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I. Introduction

1. Background

It is interesting to notice how our advanced technology has made us impatient
beings. And what do we expect because of it ... faster and more efficient technology, of
course. In this paper we will discuss the search for more efficient methods of image
compression. There are many forms of image compression currently being used. Some
of the more familiar compressions are JPEG (Joint Photographers Expert Group) and GIF
(Graphics Interchange Format); athough there recently has been research seeking even
more efficient compressions. The objective in image compression is to efficiently
produce the smallest graphics files without compromising image quality.

Image compression is a specialized form of data compression. In fact, most forms
of data compression can be applied to image compression since an image is just an array
of numbers. Although a graphics interface is needed to render data as an image, the data
is discrete, finite, and structured. This facilitates manipulation of the data. The longtime
problem with images is storing the data. The ssimplest way of storing image data is pixel
by pixel, but this is problematic. Storing an image that is 256" 256 pixels and whose
entries are in the range [0, 255] requires 8 bits per pixel, so the size of the file would be
65 KB. The larger an image is the more space it will require to be stored. For example, an
image that is 512" 512 pixels would require 256 KB for storage. As the image grows by a
factor of 2, the space required for storage grows by a factor of 4. This may be
appropriate for certain situations; however, if storage resources are limited or if the image

will be transmitted through a network a better solution should be found.



Many solutions to this problem have been discovered. Some are schemes in
which the image data is encoded for storage and decoded for display. These coding
schemes include Huffman Coding and GIF. No data is lost in these schemes. Other
algorithms cause the image to lose data, which may lessen the image quality; but, they
may also result in less storage space. These agorithms include Fourier Transform, Cosine
Transform, JPEG, and Fractal Image Compression, all of which will be discussed in this
paper.

In the 1980's, a group called the Joint Photographers Expert Group was formed to
determine the standards for image compression. Their studies resulted in the JPEG
scheme, a lossy form of compression which involves many steps [9]. First the image
being compressed is separated into a gray scae image (the luminance) and the color
information. Each of these is compacted separately. For visual purposes, our eyes can
gpare color more than luminance. This is because our eyes use the gray scale edges to
define boundaries but allow color to bleed across boundaries. So, the precision of the
color information is usualy reduced to haf of the precision used for the brightness
values. Then the discrete cosine transform, in which the terms in the expansion are red
valued, is applied to square sub-regions in the image. The compression of the image is
attained by keeping as few expansion terms as possible [9]. The fewer the number of
terms kept, the greater the compression; this aso means that the loss of high frequency
information is greater. This process can be performed on many areas within the image.
Finally more compression can be achieved by truncating the precision of each term, then
using a coding scheme that stores repeated strings of numbers. With this method, it is

possible to reach a compression ratio of 100:1, although ratios on the range of 10:1 to



20:1 are more typical [9][12]. After compression, loss in the sharpness and detail can be
detected. Depending on the software or hardware used, the time difference in
compression and decompression of an image can vary up to tens of seconds[9].

A more recent approach pioneered by Michagl Barndey is to use the similarities
on different scales throughout images to assist in compression. Fractal Image
Compression enables an incredible amount of data to be stored in highly compressed data
files.  We will explore the mathematica theory, which supports fracta image
compression. One of the most important foundations for fractal image compression is the
concept of iterated function systems (IFS). Through IFS we are able to systematicaly
reproduce fractals which occur in nature. With the theory that will be presented, we will
explore the development of an IFS and how one can apply IFS to obtain fractal image
compression.

Michael F. Barndey's discovery of the fractal transform in 1988 was preceded by
B. Mandelbrot's development of fractal geometry. It is true that mathematicians knew
about some of the basic elements of fractal geometry during the period from 1875 to
1925, but they thought that this knowledge deserved little attention [7]. Mandelbrot, a
mathematician at IBM corporation, was the man who pioneered this field of mathematics
in depth in the 1960's. Hisfirst publication on fractal theory wasin 1975 [7].

Fractal shapes occur universally in the natural world. Mandelbrot recognized
them in coastlines, lungs, landscapes, turbulent water flow, and even in the chaotic
fluctuation of prices on the Chicago commodity exchange [7].

With classical Euclidean shapes only two parameters, length and position, are

needed to describe the shape; whereas, fractas require three parameters. "complicated



structure on a wide range of scales, repetition of structures at different length scales (self-
similarity), and a 'fractal dimension’ that is not an integer [8]." Self-similarity isfound in
sets or shapes that have repetitive patterns on smaller scales. A line and a square are two
Euclidean shapes that are self-amilar. Enlarging and replicating the line can produce the
square, just as reducing the sguare can form the line [7]. In this case, the line has
dimension 1, and the sguare has dimension 2. It seems possible that a form between a
line and a square, say ajagged line, can have adimension between 1 and 2 .

From observing self-smilar forms such as these, Felix Hausdorff and A.S.

Besicovitch discovered a way to measure the dimension of afractal [13]. To measure the

fractal dimension of a bounded setST R™, one must lay a grid of m-dimensional boxes,
of side-length e, to cover S [8]. Let N be the number of boxes of the grid that intersect

S. Then S has a box-counting dimension
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when the limit exists [8]. This definition of dimension holds true for integer dimensions
aswell asfor fractal dimensions.

Since Mandlebrot's success in making the research of fractals and their
applications popular, many people have learned to create fractal illustrations. Today
these beautiful images can be generated easily on a personal computer, and have spawned
apopular field of computer graphics art.

In the 1980's Michadl F. Barndey redlized that the theory of fractals could be
applied toward image compression. In particular, an optimal compression agorithm is
sought for compressing images. This is desired in order to save storage space, as well as

time. Depending on the purpose of the image, one would either want to store exactly the
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same data as in the origina image (this is called lossess coding) or a compressed version
of the data (referred to as lossy compression). For instance, one may wish to store a
medical image without loss of data. However, media conferencing requires quick "real
time" transmission for images, demanding some form of compression.

Rather than storing an image pixel by pixel, the goa of fractal image compression
is to find a lossy compression algorithm that takes advantage of the self-smilaritiesin an
image. Barndey applied his knowledge of fractas and mathematics to image
compression, creating an optimal forms of image compression comparable to JPEG, a

form of compression which iswidely used today.

2. Judging Criteria

As mentioned before, image compression is desired for storage or transmission in
order to reduce the large size of most image files. There are two criteria by which image
compression methods are judged [9]. One is the time needed to accomplish compression
and decompression, and the second is the degree of preservation of the image. Obvioudly,
once the image is compressed in some way, the image must be reproducible from the
compressed form. We will discuss the preservation of the image.

Lossless techniques allow exact reconstruction of each individua pixel value.
This method is sometimes referred to as image coding, rather than image compression.
One of the early approaches of image coding is caled delta compression. Rather than
storing the actua pixel values, the difference in values of a pixel and its neighbor is
stored. Usually there is little change in an area of a picture, so most of the difference

values are close to zero. Since the magnitudes of the differences are much smaller than
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the actual magnitudes of the pixel values, this calls for less storage space. Other forms
of lossy compression are Huffman Coding and GIF, which will be discussed |ater.

Lossy schemes attain compression by discarding unimportant data. Of course it is
possible to discard data that is crucial to the quality of the image, but this is not a
desirable practice. Lossy methods use an algorithm to determine which part of the image
data is unnecessary, and which data is essential to the clarity of the image. We have
disposed if the data, it is not retrievable. This is where data is lost and compression is
achieved. After discarding data, it is common to use a lossless coding method at this
point to compress the existing data even more. Upon decoding and decompression, the
exact data is not regenerated therefore the final image is not exactly the same as the
original image, but it closely resembles it. We will cover Fourier transform, Cosine

transform, JPEG compression, and the Fractal transform as examples of lossy methods.

I1. Standard Types of Compression

1. Lossless Coding

Binary coding is the basis for data storage in most machines today but is not the
most efficient form of coding. Although binary coding is lossess, there are other coding
schemes, such as GIF and Huffman coding, which are more efficient. GIF compression is
a lossless compression algorithm. This agorithm's performance is based on how many
repetitions are present in an image. |If the program comes across parts of an image that
are the same, say some repeating sequence, it assigns that sequence a value and stores
this assignment in a hash table, or a key. This hash table is then attached to the image so

the decoding program can descramble it. The disadvantage to compression with a GIF is
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that the amount of compression achieved is dependent on how much repetition is in the
image. Itisalso limited to a palette of at most 256 colors [10].

Huffman coding is a widely used variable-length coding scheme [9]. This
algorithm searches for the different frequencies that gray values occur throughout the
image. Then it assigns a code to each value, short codes for high frequency values, and
long codes for low frequency values. This process can aso be applied to the difference
in pixel values. In this case, more compression can be attained.

For an example, consider an image in which the pixels (or their difference vaues)
can have one of a possible 8 brightness values [9]. This would require 3 bits per pixel
(2° =8)for traditional representation. It is possible to produce a histogram of the image
describing the frequencies for which each brightness value occurs. Huffman coding
provides instantaneous codes, or codes in which no code words occur as a prefix to
another [2]. This makes the decoding process efficient. The codes that are chosen can be
generated by a Huffman tree, which depends on the relative probabilities of each value.
A Huffman tree is formed by progressively gluing smaller trees together, until a big tree
isformed. Barndey summarizes the steps to producing a Huffman code as the following

12].

Huffman Code Steps
Step 1. List the symbols in order of probability.
Step 2. Make a tree whose branches, labeled zero and one, are the two
symbols with lowest weight.

Step 3. Remove the two symbols just used from the list and add to the list a
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new symbol representing the newly formed tree with probability equal to
the total weight of the branches.

Step 4. Make a tree whose branches, labeled zero and one, are the two
symbols with lowest weight in the new list. This tree may consist of
two other symbols, or it could consist of a symbol and the tree just
constructed.

Step 5. Repeat this procedure until one large tree is formed

Table 1 contains a list of possible brightness values (these are the symbols referred to in
Barndey's steps) with their probabilities of occurrence in an image. Figure 1 shows the
Huffman tree constructed after following the Huffman steps. The third column in Table
1 lists the codewords for the brightness values that occur in the image. These codewords
are determined by the Huffman tree. It is important to note that these codes are not
unique. For each two branch tree, it is possible to interchange the zero and one assigned
to each branch. This creates many possibilities for codes, but it is true that a Huffman

code will minimize the number of bits needed for storage.

Brightness Vaue Frequency Huffman code
3 A7 0
5 19 100
4 A3 110
6 .08 111
2 .07 1010
7 .03 10111
1 .02 101100
0 .01 101101

Table 1. Huffman code assigned to brightness values of an image.
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0 (.01 1002

Figure 1. Huffman Tree used to generate Huffman code for Table 1.

Now that the brightness values have codes, we can anayze the effectiveness of
this binary representation. Only a single bit is required for the most common pixel
brightness value. The less common vaues have longer codes. To find the average
codeword length for this code we must multiply the frequencies by their corresponding
code lengths, and sum the resulting products.

I, =1(.47)+3(.13+.19+.08) +4(.07) +5(.03) + 6(.01+.02)

=2.28 hits/pixel,
which is better than the 3 bitsg/pixel with which we started. Huffman trees are not unique,

To further this study on Huffman codes see [2].
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2. Delta Compression

Delta Compression was a smple early approach of reducing the number of bits
per pixel. This method of data compression, along with other early lossless methods of
data compression, was an attempt to transmit images of space collected from space
probes [9]. Because of the low power transmitters, the communication bandwidth did not
allow images to be sent unless some method was used to reduce the number of bits per
pixel [9].

The basic approach to Delta Compression is to take the difference in neighboring
pixel values. Given some image with a high magnitude average in pixel vaues, it is safe
to assume that in most cases the average change in pixel values is small from one pixel to
the next. This guarantees that after the Delta Compression has been applied, the
magnitudes of the differences are smaller than the origina pixel values. Thus, a smaller
number of bits per pixel are required to store the image.

For instance, let two neighboring pixels in a particular image have the values of
167 and 165. The first pixel aone requires 8 hits to store the value, whereas, their
difference value equals 2, which only requires 1 bit to be stored. Overal, if this concept
is applied to the whole image, the magnitudes of each entry of the matrix representing the
Delta Compression of the image will be much smaller. Thus the average number of bits
per pixel needed to store the image will be smaller. Before compressing the image, some
of the original data will need to be stored in order to regenerate exactly the original image
when decompression takes place. There are different algorithms one could implement in

order to achieve this compression.
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The following is a description of the Delta Compression program 'deltacomp2d'
included in Appendix A. When compressing the origina image, which is represented by
an N~ M matrix X, the first vaue X(1,1) should be stored as some variable, say 'first'.
In Figure 2, the first entry of X is 176, so first = 176. The (r,c) entries of Dx, the matrix
representing the Delta Compression of an image, forr = 1,2,...Nand ¢ =1,2,...M-1 are
obtained by the difference X(r,c) - X(r,c + 1). A special case occurs when ¢ = M (the last
column in the matrix). When ¢ = M, Dx(r,M) holds the values of X(r,M) - X(r + 1,1). In
words: the last entry in arow r of Dx equals the last entry in the row r of X minus the first
entry intherow r + 1 of X. The last entry of Dx is set equal to zero. Once all entries of
Dx have been created, Dx and first are stored in a compressed file. It is possible to apply
another lossless scheme at this point, such as Huffman Coding, which would compress

thisfile even more.

1761166 (159 0|7 (-6 176]166 (159

% »

165157155 81210 165]157|155
X Dx ¥

Figure 2. Example of applying Delta Compression and regenerating original data.

For the Delta Decompression program named 'deltade2d’, found in Appendix A,
the matrix Dx represents the compressed matrix and first represents the initia entry in the
original image, as above. Y represents the reconstructed original image. Since this is a
lossless compression method Y will be equal to X, the origina image before Delta
Compression is applied. Y is reconstructed, first by setting the first entry Y(1,1) = first.
Thenforr=1..Nandc =2...M, Y(r,c) = Y(r ,c-1) - Dx(r,c-1). But there is a specia case

whenc=1and r >1, Y(r,1) = Y(r-1,M) - Dx(r-1,M). When Y reaches the first entry of
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anew row, Y(r,1), the first entry in that row is created by subtracting the last entry of Dx
,in the r-1 row, from the last entry Y, in the r-1 row. As desired, the original image is
reconstructed exactly. See Figure 2 for a numerical example.

In Appendix B, Figures 1 through 12 correspond to Delta Compression results.
Figures 2, 6, and 10 are three different images to which we applied Delta Compression.
The histograms of these images are to their left in Figures 1, 5, and 9. A histogram
shows the distribution of data values. In this case, the pixel value, on a range of [0,255]
is on the independent axis and the frequency of the pixel values within the image is on
the dependent axis. It is important to notice that the pixel values in the origina images
are spread throughout the range of [0,255]. The histograms of the delta compressed
images are in Figures 3, 7, and 11. After the images have been delta compressed, the
pixel values are closer to zero than in the origina image. As mentioned previously, on
average, the smaller magnitudes of pixel values are what alow the data to be stored in
fewer bits. The images in Figures 4, 8, and 12 represent what type of image the data in
the delta compressed files would resemble. The more uniform gray color graphically

displays that the pixel values are close in magnitude.

3. Fourier Transform

Our god in using Fourier transforms is to determine and work with the spatia

frequency content of an image. Images are treated as two-dimensiona discrete finite
signas. The Fourier transform f of a two-dimensiond sgnd f has a matrix
representation and contains the amplitudes of the fundamental frequencies that make up f.

Each component of f indicates the strength of a particular frequency in f. Once the
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Fourier transform is applied to an image, to achieve compression of the storage of that
image, it is necessary to quantize it. Quantizing is a rounding procedure in which the
high frequencies are omitted. Ideally, many entries in the matrix will be set to zero. By
doing this, less storage space is needed to represent the image. The image is
decompressed by application of the inverse transform. The resulting image matrix will
have values close to the corresponding entries in the origina image. This is how it is
possible for the new image to resemble the original image. Before the Fourier Transform

is discussed in detail, we will introduce some fundamental mathematics.

3.1 Periodic functions

A function f(t) iscalled periodic if there existsa constant T > O for which
f(t+T)=f(t), for any t in the domain of definition of f(t), wheretandt + T liein this
domain. The smallest such T is called the period of f(t) [11]. There are many periodic
functions, snt, cost, and tant being some of the most well known periodic functions
[11]. If we were to plot a periodic function on some interval a£t£a+T , we would
obtain the entire graph by periodic repetition of the portion of the graph corresponding to
attf£a+T [11]. If T isthe period of f (t), then any integer multiple of T, say kT, where
k isany positive integer, isalso aperiod of f(t) [11].

Consider the sinewave, t® Asinwt, where tT R. |Al represents the amplitude
of the wave, 2p /w represents the period, and w/ 2p represents the frequency. With this

information, the sine wave can be constructed for al time t, whereas most signals we

observe in practice have a finite duration. But, this does not cause a problem because any
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finite length signal can be extended periodically for al time [12]. In analyzing signas

more complex than the sine wave it is convenient to use the most fundamental map of an
oscillation: g ® e, where q1 R. Using Euler's identity, ' =cosq +ising, we see
that g ® e maps any interval of length 2p to the unit circle. This is the basis of all
Classical Fourier Analysis [12]. If we let g =wt, where w1 R, we obtain in the map
t® e™, tT R. Thismap isarotation about the unit circle that completes one revolution
of (2p radians) in period T =2p /w| [12]. An oscillation with frequency f =w/2p can
be described by t ® e®™ [12].
For each integer n, weset w, =2pn/T = 2pf . Thismap,
t® ™ ® e®, t1 R,

completes n rotations around the unit circle (counterclockwise if n is postive and
clockwise if n is negative) during the time interval O£t £T [12]. Each of these maps

give one basis signal for each integer n [12]. The collection of these basis signals is the

set
A={t® e®"'|nl Z},

which contains the information needed to generate other period T signals[12].

Let B be the span of A:

B={t® § a,e®" |a, T C}.

nl z

The sequence of coefficients a,, is called the Fourier transform of asignal from B.
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3.2 One-Dimensional Fourier Transform

The Fourier transform of a signa is a vector containing the amplitudes of the
fundamental frequencies that make up the signal [12]. If a continuous signal h is defined

as

h(t)=3 a,e®™", 0£t£T,

nl Z
then the sequence of coefficients a,, are represented as

— 1 T\ - 2pif t
a, =— (e dt,
T 0

which allows each a, to be computed from h [12].

.
Proposition: If h(t)=§ a,e®™, 0£t£T,then a, :Tlc‘ﬁ(t)e-szntdt.
0

nl z

Proof: First, we need to show that the functions e®"" are orthogonal over the interval

OELtET,i.e
L ) L. iTif m=n
N 2Dt - 200t qp — N 20it(f- £ ) g — b
(0 € dt—G dt_lOifmln
0 0 | !

where n and m are integers. There are two cases for which we need to evaluate this
integral.
Casel m=n

T T
GZpit(fn— f")dt - @t :T
0

0

Case2 mln
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20it( Ty 1) |T 2T () _ q

20it(fy- 1) gt = e _¢€

2pi(f, - f,)|,  2pi(f,- f,)

T
N
07

0

_ cos(2p(n- m))+isin(2p(n- m))- 1:0
2pi(fn - fm)

Now, that we know the set of basis signals is orthogonal, we can find the

coefficients. Our signa h is defined as:

h(t)=Q a,e®"".

nl z

2pif ,t

If we multiply both sides of the above equation by e’ , we have

e 2pif t h(t) - é aneZpifnte— 2pif .t .
nl z
Integrating on both sidesfromO£t£T ,
T

T
G- 2pif .t h(t)dt - éé an e2pifnt e- 2pif t dt ,

0 o nz

— a a Gzplft 2pifmtdt

nl Z 0

=Ta

m?

by orthogonality. Therefore,
%61 t)e-Zpifmtdt ,
0

as desired. QED.
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Although knowing how to find the Fourier Coefficients of asignal h for al values
of t in a continuous time interval O£t £T is useful in many engineering applications,
our interest is in finding the Fourier coefficients of an image, a discrete signal. In fact,
the image signal is not a function of time, but of position. So, in the position interval
O£ x£ X, where x denotes position and X represents the period of the signal, a discrete
sgnal is sampled at discrete postions x,, k = 0, ..., N with O£x, £X [12]. It is
common and easier to keep the sampling interval constant and the period X as some
multiple of the sampling interval [12]. The result is the sampling positions x, are
equidistant between 0 and X. If N samples are taken, the sampling interval is X/N and the
sample positions are 0, X/N, ..., (N-D)X/N [12]. If we replace the continuous signal h,
with a step function approximation h due to the discrete sampling intervals, then we end

up with the sampling intervals kX /N £x£ (k+D)X /N, k=0, ..., N-1. So, the sampling

positionsare x, =kX /N and the signal can be written as

1
2pink /N
ae” :

Qo=

n w1
h(x,)=h(kX/N)=a anezplfnkX/N _

n=0 n

0

gnce f, =n/X . Thefinite sum for the discrete signal can be written as

N-1 )
h =h(x)=a b,e®™". (1)

n=0

N-1 . N-1 -
Proposition: If h, =8 b.e®™N  0£x, £X ,then b, =g he @™V |

n=0 k=0
Proof: First we need to show that the discrete functions e®*™'™ are orthogonal over the

interval O£ x, £X ,1.e.



N-1 N 1 =
é 2p|nk/N 2pimk/N_|,N’If m=n,

2
10, if mtn, @

where m and n are integers. We must consider two cases.

Casel:m=n

N1 ) N1 ) N1

a e2p|nk/Ne 2pimk /N :a [eZpl(n—m)/N]k :a 1: N .
k=0 k=0 =

Case2: mln

Knowing how to sum afinite geometric series, we find

-1

-1
2pink /N . - 2pimk / N
g™ N P

[eZpl(n m)/N]

Qoz

Qoz

7\‘
I}

0

=
I}

0

1_ [eZpi(m—n)/N]N
= 1_ e2pi(m—n)/N

1_ e2pi(m—n)
:1_ e2pi(m—n)/N '

_1-cos(2p(m- n))+isin(2p (m- n)) _

1 e2p|(m n)/N

Multiplying both sides of (1) by e ®™/" | then summing from O to N-1, we have

-1

N N.-
o _oni oL 0 o
a hke 2pimk /N :a ga b e2p|nk/N 0 2pimk / N
k=0 k=0@n=0

n=0 k=0 n=0
So,
1 ’\"3 2pimk/N
Wa m=0,...N-1,
k=1

where h, are components of h, and b, are components of b. QED.
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Equation (1) definesh® b, amap C" ® C" [12]. We make the transformation

symmetric by defining h =+/Nb . This gives the discrete Fourier transform [12]

. WL
h, :%a h.e ®'N j=0,.,N-1,
k=0
h —iglﬁ e/ k=0,..,N-1 X
= vah, k=0,.,N-1.

The vector h=(h,,...,h,_,) is caled the Fourier transform of h = (h,,...,h,_,), while

A

each vector h and h are the inverses of each other. So, given either h or h, we can

compute the other [12].

Definition 1 A Transformation T:C" ® C" is a rule that assigns to each vector X in
C" avector T(x) in C". Foreachxin C", T:x® Ax where A isan m" n matrix.

The defined transformations in (3) can be viewed as transformations of the
vectors h,hi C", so each of them have a matrix representation. If welet Whbethe n n
matrix whose entry in the jth row and kth column is W, , =(1/+/N)e®*'" | then we have

[12]

where W stands for the matrix whose entries are the complex conjugate of the entries of
W. Itisclear that W =W, since h =Wh =WWh for dl h C"and h=Wh =WWh

foral h1 C"[12]. This set of equations can be rewritten in compact form as
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> o0
=~ —

1 1
o7 T
= =
= =
— =~

An example of avector h and its Fourier transform h are given by

4.5 612.25 U
&, QU é U
h:gzs@’ hoe% 2y
€3.9u é-385u
8.3 g§3+.25i4

See Appendix A for two functions written in Matlab to perform the Fourier transform as

well as the inverse Fourier transform on a one dimensional signal.

3.3 Two-Dimensional Fourier Transform

It is possible to extend the Fourier transform to a two-dimensiona signal. The

two-dimensional transform takes the form

=

1

A 1N .
f - f e—2p|(ju—kv)/N
N (4)
1'% 20i(ju-kv)/ N
— pi ( ju- kv
fjk _ﬁ a fuve )

u,v=0

defined for any pairs of integersu and v or j and k in theinterval O, ..., N - 1 [12]. The

right hand sides of (4) extend definitions of f and f toal of Z”Z=2?% and the

extension is periodic with period N in both directions [12]. The two-dimensional Fourier

Transform sees both f and f as maps from Z*to C, with the property that

f(u+rN,v)=fu,v+N)=f(u,v) and f(j+N,k)=1(j,k+N)=f(j,k) for any (uv)
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and (j,k) in Z*[12]. If welet W, =L &%/ then we can rewrite the two-dimensiondl

IN
transform in matrix notation as
f =Wfw
f =WFW.

In application, it is practical to use the matrix notation. An example of a matrix
representation of f and its Fourier transform f:

@14 531 34 6 923 -88+14.2 - 88-14.2i
=gz3 406 11 3 f= gs.1+5.5i 06+1.6i -139- 0.73.
8303 32 315§ @B.1-55 -13.9+07 06-16i {

See Appendix A for two functions written in Matlab to perform the Fourier transform as

well as the inverse Fourier transform on two dimensional signals.

3.4 Application of Two-Dimensional Fourier Transform

Our goal in using the Fourier transform (FT) would be to apply it in some way to
compress an image. But, in fact, because the FT contains complex entries, compression is
difficult to reach, although possible. The approach one would take to reach compression
would be to quantize the high frequencies of the FT. Quantizing is the a "rounding"”
procedure which reduces the magnitudes of transformed coefficients. Typically one
forces a bigger reduction on the high frequency components [12]. After quantizing, the
entries in the matrix are ordered from low to high frequency, trailing zeros are truncated,
and the resulting string is encoded using some lossess agorithm such as a Huffman
code, or a binary code. Up to this point the FT has been a lossless agorithm considering

that the original finite signal can aways be reproduced. But, once quantizing takes place,



27

the original signa can never be reproduced exactly from the quantized FT, resulting in
lossy compression. Quantizing will be discussed in more detail in Section 5 of this
chapter.

We run into problems when attempting to use the FT as a compression method for
images. The program named 'FourierComp' in Appendix A is an example of an attempt
to compress images using the FT accompanied with a quantizing agorithm as a
compression method. So, each pixel value is stored in 8 bits. We apply 'FourierComp' to
three grayscae images (sisters, peppers, and mandrill) holding the pixel values of
[0,255]. These images are displayed in Appendix B. Figures 13, 15, and 17 are the
origina images, and Figures 14, 16, and 18 are the images after 'FourierComp' has been
applied to the origina images. The following computations correspond to the application

of 'FourierComp' to the image "peppers.pgm” (256 x 256 pixels), a 65 KB image . Let
the matrix of pixel values of peppers be named f. Let the FT of f be denoted as f.
In this case the quantizing agorithm defines a high frequency by determining if

the ratio of the modulus of an entry in f to the mean of the modulus of the entriesin f is

f (i) A
less than 1. In other words, ————£1 for i,jl Z. For higher frequencies the
mean(| f |)

magnitude of the entry of f issmaller. Therefore, this ratio is a good test in comparing

the frequencies. The entries that pass this test are set equa to zero. It is possible to

change the bound, on the right side of the inequality. If the bound is made smaller, less

A

entriesin f will be quantized, which will result in less possible compresson. We will

see that using a bound of 1 works well.
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After quantizing, 53441 entries of 65536 are set to zero due to f havi ng high
frequencies. This new sparse matrix is caled y. When the inverse FT is appliedto y a
new image, Y, is created. The image quality of y is not as good as f, but we are willing to
sacrifice some quality if the compression is good. Now we must determine whether the
compression of f is efficient. We know that there are 53441 zeros iny , which require
little or no storage space if a coding scheme is applied after quantizing. Assuming thisis
the case, the trailing zeros that are truncated will need no storage. If the entries in the
matrix are then ordered as a string of numbers, it is possible to find the sub-strings of
zeros. When these are found, the only storage necessary will be some variable a,
denoting the number of zeros in the sub-string, followed by a specia character denoting
that a represents a substring of zeros. So, the storage space needed to store the zeros will
depend on the number of substrings. Inthiscase, y has 12095 non-zero entries. |If these
values were aso in the range of 0 to 255, we would be in luck. But thisis not so, they are
complex values.

As we discussed earlier, the Fourier transform of a matrix livesin C". So, not
only do we need storage space for the real parts of the values, but aso for the imaginary
parts. Let's assume that storing positive imaginary and real parts requires twice as much
space as storing only the real part. The minimum of the real parts of y is-1680.9 and the
maximum of the red parts is 26600 , whereas the minimum of the imaginary parts of y
is -1827.5 and the maximum is 1827.5. Therefore, assuming all 12095 non-zero entries

of ¥y have both rea and imaginary parts, with a sign value plus a maximum magnitude of
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26600 for the rea parts and a maximum magnitude of 1827.5 for the imaginary parts, we

can estimate the storage space needed if the matrix y were converted to a binary file.

Since 2'° =1024, 2" =2048, 2" =16384 and 2" =32768, we know
that the maximum bits per pixel needed to store the magnitude of the real components is
15 hits plus one bit for the sign, and the maximum bits per pixel needed to store the
magnitude of the imaginary part is 11 bits per pixel. There are 12095 pixels, so the

maximum  estimate of bits needed to sore this matrix @y is
(12095)(15+11+2) =338688 bits =41.3KB plus or minus a few bytes for the storage of

the compressed strings of zeros.

So the compression ratio for "peppers’ is 2:3, not too impressive, but the
algorithm used here with the FT and quantizing did compress the image. Because the
complex values in the Fourier transform make it so difficult to compress an image,
another route should be sought. Results for the sisters image and mandrill image are

along the same order.

We are familiar with the fact that e =cos(q) +isin(q). A popular approach to
more efficient compression is to use just a discrete cosine transform, dropping the
imaginary components of the Fourier transform. This results in the Cosine transform
(CT). JPEG compression is a form of image compression, which greatly depends on the

CT and the concept of quantizing.
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4. The Cosine Transform

4.1 The One Dimensional Cosine Transform

Our goal in using the Cosine transform is to avoid the imaginary numbers that are
aresult of the Fourier transform. To introduce the Cosine transform, we start with a one-
dimensiona signa x defined at positionsk = 0,...,N-1. Hence, x has period N. We know
that cosx is an even function. An even function is defined as a function f such
that f(x) = f(-x). So, we will take the signal x and apply an even extension of positions to
k = N,N+1,...,2N-1 reflecting its graph across the vertical axis passing through the point
k = N-1/2, occurring midway between k = 0 and k = 2N-1. The resulting signal is defined
for k =0, ...,2N-1[12]. So, this extension is an even extension centered at k = N - 1/2,

where the endpoint values match.

signal | even extension

0 2 N3 NAN N+ IN3 2N
112

Figure 3. Even extension of a signal about k = N-1/2 [12].

Now, the Fourier Transform sees this signa as having a period 2N instead of N.
If we apply the Fourier transform to this new period 2N signa and then use Euler's
identity 2cosq =e' +e™' repeatedly, the result is a linear combination of cosine

functions instead of exponential functions[12]. The resulting pair of equations are

N-1

R, =8 kaVcosM, v=0,.,N-1
k=0 2N
N-1

x, =a %,C costZKFDVP k=0,.,N-1,

v=0 ! 2 N
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where C, =+vUN and C, =+2/N if k1 0 [12]. See [12] for details. X is usudly

referred to as the forward cosine transform, while X is referred to as the backward cosine
transform [12].
If wedefinean N° N matrix A to be

(2k +Dvp

A =C 080 @

with k and v defined as above, then the matrix representations of X and x are given by

x=A'X, (5)
X = AX. (6)

The columns A, are periodic with period 2N and the frequency v/2N, which increases
with the column index v. This orders X with the frequencies of x such that X, is the
amplitude of A,, the lowest frequency component of x, and X, _,is the amplitude of
A,_,, the highest frequency in x [12]. The consecutive entries of X from the 0™ entry to
the (N-1)* entry are the amplitudes of A, corresponding to the frequencies in x from

lowest to highest.
It is simple to see that with substituting (6) into (5), x = AA'x for each xI RV,
snce A'=A" and AA'=AA"=1_, [12]. A matrix of read numbers with this

property is known as an orthogona matrix [12].



4.2 Two Dimensional Cosine Transform

The two dimensional CT is defined as the following

- Ny 1 .
f,=a fjkCu Coswcv COM
j,k=0
N-1 .
fjk = é fquu COSMCV COSM,
2N 2N

u,v=0
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(5)

where f and f are extended to two dimensional periodic signals with period 2N defined

on Z?. The extension given for f is even in that it extends f in both horizontal and

vertical directions, with the extension usually smoother than that provided by the two-

dimensiona Fourier transform. One can visualize the extension of the two-dimensional

signal by picturing f as an array and reflecting f over its four boundaries. Four new arrays

have been created. Continue reflecting each of the new arrays created across their

boundaries. Eventually Z* will be tilled with these arrays, and this yields the signal that

the two-dimensional CT regards asf.

If we define B, to bethe N” N basis element whose entry in the jth row and kth

columnis

_(2k+vp
T 2N

B, (J.k)=C, cos(ZJ;Nl)Up C,co

then we can redefinef and asthe following:

=

q,

1
% Qo
o

1

uv

fjkBjk (u,v)

0Z =

_l;\

f.=a f.B. (J.k).

jk

Q

[=
<

Furthermore, the matrix representation of the CT is
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Al fA (6)

f
f = AfA', (7)

where A is the same here as in the one-dimensional case. As expected, when (7) is

substituted into (6) we arriveat f = A(A'fA)A', since A™* = A'.

5. JPEG Image Compression

JPEG stands for Joint Photographers Expert Group. In the 1980's this group was
formed to determine standards for still-image compression including both lossless and
lossy modes [12]. The acceptable solutions of this compression problem are based on the
human visua system and the fact that the human eye is insengitive to certain changes in
an image, and tolerant of a wide range of approximations [12]. The lossy modes are of
more interest at this point. There are many forms of JPEG compression depending on
what quality of compression is desired. The form of data being compressed will
determine whether or not a compression mode should be lossless or lossy [12]. There are
many instances in which data contains text. 1n most cases, the text cannot be sacrificed.
But in some cases, where the data is an image, a loss of information is acceptable due to
the compression that accompanies it. We will consider only ideas of lossy compression
applied to gray scae images. The range of gray scale vaues is commonly restricted to
[0, 255].

The JPEG compression takes advantage of the fact that a loss of data is
acceptable. The main mathematical and physical theme of JPEG is local approximation.
One step in the JPEG agorithm that reduces data is collapsing almost constant regions to

their average shade of gray. One can choose a subset of an image, say a block of 8" 8



pixels, average the shade in that block, and do the same for every disconnected 8 8
block in the image. For an array of 256" 256 pixels, this reduces the image to a 32" 32
array. Although this new array is 1/64 the size of the origina array, with this algorithm
too much detail islost. It is desirable to have an agorithm that would not average blocks
containing large amounts of detail. It is possible to choose a smaller block size, such as
4" 4, but this may sacrifice any compression gain.

Rather than using a 4" 4 block size and running the risk of losing valuable
compression, JPEG uses a "detail detector”, which happens to be the two-dimensiona
cosine transform (5) in section 4.2 [12]. In the CT, the sum has been ordered so that the
"tall" contains the high frequency components of the signal. Stopping the sum at a
certain point is the same as truncating high frequencies from the origina block, and is
equivalent to replacing the appropriate entries in the transformed matrix with zeros [12].
Retaining only the nonzero coefficients and discarding the trailing zeros corresponds to a
compression method and can be considered a special case of JPEG [12].

There are basically four steps in the JPEG agorithm. First it is necessary to break
the M~ N image into local blocks, most popularly into 8" 8 blocks, as discussed earlier.
Second, these blocks need to be transformed, using the cosine transform, in order to
identify the high frequency components. The cosine transform exchanges raw spatial
information for information on frequency content. Then a quantizing method, or a
"rounding" procedure, needs to be applied to the transformed coefficients. The high
frequencies are usualy reduced consdering the human eye is insendtive to high
frequencies. The fourth step is encoding the output of the quantizing step. The JPEG

standard uses Huffman and arithmetic coding [12].
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If we are dealing with a 256" 256 image, cal it f, each 8" 8 block occupies only

.098% of the image area. When small blocks are processed through the two-dimensiond

cosine transform, one at a time, it is not possible for the transform to take the entire

image into account. This results in discontinuities across the block boundaries. Because

there is no overlapping of the 8" 8 blocks in the whole image, the edges of the

transformed blocks are bound to have discontinuities from one block to the next after

being decompressed. The JPEG group found the Cosine Transform to have desirable
"smoothing" properties, which the other Fourier Transforms did not have.

These properties allow for a quantizer matrix, which we denote as g. Itis

at the quantizing stage that the JPEG looses information. This step, unlike the others, is

not invertible. For each 8 8 block in T(f), the transformed matrix, there is a

corresponding 8" 8 block in the g matrix whose entries are al positive integers, referred
to as quantizers.

The matrix q has the same dimensions as T(f), and each disconnected 8" 8 block of
guantizers is attached to the corresponding block in T(f). Each entry in T(f) isdivided
by its corresponding entry in g then the result is rounded to the nearest integer [12]. If the
guantizer entries are large enough, often the result will be a sparse matrix.

JPEG uses the luminance matrix as a quantizer, in which each entry is based on a
visua threshold of its corresponding basis elements [12]. Usually the smaller entries are
in the upper left hand corner of q while the larger entries are in the lower right hand
corner. In the transform matrix, the entries representing the lower frequencies are in the

upper left hand corner and the entries representing the higher frequencies are in the lower
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right hand corner. When dividing the entries of T(f) by large magnitudes from q the
high frequency entries are suppressed.

This design is typical of JPEG quantizers [12]. After quantizing, the entries are
ordered from low to high frequencies, the trailing zeros are truncated, and the remaining
string of numbersis encoded. The process, without encoding, can be summarized by this

chart:

transform quantize dequantize invert ~

f® TTR QTf ® Tf® f,

where T is the Cosine transform, defined by Tf = A'fA, and Aisan 8~ 8 block defined
by the Cosine transform matrix in equation (4).

With the tradeoff made at the quantizing stage, JPEG compression typicaly
reaches compression ratios of 20:1 or more. Although they eye can notice blockinessin
the compressed image, the image quality is not poor. It is possible to obtain better image
quality, but compression will belost. The type of compression selected is often

determined by how the image will be used.

I11. Fractals and Iterated Function Systems

1. Iterations

Iteration is a process, or set of rules, which one repeatedly applies to an initia
state. One could even define an iteration as a repetitive task.  In iterating something,
there isusually agoal that one is attempting to reach, or an answer sought.

An example of a smple iteration is pressing the space bar on a keyboard. If one

aims to type the date at the right hand side of a document, one must repetitively press the
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gpace bar until the desired location has been reached. The goa of this iterative, or
repetitive, task isto get to the right hand side of the document.

Applying the square root function to an initial value, and then continualy taking
the sgquare root of the output, is another example of a smple iteration. Another way of
explaining this iterative function is to say that one is continualy composing the function

with itself. In this example, we will call the initial value x,. Shown below is the process

of iterating the square root function on an initial value x,1 R+, where n=0.12,....

X = F (%) =% =X,

X, = F(Xl):\/x_lle% :(Xoyz)y2 :Xo%1
k)= =%,

;<n = F(xn_l)zm =x0/z".
The iteration of the rule x, = F(x, ,)=1/X,, =X,/ produces the set of outputs, or the
orbit, {X,,%,%,,Xs....,X,}. Depending on the initial value, this orbit could have different
behaviors. In this case, if x, =1, then the orbit is always 1, which is called a fixed point.
If X, >1, then the orbit approaches 1, the same fixed point. If 0<x, <1, then the orbit
will approach zero, another stable fixed point. Lastly, if x, =0, then the orbit always

equals zero. So, there exist two fixed points of this system, namely 1 and O.
For different rules or iterative functions, there are more possible behaviors for the
orbits. It is possible that an orbit could escape off to infinity, approach or be equal to a

periodic orbit, or even be chaotic.
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2. The Copy Machine Algorithm

As described by Kominek [5], the metaphor of a Multiple Reduction Copying
Machine is an elegant way to introduce Iterated Function Systems. The MRCM s to be
understood as a regular copying machine with the exception that the lens arrangements
are such that they reduce the size of the origina picture, and they overlap copies of the
origina into the generated copy. Also, the MRCM operates with a feedback loop in
which the output of the previous copy is used as the input of the next stage. It doesn’t
matter with what picture the user begins. What will determine the attractor, or the output
of an iterated function system, will be the rules that are used in the copying, which acts as
the iteration.

In the example demonstrated in Figure 4 we will produce the Sierpinski Triangle,
one of the most well known Iterated Function Systems. To reach this attractor there are
three rules which, when composed together, act as the lenses in the copy machine. Each
rule, or lens, reduces the original seed by half the original size and trandates the new

image to a new location.

Input o Output
seed copy machine
. l-
EN 2 = mn
2nd copy
I-.-I _) .':-: :-.'.
HE EER 3rd C Op};r Ana mmmw

Figure 4. Multiple Reduction Copying Machine

using three rules to produce the Sierpinski Triangle.
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It is a surprising fact that the attractor of an IFS does not depend on the seed. So, we
could begin with a circle as the seed, and the attractor of the IFS for the Sierpinski

Triangle would look the same.

3. Metric Spaces, Mappings, Transformations

To produce Iterated Function Systems, there must exist a space that supports
images and on which distances can be measured. For an IFS to converge to an attractor,
the mapping that defines this IFS must be a contraction mapping. Having a metric will
adlow us to measure distances on a given space, as well as determine which are
contraction mappings and which are not. Also, having a contraction mapping is an
essential ingredient in Fractal |mage Compression.

We begin with some definitions.

Definition 2 A metric space (C,d) is aset C together with a real-valued function

d:C” C® R, which measures the distance between pairs of pointsx andy in C.

d iscaled ametric on the space C when it has the following properties [2]:
i. d(x,y) =d(y,x), "x,yl C
i d(x,y)3 0, "x,yl C
iii. d(x,y)=0 iff x=y, "x,yl C

iv. d(x,y) £d(x,2)+d(z,y), "x,y,zI1 C.

The Euclidean Plane, R?, along with the Euclidean metric,
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d06Y) =04 - ¥)° + (6 - ¥2)7, "yl R?,
is an example of a metric space. Another familiar metric space is the Euclidean Plane,

R?, together with the Manhattan metric,

d(X’Y):|X1' Y1|+|X2' y2|’ ) X,yT RZ.

Definition 3 Let C be aspace. A transformation, map, or mapping on C isafunction
f:C®C. If Si C,then f(S)={f(x):x1 S}. The function f is one-to-one if
x,yI C with f(x)= f(y) implies x=y. Itisontoif f(C)=C. Itiscaled invertible
if it is oneto-one and onto: in this case, it is possble to define a transformation
f1:C® C, cdled the inverse of f, by f '(y)=x, where xI C is the unique point

such that y = f(x) [2].

Definition 4 Affine transformations on R are transformations f :R ® R of the form

f(x)=ax+b," xI R, wherea and b are real constants[2].

If a <1, then this transformation contracts the line toward the origin. If a>1, thelineis
stretched away from the origin. If a <0, thelineis flipped 180° about the origin. The
lineis trandated, or shifted, by an amount b. If b >0, then the line is shifted to the right.
If b<O thelineistrandated to the |eft.

We will consider affine transformations on the Euclidean plane. Let w:R*® R?
be of the form

w(x,y) =(ax+by +e,cx+dy + f) = (x¢y9,
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where a,b,c,d,e, and f are rea numbers, and (x¢y9 is the new coordinate point.

This transformation is a two-dimensiona affine transformation. We can also write this

same transformation with the equivalent notations:

6_a8 bemo a0
W)= Wgyz & dys g;_AHT

whereAisa 2" 2 red matrixand T = g * repreﬁents trandlations [2].

The matrix A can aways be written in the form of

@ bo_agcoxy;, -r,sng,0
gc d@ r,sSng, rcosng

where (r,,q,) arethe polar coordinates of the point (a,c) and (r,,(, +%)) are the polar

coordinates of the point (b, d) [2]. This means that

c
a’+c’, tang, =—,
a

=+vb?+d?, tanqg, =g.

Provided that ab- cd * 0, we can aso describe Ax as a transformation that maps a
polygon of area L to anew polygon of area |det(A)| L [2].

The different types of transformations that can be made in R? are dilations,
reflections, trangdations, rotations, similitudes, and shears.

A dilation on (X, y)iswrittenin the formw, (x,y) =(r,X,r,y) or

o Oc_'Bst

W80 1 %yE

Depending on the values of 1, and r, , this dilation could contract or stretch x [2].
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A reflection about the x axis can be written in asw,, (X,y) = (X,- y), while a
reflection about the y axis is written as w,, (X, y) = (- X, ¥)[2]. In matrix representation,

these reflections would ook like

Oex 0
O # LTINS S %

respectively.
Translations can be made in the x or y direction by adding a scalar to the
corresponding component of the map [2]. Trandations are written in the form

W, (x,y) =(x+ey+f) or

Oaae<o 0

KER T #
If e <0, the map trandates in the negative x direction. If e >0, the map trandatesin the
positive x direction. If f <0, the map trandates in the negative y direction. If f >0,
the map trandlates in the positive y direction.
A rotation mapping has the form w, (x,y) =(xcosq - ysing, xsing +ycosq),
also expressed as

W(X) 220Y] -anaae<o
gan coYy y

for some rotation angleq, 0£q <2p [2].
A similitude is an affine transformation w:R? ® R? of the form,

W00 = cosq -rsmqaae(o e 0
S gran rcosq yg fg

w (X)_aa?cosq rsing aae<o e 0
S grsinq - rcosq ¢ yg fg
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for some trandation (e, f)T R?, some read number r * 0, which is the scale factor, and
some angle q, 0£g<2p [2]. A similitude combines the rotation, dilation, and
tranglation rules together.

A shear transformation, or a skew transformation, takes one of the forms,

_ad bxd )
Y% 1 g5 °
_ad 000
WOTE 1%ys

where b and ¢ are real constants [2]. In each case, there is one coordinate, which is left
unchanged. One can imagine the action of this mapping on some rectangle as if shearing

adeck of cards.

L/

Figure 5. Shearing in the x direction: W(X) = (X +by, y).

4. Convergence and Contractions

In producing Iterated Function Systems, it is necessary to have a set of
transformations that converge to a desired image. For these mappings to converge to the
desired image, they must be contraction mappings. To apply IFS to Fractal Image

Compression we will need the following definitions and theorems.



Definition 5 A sequence {x,}*_, of points in a metric space (C,d) is caled a Cauchy
sequence if, for any given number e >0, there is an integer N >0 such that

d(x,,x,) <e foral nm>N [2].

One can interpret this to mean that as n and m grow relatively large, the difference
in values of the sequence become small. This does not mean that the values of the
sequence must all approach only positive, or negative vaues, but they may aso be

aternating positive and negative.

Definition 6 A sequence {x,}*_ of pointsin a metric space (C,d) is said to converge to
a point xI C if for any given number e >0, there is an integer N >0 such that
d(x,,x)<e fordl n>N [2].

The point to which the system converges, xI C, is caled the limit of the sequence.

This definition is different than that of the Cauchy sequence because the metric, d,
is not measuring the difference of values between consecutive numbers, but between each
term in the sequence and x, the constant value which the sequence is approaching. So, if
a sequence is converging to X, then as n approaches infinity, the nth term of the sequence

will grow closer, lessthan some epsilon, in distanceto x.  Relating this terminology to
an IFS, the limit xi C of the sequence {x,}*_, corresponds to the attractor of an IFS,
where the nth term in the sequence, x,, isthe nth level of an IFS after n iterations on the

seed image X, .



45

Theorem 1 If a sequence of points {x,}*_, in ametric space (C,d) converges to a point

x1 C,then {x,}*_ isaCauchy sequence [2].
Note that the converse of this theorem is not aways true. Not al Cauchy sequences

convergeto alimit xI C.

Definition 7 A metric space (C,d) is complete if every Cauchy sequence {x,}*_ in C

hasalimitxT C [2].

Definition 8 Let f:C® C be atransformation on aspace. A point x, I C such that
f (X;) = x, iscaled afixed point of the transformation [2].

A fixed point of atransformation correlates to the attractor of an IFS.

Definition 9 Let ST C be a subset of a metric space (C,d). S iscompact if every

infinite sequence {x, }*_, in'S contains a convergent subsequence.

Theorem 2 Let (C,d) be a complete metric space. Let ST C. Then S is compact if

and only if it is closed and totally bounded [2].

Definition 10 A transformation f:C® C on a metric space(C,d) is caled

contractive, or acontraction mapping, if thereisaconstant 0 £ s <1 such that
d(f (%), f(y) £ (s)d(x,y)" x,yT C.

Any such number is called a contractivity factor for f [2].
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Figure 6. fisacontraction mapping action on a set of pointsin X.

Theorem 3 The Contraction Mapping Theorem

Let f:C® C be a contraction mapping on a complete metric space (C,d). Then f

possesses exactly one fixed point x, 1 C, and moreover for any point x| C, the
sequence {f T(x):n :O,l2,...} convergesto X, ; that is Ii®rg f"(x) =x,, foreach xI C

[2].

5. IFS Fractals

5.1 Hausdorff Space

The Hausdorff space, H(x), is a space that is convenient to use when considering

real world images.

Definition 11 Let (C,d) be acomplete metric space. Then H(X), the Hausdorff space,

denotes the space whose points are the compact subsets of C, other than the empty set
[2].
These points can actualy be the nth level of any image produced by an IFS, or a

point in H(X) can be the final attractor of an IFS. A point in the Hausdorff space any
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compact set in C, including singleton points. It is important to note that the attractors,

or fixed points of |FS are compact.

Definition 12 Let (C,d) be a complete metric space, Then the Hausdorff distance
between the points A and B in H(X) isdefined by

h(A,B) =d(A,B)Ud(B, A),
where d(A,B) =max{d(x,B):x1 A}, and xUy means the maximum of x and y. We

also cal h the Hausdorff metric on H [2].

Theorem 4 Let (C,d)be a complete metric space. Then H(C h)
space. Moreover, if {A  H( ) 1 ..}
A:!]|®rgAn| H (X)
can be characterized as
A={x] C:$ a Cauchy sequence {an A} convergent to x} [2].

Theorem 4 alows us to declare the existence of IFS fractals. As mentioned
before, it is also necessary that the mappings creating the | FS be contraction mappings.
The following lemma tells us how to determine the contractivity factor of a

contraction mapping w, when this mapping is applied on the Hausdorff space.

Lemmal Let w:C® C be a contraction mapping on the metric space (C,d) with
contractivity factor s. Then w: H(C) ® H(C) defined by

w(B) ={w(x):xT B}," BT H(C)
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isacontraction mapping on (H (X),h) with contractivity factor s [2].

5.3 Iterated Function Systems

Iterated Function Systems set the foundation for Fractal Image Compression. The
basic idea of an Iterated Function System is to create a finite set of contraction mappings,
written as affine transformations, based on what image one desires to create. If these
mappings are contractive, applying the IFS to a seed image will eventually produce an
attractor of that map. It does not matter what the seed image is for the mappings, the

same fixed point will be produced regardiess.

Definition 13 An (hyperbolic) iterated function system consists of a complete metric
gpace (C,d) together with a finite set of contraction mappings w, :C® C, with
respective contractivity factors s, for n = 1,2,...,N. The abbreviation "IFS" is used for
“iterated function system". The notation for this IFS is {C;w,,n=12,...,N} and its
contractivity factor is s = max{s, : n =1,2,...N} [2].

One can understand these affine transformations as a set of rules, that tell the
seed, or the initial image where to “go”, or what to do, in order to converge to the
attractor, or desired image. In the example of the Copy Machine Algorithm described
previously, three rules are applied to the seed image. After each rule is applied, the
resulting images are collaged together to produce the first level of the system. Applying

the three rules again and collaging the second level of the system is created. Repeating

an infinite number of times, the attractor is approached. Obvioudly, in practice, it is not
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possible to iterate the rules an infinite number of times. Depending on the system, and
the rules, it may only take a few iterations to visually notice what attractor the system is
approaching. As in the Copy Machine Algorithm, what the attractor will approximately
look like is noticeable to the viewer at the third level. In some of our examples, in which
we iterate mappings to produce an image from a seed, the attractor is noticeable after one
iteration (see Figures 21 to 40 in Appendix B).

As mentioned above, a crucial step in applying an IFS is to collage all of the
smdler images (or points in the Hausdorff space) produced by each rule in order to reach

the image at the next level.

Theorem 5 The Collage Theorem Let (C,d) be a complete metric space. Let
TT H(C) begiven, and let e 3 0 be given. Choose an IFS {C;(w,),W,,W,,...,W,} with
contractivity factor 0£ s<1 sothat

e, 0

hgT,an(T)iEG,

&€ b

where h(d) is the Hausdorff metric. Then
h(T A) £ ",
1-s

where A is the attractor of the IFS. Equivalently,

&\ 0
h(T,A) £ (1- s)'lhgT,an(r);forall TT H(C) [2].

8 n=1 o
%]
The Collage Theorem tells us that in order to find an IFS whose attractor looks

like a given set, we must find a set of contractive transformations on a suitable space, in
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which the given set lies, such that the distance between the given set and the union of the
transformations is small. In other words, the union of the transformations is close to, or
looks like, the given set. The IFS which satisfies this may be a good candidate for
reproducing the given set, or image, by the attractor of the IFS. Thus this image can be

stored using much less space.

5.4 The Random IFS Approach

In the random approach, the method of applying the n affine transformations, which
act as rules for the IFS, is different than in the deterministic approach described above.
Rather than starting with any image, applying each rule and then collaging the produced
images to create the first level, in the random approach one rule is chosen randomly and
applied to an initia point, which produces another singleton point at the first level. The
next transformation is chosen at random again, and applied to the singleton point from
the first level. This creates a new point at the second level. This process continues for
some chosen number of iterations. In this case, the points from each level are plotted,
with the first few levels discarded. Depending on the number of iterations, the resulting
plot is an image that may look close to the attractor of the IFS. The reason the first few
points are discarded is because the initial point, and possibly the first few levels, may be
points that are not in the attractor.

To apply this random approach, each rule must have a certain probability of being
chosen. To choose the probability necessary for each rule, we observe the actions that

each rule takes on a given area. Each transformation w, (X) = AX+T, changes a given

area by a factor of |det(A)|. In order to allow the random selection process to give more
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weight to the transformations with large determinants and less weight to the
transformations with small determinants, “it is desirable to make the selections with
probabilities that are proportional to the determinants’ [3]. So, for each transformation

w, (X) = AX +T, we choose a set of weights, p,, p,,..., p, by theformula
p, =det(A,)/Q det(A), j=12,...,n,
i=1

where A, is the corresponding meatrix for the affine transformation w,, i =12,...,n [3].
It is obvious that p,+p,+...+p, =1, satisfying the conditions for a probability

measure.

An example of the random IFS approach to generating a fractal can be found in
Appendix A, the program named 'LisalFS. This program uses 16 transformations to
create the IFS. The probability assigned to the jth transformation is determined by the

above formula for p;. The attractor of this IFS after 40,000 iterations can be seen in

Appendix B, Figure 19. Another example of arandom IFSisincluded. The program that
generates this random IFS is called 'Star' and appears in Appendix A. The attractor of

thisIFSis displayed after 20,000 iterations and isin Appendix B, Figure 20.

IV. Fractal Image Compression

“The central goal of fractal image compression is to find resolution independent models,
defined by finite length (and hopefully short) strings
of zeros and ones, for real world images.”

-Michadl F. Barndey
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1. Using IFS fractals for Fractal Image Compression
The IFS compression agorithm starts with some target image T which lies in a

subset S1 R?. Thetarget image T is rendered on a computer graphics monitor. In order

to begin fractal image compression, an affine transformation,

w(x)—waa(g—ael b(‘jae<9+aeeg
OTIE SR afys B g

is introduced with coefficients that produce a new image, w,(T), with dimensions
smaller than that of T. This ensures a contraction mapping.

The user adjusts the coefficients a, b, ¢, d, e, f in order to shrink, translate, rotate, and
shear the new image, w, (T), on the screen so that it lies over apart of T. Once w,(T) is
in place, it is fixed, the coefficients are recorded, and a new affine transformation
w, (X) is introduced aong with its sub-copy of T, w,(T). The same processis carried out
with this new image as was done with w,(T). Whenever possible, overlaps between
w,(T) and w, (T)should be avoided. Overlaps only complicate the situation, although
there exist compression methods, such as wavelets, which confront this issue. In this

manner, a set of affine transformations w,, w,,w,...,w, isobtained such that

T=UJw,(M),

where N is as small as possible.

The Collage Theorem assures us that the attractor A of this IFS will be visualy close

to T. Moreover, if T=T ,then A=T . Asdesred, A provides an image which is visually

close to T and is resolution independent using a finite string of ones and zeros. By
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adjusting the parameters in the transformations we can continuously control the attractor
of the IFS. Thisiswhat is done in fractal image compression.

Complex images can be built up using fractal image compression by working on
subsets of the image, where each subset is represented by an IFS. This method of
compression is highly optimal. If each coefficient in the affine transformations
describing the IFS is represented with one byte, then an IFS of three transformations
requires only 12 bytes of data to represent itsimage. As the number of coefficients used
increases, the size of the digital file increases. Thus, it is optimal to find as few affine
transformations as possible to represent an image. For an in depth study of how to

optimize the storage of datain files see [2].

2. The Fractal Transform Theory

Fracta transform theory is the theory of local IFS. Although local IFS does
complicate the theory of fractal image compression, in practice it simplifies the process.

A global transformation on a space C is a transformation, which is defined on all
pointsin C; whereas, alocal transformation is one whose domain is a subset of the space
C and the transformation need not act on all pointsin C . Rather than allowing an IFS to
act upon only on the whole domain, it is convenient to alow an IFS to act upon domains
that are subsets of the space. Thistype of IFSiscaled alocal IFS.

The idea of fracta image compression, as briefly mentioned above, is to find
subspaces (or sub-images) of the original image space, which can be regenerated using an
IFS. Where possible, if one IFS can be used in place of severa IFSs which reproduce

smilar sub-images, it is more efficient in terms of storage space to use that one IFS. It is



more likely that an image will require more than one IFS to reproduce a compressed

image, which closely resembles the original.

Definition 14 Let (C,d) be acompact metric space. Let R be a nonempty subset of C.
Let w:R® C andlets bearea number with O£ s<1. If

d(w(x),w(y) £ (s)(d(x,y)) " xyT R,
then w is called a local contraction mapping on (C,d). The number s is a contractivity

factor for w[2].

Definition 15 Let (C,d) be a compact metric space, and let w, : R, ® C be a loca
contraction mapping on (C,d), with a contractivity factor s, for i=1,2,...,N, where N is
a finite pogtive integer. Then {w, :R, ® C:i=12...,N} is cdled a local iterated
function system (loca IFS). The number s= max{si 1=212,... N} is cdled the
contractivity factor of theloca IFS[2].

The local IFS can be defined as follows. If we let S denote the set of all subsets of X,

then we can define the operator W, _,, : S ® S according to [2]

local

W,Oca,(B)zLNJWi(RiQB), foral BT S.

i=1
Under certain restraints, W, ., can be defined as contractive on certain subsets of the
Hausdorff space. This allows us to create a fractal compression system [2]. If A isa

nonempty subset of X, we call A an attractor of the local IFSif W, _,(A)=A[2]. If A

local

and B are attractors, then so is AE B. If thereis an attractor, there is a largest attractor,
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which is the one that contains all the other attractors [2]. This largest attractor is referred

to as the attractor of W, and is found by taking the union of all the other attractors in

Wlocal [2] :

If wedefinean IFStobe {w, :R, ® X:i=12,...,N} and we suppose that the sets

R, are compact, then we can define a sequence of compact subsets of X by [2]

Ay =X,
N
A =Jw (R CA_,) forn=1,23,...
i=1

Because the IFS consists of contractive mappings, it is true that
AEAEAEAE...

So, A, is a decreasing sequence of compact sets [2]. There exists a compact set

Al X sothat [2]

ImA =A

n® ¥

and

A:LNJWi (Ri CA) =W, (A) .

i=1
As mentioned before, if A is not empty, then A is the maximal attractor for the local

IFS[2]. If one can find a compact set B such that W, ., (B) E B, then the possibility that

A is empty is ruled out. A corresponds to the attractor of an IFS in a fractal image

compresson scheme.  The coefficients of the mappings w, are crucia in the
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determination of the compression of an image. A represents what the image would look
like after applying the mappings to subsets of the image.
The following is an agorithm of how one would go about applying the fracta

transform to an image.

Algorithm for Fractal Image Compression

1. Input a binary image, call it M.

2. Cover M with square range blocks. The total set of range blocks must cover
M, without overlapping.

3. Introduce the domain blocks D; they must intersect with M. The sides of the
domain blocks are twice the sides of the range blocks.

4. Define a collection of local contractive affine transformations mapping
domain block D to the range block R;.

5. For each range block, choose a corresponding domain block and symmetry
so that the domain block looks most like the part of the image in the range
block.

6. Write out the compressed data in the form of a local IFS code.

7. Apply a lossless data compression algorithm to obtain a compressed IFS

code.

In practice these steps can be carried out on adigital image. The compression is
attained by storing the coefficients of the transformations, rather than storing the image

pixel by pixel. The following is an explanation of 'RIFSbat, a smple fracta image
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compression program and ‘'fdec’ the corresponding decompression program, both
included in Appendix A.

These two programs can be run on Matlab and only compress grayscale square
images that are in pgm format, although further changes can be implemented later to
account for non-square images and other formats. This batch program runs through the
program 10 times, alowing 10 different tolerances. Ten different mat files are saved
representing 10 different compressed images. The difference in the compressed files is
not the number of bits needed to store the files (this is the same as long as the range size
is the same), but the time needed to produce the compressed files based on the error
tolerance. The tolerances are determined by what the variable min0 is set equa to the
minimum error, denoted by the variable minerr is defined by the norm of the difference
between the range blocks and the transformed domain blocks. 'RIFSbat' searches for the
transformation with least error from domain blocks to range blocks. During the first loop,
the tolerance is min0 = 10. So, the program searches for a transformation until it finds a
transformation with minerr < min0. As min0 increases, more error is alowed. With each
run, the tolerance of allowable error increases by 10.

First, the user must enter the name of the pgm image file in the first line of the
program: M = getpgm (‘imagename.pgm’). In the examples in Appendix B, we use
'ssters.pgm’.  Then, the user specifies the desired range block size by setting rsize equa
to the length of the side of the desired range block. Presently, rsize is set equa to 4,
which allows range blocks of size 4 4. We next create the domain blocks, which are
twice the size of the range blocks, in this case 8" 8. In determining which mapping will

need to be made from the domain blocks to the range blocks, we will need to compare the



58

domain blocks to the range blocks. To accurately compare these blocks, they must be the
same size. So, we do some averaging over the domain blocks which alows us to shrink
the domain blocks to half of its size in order to match the size of the range blocks.

Originally, each domain block is 8" 8. The averaging only takes place over each
digtinct block of 2° 2 pixels within the domain block. Then the average grayscale value
in eech 2° 2 block of pixels is represented in one pixel in the scaled domain blocks,
cdled M1. Mlisa 4" 4 block at this point. We subtract the average of the domain
block from each entry in the domain block to account for possible darkening of the
decompressed image. The resulting scaled domain block isD.

Now, we save 8 different transformations of each domain block in an eight
dimensona monster matrix caled bigM. The transformations include the original
domain block, a 90°, 180° and a 270" rotation, a horizonta flip, and a vertical flip, as
well as the transform of the domain block and a 180" rotation of the transformed domain
block. We introduce a vector s, which contains different specific scalings to transform
the grayscale of the domain block to make a better match to a range block.

At this point, 'RIFSbat’ goes through all of the range blocks, and offsets each of
them by subtracting the average of the range block from each entry in the range block.
Now we can equally compare the domain to the range blocks. We save the offset of the
range blocks in o, which we will add back to the image later.

Next the program cycles through each domain block D; and tests each symmetry

that is stored in bigM, along with the four possible gray scales for the best transformation

that will map to a given range block R, . When the best map is found, the location of that

domain block i0 and jO, the best symmetry mO of the domain block, the best scaling s0,
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and the offset o is saved in the five dimensional matrix T (k,l,:) =[i0, jO,m0,s0,0]. Itis
the entries of this matrix that determine the number of bytes needed to store the
compressed image file. For each of the 10 cases that the program considers, the batch
program saves the number of rows of the origina image, the size of the range blocks, and
the time the program took to achieve the compression. The time is recorded to compare
the results with the amount of time the process took. 'RIFSbat’ produces the two CPU
charts that appear in the beginning of Section 4 of Appendix B. Once this information is
saved in afile, it is possible to compress that file even more by applying a lossess coding
agorithm. It isfrom the matrix, T, that the program 'fdec’ can regenerate the image.

It is important to note that each transformation from the original 8" 8 domainisa
contraction mapping because the domain must be scaled by %% in order to map the domain

to the range. Also, the information stored in each (k,l,:)entry of T represent the
coefficients of the mappings w,, i = 1,2,3,...N that make up the N local |FS mappings.

The image regenerated after al the mappings in T are applied to some seed image, is the
attractor of the local IFS.

In order to regenerate the attractor of the contractive transformations found, we
must use the program ‘fdec’ along with the saved information from ‘fcomp'. First we load
the correct data using the name that we saved it under in the batch file. Then we initidize
a matrix to perform the mappings on. This matrix must be the same size as the original
image. As we discussed with IFS and the Sierpinski Triangle, it makes no difference
what seed image is used. Although, in the program we initialize the seed image to all
zeros, which is a uniformly gray image, choosing another image as the seed to the local

IFS will arrive at the same result.
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Depending on the block size chosen for the range blocks, one may need to vary
the number of iterations applied to the seed image in order to arrive at the attractor image.
As more iterations of the IFS are applied to the image, the clearer the attractor will

become. After the nth iteration, the image produced corresponds to the A, compact set as

discussed in the local IFS theory. First, the domain blocks of the seed image must be
created and rescaled to the size of the range blocks. Then using the T matrix, the domain
blocks are transformed and mapped to the range blocks. This processis repeated for each
iteration. The attractor, M, is then output to be displayed on the screen. Appendix B
contains examples of an original image, and the consecutive images regenerated after
iterating the local IFS created for that image. The quality of the attractors vary depending
on the size of the range blocks used and the error alowed in finding an appropriate
transformation form domain block to range block.

Our implementation of this ssimple method of fractal compression produced great
compression ratios. Considering that each pixel requires 8 bits to store the values of 0 to
255, to store an 256" 256 image pixel by pixel would require 65536 bytes (around
65KB). Using 'RIFSbat’ and 'fdec' with any chosen error, to store an image of this size
with a range block size of 4° 4 pixels only requires 11776 bytes. The compression ratio
is better than 5:1. Of course, increasing the range block size to 8" 8 pixels improves the
compression to only 2688 bytes, with a compression ratio of approximately 24:1. The
larger range block sizes allow higher compression ratios. The time needed to produce the
attractor image is based on how much error is alowable in the transformations. The
larger the error, the quicker the compression. The use of the image will determine the

required amount of compression and image quality.
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In Appendix B, Figure 21 is the original image in this example. Figure 22, 23, and
24 are the first through third iterations of the fractal compression transformations with
minerr = 10. Referring to Chart 1 in Appendix B we can tell that this compressed file
took about 5 1/2 hours to complete compression. The attractor image that is regenerated
is close to the origina image, but the time needed to accomplish compression is not
desirable. With a 4" 4 pixel range block, a decent error is probably about 40 or 50.
Although to compress an image with this error takes about 10 minutes, if the error is
greater than that, the image quality becomes very low and blocky. For the 4" 4 pixd
range blocks, three different implementations based on a change in the alowable error of
images areis Appendix B. The errors, min0O, displayed are 10, 20, and 80.

By looking at Figure 34 and 38 we notice that the image quality is not as high as
the previous case. The reason for this is because the range size in these images is 8" 8
pixels. Two sets of images, one with minerr = 0 and minerr = 80 are available in
Appendix B to provide a comparison between image quality and the time used to

produced the compressed file, which can be found in Chart 2.

V. Conclusion

After discussing different image compression agorithms, lossless and lossy, it is
only fitting to compare the algorithms. The agorithms, which are implemented and
discussed in this paper, are Delta Compression, a form of Fourier Compression, and a
smple form of Fractal Image Compression. The results from these compression

algorithms appear in Appendix B.
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Being a losdess form of compression, Delta compression can be a wonderful tool.
Although it is possible exclusvely use a Delta compression on image data, many
compression algorithms could be optimized if a lossless code such as Delta compression
is applied in addition to a lossy code. Similarly, the Huffman code can be applied to
other forms of previoudy compressed data, which may optimize compression for that
data. These lossess codes may be preferred over lossy compression methods in cases
where loss of data is out of the question. The best compresson may not be
accomplished, but the image data and quality will remain exactly the same as the origina
image and quality. It is in cases where the exact data needs to be restored after
compression that alossless code is the best choice.

Although our implementation of the Fourier Compression is not efficient, when
using the same quantizing approach as described in section 3.4, the Cosine Transform
should generate much better compression due to the lack of imaginary values in the
transform of the signal. In the future, a more thorough study and experimentation of the
Cosine transform will be established. In turn, an implementation of a JPEG style
compression will be possible.

The smple Fractal image compression algorithm executed is the most efficient
form of compression which we implemented; although, research has reveaed that JPEG
is one of the better, if not the best, forms of compression available today. The question
has been posed as to whether or not an optimal Fractal compression agorithm will be
discovered that will outperform JPEG. Much research is being done to find faster and

more efficient forms of image compression technology. The race has only begun.
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V1. Appendix A

hkhkhkkhkhkhhhhhhhhhhhhhhhhhhhhdhhhdhhhdhdhhhdhhhhhhdhhhdhhhdhhhdhhhdhhhdddhddhdddrxdx*x

Del ta Conpression - 2 dinmensional
khhkkkhhhkkhhhkhkkhhhhhhhddhhhdhdddhhdhdddhhdhdxddhddhdxddhddhdxddhdddxddhx*xddx*d,%x*%x
% Program Nane: del taconp2D

% Pur pose: The purpose of this programis to achieve

% delta conpression of a matrix representing pixel

% val ues. The snaller the magnitude of the entries,
% the I ess nenory needed to store the data.

% The (r,c)th entry(pixel) of conp is found by taking
% difference of the entries (r,c) and (r,c+1l) of the
% matrix A

% | nput : i X j matrix - O

% Qutput: i x j matrix - D

function Dx=del taconp2D( X);
gl obal first;
first=X(1,1);

gl obal i
gl obal |
[i,j]=size(X);
%*************mlta COerreSS| On**********;
for r=1:i
for c=1:]j
if r==i & c=5j
Dx(r, c) =0;
el se
if c=5
Dx(r,c)=X(r,c)-X(r+1,1);
el se
Dx(r,c)=X(r,c)-X(r,c+l);
end
end
end
end
khhkkkhhhkkhkhhkhkkhhhhhhhddhhhdhdddhhdhdddhhdhdxddhddhdxddhddhdxddh*dd*x*dkx*x*dx***x*%x
% Program Nane: del tade2D
% Pur pose: The purpose of this programis to

% deconpress the delta conpression of a matrix
% whi ch has been conpressed by del taconp2d. m
% This brings the conpressed matrix back to original
% form
% | nput : i X j matrix - Dx
Y Qutput: i x j matrix - vy
function y=del tade2D( Dx) ;
gl obal i
gl obal |
for r=1:i

for c=1:]j

if c==

if r==
gl obal first
y(r,c)=first;



end
if r>1
% c=1 here. ex. If r=2 then y(2,1)=y(1,j)-Dx(1,j)
% where j is end of row
y(r,c)=y(r-1,j)-Dx(r-1,j); end

el se

% is not equal to 1 here ex. y(r,2)=y(r,1)-Dx(r,1)

y(r,c)=y(r,c-1)-Dx(r,c-1);

end

end
end

khkhkkhkhkhhhkhhhkhhhkhhhhhhhhhhhdhhhdhhhdhdhdhdhdhhhdhhhdhhhdhhhdhhhdhhhdhhhdrhdddhrdrdrxdx*x

Fouri er Transforns

khkhkkhkhkhhhhhhhhhhhhhhhhhhhhdhhhdhhhdhdhhddhhhdhhhdhhhdhhhdhhhdhhhdhhhddhdddhrddrxdx*x

%°r ogr am Nane: FT1D (Fourier transform 1 di nension)
%ur pose: The purpose of this programis transforma discrete one

% di mensional signal x into its Fourier transformf.

%

% The Fourier transformf of a signal x is a vector containing
% the anplitudes of the fundanental frequencies that nmake up X.
% Each conponent of f indicates the strength of a particular

% frequency in x. [Hankerson]

% nput : One di nmensi onal signal, x

% ut put: Discrete Fourier transform of input signal, f
function[f] = FT1D(x)
[R C] =size(x);

1:R
1:R

for v
for k

MK, V) = (1/sqrt(R))*exp(-2*pi*i*(k-1)*(v-1)/R);

end
end

f = Mx;
khhkkkhhhkkhkhhkhkkhhhhhhhddhhhdhdddhhdhdddhhdhdxddhddhdxddhddhdxddh*dd*x*dkx*x*dx***x*%x
% Program Name: invFT1D (inverse Fourier transform 1 di nension)

% Pur pose: The purpose of this programis return the original discrete

% signal froma given 1 dinensional discrete Fourier
% transform
% | nput : Di screte Fourier transformof input signal, f

% Qutput: Oiginal 1 dinensional signal, x

function[x] = invFT1D(f)
[R C =size(f);

1:R
1:R

for v
for k

Mk,v) = (1/sqgrt(R))*exp(-2*pi *sqgrt(-1)*(k-1)*(v-1)/R);
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end
end

X = conj (M*f;
khhkkkhhhkkhkhhkhkkhhhhhhhddhhhdhdddhhdhdddhhdhdxddhddhdxddhddhdxddh*ddxddhx*xddx***x*%x

% Program Name: FT2D (Fourier transform 2 di mensi ons)
% Pur pose: The purpose of this programis to return the discrete

% Fourier transformof a given discrete signal;

% The Fourier transformf of a 2D signal x is a matrix

% contai ning the anplitudes of the fundanental frequencies
% that make up x. Each conponent of f indicates the strength
% of a particular frequency in x [Hankerson].

%

% | nput : Two di nensional signal, x , a square matrix

% Qut put: Two di nensional matrix representing

% Di screte Fourier transformof input signal, f

function[f] = FT2D(x)
[R C] =size(x);

if R=C
di splay(' Matrix is not square');
return
end
for k = 1: R
for v = 1:R
Mk, v) = exp(2*pi*i*(k-1)*(v-1)/R);
end
end

f = (R*(conj (M) *x*M
khhkkkhhhkkhkhhkhkkhhhhhhhdhhhdhhddhhdhdxddhhdhdxddhddhdxddhddhdxddhddddxddhx*xddx***x*%x
% Program Name: invFT2D (1l nverse Fourier transform 2 di nension)

% Pur pose: The purpose of this programis to return a discrete

% i nverse Fourier transformsignal froma given discrete
% Fourier transform

% | nput : f, 2D matrix representing Fourier transformof a 2D

% si gnal

% Qutput: Oiginal 2 dinensional signal, x
function[x] = invFT2D(f)

[R C] =size(f);

if R-=C
di splay(' Matrix is not square');
return
end
for k = 1: R
for v = 1:R
Mk, v) = exp(2*pi*i*(k-1)*(v-1)/R);
end
end

X = (YR *Mf*conj (M;



khkhkkhkhkhhkhhhhkhhhkhhhhhhhhhhhdhhhdhhhdhdhhhdhhhhhhdhhhdhhhdhhhdhhhdhhhdrhdrhrddrxdx*x

% Program Name: Fouri er Conp
% Pur pose: The purpose of this programis to apply the Fourier

% transformto an image, M to quantize or set the high

% frequency val ues equal to zero, then to apply the inverse
% Fourier transformto the quantized i nage, reconstructing an
% i mge, A close to the original inmge. The quantized matrix,
% Al, representing the reconstructed inmage is the conpressed
% form

%

% VWhen quantizing, the entries of Al whose ratio

% abs(Al(i,j))/mean(Al) <=k , kis chosen to =1 in this

% program are set equal to zero.

%

% This program uses the foll owi ng progranms: FT1D, FT2D,

% i nVFT1D, invFT2D

% | nput : A mtrix , M representing a signal or image(ld or 2d).

% user may al so change the paraneter k, as nentioned above,
% which is in the quantizing section of this program

% Qutput: A signal close to that of the original represented by a

% conpressed matrix A
function[ A Al] = FourierConmp(M
[R C =size(M;

%************ C:heck 1d *************%
if Re=1 | C=1 B

choi ce=1;

Al=FT1d(M;
end

%************ C:heck 2d *************%
if RR=1 | C-=1
choi ce=2;
Al=FT2d(M;
end

%******** Varl abl es **************%
absAl=abs(Al);
meanAl=nean( nean(absAl));

%******** QJantlZlng *************%

count er =0;
for i=1: R
for j=1:C
if (absAl(i,j)/neanAl)<=1
Al(i,])=0;
count er =count er +1;
end
end

end
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%******** I nver se Tr ansf orm ***********%
i f choice==1
A=i nvFT1d( Al);
A=real (A);
di spl ay(counter);
return
end
i f choice==2
A=i nvFT2d( Al);
A=real (A);
di spl ay(counter);
return
end

khkhkkhkhkhhhkhhhkhhhhhhhhhhhhhhdhhhdhhhdhdhhhddhdhhdhhhdhhhdhhhdhhhdhhhdhhdrhddhrddrxdx*x

Random It erat ed Functi on System
khhkkkhhhkkhhhhkkhhhhhhhdhhhdhdddhhdhdddhhdhdxddhddhdxddhddhdxddhdddxdddx*xddx*d,*x*%x
% Program Nane: Lisal FS

% Pur pose: This programis an inplenentation of a Random | FS

% once the graphics screen appears, the user clicks on a point
% then waits for the IFS to randomy apply transformations.

% The frequency at which each transformation is applied is

% based on their assigned probability.

% This I FS produces the nane Lisa. Upon zoom ng in, the nanme
% Li sa appears inside each of the letters.

% | nput : In the first line of the program the user defines the

% desired nunber of iterations to be applied to the initial

% poi nt .

% Qutput: The image that the IFS creates, as the iterations are being
% appl i ed

nuni t er =40000;
axis([0 1 0 .5]);

title(['Lisa: ' nunstr(numiter) ' Iterations']);
[ x0, y0] =gi nput (1) ;
hol d on
for i=0:numter
r = rand,
%
if r>0&r <.0816
a=0; b=(1/4); c=(2/9); d=0; e=0; f=0;
elseif r > .0816 & r < .1632

a=0; b=(1/4); c=(2/9); d=0; e=0; f=(2/9);
elseif r >= .1632 & r < .2448

a=0; b=(1/4); c=(2/9); d=0; e=(5/18); f=(2/9)
elseif r >= .2448 & r < .3264

a=0; b=(1/4); c=(2/9); d=0; e=(5/18); f=0;
elseif r >= .3264 & r < .408

a=0; b=(1/4); c=(2/9); d=0; e=(13/18); f=0;
elseif r >= .408 & r < .4896

a=0; b=(1/4); c=(2/9); d=0; e=(13/18); f=(2/9);
elseif r > .4896 & r < .5712

a=0; b=(1/4); c=(2/9); d=0; e=(16/18); f=0;
elseif r >> .5712 & r < .6518

a=0; b=(1/4); c=(2/9); d=0; e=(16/18); f=(2/9);
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92
elseif r >> .6518 & r < .7334

a=(2/9); b=0; c=0; d=(1/4); e=(4/9); f=0;
elseif r >> .7334 & r < .815

a=(2/9); b=0; c=0; d=(1/4); e=(4/9); f=(1/6);
elseif r > .815 & r < .8966

a=(2/9); b=0; c=0; d=(1/4); e=(4/9); f=(1/3);
93
elseif r >> .8966 & r <= .917

a=(1/9); b=0; c=0; d=(1/8); e=(1/9); f=0;
elseif r >= .917 &r <= .9374

a=(1/9); b=0; c=0; d=(1/8); e=(4/9); f=(5/18);
elseif r >> .9374 & r < .9578

a=(1/9); b=0; c=0; d=(1/8); e=(5/9); f=(1/9);
%
elseif r > .9578 & r < .9782

a=0; b=(1/8); c=(1/9); d=0; e=(15/18); f=(1/9);
elseif r > .9782 &r <1

a=0; b=(1/8); c=(1/9); d=0; e=(15/18); f=(1/3);
end

pl ot (x0,y0,"k");
x1=a*x0+b*y0+e;
yl=c*x0+d*yO0+f;

x0=x1;
y0=y1;
end
hol d of f;

khkhkkhkhkhhhhhhhhhhhhhhhhhdhhhdhhhdhhhdhdhhddhhhdhhhdhhhdhhhdhhhdhhhdhhddhdddhrddrxdx*x

% Program Nane: StarlFS
% Pur pose: This programis an inplenentation of a Random | FS

% once the graphics screen appears, the user clicks on a point
% then waits for the IFS to randomy apply transformations.

% The frequency at which each transformation is applied is

% based on their assigned probability. This programis an |IFS
% that creates shapes that contain stars within the shapes.

% | nput : In the first line of the program the user defines the

% desired nunmber of iterations to be applied to the initial

% poi nt

% Qutput: The image that the IFS creates, as the iterations are being
% appl i ed

N=20000;

axis([-.6 1 -.51]);

title(['STAR ' nun2str(N) ' lterations']);
[x0, y0] =gi nput (1) ;

hol d on

for i=0:20000
r = rand;

if r>0&r <.3738
a=. 538*cos(10*pi/18); b=.538*sin(10*pi/18); c=-.538*sin(10*pi/18);
d=. 538*cos(10*pi/ 18); e=0; f=.057;
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elseif r > .3738 & r < .5979
a=.423*cos(1*pi/18); b=.0; c=0; d=.423*cos(1*pi/18); e=.5; f=-.220;

elseif r >> .5979 & r <1
a=. 558*cos(10*pi/18); b=-.558*sin(10*pi/18); c=.558*sin(10*pi/18);
d=. 558*cos(10*pi/18); e=.6; f=3;

end

pl ot (x0,y0,"k");
x1=a*x0+b*y0+e;
yl1l=c*x0+d*yO0+f;

x0=x1;
y0=y1;
end
hol d of f;

hkhkhkkhkhkhhhhhhkhhhhhhhhhhhhhhdhhhdhhhdhdhhddhhhdhhhhhhdhhhhhhdhhhdhhhdrhdddhdddrxdx*x

Fractal Transform
khhkkkhhhkkhkhhkhkkhhhhhhhdhhhhhdddhhdhdxddhhdhdxddhddhdxddhddhdxddhddddx*dhx*xddx*d,%x*%x
%°r ogr am Nane: fliph

%ur pose: This programflips the matrix Mabout its central row

% nput : nxmmtrix M

Y% utput: nxmmatrix N (Mflipped on horizontal axis)

function N=fliph(M
[nv nh]=size(M;
for k=1:nv

for |I=1:nh

N(k, 1)=Mnv-k+1,1);

end
end
khhkkkhhhkkhkhhkhkkhhhhhhhdhhhdhhddhhdhdxddhhdhdxddhddhdxddhddhdxddhddddxddhx*xddx***x*%x
%°r ogr am Nane: flipv
%ur pose: This function flips the matrix M about its central
% col um
% nput : nxmmtrix M
Y% utput: nxmmatrix N (flipped vertically)

function N=flipv(M
[nv nh]=size(M;
for k=1:nv

for |I=1:nh

N(k, I') =Mk, nv-1+1);

end
end
khhkkkhhhkkhkhhkhkkhhhhhhhddhhhhhdddhhdhdddhhdhdxddhddhdxddhddhdxddhdddkxddkx*xddx***x*%x
%°r ogr am Nane: r ot mat
%Pur pose: This programrotates a matrix by 90 degrees
% counter clockw se
% nput : nxm Matrix M
% utput: nxn Matrix N (Mrotated 90 deg. )

function N=rotmat (M
[nv nh]=size(M;
for k=1:nv

for |I=1:nh



end

end

N( k
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, 1)=M1, nv-k+1);

hkhkhkkhkhkhhhhhhhhhkhhhhhhhhhhhdhhhdhhhdhdhhddhhhdhhhdhhhdhhhdhhhdhhhdhhhddhddhrddrxdx*x

%°r ogr am Nane: Rl FSBat
%Pur pose

%
%
%
%
%
%
%
%
%
%

% nput :
%ut put :

%
%
%

This programtakes an inmage in Mand determ nes an array

T. T lists which | ooks for the best transformed domai ns that
map to ranges, which each are submatrices of M The donai ns
are gotten from subdomai ns of size 2nx2n whi ch have been
averaged to size nxn. The data that is saved in the output
files are a conpressed versions of the inage M This data
along with the block size is needed in fdec. mto reconstruct
t he i mage.

There are 8 possible transformati ons. These use the functions
rotmat, fliph and flipv.

User nust insert the pgmfile desired

Thi s batch program saves 10 different versions (based on

al l owabl e error) of the conpressed image (held in T) along
with the variables: sv, rsize, tim cpu0 which will be used
by fdec to deconpress the inmage, and to create tine charts

% CGet the pgmfile and file size
Me=get pgn( ' si sters. pgm ) ;

[sv sh]=size(M;

if sv~=sh
di splay(' Matrix is not square');

end

ret

urn

% Begi n batch runs
irn=1:10

for

cle

ar

T;

% Set tiners
begr un=cl ock;
cpu=cputi ne;
m n0=10*irn
rsize=4;
nd=sv/rsi zel 2
nr=sv/rsize;

% Scal e the Donmai n Bl ocks

for

end

for

end

1:rsize*nd
j=1l:rsize*nd
ML(i,j)=rmean(mean(M (i-21)*2+1:i*2,(j-1)*2+1:]*2)));

% Matrix of 4 possible scalings to transform grayscal e
s=[0.45 0.60 0.80 0.97];

% Create nonster matrix containing all possible 2D transformations
% of the domain blocks. Store in multidinensional matrix bi gM

for

i =
i 1=
i 2=

1:nd
(i-1)*rsize+1;
i *rsize;
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for j=1:nd
j1=(j-1)*rsize+1;
j 2=) *rsi ze;
D=ML(i1:i2,j1:j2);
D=D- mean(nean(D));
bigMil:i2,j1:j2,1)=b
t np=r ot mat (D) ;
bigMil:i2,j1:j2,2)=tnp;
t np=r ot mat (t nmp) ;
bigMil:i2,j1:j2,3)=tnp;
t np=r ot mat (t nmp) ;

bigMilii2,j1:j2,4)=tnp;

bigMil:i2,j1:j2,5)=fliph(D);

bigMil:i2,j1:j2,6)=flipv(D);

bigMilii2,jl1:j2,7)=D;

bigMilii2,j1:j2,8)=rotmat(rotmat (D ));
end

end

% Conpar e the range bl ocks and scal ed domai n bl ocks.
% k,l - used to cycle through bl ocks Rkl.
for k=1:nr
k1=(k-1)*rsize+1;
k2=k*rsi ze;
for |I=1:nr
[k 1]
[ 1=(1-1)*rsize+1;
| 2= *rsi ze;
R=M k1:k2,11:12);

% Offset o is the average in the bl ock Rkl
o=nean(nean(R));
R=R- o;

% lnitialize error to large val ue
m nerr =10000;

i 0=0;

j 0=0;

nD=0;

if mnerr>mn0

% Now cycl e through each Domain Dij
for i=1:nd
if mnerr>mn0
i 1=(i-1)*rsize+l;
i 2=i *rsize;
for j=1:nd
if mnerr>mn0
j1=(j-1)*rsize+1;
j 2=j *rsi ze;

% Test each transformation
for neEl: 8
if mnerr>mn0
D=bigMil:i2,jl:j2,m;

% Try the four gray scalings



for n=1:4
if norm(s(n)*D-R) <m nerr
m nerr=norn(s(n)*D-R);

i 0=i;
j0=j;
mD=m
s0=s(n);
end
end
end
end
end
end
end
end
end
T(k,1,:)=[i0 jO nD sO o];

end
end

% Stop the clock, store conmputation time in tim
% and el apsed cpu time in cpuO.

cpuO=cputi me-cpu;

st opr un=cl ock;

ti meeti me(begrun, stoprun);

% Save data in mat file - need to change the nanme after each use.
switch irn

case 1,

save 'sisters4_1' sv rsize T timcpuO;
case 2,

save 'sisters4_2' sv rsize T timcpuO;
case 3,

save 'sisters4 3" sv rsize T timcpuO;
case 4,

save 'sistersd4_4' sv rsize T timcpuO;
case 5,

save 'sisters4 5 sv rsize T timcpuO;
case 6,

save 'sisters4 6' sv rsize T timcpuO;
case 7,

save 'sistersd4 7' sv rsize T timcpuO;
case 8,

save 'sisters4 8 sv rsize T timcpuO;
case 9,

save 'sisters4 9" sv rsize T timcpuO;
case 10,

save 'sisters4_10" sv rsize T tim cpuO;

end
end
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hkhkhkkhkhkhhhhhhkhhhhhhhhhhhhhhdhhhdhhhdhdhdhdhdhhdhhhdhhhdhhhdhhhdhhhdhhhddhddhdrdrxdx*x

%°r ogr am nane: fdec
%Pur pose:

%
%
%
%
%
%
%
%
%
%

% nput :

%
%
%
%
%

%ut put :

%

Decodes the fractal inmage conpression data form
the fconmp routine. This routine needs rotmat. m fliph. m
and flipv.m

This file reads the saved information in the mat files saved
by fconmp. In the last runs the data saved is sv timand T.
The files are called sistersD E where Dis for DxD range

bl ocks. E is the run nunber corresponding to the error.
Typically run one has been m n0=10 and the others are
multiples of 20 from 40 to 100.

The user nust designate in the |oad statenment what mat data
file should be | oaded. This data file should have been
created by the previous program'RI FSbat'. Also, the user
shoul d designate the desired nunber of iterations in the
third line of the program for iter=1:desired nunber of
iterations

This program outputs the attractor inmage after the specified
nunber of iterations

% Read in mat data file
| oad 'sisters4 7'

%lnitialize matrix
M=100* ones(sv) ;

% Start |
iter=1:5

for

teration

% Enter range bl ock size used in fconp
rsize=4;

nd=sv/ rsi ze/l 2;

nr=sv/rsi ze;

% Rescal e Domai n Bl ocks

for

end

for

end

1:rsize*nd
j=1l:rsize*nd
ML(i,j)=rmean(mean(M (i-21)*2+1:i*2,(j-1)*2+1:]*2)));

% Transform Domai n Bl ock Using T matrix

for

k=
kl=
k2=
for

1:nr
(k-1)*rsize+1;
k*rsi ze;

| =1: nr
1=(1-1)*rsize+l;
*rsize;
T(k,1,1);
T(k,1,2);
T(k,1,3);
T(k,1,4);
T(k,1,5);
(10-1)*rsize+l;
i 0*rsi ze;



(jO-1)*rsize+l;
j O*rsi ze;
ML(i1:12,j1:j2);
D nean(nean(D));
nD==2
D=r ot mat (D) ;
el seif nD==3

D=rot mat (rotmat (D)) ;
el seif nD==4

~gonNk

D=rotmat (rotmat (rotmat (D)) ) :

el seif nD==5
D=fliph(D);
el seif nD==6
D=flipv(D);
el sei f nD==7
D=D ;
el sei f nD==8
D=rotmat (rotmat (D ));
end
R=s0* D+o*ones(si ze(D));
M k1: k2,11:12)=R
end
end
MMM
end

% Qut put Image which is in M
i mgesc(M
col or map(gray);

74
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VII. Appendix B

1. Delta Compression Results

160

140+

120+

100+

gl

frequEncy

60

40+

20

1] a0 100 150 200 250
pixel value

Figure 1. Histogram of Pixel Vauesin Figure 2. Origina Sisters Image
Origina Sisters Image

250

200

frequency

a0+

o

-QDD -5.D 0 a0 'IDID 15ID 200
pixel value
Figure 3. Histogram of Pixel Vauesin Figure 4. Sister Image After Delta

Sisters Image After Delta Compression Compression



76

180

100+

frequency

80

0 50 100 150 200 250
. pixel value B
Figure 5. Histogram of Pixel Valuesin Figure 6.0rigina Mandrill Image

Original Mandrill Image

180
160
140t

Treqguency

20t

a ,
-200 -100 o 100 200
pixel valle,

Figure 7. Histogram of Pixel Vauesin Figure 8. Mandrill Image After Delta
Original Mandrill Image Compression



300

250

200

freguency
o
=

] a0 100 150 200 250

pixel value
Figure 9. Histogram of Pixel Valuesin Figure 10. Origina Peppers Image

Original Peppers Image

250

200

frequency
o
=

—

]

=
T

a0t

J

—DEDD 100 0 1DID ; QDID 300
pixel value
Figure 11. Histogram of Pixel Valuesin Figure 12. Peppers Image After Delta

Peppers Image After Delta Compression Compression

77



78

2. Fourier Compression Results

Figure 17. Original Peppers Image Figure 18. Peppers Image after Fourier



3. Random Iterated Function Systems

Figure 19. Random IFS of a fractal. The attractor is the name 'LISA’.

Figure 20. Random IFS with 3 transformations
that produces a fractal shape.
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4. Fractal Image Compression Results
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Figure 21. Original Sisters Image Figure 22. Sisters 4x4 range blocks
Min0=10 Iteration 1

Figure 23. Sisters 4x4 Range blocks Figure 24. Sisters 4x4 Range blocks
Min0=10 Iteration 2 Min0=10 Iteration 3
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Figure 25. Origina Sisters Image Figure 26. Sisters 4x4 range blocks
Min0=20 Iteration 1

Figure 27. Sisters 4x4 Range blocks Figure 28. Sisters 4x4 Range blocks
Min0=20 Iteration 2 Min0=20 Iteration 3
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Figure 29. Origina Sisters Image Figure 30. Sisters 4x4 range blocks
Min0=80 Iteration 1

Figure 31. Sisters 4x4 Range blocks Figure 32. Sisters 4x4 Range blocks
Min0=80 Iteration 2 Min0=80 Iteration 3



Figure 33. Origina Sisters Image Figure 34. Sisters 8x8 range blocks
Min0=10 Iteration 1

Figure 35. Sisters 8x8 Range blocks Figure 36. Sisters 8x8 Range blocks
Min0=10 Iteration 2 Min0=10 Iteration 3
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Figure 37. Origina Sisters Image Figure 38. Sisters 8x8 range blocks
Min0=80 Iteration 1

Figure 39. Sisters 8x8 Range blocks Figure 40. Sisters 8x8 Range blocks
Min0=80 Iteration 2 Min0=80 Iteration 3
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