
6
Problems in Higher Dimensions

“Equations of such complexity as are the equations of the gravitational field can be
found only through the discovery of a logically simple mathematical condition that
determines the equations completely or at least almost completely.”

“What I have to say about this book can be found inside this book.” Albert
Einstein (1879-1955)

In this chapter we will explore several examples of the solution of
initial-boundary value problems involving higher spatial dimensions. These
are described by higher dimensional partial differential equations, such as
the ones presented in Table 1.1 in Chapter 1. The spatial domains of the
problems span many different geometries, which will necessitate the use of
rectangular, polar, cylindrical, or spherical coordinates.

We will solve many of these problems using the method of separation of
variables, which we first saw in Chapter 1. Using separation of variables
will result in a system of ordinary differential equations for each problem.
Adding the boundary conditions, we will need to solve a variety of eigen-
value problems. The product solutions that result will involve trigonomet-
ric or some of the special functions that we had encountered in Chapter
5. These methods are used in solving vibrations of membranes in different
geometries, cake baking, the hydrogen atom in quantum mechanics, and
electrostatic problems in electrodynamics. We will bring to this discussion
many of the tools from earlier in this book showing how much of what we
have seen can be used to solve some generic partial differential equations
which describe oscillation and diffusion type problems.

As we proceed through the examples in this chapter, we will see some
common features. For example, the two key equations that we have stud-
ied are the heat equation and the wave equation. For higher dimensional
problems these take the form

ut = k∇2u, (6.1)

utt = c2∇2u. (6.2)

We can separate out the time dependence in each equation. Inserting a
guess of u(r, t) = ϕ(r)T(t) into the heat and wave equations, we obtain

T′ϕ = kT∇2ϕ, (6.3)
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T′′ϕ = c2T∇2ϕ. (6.4)

Dividing each equation by ϕ(r)T(t), we can separate the time and space
dependence just as we had in Chapter 2. In each case we find that a function
of time equals a function of the spatial variables. Thus, these functions must
be constant functions. We set these equal to the constant −λ and find the
respective equations

1
k

T′

T
=

∇2ϕ

ϕ
= −λ, (6.5)

1
c2

T′′

T
=

∇2ϕ

ϕ
= −λ. (6.6)

The sign of λ will be taken to be positive (λ > 0) since we expect decaying
solutions in time for the heat equation and oscillations in time for the wave
equation.

The respective equations for the temporal functions T(t) are given by

T′ = −λkT, (6.7)

T′′ + c2λT = 0. (6.8)

These are easily solved as we had seen in Chapter 2. We have

T(t) = T(0)e−λkt, (6.9)

T(t) = a cos ωt + b sin ωt, ω = c
√

λ, (6.10)

respectively, ,where T(0), a, and b are integration constants and ω is the
angular frequency of vibration.

In both cases the spatial equation is of the same form,The Helmholtz equation.

∇2ϕ + λϕ = 0. (6.11)

This equation is called the Helmholtz equation. For one dimensional prob-The Helmholtz equation is named af-
ter Hermann Ludwig Ferdinand von
Helmholtz (1821-1894). He was both a
physician and a physicist and made sig-
nificant contributions in physiology, op-
tics, acoustics, and electromagnetism.

lems, which we have already solved, the Helmholtz equation takes the form
ϕ′′ + λϕ = 0. We had to impose the boundary conditions and found that
there were a discrete set of eigenvalues, λn, and associated eigenfunctions,
ϕn.

In higher dimensional problems we need to further separate out the
spatial dependence. We will again use the boundary conditions to find
the eigenvalues, λ, and eigenfunctions, ϕ(r), for the Helmholtz equation,
though the eigenfunctions will be labeled with more than one index. The
resulting boundary value problems are often second order ordinary dif-
ferential equations, which can be set up as Sturm-Liouville problems. We
know from Chapter 5 that such problems possess an orthogonal set of eigen-
functions. These can then be used to construct a general solution from the
product solutions which may involve elementary, or special, functions, such
as Legendre polynomials and Bessel functions.

We will begin our study of higher dimensional problems by consider-
ing the vibrations of two dimensional membranes. First we will solve the
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problem of a vibrating rectangular membrane and then we will turn our
attention to a vibrating circular membrane. The rest of the chapter will be
devoted to the study of other two and three dimensional problems possess-
ing cylindrical or spherical symmetry.

6.1 Vibrations of Rectangular Membranes

Our first example will be the study of the vibrations of a rectangular
membrane. You can think of this as a drumhead with a rectangular cross
section as shown in Figure 6.1. We stretch the membrane over the drumhead
and fasten the material to the boundary of the rectangle. The height of the
vibrating membrane is described by its height from equilibrium, u(x, y, t).

x

y

H

L0
0

Figure 6.1: The rectangular membrane of
length L and width H. There are fixed
boundary conditions along the edges.

Example 6.1. The vibrating rectangular membrane.
The problem is given by the two dimensional wave equation in

Cartesian coordinates,

utt = c2(uxx + uyy), t > 0, 0 < x < L, 0 < y < H, (6.12)

a set of boundary conditions,

u(0, y, t) = 0, u(L, y, t) = 0, t > 0, 0 < y < H,

u(x, 0, t) = 0, u(x, H, t) = 0, t > 0, 0 < x < L, (6.13)

and a pair of initial conditions (since the equation is second order in
time),

u(x, y, 0) = f (x, y), ut(x, y, 0) = g(x, y). (6.14)

The first step is to separate the variables: u(x, y, t) = X(x)Y(y)T(t). In-
serting the guess, u(x, y, t) into the wave equation, we have

X(x)Y(y)T′′(t) = c2 (X′′(x)Y(y)T(t) + X(x)Y′′(y)T(t)
)

.

Dividing by both u(x, y, t) and c2, we obtain

1
c2

T′′

T︸ ︷︷ ︸
Function of t

=
X′′

X
+

Y′′

Y︸ ︷︷ ︸
Function of x and y

= −λ. (6.15)

We see that we have a function of t equals a function of x and y. Thus,
both expressions are constant. We expect oscillations in time, so we choose
the constant λ to be positive, λ > 0. (Note: As usual, the primes mean
differentiation with respect to the specific dependent variable. So, there
should be no ambiguity.)

These lead to two equations:

T′′ + c2λT = 0, (6.16)

and
X′′

X
+

Y′′

Y
= −λ. (6.17)
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We note that the spatial equation is just the separated form of Helmholtz’s
equation with ϕ(x, y) = X(x)Y(y).

The first equation is easily solved. We have

T(t) = a cos ωt + b sin ωt, (6.18)

where

ω = c
√

λ. (6.19)

This is the angular frequency in terms of the separation constant, or eigen-
value. It leads to the frequency of oscillations for the various harmonics of
the vibrating membrane as

ν =
ω

2π
=

c
2π

√
λ. (6.20)

Once we know λ, we can compute these frequencies.
Next we solve the spatial equation. We need carry out another separation

of variables. Rearranging the spatial equation, we have

X′′

X︸︷︷︸
Function of x

= −Y′′

Y
− λ︸ ︷︷ ︸

Function of y

= −µ. (6.21)

Here we have a function of x equal to a function of y. So, the two expressions
are constant, which we indicate with a second separation constant, −µ < 0.
We pick the sign in this way because we expect oscillatory solutions for
X(x). This leads to two equations:

X′′ + µX = 0,

Y′′ + (λ − µ)Y = 0. (6.22)

We now impose the boundary conditions. We have u(0, y, t) = 0 for all
t > 0 and 0 < y < H. This implies that X(0)Y(y)T(t) = 0 for all t and
y in the domain. This is only true if X(0) = 0. Similarly, from the other
boundary conditions we find that X(L) = 0, Y(0) = 0, and Y(H) = 0. We
note that homogeneous boundary conditions are important in carrying out
this process. Nonhomogeneous boundary conditions could be imposed just
like we had in Section 1.7, but we still need the solutions for homogeneous
boundary conditions before tackling the more general problems.

In summary, the boundary value problems we need to solve are:

X′′ + µX = 0, X(0) = 0, X(L) = 0.

Y′′ + (λ − µ)Y = 0, Y(0) = 0, Y(H) = 0. (6.23)

We have seen boundary value problems of these forms in Chapter 2. The
solutions of the first eigenvalue problem are

Xn(x) = sin
nπx

L
, µn =

(nπ

L

)2
, n = 1, 2, 3, . . . .



problems in higher dimensions 197

The second eigenvalue problem is solved in the same manner. The dif-
ferences from the first problem are that the “eigenvalue” is λ − µ, the inde-
pendent variable is y, and the interval is [0, H]. Thus, we can quickly write
down the solutions as

Ym(y) = sin
mπx

H
, λ − µm =

(mπ

H

)2
, m = 1, 2, 3, . . . .

At this point we need to be careful about the indexing of the separation
constants. So far, we have seen that µ depends on n and that the quantity
κ = λ − µ depends on m. Solving for λ, we should write λnm = µn + κm, or

λnm =
(nπ

L

)2
+
(mπ

H

)2
, n, m = 1, 2, . . . . (6.24)

Since ω = c
√

λ, we have that the discrete frequencies of the harmonics are The harmonics for the vibrating rectan-
gular membrane are given by the fre-
quencies

νnm =
c
2

√( n
L

)2
+
(m

H

)2
,

for n, m = 1, 2, . . . .

given by

ωnm = c

√(nπ

L

)2
+
(mπ

H

)2
, n, m = 1, 2, . . . . (6.25)

We have successfully carried out the separation of variables for the wave
equation for the vibrating rectangular membrane. The product solutions
can be written as

unm = (a cos ωnmt + b sin ωnmt) sin
nπx

L
sin

mπy
H

(6.26)

and the most general solution is written as a linear combination of the prod-
uct solutions,

u(x, y, t) =
∞

∑
n,m=1

(anm cos ωnmt + bnm sin ωnmt) sin
nπx

L
sin

mπy
H

.

Here we used ∑n,m to indicate a double sum.
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X1(x) = sin πx
L
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X2(x) = sin 2πx
L
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X3(x) = sin 3πx
L

Figure 6.2: The first harmonics of the vi-
brating string

Before we carry the general solution any further, we will first concentrate
on the two dimensional harmonics of this membrane. For the vibrating
string the nth harmonic corresponds to the function sin nπx

L and several are
shown in Figure 6.2. The various harmonics correspond to the pure tones
supported by the string. These then lead to the corresponding frequencies
that one would hear. The actual shapes of the harmonics are sketched by
locating the nodes, or places on the string that do not move.

In the same way, we can explore the shapes of the harmonics of the vi-
brating membrane. These are given by the spatial functions

ϕnm(x, y) = sin
nπx

L
sin

mπy
H

. (6.27)

Instead of nodes, we will look for the nodal curves, or nodal lines. These A discussion of the nodal lines.

are the points (x, y) at which ϕnm(x, y) = 0. Of course, these depend on the
indices, n and m.

For example, when n = 1 and m = 1, we have

sin
πx
L

sin
πy
H

= 0.
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Figure 6.3: The first few modes of the
vibrating rectangular membrane. The
dashed lines show the nodal lines indi-
cating the points that do not move for
the particular mode. Compare these the
nodal lines to the 3D view in Figure 6.1
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These are zero when either

sin
πx
L

= 0, or sin
πy
H

= 0.

Of course, this can only happen for x = 0, L and y = 0, H. Thus, there are
no interior nodal lines as seen in the first membrane in Figure 6.3.

When n = 2 and m = 1, we have y = 0, H and

sin
2πx

L
= 0, or sin

πy
H

= 0.

There are no horizontal interior nodal lines. When x = 0, L
2 , L, sin

2πx
L

= 0.

Therefore, there is one interior nodal line at x = L
2 . These points stay fixed

during the oscillation and all other points oscillate on either side of this line.
A similar solution shape results for the (1,2)-mode; i.e., n = 1 and m = 2.
These can be seen in Figure 6.3.

In Figure 6.3 we show the nodal lines for several modes for n, m = 1, 2, 3
with different columns corresponding to different n-values while the rows
are labeled with different m-values. The blocked regions appear to vibrate
independently. A better view is the three dimensional view depicted in
Figure 6.1 . The frequencies of vibration are easily computed using the
formula for ωnm.

The vibrations of the rectangular membrane differ from other examples,
such as the vibrating string or circular membrane in the next section, in
that it is possible for two different mode shapes to have exactly the same
frequency. We see that in Equation (6.25) two frequencies would be the
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m = 1 m = 2 m = 3

n = 1

n = 2

n = 3

Table 6.1: A three dimensional view of
the vibrating rectangular membrane for
the lowest modes. Compare these im-
ages with the nodal lines in Figure 6.3

same if
n
L
=

m
H

.

In the case of a square membrane,H = L, we could have m = n. In such a
case the product solutions phinm(x, y) and phimn(x, y) would oscillate at the
same frequency. Then, the product of spatial solutions would take the form

Φnm(x, y) = sin
nπx

L
sin

mπy
L

+ sin
mπx

L
sin

nπy
L

.

In this case, the parts of the membrane for which Φnm = 0, do not move
for any time. These nodal curves give rise to what are called degenerate
modes. In Figure 6.4 we show examples of degenerate modes for a square
rectangular membrane.

Notice the different features as compared to those in Figure 6.3. There is
also some symmetry in the grid of modes, as may be expected. In particular
the 3-1 and 1-3 modes appear to be almost circular looking in appearance. In
Figure 6.5 we see two snapshots of the vibrating membrane for this degen-
erate mode which are separated in time by half a period. Compare these
with the nodal curve in Figure 6.4. Can one make out the curve in these
figures?

As an aside, you might ask if this curve can be described by an equation.
We simplify the problem by taking L = H = 1. Then, the nodal curves for
the 3-1 and 1-3 modes is given by

Φ31 = sin 3πx sin πy + sin πx sin 3πy = 0.



200 partial differential equations

Figure 6.4: Examples of nodal curves for
degenerate modes for a square rectangu-
lar membrane.

Can we solve this equation? We can make an attempt by recalling the
trigonometric identity

sin 3x = 3 sin x − 4 sin3 x.

Then, after substitution, we have

Φ31(x, y) = sin 3πx sin πy + sin πx sin 3πy

=
(

3 sin πx − 4 sin3 πx
)

sin πy + sin πx
(

3 sin πy − 4 sin3 πy
)

= −2 sin(πy) sin(πx)
(

2 sin(πx)2 + 2 sin(πy)2 − 3
)

. (6.28)

We see that Φ31(x, y) = 0 if x is an integer, y is an integer (corresponding to
the boundary of the membrane), or

2 sin(πx)2 + 2 sin(πy)2 = 3. (6.29)

It is this curve which is seen in Figure 6.4. This curve is graphed in Figure
6.6.

For completeness, we now return to the general solution and apply the
initial conditions, u(x, y, 0) = f (x, y), and ut(x, y, 0) = g(x, y). The general
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Figure 6.5: Plot of the degenerate mode
for a square rectangular membrane with
n = 1 and m = 3 separated a half period
apart in its oscillation.

Figure 6.6: Plot of the degenerate mode
nodal curve n = 1 and m = 3 using al-
gebraic form for the curve in Equation
(6.29).

solution is given by a linear superposition of the product solutions. There
are two indices to sum over. Thus, the general solution is

u(x, y, t) =
∞

∑
n=1

∞

∑
m=1

(anm cos ωnmt + bnm sin ωnmt) sin
nπx

L
sin

mπy
H

, (6.30)

where The general solution for the vibrating
rectangular membrane.

ωnm = c

√(nπ

L

)2
+
(mπ

H

)2
. (6.31)

The first initial condition is u(x, y, 0) = f (x, y). Setting t = 0 in the gen-
eral solution, we obtain

f (x, y) =
∞

∑
n=1

∞

∑
m=1

anm sin
nπx

L
sin

mπy
H

. (6.32)

This is a double Fourier sine series. The goal is to find the unknown
coefficients anm.

The coefficients anm can be found knowing what we already know about
Fourier sine series. We can write the initial condition in Equation (6.32) as
the single sum

f (x, y) =
∞

∑
n=1

An(y) sin
nπx

L
, (6.33)
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where

An(y) =
∞

∑
m=1

anm sin
mπy

H
. (6.34)

We now have two Fourier sine series. Recall from Chapter 2 in Equation
(2.73), the coefficients of Fourier sine series give us

An(y) =
2
L

∫ L

0
f (x, y) sin

nπx
L

dx,

anm =
2
H

∫ H

0
An(y) sin

mπy
H

dy. (6.35)

Inserting the integral for An(y) into that for anm, we have an integral
representation for the Fourier coefficients in the double Fourier sine series,The Fourier coefficients for the double

Fourier sine series.

anm =
4

LH

∫ H

0

∫ L

0
f (x, y) sin

nπx
L

sin
mπy

H
dxdy. (6.36)

We can carry out the same process for satisfying the second initial condi-
tion, ut(x, y, 0) = g(x, y) for the initial velocity of each point. Inserting the
general solution into this initial condition, we obtain

g(x, y) =
∞

∑
n=1

∞

∑
m=1

bnmωnm sin
nπx

L
sin

mπy
H

. (6.37)

Again, we have a double Fourier sine series. But, now we can quickly de-
termine the Fourier coefficients using the expression (6.36) for anm to find
that

bnm =
4

ωnmLH

∫ H

0

∫ L

0
g(x, y) sin

nπx
L

sin
mπy

H
dxdy. (6.38)

This completes the full solution of the vibrating rectangular membrane
problem. Namely, we have obtained the solutionThe full solution of the vibrating rectan-

gular membrane.

u(x, y, t) =
∞

∑
n=1

∞

∑
m=1

(anm cos ωnmt + bnm sin ωnmt) sin
nπx

L
sin

mπy
H

,

(6.39)
where

anm =
4

LH

∫ H

0

∫ L

0
f (x, y) sin

nπx
L

sin
mπy

H
dxdy, (6.40)

bnm =
4

ωnmLH

∫ H

0

∫ L

0
g(x, y) sin

nπx
L

sin
mπy

H
dxdy, (6.41)

and the angular frequencies are given by

ωnm = c

√(nπ

L

)2
+
(mπ

H

)2
. (6.42)

6.2 Vibrations of a Kettle Drum

In this section we consider the vibrations of a circular membrane of
radius a as shown in Figure 6.7. Again we are looking for the harmonics
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of the vibrating membrane, but with the membrane fixed around the cir-
cular boundary given by x2 + y2 = a2. However, expressing the boundary
condition in Cartesian coordinates is awkward. Namely, we can only write
u(x, y, t) = 0 for x2 + y2 = a2. It is more natural to use polar coordinates
as indicated in Figure 6.7. Let the height of the membrane be given by
u = u(r, θ, t) at time t and position (r, θ). Now the boundary condition is
given as u(a, θ, t) = 0 for all t > 0 and θ ∈ [0, 2π].

x

y

a
P

r
θ

Figure 6.7: The circular membrane of
radius a. A general point P on the
membrane is given by the distance from
the center, r, and the angle, θ. There
are fixed boundary conditions along the
edge at r = a.

Before solving the initial-boundary value problem, we have to cast the
full problem in polar coordinates. This means that we need to rewrite the
Laplacian in r and θ. To do so would require that we know how to transform
derivatives in x and y into derivatives with respect to r and θ. There are
general results using curvilinear coordinates for writing the Laplacian in
polar coordinates which can be found in standard texts in mathematical
method in physics such as seen in Section 6.9. We will use direct methods in
cylindrical coordinates for functions, f = f (r, θ), which are z-independent
to show that the Laplacian is given by

∇2 f =
1
r

∂

∂r

(
r

∂ f
∂r

)
+

1
r2

∂2 f
∂θ2 . (6.43)

Derivation of Laplacian in polar coordi-
nates.We will obtain this result by applying the Chain Rule in higher dimen-

sions. First recall the transformations between polar and Cartesian coordi-
nates:

x = r cos θ, y = r sin θ

and
r =

√
x2 + y2, tan θ =

y
x

.

Now, consider a function f = f (x(r, θ), y(r, θ)) = g(r, θ). (Technically, once
we transform a given function of Cartesian coordinates we obtain a new
function g of the polar coordinates. Many texts do not rigorously distin-
guish between the two functions.) Thinking of x = x(r, θ) and y = y(r, θ),
we have from the chain rule for functions of two variables:

∂ f
∂x

=
∂g
∂r

∂r
∂x

+
∂g
∂θ

∂θ

∂x

=
∂g
∂r

x
r
− ∂g

∂θ

y
r2

= cos θ
∂g
∂r

− sin θ

r
∂g
∂θ

. (6.44)

Here we have used
∂r
∂x

=
x√

x2 + y2
=

x
r

;

and
∂θ

∂x
=

d
dx

(
tan−1 y

x

)
=

−y/x2

1 +
( y

x
)2 = − y

r2 .

Similarly,

∂ f
∂y

=
∂g
∂r

∂r
∂y

+
∂g
∂θ

∂θ

∂y
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=
∂g
∂r

y
r
+

∂g
∂θ

x
r2

= sin θ
∂g
∂r

+
cos θ

r
∂g
∂θ

. (6.45)

The 2D Laplacian can now be computed as

∂2 f
∂x2 +

∂2 f
∂y2 = cos θ

∂

∂r

(
∂ f
∂x

)
− sin θ

r
∂

∂θ

(
∂ f
∂x

)
+ sin θ

∂

∂r

(
∂ f
∂y

)
+

cos θ

r
∂

∂θ

(
∂ f
∂y

)
= cos θ

∂

∂r

(
cos θ

∂g
∂r

− sin θ

r
∂g
∂θ

)
− sin θ

r
∂

∂θ

(
cos θ

∂g
∂r

− sin θ

r
∂g
∂θ

)
+ sin θ

∂

∂r

(
sin θ

∂g
∂r

+
cos θ

r
∂g
∂θ

)
+

cos θ

r
∂

∂θ

(
sin θ

∂g
∂r

+
cos θ

r
∂g
∂θ

)
= cos θ

(
cos θ

∂2g
∂r2 +

sin θ

r2
∂g
∂θ

− sin θ

r
∂2g
∂r∂θ

)
− sin θ

r

(
cos θ

∂2g
∂θ∂r

− sin θ

r
∂2g
∂θ2 − sin θ

∂g
∂r

− cos θ

r
∂g
∂θ

)
+ sin θ

(
sin θ

∂2g
∂r2 +

cos θ

r
∂2g
∂r∂θ

− cos θ

r2
∂g
∂θ

)
+

cos θ

r

(
sin θ

∂2g
∂θ∂r

+
cos θ

r
∂2g
∂θ2 + cos θ

∂g
∂r

− sin θ

r
∂g
∂θ

)
=

∂2g
∂r2 +

1
r

∂g
∂r

+
1
r2

∂2g
∂θ2

=
1
r

∂

∂r

(
r

∂g
∂r

)
+

1
r2

∂2g
∂θ2 .

(6.46)

We have left the result in the form of a Sturm-Liouville operator. Now
that we have written the Laplacian in polar coordinates, we can pose the
problem of a vibrating circular membrane.

Example 6.2. The vibrating circular membrane.
This problem is given by a partial differential equation,11 Here we state the problem of a vibrat-

ing circular membrane. We have chosen
−π < θ < π, but could have just as eas-
ily used 0 < θ < 2π. The symmetric in-
terval about θ = 0 will make the use of
boundary conditions simpler.

utt = c2
[

1
r

∂

∂r

(
r

∂u
∂r

)
+

1
r2

∂2u
∂θ2

]
, (6.47)

t > 0, 0 < r < a, −π < θ < π,

the boundary condition,

u(a, θ, t) = 0, t > 0, −π < θ < π, (6.48)

and the initial conditions,

u(r, θ, 0) = f (r, θ), 0 < r < a,−π < θ < π,

ut(r, θ, 0) = g(r, θ), , 0 < r < a,−π < θ < π. (6.49)
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Now, we are ready to solve this problem using separation of variables. As
before, we can separate out the time dependence. Let u(r, θ, t) = T(t)ϕ(r, θ).
As usual, T(t) can be written in terms of sines and cosines. This leads to
the Helmholtz equation for ϕ = ϕ(r, θ),

∇2ϕ + λϕ = 0.

We now separate the Helmholtz equation by letting ϕ(r, θ) = R(r)Θ(θ). This
gives

1
r

∂

∂r

(
r

∂RΘ
∂r

)
+

1
r2

∂2RΘ
∂θ2 + λRΘ = 0. (6.50)

Dividing by u = RΘ, as usual, leads to

1
rR

d
dr

(
r

dR
dr

)
+

1
r2Θ

d2Θ
dθ2 + λ = 0. (6.51)

The last term is a constant. The first term is a function of r. However, the
middle term involves both r and θ. This can be remedied by multiplying the
equation by r2. Rearranging the resulting equation, we can separate out the
θ-dependence from the radial dependence. Letting µ be another separation
constant, we have

r
R

d
dr

(
r

dR
dr

)
+ λr2 = − 1

Θ
d2Θ
dθ2 = µ. (6.52)

This gives us two ordinary differential equations:

d2Θ
dθ2 + µΘ = 0,

r
d
dr

(
r

dR
dr

)
+ (λr2 − µ)R = 0. (6.53)

Let’s consider the first of these equations. It should look familiar by now.
For µ > 0, the general solution is

Θ(θ) = a cos
√

µθ + b sin
√

µθ.

The next step typically is to apply the boundary conditions in θ. However,
when we look at the given boundary conditions in the problem, we do not
see anything involving θ. This is a case for which the boundary conditions
that are needed are implied and not stated outright.

We can determine the hidden boundary conditions by making some ob-
servations. Let’s consider the solution corresponding to the endpoints θ =

±π. We note that at these θ-values we are at the same physical point for any
r < a. So, we would expect the solution to have the same value at θ = −π as
it has at θ = π. Namely, the solution is continuous at these physical points.
Similarly, we expect the slope of the solution to be the same at these points.
This can be summarized using the boundary conditions The boundary conditions in θ are peri-

odic boundary conditions.

Θ(π) = Θ(−π), Θ′(π) = Θ′(−π).

Such boundary conditions are called periodic boundary conditions.



206 partial differential equations

Let’s apply these conditions to the general solution for Θ(θ). First, we set
Θ(π) = Θ(−π) and use the symmetries of the sine and cosine functions to
obtain

a cos
√

µπ + b sin
√

µπ = a cos
√

µπ − b sin
√

µπ.

This implies that
sin

√
µπ = 0.

This can only be true for
√

µ = m, for m = 0, 1, 2, 3, . . . . Therefore, the
eigenfunctions are given by

Θm(θ) = a cos mθ + b sin mθ, m = 0, 1, 2, 3, . . . .

For the other half of the periodic boundary conditions, Θ′(π) = Θ′(−π),
we have that

−am sin mπ + bm cos mπ = am sin mπ + bm cos mπ.

But, this gives no new information since this equation boils down to bm =

bm..
To summarize what we know at this point, we have found the general

solutions to the temporal and angular equations. The product solutions will
have various products of {cos ωt, sin ωt} and {cos mθ, sin mθ}∞

m=0. We also
know that µ = m2 and ω = c

√
λ.

We still need to solve the radial equation. Inserting µ = m2, the radial
equation has the form

r
d
dr

(
r

dR
dr

)
+ (λr2 − m2)R = 0. (6.54)

Expanding the derivative term, we have

r2R′′(r) + rR′(r) + (λr2 − m2)R(r) = 0. (6.55)

The reader should recognize this differential equation from Equation (5.66).22 You might want to do a change of vari-
ables to verify this. Let x =

√
λr and

y(x) = R(r). Then,

d
dr

=
dx
dr

d
dx

=
√

λ
d

dx
.

Inserting this into the differential equa-
tion, we find

x2y′′ + xy′ + (x2 − m2)y = 0.

It is a Bessel equation with bounded solutions R(r) = Jm(
√

λr).
Recall there are two linearly independent solutions of this second order

equation: Jm(
√

λr), the Bessel function of the first kind of order m, and
Nm(

√
λr), the Bessel function of the second kind of order m, or Neumann

functions. Plots of these functions are shown in Figures 5.8 and 5.9. So, we
have the general solution of the radial equation is

R(r) = c1 Jm(
√

λr) + c2Nm(
√

λr).

Now we are ready to apply the boundary conditions to the radial factor
in the product solutions. Looking at the original problem we find only one
condition: u(a, θ, t) = 0 for t > 0 and −π < θ < π. This implies that
R(a) = 0. But where is the second condition?

This is another unstated boundary condition. Look again at the plots
of the Bessel functions. Notice that the Neumann functions are not well
behaved at the origin. Do you expect that the solution will become infinite
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at the center of the drum? No, the solutions should be finite at the center. So,
this observation leads to the second boundary condition. Namely, |R(0)| <
∞. This implies that c2 = 0.

Now we are left with
R(r) = Jm(

√
λr).

We have set c1 = 1 for simplicity. We can apply the vanishing condition at
r = a. This gives

Jm(
√

λa) = 0.

Looking again at the plots of Jm(x), we see that there are an infinite number
of zeros, but they are not as easy as π! In Table 6.2 we list the nth zeros of
Jm, which were first seen in Table 5.3.

n m = 0 m = 1 m = 2 m = 3 m = 4 m = 5

1 2.405 3.832 5.136 6.380 7.588 8.771

2 5.520 7.016 8.417 9.761 11.065 12.339

3 8.654 10.173 11.620 13.015 14.373 15.700

4 11.792 13.324 14.796 16.223 17.616 18.980

5 14.931 16.471 17.960 19.409 20.827 22.218

6 18.071 19.616 21.117 22.583 24.019 25.430

7 21.212 22.760 24.270 25.748 27.199 28.627

8 24.352 25.904 27.421 28.908 30.371 31.812

9 27.493 29.047 30.569 32.065 33.537 34.989

Table 6.2: The zeros of Bessel Functions,
Jm(jmn) = 0.

Let’s denote the nth zero of Jm(x) by jmn. Then, the boundary condition
tells us that √

λa = jmn, m = 0, 1, . . . , n = 1, 2, . . . .

This gives the eigenvalues as

λmn =

(
jmn

a

)2
, m = 0, 1, . . . , n = 1, 2, . . . .

Thus, the radial function satisfying the boundary conditions is

Rmn(r) = Jm

(
jmn

a
r
)

.

We are finally ready to write out the product solutions for the vibrating
circular membrane. They are given by Product solutions for the vibrating circu-

lar membrane.

u(r, θ, t) =

 cos ωmnt

sin ωmnt


 cos mθ

sin mθ

 Jm(
jmn

a
r). (6.56)
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Here we have indicated choices with the braces, leading to four different
types of product solutions. Also, the angular frequency depends on the
zeros of the Bessel functions,

ωmn =
jmn

a
c, m = 0, 1, . . . , n = 1, 2, . . . .

Figure 6.8: The first few modes of the vi-
brating circular membrane. The dashed
lines show the nodal lines indicating the
points that do not move for the partic-
ular mode. Compare these nodal lines
with the three dimensional images in
Figure 6.3.

m = 0 m = 1 m = 2

n = 1

n = 2

n = 3

As with the rectangular membrane, we are interested in the shapes of the
harmonics. So, we consider the spatial solution (t = 0)

ϕ(r, θ) = (cos mθ)Jm

(
jmn

a
r
)

.

Including the solutions involving sin mθ will only rotate these modes. The
nodal curves are given by ϕ(r, θ) = 0. This can be satisfied if cos mθ = 0, or

Jm

(
jmn

a
r
)

= 0. The various nodal curves which result are shown in Figure

6.8.
For the angular part, we easily see that the nodal curves are radial lines,

θ =const. For m = 0, there are no solutions, since cos mθ = 1 for m = 0. in
Figure 6.8 this is seen by the absence of radial lines in the first column.

For m = 1, we have cos θ = 0. This implies that θ = ±π

2
. These values

give the vertical line as shown in the second column in Figure 6.8. For

m = 2, cos 2θ = 0 implies that θ =
π

4
,

3π

4
. This results in the two lines

shown in the last column of Figure 6.8.
We can also consider the nodal curves defined by the Bessel functions.

We seek values of r for which
jmn

a
r is a zero of the Bessel function and lies
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in the interval [0, a]. Thus, we have

jmn

a
r = jmj, 1 ≤ j ≤ n,

or

r =
jmj

jmn
a, 1 ≤ j ≤ n.

These will give circles of these radii with jmj ≤ jmn, or j ≤ n. For m = 0
and n = 1, there is only one zero and r = a. In fact, for all n = 1 modes,
there is only one zero giving r = a. Thus, the first row in Figure 6.8 shows
no interior nodal circles.

For a three dimensional view, one can look at Figure 6.3. Imagine that
the various regions are oscillating independently and that the points on the
nodal curves are not moving.

n = 1 n = 2 n = 3

m = 0

m = 1

m = 2

Table 6.3: A three dimensional view of
the vibrating circular membrane for the
lowest modes. Compare these images
with the nodal line plots in Figure 6.8.

We should note that the nodal circles are not evenly spaced and that the
radii can be computed relatively easily. For the n = 2 modes, we have two

circles, r = a and r =
jm1

jm2
a as shown in the second row of Figure 6.8. For

m = 0,

r =
2.405
5.520

a ≈ 0.4357a

for the inner circle. For m = 1,

r =
3.832
7.016

a ≈ 0.5462a,
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and for m = 2,

r =
5.136
8.417

a ≈ 0.6102a.

For n = 3 we obtain circles of radii

r = a, r =
jm1

jm3
a, and r =

jm2

jm3
a.

For m = 0,

r = a,
5.520
8.654

a ≈ 0.6379a,
2.405
8.654

a ≈ 0.2779a.

Similarly, for m = 1,

r = a,
3.832

10.173
a ≈ 0.3767a,

7.016
10.173

a ≈ 0.6897a,

and for m = 2,

r = a,
5.136

11.620
a ≈ 0.4420a,

8.417
11.620

a ≈ 0.7224a.

Example 6.3. Vibrating Annulus
More complicated vibrations can be dreamt up for this geometry.

Consider an annulus in which the drum is formed from two concen-
tric circular cylinders and the membrane is stretch between the two
with an annular cross section as shown in Figure 6.9. The separation
would follow as before except now the boundary conditions are that
the membrane is fixed around the two circular boundaries. In this case
we cannot toss out the Neumann functions because the origin is not
part of the drum head.

a
b

x

y

Figure 6.9: An annular membrane with
radii a and b > a. There are fixed bound-
ary conditions along the edges at r = a
and r = b.

The domain for this problem is shown in Figure 6.9 and the problem
is given by the partial differential equation

utt = c2
[

1
r

∂

∂r

(
r

∂u
∂r

)
+

1
r2

∂2u
∂θ2

]
, (6.57)

t > 0, b < r < a, −π < θ < π,

the boundary conditions,

u(b, θ, t) = 0, u(a, θ, t) = 0, t > 0, −π < θ < π, (6.58)

and the initial conditions,

u(r, θ, 0) = f (r, θ), b < r < a,−π < θ < π,

ut(r, θ, 0) = g(r, θ), , b < r < a,−π < θ < π. (6.59)

Since we cannot dispose of the Neumann functions, the product
solutions take the form

u(r, θ, t) =

 cos ωt

sin ωt


 cos mθ

sin mθ

 Rm(r), (6.60)
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where
Rm(r) = c1 Jm(

√
λr) + c2Nm(

√
λr)

and ω = c
√

λ, m = 0, 1, . . . .
For this problem the radial boundary conditions are that the mem-

brane is fixed at r = a and r = b. Taking b < a, we then have to satisfy
the conditions

R(a) = c1 Jm(
√

λa) + c2Nm(
√

λa) = 0,

R(b) = c1 Jm(
√

λb) + c2Nm(
√

λb) = 0. (6.61)

This leads to two homogeneous equations for c1 and c2. The co-
efficient determinant of this system has to vanish if there are to be
nontrivial solutions. This gives the eigenvalue equation for λ :

Jm(
√

λa)Nm(
√

λb)− Jm(
√

λb)Nm(
√

λa) = 0.

There are an infinite number of zeros of the function

F(λ) = Jm(
√

λa)Nm(
√

λb)− Jm(
√

λb)Nm(
√

λa).

In Figure 6.10 we show a plot of F(λ) for a = 4, b = 2 and m = 0, 1, 2, 3.

Figure 6.10: Plot of the function

F(λ) = Jm(
√

λa)Nm(
√

λb)− Jm(
√

λb)Nm(
√

λa)

for a = 4 and b = 2 and m = 0, 1, 2, 3.

This eigenvalue equation needs to be solved numerically. Choosing
a = 2 and b = 4, we have for the first few modes√

λmn ≈ 1.562, 3.137, 4.709, m = 0

≈ 1.598, 3.156, 4.722, m = 1

≈ 1.703, 3.214, 4.761, m = 2. (6.62)

Note, since ωmn = c
√

λmn, these numbers essentially give us the fre-
quencies of oscillation.

For these particular roots, we can solve for c1 and c2 up to a multi-
plicative constant. A simple solution is to set

c1 = Nm(
√

λmnb), c2 = Jm(
√

λmnb).

This leads to the basic modes of vibration,

Rmn(r)Θm(θ) = cos mθ
(

Nm(
√

λmnb)Jm(
√

λmnr)− Jm(
√

λmnb)Nm(
√

λmnr)
)

,
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for m = 0, 1, . . . , and n = 1, 2, . . . . In Figure 6.4 we show various modes
for the particular choice of annular membrane dimensions, a = 2 and
b = 4.

Table 6.4: A three dimensional view of
the vibrating annular membrane for the
lowest modes.

n = 1 n = 2 n = 3

m = 0

m = 1

m = 2

Example 6.4. Vibrating Elliptical Membrane
Another variation on the circular membrane is the elliptical mem-

brane. Instead of polar coordinates, one needs an elliptic coordinate
system. If the boundary is described by the ellipse,

x2

a2 +
y2

b2 = 1,

with a > b, then the foci are located at (±c, 0). where c2 = a2 − b2. The
elliptic coordinates are defined by

x = c cosh ξ cos η

y = c sinh ξ sin η (6.63)

where 0 < ξ < ∞, 0 ≤ η 2π. The boundary of the membrane is defined
by ξ0 = sinh−1(b/c). Thus, we have

a = c cosh ξ0, b = c sinh ξ0.

In Figure 6.11 an elliptical membrane with a = 2 and b = 1 is
covered with an elliptical coordinate system consisting of curves of
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constant ξ and η similar to how the Cartsian coordinate grid can be
drawn with lines of constant x and y. Using the identities

cosh2 ξ − sinh2 ξ = 1 (6.64)

cos2 η + sin2 η = 1, (6.65)

one can show that curves of constant ξ are (confocal) ellipses and
curves of constant η are hyperbolae in an elliptical coordinate system.

Figure 6.11: Curves of constant xi (el-
lipses) and η (hyperbolae) in an elliptical
coordinate system constrained to an el-
liptical membrane with a = 2 and b = 1.

In these coordinates, the Helmholtz equation becomes

∂2ϕ(ξ, η)

∂ξ2 +
∂2ϕ(ξ, η)

∂η2 + (kc)2(cosh2 ξ − cos2 η)ϕ(ξ, η) = 0. (6.66)

Separation of variables, ϕ(ξ, η) = u(ξ)v(η) leads to two ordinary dif-
ferential equations,

v′′(η) + (α − 2q cos 2η)v(η) = 0,

u′′(ξ)− (α − 2q cosh 2ξ)u(ξ) = 0, (6.67)

where q = 1
4 k2c2. The first of these equations is called the Mathieu

equation, named after Émile Léonard Mathieu (1835-1890), who origi-
nally studies vibrating elliptical membranes. The solutions are known
as Mathieu functions. The second equation is the modified Mathieu The Mathieu functions satisfy the Math-

ieu equation,

y′′ + (a − 2qcos(2x))y = 0.)
equation. The next step would be to determine the associated eigen-
values so that we know what the modes of vibrations are and the
frequencies of oscillation. These are too complicated for our class to
put into MATLAB, so we will leave this topic to the interested reader
to explore.
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6.3 Laplace’s Equation in 2D

Another of the generic partial differential equations is Laplace’s
equation,3 ∇2u = 0. When studying functions of a complex variable, one3 The first part of this section is the same

as in Section 1.8. might learn that functions which satisfy Laplace’s equation are called har-
monic functions. Another example is the electric potential for electrostatics.
For static electromagnetic fields, the divergence of the electric filed vanishes,

∇ · E = ρ/ϵ0.

However, the electric field is a gradient field. So, we can write

E = ∇ϕ,

where ϕ is the electric potential. Combining these equations, we obtain the
Laplace equation, ∇2ϕ = 0.

Another example comes from studying temperature distributions. Con-
sider a thin rectangular plate with the boundaries set at fixed temperatures.
Temperature changes of the plate are governed by the heat equation. The
solution of the heat equation subject to these boundary conditions is time
dependent. In fact, after a long period of time the plate will reach thermal
equilibrium. If the boundary temperature is zero, then the plate temperature
decays to zero across the plate. However, if the boundaries are maintained
at a fixed nonzero temperature, which means energy is being put into the
system to maintain the boundary conditions, the internal temperature may
reach a nonzero equilibrium temperature. Reaching thermal equilibriumThermodynamic equilibrium, ∇2u = 0.

means that asymptotically in time the solution becomes time independent.
Thus, the equilibrium state is a steady state solution of the heat equation.
So, it satisfies a time-independent heat equation, which is just Laplace’s
equation, ∇2u = 0.Incompressible, irrotational fluid flow,

∇2ϕ = 0, for velocity v = ∇ϕ. This
comes from the assumption that mass is
conserved in fluid flow and satisfies the
continuity equation,

∂ρ

∂t
+∇ · (ρv) = 0.

Here ρ is the density, v = dx
dt is the veloc-

ity, and ρv is the flux (mass per area per
time). For incompressible flow, such as
water waves, ρ is constant giving

∇ · v = 0.

Finally, we consider fluid flow. For an incompressible flow, ∇ · v = 0. If
fluid particles do not rotate about a centre of mass ,the flow is irrotational
and ∇ × v = 0. Since the curl of a gradient is zero, we can introduce a
velocity potential, ϕ, such that v = ∇ϕ. Thus, ∇× v vanishes by a vector
identity and ∇ · v = 0 implies ∇2ϕ = 0. So, once again we obtain Laplace’s
equation.

In this section we will look at examples of Laplace’s equation in two
dimensions. The solutions in these examples could be examples from any
of the application in the above physical situations and the solutions can be
applied appropriately.

Example 6.5. Equilibrium Temperature Distribution for a Rectangular
Plate.

Let’s consider Laplace’s equation in Cartesian coordinates,

uxx + uyy = 0, 0 < x < L, 0 < y < H

with the boundary conditions

u(0, y) = 0, u(L, y) = 0, u(x, 0) = f (x), u(x, H) = 0.
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The boundary conditions are shown in Figure 6.12

x0

y

0 L

H

∇2u = 0

u(x, 0) = f (x)

u(x, H) = 0

u(0, y) = 0 u(L, y) = 0

Figure 6.12: In this figure we show the
domain and boundary conditions for the
example of determining the equilibrium
temperature distribution for a rectangu-
lar plate.

As with the heat and wave equations, we can solve this problem
using the method of separation of variables. Let u(x, y) = X(x)Y(y).
Then, Laplace’s equation becomes

X′′Y + XY′′ = 0

and we can separate the x and y dependent functions and introduce a
separation constant, λ,

X′′

X
= −Y′′

Y
= −λ.

Thus, we are led to two differential equations,

X′′ + λX = 0,

Y′′ − λY = 0. (6.68)

From the boundary condition u(0, y) = 0, u(L, y) = 0, we have
X(0) = 0, X(L) = 0. So, we have the usual eigenvalue problem for
X(x),

X′′ + λX = 0, X(0) = 0, X(L) = 0.

The solutions to this problem are given by

Xn(x) = sin
nπx

L
, λn =

(nπ

L

)2
, n = 1, 2, . . . .

The general solution of the equation for Y(y) is given by

Y(y) = c1e
√

λy + c2e−
√

λy.

The boundary condition u(x, H) = 0 implies Y(H) = 0. So, we have

c1e
√

λH + c2e−
√

λH = 0.

Thus,
c2 = −c1e2

√
λH .

Inserting this result into the expression for Y(y), we have Note: Having carried out this compu-
tation, we can now see that it would
be better to guess this form in the fu-
ture. So, for Y(H) = 0, one would
guess a solution Y(y) = sinh

√
λ(H − y).

For Y(0) = 0, one would guess a so-
lution Y(y) = sinh

√
λy. Similarly, if

Y′(H) = 0, one would guess a solution
Y(y) = cosh

√
λ(H − y).

Y(y) = c1e
√

λy − c1e2
√

λHe−
√

λy

= c1e
√

λH
(

e−
√

λHe
√

λy − e
√

λHe−
√

λy
)

= c1e
√

λH
(

e−
√

λ(H−y) − e
√

λ(H−y)
)

= −2c1e
√

λH sinh
√

λ(H − y). (6.69)

Since we already know the values of the eigenvalues λn from the
eigenvalue problem for X(x), we have that the y-dependence is given
by

Yn(y) = sinh
nπ(H − y)

L
.
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So, the product solutions are given by

un(x, y) = sin
nπx

L
sinh

nπ(H − y)
L

, n = 1, 2, . . . .

These solutions satisfy Laplace’s equation and the three homogeneous
boundary conditions and in the problem.

The remaining boundary condition, u(x, 0) = f (x), still needs to
be satisfied. Inserting y = 0 in the product solutions does not sat-
isfy the boundary condition unless f (x) is proportional to one of the
eigenfunctions Xn(x). So, we first write down the general solution as
a linear combination of the product solutions,

u(x, y) =
∞

∑
n=1

an sin
nπx

L
sinh

nπ(H − y)
L

. (6.70)

Now we apply the boundary condition, u(x, 0) = f (x), to find that

f (x) =
∞

∑
n=1

an sinh
nπH

L
sin

nπx
L

. (6.71)

Defining bn = an sinh nπH
L , this becomes

f (x) =
∞

∑
n=1

bn sin
nπx

L
. (6.72)

We see that the determination of the unknown coefficients, bn, is sim-
ply done by recognizing that this is a Fourier sine series. The Fourier
coefficients are easily found as

bn =
2
L

∫ L

0
f (x) sin

nπx
L

dx. (6.73)

Since an =
bn

sinh nπH
L

, we can finish solving the problem. The solu-

tion is

u(x, y) =
∞

∑
n=1

an sin
nπx

L
sinh

nπ(H − y)
L

, (6.74)

where

an =
2

L sinh nπH
L

∫ L

0
f (x) sin

nπx
L

dx. (6.75)
x0

y

0 L

H

∇2u = 0

u = f1(x)

u = f2(x)

u = g1(y) u = g2(y)

Figure 6.13: In this figure we show the
domain and general boundary condi-
tions for the example of determining the
equilibrium temperature distribution for
a rectangular plate.

Example 6.6. Equilibrium Temperature Distribution for a Rectangular
Plate for General Boundary Conditions

A more general problem is to seek solutions to Laplace’s equation
in Cartesian coordinates,

uxx + uyy = 0, 0 < x < L, 0 < y < H

with non-zero boundary conditions on more than one side of the do-
main,

u(0, y) = g1(y), u(L, y) = g2(y), 0 < y < H,
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u(x, 0) = f1(x), u(x, H) = f2(x), 0 < x < L.

These boundary conditions are shown in Figure 6.13

The problem with this example is that none of the boundary condi-
tions are homogeneous. This means that the corresponding eigenvalue
problems will not have the homogeneous boundary conditions which
Sturm-Liouville theory in Section 4 needs. However, we can express
this problem in terms of four different problems with nonhomoge-
neous boundary conditions on only one side of the rectangle.

x0

y

0 L

H

∇2u1 = 0

u1 = f1(x)

u1 = 0

u1 = 0 u1 = 0

x0

y

0 L

H

∇2u2 = 0

u2 = 0

u2 = f2(x)

u2 = 0 u2 = 0

x0

y

0 L

H

∇2u3 = 0

u3 = 0

u3 = 0

u3 = g1(y) u3 = 0

x0

y

0 L

H

∇2u4 = 0

u4 = 0

u4 = 0

u4 = 0 u4 = g2(y)

Figure 6.14: The general boundary value
problem for a rectangular plate can be
written as the sum of these four separate
problems.

In Figure 6.14 we show how the problem can be broken up into
four separate problems for functions ui(x, y), i = 1, . . . , 4. Since the
boundary conditions and Laplace’s equation are linear, the solution to
the general problem is simply the sum of the solutions to these four
problems,

u(x, y) = u1(x, y) + u2(x, y) + u3(x, y) + u4(x, y).

Then, this solution satisfies Laplace’s equation,

∇2u(x, y) = ∇2u1(x, y) +∇2u2(x, y) +∇2u3(x, y) +∇2u4(x, y) = 0,

and the boundary conditions. For example, using the boundary con-
ditions defined in Figure 6.14, we have for y = 0,

u(x, 0) = u1(x, 0) + u2(x, 0) + u3(x, 0) + u4(x, 0) = f1(x).

The other boundary conditions can also be shown to hold.
We can solve each of the problems in Figure 6.14 quickly based on

the solution we obtained in the last example. The solution for u1(x, y),
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which satisfies the boundary conditions

u1(0, y) = 0, u1(L, y) = 0, 0 < y < H,

u1(x, 0) = f1(x), u1(x, H) = 0, 0 < x < L,

is the easiest to write down. It is given by

u1(x, y) =
∞

∑
n=1

an sin
nπx

L
sinh

nπ(H − y)
L

. (6.76)

where

an =
2

L sinh nπH
L

∫ L

0
f1(x) sin

nπx
L

dx. (6.77)

For the boundary conditions

u2(0, y) = 0, u2(L, y) = 0, 0 < y < H,

u2(x, 0) = 0, u2(x, H) = f2(x), 0 < x < L.

the boundary conditions for X(x) are X(0) = 0 and X(L) = 0. So, we
get the same form for the eigenvalues and eigenfunctions as before:

Xn(x) = sin
nπx

L
, λn =

(nπ

L

)2
, n = 1, 2, . . . .

The remaining homogeneous boundary condition is now Y(0) = 0.
Recalling that the equation satisfied by Y(y) is

Y′′ − λY = 0,

we can write the general solution as

Y(y) = c1 cosh
√

λy + c2 sinh
√

λy.

Requiring Y(0) = 0, we have c1 = 0, or

Y(y) = c2 sinh
√

λy.

Then, the general solution is

u2(x, y) =
∞

∑
n=1

bn sin
nπx

L
sinh

nπy
L

. (6.78)

We now force the nonhomogeneous boundary condition, u2(x, H) =

f2(x),

f2(x) =
∞

∑
n=1

bn sin
nπx

L
sinh

nπH
L

. (6.79)

Once again we have a Fourier sine series. The Fourier coefficients are
given by

bn =
2

L sinh nπH
L

∫ L

0
f2(x) sin

nπx
L

dx. (6.80)
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Next we turn to the problem with the boundary conditions

u3(0, y) = g1(y), u3(L, y) = 0, 0 < y < H,

u3(x, 0) = 0, u3(x, H) = 0, 0 < x < L.

In this case the pair of homogeneous boundary conditions u3(x, 0) =
0, u3(x, H) = 0 lead to solutions

Yn(y) = sin
nπy

H
, λn = −

(nπ

H

)2
, n = 1, 2 . . . .

The condition u3(L, 0) = 0 gives X(x) = sinh nπ(L−x)
H .

The general solution satisfying the homogeneous conditions is

u3(x, y) =
∞

∑
n=1

cn sin
nπy

H
sinh

nπ(L − x)
H

. (6.81)

Applying the nonhomogeneous boundary condition, u3(0, y) = g1(y),
we obtain the Fourier sine series

g1(y) =
∞

∑
n=1

cn sin
nπy

H
sinh

nπL
H

. (6.82)

The Fourier coefficients are found as

cn =
2

H sinh nπL
H

∫ H

0
g1(y) sin

nπy
H

dy. (6.83)

Finally, we can find the solution

u4(0, y) = 0, u4(L, y) = g2(y), 0 < y < H,

u4(x, 0) = 0, u4(x, H) = 0, 0 < x < L.

Following the above analysis, we find the general solution

u4(x, y) =
∞

∑
n=1

dn sin
nπy

H
sinh

nπx
H

. (6.84)

The nonhomogeneous boundary condition, u(L, y) = g2(y), is satis-
fied if

g2(y) =
∞

∑
n=1

dn sin
nπy

H
sinh

nπL
H

. (6.85)

The Fourier coefficients, dn, are given by

dn =
2

H sinh nπL
H

∫ H

0
g1(y) sin

nπy
H

dy. (6.86)

The solution to the general problem is given by the sum of these
four solutions.

u(x, y) =
∞

∑
n=1

[(
an sinh

nπ(H − y)
L

+ bn sinh
nπy

L

)
sin

nπx
L

+

(
cn sinh

nπ(L − x)
H

+ dn sinh
nπx

H

)
sin

nπy
H

]
,

(6.87)

where the coefficients are given by the above Fourier integrals.



220 partial differential equations

Example 6.7. Laplace’s Equation on a Disk
We now turn to solving Laplace’s equation on a disk of radius a as

shown in Figure 6.15. Laplace’s equation in polar coordinates is given
in Equation (6.43) by

1
r

∂

∂r

(
r

∂u
∂r

)
+

1
r2

∂2u
∂θ2 = 0, 0 < r < a, −π < θ < π. (6.88)

The boundary conditions are given as

u(a, θ) = f (θ), −π < θ < π, (6.89)

plus periodic boundary conditions in θ.x

y

a

u(a, θ) = f (θ)

Figure 6.15: The disk of radius a with
boundary condition along the edge at
r = a.

Separation of variable proceeds as usual. Let u(r, θ) = R(r)Θ(θ).
Then

1
r

∂

∂r

(
r

∂(RΘ)

∂r

)
+

1
r2

∂2(RΘ)

∂θ2 = 0, (6.90)

or
Θ

1
r
(rR′)′ +

1
r2 RΘ′′ = 0. (6.91)

Dividing by u(r, θ) = R(r)Θ(θ), multiplying by r2, and rearranging,
we have

r
R
(rR′)′ = −Θ′′

Θ
= λ. (6.92)

Since this equation gives a function of r equal to a function of θ,
we set the equation equal to a constant. Thus, we have obtained two
differential equations, which can be written as

r(rR′)′ − λR = 0, (6.93)

Θ′′ + λΘ = 0. (6.94)

We can solve the second equation subject to the periodic boundary
conditions in the θ variable. The reader should be able to confirm that

Θ(θ) = an cos nθ + bn sin nθ, λ = n2, n = 0, 1, 2, . . .

is the solution. Note that the n = 0 case just leads to a constant
solution.

Inserting λ = n2 into the radial equation, we find

r2R′′ + rR′ − n2R = 0.

This is a Cauchy-Euler type of ordinary differential equation. Recall
that we solve such equations by guessing a solution of the form R(r) =
rm. This leads to the characteristic equation m2 − n2 = 0. Therefore,
m = ±n. So,

R(r) = c1rn + c2r−n.

Since we expect finite solutions at the origin, r = 0, we can set c2 = 0.
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Thus, the general solution is

u(r, θ) =
a0

2
+

∞

∑
n=1

(an cos nθ + bn sin nθ) rn. (6.95)

Note that we have taken the constant term out of the sum and put it
into a familiar form.

Now we can impose the remaining boundary condition, u(a, θ) =

f (θ), or

f (θ) =
a0

2
+

∞

∑
n=1

(an cos nθ + bn sin nθ) an. (6.96)

This is a Fourier trigonometric series. The Fourier coefficients can be
determined using the results from Chapter 4:

an =
1

πan

∫ π

−π
f (θ) cos nθ dθ, n = 0, 1, . . . , (6.97)

bn =
1

πan

∫ π

−π
f (θ) sin nθ dθ n = 1, 2 . . . . (6.98)

6.3.1 Poisson Integral Formula

We can put the solution from the last example in a more compact
form by inserting the Fourier coefficients into the general solution. Doing
this, we have

u(r, θ) =
a0

2
+

∞

∑
n=1

(an cos nθ + bn sin nθ) rn

=
1

2π

∫ π

−π
f (ϕ) dϕ

+
1
π

∫ π

−π

∞

∑
n=1

[cos nϕ cos nθ + sin nϕ sin nθ]
( r

a

)n
f (ϕ) dϕ

=
1
π

∫ π

−π

[
1
2
+

∞

∑
n=1

cos n(θ − ϕ)
( r

a

)n
]

f (ϕ) dϕ. (6.99)

The term in the brackets can be summed. We note that4 4 Here we are using Euler’s formula,
eiθ = cos θ + i sin θ. So, the real part of
this is just the cosine function.cos n(θ − ϕ)

( r
a

)n
= Re

(
ein(θ−ϕ)

( r
a

)n)
= Re

( r
a

ei(θ−ϕ)
)n

. (6.100)

Therefore,

∞

∑
n=1

cos n(θ − ϕ)
( r

a

)n
= Re

(
∞

∑
n=1

( r
a

ei(θ−ϕ)
)n
)

.

The right hand side of this equation is a geometric series with common ratio

of
r
a

ei(θ−ϕ), which is also the first term of the series. Recall that

α + αz + αz2 + . . . =
α

1 − z
, |z| < 1.
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Since
∣∣∣ r
a

ei(θ−ϕ)
∣∣∣ = r

a
< 1, the series converges. Summing the series, we

obtain
∞

∑
n=1

( r
a

ei(θ−ϕ)
)n

=
r
a ei(θ−ϕ)

1 − r
a ei(θ−ϕ)

=
rei(θ−ϕ)

a − rei(θ−ϕ)
(6.101)

We need to rewrite this result so that we can easily take the real part.
Thus, we multiply and divide by the complex conjugate of the denominator
to obtain

∞

∑
n=1

( r
a

ei(θ−ϕ)
)n

=
rei(θ−ϕ)

a − rei(θ−ϕ)

a − re−i(θ−ϕ)

a − re−i(θ−ϕ)

=
are−i(θ−ϕ) − r2

a2 + r2 − 2ar cos(θ − ϕ)
. (6.102)

The real part of the sum is given as

Re

(
∞

∑
n=1

( r
a

ei(θ−ϕ)
)n
)

=
ar cos(θ − ϕ)− r2

a2 + r2 − 2ar cos(θ − ϕ)
.

Therefore, the factor in the brackets under the integral in Equation (6.99) is

1
2
+

∞

∑
n=1

cos n(θ − ϕ)
( r

a

)n
=

1
2
+

ar cos(θ − ϕ)− r2

a2 + r2 − 2ar cos(θ − ϕ)

=
a2 − r2

2(a2 + r2 − 2ar cos(θ − ϕ))
.

(6.103)

Thus, we have shown that the solution of Laplace’s equation on a disk
of radius a with boundary condition u(a, θ) = f (θ) can be written in the
closed formPoisson Integral Formula

u(r, θ) =
1

2π

∫ π

−π

a2 − r2

a2 + r2 − 2ar cos(θ − ϕ)
f (ϕ) dϕ. (6.104)

This result is called the Poisson Integral Formula and

K(θ, ϕ) =
a2 − r2

a2 + r2 − 2ar cos(θ − ϕ)

is called the Poisson kernel.

Example 6.8. Evaluate the solution (6.104) at the center of the disk.
We insert r = 0 into the solution (6.104) to obtain

u(0, θ) =
1

2π

∫ π

−π
f (ϕ) dϕ.

Recalling that the average of a function g(x) on [a, b] is given by

gave =
1

b − a

∫ b

a
g(x) dx,

we see that the value of the solution u at the center of the disk is the
average of the boundary values. This is sometimes referred to as the
mean value theorem.



problems in higher dimensions 223

Example 6.9. Consider a disk of radius a which is allowed to cool off
while the temperature of the boundary is maintained at u(a, θ, t) = T,
a constant. Find the steady state temperature.

The steady state temperature occurs when u(r, θ, t) no longer de-
pends on time. Thus, u = u(r, θ) satisfies Laplace’s equation with
f (θ) = T on the boundary. We can find the solution using the Poisson
Integral Formula in Equation (6.104). We have seen that it is useful
for proving that the value at the center of the disc is the average of
f (θ) over the boundary. But, how useful is it at providing the solution
given f (θ)?

If f (θ) can be written as a function of sin θ and/or cos θ, then one
may be able to evaluate this integral. We can use the tangent half angle

substitution, tan
θ

2
= t. This is derivable from a rational parametriza- There is an ambiguous history to this

substitution. It is sometime referred to
as the Weierstrass substitution. How-
ever, according to Wikipedia, Euler used
it in his calculus textbook in 1768 and
Legendre Legendre, Adrien-Marie in
1817. The author recalls it in Thomas’
calculus text in the 1960s and Michael
Spivak is quoted as referring to it as, the
“world’s sneakiest substitution.”

ton of the circle,

(x, y) =
(

1 − t2

1 + t2 ,
2t

1 + t2

)
= (cos θ, sin θ).

For t ∈ (−∞, ∞), θ ∈ [−π, π]. From the half angle identity for the
tangent, we have

tan
θ

2
=

1 − cos θ

sin θ
= t.

Geometric relations between t and θ for the Weierstrass substitution
are shown in Figure 6.16.

1

x

y1

θ

θ

2

t

√
1 + t2

Figure 6.16: Geometric relations between
t and θ for the Weierstrass substitution.

Returning to the Poisson’s integral formula, we let

t = tan
ϕ

2
, dϕ =

2 dt
1 + t2 .

Then, u(r, θ)

=
1

2π

∫ π

−π

a2 − r2

a2 + r2 − 2ar cos(θ − ϕ)
f (ϕ) dϕ

=
a2 − r2

2π

∫ π

−π

f (ϕ)
a2 + r2 − 2ar[cos θ cos ϕ + sin θ sin ϕ)]

dϕ

=
a2 − r2

π

∫ ∞

−∞

g(t)
(a2 + r2)(1 + t2)− 2ar[(1 − t2) cos θ + 2t sin θ)]

dt.

Here we defined g(t) = f (ϕ).
The denominator in the integrand is quadratic in t. So, we write

(a2 + r2)(1 + t2)− 2ar[(1 − t2) cos θ + 2t sin θ)] = αt2 + βt + γ,

where

α = a2 + r2 + 2ar cos θ

β = −4ar sin θ

γ = a2 + r2 − 2ar cos θ.
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In this example g(t) = T, a constant. So, we need to evaluate

u(r, θ) =
T
π
(a2 − r2)

∫ ∞

−∞

dt
αt2 + βt + γ

One can show that the roots of αt2 + βt + γ = 0 are complex, so we
need to complete the square. This is given by

αt2 + βt + γ = α

[
t2 +

β

α
t +

γ

α

]
= α

[(
t +

β

2α

)2
+

γ

α
−
(

β

2α

)2
]

= α

[(
t +

β

2α

)2
+

4αγ − β2

4α2

]

= α

[(
t +

β

2α

)2
+

(a2 − r2)2

α2

]
(6.105)

Now, we can carry out the integration, leading to the steady state
solution

u(r, θ) =
T
π
(a2 − r2)

∫ ∞

−∞

dt
αt2 + βt + γ

=
T
π
(a2 − r2)

∫ ∞

−∞

dt

α

[(
t + β

2α

)2
+ (a2−r2)2

α2

]
=

T
πα

(a2 − r2)
∫ ∞

−∞

dy

y2 + (a2−r2)2

α2

=
T

πα
(a2 − r2)

[
|α|

a2 − r2 tan−1
(

|α|
a2 − r2 y

)]∞

−∞

= T. (6.106)

6.4 Three Dimensional Cake Baking

In the rest of the chapter we will extend our studies to three di-
mensional problems. In this section we will solve the heat equation as we
look at examples of baking cakes.

We consider cake batter, which is at room temperature of Ti = 80◦F. It is
placed into an oven, also at a fixed temperature, Tb = 350◦F. For simplicity,
we will assume that the thermal conductivity and cake density are constant.
Of course, this is not quite true. However, it is an approximation which
simplifies the model. We will consider two cases, one in which the cake is a
rectangular solid, such as baking it in a 13′′ × 9′′ × 2′′ baking pan. The other
case will lead to a cylindrical cake, such as you would obtain from a round
cake pan.This discussion of cake baking is

adapted from R. Wilkinson’s 2007 thesis.
That in turn was inspired by work done
by Dr. Olszewski, (2006), From baking
a cake to solving the diffusion equation.
American Journal of Physics 74(6).

Assuming that the heat constant k is indeed constant and the temperature
is given by T(r, t), we begin with the heat equation in three dimensions,

∂T
∂t

= k∇2T. (6.107)
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We will need to specify initial and boundary conditions. Let Ti be the initial
batter temperature, T(x, y, z, 0) = Ti.

We choose the boundary conditions to be fixed at the oven temperature
Tb. However, these boundary conditions are not homogeneous and would
lead to problems when carrying out separation of variables. This is easily
remedied by subtracting the oven temperature from all temperatures in-
volved and defining u(r, t) = T(r, t)− Tb. The heat equation then becomes

∂u
∂t

= k∇2u (6.108)

with initial condition
u(r, 0) = Ti − Tb.

The boundary conditions are now homogeneous. We cannot be any more
specific than this until we specify the geometry.

Example 6.10. Temperature of a Rectangular Cake
We will consider a rectangular cake with dimensions 0 ≤ x ≤ W,

0 ≤ y ≤ L, and 0 ≤ z ≤ H as show in Figure 6.17. For this problem,
we seek solutions of the heat equation plus the conditions

u(x, y, z, 0) = Ti − Tb,

u(0, y, z, t) = u(W, y, z, t) = 0,

u(x, 0, z, t) = u(x, L, z, t) = 0,

u(x, y, 0, t) = u(x, y, H, t) = 0.

x

y

z

W

H

L

Figure 6.17: The dimensions of a rectan-
gular cake.

Using the method of separation of variables, we seek solutions of
the form

u(x, y, z, t) = X(x)Y(y)Z(z)G(t). (6.109)

Substituting this form into the heat equation, we get

1
k

G′

G
=

X′′

X
+

Y′′

Y
+

Z′′

Z
. (6.110)

Setting these expressions equal to −λ, we get

1
k

G′

G
= −λ and

X′′

X
+

Y′′

Y
+

Z′′

Z
= −λ. (6.111)

Therefore, the equation for G(t) is given by

G′ + kλG = 0.

We further have to separate out the functions of x, y, and z. We
anticipate that the homogeneous boundary conditions will lead to os-
cillatory solutions in these variables. Therefore, we expect separation
of variables will lead to the eigenvalue problems

X′′ + µ2X = 0, X(0) = X(W) = 0,

Y′′ + ν2Y = 0, Y(0) = Y(L) = 0,

Z′′ + κ2Z = 0, Z(0) = Z(H) = 0. (6.112)
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Noting that

X′′

X
= −µ2,

Y′′

Y
= −ν2,

Z′′

Z
= −κ2,

we find from the heat equation that the separation constants are re-
lated,

λ2 = µ2 + ν2 + κ2.

We could have gotten to this point quicker by writing the first sep-
arated equation labeled with the separation constants as

1
k

G′

G︸︷︷︸
−λ

=
X′′

X︸︷︷︸
−µ

+
Y′′

Y︸︷︷︸
−ν

+
Z′′

Z︸︷︷︸
−κ

.

Then, we can read off the eigenvalues problems and determine that
λ2 = µ2 + ν2 + κ2.

From the boundary conditions, we get product solutions for u(x, y, z, t)
in the form

umnℓ(x, y, z, t) = sin µmx sin νny sin κℓz e−λmnℓkt,

for

λmnl = µ2
m + ν2

n + κ2
ℓ =

(mπ

W

)2
+
(nπ

L

)2
+

(
ℓπ

H

)2
,

where m, n, ℓ = 1, 2, . . . .
The general solution is a linear combination of all of the product

solutions, summed over three different indices,

u(x, y, z, t) =
∞

∑
m=1

∞

∑
n=1

∞

∑
ℓ=1

Amnl sin µmx sin νny sin κℓz e−λmnℓkt, (6.113)

where the Amnℓ’s are arbitrary constants.
We can use the initial condition u(x, y, z, 0) = Ti − Tb to determine

the Amnℓ’s. We find

Ti − Tb =
∞

∑
m=1

∞

∑
n=1

∞

∑
ℓ=1

Amnl sin µmx sin νny sin κℓz. (6.114)

This is a triple Fourier sine series.Triple Fourier sine series.

We can determine these coefficients in a manner similar to how
we handled double Fourier sine series earlier in the chapter. [See
Equation (6.36).] Defining

bm(y, z) =
∞

∑
n=1

∞

∑
ℓ=1

Amnl sin νny sin κℓz,

we obtain a simple Fourier sine series:

Ti − Tb =
∞

∑
m=1

bm(y, z) sin µmx. (6.115)
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The Fourier coefficients can then be found as

bm(y, z) =
2

W

∫ W

0
(Ti − Tb) sin µmx dx.

Using the same technique for the remaining sine series and noting
that Ti − Tb is constant, we can determine the general coefficients Amnl

by carrying out the needed integrations:

Amnl =
8

WLH

∫ H

0

∫ L

0

∫ W

0
(Ti − Tb) sin µmx sin νny sin κℓz dxdydz

= (Ti − Tb)
8

π3

[
cos (mπx

W )

m

]W

0

[
cos ( nπy

L )

n

]L

0

[
cos ( ℓπz

H )

ℓ

]H

0

= (Ti − Tb)
8

π3

[
cos mπ − 1

m

] [
cos nπ − 1

n

] [
cos ℓπ − 1

ℓ

]

= (Ti − Tb)
8

π3

 0, for at least one m, n, ℓ even,[−2
m
] [−2

n
] [−2

ℓ

]
, for m, n, ℓ all odd.

Since only the odd multiples yield non-zero Amnℓ we let m = 2m′ −
1, n = 2n′ − 1, and ℓ = 2ℓ′ − 1 for m′, n′, ℓ′ = 1, 2, . . . . The expansion
coefficients can now be written in the simpler form

Amnl =
64(Tb − Ti)

(2m′ − 1) (2n′ − 1) (2ℓ′ − 1)π3 .

x y

z

W

H

L

Figure 6.18: Rectangular cake showing a
vertical slice.

Substituting this result into general solution and dropping the primes,
we find

u(x, y, z, t) =
64(Tb − Ti)

π3

∞

∑
m=1

∞

∑
n=1

∞

∑
ℓ=1

sin µmx sin νny sin κℓz e−λmnℓkt

(2m − 1)(2n − 1)(2ℓ− 1)
,

where

λmnℓ =

(
(2m − 1)π

W

)2

+

(
(2n − 1)π

L

)2

+

(
(2ℓ− 1)π

H

)2

for m, n, ℓ = 1, 2, . . ..
Recalling that the solution to the physical problem is

T(x, y, z, t) = u(x, y, z, t) + Tb,

we have the final solution is given by

T(x, y, z, t) = Tb +
64(Tb − Ti)

π3

∞

∑
m=1

∞

∑
n=1

∞

∑
ℓ=1

sin µ̂mx sin ν̂ny sin κ̂ℓz e−λ̂mnℓkt

(2m − 1)(2n − 1)(2ℓ− 1)
.

We show some temperature distributions in Figure 6.19. Since we
cannot capture the entire cake, we show vertical slices such as depicted
in Figure 6.18. Vertical slices are taken at the positions and times indi-
cated for a 13′′ × 9′′ × 2′′ cake. Obviously, this is not accurate because
the cake consistency is changing and this will affect the parameter k.
A more realistic model would be to allow k = k(T(x, y, z, t)). However,
such problems are beyond the simple methods described in this book.

Example 6.11. Circular Cakes
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Figure 6.19: Temperature evolution for
a 13′′ × 9′′ × 2′′ cake shown as vertical
slices at the indicated length in feet.
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Figure 6.20: Geometry for a cylindrical
cake.

In this case the geometry of the cake is cylindrical as show in Figure
6.20. Therefore, we need to express the boundary conditions and heat
equation in cylindrical coordinates. Also, we will assume that the
solution, u(r, z, t) = T(r, z, t) − Tb, is independent of θ due to axial
symmetry. This gives the heat equation in θ-independent cylindrical
coordinates as

∂u
∂t

= k
(

1
r

∂

∂r

(
r

∂u
∂r

)
+

∂2u
∂z2

)
, (6.116)

where 0 ≤ r ≤ a and 0 ≤ z ≤ Z. The initial condition is

u(r, z, 0) = Ti − Tb,

and the homogeneous boundary conditions on the side, top, and bot-
tom of the cake are

u(a, z, t) = 0,

u(r, 0, t) = u(r, Z, t) = 0.

Again, we seek solutions of the form u(r, z, t) = R(r)H(z)G(t). Sep-
aration of variables leads to

1
k

G′

G︸︷︷︸
−λ

=
1

rR
d
dr
(
rR′)︸ ︷︷ ︸

−µ2

+
H′′

H︸︷︷︸
−ν2

. (6.117)
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Here we have indicated the separation constants, which lead to
three ordinary differential equations. These equations and the bound-
ary conditions are

G′ + kλG = 0,
d
dr
(
rR′)+ µ2rR = 0, R(a) = 0, R(0) is finite,

H′′ + ν2H = 0, H(0) = H(Z) = 0. (6.118)

We further note that the separation constants are related by the ex-
pression λ = µ2 + ν2.

We can easily write down the solutions for G(t) and H(z),

G(t) = Ae−λkt

and
Hn(z) = sin

nπz
Z

, n = 1, 2, 3, . . . ,

where ν =
nπ

Z
. Recalling from the rectangular case that only odd

terms arise in the Fourier sine series coefficients for the constant initial
condition, we proceed by rewriting H(z) as

Hn(z) = sin
(2n − 1)πz

Z
, n = 1, 2, 3, . . . (6.119)

with ν =
(2n − 1)π

Z
.

The radial equation can be written in the form

r2R′′ + rR′ + µ2r2R = 0.

This is a Bessel equation of the first kind of order zero which we had
seen in Section 5.5. Therefore, the general solution is a linear combi-
nation of Bessel functions of the first and second kind,

R(r) = c1 J0(µr) + c2N0(µr). (6.120)

Since R(r) is bounded at r = 0 and N0(µr) is not well behaved at
r = 0, we set c2 = 0. Up to a constant factor, the solution becomes

R(r) = J0(µr). (6.121)

The boundary condition R(a) = 0 gives the eigenvalues as

µm =
j0m

a
, m = 1, 2, 3, . . . ,

where j0m are the mth roots of the zero-order Bessel function, J0(j0m) =

0.
Therefore, we have found the product solutions

Hn(z)Rm(r)G(t) = sin
(2n − 1)πz

Z
J0

( r
a

j0m

)
e−λnmkt, (6.122)
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where m = 1, 2, 3, . . . , n = 1, 2, . . . . Combining the product solutions,
the general solution is found as

u(r, z, t) =
∞

∑
n=1

∞

∑
m=1

Anm sin
(2n − 1)πz

Z
J0

( r
a

j0m

)
e−λnmkt (6.123)

with

λnm =

(
(2n − 1)π

Z

)2

+

(
j0m

a

)2
,

for n, m = 1, 2, 3, . . . .
Inserting the solution into the constant initial condition, we have

Ti − Tb =
∞

∑
n=1

∞

∑
m=1

Anm sin
(2n − 1)πz

Z
J0

( r
a

j0m

)
.

This is a double Fourier series but it involves a Fourier-Bessel expan-
sion. Writing

bn(r) =
∞

∑
m=1

Anm J0

( r
a

j0m

)
,

the condition becomes

Ti − Tb =
∞

∑
n=1

bn(r) sin
(2n − 1)πz

Z
.

As seen previously, this is a Fourier sine series and the Fourier
coefficients are given by

bn(r) =
2
Z

∫ Z

0
(Ti − Tb) sin

(2n − 1)πz
Z

dz

=
2(Ti − Tb)

Z

[
− Z
(2n − 1)π

cos
(2n − 1)πz

Z

]Z

0

=
4(Ti − Tb)

(2n − 1)π
.

We insert this result into the Fourier-Bessel series,

4(Ti − Tb)

(2n − 1)π
=

∞

∑
m=1

Anm J0

( r
a

j0m

)
,

and recall from Section 5.5 that we can determine the Fourier coeffi-
cients Anm using the Fourier-Bessel series,

f (x) =
∞

∑
n=1

cn Jp(jpn
x
a
), (6.124)

where the Fourier-Bessel coefficients are found as

cn =
2

a2
[

Jp+1(jpn)
]2 ∫ a

0
x f (x)Jp(jpn

x
a
) dx. (6.125)

Comparing these series expansions, we have

Anm =
2

a2 J2
1 (j0m)

4(Ti − Tb)

(2n − 1)π

∫ a

0
J0(µmr)r dr. (6.126)
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In order to evaluate
∫ a

0 J0(µmr)r dr, we let y = µmr and get∫ a

0
J0(µmr)rdr =

∫ µma

0
J0(y)

y
µm

dy
µm

=
1

µ2
m

∫ µma

0
J0(y)y dy

=
1

µ2
m

∫ µma

0

d
dy

(yJ1(y)) dy

=
1

µ2
m
(µma)J1(µma) =

a2

j0m
J1(j0m). (6.127)

Here we have made use of the identity d
dx (xJ1(x)) = J0(x) from Sec-

tion 5.5.
Substituting the result of this integral computation into the expres-

sion for Anm, we find

Anm =
8(Ti − Tb)

(2n − 1)π
1

j0m J1(j0m)
.

Substituting this result into the original expression for u(r, z, t), gives

u(r, z, t) =
8(Ti − Tb)

π

∞

∑
n=1

∞

∑
m=1

sin (2n−1)πz
Z

(2n − 1)
J0(

r
a j0m)e−λnmkt

j0m J1(j0m)
.

Therefore, T(r, z, t) is found as

T(r, z, t) = Tb +
8(Ti − Tb)

π

∞

∑
n=1

∞

∑
m=1

sin (2n−1)πz
Z

(2n − 1)
J0(

r
a j0m)e−λnmkt

j0m J1(j0m)
,

where

λnm =

(
(2n − 1)π

Z

)2

+

(
j0m

a

)2
, n, m = 1, 2, 3, . . . .

Figure 6.21: Depiction of a sideview of a
vertical slice of a circular cake.

We have therefore found the general solution for the three-dimensional
heat equation in cylindrical coordinates with constant diffusivity. Sim-
ilar to the solutions shown in Figure 6.19 of the previous section, we
show in Figure 6.22 the temperature evolution throughout a standard
9′′ round cake pan. These are vertical slices similar to what is depicted
in Figure 6.21.

Again, one could generalize this example to considerations of other types
of cakes with cylindrical symmetry. For example, there are muffins, Boston
steamed bread which is steamed in tall cylindrical cans. One could also
consider an annular pan, such as a bundt cake pan. In fact, such problems
extend beyond baking cakes to possible heating molds in manufacturing.

6.5 Laplace’s Equation and Spherical Symmetry

We have seen that Laplace’s equation, ∇2u = 0, arises in electro-
statics as an equation for electric potential outside a charge distribution
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Figure 6.22: Temperature evolution for a
standard 9′′ cake shown as vertical slices
through the center.

Temperatures for t = 15 min

 

 

-0.2 0 0.2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

100

150

200

250

300

350
Temperatures for t = 20 min

 

 

-0.2 0 0.2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

100

150

200

250

300

350

Temperatures for t = 25 min

 

 

-0.2 0 0.2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

100

150

200

250

300

350
Temperatures for t = 30 min

 

 

-0.2 0 0.2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

100

150

200

250

300

350

and it occurs as the equation governing equilibrium temperature distribu-
tions. Laplace’s equation originally occurred in the study of potential the-
ory, which also includes the study of gravitational and fluid potentials. The
equation is named after Pierre-Simon Laplace (1749-1827) who had studied
the properties of this equation.

Example 6.12. Solve Laplace’s equation in spherical coordinates.

x

y

a

u(a, θ, ϕ) = g(θ, ϕ)

Figure 6.23: A sphere of radius r with
the boundary condition u(r, θ, ϕ) =
g(θ, ϕ).

We seek solutions of this equation inside a sphere of radius a sub-
ject to the boundary condition as shown in Figure 6.23. The problem
is given by Laplace’s equation Laplace’s equation in spherical coordi-
nates.

1
r2

∂

∂r

(
r2 ∂u

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂u
∂θ

)
+

1
r2 sin2 θ

∂2u
∂ϕ2 = 0, (6.128)

where u = u(r, θ, ϕ).
The boundary conditions are given by

u(a, θ, ϕ) = g(θ, ϕ), 0 < ϕ < 2π, 0 < θ < π,

and the periodic boundary conditions

u(r, θ, 0) = u(r, θ, 2π), uϕ(r, θ, 0) = uϕ(r, θ, 2π),

where 0 < r < ∞, and 0 < θ < π.

As before, we perform a separation of variables by seeking product so-
lutions of the form u(r, θ, ϕ) = R(r)Θ(θ)Φ(ϕ). Inserting this form into the
Laplace equation, we obtain

x

y

z

r

ϕ

θ

Figure 6.24: Definition of spherical coor-
dinates (r, θ, ϕ). Note that there are dif-
ferent conventions for labeling spherical
coordinates. This labeling is used often
in physics.
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ΘΦ
r2

d
dr

(
r2 dR

dr

)
+

RΦ
r2 sin θ

d
dθ

(
sin θ

dΘ
dθ

)
+

RΘ
r2 sin2 θ

d2Φ
dϕ2 = 0. (6.129)

Multiplying this equation by r2 and dividing by RΘΦ, yields

1
R

d
dr

(
r2 dR

dr

)
+

1
sin θΘ

d
dθ

(
sin θ

dΘ
dθ

)
+

1
sin2 θΦ

d2Φ
dϕ2 = 0. (6.130)

Note that the first term is the only term depending upon r. Thus, we can
separate out the radial part. However, there is still more work to do on the
other two terms, which give the angular dependence. Thus, we have

− 1
R

d
dr

(
r2 dR

dr

)
=

1
sin θΘ

d
dθ

(
sin θ

dΘ
dθ

)
+

1
sin2 θΦ

d2Φ
dϕ2 = −λ, (6.131)

where we have introduced the first separation constant. This leads to two
equations:

d
dr

(
r2 dR

dr

)
− λR = 0 (6.132)

and
1

sin θΘ
d
dθ

(
sin θ

dΘ
dθ

)
+

1
sin2 θΦ

d2Φ
dϕ2 = −λ. (6.133)

Equation (6.133) is a key equation which
occurs when studying problems possess-
ing spherical symmetry. It is an eigen-
value problem for Y(θ, ϕ) = Θ(θ)Φ(ϕ),
LY = −λY, where

L =
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin2 θ

∂2

∂ϕ2 .

The eigenfunctions of this operator are
referred to as spherical harmonics.

The final separation can be performed by multiplying the last equation by
sin2 θ, rearranging the terms, and introducing a second separation constant:

sin θ

Θ
d
dθ

(
sin θ

dΘ
dθ

)
+ λ sin2 θ = − 1

Φ
d2Φ
dϕ2 = µ. (6.134)

From this expression we can determine the differential equations satisfied
by Θ(θ) and Φ(ϕ):

sin θ
d
dθ

(
sin θ

dΘ
dθ

)
+ (λ sin2 θ − µ)Θ = 0, (6.135)

and
d2Φ
dϕ2 + µΦ = 0. (6.136)

We now have three ordinary differential equations to solve. These are the
radial equation (6.132) and the two angular equations (6.135)-(6.136). We
note that all three are in Sturm-Liouville form. We will solve each eigen-
value problem subject to appropriate boundary conditions.

The simplest of these differential equations is Equation (6.136) for Φ(ϕ).
We have seen equations of this form many times and the general solution
is a linear combination of sines and cosines. Furthermore, in this problem
u(r, θ, ϕ) is periodic in ϕ,

u(r, θ, 0) = u(r, θ, 2π), uϕ(r, θ, 0) = uϕ(r, θ, 2π).

Since these conditions hold for all r and θ, we must require that Φ(ϕ) satisfy
the periodic boundary conditions

Φ(0) = Φ(2π), Φ′(0) = Φ′(2π).
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The eigenfunctions and eigenvalues for Equation (6.136) are then found as

Φ(ϕ) = {cos mϕ, sin mϕ} , µ = m2, m = 0, 1, . . . . (6.137)

Next we turn to solving equation, (6.135). We first transform this equation
in order to identify the solutions. Let x = cos θ. Then the derivatives with
respect to θ transform as

d
dθ

=
dx
dθ

d
dx

= − sin θ
d

dx
.

Letting y(x) = Θ(θ) and noting that sin2 θ = 1 − x2, Equation (6.135) be-
comes

d
dx

(
(1 − x2)

dy
dx

)
+

(
λ − m2

1 − x2

)
y = 0. (6.138)

We further note that x ∈ [−1, 1], as can be easily confirmed by the reader.
This is a Sturm-Liouville eigenvalue problem. The solutions consist of a

set of orthogonal eigenfunctions. For the special case that m = 0 Equation
(6.138) becomes

d
dx

(
(1 − x2)

dy
dx

)
+ λy = 0. (6.139)

In a course in differential equations one learns to seek solutions of this
equation in the form

y(x) =
∞

∑
n=0

anxn.

This leads to the recursion relation

an+2 =
n(n + 1)− λ

(n + 2)(n + 1)
an.

Setting n = 0 and seeking a series solution, one finds that the resulting series
does not converge for x = ±1. This is remedied by choosing λ = ℓ(ℓ+ 1)
for ℓ = 0, 1, . . . , leading to the differential equation

d
dx

(
(1 − x2)

dy
dx

)
+ ℓ(ℓ+ 1)y = 0. (6.140)

We saw this equation in Chapter 5 in the form

(1 − x2)y′′ − 2xy′ + ℓ(ℓ+ 1)y = 0.

The solutions of this differential equation are Legendre polynomials, de-
noted by Pℓ(x).

For the more general case, m ̸= 0, the differential equation (6.138) with
λ = ℓ(ℓ+ 1) becomesAssociated Legendre functions.

d
dx

(
(1 − x2)

dy
dx

)
+

(
ℓ(ℓ+ 1)− m2

1 − x2

)
y = 0. (6.141)

The solutions of this equation are called the associated Legendre functions.
The two linearly independent solutions are denoted by Pm

ℓ (x) and Qm
ℓ (x).

The latter functions are not well behaved at x = ±1, corresponding to the
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north and south poles of the original problem. So, we can throw out these
solutions in many physical cases, leaving

Θ(θ) = Pm
ℓ (cos θ)

as the needed solutions. In Table 6.5 we list a few of these.

Pm
n (x) Pm

n (cos θ)

P0
0 (x) 1 1

P0
1 (x) x cos θ

P1
1 (x) −(1 − x2)

1
2 − sin θ

P0
2 (x) 1

2 (3x2 − 1) 1
2 (3 cos2 θ − 1)

P1
2 (x) −3x(1 − x2)

1
2 −3 cos θ sin θ

P2
2 (x) 3(1 − x2) 3 sin2 θ

P0
3 (x) 1

2 (5x3 − 3x) 1
2 (5 cos3 θ − 3 cos θ)

P1
3 (x) − 3

2 (5x2 − 1)(1 − x2)
1
2 − 3

2 (5 cos2 θ − 1) sin θ

P2
3 (x) 15x(1 − x2) 15 cos θ sin2 θ

P3
3 (x) −15(1 − x2)

3
2 −15 sin3 θ

Table 6.5: Associated Legendre Func-
tions, Pm

n (x).

The associated Legendre functions are related to the Legendre polynomi-
als by5 5 The factor of (−1)m is known as the

Condon-Shortley phase and is useful in
quantum mechanics in the treatment of
agular momentum. It is sometimes omit-
ted by some

Pm
ℓ (x) = (−1)m(1 − x2)m/2 dm

dxm Pℓ(x), (6.142)

for ℓ = 0, 1, 2, , . . . and m = 0, 1, . . . , ℓ. We further note that P0
ℓ (x) = Pℓ(x),

as one can see in the table. Since Pℓ(x) is a polynomial of degree ℓ, then for

m > ℓ,
dm

dxm Pℓ(x) = 0 and Pm
ℓ (x) = 0.

Furthermore, since the differential equation only depends on m2, P−m
ℓ (x)

is proportional to Pm
ℓ (x). One normalization is given by

P−m
ℓ (x) = (−1)m (ℓ− m)!

(ℓ+ m)!
Pm
ℓ (x).

The associated Legendre functions also satisfy the orthogonality condi-
tion Orthogonality relation.∫ 1

−1
Pm
ℓ (x)Pm

ℓ′ (x) dx =
2

2ℓ+ 1
(ℓ+ m)!
(ℓ− m)!

δℓℓ′ . (6.143)

The last differential equation we need to solve is the radial equation. With
λ = ℓ(ℓ+ 1), ℓ = 0, 1, 2, . . . , the radial equation (6.132) can be written as

r2R′′ + 2 rR′ − ℓ(ℓ+ 1)R = 0. (6.144)

The radial equation is a Cauchy-Euler type of equation. So, we can guess
the form of the solution to be R(r) = rs, where s is a yet to be determined
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constant. Inserting this guess into the radial equation, we obtain the char-
acteristic equation

s(s + 1) = ℓ(ℓ+ 1).

Solving for s, we have
s = ℓ,−(ℓ+ 1).

Thus, the general solution of the radial equation is

R(r) = αrℓ + βr−(ℓ+1). (6.145)
When seeking solutions outside the
sphere, one considers the boundary con-
dition R(r) → 0 as r → ∞. In this case,
R(r) = r−(ℓ+1).

We would normally apply boundary conditions at this point. The bound-
ary condition u(a, θ, ϕ) = g(θ, ϕ) is not a homogeneous boundary condition,
so we will need to hold off using it until we have the general solution to the
three dimensional problem. However, we do have a hidden condition. Since
we are interested in solutions inside the sphere, we need to consider what
happens at r = 0. Note that r−(ℓ+1) is not defined at the origin. Since the
solution is expected to be bounded at the origin, we can set β = 0. So, in
the current problem we have established that

R(r) = αrℓ.

We have carried out the full separation of Laplace’s equation in spherical
coordinates. The product solutions consist of the forms

u(c)
ℓm(r, θ, ϕ) = rℓPm

ℓ (cos θ) cos mϕ

and
u(s)
ℓm(r, θ, ϕ) = rℓPm

ℓ (cos θ) sin mϕ

for ℓ = 0, 1, 2, . . . and m = 0,±1, , . . . ,±ℓ. These solutions can be combined
to give a complex representation of the product solutions as

uℓm(r, θ, ϕ) = rℓPm
ℓ (cos θ)eimϕ.

The general solution is then given as a linear combination of these product
solutions. As there are two indices, we have a double sum:6

6 While this appears to be a complex-
valued solution, it can be rewritten as
a sum over real functions. The inner
sum contains terms for both m = k and
m = −k. Adding these contributions, we
have that

cℓk rℓPk
ℓ (cos θ)eikϕ + cℓ(−k) rℓP−k

ℓ (cos θ)e−ikϕ

can be rewritten as

(Aℓk cos kϕ + Bℓk sin kϕ) rℓPk
ℓ (cos θ).

u(r, θ, ϕ) =
∞

∑
ℓ=0

ℓ

∑
m=−ℓ

cℓm rℓPm
ℓ (cos θ)eimϕ. (6.146)

Example 6.13. Laplace’s Equation with Azimuthal Symmetry
As a simple example we consider the solution of Laplace’s equation

in which there is azimuthal symmetry. Let

u(a, θ, ϕ) = g(θ) = 1 − cos 2θ.

This function is zero at the poles and has a maximum at the equator.
So, this could be a crude model of the temperature distribution of the
Earth with zero temperature at the poles and a maximum near the
equator.

x

y

a

u(a, θ, ϕ) = 1 − cos 2θ

Figure 6.25: A sphere of radius a with
the boundary condition

u(a, θ, ϕ) = 1 − cos 2θ.
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In problems in which there is no ϕ-dependence, only the m = 0
terms of the general solution survives. Thus, we have that

u(r, θ, ϕ) =
∞

∑
ℓ=0

cℓ rℓPℓ(cos θ). (6.147)

Here we have used the fact that P0
ℓ (x) = Pℓ(x). We just need to deter-

mine the unknown expansion coefficients, cℓ. Imposing the boundary
condition at r = a, we are lead to

g(θ) =
∞

∑
ℓ=0

cℓaℓPℓ(cos θ). (6.148)

This is a Fourier-Legendre series representation of g(θ). Since the
Legendre polynomials are an orthogonal set of eigenfunctions, we can
extract the coefficients.

In Chapter 5 we had proven that∫ π

0
Pn(cos θ)Pm(cos θ) sin θ dθ =

∫ 1

−1
Pn(x)Pm(x) dx =

2
2n + 1

δnm.

So, multiplying the expression for g(θ) by Pm(cos θ) sin θ and integrat-
ing, we obtain the expansion coefficients:

cℓ =
2ℓ+ 1

2aℓ

∫ π

0
g(θ)Pℓ(cos θ) sin θ dθ. (6.149)

Sometimes it is easier to rewrite g(θ) as a polynomial in cos θ and
avoid the integration. For this example we see that

g(θ) = 1 − cos 2θ

= 2 sin2 θ

= 2 − 2 cos2 θ. (6.150)

Thus, setting x = cos θ and G(x) = g(θ(x)), we have G(x) = 2 − 2x2.
We seek the form

G(x) = d0P0(x) + d1P1(x) + d2P2(x),

where P0(x) = 1, P1(x) = x, and P2(x) = 1
2 (3x2 − 1). Since G(x) =

2 − 2x2 does not have any x terms, we know that d1 = 0. So,

2 − 2x2 = d0(1) + d2
1
2
(3x2 − 1) = d0 −

1
2

d2 +
3
2

d2x2.

By observation we have d2 = − 4
3 and thus, d0 = 2 + 1

2 d2 = 4
3 .

Therefore, G(x) = 4
3 P0(x)− 4

3 P2(x).
We have found the expansion of g(θ) in terms of Legendre polyno-

mials,

g(θ) =
4
3

P0(cos θ)− 4
3

P2(cos θ). (6.151)

Therefore, the nonzero coefficients in the general solution become

c0 =
4
3

, c2 =
4
3

1
a2 ,



238 partial differential equations

and the rest of the coefficients are zero. Inserting these into the general
solution, we have the final solution

u(r, θ, ϕ) =
4
3

P0(cos θ)− 4
3

( r
a

)2
P2(cos θ)

=
4
3
− 2

3

( r
a

)2
(3 cos2 θ − 1). (6.152)

6.5.1 Spherical Harmonics

The solutions of the angular parts of the problem are often com-
bined into one function of two variables, as problems with spherical sym-
metry arise often, leaving the main differences between such problems con-
fined to the radial equation. These functions are referred to as spherical
harmonics, Yℓm(θ, ϕ), which are defined with a special normalization as

Yℓm(θ, ϕ), are the spherical harmonics.
Spherical harmonics are important in
applications from atomic electron con-
figurations to gravitational fields, plane-
tary magnetic fields, and the cosmic mi-
crowave background radiation.

Yℓm(θ, ϕ) = (−1)m

√
2ℓ+ 1

4π

(ℓ− m)!
(ℓ+ m)!

Pm
ℓ (cos θ)eimϕ. (6.153)

These satisfy the simple orthogonality relation∫ π

0

∫ 2π

0
Yℓm(θ, ϕ)Y∗

ℓ′m′(θ, ϕ) sin θ dϕ dθ = δℓℓ′δmm′ .

As seen earlier in the chapter, the spherical harmonics are eigenfunctions
of the eigenvalue problem LY = −λY, where

L =
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin2 θ

∂2

∂ϕ2 .

This operator appears in many problems in which there is spherical sym-
metry, such as obtaining the solution of Schrödinger’s equation for the hy-
drogen atom as we will see later. Therefore, it is customary to plot spherical
harmonics. Because the Yℓm’s are complex functions, one typically plots ei-
ther the real part or the modulus squared. One rendition of |Yℓm(θ, ϕ)|2 is
shown in Figure 6.6 for ℓ, m = 0, 1, 2, 3.

We could also look for the nodal curves of the spherical harmonics like
we had for vibrating membranes. Such surface plots on a sphere are shown
in Figure 6.7. The colors provide for the amplitude of the |Yℓm(θ, ϕ)|2. We
can match these with the shapes in Figure 6.6 by coloring the plots with
some of the same colors as shown in Figure 6.7. However, by plotting just
the sign of the spherical harmonics, as in Figure 6.8, we can pick out the
nodal curves much easier.



problems in higher dimensions 239

m = 0 m = 1 m = 2 m = 3

ℓ = 0

ℓ = 1

ℓ = 2

ℓ = 3

Table 6.6: The first few spherical har-
monics, |Yℓm(θ, ϕ)|2

m = 0 m = 1 m = 2 m = 3

ℓ = 0

ℓ = 1

ℓ = 2

ℓ = 3

Table 6.7: Spherical harmonic contours
for |Yℓm(θ, ϕ)|2.

m = 0 m = 1 m = 2 m = 3

ℓ = 0

ℓ = 1

ℓ = 2

ℓ = 3

Table 6.8: In these figures we show
the nodal curves of |Yℓm(θ, ϕ)|2 Along
the first column (m = 0) are the zonal
harmonics seen as ℓ horizontal circles.
Along the top diagonal (m = ℓ) are
the sectional harmonics. These look like
orange sections formed from m vertical
circles. The remaining harmonics are
tesseral harmonics. They look like a
checkerboard pattern formed from inter-
sections of ℓ−m horizontal circles and m
vertical circles.
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Figure 6.26: Zonal harmonics, ℓ = 1,
m = 0.

Figure 6.27: Zonal harmonics, ℓ = 2,
m = 0.

Figure 6.28: Sectoral harmonics, ℓ = 2,
m = 2.

Figure 6.29: Tesseral harmonics, ℓ = 3,
m = 1.

Spherical, or surface, harmonics can be further grouped into zonal, sec-
toral, and tesseral harmonics. Zonal harmonics correspond to the m = 0
modes. In this case, one seeks nodal curves for which Pℓ(cos θ) = 0. So-
lutions of this equation lead to constant θ values such that cos θ is a zero
of the Legendre polynomial, Pℓ(x). The zonal harmonics correspond to the
first column in Figure 6.8. Since Pℓ(x) is a polynomial of degree ℓ, the zonal
harmonics consist of ℓ latitudinal circles.

Sectoral, or meridional, harmonics result for the case that m = ±ℓ. For
this case, we note that P±ℓ

ℓ (x) ∝ (1 − x2)m/2. This function vanishes for
x = ±1, or θ = 0, π. Therefore, the spherical harmonics can only produce
nodal curves for eimϕ = 0. Thus, one obtains the meridians satisfying the
condition A cos mϕ+ B sin mϕ = 0. Solutions of this equation are of the form
ϕ = constant. These modes can be seen in Figure 6.8 in the top diagonal
and can be described as m circles passing through the poles, or longitudinal
circles.

Tesseral harmonics consist of the rest of the modes, which typically look
like a checker board glued to the surface of a sphere. Examples can be
seen in the pictures of nodal curves, such as Figure 6.8. Looking in Figure
6.8 along the diagonals going downward from left to right, one can see the
same number of latitudinal circles. In fact, there are ℓ− m latitudinal nodal
curves in these figures

In summary, the spherical harmonics have several representations, as
show in Figures 6.7-6.8. Note that there are ℓ nodal lines, m meridional
curves, and ℓ− m horizontal curves in these figures. The plots in Figure 6.6
are the typical plots shown in physics for discussion of the wavefunctions
of the hydrogen atom. Those in 6.7 are useful for describing gravitational
or electric potential functions, temperature distributions, or wave modes
on a spherical surface. The relationships between these pictures and the
nodal curves can be better understood by comparing respective plots. Sev-
eral modes were separated out in Figures 6.26-6.31 to make this comparison
easier.

Figure 6.30: Sectoral harmonics, ℓ = 3,
m = 3.

Figure 6.31: Tesseral harmonics, ℓ = 4,
m = 3. 6.6 Spherically Symmetric Vibrations

x

y

a

Figure 6.32: A vibrating sphere of radius
a with the initial conditions

u(θ, ϕ, 0) = f (θ, ϕ),

ut(θ, ϕ, 0) = g(θ, ϕ).

Another application of spherical harmonics is a vibrating spher-
ical membrane, such as a balloon. Just as for the two-dimensional mem-
branes encountered earlier, we let u(θ, ϕ, t) represent the vibrations of the
surface about a fixed radius obeying the wave equation, utt = c2∇2u, and
satisfying the initial conditions

u(θ, ϕ, 0) = f (θ, ϕ), ut(θ, ϕ, 0) = g(θ, ϕ).

In spherical coordinates, we have (for r = a = constant.)

utt =
c2

a2

(
1

sin θ

∂

∂θ

(
sin θ

∂u
∂θ

)
+

1
sin2 θ

∂2u
∂ϕ2

)
, (6.154)
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where u = u(θ, ϕ, t).
The boundary conditions are given by the periodic boundary conditions

u(θ, 0, t) = u(θ, 2π, t), uϕ(θ, 0, t) = uϕ(θ, 2π, t),

where 0 < t, and 0 < θ < π, and that u = u(θ, ϕ, t) should remain
bounded.

Noting that the wave equation takes the form

utt =
c2

a2 Lu, where LYℓm = −ℓ(ℓ+ 1)Yℓm

for the spherical harmonics Yℓm(θ, ϕ) = Pm
ℓ (cos θ)eimϕ, we can seek product

solutions of the form

uℓm(θ, ϕ, t) = T(t)Yℓm(θ, ϕ).

Inserting this form into the wave equation in spherical coordinates, we find

T′′Yℓm = − c2

a2 T(t)ℓ(ℓ+ 1)Yℓm,

or

T′′ + ℓ(ℓ+ 1)
c2

a2 T(t) = 0.

The solutions of this equation are easily found as

T(t) = A cos ωℓt + B sin ωℓt, ωℓ =
√
ℓ(ℓ+ 1)

c
a

.

Therefore, the product solutions are given by

uℓm(θ, ϕ, t) = [A cos ωℓt + B sin ωℓt]Yℓm(θ, ϕ)

for ℓ = 0, 1, . . . , m = −ℓ,−ℓ+ 1, . . . , ℓ.
In Figure 6.33 we show several solutions for a = c = 1 at t = 10.

Figure 6.33: Modes for a vibrating spher-
ical membrane:
Row 1: (1, 0), (1, 1);
Row 2: (2, 0), (2, 1), (2, 2);
Row 3 (3, 0), (3, 1), (3, 2), (3, 3).

The general solution is found as

u(θ, ϕ, t) =
∞

∑
ℓ=0

ℓ

∑
m=−ℓ

[Aℓm cos ωℓt + Bℓm sin ωℓt]Yℓm(θ, ϕ).
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An interesting problem is to consider hitting the balloon with a velocity
impulse while at rest. An example of such a solution is shown in Figure
6.34. In this images several modes are excited after the impulse.

Figure 6.34: A moment captured from a
simulation of a spherical membrane af-
ter hit with a velocity impulse.

6.7 Baking a Spherical Turkey

During one year as this course was being taught, an instructor returned
from the American holiday of Thanksgiving, where it is customary to cook a
turkey. Such a turkey is shown in Figure 6.35. This reminded the instructor
of a typical problem, such as in Weinberger, (1995, p. 92.), where one is
given a roast of a certain volume and one is asked to find the time it takes
to cook one double the size. In this section, we explore a similar problem
for cooking a turkey.

Figure 6.35: A 12-lb turkey leaving the
oven.

Often during this time of the year, November, articles appear with some
scientific evidence as to how to gauge how long it takes to cook a turkey of a
given weight. Inevitably it refers to the story, as told in http://today.slac.

stanford.edu/a/2008/11-26.htmhttp://today.slac.stanford.edu/a/2008/11-
26.htm that Pief Panofsky, a former SLAC Director, was determined to find a
nonlinear equation for determining cooking times instead of using the rule
of thumb of 30 minutes per pound of turkey. He had arrived at the form,

t =
W2/3

1.5
,

where t is the cooking time and W is the weight of the turkey in pounds.
Nowadays, one can go to Wolframalpha.com and enter the question "how
long should you cook a turkey" and get results based on a similar formula.

Before turning to the solution of the heat equation for a turkey, let’s con-
sider a simpler problem.

Example 6.14. If it takes 4 hours to cook a 10 pound turkey in a 350
o

F oven, then how long would it take to cook a 20 pound turkey at the
same conditions?

In all of our analysis, we will consider a spherical turkey. While the
turkey in Figure 6.35 is not quite spherical, we are free to approximate
the turkey as such. If you prefer, we could imagine a spherical turkey
like the one shown in Figure 6.36.

http://today.slac.stanford.edu/a/2008/11-26.htm
http://today.slac.stanford.edu/a/2008/11-26.htm
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This problem is one of scaling. Thinking of the turkey as being
spherically symmetric, then the baking follows the heat equation in
the form

ut =
k
r2

∂

∂r

(
r2 ∂u

∂r

)
.

We can rescale the variables from coordinates (r, t) to (r, τ) as r =

βr, and t = ατ. Then the derivatives transform as

∂

∂r
=

∂r
∂r

∂

∂r
=

1
β

∂

∂r
,

∂

∂t
=

∂τ

∂t
∂

∂τ
=

1
α

∂

∂τ
. (6.155)

Figure 6.36: The depiction of a spherical
turkey.

Inserting these transformations into the heat equation, we have

uτ =
α

β2
k
r2

∂

∂r

(
r2 ∂u

∂r

)
.

To keep conditions the same, then we need α = β2. So, the transfor-
mation that keeps the form of the heat equation the same, or makes it
invariant, is r = β r, and t = β2τ. This is also known as a self-similarity
transformation.

So, if the radius increases by a factor of β, then the time to cook the
turkey (reaching a given temperature, u), would increase by β2. Re-
turning to the problem, if the weight of the doubles, then the volume
doubles, assuming that the density is held constant. However, the vol-
ume is proportional to r3. So, r increases by a factor of 21/3. Therefore,
the time increases by a factor of 22/3 ≈ 1.587. This give the time for
cooking a 20 lb turkey as t = 4(22/3) = 28/3 ≈ 6.35 hours.

The previous example shows the power of using similarity transforma-
tions to get general information about solutions of differential equations.
However, we have focussed on using the method of separation of variables
for most of the book so far. We should be able to find a solution to the
spherical turkey model using these methods as well. This will be shown in
the next example.
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Example 6.15. Find the temperature, T(r, t) inside a spherical turkey,
initially at 40◦, which is F placed in a 350◦ F. Assume that the turkey is
of constant density and that the surface of the turkey is maintained at
the oven temperature. [We will also neglect convection and radiation
processes inside the oven.]

The problem can be formulated as a heat equation problem for
T(r, t) :

Tt =
k
r2

∂

∂r

(
r2 ∂T

∂r

)
, 0 < r < a, t > 0,

T(a, t) = 350, T(r, t) finite at r = 0, t > 0,

T(r, 0) = 40. (6.156)

We note that the boundary condition is not homogeneous. How-
ever, we can fix that by introducing the auxiliary function (the differ-
ence between the turkey and oven temperatures) u(r, t) = T(r, t)− Ta,
where Ta = 350. Then, the problem to be solved becomes

ut =
k
r2

∂

∂r

(
r2 ∂u

∂r

)
, 0 < r < a, t > 0,

u(a, t) = 0, u( r, t) finite at r = 0, t > 0,

u(r, 0) = Ti − Ta = −310, (6.157)

where Ti = 40.
We can now employ the method of separation of variables. Let

u(r, t) = R(r)G(t). Inserting into the heat equation for u, we have

1
k

G′

G
=

1
R

(
R′′ +

2
rR′
)
= −λ.

This give the two ordinary differential equations, the temporal equa-
tion,

G′ = −kλG, (6.158)

and the radial equation,

rR′′ + 2R′ + λrR = 0. (6.159)

The temporal equation is easy to solve,

G(t) = G0e−λkt.

However, the radial equation is slightly more difficult. But, making
the substitution R(r) = y(r)/r, it is readily transformed into a simpler
form:7

7 The radial equation almost looks famil-
iar when it is multiplied by r :

r2R′′ + 2rR′ + λr2R = 0.

If it were not for the ’2’, it would be the
zeroth order Bessel equation. This is ac-
tually the zeroth order spherical Bessel
equation. In general, the spherical Bessel
functions, jn(x) and yn(x), satisfy

x2y′′ + 2xy′ + [x2 − n(n + 1)]y = 0.

So, the radial solution of the turkey
problem is

R(r) = jn(z) = (−z)n
(

1
z

d
dz

)n sin z
z

for z =
√

λr and

j0(
√

λr) =
sin

√
λr√

λr
.

We further note that

jn(x) =
√

π

2x
Jn+ 1

2
(x)

y′′ + λy = 0.

The boundary conditions on u(r, t) = R(r)G(t) transfer to R(a) = 0
and R(r) finite at the origin. In turn, this means that y(a) = 0 and y(r)
has to vanish near the origin. If y( r) does not vanish near the origin,
then R( r) is not finite as r → 0.
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So, we need to solve the boundary value problem

y′′ + λy = 0, y(0) = 0, y(a) = 0.

This gives the well-known set of eigenfunctions

y(r) = sin
nπr

a
, λn =

(nπ

a

)2
, n = 1, 2, 3, . . . .

Therefore, we have found

R(r) =
sin nπr

a
r

, λn =
(nπ

a

)2
, n = 1, 2, 3, . . . .

The general solution to the auxiliary problem is

u(r, t) =
∞

∑
n=1

An
sin nπr

a
r

e−(nπ/a)2kt.

This gives the general solution for the temperature as

T(r, t) = Ta +
∞

∑
n=1

An
sin nπr

a
r

e−(nπ/a)2kt.

All that remains is to find the solution satisfying the initial condi-
tion, T(r, 0) = 40. Inserting t = 0, we have

Ti − Ta =
∞

∑
n=1

An
sin nπr

a
r

.

This is almost a Fourier sine series. Multiplying by r, we have

(Ti − Ta)r =
∞

∑
n=1

An sin
nπr

a
.

Now, we can solve for the coefficients,

An =
2
a

∫ a

0
(Ti − Ta)r sin

nπr
a

d r

=
2a
nπ

(Ti − Ta)(−1)n+1. (6.160)

This gives the final solution,

T(r, t) = Ta +
2a(Ti − Ta)

π

∞

∑
n=1

(−1)n+1

n
sin nπr

a
r

e−(nπ/a)2kt.

For generality, the ambient and initial temperature were left in terms
of Ta and Ti, respectively.

It is interesting to use the above solution to compare roasting different
turkeys. We take the same conditions as above. Let the radius of the spheri-
cal turkey be six inches. We will assume that such a turkey takes four hours
to cook, i.e., reach a temperature of 180◦ F. Plotting the solution with 400

terms, one finds that k ≈ 0.000089. This gives a “baking time” of t1 = 239.63.
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Figure 6.37: The temperature at the cen-
ter of a turkey with radius a = 0.5 ft and
k ≈ 0.000089.
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A plot of the temperature at the center point (r = a/2) of the bird is in Figure
6.37.

Using the same constants, but increasing the radius of a turkey to a =

0.5(21/3) ft, we obtain the temperature plot in Figure 6.38. This radius cor-
responds to doubling the volume of the turkey. Solving for the time at which
the center temperature (at r = a/2) reaches 180◦ F, we obtained t2 = 380.38.
Comparing the two temperatures, we find the ratio (using the full compu-
tation of the solution in Maple)

t2

t1
=

380.3813709
239.6252478

≈ 1.587401054.

The compares well to
22/3 ≈ 1.587401052.

Of course, the temperature is not quite the center of the spherical turkey.
The reader can work out the details for other locations. Perhaps other inter-
esting models would be a spherical shell of turkey with bread stuffing. Or,
one might consider an ellipsoidal geometry.

6.8 Schrödinger Equation in Spherical Coordinates - Optional

Another important eigenvalue problem in physics is the Schrödinger
equation. The time-dependent Schrödinger equation is given by

ih̄
∂Ψ
∂t

= − h̄2

2m
∇2Ψ + VΨ. (6.161)

Here Ψ(r, t) is the wave function, which determines the quantum state of
a particle of mass m subject to a (time independent) potential, V(r). From
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Figure 6.38: The temperature at the cen-
ter of a turkey with radius a = 0.5(21/3)
ft and k ≈ 0.000089.

Planck’s constant, h, one defines h̄ = h
2π . The probability of finding the

particle in an infinitesimal volume, dV, is given by |Ψ(r, t)|2 dV, assuming
the wave function is normalized,∫

all space
|Ψ(r, t)|2 dV = 1.

One can separate out the time dependence by assuming a special form,
Ψ(r, t) = ψ(r)e−iEt/h̄, where E is the energy of the particular stationary state
solution, or product solution. Inserting this form into the time-dependent
equation, one finds that ψ(r) satisfies the time-independent Schrödinger
equation,

− h̄2

2m
∇2ψ + Vψ = Eψ. (6.162)

Assuming that the potential depends only on the distance from the ori-
gin, V = V( r), we can further separate out the radial part of this solution
using spherical coordinates. Recall that the Laplacian in spherical coordi-
nates is given by

∇2 =
1
r2

∂

∂r

(
r2 ∂

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
r2 sin2 θ

∂2

∂ϕ2 . (6.163)

Then, the time-independent Schrödinger equation can be written as

− h̄2

2m

[
1
r2

∂

∂r

(
r2 ∂ψ

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1
r2 sin2 θ

∂2ψ

∂ϕ2

]
= [E − V(r)]ψ. (6.164)

Let’s continue with the separation of variables. Assuming that the wave
function takes the form ψ(r, θ, ϕ) = R(r)Y(θ, ϕ), we obtain

− h̄2

2m

[
Y
r2

d
dr

(
r2 dR

dr

)
+

R
r2 sin θ

∂

∂θ

(
sin θ

∂Y
∂θ

)
+

R
r2 sin2 θ

∂2Y
∂ϕ2

]
= RY[E − V(r)]ψ. (6.165)
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Dividing by ψ = RY, multiplying by −2mr2

h̄2 , and rearranging, we have

1
R

d
dr

(
r2 dR

dr

)
− 2mr2

h̄2 [V(r)− E] = − 1
Y

LY,

where

L =
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin2 θ

∂2

∂ϕ2 .

We have a function of r equal to a function of the angular variables. So,
we set each side equal to a constant. We will judiciously write the separation
constant as ℓ(ℓ+ 1). The resulting equations are then

d
dr

(
r2 dR

dr

)
− 2mr2

h̄2 [V(r)− E] R = ℓ(ℓ+ 1)R, (6.166)

1
sin θ

∂

∂θ

(
sin θ

∂Y
∂θ

)
+

1
sin2 θ

∂2Y
∂ϕ2 = −ℓ(ℓ+ 1)Y. (6.167)

The second of these equations should look familiar from the last section.
This is the equation for spherical harmonics,

Yℓm(θ, ϕ) =

√
2ℓ+ 1

2
(ℓ− m)!
(ℓ+ m)!

Pm
ℓ (cos θ)eimϕ. (6.168)

So, any further analysis of the problem depends upon the choice of po-
tential, V( r), and the solution of the radial equation. For this, we turn to the
determination of the wave function for an electron in orbit about a proton.

Example 6.16. The Hydrogen Atom - ℓ = 0 States
Historically, the first test of the Schrödinger equation was the deter-

mination of the energy levels in a hydrogen atom. This is modeled by
an electron orbiting a proton. The potential energy is provided by the
Coulomb potential,

V(r) = − e2

4πϵ0r
.

Thus, the radial equation becomesSolution of the hydrogen problem.

d
dr

(
r2 dR

dr

)
+

2mr2

h̄2

[
e2

4πϵ0r
+ E

]
R = ℓ(ℓ+ 1)R. (6.169)

Before looking for solutions, we need to simplify the equation by
absorbing some of the constants. One way to do this is to make an
appropriate change of variables. Let r = aρ. Then, by the Chain Rule
we have

d
dr

=
dρ

dr
d

dρ
=

1
a

d
dρ

.

Under this transformation, the radial equation becomes

d
dρ

(
ρ2 du

dρ

)
+

2ma2ρ2

h̄2

[
e2

4πϵ0aρ
+ E

]
u = ℓ(ℓ+ 1)u, (6.170)
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where u(ρ) = R(r). Expanding the second term,

2ma2ρ2

h̄2

[
e2

4πϵ0aρ
+ E

]
u =

[
mae2

2πϵ0h̄2 ρ +
2mEa2

h̄2 ρ2
]

u,

we see that we can define

a =
2πϵ0h̄2

me2 , (6.171)

ϵ = −2mEa2

h̄2

= −2(2πϵ0)
2h̄2

me4 E. (6.172)

Using these constants, the radial equation becomes

d
dρ

(
ρ2 du

dρ

)
+ ρu − ℓ(ℓ+ 1)u = ϵρ2u. (6.173)

Expanding the derivative and dividing by ρ2,

u′′ +
2
ρ

u′ +
1
ρ

u − ℓ(ℓ+ 1)
ρ2 u = ϵu. (6.174)

The first two terms in this differential equation came from the Lapla-
cian. The third term came from the Coulomb potential. The fourth
term can be thought to contribute to the potential and is attributed to
angular momentum. Thus, ℓ is called the angular momentum quan-
tum number. This is an eigenvalue problem for the radial eigenfunc-
tions u(ρ) and energy eigenvalues ϵ.

The solutions of this equation are determined in a quantum me-
chanics course. In order to get a feeling for the solutions, we will
consider the zero angular momentum case, ℓ = 0 :

u′′ +
2
ρ

u′ +
1
ρ

u = ϵu. (6.175)

Even this equation is one we have not encountered in this book. Let’s
see if we can find some of the solutions.

First, we consider the behavior of the solutions for large ρ. For large
ρ the second and third terms on the left hand side of the equation are
negligible. So, we have the approximate equation

u′′ − ϵu = 0. (6.176)

Therefore, the solutions behave like u(ρ) = e±
√

ϵρ for large ρ. For
bounded solutions, we choose the decaying solution.

This suggests that solutions take the form u(ρ) = v(ρ)e−
√

ϵρ for
some unknown function, v(ρ). Inserting this guess into Equation (6.175),
gives an equation for v(ρ) :

ρv′′ + 2
(
1 −

√
ϵρ
)

v′ + (1 − 2
√

ϵ)v = 0. (6.177)
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Next we seek a series solution to this equation. Let

v(ρ) =
∞

∑
k=0

ckρk.

Inserting this series into Equation (6.177), we have

∞

∑
k=1

[k(k − 1) + 2k]ckρk−1 +
∞

∑
k=1

[1 − 2
√

ϵ(k + 1)]ckρk = 0.

We can re-index the dummy variable in each sum. Let k = m in the
first sum and k = m − 1 in the second sum. We then find that

∞

∑
k=1

[
m(m + 1)cm + (1 − 2m

√
ϵ)cm−1

]
ρm−1 = 0.

Since this has to hold for all m ≥ 1,

cm =
2m

√
ϵ − 1

m(m + 1)
cm−1.

Further analysis indicates that the resulting series leads to unbounded
solutions unless the series terminates. This is only possible if the nu-
merator, 2m

√
ϵ − 1, vanishes for m = n, n = 1, 2 . . . . Thus,

ϵ =
1

4n2 .

Since ϵ is related to the energy eigenvalue, E, we have

En = − me4

2(4πϵ0)2h̄2n2
.

Inserting the values for the constants, this gives

En = −13.6 eV
n2 .

This is the well known set of energy levels for the hydrogen atom.Energy levels for the hydrogen atom.

The corresponding eigenfunctions are polynomials, since the infi-
nite series was forced to terminate. We could obtain these polynomi-
als by iterating the recursion equation for the cm’s. However, we will
instead rewrite the radial equation (6.177).

Let x = 2
√

ϵρ and define y(x) = v(ρ). Then

d
dρ

= 2
√

ϵ
d

dx
.

This gives

2
√

ϵxy′′ + (2 − x)2
√

ϵy′ + (1 − 2
√

ϵ)y = 0.

Rearranging, we have

xy′′ + (2 − x)y′ +
1

2
√

ϵ
(1 − 2

√
ϵ)y = 0.
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Noting that 2
√

ϵ =
1
n

, this equation becomes

xy′′ + (2 − x)y′ + (n − 1)y = 0. (6.178)

The resulting equation is well known. It takes the form

xy′′ + (α + 1 − x)y′ + ny = 0. (6.179)

Solutions of this equation are the associated Laguerre polynomials.
The solutions are denoted by Lα

n(x). They can be defined in terms of
the Laguerre polynomials,

Ln(x) = ex
(

d
dx

)n
(e−xxn).

The associated Laguerre polynomials are defined as

Lm
n−m(x) = (−1)m

(
d

dx

)m
Ln(x).

Note: The Laguerre polynomials were first encountered in Problem
2 in Chapter 5 as an example of a classical orthogonal polynomial
defined on [0, ∞) with weight w(x) = e−x. Some of these polynomials
are listed in Table 6.9 and several Laguerre polynomials are shown in
Figure 6.39. The associated Laguerre polynomials are

named after the French mathematician
Edmond Laguerre (1834-1886).

Comparing Equation (6.178) with Equation (6.179), we find that
y(x) = L1

n−1(x).

Lm
n (x)

L0
0(x) 1

L0
1(x) 1 − x

L0
2(x) 1

2 (x2 − 4x + 2)

L0
3(x) 1

6 (−x3 + 9x2 − 18x + 6)

L1
0(x) 1

L1
1(x) 2 − x

L1
2(x) 1

2 (x2 − 6x + 6)

L1
3(x) 1

6 (−x3 + 3x2 − 36x + 24)

L2
0(x) 1

L2
1(x) 3 − x

L2
2(x) 1

2 (x2 − 8x + 12)

L2
3(x) 1

12 (−2x3 + 30x2 − 120x + 120)

Table 6.9: Associated Laguerre Func-
tions, Lm

n (x). Note that L0
n(x) = Ln(x).

In summary, we have made the following transformations:
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Figure 6.39: Plots of the first few La-
guerre polynomials.

Figure 6.40: Plots of R(r) for a = 1 and
n = 1, 2, 3, 4 for the ℓ = 0 states.
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1. R(r) = u(ρ), r = aρ.

2. u(ρ) = v(ρ)e−
√

ϵρ.

3. v(ρ) = y(x) = L1
n−1(x), x = 2

√
ϵρ.

In quantum mechanics a = a0
2 . where

a0 = 4πϵ0 h̄2

me2 is the Bohr radius and a0 =

5.2917 × 10−11m.

Therefore,

R(r) = e−
√

ϵr/aL1
n−1(2

√
ϵr/a).

However, we also found that 2
√

ϵ = 1/n. So,

R(r) = e−r/2naL1
n−1(r/na).

In Figure 6.40 we show a few of these solutions.

Example 6.17. Find the ℓ ≥ 0 solutions of the radial equation.
For the general case, for all ℓ ≥ 0, we need to solve the differential

equation

u′′ +
2
ρ

u′ +
1
ρ

u − ℓ(ℓ+ 1)
ρ2 u = ϵu. (6.180)

Instead of letting u(ρ) = v(ρ)e−
√

ϵρ, we let

u(ρ) = v(ρ)ρℓe−
√

ϵρ.

This led to the differential equation

ρv′′ + 2(ℓ+ 1 −
√

ϵρ)v′ + (1 − 2(ℓ+ 1)
√

ϵ)v = 0. (6.181)

as before, we let x = 2
√

ϵρ to obtain

xy′′ + 2
[
ℓ+ 1 − x

2

]
v′ +

[
1

2
√

ϵ
− ℓ(ℓ+ 1)

]
v = 0.

Noting that 2
√

ϵ = 1/n, we have

xy′′ + 2 [2(ℓ+ 1)− x] v′ + (n − ℓ(ℓ+ 1))v = 0.

We see that this is once again in the form of the associate Laguerre
equation and the solutions are

y(x) = L2ℓ+1
n−ℓ−1(x).

So, the solution to the radial equation for the hydrogen atom is given
by

R(r) = ρℓe−
√

ϵρL2ℓ+1
n−ℓ−1(2

√
ϵρ)

=
( r

2na

)ℓ
e−r/2naL2ℓ+1

n−ℓ−1

( r
na

)
. (6.182)

Interpretations of these solutions will be left for your quantum me-
chanics course.
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6.9 Appendix: Curvilinear Coordinates

In order to study solutions of the wave equation, the heat equa-
tion, or even Schrödinger’s equation in different geometries, we need to see
how differential operators, such as the Laplacian, appear in these geome-
tries. The most common coordinate systems arising in physics are polar
coordinates, cylindrical coordinates, and spherical coordinates. These re-
flect the common geometrical symmetries often encountered in physics.

In such systems it is easier to describe boundary conditions and to make
use of these symmetries. For example, specifying that the electric potential
is 10.0 V on a spherical surface of radius one, we would say ϕ(x, y, z) = 10
for x2 + y2 + z2 = 1. However, if we use spherical coordinates, (r, θ, ϕ), then
we would say ϕ(r, θ, ϕ) = 10 for r = 1, or ϕ(1, θ, ϕ) = 10. This is a much
simpler representation of the boundary condition.

However, this simplicity in boundary conditions leads to a more compli-
cated looking partial differential equation in spherical coordinates. In this
section we will consider general coordinate systems and how the differen-
tial operators are written in the new coordinate systems. This is a more
general approach than that taken earlier in the chapter. For a more modern
and elegant approach, one can use differential forms.

We begin by introducing the general coordinate transformations between
Cartesian coordinates and the more general curvilinear coordinates. Let the
Cartesian coordinates be designated by (x1, x2, x3) and the new coordinates
by (u1, u2, u3). We will assume that these are related through the transfor-
mations

x1 = x1(u1, u2, u3),

x2 = x2(u1, u2, u3),

x3 = x3(u1, u2, u3). (6.183)

Thus, given the curvilinear coordinates (u1, u2, u3) for a specific point in
space, we can determine the Cartesian coordinates, (x1, x2, x3), of that point.
We will assume that we can invert this transformation: Given the Cartesian
coordinates, one can determine the corresponding curvilinear coordinates.

In the Cartesian system we can assign an orthogonal basis, {i, j, k}. As a
particle traces out a path in space, one locates its position by the coordinates
(x1, x2, x3). Picking x2 and x3 constant, the particle lies on the curve x1 =

value of the x1 coordinate. This line lies in the direction of the basis vector
i. We can do the same with the other coordinates and essentially map out
a grid in three dimensional space as sown in Figure 6.41. All of the xi-
curves intersect at each point orthogonally and the basis vectors {i, j, k}
lie along the grid lines and are mutually orthogonal. We would like to
mimic this construction for general curvilinear coordinates. Requiring the
orthogonality of the resulting basis vectors leads to orthogonal curvilinear
coordinates.

x1
x2

x3

i

j

k

Figure 6.41: Plots of xi-curves forming
an orthogonal Cartesian grid.
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As for the Cartesian case, we consider u2 and u3 constant. This leads to
a curve parametrized by u1 : r = x1(u1)i + x2(u1)j + x3(u1)k. We call this
the u1-curve. Similarly, when u1 and u3 are constant we obtain a u2-curve
and for u1 and u2 constant we obtain a u3-curve. We will assume that these
curves intersect such that each pair of curves intersect orthogonally as seen
in Figure 6.42. Furthermore, we will assume that the unit tangent vectors to
these curves form a right handed system similar to the {i, j, k} systems for
Cartesian coordinates. We will denote these as {û1, û2, û3}.

u3

u2

u1

û1

û2û3

Figure 6.42: Plots of general ui-curves
forming an orthogonal grid.

We can determine these tangent vectors from the coordinate transforma-
tions. Consider the position vector as a function of the new coordinates,

r(u1, u2, u3) = x1(u1, u2, u3)i + x2(u1, u2, u3)j + x3(u1, u2, u3)k.

Then, the infinitesimal change in position is given by

dr =
∂r

∂u1
du1 +

∂r
∂u2

du2 +
∂r

∂u3
du3 =

3

∑
i=1

∂r
∂ui

dui.

We note that the vectors ∂r
∂ui

are tangent to the ui-curves. Thus, we define
the unit tangent vectors

ûi =

∂r
∂ui∣∣∣ ∂r
∂ui

∣∣∣ .
Solving for the original tangent vector, we have

∂r
∂ui

= hiûi,

where The scale factors, hi ≡
∣∣∣ ∂r

∂ui

∣∣∣ .

hi ≡
∣∣∣∣ ∂r
∂ui

∣∣∣∣ .

The hi’s are called the scale factors for the transformation. The infinitesimal
change in position in the new basis is then given by

dr =
3

∑
i=1

hiuiûi.

Example 6.18. Determine the scale factors for the polar coordinate
transformation.

The transformation for polar coordinates is

x = r cos θ, y = r sin θ.

Here we note that x1 = x, x2 = y, u1 = r, and u2 = θ. The u1-curves are
curves with θ = const. Thus, these curves are radial lines. Similarly,
the u2-curves have r = const. These curves are concentric circles about
the origin as shown in Figure 6.43.

The unit vectors are easily found. We will denote them by ûr and
ûθ . We can determine these unit vectors by first computing ∂r

∂ui
. Let

r = x(r, θ)i + y(r, θ)j = r cos θi + r sin θj.
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Then,

∂r
∂r

= cos θi + sin θj

∂r
∂θ

= −r sin θi + r cos θj. (6.184)

x

y

θ = const

r = const

ûr

ûθ

Figure 6.43: Plots an orthogonal polar
grid.

.

The first vector already is a unit vector. So,

ûr = cos θi + sin θj.

The second vector has length r since | − r sin θi+ r cos θj| = r. Dividing
∂r
∂θ by r, we have

ûθ = − sin θi + cos θj.

We can see these vectors are orthogonal (ûr · ûθ = 0) and form a
right hand system. That they form a right hand system can be seen by
either drawing the vectors, or computing the cross product,

(cos θi + sin θj)× (− sin θi + cos θj) = cos2 θi × j − sin2 θj × i

= k. (6.185)

Since

∂r
∂r

= ûr,

∂r
∂θ

= rûθ ,

The scale factors are hr = 1 and hθ = r.

x

y

r dθr

ûrûθ

Figure 6.44: Infinitesimal area in polar
coordinates.

Once we know the scale factors, we have that

dr =
3

∑
i=1

hiduiûi.

The infinitesimal arclength is then given by the Euclidean line element

ds2 = dr · dr =
3

∑
i=1

h2
i du2

i

when the system is orthogonal. The h2
i are referred to as the metric coeffi-

cients.

Example 6.19. Verify that dr = drûr + r dθûθ directly from r = r cos θi+
r sin θj and obtain the Euclidean line element for polar coordinates.

We begin by computing

dr = d(r cos θi + r sin θj)

= (cos θi + sin θj) dr + r(− sin θi + cos θj) dθ

= drûr + r dθûθ . (6.186)

This agrees with the form dr = ∑3
i=1 hiduiûi when the scale factors for

polar coordinates are inserted.
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The line element is found as

ds2 = dr · dr

= (drûr + r dθûθ) · (drûr + r dθûθ)

= dr2 + r2 dθ2. (6.187)

This is the Euclidean line element in polar coordinates.

Also, along the ui-curves,

dr = hiduiûi, (no summation).

This can be seen in Figure 6.45 by focusing on the u1 curve. Along this curve,
u2 and u3 are constant. So, du2 = 0 and du3 = 0. This leaves dr = h1du1û1

along the u1-curve. Similar expressions hold along the other two curves.
We can use this result to investigate infinitesimal volume elements for

general coordinate systems as shown in Figure 6.45. At a given point
(u1, u2, u3) we can construct an infinitesimal parallelepiped of sides hidui,
i = 1, 2, 3. This infinitesimal parallelepiped has a volume of size

dV =

∣∣∣∣ ∂r
∂u1

· ∂r
∂u2

× ∂r
∂u3

∣∣∣∣ du1du2du3.

The triple scalar product can be computed using determinants and the re-
sulting determinant is call the Jacobian, and is given by

J =

∣∣∣∣ ∂(x1, x2, x3)

∂(u1, u2, u3)

∣∣∣∣
=

∣∣∣∣ ∂r
∂u1

· ∂r
∂u2

× ∂r
∂u3

∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
∂x1
∂u1

∂x2
∂u1

∂x3
∂u1

∂x1
∂u2

∂x2
∂u2

∂x3
∂u2

∂x1
∂u3

∂x2
∂u3

∂x3
∂u3

∣∣∣∣∣∣∣∣∣∣
. (6.188)

Therefore, the volume element can be written as

dV = J du1du2du3 =

∣∣∣∣ ∂(x1, x2, x3)

∂(u1, u2, u3)

∣∣∣∣ du1du2du3.

h1 du1

h3 du2

h3 du3

û1

û2û3

Figure 6.45: Infinitesimal volume ele-
ment with sides of length hi dui .

Example 6.20. Determine the volume element for cylindrical coordi-
nates (r, θ, z), given by

x = r cos θ, (6.189)

y = r sin θ, (6.190)

z = z. (6.191)

x

y

z P

θ
r

z

Figure 6.46: Cylindrical coordinate sys-
tem.

Here, we have (u1, u2, u3) = (r, θ, z) as displayed in Figure 6.46.
Then, the Jacobian is given by

J =

∣∣∣∣∂(x, y, z)
∂(r, θ, z)

∣∣∣∣
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=

∣∣∣∣∣∣∣∣∣∣
∂x
∂r

∂y
∂r

∂z
∂r

∂x
∂θ

∂y
∂θ

∂z
∂θ

∂x
∂z

∂y
∂z

∂z
∂z

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
cos θ sin θ 0

−r sin θ r cos θ 0

0 0 1

∣∣∣∣∣∣∣∣∣∣
= r (6.192)

Thus, the volume element is given as

dV = rdrdθdz.

This result should be familiar from multivariate calculus.

Another approach is to consider the geometry of the infinitesimal volume
element. The directed edge lengths are given by dsi = hiduiûi as seen in
Figure 6.42. The infinitesimal area element of for the face in direction ûk is
found from a simple cross product,

dAk = dsi × dsj = hihjduidujûi × ûj.

Since these are unit vectors, the areas of the faces of the infinitesimal vol-
umes are dAk = hihjduiduj.

The infinitesimal volume is then obtained as

dV = |dsk · dAk| = hihjhkduidujduk|ûi · (ûk × ûj)|.

Thus, dV = h1h2h3du1du1du3. Of course, this should not be a surprise since

J =
∣∣∣∣ ∂r
∂u1

· ∂r
∂u2

× ∂r
∂u3

∣∣∣∣ = |h1û1 · h2û2 × h3û3| = h1h2h3.

Example 6.21. For polar coordinates, determine the infinitesimal area
element.

In an earlier example, we found the scale factors for polar coordi-
nates as hr = 1 and hθ = r. Thus, dA = hrhθ drdθ = r drdθ. Also,
the last example for cylindrical coordinates will yield similar results
if we already know the scales factors without having to compute the
Jacobian directly. Furthermore, the area element perpendicular to the
z-coordinate gives the polar coordinate system result.

Next we will derive the forms of the gradient, divergence, and curl in
curvilinear coordinates using several vector identities. The results are given
here for quick reference.
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∇ϕ =
3

∑
i=1

ûi
hi

∂ϕ

∂ui

=
û1

h1

∂ϕ

∂u1
+

û2

h2

∂ϕ

∂u2
+

û3

h3

∂ϕ

∂u3
. (6.193)

∇ · F =
1

h1h2h3

(
∂

∂u1
(h2h3F1) +

∂

∂u2
(h1h3F2) +

∂

∂u3
(h1h2F3)

)
.

(6.194)

∇× F =
1

h1h2h3

∣∣∣∣∣∣∣∣∣∣
h1û1 h2û2 h3û3

∂
∂u1

∂
∂u2

∂
∂u3

F1h1 F2h2 F3h3

∣∣∣∣∣∣∣∣∣∣
. (6.195)

∇2ϕ =
1

h1h2h3

(
∂

∂u1

(
h2h3

h1

∂ϕ

∂u1

)
+

∂

∂u2

(
h1h3

h2

∂ϕ

∂u2

)
+

∂

∂u3

(
h1h2

h3

∂ϕ

∂u3

))
(6.196)

Gradient, divergence and curl in orthog-
onal curvilinear coordinates.

We begin the derivations of these formulae by looking at the gradient, Derivation of the gradient form.

∇ϕ, of the scalar function ϕ(u1, u2, u3). We recall that the gradient operator
appears in the differential change of a scalar function,

dϕ = ∇ϕ · dr =
3

∑
i=1

∂ϕ

∂ui
dui.

Since

dr =
3

∑
i=1

hiduiûi, (6.197)

we also have that

dϕ = ∇ϕ · dr =
3

∑
i=1

(∇ϕ)i hidui.

Comparing these two expressions for dϕ, we determine that the components
of the del operator can be written as

(∇ϕ)i =
1
hi

∂ϕ

∂ui

and thus the gradient is given by

∇ϕ =
û1

h1

∂ϕ

∂u1
+

û2

h2

∂ϕ

∂u2
+

û3

h3

∂ϕ

∂u3
. (6.198)

Next we compute the divergence, Derivation of the divergence form.

∇ · F =
3

∑
i=1

∇ · (Fiûi) .

We can do this by computing the individual terms in the sum. We will
compute ∇ · (F1û1) .
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Using Equation (6.198), we have that

∇ui =
ûi
hi

.

Then
∇u2 ×∇u3 =

û2 × û3

h2h3
=

û1

h2h3
.

Solving for û1, gives
û1 = h2h3∇u2 ×∇u3.

Inserting this result into ∇ · (F1û1) and using the vector identity,

∇ · ( f A) = f∇ · A + A · ∇ f ,

we have

∇ · (F1û1) = ∇ · (F1h2h3∇u2 ×∇u3)

= ∇ (F1h2h3) · ∇u2 ×∇u3 + F1h2h2∇ · (∇u2 ×∇u3).

(6.199)

The second term of this result vanishes by the vector identity

∇ · (∇ f ×∇g) = 0.

Since ∇u2 ×∇u3 =
û1

h2h3
, the first term can be evaluated as

∇ · (F1û1) = ∇ (F1h2h3) ·
û1

h2h3
=

1
h1h2h3

∂

∂u1
(F1h2h3) .

Similar computations can be carried out for the remaining components,
leading to the sought expression for the divergence in curvilinear coordi-
nates:

∇ · F =
1

h1h2h3

(
∂

∂u1
(h2h3F1) +

∂

∂u2
(h1h3F2) +

∂

∂u3
(h1h2F3)

)
. (6.200)

Example 6.22. Write the divergence operator in cylindrical coordi-
nates.

In this case we have

∇ · F =
1

hrhθhz

(
∂

∂r
(hθhzFr) +

∂

∂θ
(hrhzFθ) +

∂

∂θ
(hrhθ Fz)

)
=

1
r

(
∂

∂r
(rFr) +

∂

∂θ
(Fθ) +

∂

∂θ
(rFz)

)
=

1
r

∂

∂r
(rFr) +

1
r

∂

∂θ
(Fθ) +

∂

∂θ
(Fz) . (6.201)

We now turn to the curl operator. In this case, we need to evaluateDerivation of the curl form.

∇× F =
3

∑
i=1

∇× (Fiûi) .
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Again we focus on one term, ∇× (F1û1) . Using the vector identity

∇× ( f A) = f∇× A − A ×∇ f ,

we have

∇× (F1û1) = ∇× (F1h1∇u1)

= F1h1∇×∇u1 −∇ (F1h1)×∇u1. (6.202)

The curl of the gradient vanishes, leaving

∇× (F1û1) = ∇ (F1h1)×∇u1.

Since ∇u1 =
û1

h1
, we have

∇× (F1û1) = ∇ (F1h1)×
û1

h1

=

(
3

∑
i=1

ûi
hi

∂ (F1h1)

∂ui

)
× û1

h1

=
û2

h3h1

∂ (F1h1)

∂u3
− û3

h1h2

∂ (F1h1)

∂u2
. (6.203)

The other terms can be handled in a similar manner. The overall result is
that

∇× F =
û1

h2h3

(
∂ (h3F3)

∂u2
− ∂ (h2F2)

∂u3

)
+

û2

h1h3

(
∂ (h1F1)

∂u3
− ∂ (h3F3)

∂u1

)
+

û3

h1h2

(
∂ (h2F2)

∂u1
− ∂ (h1F1)

∂u2

)
(6.204)

This can be written more compactly as

∇× F =
1

h1h2h3

∣∣∣∣∣∣∣∣∣∣
h1û1 h2û2 h3û3

∂
∂u1

∂
∂u2

∂
∂u3

F1h1 F2h2 F3h3

∣∣∣∣∣∣∣∣∣∣
(6.205)

Example 6.23. Write the curl operator in cylindrical coordinates.

∇× F =
1
r

∣∣∣∣∣∣∣∣∣∣
êr rêθ êz

∂
∂r

∂
∂θ

∂
∂z

Fr rFθ Fz

∣∣∣∣∣∣∣∣∣∣
=

(
1
r

∂Fz

∂θ
− ∂Fθ

∂z

)
êr +

(
∂Fr

∂z
− ∂Fz

∂r

)
êθ

+
1
r

(
∂(rFθ)

∂r
− ∂Fr

∂θ

)
êz. (6.206)

Finally, we turn to the Laplacian. In this chapter we have solved higher
dimensional problems in various geometric settings such as the wave equa-
tion, the heat equation, and Laplace’s equation. These all involved knowing
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how to write the Laplacian in different coordinate systems. Since ∇2ϕ =

∇ ·∇ϕ, we need only combine the results from Equations (6.198) and (6.200)
for the gradient and the divergence in curvilinear coordinates. This is
straight forward and gives

∇2ϕ =
1

h1h2h3

(
∂

∂u1

(
h2h3

h1

∂ϕ

∂u1

)
+

∂

∂u2

(
h1h3

h2

∂ϕ

∂u2

)
+

∂

∂u3

(
h1h2

h3

∂ϕ

∂u3

))
. (6.207)

The Laplacians in cylindrical and spherical coordinates are shown below.

Cylindrical Coordinates:

∇2 f =
1
r

∂

∂r

(
r

∂ f
∂r

)
+

1
r2

∂2 f
∂θ2 +

∂2 f
∂z2 . (6.208)

Spherical Coordinates:

∇2 f =
1
r2

∂

∂ r

(
r2 ∂ f

∂ r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂ f
∂θ

)
+

1
r2 sin2 θ

∂2 f
∂ϕ2 . (6.209)

Problems

1. A rectangular plate 0 ≤ x ≤ L 0 ≤ y ≤ H with heat diffusivity constant k
is insulated on the edges y = 0, H and is kept at constant zero temperature
on the other two edges. Assuming an initial temperature of u(x, y, 0) =

f (x, y), use separation of variables t find the general solution.

2. Solve the following problem.

uxx + uyy + uzz = 0, 0 < x < 2π, 0 < y < π, 0 < z < 1,

u(x, y, 0) = sin x sin y, u(x, y, z) = 0 on other faces.

3. Consider Laplace’s equation on the unit square, uxx + uyy = 0, 0 ≤ x, y ≤
1. Let u(0, y) = 0, u(1, y) = 0 for 0 < y < 1 and uy(x, 0) = 0 for 0 < y < 1.
Carry out the needed separation of variables and write down the product
solutions satisfying these boundary conditions.

4. Consider a cylinder of height H and radius a.

a. Write down Laplace’s Equation for this cylinder in cylindrical coordi-
nates.

b. Carry out the separation of variables and obtain the three ordinary
differential equations that result from this problem.

c. What kind of boundary conditions could be satisfied in this problem
in the independent variables?

5. Consider a square drum of side s and a circular drum of radius a.

a. Rank the modes corresponding to the first 6 frequencies for each.
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b. Write each frequency (in Hz) in terms of the fundamental (i.e., the
lowest frequency.)

c. What would the lengths of the sides of the square drum have to be to
have the same fundamental frequency? (Assume that c = 1.0 for each
one.)

6. We presented the full solution of the vibrating rectangular membrane
in Equation 6.39. Finish the solution to the vibrating circular membrane by
writing out a similar full solution.

7. A copper cube 10.0 cm on a side is heated to 100◦ C. The block is placed
on a surface that is kept at 0◦ C. The sides of the block are insulated, so
the normal derivatives on the sides are zero. Heat flows from the top of
the block to the air governed by the gradient uz = −10◦C/m. Determine
the temperature of the block at its center after 1.0 minutes. Consider the
following hints:

a. This is a heat conduction problem with nonhomogeneous boundary
conditions. Assume u(x, y, z, t) = v(x, y, z, t) + f (z), where v(x, y, z, t)
satisfies homogeneous boundary conditions. Find v(x, y, z, t) and f (z).

b. In order to get a numerical value for the temperature, you will need
the thermal diffusivity, which is given by k = K

ρcp
, where K is the ther-

mal conductivity, ρ is the density, and cp is the specific heat capacity.
Look up any needed properties of copper.

8. Consider a spherical balloon of radius a. Small deformations on the
surface can produce waves on the balloon’s surface.

a. Write the wave equation in spherical polar coordinates. (Note: r is
constant!)

b. Carry out a separation of variables and find the product solutions for
this problem.

c. Describe the nodal curves for the first six modes.

d. For each mode determine the frequency of oscillation in Hz assuming
c = 1.0 m/s.

9. Consider a circular cylinder of radius R = 4.00 cm and height H = 20.0
cm which obeys the steady state heat equation

urr +
1
r

ur + uzz.

Find the temperature distribution, u(r, z), given that u(r, 0) = 0◦C, u(r, 20) =
20◦C, and heat is lost through the sides due to Newton’s Law of Cooling

[ur + hu]r=4 = 0,

for h = 1.0 cm−1.

a. Show that the product solutions are sinh λn H)J0(λnr), where λJ′0(λR)+
J0(λR) = 0.
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b. For mixed boundary conditions, if

f (r) =
∞

∑
n=1

an J0(λnr)r dr

where jn J′0(jn) + J0(jn) = 0 and λn = jn/R, then the Fourier-Bessel
coefficients are given by

an =
2

R2 J2
0 (jn)

j2n
j2n + R

∫ R

0
f (r)J0(

jn
R

r)r dr.

c. The eigenvalues, λn, are found by solving a transcendental equation.
Plotting the function

f (x) = xJ′0(x) + J0(x) = −xJ1(x) + J0(x)

will aid in finding the first several roots, jn, satisfying −jn J′0(jn) +
J0(jn) = 0. The eigenvalues are given by λn = jn/R. Numerically find
several of these and obtain an approximate solution to the problem.

10. The spherical surface of a homogeneous ball of radius one in main-
tained at zero temperature. It has an initial temperature distribution u( r, 0) =
100o C. Assuming a heat diffusivity constant k, find the temperature through-
out the sphere, u( r, θ, ϕ, t).

11. Determine the steady state temperature of a spherical ball maintained
at the temperature

u(x, y, z) = x2 + 2y2 + 3z2, r = 1.

[Hint - Rewrite the problem in spherical coordinates, u(r, θ, ϕ), compare it to
Equation (6.146) with r = 1, and use the properties of spherical harmonics.
Table 6.5 may be useful.]

12. A hot dog initially at temperature 50◦C is put into boiling water at
100◦C. Assume the hot dog is 12.0 cm long, has a radius of 2.00 cm, and the
heat constant is 2.0 × 10−5 cm2/s.

a. Find the general solution for the temperature. [Hint: Solve the heat
equation for u(r, z, t) = T(r, z, t)− 100, where T(r, z, t) is the temper-
ature of the hot dog.]

b. Indicate how one might proceed with the remaining information in
order to determine when the hot dog is cooked; i.e., when the center
temperature is 80◦C.


	Problems in Higher Dimensions
	Vibrations of Rectangular Membranes
	Vibrations of a Kettle Drum
	Laplace's Equation in 2D
	Three Dimensional Cake Baking
	Laplace's Equation and Spherical Symmetry
	Spherically Symmetric Vibrations
	Baking a Spherical Turkey
	Schrödinger Equation in Spherical Coordinates - Optional
	Appendix: Curvilinear Coordinates
	Problems


