invisible qualities -- his eternal

power and divine nature -- have been clearly seen, being understood from what has

been made, so that men are without excuse."

 Romans 1:20

 5

I. Introduction
 1. Background

 2. Judging Criteria
II. Standard Types of Compression

 1. Coding
 2. Delta Compression

 3. Fourier Transform
3.1 Periodic Functions
3.2 One Dimensional Fourier Transform
3.3 Two Dimensional Fourier Transform
3.4 Application of Fourier Transform

4. Cosine Transform
4.1 One Dimensional Cosine Transform
4.2 Two Dimensional Cosine Transform

5. JPEG
III. Fractals and Iterated Function Systems

1. Iterations
2. The Copy Machine Algorithm
3. Metric Spaces, Mappings, Affine Transformations
4. Convergence and Contractions
5. IFS Fractals

5.1 Fractals
5.2 Hausdorff Space
5.3 Iterated Function Systems
5.4 The Random IFS Approach

IV. Fractal Image Compression
 1. Introduction to Fractal Image Compression

 2. Using IFS fractals for Fractal Image Compression
3. The Fractal Transform

V. Conclusion
VI. Appendix A
VII. Appendix B
VIII. References

 6

I. Introduction

1. Background

It is interesting to notice how our advanced technology has made us impatient

beings. And what do we expect because of it … faster and more efficient technology, of

course. In this paper we will discuss the search for more efficient methods of image

compression. There are many forms of image compression currently being used. Some

of the more familiar compressions are JPEG (Joint Photographers Expert Group) and GIF

(Graphics Interchange Format); although there recently has been research seeking even

more efficient compressions. The objective in image compression is to efficiently

produce the smallest graphics files without compromising image quality.

Image compression is a specialized form of data compression. In fact, most forms

of data compression can be applied to image compression since an image is just an array

of numbers. Although a graphics interface is needed to render data as an image, the data

is discrete, finite, and structured. This facilitates manipulation of the data. The longtime

problem with images is storing the data. The simplest way of storing image data is pixel

by pixel, but this is problematic. Storing an image that is 256256× pixels and whose

entries are in the range [0, 255] requires 8 bits per pixel, so the size of the file would be

65 KB. The larger an image is the more space it will require to be stored. For example, an

image that is 512512× pixels would require 256 KB for storage. As the image grows by a

factor of 2, the space required for storage grows by a factor of 4. This may be

appropriate for certain situations; however, if storage resources are limited or if the image

will be transmitted through a network a better solution should be found.

 7

Many solutions to this problem have been discovered. Some are schemes in

which the image data is encoded for storage and decoded for display. These coding

schemes include Huffman Coding and GIF. No data is lost in these schemes. Other

algorithms cause the image to lose data, which may lessen the image quality; but, they

may also result in less storage space. These algorithms include Fourier Transform, Cosine

Transform, JPEG, and Fractal Image Compression, all of which will be discussed in this

paper.

In the 1980's, a group called the Joint Photographers Expert Group was formed to

determine the standards for image compression. Their studies resulted in the JPEG

scheme, a lossy form of compression which involves many steps [9]. First the image

being compressed is separated into a gray scale image (the luminance) and the color

information. Each of these is compacted separately. For visual purposes, our eyes can

spare color more than luminance. This is because our eyes use the gray scale edges to

define boundaries but allow color to bleed across boundaries. So, the precision of the

color information is usually reduced to half of the precision used for the brightness

values. Then the discrete cosine transform, in which the terms in the expansion are real

valued, is applied to square sub-regions in the image. The compression of the image is

attained by keeping as few expansion terms as possible [9]. The fewer the number of

terms kept, the greater the compression; this also means that the loss of high frequency

information is greater. This process can be performed on many areas within the image.

Finally more compression can be achieved by truncating the precision of each term, then

using a coding scheme that stores repeated strings of numbers. With this method, it is

possible to reach a compression ratio of 100:1, although ratios on the range of 10:1 to

 8

20:1 are more typical [9][12]. After compression, loss in the sharpness and detail can be

detected. Depending on the software or hardware used, the time difference in

compression and decompression of an image can vary up to tens of seconds [9].

A more recent approach pioneered by Michael Barnsley is to use the similarities

on different scales throughout images to assist in compression. Fractal Image

Compression enables an incredible amount of data to be stored in highly compressed data

files. We will explore the mathematical theory, which supports fractal image

compression. One of the most important foundations for fractal image compression is the

concept of iterated function systems (IFS). Through IFS we are able to systematically

reproduce fractals which occur in nature. With the theory that will be presented, we will

explore the development of an IFS and how one can apply IFS to obtain fractal image

compression.

Michael F. Barnsley's discovery of the fractal transform in 1988 was preceded by

B. Mandelbrot's development of fractal geometry. It is true that mathematicians knew

about some of the basic elements of fractal geometry during the period from 1875 to

1925, but they thought that this knowledge deserved little attention [7]. Mandelbrot, a

mathematician at IBM corporation, was the man who pioneered this field of mathematics

in depth in the 1960's. His first publication on fractal theory was in 1975 [7].

Fractal shapes occur universally in the natural world. Mandelbrot recognized

them in coastlines, lungs, landscapes, turbulent water flow, and even in the chaotic

fluctuation of prices on the Chicago commodity exchange [7].

With classical Euclidean shapes only two parameters, length and position, are

needed to describe the shape; whereas, fractals require three parameters: "complicated

 9

structure on a wide range of scales, repetition of structures at different length scales (self-

similarity), and a 'fractal dimension' that is not an integer [8]." Self-similarity is found in

sets or shapes that have repetitive patterns on smaller scales. A line and a square are two

Euclidean shapes that are self-similar. Enlarging and replicating the line can produce the

square, just as reducing the square can form the line [7]. In this case, the line has

dimension 1, and the square has dimension 2. It seems possible that a form between a

line and a square, say a jagged line, can have a dimension between 1 and 2 .

From observing self-similar forms such as these, Felix Hausdorff and A.S.

Besicovitch discovered a way to measure the dimension of a fractal [13]. To measure the

fractal dimension of a bounded set mS R∈ , one must lay a grid of m-dimensional boxes,

of side-length ε , to cover S [8]. Let N be the number of boxes of the grid that intersect

S. Then S has a box-counting dimension

()







=

→
ε

ε 10 log

log
lim

N
D ,

when the limit exists [8]. This definition of dimension holds true for integer dimensions

as well as for fractal dimensions.

 Since Mandlebrot's success in making the research of fractals and their

applications popular, many people have learned to create fractal illustrations. Today

these beautiful images can be generated easily on a personal computer, and have spawned

a popular field of computer graphics art.

In the 1980's Michael F. Barnsley realized that the theory of fractals could be

applied toward image compression. In particular, an optimal compression algorithm is

sought for compressing images. This is desired in order to save storage space, as well as

time. Depending on the purpose of the image, one would either want to store exactly the

 10

same data as in the original image (this is called lossless coding) or a compressed version

of the data (referred to as lossy compression). For instance, one may wish to store a

medical image without loss of data. However, media conferencing requires quick "real

time" transmission for images, demanding some form of compression.

Rather than storing an image pixel by pixel, the goal of fractal image compression

is to find a lossy compression algorithm that takes advantage of the self-similarities in an

image. Barnsley applied his knowledge of fractals and mathematics to image

compression, creating an optimal forms of image compression comparable to JPEG, a

form of compression which is widely used today.

2. Judging Criteria

As mentioned before, image compression is desired for storage or transmission in

order to reduce the large size of most image files. There are two criteria by which image

compression methods are judged [9]. One is the time needed to accomplish compression

and decompression, and the second is the degree of preservation of the image. Obviously,

once the image is compressed in some way, the image must be reproducible from the

compressed form. We will discuss the preservation of the image.

Lossless techniques allow exact reconstruction of each individual pixel value.

This method is sometimes referred to as image coding, rather than image compression.

One of the early approaches of image coding is called delta compression. Rather than

storing the actual pixel values, the difference in values of a pixel and its neighbor is

stored. Usually there is little change in an area of a picture, so most of the difference

values are close to zero. Since the magnitudes of the differences are much smaller than

 11

the actual magnitudes of the pixel values, this calls for less storage space. Other forms

of lossy compression are Huffman Coding and GIF, which will be discussed later.

 Lossy schemes attain compression by discarding unimportant data. Of course it is

possible to discard data that is crucial to the quality of the image, but this is not a

desirable practice. Lossy methods use an algorithm to determine which part of the image

data is unnecessary, and which data is essential to the clarity of the image. We have

disposed if the data, it is not retrievable. This is where data is lost and compression is

achieved. After discarding data, it is common to use a lossless coding method at this

point to compress the existing data even more. Upon decoding and decompression, the

exact data is not regenerated therefore the final image is not exactly the same as the

original image, but it closely resembles it. We will cover Fourier transform, Cosine

transform, JPEG compression, and the Fractal transform as examples of lossy methods.

 II. Standard Types of Compression

1. Lossless Coding

Binary coding is the basis for data storage in most machines today but is not the

most efficient form of coding. Although binary coding is lossless, there are other coding

schemes, such as GIF and Huffman coding, which are more efficient. GIF compression is

a lossless compression algorithm. This algorithm's performance is based on how many

repetitions are present in an image. If the program comes across parts of an image that

are the same, say some repeating sequence, it assigns that sequence a value and stores

this assignment in a hash table, or a key. This hash table is then attached to the image so

the decoding program can descramble it. The disadvantage to compression with a GIF is

 12

that the amount of compression achieved is dependent on how much repetition is in the

image. It is also limited to a palette of at most 256 colors [10].

 Huffman coding is a widely used variable-length coding scheme [9]. This

algorithm searches for the different frequencies that gray values occur throughout the

image. Then it assigns a code to each value, short codes for high frequency values, and

long codes for low frequency values. This process can also be applied to the difference

in pixel values. In this case, more compression can be attained.

 For an example, consider an image in which the pixels (or their difference values)

can have one of a possible 8 brightness values [9]. This would require 3 bits per pixel

)82(3 = for traditional representation. It is possible to produce a histogram of the image

describing the frequencies for which each brightness value occurs. Huffman coding

provides instantaneous codes, or codes in which no code words occur as a prefix to

another [2]. This makes the decoding process efficient. The codes that are chosen can be

generated by a Huffman tree, which depends on the relative probabilities of each value.

A Huffman tree is formed by progressively gluing smaller trees together, until a big tree

is formed. Barnsley summarizes the steps to producing a Huffman code as the following

[2].

Huffman Code Steps

Step 1. List the symbols in order of probability.

Step 2. Make a tree whose branches, labeled zero and one, are the two

 symbols with lowest weight.

Step 3. Remove the two symbols just used from the list and add to the list a

 13

new symbol representing the newly formed tree with probability equal to

the total weight of the branches.

Step 4. Make a tree whose branches, labeled zero and one, are the two

symbols with lowest weight in the new list. This tree may consist of

two other symbols, or it could consist of a symbol and the tree just

constructed.

Step 5. Repeat this procedure until one large tree is formed

Table 1 contains a list of possible brightness values (these are the symbols referred to in

Barnsley's steps) with their probabilities of occurrence in an image. Figure 1 shows the

Huffman tree constructed after following the Huffman steps. The third column in Table

1 lists the codewords for the brightness values that occur in the image. These codewords

are determined by the Huffman tree. It is important to note that these codes are not

unique. For each two branch tree, it is possible to interchange the zero and one assigned

to each branch. This creates many possibilities for codes, but it is true that a Huffman

code will minimize the number of bits needed for storage.

 __

Brightness Value Frequency Huffman code
3 .47 0
5 .19 100
4 .13 110
6 .08 111
2 .07 1010
7 .03 10111
1 .02 101100
0 .01 101101

__

Table 1. Huffman code assigned to brightness values of an image.

 14

Figure 1. Huffman Tree used to generate Huffman code for Table 1.

Now that the brightness values have codes, we can analyze the effectiveness of

this binary representation. Only a single bit is required for the most common pixel

brightness value. The less common values have longer codes. To find the average

codeword length for this code we must multiply the frequencies by their corresponding

code lengths, and sum the resulting products.

)02.01(.6)03(.5)07(.4)08.19.13(.3)47(.1 +++++++=avl

 28.2= bits/pixel,

which is better than the 3 bits/pixel with which we started. Huffman trees are not unique,

To further this study on Huffman codes see [2].

 15

2. Delta Compression

Delta Compression was a simple early approach of reducing the number of bits

per pixel. This method of data compression, along with other early lossless methods of

data compression, was an attempt to transmit images of space collected from space

probes [9]. Because of the low power transmitters, the communication bandwidth did not

allow images to be sent unless some method was used to reduce the number of bits per

pixel [9].

The basic approach to Delta Compression is to take the difference in neighboring

pixel values. Given some image with a high magnitude average in pixel values, it is safe

to assume that in most cases the average change in pixel values is small from one pixel to

the next. This guarantees that after the Delta Compression has been applied, the

magnitudes of the differences are smaller than the original pixel values. Thus, a smaller

number of bits per pixel are required to store the image.

 For instance, let two neighboring pixels in a particular image have the values of

167 and 165. The first pixel alone requires 8 bits to store the value, whereas, their

difference value equals 2, which only requires 1 bit to be stored. Overall, if this concept

is applied to the whole image, the magnitudes of each entry of the matrix representing the

Delta Compression of the image will be much smaller. Thus the average number of bits

per pixel needed to store the image will be smaller. Before compressing the image, some

of the original data will need to be stored in order to regenerate exactly the original image

when decompression takes place. There are different algorithms one could implement in

order to achieve this compression.

 16

The following is a description of the Delta Compression program 'deltacomp2d'

included in Appendix A. When compressing the original image, which is represented by

an MN × matrix X, the first value X(1,1) should be stored as some variable, say 'first'.

In Figure 2, the first entry of X is 176, so first = 176. The (r,c) entries of Dx, the matrix

representing the Delta Compression of an image, for r = 1,2,…N and c = 1,2,…M-1 are

obtained by the difference X(r,c) - X(r,c + 1). A special case occurs when c = M (the last

column in the matrix). When c = M, Dx(r,M) holds the values of X(r,M) - X(r + 1,1). In

words: the last entry in a row r of Dx equals the last entry in the row r of X minus the first

entry in the row r + 1 of X. The last entry of Dx is set equal to zero. Once all entries of

Dx have been created, Dx and first are stored in a compressed file. It is possible to apply

another lossless scheme at this point, such as Huffman Coding, which would compress

this file even more.

Figure 2. Example of applying Delta Compression and regenerating original data.

For the Delta Decompression program named 'deltade2d', found in Appendix A,

the matrix Dx represents the compressed matrix and first represents the initial entry in the

original image, as above. Y represents the reconstructed original image. Since this is a

lossless compression method Y will be equal to X, the original image before Delta

Compression is applied. Y is reconstructed, first by setting the first entry Y(1,1) = first.

Then for r = 1…N and c = 2…M, Y(r,c) = Y(r ,c-1) - Dx(r,c-1). But there is a special case

when c = 1 and 1>r , Y(r,1) = Y(r-1,M) - Dx(r-1,M). When Y reaches the first entry of

 17

a new row, Y(r,1), the first entry in that row is created by subtracting the last entry of Dx

,in the r-1 row, from the last entry Y, in the r-1 row. As desired, the original image is

reconstructed exactly. See Figure 2 for a numerical example.

In Appendix B, Figures 1 through 12 correspond to Delta Compression results.

Figures 2, 6, and 10 are three different images to which we applied Delta Compression.

The histograms of these images are to their left in Figures 1, 5, and 9. A histogram

shows the distribution of data values. In this case, the pixel value, on a range of [0,255]

is on the independent axis and the frequency of the pixel values within the image is on

the dependent axis. It is important to notice that the pixel values in the original images

are spread throughout the range of [0,255]. The histograms of the delta compressed

images are in Figures 3, 7, and 11. After the images have been delta compressed, the

pixel values are closer to zero than in the original image. As mentioned previously, on

average, the smaller magnitudes of pixel values are what allow the data to be stored in

fewer bits. The images in Figures 4, 8, and 12 represent what type of image the data in

the delta compressed files would resemble. The more uniform gray color graphically

displays that the pixel values are close in magnitude.

3. Fourier Transform

 Our goal in using Fourier transforms is to determine and work with the spatial

frequency content of an image. Images are treated as two-dimensional discrete finite

signals. The Fourier transform f̂ of a two-dimensional signal f has a matrix

representation and contains the amplitudes of the fundamental frequencies that make up f.

Each component of f̂ indicates the strength of a particular frequency in f. Once the

 18

Fourier transform is applied to an image, to achieve compression of the storage of that

image, it is necessary to quantize it. Quantizing is a rounding procedure in which the

high frequencies are omitted. Ideally, many entries in the matrix will be set to zero. By

doing this, less storage space is needed to represent the image. The image is

decompressed by application of the inverse transform. The resulting image matrix will

have values close to the corresponding entries in the original image. This is how it is

possible for the new image to resemble the original image. Before the Fourier Transform

is discussed in detail, we will introduce some fundamental mathematics.

3.1 Periodic functions

 A function)(tf is called periodic if there exists a constant T > 0 for which

),()(tfTtf =+ for any t in the domain of definition of)(tf , where t and t + T lie in this

domain. The smallest such T is called the period of)(tf [11]. There are many periodic

functions, tsin , tcos , and ttan being some of the most well known periodic functions

[11]. If we were to plot a periodic function on some interval Tata +≤≤ , we would

obtain the entire graph by periodic repetition of the portion of the graph corresponding to

Tata +≤≤ [11]. If T is the period of)(tf , then any integer multiple of T, say kT, where

k is any positive integer, is also a period of)(tf [11].

Consider the sine wave, tAt ωsin→ , where R∈t . A represents the amplitude

of the wave, ωπ /2 represents the period, and πω 2/ represents the frequency. With this

information, the sine wave can be constructed for all time t, whereas most signals we

observe in practice have a finite duration. But, this does not cause a problem because any

 19

finite length signal can be extended periodically for all time [12]. In analyzing signals

more complex than the sine wave it is convenient to use the most fundamental map of an

oscillation: θθ ie→ , where R∈θ . Using Euler's identity, θθθ sincos ie i += , we see

that θθ ie→ maps any interval of length 2π to the unit circle. This is the basis of all

Classical Fourier Analysis [12]. If we let tωθ = , where R∈ω , we obtain in the map

tiet ω→ , R∈t . This map is a rotation about the unit circle that completes one revolution

of (2π radians) in period ωπ /2=T [12]. An oscillation with frequency πω 2/=f can

be described by iftet π2→ [12].

 For each integer n, we set nn fTn ππω 2/2 == . This map,

tifti nn eet πω 2→→ , R∈t ,

completes n rotations around the unit circle (counterclockwise if n is positive and

clockwise if n is negative) during the time interval Tt ≤≤0 [12]. Each of these maps

give one basis signal for each integer n [12]. The collection of these basis signals is the

set

Z}∈→= netA tifn |{ 2π ,

which contains the information needed to generate other period T signals [12].

 Let B be the span of A:

∑
∈

∈→=
Z

C}.
n

n
tif

n aeatB n |{ 2π

The sequence of coefficients na is called the Fourier transform of a signal from B.

 20

3.2 One-Dimensional Fourier Transform

The Fourier transform of a signal is a vector containing the amplitudes of the

fundamental frequencies that make up the signal [12]. If a continuous signal h is defined

as

∑
∈

=
Zn

tif
n

neath ,)(2π Tt ≤≤0 ,

then the sequence of coefficients na are represented as

∫ −=
T

tif
n dteth

T
a n

0

2)(
1 π ,

which allows each na to be computed from h [12].

Proposition: If ∑
∈

=
Zn

tif
n

neath ,)(2π Tt ≤≤0 , then ∫ −=
T

tif
n dteth

T
a n

0

2)(
1 π .

Proof: First, we need to show that the functions tifne π2 are orthogonal over the interval

Tt ≤≤0 , i.e.





== ∫∫ −−

00

)(2

0

22 T
dtedtee

T
ffit

T
tiftif mnmn πππ

if

if
,nm

nm

≠
=

where n and m are integers. There are two cases for which we need to evaluate this

integral.

Case 1 m = n

∫∫ ==−
TT

ffit Tdtdte nn

00

)(2π

Case 2 nm ≠

 21

)(2

1

)(2

)(2

0

)(2

0

)(2

mn

ffiTT

mn

fftiT
ffit

ffi
e

ffi
e

dte
mnmn

nn

−
−

=
−

=
−−

−∫ ππ

ππ
π

 0
)(2

1))(2sin())(2cos(
=

−
−−+−

=
mn ffi

mnimn
π

ππ
.

 Now, that we know the set of basis signals is orthogonal, we can find the

coefficients. Our signal h is defined as:

∑
∈

=
Zn

tif
n

neath .)(2π

If we multiply both sides of the above equation by tifme π2− , we have

∑
∈

−− =
Zn

tiftif
n

tif mnm eeathe πππ 222)(.

Integrating on both sides from Tt ≤≤0 ,

∫ ∑∫
∈

−− =
T

n

tiftif
n

T
tif dteeadtthe mnm

0

22

0

2)(
Z

πππ ,

 ∫∑ −

∈

=
T

tiftif

n
n dteea mn

0

22 ππ

Z

 mTa= ,

by orthogonality. Therefore,

∫ −=
T

tif
m dteth

T
a m

0

2)(
1 π ,

 as desired. QED.

 22

 Although knowing how to find the Fourier Coefficients of a signal h for all values

of t in a continuous time interval Tt ≤≤0 is useful in many engineering applications,

our interest is in finding the Fourier coefficients of an image, a discrete signal. In fact,

the image signal is not a function of time, but of position. So, in the position interval

Xx ≤≤0 , where x denotes position and X represents the period of the signal, a discrete

signal is sampled at discrete positions kx , k = 0, …, N with Xxk ≤≤0 [12]. It is

common and easier to keep the sampling interval constant and the period X as some

multiple of the sampling interval [12]. The result is the sampling positions kx are

equidistant between 0 and X. If N samples are taken, the sampling interval is X/N and the

sample positions are 0, X/N, …, (N-1)X/N [12]. If we replace the continuous signal h,

with a step function approximation h
~

 due to the discrete sampling intervals, then we end

up with the sampling intervals ,/)1(/ NXkxNkX +≤≤ k = 0, …, N-1. So, the sampling

positions are NkXxk /= and the signal can be written as

∑∑
−

=

−

=

===
1

0

/2
1

0

/2)/()(
~ N

n

Nink
n

N

n

NkXif
nk eaeaNkXhxh n ππ ,

 since Xnf n /= . The finite sum for the discrete signal can be written as

∑
−

=

==
1

0

/2)(
N

n

Nink
nkk ebxhh π . (1)

Proposition: If ∑
−

=

=
1

0

/2
N

n

Nink
nk ebh π , Xxk ≤≤0 , then ∑

−

=

−=
1

0

/2
N

k

Nink
kn ehb π .

Proof: First we need to show that the discrete functions Ninke /2π are orthogonal over the

interval Xxk ≤≤0 , i.e.

 23





=∑
−

=

−

,0

,1

0

/2/2 N
ee

N

k

NimkNink ππ

if

if
,

,

nm

nm

≠
=

 (2)

where m and n are integers. We must consider two cases.

Case 1: m = n

∑∑∑
−

=

−

=

−
−

=

− ===
1

0

1

0

/)(2
1

0

/2/2 1][
N

k

N

k

kNmni
N

k

NimkNink Neee πππ .

Case 2: nm ≠

Knowing how to sum a finite geometric series, we find

∑∑
−

=

−
−

=

− =
1

0

/)(2
1

0

/2/2][
N

k

kNmni
N

k

NimkNink eee πππ

Nnmi

NNnmi

e
e

/)(2

/)(2

1

][1
−

−

−
−

= π

π

Nnmi

nmi

e
e

/)(2

)(2

1

1
−

−

−
−

= π

π

.

 0
1

))(2sin())(2cos(1
/)(2

=
−

−+−−
=

− Nnmie
nminm

π

ππ
.

Multiplying both sides of (1) by Nimke /2π− , then summing from 0 to N-1, we have

Nimk
N

k

N

n

Nink
n

N

k

Nimk
k eebeh /2

1

0

1

0

/2
1

0

/2 πππ −
−

=

−

=

−

=

− ∑ ∑∑ 







=

 ∑∑ ∑
−

=

−

=

−

=

− ==
1

0
,

1

0

1

0

/)(2
N

n
mnn

N

n

N

k

Nkmni
n Nbeb δπ

mNb= .

So,

∑
−

=

−=
1

1

/21 N

k

Nimk
km eh

N
b π m = 0, …,N -1,

where kh are components of h, and mb are components of b. QED.

 24

 Equation (1) defines h → b, a map NN CC → [12]. We make the transformation

symmetric by defining bh N=ˆ . This gives the discrete Fourier transform [12]

.1,...,0,ˆ1

,1,...,0,
1ˆ

1

0

/2

1

0

/2

−==

−==

∑

∑
−

=

−

=

−

Nke
N

Nje
N

N

j

Nikj
jk

N

k

Nikj
kj

π

π

hh

hh

 (3)

The vector)ˆ,,ˆ(ˆ
10 −= Nhh Kh is called the Fourier transform of),,(10 −= Nhh Kh , while

each vector h and ĥ are the inverses of each other. So, given either h or ĥ , we can

compute the other [12].

Definition 1 A Transformation MNT CC →: is a rule that assigns to each vector x in

NC a vector T(x) in MC . For each x in NC , xx AT →: where A is an nm× matrix.

 The defined transformations in (3) can be viewed as transformations of the

vectors NC∈hh ˆ, , so each of them have a matrix representation. If we let W be the nn×

matrix whose entry in the jth row and kth column is Nijk
kj eNW /2

,)/1(π= , then we have

[12]

,ˆ

ˆ

hh

hh

W

W

=

=

where W stands for the matrix whose entries are the complex conjugate of the entries of

W. It is clear that 1−= WW , since hhh ˆˆ WWW == for all NC∈ĥ and hhh WWW == ˆ

for all NC∈h [12]. This set of equations can be rewritten in compact form as

 25

.ˆ

ˆ

1

0

1

0

∑

∑
−

=

−

=

=

=

N

j
jjk

N

k
kkj

W

W

hh

hh

 An example of a vector h and its Fourier transform ĥ are given by



















=

3.8

9.3

8.7

5.4

h ,



















+
−
−

=

i

i

25.3.

85.3

25.3.

25.12

ĥ .

See Appendix A for two functions written in Matlab to perform the Fourier transform as

well as the inverse Fourier transform on a one dimensional signal.

3.3 Two-Dimensional Fourier Transform

 It is possible to extend the Fourier transform to a two-dimensional signal. The

two-dimensional transform takes the form

,ˆ1

1ˆ

1

0,

/)(2

1

0,

/)(2

∑

∑
−

=

−

−

=

−−

=

=

N

vu

Nkvjui
uvjk

N

kj

Nkvjui
jkuv

ef
N

f

ef
N

f

π

π

 (4)

defined for any pairs of integers u and v or j and k in the interval 0, …, N - 1 [12]. The

right hand sides of (4) extend definitions of f and f̂ to all of 2ZZZ =× and the

extension is periodic with period N in both directions [12]. The two-dimensional Fourier

Transform sees both f and f̂ as maps from 2Z to C, with the property that

),(ˆ),(ˆ),(ˆ vufNvufvNuf =+=+ and),(),(),(kjfNkjfkNjf =+=+ for any (u,v)

 26

and (j,k) in 2Z [12]. If we let Niju
uj e

N
W /21 π= then we can rewrite the two-dimensional

transform in matrix notation as

.ˆ

ˆ

WfWf

fWWf

=

=

In application, it is practical to use the matrix notation. An example of a matrix

representation of f and its Fourier transform f̂ :
















=

5.31323.30

116.4023

341.534.21

f

















−+−−
−−++

−−+−
=

ii

ii

ii

f

6.16.07.09.135.51.8

7.09.136.16.05.51.8

2.148.82.148.83.92
ˆ .

See Appendix A for two functions written in Matlab to perform the Fourier transform as

well as the inverse Fourier transform on two dimensional signals.

3.4 Application of Two-Dimensional Fourier Transform

Our goal in using the Fourier transform (FT) would be to apply it in some way to

compress an image. But, in fact, because the FT contains complex entries, compression is

difficult to reach, although possible. The approach one would take to reach compression

would be to quantize the high frequencies of the FT. Quantizing is the a "rounding"

procedure which reduces the magnitudes of transformed coefficients. Typically one

forces a bigger reduction on the high frequency components [12]. After quantizing, the

entries in the matrix are ordered from low to high frequency, trailing zeros are truncated,

and the resulting string is encoded using some lossless algorithm such as a Huffman

code, or a binary code. Up to this point the FT has been a lossless algorithm considering

that the original finite signal can always be reproduced. But, once quantizing takes place,

 27

the original signal can never be reproduced exactly from the quantized FT, resulting in

lossy compression. Quantizing will be discussed in more detail in Section 5 of this

chapter.

 We run into problems when attempting to use the FT as a compression method for

images. The program named 'FourierComp' in Appendix A is an example of an attempt

to compress images using the FT accompanied with a quantizing algorithm as a

compression method. So, each pixel value is stored in 8 bits. We apply 'FourierComp' to

three grayscale images (sisters, peppers, and mandrill) holding the pixel values of

[0,255]. These images are displayed in Appendix B. Figures 13, 15, and 17 are the

original images, and Figures 14, 16, and 18 are the images after 'FourierComp' has been

applied to the original images. The following computations correspond to the application

of 'FourierComp' to the image "peppers.pgm" (256 x 256 pixels), a 65 KB image . Let

the matrix of pixel values of peppers be named f. Let the FT of f be denoted as f̂ .

In this case the quantizing algorithm defines a high frequency by determining if

the ratio of the modulus of an entry in f̂ to the mean of the modulus of the entries in f̂ is

less than 1. In other words, 1
|)ˆ(|

),(ˆ
≤

fmean

jif
 for Z∈ji, . For higher frequencies the

magnitude of the entry of f̂ is smaller. Therefore, this ratio is a good test in comparing

the frequencies. The entries that pass this test are set equal to zero. It is possible to

change the bound, on the right side of the inequality. If the bound is made smaller, less

entries in f̂ will be quantized, which will result in less possible compression. We will

see that using a bound of 1 works well.

 28

 After quantizing, 53441 entries of 65536 are set to zero due to f̂ having high

frequencies. This new sparse matrix is called ŷ . When the inverse FT is applied to ŷ a

new image, y, is created. The image quality of y is not as good as f, but we are willing to

sacrifice some quality if the compression is good. Now we must determine whether the

compression of f is efficient. We know that there are 53441 zeros in ŷ , which require

little or no storage space if a coding scheme is applied after quantizing. Assuming this is

the case, the trailing zeros that are truncated will need no storage. If the entries in the

matrix are then ordered as a string of numbers, it is possible to find the sub-strings of

zeros. When these are found, the only storage necessary will be some variable a,

denoting the number of zeros in the sub-string, followed by a special character denoting

that a represents a substring of zeros. So, the storage space needed to store the zeros will

depend on the number of substrings. In this case, ŷ has 12095 non-zero entries. If these

values were also in the range of 0 to 255, we would be in luck. But this is not so, they are

complex values.

 As we discussed earlier, the Fourier transform of a matrix lives in NC . So, not

only do we need storage space for the real parts of the values, but also for the imaginary

parts. Let's assume that storing positive imaginary and real parts requires twice as much

space as storing only the real part. The minimum of the real parts of ŷ is -1680.9 and the

maximum of the real parts is 26600 , whereas the minimum of the imaginary parts of ŷ

is -1827.5 and the maximum is 1827.5. Therefore, assuming all 12095 non-zero entries

of ŷ have both real and imaginary parts, with a sign value plus a maximum magnitude of

 29

26600 for the real parts and a maximum magnitude of 1827.5 for the imaginary parts, we

can estimate the storage space needed if the matrix ŷ were converted to a binary file.

 Since 1024210 = , 2048211 = , 16384214 = and 32768215 = , we know

that the maximum bits per pixel needed to store the magnitude of the real components is

15 bits plus one bit for the sign, and the maximum bits per pixel needed to store the

magnitude of the imaginary part is 11 bits per pixel. There are 12095 pixels, so the

maximum estimate of bits needed to store this matrix ŷ is

338688)21115)(12095(=++ bits 3.41= KB plus or minus a few bytes for the storage of

the compressed strings of zeros.

So the compression ratio for "peppers" is 2:3, not too impressive, but the

algorithm used here with the FT and quantizing did compress the image. Because the

complex values in the Fourier transform make it so difficult to compress an image,

another route should be sought. Results for the sisters image and mandrill image are

along the same order.

We are familiar with the fact that).sin()cos(θθθ ie i += A popular approach to

more efficient compression is to use just a discrete cosine transform, dropping the

imaginary components of the Fourier transform. This results in the Cosine transform

(CT). JPEG compression is a form of image compression, which greatly depends on the

CT and the concept of quantizing.

 30

4. The Cosine Transform

4.1 The One Dimensional Cosine Transform

Our goal in using the Cosine transform is to avoid the imaginary numbers that are

a result of the Fourier transform. To introduce the Cosine transform, we start with a one-

dimensional signal x defined at positions k = 0,…,N-1. Hence, x has period N. We know

that xcos is an even function. An even function is defined as a function f such

that f(x) = f(-x). So, we will take the signal x and apply an even extension of positions to

k = N,N+1,…,2N-1 reflecting its graph across the vertical axis passing through the point

k = N-1/2, occurring midway between k = 0 and k = 2N-1. The resulting signal is defined

for k = 0, …,2N-1 [12]. So, this extension is an even extension centered at k = N - 1/2,

where the endpoint values match.

Figure 3. Even extension of a signal about k = N-1/2 [12].

Now, the Fourier Transform sees this signal as having a period 2N instead of N.

If we apply the Fourier transform to this new period 2N signal and then use Euler's

identity θθθ ii ee −+=cos2 repeatedly, the result is a linear combination of cosine

functions instead of exponential functions [12]. The resulting pair of equations are

,
2

)12(
cosˆ

,
2

)12(
cosˆ

1

0

1

0

N
vk

Cxx

N
vk

Cxx

v

N

v
vk

v

N

k
kv

π

π

+
=

+
=

∑

∑
−

=

−

=

,1,...,0

,1,...,0

−=

−=

Nk

Nv

 31

where NC /10 = and NCk /2= if 0≠k [12]. See [12] for details. x̂ is usually

referred to as the forward cosine transform, while x is referred to as the backward cosine

transform [12].

If we define an NN × matrix A to be

,
2

)12(
cos, N

vk
CA vvk

π+
= (4)

with k and v defined as above, then the matrix representations of x̂ and x are given by

.ˆ

,ˆ

xx

xx

A

At

=
=

)6(

)5(

The columns vA are periodic with period 2N and the frequency v/2N, which increases

with the column index v. This orders x̂ with the frequencies of x such that 0x̂ is the

amplitude of 0A , the lowest frequency component of x, and 1ˆ −Nx is the amplitude of

1−NA , the highest frequency in x [12]. The consecutive entries of x̂ from the 0th entry to

the (N-1)st entry are the amplitudes of vA corresponding to the frequencies in x from

lowest to highest.

It is simple to see that with substituting (6) into (5), xx tAA= for each NR∈x ,

since tAA =−1 and NN
t IAAAA ×

− == 1 [12]. A matrix of real numbers with this

property is known as an orthogonal matrix [12].

 32

4.2 Two Dimensional Cosine Transform

 The two dimensional CT is defined as the following

,
2

)12(
cos

2

)12(
cosˆ

2

)12(
cos

2

)12(
cosˆ

1

0,

1

0,

∑

∑
−

=

−

=

++
=

++
=

N

vu
vuuvjk

N

kj
vujkuv

N
vk

C
N

uj
Cff

N
vk

C
N

uj
Cff

ππ

ππ

 (5)

where f and f̂ are extended to two dimensional periodic signals with period 2N defined

on 2Z . The extension given for f is even in that it extends f in both horizontal and

vertical directions, with the extension usually smoother than that provided by the two-

dimensional Fourier transform. One can visualize the extension of the two-dimensional

signal by picturing f as an array and reflecting f over its four boundaries. Four new arrays

have been created. Continue reflecting each of the new arrays created across their

boundaries. Eventually 2Z will be tilled with these arrays, and this yields the signal that

the two-dimensional CT regards as f.

 If we define uvB to be the NN × basis element whose entry in the jth row and kth

column is

N
vk

C
N

uj
CkjB vuuv 2

)12(
cos

2

)12(
cos),(

ππ ++
= ,

then we can redefine f and f̂ as the following:

).,(ˆ

),(ˆ

1

0,

1

0,

kjBff

vuBff

N

vu
uvuvjk

N

kj
jkjkuv

∑

∑
−

=

−

=

=

=

Furthermore, the matrix representation of the CT is

 33

,ˆ

ˆ

t

t

AfAf

fAAf

=

=

)7(

)6(

where A is the same here as in the one-dimensional case. As expected, when (7) is

substituted into (6) we arrive at ,)ˆ(tt AAfAAf = since tAA =−1 .

5. JPEG Image Compression

JPEG stands for Joint Photographers Expert Group. In the 1980's this group was

formed to determine standards for still-image compression including both lossless and

lossy modes [12]. The acceptable solutions of this compression problem are based on the

human visual system and the fact that the human eye is insensitive to certain changes in

an image, and tolerant of a wide range of approximations [12]. The lossy modes are of

more interest at this point. There are many forms of JPEG compression depending on

what quality of compression is desired. The form of data being compressed will

determine whether or not a compression mode should be lossless or lossy [12]. There are

many instances in which data contains text. In most cases, the text cannot be sacrificed.

But in some cases, where the data is an image, a loss of information is acceptable due to

the compression that accompanies it. We will consider only ideas of lossy compression

applied to gray scale images. The range of gray scale values is commonly restricted to

[0, 255].

The JPEG compression takes advantage of the fact that a loss of data is

acceptable. The main mathematical and physical theme of JPEG is local approximation.

One step in the JPEG algorithm that reduces data is collapsing almost constant regions to

their average shade of gray. One can choose a subset of an image, say a block of 88×

 34

pixels, average the shade in that block, and do the same for every disconnected 88×

block in the image. For an array of 256256× pixels, this reduces the image to a 3232×

array. Although this new array is 1/64 the size of the original array, with this algorithm

too much detail is lost. It is desirable to have an algorithm that would not average blocks

containing large amounts of detail. It is possible to choose a smaller block size, such as

44× , but this may sacrifice any compression gain.

Rather than using a 44× block size and running the risk of losing valuable

compression, JPEG uses a "detail detector", which happens to be the two-dimensional

cosine transform (5) in section 4.2 [12]. In the CT, the sum has been ordered so that the

"tail" contains the high frequency components of the signal. Stopping the sum at a

certain point is the same as truncating high frequencies from the original block, and is

equivalent to replacing the appropriate entries in the transformed matrix with zeros [12].

Retaining only the nonzero coefficients and discarding the trailing zeros corresponds to a

compression method and can be considered a special case of JPEG [12].

There are basically four steps in the JPEG algorithm. First it is necessary to break

the NM × image into local blocks, most popularly into 88× blocks, as discussed earlier.

Second, these blocks need to be transformed, using the cosine transform, in order to

identify the high frequency components. The cosine transform exchanges raw spatial

information for information on frequency content. Then a quantizing method, or a

"rounding" procedure, needs to be applied to the transformed coefficients. The high

frequencies are usually reduced considering the human eye is insensitive to high

frequencies. The fourth step is encoding the output of the quantizing step. The JPEG

standard uses Huffman and arithmetic coding [12].

 35

If we are dealing with a 256256× image, call it f, each 88× block occupies only

.098% of the image area. When small blocks are processed through the two-dimensional

cosine transform, one at a time, it is not possible for the transform to take the entire

image into account. This results in discontinuities across the block boundaries. Because

there is no overlapping of the 88× blocks in the whole image, the edges of the

transformed blocks are bound to have discontinuities from one block to the next after

being decompressed. The JPEG group found the Cosine Transform to have desirable

"smoothing" properties, which the other Fourier Transforms did not have.

 These properties allow for a quantizer matrix, which we denote as q. It is

at the quantizing stage that the JPEG looses information. This step, unlike the others, is

not invertible. For each 88× block in)(fT , the transformed matrix, there is a

corresponding 88× block in the q matrix whose entries are all positive integers, referred

to as quantizers.

The matrix q has the same dimensions as)(fT , and each disconnected 88× block of

quantizers is attached to the corresponding block in)(fT . Each entry in)(fT is divided

by its corresponding entry in q then the result is rounded to the nearest integer [12]. If the

quantizer entries are large enough, often the result will be a sparse matrix.

JPEG uses the luminance matrix as a quantizer, in which each entry is based on a

visual threshold of its corresponding basis elements [12]. Usually the smaller entries are

in the upper left hand corner of q while the larger entries are in the lower right hand

corner. In the transform matrix, the entries representing the lower frequencies are in the

upper left hand corner and the entries representing the higher frequencies are in the lower

 36

right hand corner. When dividing the entries of)(fT by large magnitudes from q the

high frequency entries are suppressed.

 This design is typical of JPEG quantizers [12]. After quantizing, the entries are

ordered from low to high frequencies, the trailing zeros are truncated, and the remaining

string of numbers is encoded. The process, without encoding, can be summarized by this

chart:

ffTQTfTff
invertdequantizequantizetransform ~~
→→→→ ,

where T is the Cosine transform, defined by fAATf t= , and A is an 88× block defined

by the Cosine transform matrix in equation (4).

 With the tradeoff made at the quantizing stage, JPEG compression typically

reaches compression ratios of 20:1 or more. Although they eye can notice blockiness in

the compressed image, the image quality is not poor. It is possible to obtain better image

quality, but compression will be lost. The type of compression selected is often

determined by how the image will be used.

III. Fractals and Iterated Function Systems

1. Iterations

Iteration is a process, or set of rules, which one repeatedly applies to an initial

state. One could even define an iteration as a repetitive task. In iterating something,

there is usually a goal that one is attempting to reach, or an answer sought.

An example of a simple iteration is pressing the space bar on a keyboard. If one

aims to type the date at the right hand side of a document, one must repetitively press the

 37

space bar until the desired location has been reached. The goal of this iterative, or

repetitive, task is to get to the right hand side of the document.

Applying the square root function to an initial value, and then continually taking

the square root of the output, is another example of a simple iteration. Another way of

explaining this iterative function is to say that one is continually composing the function

with itself. In this example, we will call the initial value 0x . Shown below is the process

of iterating the square root function on an initial value ,0 +∈Rx where .,2,1,0 K=n

()

() ()
()

() .2
1

8
1

4
12

1
2

1
2

1

2
1

011

0223

001112

0001

nxxxFx

xxxFx

xxxxxFx

xxxFx

nnn ===

===

=====

===

−−

M

The iteration of the rule () nxxxFx nnn
2

1

011 === −− produces the set of outputs, or the

orbit, { }.,,,,, 3210 nxxxxx K Depending on the initial value, this orbit could have different

behaviors. In this case, if ,10 =x then the orbit is always 1, which is called a fixed point.

If ,10 >x then the orbit approaches 1, the same fixed point. If ,10 0 << x then the orbit

will approach zero, another stable fixed point. Lastly, if ,00 =x then the orbit always

equals zero. So, there exist two fixed points of this system, namely 1 and 0.

 For different rules or iterative functions, there are more possible behaviors for the

orbits. It is possible that an orbit could escape off to infinity, approach or be equal to a

periodic orbit, or even be chaotic.

 38

2. The Copy Machine Algorithm

As described by Kominek [5], the metaphor of a Multiple Reduction Copying

Machine is an elegant way to introduce Iterated Function Systems. The MRCM is to be

understood as a regular copying machine with the exception that the lens arrangements

are such that they reduce the size of the original picture, and they overlap copies of the

original into the generated copy. Also, the MRCM operates with a feedback loop in

which the output of the previous copy is used as the input of the next stage. It doesn’t

matter with what picture the user begins. What will determine the attractor, or the output

of an iterated function system, will be the rules that are used in the copying, which acts as

the iteration.

In the example demonstrated in Figure 4 we will produce the Sierpinski Triangle,

one of the most well known Iterated Function Systems. To reach this attractor there are

three rules which, when composed together, act as the lenses in the copy machine. Each

rule, or lens, reduces the original seed by half the original size and translates the new

image to a new location.

Figure 4. Multiple Reduction Copying Machine

using three rules to produce the Sierpinski Triangle.

 39

It is a surprising fact that the attractor of an IFS does not depend on the seed. So, we

could begin with a circle as the seed, and the attractor of the IFS for the Sierpinski

Triangle would look the same.

3. Metric Spaces, Mappings, Transformations

To produce Iterated Function Systems, there must exist a space that supports

images and on which distances can be measured. For an IFS to converge to an attractor,

the mapping that defines this IFS must be a contraction mapping. Having a metric will

allow us to measure distances on a given space, as well as determine which are

contraction mappings and which are not. Also, having a contraction mapping is an

essential ingredient in Fractal Image Compression.

We begin with some definitions.

Definition 2 A metric space ()d,Χ is a set Χ together with a real-valued function

Rd →Χ×Χ: , which measures the distance between pairs of points x and y in Χ .

d is called a metric on the space Χ when it has the following properties [2]:

i.),,(),(xydyxd = Χ∈∀ yx,

ii. ,0),(≥yxd Χ∈∀ yx,

iii. 0),(=yxd iff ,yx = Χ∈∀ yx,

iv.),,(),(),(yzdzxdyxd +≤ Χ∈∀ zyx ,, .

The Euclidean Plane, 2R , along with the Euclidean metric,

 40

,)()(),(2
22

2
11 yxyxyxd −+−= 2, R∈∀ yx ,

 is an example of a metric space. Another familiar metric space is the Euclidean Plane,

2R , together with the Manhattan metric,

,),(2211 yxyxyxd −+−= 2, Ryx ∈∀ .

Definition 3 Let Χ be a space. A transformation, map, or mapping on Χ is a function

Χ→Χ:f . If ,Χ⊂S then { }SxxfSf ∈= :)()(. The function f is one-to-one if

Χ∈yx, with)()(yfxf = implies yx = . It is onto if Χ=Χ)(f . It is called invertible

if it is one-to-one and onto: in this case, it is possible to define a transformation

Χ→Χ− :1f , called the inverse of f, by xyf =−)(1 , where Χ∈x is the unique point

such that)(xfy = [2].

 Definition 4 Affine transformations on R are transformations RR →:f of the form

,,)(R∈∀+= xbaxxf where a and b are real constants [2].

 If 1<a , then this transformation contracts the line toward the origin. If 1>a , the line is

stretched away from the origin. If 0<a , the line is flipped °180 about the origin. The

line is translated, or shifted, by an amount b. If 0>b , then the line is shifted to the right.

If 0<b the line is translated to the left.

We will consider affine transformations on the Euclidean plane. Let 22: RR →w

be of the form

),(),(),(yxfdycxebyaxyxw ′′=++++= ,

 41

 where ,,,,, edcba and f are real numbers, and),(yx ′′ is the new coordinate point.

This transformation is a two-dimensional affine transformation. We can also write this

same transformation with the equivalent notations:

,)(TA
f

e

y

x

dc

ba

y

x
ww +=








+
















=








= xx

where A is a 22× real matrix and 







=

f

e
T represents translations [2].

The matrix A can always be written in the form of

,
cossin

sincos

2211

2211








 −
=








=

θθ
θθ

rr

rr

dc

ba
A

where),(11 θr are the polar coordinates of the point),(ca and))(,(222
πθ +r are the polar

coordinates of the point (b, d) [2]. This means that

22
1 car += ,

a
c

=1tanθ ,

22
2 dbr += ,

d
b

=2tanθ .

Provided that 0≠− cdab , we can also describe xA as a transformation that maps a

polygon of area Λ to a new polygon of area Λ⋅)det(A [2].

The different types of transformations that can be made in 2R are dilations,

reflections, translations, rotations, similitudes, and shears.

 A dilation on),(yx is written in the form),(),(21 yrxryxwd = or

.
0

0
)(

2

1

















=

y

x

r

r
wd x

Depending on the values of 1r and 2r , this dilation could contract or stretch x [2].

 42

A reflection about the x axis can be written in as),(),(yxyxwrx −= , while a

reflection about the y axis is written as),(),(yxyxwry −= [2]. In matrix representation,

these reflections would look like

















−

=
y

x
wrx 10

01
)(x and 















−
=

y

x
wry 10

01
)(x

respectively.

 Translations can be made in the x or y direction by adding a scalar to the

corresponding component of the map [2]. Translations are written in the form

),(),(fyexyxwt ++= or









+
















=

f

e

y

x
wt 10

01
)(x .

If 0<e , the map translates in the negative x direction. If 0>e , the map translates in the

positive x direction. If 0<f , the map translates in the negative y direction. If 0>f ,

the map translates in the positive y direction.

A rotation mapping has the form)cossin,sincos(),(θθθθ yxyxyxwr +−= ,

also expressed as
















 −
=

y

x
wr θθ

θθ
cossin

sincos
)(x ,

for some rotation angle θ , πθ 20 <≤ [2].

 A similitude is an affine transformation 22: RR →w of the form,









+















 −
=

f

e

y

x

rr

rr
ws θθ

θθ
cossin

sincos
)(x ,









+
















−

=
f

e

y

x

rr

rr
ws θθ

θθ
cossin

sincos
)(x ,

 43

for some translation 2),(R∈fe , some real number 0≠r , which is the scale factor, and

some angle θ , πθ 20 <≤ [2]. A similitude combines the rotation, dilation, and

translation rules together.

 A shear transformation, or a skew transformation, takes one of the forms,

















=

y

xb
w

10

1
)(x , or

















=

y

x

c
w

1

01
)(x ,

where b and c are real constants [2]. In each case, there is one coordinate, which is left

unchanged. One can imagine the action of this mapping on some rectangle as if shearing

a deck of cards.

Figure 5. Shearing in the x direction:).,()(ybyxw +=x

4. Convergence and Contractions

In producing Iterated Function Systems, it is necessary to have a set of

transformations that converge to a desired image. For these mappings to converge to the

desired image, they must be contraction mappings. To apply IFS to Fractal Image

Compression we will need the following definitions and theorems.

 44

Definition 5 A sequence { }∞
=1nnx of points in a metric space),(dΧ is called a Cauchy

sequence if, for any given number 0>ε , there is an integer 0>N such that

ε<),(mn xxd for all Nmn >, [2].

One can interpret this to mean that as n and m grow relatively large, the difference

in values of the sequence become small. This does not mean that the values of the

sequence must all approach only positive, or negative values, but they may also be

alternating positive and negative.

Definition 6 A sequence { }∞
=1nnx of points in a metric space),(dΧ is said to converge to

a point Χ∈x if for any given number 0>ε , there is an integer 0>N such that

ε<),(xxd n for all Nn > [2].

The point to which the system converges, Χ∈x , is called the limit of the sequence.

This definition is different than that of the Cauchy sequence because the metric, d,

is not measuring the difference of values between consecutive numbers, but between each

term in the sequence and x, the constant value which the sequence is approaching. So, if

a sequence is converging to x, then as n approaches infinity, the nth term of the sequence

will grow closer, less than some epsilon, in distance to x. Relating this terminology to

an IFS, the limit Χ∈x of the sequence { }∞
=1nnx corresponds to the attractor of an IFS,

where the nth term in the sequence, nx , is the nth level of an IFS after n iterations on the

seed image 0x .

 45

Theorem 1 If a sequence of points { }∞
=1nnx in a metric space),(dΧ converges to a point

Χ∈x , then { }∞
=1nnx is a Cauchy sequence [2].

Note that the converse of this theorem is not always true. Not all Cauchy sequences

converge to a limit Χ∈x .

Definition 7 A metric space),(dΧ is complete if every Cauchy sequence { }∞
=1nnx in Χ

has a limit Χ∈x [2].

Definition 8 Let Χ→Χ:f be a transformation on a space. A point Χ∈fx such that

ff xxf =)(is called a fixed point of the transformation [2].

A fixed point of a transformation correlates to the attractor of an IFS.

 Definition 9 Let Χ⊂S be a subset of a metric space),(dΧ . S is compact if every

infinite sequence { }∞
=1nnx in S contains a convergent subsequence.

Theorem 2 Let),(dΧ be a complete metric space. Let Χ⊂S . Then S is compact if

and only if it is closed and totally bounded [2].

Definition 10 A transformation Χ→Χ:f on a metric space),(dΧ is called

contractive, or a contraction mapping, if there is a constant 10 <≤ s such that

Χ∈∀≤ yxyxdsyfxfd ,)),()(())(),((.

 Any such number is called a contractivity factor for f [2].

 46

Figure 6. f is a contraction mapping action on a set of points in X.

Theorem 3 The Contraction Mapping Theorem

Let Χ→Χ:f be a contraction mapping on a complete metric space),(dΧ . Then f

possesses exactly one fixed point Χ∈fx , and moreover for any point Χ∈x , the

sequence { },...2,1,0:)(=nxf no converges to fx ; that is ,)(lim f
n

n
xxf =

∞→

o for each Χ∈x

[2].

5. IFS Fractals

5.1 Hausdorff Space

The Hausdorff space,)(xH , is a space that is convenient to use when considering

real world images.

Definition 11 Let),(dΧ be a complete metric space. Then)X(H , the Hausdorff space,

denotes the space whose points are the compact subsets of Χ , other than the empty set

[2].

These points can actually be the nth level of any image produced by an IFS, or a

point in)X(H can be the final attractor of an IFS. A point in the Hausdorff space any

 47

compact set in Χ , including singleton points. It is important to note that the attractors,

or fixed points of IFS are compact.

Definition 12 Let),(dΧ be a complete metric space, Then the Hausdorff distance

between the points A and B in)X(H is defined by

),(),(),(ABdBAdBAh ∨= ,

where { }AxBxdBAd ∈= :),(max),(, and yx ∨ means the maximum of x and y. We

also call h the Hausdorff metric on H [2].

Theorem 4 Let),(dΧ be a complete metric space. Then)(hH Χ

space. Moreover, if { },...,1)(HA

)X(lim HAA nn
∈=

∞→

can be characterized as

∃Χ∈= :{xA a Cauchy sequence { }Axn ∈ convergent to x} [2].

Theorem 4 allows us to declare the existence of IFS fractals. As mentioned

before, it is also necessary that the mappings creating the IFS be contraction mappings.

The following lemma tells us how to determine the contractivity factor of a

contraction mapping w , when this mapping is applied on the Hausdorff space.

Lemma 1 Let Χ→Χ:w be a contraction mapping on the metric space),(dΧ with

contractivity factor s. Then)()(: Χ→Χ HHw defined by

)(},:)({)(Χ∈∀∈= HBBxxwBw

 48

is a contraction mapping on)),X((hH with contractivity factor s [2].

5.3 Iterated Function Systems

 Iterated Function Systems set the foundation for Fractal Image Compression. The

basic idea of an Iterated Function System is to create a finite set of contraction mappings,

written as affine transformations, based on what image one desires to create. If these

mappings are contractive, applying the IFS to a seed image will eventually produce an

attractor of that map. It does not matter what the seed image is for the mappings, the

same fixed point will be produced regardless.

Definition 13 An (hyperbolic) iterated function system consists of a complete metric

space),(dΧ together with a finite set of contraction mappings Χ→Χ:nw , with

respective contractivity factors ns , for n = 1,2,…,N. The abbreviation "IFS" is used for

"iterated function system". The notation for this IFS is },...,2,1,;{ Nnwn =Χ and its

contractivity factor is },...2,1:max{ Nnss n == [2].

 One can understand these affine transformations as a set of rules, that tell the

seed, or the initial image where to “go”, or what to do, in order to converge to the

attractor, or desired image. In the example of the Copy Machine Algorithm described

previously, three rules are applied to the seed image. After each rule is applied, the

resulting images are collaged together to produce the first level of the system. Applying

the three rules again and collaging the second level of the system is created. Repeating

an infinite number of times, the attractor is approached. Obviously, in practice, it is not

 49

possible to iterate the rules an infinite number of times. Depending on the system, and

the rules, it may only take a few iterations to visually notice what attractor the system is

approaching. As in the Copy Machine Algorithm, what the attractor will approximately

look like is noticeable to the viewer at the third level. In some of our examples, in which

we iterate mappings to produce an image from a seed, the attractor is noticeable after one

iteration (see Figures 21 to 40 in Appendix B).

 As mentioned above, a crucial step in applying an IFS is to collage all of the

smaller images (or points in the Hausdorff space) produced by each rule in order to reach

the image at the next level.

Theorem 5 The Collage Theorem Let),(dΧ be a complete metric space. Let

)(Χ∈ HT be given, and let 0≥ε be given. Choose an IFS },...,,),(;{ 210 NwwwwΧ with

contractivity factor 10 <≤ s so that

ε≤
















=
U

N

n
n TwTh

1

)(, ,

where h(d) is the Hausdorff metric. Then

s
ATh

−
≤

1
),(

ε
,

where A is the attractor of the IFS. Equivalently,
















−≤

=

− U
N

n
n TwThsATh

1

1)(,)1(),(for all)(Χ∈ HT [2].

 The Collage Theorem tells us that in order to find an IFS whose attractor looks

like a given set, we must find a set of contractive transformations on a suitable space, in

 50

which the given set lies, such that the distance between the given set and the union of the

transformations is small. In other words, the union of the transformations is close to, or

looks like, the given set. The IFS which satisfies this may be a good candidate for

reproducing the given set, or image, by the attractor of the IFS. Thus this image can be

stored using much less space.

5.4 The Random IFS Approach

In the random approach, the method of applying the n affine transformations, which

act as rules for the IFS, is different than in the deterministic approach described above.

Rather than starting with any image, applying each rule and then collaging the produced

images to create the first level, in the random approach one rule is chosen randomly and

applied to an initial point, which produces another singleton point at the first level. The

next transformation is chosen at random again, and applied to the singleton point from

the first level. This creates a new point at the second level. This process continues for

some chosen number of iterations. In this case, the points from each level are plotted,

with the first few levels discarded. Depending on the number of iterations, the resulting

plot is an image that may look close to the attractor of the IFS. The reason the first few

points are discarded is because the initial point, and possibly the first few levels, may be

points that are not in the attractor.

To apply this random approach, each rule must have a certain probability of being

chosen. To choose the probability necessary for each rule, we observe the actions that

each rule takes on a given area. Each transformation ,)(TxAxwn +=
rr

 changes a given

area by a factor of)det(A . In order to allow the random selection process to give more

 51

weight to the transformations with large determinants and less weight to the

transformations with small determinants, “it is desirable to make the selections with

probabilities that are proportional to the determinants” [3]. So, for each transformation

,)(TxAxwn +=
rr

 we choose a set of weights, nppp ,,, 21 K by the formula

,)det(/)det(
1

∑
=

=
n

i
ijj AAp nj ,,2,1 K= ,

where iA is the corresponding matrix for the affine transformation iw , ni ,,2,1 K= [3].

It is obvious that 121 =+++ nppp K , satisfying the conditions for a probability

measure.

 An example of the random IFS approach to generating a fractal can be found in

Appendix A, the program named 'LisaIFS'. This program uses 16 transformations to

create the IFS. The probability assigned to the jth transformation is determined by the

above formula for jp . The attractor of this IFS after 40,000 iterations can be seen in

Appendix B, Figure 19. Another example of a random IFS is included. The program that

generates this random IFS is called 'Star' and appears in Appendix A. The attractor of

this IFS is displayed after 20,000 iterations and is in Appendix B, Figure 20.

IV. Fractal Image Compression

“The central goal of fractal image compression is to find resolution independent models,

defined by finite length (and hopefully short) strings

of zeros and ones, for real world images.”

-Michael F. Barnsley

 52

1. Using IFS fractals for Fractal Image Compression

The IFS compression algorithm starts with some target image T which lies in a

subset 2R⊂S . The target image T is rendered on a computer graphics monitor. In order

to begin fractal image compression, an affine transformation,









+
















=








=

f

e

y

x

dc

ba

y

x
ww 11)(x

is introduced with coefficients that produce a new image,)(1 Tw , with dimensions

smaller than that of T. This ensures a contraction mapping.

The user adjusts the coefficients a, b, c, d, e, f in order to shrink, translate, rotate, and

shear the new image,)(1 Tw , on the screen so that it lies over a part of T. Once)(1 Tw is

in place, it is fixed, the coefficients are recorded, and a new affine transformation

)(2 xw is introduced along with its sub-copy of T,)(2 Tw . The same process is carried out

with this new image as was done with)(1 Tw . Whenever possible, overlaps between

)(1 Tw and)(2 Tw should be avoided. Overlaps only complicate the situation, although

there exist compression methods, such as wavelets, which confront this issue. In this

manner, a set of affine transformations nwwww ,,, 321 K is obtained such that

U
N

n
n TwT

1

~

)(
=

= ,

where N is as small as possible.

The Collage Theorem assures us that the attractor A of this IFS will be visually close

to T. Moreover, if TT =
~

, then TA = . As desired, A provides an image which is visually

close to T and is resolution independent using a finite string of ones and zeros. By

 53

adjusting the parameters in the transformations we can continuously control the attractor

of the IFS. This is what is done in fractal image compression.

Complex images can be built up using fractal image compression by working on

subsets of the image, where each subset is represented by an IFS. This method of

compression is highly optimal. If each coefficient in the affine transformations

describing the IFS is represented with one byte, then an IFS of three transformations

requires only 12 bytes of data to represent its image. As the number of coefficients used

increases, the size of the digital file increases. Thus, it is optimal to find as few affine

transformations as possible to represent an image. For an in depth study of how to

optimize the storage of data in files see [2].

2. The Fractal Transform Theory

Fractal transform theory is the theory of local IFS. Although local IFS does

complicate the theory of fractal image compression, in practice it simplifies the process.

A global transformation on a space Χ is a transformation, which is defined on all

points in Χ ; whereas, a local transformation is one whose domain is a subset of the space

Χ and the transformation need not act on all points in Χ . Rather than allowing an IFS to

act upon only on the whole domain, it is convenient to allow an IFS to act upon domains

that are subsets of the space. This type of IFS is called a local IFS.

The idea of fractal image compression, as briefly mentioned above, is to find

subspaces (or sub-images) of the original image space, which can be regenerated using an

IFS. Where possible, if one IFS can be used in place of several IFS's which reproduce

similar sub-images, it is more efficient in terms of storage space to use that one IFS. It is

 54

more likely that an image will require more than one IFS to reproduce a compressed

image, which closely resembles the original.

Definition 14 Let),(dΧ be a compact metric space. Let R be a nonempty subset of Χ .

Let Χ→Rw : and let s be a real number with 10 <≤ s . If

Ryxyxdsywxwd ∈∀≤ ,)),()(())(),((,

then w is called a local contraction mapping on),(dΧ . The number s is a contractivity

factor for w [2].

Definition 15 Let),(dΧ be a compact metric space, and let Χ→ii Rw : be a local

contraction mapping on),(dΧ , with a contractivity factor is , for i= 1,2,…,N, where N is

a finite positive integer. Then },...,2,1::{ NiRw ii =Χ→ is called a local iterated

function system (local IFS). The number { }Niss i K,2,1:max == is called the

contractivity factor of the local IFS [2].

The local IFS can be defined as follows. If we let S denote the set of all subsets of X,

then we can define the operator SSWlocal →: according to [2]

U
N

i
iilocal BRwBW

1

),()(
=

∩= for all SB∈ .

Under certain restraints, localW can be defined as contractive on certain subsets of the

Hausdorff space. This allows us to create a fractal compression system [2]. If A is a

nonempty subset of X, we call A an attractor of the local IFS if AAWlocal =)([2]. If A

and B are attractors, then so is BA∪ . If there is an attractor, there is a largest attractor,

 55

which is the one that contains all the other attractors [2]. This largest attractor is referred

to as the attractor of localW and is found by taking the union of all the other attractors in

localW [2].

 If we define an IFS to be },,2,1:X:{ NiRw ii K=→ and we suppose that the sets

iR are compact, then we can define a sequence of compact subsets of X by [2]

X0 =A ,

U
N

i
niin ARwA

1
1)(

=
−∩= for n=1,2,3,…

Because the IFS consists of contractive mappings, it is true that

K⊃⊃⊃⊃ 321 AAAAo .

So, nA is a decreasing sequence of compact sets [2]. There exists a compact set

X⊂A so that [2]

AAnn
=

∞→
lim

and

U
N

i
localii AWARwA

1

)()(
=

=∩= .

As mentioned before, if A is not empty, then A is the maximal attractor for the local

IFS [2]. If one can find a compact set B such that BBWlocal ⊃)(, then the possibility that

A is empty is ruled out. A corresponds to the attractor of an IFS in a fractal image

compression scheme. The coefficients of the mappings iw are crucial in the

 56

determination of the compression of an image. A represents what the image would look

like after applying the mappings to subsets of the image.

The following is an algorithm of how one would go about applying the fractal

transform to an image.

Algorithm for Fractal Image Compression

1. Input a binary image, call it M.
2. Cover M with square range blocks. The total set of range blocks must cover

M, without overlapping.
3. Introduce the domain blocks D; they must intersect with M. The sides of the

domain blocks are twice the sides of the range blocks.
4. Define a collection of local contractive affine transformations mapping

domain block D to the range block Ri.
5. For each range block, choose a corresponding domain block and symmetry

so that the domain block looks most like the part of the image in the range

block.

6. Write out the compressed data in the form of a local IFS code.

7. Apply a lossless data compression algorithm to obtain a compressed IFS

code.

In practice these steps can be carried out on a digital image. The compression is

attained by storing the coefficients of the transformations, rather than storing the image

pixel by pixel. The following is an explanation of 'RIFSbat', a simple fractal image

 57

compression program and 'fdec' the corresponding decompression program, both

included in Appendix A.

 These two programs can be run on Matlab and only compress grayscale square

images that are in pgm format, although further changes can be implemented later to

account for non-square images and other formats. This batch program runs through the

program 10 times, allowing 10 different tolerances. Ten different mat files are saved

representing 10 different compressed images. The difference in the compressed files is

not the number of bits needed to store the files (this is the same as long as the range size

is the same), but the time needed to produce the compressed files based on the error

tolerance. The tolerances are determined by what the variable min0 is set equal to the

minimum error, denoted by the variable minerr is defined by the norm of the difference

between the range blocks and the transformed domain blocks. 'RIFSbat' searches for the

transformation with least error from domain blocks to range blocks. During the first loop,

the tolerance is min0 = 10. So, the program searches for a transformation until it finds a

transformation with minerr < min0. As min0 increases, more error is allowed. With each

run, the tolerance of allowable error increases by 10.

 First, the user must enter the name of the pgm image file in the first line of the

program: M = getpgm ('imagename.pgm'). In the examples in Appendix B, we use

'sisters.pgm'. Then, the user specifies the desired range block size by setting rsize equal

to the length of the side of the desired range block. Presently, rsize is set equal to 4,

which allows range blocks of size 44× . We next create the domain blocks, which are

twice the size of the range blocks, in this case 88× . In determining which mapping will

need to be made from the domain blocks to the range blocks, we will need to compare the

 58

domain blocks to the range blocks. To accurately compare these blocks, they must be the

same size. So, we do some averaging over the domain blocks which allows us to shrink

the domain blocks to half of its size in order to match the size of the range blocks.

Originally, each domain block is 88× . The averaging only takes place over each

distinct block of 22× pixels within the domain block. Then the average grayscale value

in each 22× block of pixels is represented in one pixel in the scaled domain blocks,

called M1. M1 is a 44× block at this point. We subtract the average of the domain

block from each entry in the domain block to account for possible darkening of the

decompressed image. The resulting scaled domain block is D.

Now, we save 8 different transformations of each domain block in an eight

dimensional monster matrix called bigM. The transformations include the original

domain block, a o90 , o180 and a o270 rotation, a horizontal flip, and a vertical flip, as

well as the transform of the domain block and a o180 rotation of the transformed domain

block. We introduce a vector s, which contains different specific scalings to transform

the grayscale of the domain block to make a better match to a range block.

At this point, 'RIFSbat' goes through all of the range blocks, and offsets each of

them by subtracting the average of the range block from each entry in the range block.

Now we can equally compare the domain to the range blocks. We save the offset of the

range blocks in o, which we will add back to the image later.

Next the program cycles through each domain block ijD and tests each symmetry

that is stored in bigM, along with the four possible gray scales for the best transformation

that will map to a given range block lkR . When the best map is found, the location of that

domain block i0 and j0, the best symmetry m0 of the domain block, the best scaling s0,

 59

and the offset o is saved in the five dimensional matrix],0,0,0,0[:),,(osmjilkT = . It is

the entries of this matrix that determine the number of bytes needed to store the

compressed image file. For each of the 10 cases that the program considers, the batch

program saves the number of rows of the original image, the size of the range blocks, and

the time the program took to achieve the compression. The time is recorded to compare

the results with the amount of time the process took. 'RIFSbat' produces the two CPU

charts that appear in the beginning of Section 4 of Appendix B. Once this information is

saved in a file, it is possible to compress that file even more by applying a lossless coding

algorithm. It is from the matrix, T, that the program 'fdec' can regenerate the image.

It is important to note that each transformation from the original 88× domain is a

contraction mapping because the domain must be scaled by ½ in order to map the domain

to the range. Also, the information stored in each :),,(lk entry of T represent the

coefficients of the mappings iw , i = 1,2,3,…N that make up the N local IFS mappings.

The image regenerated after all the mappings in T are applied to some seed image, is the

attractor of the local IFS.

In order to regenerate the attractor of the contractive transformations found, we

must use the program 'fdec' along with the saved information from 'fcomp'. First we load

the correct data using the name that we saved it under in the batch file. Then we initialize

a matrix to perform the mappings on. This matrix must be the same size as the original

image. As we discussed with IFS and the Sierpinski Triangle, it makes no difference

what seed image is used. Although, in the program we initialize the seed image to all

zeros, which is a uniformly gray image, choosing another image as the seed to the local

IFS will arrive at the same result.

 60

Depending on the block size chosen for the range blocks, one may need to vary

the number of iterations applied to the seed image in order to arrive at the attractor image.

As more iterations of the IFS are applied to the image, the clearer the attractor will

become. After the nth iteration, the image produced corresponds to the nA compact set as

discussed in the local IFS theory. First, the domain blocks of the seed image must be

created and rescaled to the size of the range blocks. Then using the T matrix, the domain

blocks are transformed and mapped to the range blocks. This process is repeated for each

iteration. The attractor, M, is then output to be displayed on the screen. Appendix B

contains examples of an original image, and the consecutive images regenerated after

iterating the local IFS created for that image. The quality of the attractors vary depending

on the size of the range blocks used and the error allowed in finding an appropriate

transformation form domain block to range block.

Our implementation of this simple method of fractal compression produced great

compression ratios. Considering that each pixel requires 8 bits to store the values of 0 to

255, to store an 256256× image pixel by pixel would require 65536 bytes (around

65KB). Using 'RIFSbat' and 'fdec' with any chosen error, to store an image of this size

with a range block size of 44× pixels only requires 11776 bytes. The compression ratio

is better than 5:1. Of course, increasing the range block size to 88× pixels improves the

compression to only 2688 bytes, with a compression ratio of approximately 24:1. The

larger range block sizes allow higher compression ratios. The time needed to produce the

attractor image is based on how much error is allowable in the transformations. The

larger the error, the quicker the compression. The use of the image will determine the

required amount of compression and image quality.

 61

In Appendix B, Figure 21 is the original image in this example. Figure 22, 23, and

24 are the first through third iterations of the fractal compression transformations with

minerr = 10. Referring to Chart 1 in Appendix B we can tell that this compressed file

took about 5 1/2 hours to complete compression. The attractor image that is regenerated

is close to the original image, but the time needed to accomplish compression is not

desirable. With a 44× pixel range block, a decent error is probably about 40 or 50.

Although to compress an image with this error takes about 10 minutes, if the error is

greater than that, the image quality becomes very low and blocky. For the 44× pixel

range blocks, three different implementations based on a change in the allowable error of

images are is Appendix B. The errors, min0, displayed are 10, 20, and 80.

By looking at Figure 34 and 38 we notice that the image quality is not as high as

the previous case. The reason for this is because the range size in these images is 88×

pixels. Two sets of images, one with minerr = 0 and minerr = 80 are available in

Appendix B to provide a comparison between image quality and the time used to

produced the compressed file, which can be found in Chart 2.

V. Conclusion

 After discussing different image compression algorithms, lossless and lossy, it is

only fitting to compare the algorithms. The algorithms, which are implemented and

discussed in this paper, are Delta Compression, a form of Fourier Compression, and a

simple form of Fractal Image Compression. The results from these compression

algorithms appear in Appendix B.

 62

 Being a lossless form of compression, Delta compression can be a wonderful tool.

Although it is possible exclusively use a Delta compression on image data, many

compression algorithms could be optimized if a lossless code such as Delta compression

is applied in addition to a lossy code. Similarly, the Huffman code can be applied to

other forms of previously compressed data, which may optimize compression for that

data. These lossless codes may be preferred over lossy compression methods in cases

where loss of data is out of the question. The best compression may not be

accomplished, but the image data and quality will remain exactly the same as the original

image and quality. It is in cases where the exact data needs to be restored after

compression that a lossless code is the best choice.

Although our implementation of the Fourier Compression is not efficient, when

using the same quantizing approach as described in section 3.4, the Cosine Transform

should generate much better compression due to the lack of imaginary values in the

transform of the signal. In the future, a more thorough study and experimentation of the

Cosine transform will be established. In turn, an implementation of a JPEG style

compression will be possible.

 The simple Fractal image compression algorithm executed is the most efficient

form of compression which we implemented; although, research has revealed that JPEG

is one of the better, if not the best, forms of compression available today. The question

has been posed as to whether or not an optimal Fractal compression algorithm will be

discovered that will outperform JPEG. Much research is being done to find faster and

more efficient forms of image compression technology. The race has only begun.

 63

VI. Appendix A

Delta Compression - 2 dimensional

% Program Name: deltacomp2D
% Purpose: The purpose of this program is to achieve
% delta compression of a matrix representing pixel
% values. The smaller the magnitude of the entries,
% the less memory needed to store the data.
% The (r,c)th entry(pixel) of comp is found by taking
% difference of the entries (r,c) and (r,c+1) of the
% matrix A.
% Input: i x j matrix - O
% Output: i x j matrix - D

function Dx=deltacomp2D(X);
 global first;
 first=X(1,1);

 global i
 global j
 [i,j]=size(X);
 %**************Delta Compression**********;
 for r=1:i
 for c=1:j
 if r==i & c==j
 Dx(r,c)=0;
 else
 if c==j
 Dx(r,c)=X(r,c)-X(r+1,1);
 else
 Dx(r,c)=X(r,c)-X(r,c+1);
 end
 end
 end
 end

% Program Name: deltade2D
% Purpose: The purpose of this program is to
% decompress the delta compression of a matrix
% which has been compressed by deltacomp2d.m
% This brings the compressed matrix back to original
% form.
% Input: i x j matrix - Dx
% Output: i x j matrix - y

function y=deltade2D(Dx);
global i
global j
 for r=1:i
 for c=1:j
 if c==1
 if r==1
 global first
 y(r,c)=first;

 64

 end

 if r>1
 % c=1 here. ex. If r=2 then y(2,1)=y(1,j)-Dx(1,j)
 % where j is end of row

 y(r,c)=y(r-1,j)-Dx(r-1,j); end
 else
 %c is not equal to 1 here ex. y(r,2)=y(r,1)-Dx(r,1)
 y(r,c)=y(r,c-1)-Dx(r,c-1);
 end
 end
end

Fourier Transforms

%Program Name: FT1D (Fourier transform 1 dimension)
%Purpose: The purpose of this program is transform a discrete one
% dimensional signal x into its Fourier transform f.
%
% The Fourier transform f of a signal x is a vector containing
% the amplitudes of the fundamental frequencies that make up x.
% Each component of f indicates the strength of a particular
% frequency in x. [Hankerson]
%Input: One dimensional signal, x
%Output: Discrete Fourier transform of input signal, f

function[f] = FT1D(x)

[R C]=size(x);

for v = 1:R
for k = 1:R

M(k,v) = (1/sqrt(R))*exp(-2*pi*i*(k-1)*(v-1)/R);

end
end

f = M*x;

% Program Name: invFT1D (inverse Fourier transform 1 dimension)
% Purpose: The purpose of this program is return the original discrete
% signal from a given 1 dimensional discrete Fourier
% transform;
% Input: Discrete Fourier transform of input signal, f
% Output: Original 1 dimensional signal, x

function[x] = invFT1D(f)
[R C]=size(f);

for v = 1:R
for k = 1:R

M(k,v) = (1/sqrt(R))*exp(-2*pi*sqrt(-1)*(k-1)*(v-1)/R);

 65

end
end

x = conj(M)*f;

% Program Name: FT2D (Fourier transform 2 dimensions)
% Purpose: The purpose of this program is to return the discrete
% Fourier transform of a given discrete signal;
% The Fourier transform f of a 2D signal x is a matrix
% containing the amplitudes of the fundamental frequencies
% that make up x. Each component of f indicates the strength
% of a particular frequency in x [Hankerson].
%
% Input: Two dimensional signal, x , a square matrix
% Output: Two dimensional matrix representing
% Discrete Fourier transform of input signal, f

function[f] = FT2D(x)
[R C]=size(x);

if R~=C
 display('Matrix is not square');
 return
end

for k = 1:R
 for v = 1:R
 M(k,v) = exp(2*pi*i*(k-1)*(v-1)/R);
 end
end

f = (1/R)*(conj(M))*x*M;

% Program Name: invFT2D (Inverse Fourier transform 2 dimension)
% Purpose: The purpose of this program is to return a discrete
% inverse Fourier transform signal from a given discrete
% Fourier transform;
% Input: f, 2D matrix representing Fourier transform of a 2D
% signal
% Output: Original 2 dimensional signal, x

function[x] = invFT2D(f)

[R C]=size(f);

if R~=C
 display('Matrix is not square');
 return
end

for k = 1:R
 for v = 1:R
 M(k,v) = exp(2*pi*i*(k-1)*(v-1)/R);
 end
end
 x = (1/R)*M*f*conj(M);

 66

% Program Name: FourierComp
% Purpose: The purpose of this program is to apply the Fourier
% transform to an image, M, to quantize or set the high
% frequency values equal to zero, then to apply the inverse
% Fourier transform to the quantized image, reconstructing an
% image, A, close to the original image. The quantized matrix,
% A1, representing the reconstructed image is the compressed
% form.
%
% When quantizing, the entries of A1 whose ratio
% abs(A1(i,j))/mean(A1) <= k , k is chosen to = 1 in this
% program) are set equal to zero.
%
% This program uses the following programs: FT1D, FT2D,
% invFT1D, invFT2D
% Input: A matrix , M, representing a signal or image(1d or 2d). The
% user may also change the parameter k, as mentioned above,
% which is in the quantizing section of this program.
% Output: A signal close to that of the original represented by a
% compressed matrix A.

function[A,A1] = FourierComp(M)

[R C]=size(M);

%*************_Check 1d_*************%
if R==1 | C==1
 choice=1;
 A1=FT1d(M);
end

%*************_Check 2d_*************%
if R~=1 | C~=1
 choice=2;
 A1=FT2d(M);
end

%*********_Variables_**************%
absA1=abs(A1);
meanA1=mean(mean(absA1));

%*********_Quantizing_*************%
counter=0;
for i=1:R
 for j=1:C
 if (absA1(i,j)/meanA1)<= 1
 A1(i,j)=0;
 counter=counter+1;
 end
 end
end

 67

%*********_Inverse Transform_***********%
if choice==1
 A=invFT1d(A1);
 A=real(A);
 display(counter);
 return
end
if choice==2
 A=invFT2d(A1);
 A=real(A);
 display(counter);
 return
end

Random Iterated Function System

% Program Name: LisaIFS
% Purpose: This program is an implementation of a Random IFS
% once the graphics screen appears, the user clicks on a point
% then waits for the IFS to randomly apply transformations.
% The frequency at which each transformation is applied is
% based on their assigned probability.
% This IFS produces the name Lisa. Upon zooming in, the name
% Lisa appears inside each of the letters.
% Input: In the first line of the program, the user defines the
% desired number of iterations to be applied to the initial
% point.
% Output: The image that the IFS creates, as the iterations are being
% applied

numiter=40000;
axis([0 1 0 .5]);
title(['Lisa: ' num2str(numiter) ' Iterations']);
[x0,y0]=ginput(1);
hold on
for i=0:numiter
r = rand;

%1
if r >= 0 & r < .0816
 a=0; b=(1/4); c=(2/9); d=0; e=0; f=0;
elseif r >= .0816 & r < .1632
 a=0; b=(1/4); c=(2/9); d=0; e=0; f=(2/9);
elseif r >= .1632 & r < .2448
 a=0; b=(1/4); c=(2/9); d=0; e=(5/18); f=(2/9)
elseif r >= .2448 & r < .3264
 a=0; b=(1/4); c=(2/9); d=0; e=(5/18); f=0;
elseif r >= .3264 & r < .408
 a=0; b=(1/4); c=(2/9); d=0; e=(13/18); f=0;
elseif r >= .408 & r < .4896
 a=0; b=(1/4); c=(2/9); d=0; e=(13/18); f=(2/9);
elseif r >= .4896 & r < .5712
 a=0; b=(1/4); c=(2/9); d=0; e=(16/18); f=0;
elseif r >= .5712 & r < .6518
 a=0; b=(1/4); c=(2/9); d=0; e=(16/18); f=(2/9);

 68

%2
elseif r >= .6518 & r < .7334
 a=(2/9); b=0; c=0; d=(1/4); e=(4/9); f=0;
elseif r >= .7334 & r < .815
 a=(2/9); b=0; c=0; d=(1/4); e=(4/9); f=(1/6);
elseif r >= .815 & r < .8966
 a=(2/9); b=0; c=0; d=(1/4); e=(4/9); f=(1/3);
%3
elseif r >= .8966 & r <= .917
 a=(1/9); b=0; c=0; d=(1/8); e=(1/9); f=0;
elseif r >= .917 & r <= .9374
 a=(1/9); b=0; c=0; d=(1/8); e=(4/9); f=(5/18);
elseif r >= .9374 & r < .9578
 a=(1/9); b=0; c=0; d=(1/8); e=(5/9); f=(1/9);
%4
elseif r >= .9578 & r < .9782
 a=0; b=(1/8); c=(1/9); d=0; e=(15/18); f=(1/9);
elseif r >= .9782 & r < 1
 a=0; b=(1/8); c=(1/9); d=0; e=(15/18); f=(1/3);
end

plot(x0,y0,'k');
 x1=a*x0+b*y0+e;
 y1=c*x0+d*y0+f;
 x0=x1;
 y0=y1;
end

hold off;

% Program Name: StarIFS
% Purpose: This program is an implementation of a Random IFS
% once the graphics screen appears, the user clicks on a point
% then waits for the IFS to randomly apply transformations.
% The frequency at which each transformation is applied is
% based on their assigned probability. This program is an IFS
% that creates shapes that contain stars within the shapes.
% Input: In the first line of the program, the user defines the
% desired number of iterations to be applied to the initial
% point
% Output: The image that the IFS creates, as the iterations are being
% applied

N=20000;
axis([-.6 1 -.5 1]);
title(['STAR ' num2str(N) ' Iterations']);
[x0,y0]=ginput(1);

hold on

for i=0:20000
r = rand;

if r >= 0 & r < .3738

a=.538*cos(10*pi/18); b=.538*sin(10*pi/18); c=-.538*sin(10*pi/18);
d=.538*cos(10*pi/18); e=0; f=.057;

 69

elseif r >= .3738 & r < .5979
 a=.423*cos(1*pi/18); b=.0; c=0; d=.423*cos(1*pi/18); e=.5; f=-.220;

elseif r >= .5979 & r < 1

a=.558*cos(10*pi/18); b=-.558*sin(10*pi/18); c=.558*sin(10*pi/18);
d=.558*cos(10*pi/18); e=.6; f=.3;

end

plot(x0,y0,'k');
 x1=a*x0+b*y0+e;
 y1=c*x0+d*y0+f;
 x0=x1;
 y0=y1;
end

hold off;

Fractal Transform

%Program Name: fliph
%Purpose: This program flips the matrix M about its central row
%Input: nxm matrix M
%Output: nxm matrix N (M flipped on horizontal axis)

function N=fliph(M)
[nv nh]=size(M);
for k=1:nv
 for l=1:nh
 N(k,l)=M(nv-k+1,l);
 end
end

%Program Name: flipv
%Purpose: This function flips the matrix M about its central
% column
%Input: nxm matrix M
%Output: nxm matrix N (flipped vertically)

function N=flipv(M)
[nv nh]=size(M);
for k=1:nv
 for l=1:nh
 N(k,l)=M(k,nv-l+1);
 end
end

%Program Name: rotmat
%Purpose: This program rotates a matrix by 90 degrees
% counter clockwise
%Input: nxm Matrix M
%Output: nxn Matrix N (M rotated 90 deg.)

function N=rotmat(M)
[nv nh]=size(M);
for k=1:nv
 for l=1:nh

 70

 N(k,l)=M(l,nv-k+1);
 end
end

%Program Name: RIFSBat
%Purpose: This program takes an image in M and determines an array
% T. T lists which looks for the best transformed domains that
% map to ranges, which each are submatrices of M. The domains
% are gotten from subdomains of size 2nx2n which have been
% averaged to size nxn. The data that is saved in the output
% files are a compressed versions of the image M. This data
% along with the block size is needed in fdec.m to reconstruct
% the image.
% There are 8 possible transformations. These use the functions
% rotmat, fliph and flipv.
%
%Input: User must insert the pgm file desired
%Output: This batch program saves 10 different versions (based on
% allowable error) of the compressed image (held in T) along
% with the variables: sv, rsize, tim, cpu0 which will be used
% by fdec to decompress the image, and to create time charts

% Get the pgm file and file size
M=getpgm('sisters.pgm');
[sv sh]=size(M);
if sv~=sh
 display('Matrix is not square');
 return
end

% Begin batch runs
for irn=1:10
 clear T;

 % Set timers
 begrun=clock;
 cpu=cputime;
 min0=10*irn;
 rsize=4;
 nd=sv/rsize/2;
 nr=sv/rsize;

 % Scale the Domain Blocks
 for i=1:rsize*nd
 for j=1:rsize*nd
 M1(i,j)=mean(mean(M((i-1)*2+1:i*2,(j-1)*2+1:j*2)));
 end
 end

 % Matrix of 4 possible scalings to transform grayscale
 s=[0.45 0.60 0.80 0.97];

 % Create monster matrix containing all possible 2D transformations
 % of the domain blocks. Store in multidimensional matrix bigM.
 for i=1:nd
 i1=(i-1)*rsize+1;
 i2=i*rsize;

 71

 for j=1:nd
 j1=(j-1)*rsize+1;
 j2=j*rsize;
 D=M1(i1:i2,j1:j2);
 D=D-mean(mean(D));
 bigM(i1:i2,j1:j2,1)=D;
 tmp=rotmat(D);
 bigM(i1:i2,j1:j2,2)=tmp;
 tmp=rotmat(tmp);
 bigM(i1:i2,j1:j2,3)=tmp;
 tmp=rotmat(tmp);
 bigM(i1:i2,j1:j2,4)=tmp;
 bigM(i1:i2,j1:j2,5)=fliph(D);
 bigM(i1:i2,j1:j2,6)=flipv(D);
 bigM(i1:i2,j1:j2,7)=D';
 bigM(i1:i2,j1:j2,8)=rotmat(rotmat(D'));
 end
 end

 % Compare the range blocks and scaled domain blocks.
 % k,l - used to cycle through blocks Rkl.
 for k=1:nr
 k1=(k-1)*rsize+1;
 k2=k*rsize;
 for l=1:nr
 [k l]
 l1=(l-1)*rsize+1;
 l2=l*rsize;
 R=M(k1:k2,l1:l2);

 % Offset o is the average in the block Rkl
 o=mean(mean(R));
 R=R-o;

 % Initialize error to large value
 minerr=10000;
 i0=0;
 j0=0;
 m0=0;
 if minerr>min0

 % Now cycle through each Domain Dij
 for i=1:nd
 if minerr>min0
 i1=(i-1)*rsize+1;
 i2=i*rsize;
 for j=1:nd
 if minerr>min0
 j1=(j-1)*rsize+1;
 j2=j*rsize;

 % Test each transformation
 for m=1:8
 if minerr>min0
 D=bigM(i1:i2,j1:j2,m);

 % Try the four gray scalings

 72

 for n=1:4
 if norm(s(n)*D-R)<minerr
 minerr=norm(s(n)*D-R);
 i0=i;
 j0=j;
 m0=m;
 s0=s(n);
 end
 end
 end
 end
 end
 end
 end
 end
 end
 T(k,l,:)=[i0 j0 m0 s0 o];
 end
 end

 % Stop the clock, store computation time in tim
 % and elapsed cpu time in cpu0.
 cpu0=cputime-cpu;
 stoprun=clock;
 tim=etime(begrun,stoprun);

 % Save data in mat file - need to change the name after each use.
 switch irn
 case 1,
 save 'sisters4_1' sv rsize T tim cpu0;
 case 2,
 save 'sisters4_2' sv rsize T tim cpu0;
 case 3,
 save 'sisters4_3' sv rsize T tim cpu0;
 case 4,
 save 'sisters4_4' sv rsize T tim cpu0;
 case 5,
 save 'sisters4_5' sv rsize T tim cpu0;
 case 6,
 save 'sisters4_6' sv rsize T tim cpu0;
 case 7,
 save 'sisters4_7' sv rsize T tim cpu0;
 case 8,
 save 'sisters4_8' sv rsize T tim cpu0;
 case 9,
 save 'sisters4_9' sv rsize T tim cpu0;
 case 10,
 save 'sisters4_10' sv rsize T tim cpu0;
 end
 end

 73

%Program name: fdec
%Purpose: Decodes the fractal image compression data form
% the fcomp routine. This routine needs rotmat.m, fliph.m
% and flipv.m.
%
% This file reads the saved information in the mat files saved
% by fcomp. In the last runs the data saved is sv tim and T.
% The files are called sistersD_E where D is for DxD range
% blocks. E is the run number corresponding to the error.
% Typically run one has been min0=10 and the others are
% multiples of 20 from 40 to 100.
%
%Input: The user must designate in the load statement what mat data
% file should be loaded. This data file should have been
% created by the previous program 'RIFSbat'. Also, the user
% should designate the desired number of iterations in the
% third line of the program: for iter=1:desired number of
% iterations
%Output: This program outputs the attractor image after the specified
% number of iterations

% Read in mat data file
load 'sisters4_7'

% Initialize matrix
M=100*ones(sv);

% Start Iteration
for iter=1:5

 % Enter range block size used in fcomp
 rsize=4;
 nd=sv/rsize/2;
 nr=sv/rsize;

 % Rescale Domain Blocks
 for i=1:rsize*nd
 for j=1:rsize*nd
 M1(i,j)=mean(mean(M((i-1)*2+1:i*2,(j-1)*2+1:j*2)));
 end
 end

 % Transform Domain Block Using T matrix
 for k=1:nr
 k1=(k-1)*rsize+1;
 k2=k*rsize;
 for l=1:nr
 l1=(l-1)*rsize+1;
 l2=l*rsize;
 i0 = T(k,l,1);
 j0 = T(k,l,2);
 m0 = T(k,l,3);
 s0 = T(k,l,4);
 o = T(k,l,5);
 i1 = (i0-1)*rsize+1;
 i2 = i0*rsize;

 74

 j1 = (j0-1)*rsize+1;
 j2 = j0*rsize;
 D = M1(i1:i2,j1:j2);
 D = D-mean(mean(D));
 if m0==2
 D=rotmat(D);
 elseif m0==3
 D=rotmat(rotmat(D));
 elseif m0==4
 D=rotmat(rotmat(rotmat(D)));
 elseif m0==5
 D=fliph(D);
 elseif m0==6
 D=flipv(D);
 elseif m0==7
 D=D';
 elseif m0==8
 D=rotmat(rotmat(D'));
 end
 R=s0*D+o*ones(size(D));
 MM(k1:k2,l1:l2)=R;
 end
 end
 M=MM;
end

% Output Image which is in M
imagesc(M)
colormap(gray);

 75

VII. Appendix B

 1. Delta Compression Results

Figure 1. Histogram of Pixel Values in
Original Sisters Image

Figure 2. Original Sisters Image

Figure 3. Histogram of Pixel Values in
Sisters Image After Delta Compression

Figure 4. Sister Image After Delta
Compression

 76

Figure 5. Histogram of Pixel Values in
Original Mandrill Image

Figure 6.Original Mandrill Image

Figure 7. Histogram of Pixel Values in
Original Mandrill Image

Figure 8. Mandrill Image After Delta
Compression

 77

Figure 9. Histogram of Pixel Values in
Original Peppers Image

Figure 10. Original Peppers Image

Figure 11. Histogram of Pixel Values in
Peppers Image After Delta Compression

Figure 12. Peppers Image After Delta
Compression

 78

 2. Fourier Compression Results

Figure 13. Original Sisters Image Figure 14. Sisters Image after Fourier Compression

Figure 15. Original Mandrill Image Figure 16. Mandrill Image after Fourier

Compression

Figure 17. Original Peppers Image

Figure 18. Peppers Image after Fourier

 79

3. Random Iterated Function Systems

Figure 19. Random IFS of a fractal. The attractor is the name 'LISA'.

Figure 20. Random IFS with 3 transformations
that produces a fractal shape.

 80

4. Fractal Image Compression Results

 Chart 1.

 Chart 2.

 81

Figure 21. Original Sisters Image

Figure 22. Sisters 4x4 range blocks
Min0=10 Iteration 1

Figure 23. Sisters 4x4 Range blocks
Min0=10 Iteration 2

Figure 24. Sisters 4x4 Range blocks
Min0=10 Iteration 3

 82

Figure 25. Original Sisters Image

Figure 26. Sisters 4x4 range blocks
Min0=20 Iteration 1

Figure 27. Sisters 4x4 Range blocks
Min0=20 Iteration 2

Figure 28. Sisters 4x4 Range blocks
Min0=20 Iteration 3

 83

Figure 29. Original Sisters Image Figure 30. Sisters 4x4 range blocks

Min0=80 Iteration 1

Figure 31. Sisters 4x4 Range blocks
Min0=80 Iteration 2

Figure 32. Sisters 4x4 Range blocks
Min0=80 Iteration 3

 84

Figure 33. Original Sisters Image Figure 34. Sisters 8x8 range blocks
Min0=10 Iteration 1

Figure 35. Sisters 8x8 Range blocks
Min0=10 Iteration 2

Figure 36. Sisters 8x8 Range blocks
Min0=10 Iteration 3

 85

Figure 37. Original Sisters Image Figure 38. Sisters 8x8 range blocks
Min0=80 Iteration 1

Figure 39. Sisters 8x8 Range blocks
Min0=80 Iteration 2

Figure 40. Sisters 8x8 Range blocks
Min0=80 Iteration 3

 86

VIII. References

1. Barnsley, Michael; Fractals Everywhere, Academic Press,1988.

2. Barnsley, Michael and Lyman P. Hurd; Fractal Image Compression,

AK Peters, Ltd., 1993.

3. Crownover, Richard M.; Introduction to Fractals and Chaos; Jones

and Bartlett Publishers, 1995.

4. Devaney, Robert L.; A First Course in Chaotic Dynamical Systems:

Theory and Experiment, Addison-Wesley Publishing Company,

Inc., 1992.

5. Kominek, John; “Advances in Fractal Compression for Multimedia

Applications”, University of Waterloo.

6. Peak, David and Michael Frame; Chaos Under Control: The Art and Science of Complexity,

W.H. Freeman and Company, 1994.

7. Solomon Garfunkel; For all Practical Purposes: Introduction to

Contemporary Mathematics, W.H. Freeman and Company,1988.

8. Kathleen T. Alligood, Tim D. Sauer, and James A. Yorke; Chaos: An

Introduction to Dynamical Systems, Springer, 1996.

9. Russ, John C. ; The Image Processing Handbook, CRC Press, 1994.

10. http://www.widearea.co.uk/designer/compress.html

11. Tolstov, Georgi P.; Fourier Series, Dover Publications, 1976.

12. Darrel Hankerson, Greg A. Harris, Peter D. Johnson, Jr.; Introduction

to Information Theory and Data Compression, CRC Press.

13. Stewart, Ian; Does God Play Dice? The Mathematics of Chaos, Blackwell

Publishers, 1989.

