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1 AI and Its Impact on Mathematics

The question of whether a computer can think is no more interesting than the ques-
tion of whether a submarine can swim.

— Edsger W. Dijkstra (1930 – 2022)

Mathematics is beautiful, and it should be presented beautifully.
数学是美的，应该美地呈现出来。

— Shiing-Shen Chern (陈省身)

This guide is designed to be a com-
prehensive resource for navigating
this new landscape. It aims to equip
you with the practical skills and, more
importantly, the critical mindset needed
to use AI effectively and ethically. We
will treat AI not as a replacement for
your own intellect, but as a powerful
amplifier for it—a tool for becoming an
augmented mathematician.

The integration of artificial intelligence (AI) into mathemat-
ics research represents one of the most significant paradigm shifts in the
field since the advent of computer algebra systems. As we stand at the
threshold of a new era in mathematical discovery and communication, it
becomes imperative for emerging mathematicians to understand not only
how to leverage these powerful tools but also to appreciate their limita-
tions, ethical implications, and the fundamental changes they bring to the
research process.

Artificial intelligence, in its current manifestation through large lan-
guage models (LLMs) and specialized mathematical AI systems, is fun-
damentally altering how we approach problem-solving, hypothesis gen-
eration, proof verification, and even the communication of mathematical
ideas. This transformation extends beyond mere computational assistance;
it touches the very core of how mathematical knowledge is created, veri-
fied, and disseminated within the academic community.

The practice of mathematics has always been a dialogue between
human intuition and formal structure. The tools of this dialogue have
evolved: from the sand-drawn diagrams of Euclid, to the chalk and black-
board of the 20th century, to the computational powerhouses of today.
We are now at the threshold of another evolutionary leap, driven by the
widespread availability of Artificial Intelligence. For the student of mathe-
matics, these tools are not merely a novelty; they represent a fundamental
change in how we can search for answers, build models, analyze data, and
even conceive of new mathematical ideas.

The historical trajectory of AI development in mathematics can be
traced back to the early symbolic computation systems of the 1960s, but
the contemporary landscape is dominated by neural network architectures
that can process natural language, generate mathematical content, and
even assist in complex reasoning tasks. These systems represent a qualita-
tive leap from traditional computer algebra systems, offering capabilities
that blur the line between computational assistance and intellectual collab-
oration.

Understanding this technological evolution is crucial for several reasons.
First, it enables mathematicians to make informed decisions about when
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and how to incorporate AI tools into their research workflows. Second, it
provides the necessary context for evaluating the reliability and appropri-
ateness of AI-generated content. Third, it helps researchers maintain the
integrity of mathematical discourse while embracing innovation. Finally, it
prepares the next generation of mathematicians to navigate an increasingly
AI-integrated academic landscape.

The impact of AI on mathematical research extends across multiple di-
mensions. In problem-solving, AI systems can suggest novel approaches,
identify patterns in large datasets, and even generate conjectures that
might not be immediately obvious to human researchers. In proof veri-
fication, AI tools are becoming sophisticated enough to check the logical
consistency of mathematical arguments, though they still require careful
human oversight. In communication, AI is revolutionizing how mathemat-
ical papers are written, formatted, and presented, offering new possibilities
for clarity and accessibility while raising important questions about au-
thorship and intellectual contribution.

This guide is structured to take you from foundational understand-
ing through practical implementation to research-level application. The
progression follows a natural learning sequence that mirrors how you
would actually incorporate AI into your mathematical work.

Part I: Foundations (Chapters 1–5) establishes the conceptual ground-
work. After this introduction, Chapter 2 provides an immediate hands-on
experience with the complete AI-assisted research workflow—from prob-
lem formulation through verification to publication. Chapters 3–4 survey
the historical context and current landscape of AI tools, helping you un-
derstand what’s available and how to choose appropriate tools for dif-
ferent tasks. Chapter 5 explains how large language models work from a
mathematician’s perspective, providing the technical understanding nec-
essary for effective use. These chapters answer the fundamental questions:
What is AI-assisted mathematics? What tools are available? How do they work?

Part II: Core Research Skills (Chapters 6–8) develops the practical abil-
ities you need for effective AI collaboration. Chapter 6 teaches prompting
strategies—the art of communicating effectively with AI systems to get
high-quality mathematical assistance. Chapter 7 introduces LLM chaining
for complex, multi-step tasks that require sophisticated reasoning. Chapter
8, the heart of the book, demonstrates AI-assisted problem solving across
diverse mathematical domains—from differential equations to number
theory—through worked examples and guided exercises. These chapters
answer: How do I work effectively with AI? How do I solve mathematical prob-
lems using AI assistance?

Part III: Implementation and Communication (Chapters 9–14) covers
the technical and communication aspects of AI-assisted research. You’ll
learn code generation and verification (Chapters 9–11), graphics creation
(Chapter 12), and document preparation with LATEX and Beamer (Chap-
ters 13–14). These practical chapters ensure you can implement, test, and
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communicate your AI-assisted mathematical work professionally. These
chapters answer: How do I implement, verify, and communicate my AI-assisted
work?

Part IV: Research Practice (Chapters 15–18) addresses the professional
and ethical dimensions of AI-assisted mathematics. A complete case study
(Chapter 15) demonstrates the full research process from conjecture to
publication, while Chapter 16 provides essential ethical guidelines for
responsible AI use. Chapters 17–18 cover research methodology and fu-
ture directions, preparing you for the evolving landscape of mathematical
research. These chapters answer: How do I conduct responsible AI-assisted
research? What does the future hold?

Students can follow the complete sequence for comprehensive prepa-
ration, or focus on specific sections based on immediate needs. Those
wanting quick practical skills might start with Chapter 2, then proceed to
Chapter 8. Students primarily interested in code generation could focus on
Chapters 6, 10, and 11. The extensive cross-references throughout support
flexible navigation while maintaining coherence.

This guide is designed to provide senior undergraduate mathematics
students with a comprehensive understanding of how to thoughtfully
and effectively integrate AI tools into their research practices. We will
explore the technical capabilities and limitations of current AI systems,
examine the ethical considerations that arise from their use, and provide
practical guidance for maintaining scholarly integrity while leveraging
these powerful technologies. At the same time we must keep in mind that
this technology is changing so fast, that some of this guide could already
be outdated since this was last revised July 16, 2025.

At the same time we must keep in mind that this technology is chang-
ing so fast, that some of this guide could already be outdated since this
was last revised July 16, 2025.
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2 A Quick Start Workflow: From

Problem to Proof

The best way to have a good idea is to have a lot of ideas.
— Linus Pauling

In mathematics, the art of proposing a question must be held of higher value than
solving it.
提出问题比解决问题更重要。

— Hua Luogeng (华罗庚)

Before we delve into the theory and specifics of each tool, let’s
walk through a complete, albeit simple, research workflow from start to
finish. This chapter will serve as a practical demonstration of the core
methodology you will see throughout this guide. Our goal is to take a
standard undergraduate-level problem and solve it not just with an an-
swer, but with analysis, code, verification, and a formal summary—all
with an AI as our collaborator.

Our problem is a classic one from numerical analysis: Start with problem.

Find the real root of the polynomial f (x) = x5 − x − 1.

This is a good first problem because it has no simple algebraic solution
via radicals, as established by Abel-Ruffini theory. We are forced to use
numerical and analytical methods. In this workflow, you are the mathe-
matician and project director; the AI is your exceptionally fast and knowl-
edgeable, but un-trusted, research assistant.

2.1 Step 1: Problem Analysis and Strategy

Before writing any code, a good mathematician analyzes the problem.
Does a root exist? Is it unique? What methods are suitable? We can use an
AI to quickly survey the problem landscape. This first step is crucial. We use the

AI not for a final answer, but for re-
connaissance and strategy. It helps us
confirm our intuition and choose a path
forward.

Prompt to AI

Analyze the function f (x) = x5 − x − 1. I need to find its real roots.
1. Prove that at least one real root exists. 2. Determine how many
real roots there are. 3. Suggest a suitable numerical method for
finding the root.
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AI Output

This is a great problem that demonstrates the power of calculus and
numerical methods.
1. Existence of a Root: We can use the Intermediate Value Theorem
(IVT).

• f (1) = 15 − 1 − 1 = −1

• f (2) = 25 − 2 − 1 = 29

Since f (x) is a polynomial, it is continuous everywhere. Because
f (1) < 0 and f (2) > 0, the IVT guarantees there is at least one root
c ∈ (1, 2).
2. Number of Real Roots: To determine the number of real roots,
we analyze the derivative:

f ′(x) = 5x4 − 1

The critical points occur where f ′(x) = 0, which is x4 = 1/5, so x =

±(1/5)1/4. These are the locations of the local extrema.

• f ((1/5)1/4) ≈ −1.32

• f (−(1/5)1/4) ≈ −0.68

Since both local extrema are negative, the function crosses the x-axis
only once. Therefore, there is exactly one real root.
3. Suggested Method: Given that we have a good analytic under-
standing of the function, Newton’s method would be very efficient.
However, a more robust and simpler approach for a one-off problem
is to use a library function like a bisection or secant solver, such as
scipy.optimize.root_scalar in Python.

The AI’s analysis confirms the existence of a unique real root and sug-
gests a robust path forward: using a pre-built numerical solver from a
trusted library.

2.2 Step 2: Code Generation

With a clear strategy, we can now ask the AI to implement it. We
will ask for a Python script, as its scientific libraries are perfectly suited for
this task. Here, the AI acts as a code generator. It

translates our English-language strategy
into executable code, saving significant
time.

Prompt to AI

Write a Python script using the SciPy library to find the unique real
root of f (x) = x5 − x − 1.
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AI Output

1 import numpy as np

2 from scipy.optimize import root_scalar

3

4 # Define the function

5 def f(x):

6 return x**5 - x - 1

7

8 # root_scalar will find a root within the given bracket [1, 2]

9 # It uses a robust and efficient algorithm (Brent’s method by

default)

10 sol = root_scalar(f, bracket=[1, 2])

11

12 # Print the results

13 print(f"Function: f(x) = x^5 - x - 1")

14 print(f"Root found: {sol.root}")

15 print(f"Function value at root: {f(sol.root)}")

16 print(f"Iterations: {sol.iterations}")

In seconds, we have a working, efficient script. The next step, however,
is the most important in any AI-assisted workflow: verification.

2.3 Step 3: Verification and Visualization

Never trust an AI’s output without verification. While the code looks
correct, we must confirm the result and build our own intuition about the
problem. A great way to do this is to have the AI generate more code to
both verify the numerical result and visualize the function’s behavior.

Prompt to AI

That’s a good start. Now, modify the script to do two more things:
1. Add a formal verification step that prints whether the absolute
value of the function at the found root is less than a tolerance of
1 × 10−12.
2. Using Matplotlib, create a publication-quality plot of the function
from x = −2 to x = 2. Clearly label the axes, add a title, and place a
red dot on the plot at the location of the root.

The AI can now generate the code to produce the plot shown in Figure
2.1. When run, the script also outputs the crucial verification text: Verification Output:

Root verification successful:

|f(root)| < 1e-12

This is our proof. We have indepen-
dently confirmed the AI’s numerical
result.

Root found: 1.1673039782614187

Verifying root...

Value of f(root) is: 7.771561172376096e-16

Root verification successful: |f(root)| < 1e-12
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Figure 2.1: A plot of f (x) = x5 − x −
1, generated via AI assistance. The
unique real root is highlighted. The
visual confirmation is a key part of the
verification process.

The numerical result is confirmed to be highly accurate, and the plot
visually confirms our analysis from Step 1. We see a single crossing point,
located between 1 and 2.

2.4 Step 4: Dissemination

Final step - communicate.

The final step is to communicate our findings. This is where AI
can be a powerful partner in generating formal mathematical text using
LATEX.

Prompt to AI

Generate a single LATEX sentence to summarize our finding for a
research paper. State the function and its unique real root, approxi-
mated to 5 decimal places.

AI Output

1 The quintic polynomial $f(x) = x^5 - x - 1$ possesses a unique

real root, which we determine numerically to be $x \approx

1.16730$.

When rendered, this gives us a perfect, publication-ready summary of
our work:

Theorem 2.1 (Root of x5 − x − 1). The quintic polynomial f (x) = x5 − x − 1
possesses a unique real root, which we determine numerically to be x ≈ 1.16730.

This simple example encapsulates the entire workflow that
this guide will explore in detail. We moved from a high-level analysis, to
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specific code generation, to rigorous verification and visualization, and
finally to formal dissemination. At every stage, the human researcher di-
rected the inquiry, and the AI provided the technical implementation. The
following chapters will give you the skills to apply this powerful paradigm
to your own research.





3 Background and History of AI in

Mathematics

We can only see a short distance ahead, but we can see plenty there that needs to be
done.

— Alan Turing (1912 – 1954)

When you drink water, remember the source.
饮水思源。

— Chinese Proverb (中国谚语)

The intersection of artificial intelligence and mathematics

has a rich and complex history that spans several decades, evolving from
simple symbolic manipulation systems to sophisticated neural networks
capable of engaging with abstract mathematical concepts. Understanding
this evolution is essential for appreciating both the current capabilities and
future potential of AI in mathematical research. CAS Systems

The earliest manifestations of AI in mathematics emerged in the 1960s
with the development of computer algebra systems (CAS) such as MAC-
SYMA, developed at MIT between 1968 and 1982. These systems rep-
resented the first serious attempt to automate mathematical computa-
tion beyond simple numerical calculations, focusing instead on symbolic
manipulation of algebraic expressions. MACSYMA’s ability to perform
symbolic integration, differentiation, and algebraic manipulation laid the
groundwork for what would become a fundamental tool in mathematical
research. theorem proving systems

The 1970s and 1980s saw significant advances in theorem proving sys-
tems, with notable developments including the Boyer-Moore theorem
prover and the emergence of interactive proof assistants. These systems in-
troduced the concept of computer-assisted proof verification, though they
remained highly specialized tools requiring significant expertise to use
effectively. The famous four-color theorem proof by Kenneth Appel and
Wolfgang Haken in 1976, which relied heavily on computer verification,
marked a watershed moment in the acceptance of computer-assisted math-
ematics, though it also sparked debates about the nature of mathematical
proof that continue to this day.

The 1990s brought the development of more sophisticated computer
algebra systems, including Mathematica (1988), Maple (1980s), and later
MATLAB, which became increasingly accessible to working mathemati-
cians. These systems not only automated routine calculations but also pro-
vided powerful visualization capabilities and programming environments
that enabled new forms of mathematical exploration. The integration of
these tools into mathematical education and research practices began to
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reshape how mathematicians approached both teaching and discovery. formal proof systems

The turn of the millennium marked the beginning of a new era with the
development of formal proof systems and proof assistants such as Coq,
Lean, and Isabelle. These systems represented a significant advancement
in the formalization of mathematical knowledge, allowing for the creation
of machine-checkable proofs and the development of large libraries of
verified mathematical results. The Flyspeck project, which formalized the
proof of the Kepler conjecture, demonstrated the potential for large-scale
formalization efforts in mathematics. machine learning

The 2010s witnessed the emergence of machine learning applications in
mathematics, with systems beginning to recognize patterns in mathemat-
ical data and even generate conjectures. Notable developments included
the use of deep learning for mathematical object recognition, the applica-
tion of reinforcement learning to game theory and optimization problems,
and the beginning of natural language processing applications in mathe-
matical text analysis. large language models

The current decade has been defined by the dramatic emergence of
large language models, beginning with GPT-3 in 2020 and accelerating
through subsequent developments including GPT-4, Claude, and spe-
cialized mathematical AI systems. These models represent a qualitative
shift from previous AI applications in mathematics, offering capabilities
that include natural language understanding of mathematical concepts,
code generation, proof assistance, and even creative problem-solving ap-
proaches.

The development of these modern AI systems has been accompanied by
significant advances in their mathematical capabilities. Systems like GPT-
4 demonstrate remarkable fluency in mathematical communication, can
solve complex problems across multiple domains, and can even engage
in mathematical reasoning that approaches human-level performance in
many areas. However, these capabilities come with important limitations
and potential pitfalls that mathematicians must understand and navigate
carefully.

Parallel to these developments in general AI, specialized mathematical
AI systems have emerged that focus specifically on mathematical tasks.
Systems like Lean’s mathlib project, the Metamath database, and various
automated theorem provers represent focused efforts to apply AI specif-
ically to mathematical problems. These systems often achieve superior
performance in their specialized domains compared to general-purpose
AI, though they may lack the broad applicability and natural language
interface of large language models. integration of AI into mathematical

researchThe integration of AI into mathematical research has also been shaped
by broader technological trends, including the availability of massive com-
putational resources, the development of sophisticated programming lan-
guages and environments, and the growth of online mathematical com-
munities and databases. These factors have created an ecosystem that
supports both the development of AI tools and their adoption by working
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mathematicians.
Understanding this historical context is crucial for several reasons. It

helps researchers appreciate the evolutionary nature of AI development
and avoid both excessive optimism about current capabilities and un-
warranted pessimism about future potential. It provides insight into the
types of problems that AI systems are likely to handle well and those that
may remain challenging. It also illuminates the ongoing debates about the
role of computation in mathematical proof and discovery that continue to
shape the field. Continued integration of AI tools into

standard mathematicsThe trajectory of AI development in mathematics suggests that we are
likely to see continued integration of these tools into standard mathemat-
ical practice, with potential developments including more sophisticated
proof assistants, enhanced natural language interfaces for mathematical
systems, and possibly even AI systems capable of independent mathe-
matical discovery. However, this evolution will likely be accompanied by
ongoing challenges related to verification, interpretation, and the mainte-
nance of mathematical rigor. Early history of AI

The dream of automating mathematical reasoning is not new. The early
history of AI, often called "Symbolic AI" or "Good Old-Fashioned AI" (GO-
FAI), was built on the foundation of mathematical logic. The goal was to
build systems that could reason from first principles, manipulating sym-
bols according to formal rules. This philosophy gave rise to expert systems
and, crucially for us, the first Computer Algebra Systems (CAS). Tools like
Macsyma, developed at MIT in the 1960s, were direct descendants of this
tradition. They are deterministic, logically consistent, and provably correct
within their axiomatic systems. They are powerful calculators for symbolic
mathematics.

For decades, this was the primary mode of AI in mathematics. The
recent explosion in AI capabilities, however, comes from a different lin-
eage: "Connectionist AI," which finds its modern expression in machine
learning and deep neural networks. Unlike symbolic systems, these mod-
els are not programmed with explicit rules. Instead, they learn statistical
patterns from vast amounts of data. The development of the Transformer
architecture 1 was a watershed moment, enabling the creation of Large 1 Ashish Vaswani, Noam Shazeer, Niki

Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Łukasz Kaiser, and
Illia Polosukhin. Attention is all you
need. In Advances in Neural Information
Processing Systems, volume 30, pages
5998–6008, 2017

Language Models (LLMs) like OpenAI’s GPT series 2, Anthropic’s Claude,

2 OpenAI. ChatGPT, 2024. Model:
GPT-4. Accessed on: 2024-05-21

and Google’s Gemini.
These LLMs are not logic engines. They are astonishingly sophisticated

pattern-matchers and predictors. When you ask an LLM a question, it is
not "thinking" or "reasoning" in the human sense; it is calculating the most
probable sequence of words to form a plausible-sounding answer based
on the patterns it learned from its training data (a significant portion of
the internet). This distinction is the single most important concept for a
mathematician to grasp.
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The real question is not whether machines think but whether men do.
— B.F. Skinner (1904 – 1990)

Mathematics should serve practical applications, but practical applications should
also inspire mathematics.
数学应当为实际应用服务，但实际应用也应当启发数学。

— Wu Wenjun (吴文俊)

The contemporary landscape of artificial intelligence tools

available to mathematicians is diverse and rapidly evolving, encompassing
everything from general-purpose large language models to specialized
mathematical computation systems. Understanding the capabilities, limi-
tations, and appropriate applications of these various tools is essential for
effective integration into mathematical research workflows.

4.1 Large Language Models and Chatbots

Large language models represent perhaps the most significant re-
cent development in AI tools for mathematics. These systems, trained
on vast corpora of text including mathematical literature, demonstrate
remarkable capabilities in understanding and generating mathematical
content, though they also exhibit important limitations that users must
understand and accommodate. GPT-4

GPT-4, developed by OpenAI, stands as one of the most capable general-
purpose AI systems currently available for mathematical applications. Its
training encompassed a substantial portion of mathematical literature,
enabling it to engage with concepts across virtually all areas of mathe-
matics. The system demonstrates particular strength in problem-solving,
proof sketching, and mathematical communication. When presented with
a mathematical problem, GPT-4 can often provide multiple solution ap-
proaches, explain complex concepts in accessible language, and even iden-
tify potential errors in mathematical reasoning. However, users must re-
main aware that the system can occasionally produce plausible-sounding
but incorrect mathematical statements, particularly in advanced or special-
ized areas. Claude

Claude, developed by Anthropic, offers similar capabilities with some
notable differences in approach and behavior. Claude tends to be more
cautious about making definitive mathematical claims and is generally
more explicit about uncertainty when dealing with complex or ambiguous
problems. The system demonstrates strong capabilities in mathematical
writing and communication, often producing well-structured explanations
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and proofs. Like GPT-4, Claude can assist with problem-solving across
multiple mathematical domains, though it may be more conservative in its
problem-solving approaches. Bard

Google’s Bard and other emerging LLMs provide additional options
in the ecosystem, each with their own strengths and characteristics. The
choice between these systems often depends on specific use cases, with
some performing better for certain types of mathematical problems or
communication tasks.

Specialized mathematical AI systems have emerged that focus specif-
ically on mathematical applications. These systems often demonstrate
superior performance in their targeted domains compared to general-
purpose LLMs, though they may lack the broad applicability and natural
language interface that makes general systems accessible to many users.

These LLMs are your brainstorming partners, your coding assistants,
and your LATEX scribes.

• Key Players: OpenAI’s ChatGPT, Anthropic’s Claude, Google’s Gemini.

• Best For: Brainstorming, explaining concepts, generating code, debug-
ging, and writing LATEX.

• The Catch: They can "hallucinate" incorrect information. Never trust a
mathematical result from an LLM without independent verification.

4.2 Computer Algebra Systems

Computer algebra systems continue to play a crucial role in
mathematical research, and their integration with AI tools represents an
important frontier in mathematical computation. Understanding the capa-
bilities and appropriate applications of major CAS platforms is essential
for effective mathematical research. Mathematica

Mathematica, developed by Wolfram Research, provides one of the most
comprehensive environments for symbolic computation. The system excels
at symbolic manipulation, equation solving, and mathematical visualiza-
tion. Its integration with Wolfram Alpha provides access to vast databases
of mathematical knowledge and computational capabilities. For graphics
generation, Mathematica offers sophisticated plotting capabilities that can
produce publication-quality figures with precise control over mathematical
notation and formatting. The system’s notebook interface facilitates the
integration of computation, visualization, and documentation in a single
environment. Exporting graphics

Exporting graphics from Mathematica requires attention to several
factors to ensure scientific quality. The system supports multiple out-
put formats including EPS, PDF, and high-resolution raster formats. For
publication purposes, vector formats are generally preferred due to their
scalability and clean rendering of mathematical notation. Proper axis la-

https://chat.openai.com
https://www.anthropic.com
https://gemini.google.com
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beling, legend placement, and font consistency are crucial for producing
scientifically acceptable graphics. Maple

Maple, developed by Maplesoft, provides similar symbolic computation
capabilities with its own strengths and interface characteristics. The system
is particularly strong in certain areas of symbolic computation and offers
excellent support for mathematical typesetting and document prepara-
tion. Maple’s programming language provides powerful capabilities for
developing custom mathematical applications and algorithms. MATLAB

MATLAB, while primarily focused on numerical computation, provides
important capabilities for mathematical research, particularly in applied
mathematics and engineering applications. The system’s strength lies in its
extensive libraries for numerical analysis, signal processing, and scientific
computing. MATLAB’s plotting capabilities are particularly well-suited for
data visualization and engineering applications, though they may require
additional formatting for publication quality. Python

Python, while not traditionally considered a computer algebra sys-
tem, has emerged as a powerful platform for mathematical computation
through libraries such as SymPy, NumPy, and SciPy. The integration of SymPy, NumPy, and SciPy

Python with AI tools is particularly seamless, as many AI systems can
generate Python code directly and execute it in real-time. This capability
makes Python an excellent choice for mathematical research that involves
both symbolic computation and AI integration.

CAS perform exact, error-free symbolic computation. Your choice will
depend on your university’s licenses, your field, and your personal prefer-
ence.

• Wolfram Mathematica 1: A cohesive, proprietary system with a pow- 1 Wolfram Research, Inc. Mathematica,
Version 14.0, 2024erful, consistent language and elegant notebook interface. Excellent for

both symbolic and numerical work.

AI Output

1 (* Define a function and compute its indefinite integral *)

2 f[x_] := Exp[-x^2] * Sin[Pi*x]

3 integral = Integrate[f[x], x]

4

5 (* Generate a high-quality plot *)

6 plotObject = Plot[f[x], {x, -3, 3},

7 PlotLabel -> "Damped Sine Wave",

8 AxesLabel -> {"x", "f(x)"},

9 PlotStyle -> {Thick, Red},

10 GridLines -> Automatic]

11

12 (* Output the integral result *)

13 Print["The integral is: ", integral]

• Maple 2: A long-standing commercial competitor to Mathematica, par- 2 Maplesoft. Maple. Waterloo, Ontario:
Maplesoft, a division of Waterloo Maple
Inc., 2024

ticularly lauded for its world-class symbolic computation engine, espe-
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cially in solving differential equations.

AI Output

1 # Solve differential equation symbolically

2 dsolve(diff(y(x),x,x) + 2*diff(y(x),x) + y(x) = 0, y(x));

3

4 # Create publication-quality plot

5 plot(sin(x)*exp(-x), x = 0..2*Pi,

6 title = "Damped Sine Wave",

7 thickness = 2);

• MATLAB 3: Shines in numerical computing, matrix manipulations, and 3 The MathWorks, Inc. MATLAB version
R2024a, 2024engineering applications. Its syntax is optimized for matrix and vector

operations.

AI Output

1 % Visualization of a function

2 x = linspace(0, 2*pi, 1000);

3 y = sin(x).*exp(-x);

4 plot(x, y, ’LineWidth’, 2);

5 title(’Damped Sine Wave’);

6 xlabel(’x’); ylabel(’f(x)’);

7 grid on;

• SageMath 4: A free, open-source project aiming to unify many math 4 The Sage Developers. SageMath, the
Sage Mathematics Software System
(Version 10.3), 2024

software packages under a Python interface.

AI Output

1 # Sage uses Python syntax.

2 # Find subgroups of the alternating group A4

3 G = AlternatingGroup(4)

4 print(f"The order of A4 is: {G.order()}")

5

6 # Get the lattice of subgroups

7 subgroup_lattice = G.subgroups()

8 print("Subgroups of A4:")

9 for H in subgroup_lattice:

10 print(f"- Order {H.order()}: {’Cyclic’ if H.is_cyclic()

else ’Not Cyclic’}")

11

12 # Sage can render the lattice diagram directly

13 # subgroup_lattice.plot()

• SymPy: A pure Python library for symbolic math, perfect for projects
that need to tightly integrate with other Python data science tools.
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AI Output

1 import sympy

2

3 # Define a symbolic matrix

4 t = sympy.Symbol(’t’)

5 M = sympy.Matrix([

6 [sympy.cos(t), -sympy.sin(t)],

7 [sympy.sin(t), sympy.cos(t)]

8 ])

9

10 print("Matrix M(t):")

11 sympy.pprint(M)

12

13 # Compute the determinant

14 det_M = M.det()

15 print(f"\nDeterminant: {det_M}")

16 print(f"Simplified Determinant: {sympy.simplify(det_M)}")

17

18 # Compute the eigenvalues

19 e_vals = M.eigenvals()

20 print("\nEigenvalues:")

21 sympy.pprint(e_vals)

• Microsoft Excel: Excellent for quickly organizing small datasets and
performing simple calculations, but not suitable for formal, repro-
ducible research.

4.3 AI Image and Video Generation

The emergence of AI-powered image and video generation

tools has opened new possibilities for mathematical visualization and
communication. These tools can create diagrams, illustrations, and even
animations that support mathematical exposition and research.

Systems like DALL-E, Midjourney, and Stable Diffusion can generate
mathematical diagrams and illustrations based on textual descriptions.
While these systems are not specifically designed for mathematical appli-
cations, they can be effective for creating conceptual illustrations, geomet-
ric figures, and visual metaphors that support mathematical communica-
tion. However, users must be cautious about the accuracy of mathemati-
cally specific content generated by these systems.

Specialized mathematical visualization tools that incorporate AI capa-
bilities are beginning to emerge, offering more precise control over math-
ematical content while maintaining the creative potential of AI-generated
imagery. These tools show promise for creating sophisticated mathematical
animations and interactive visualizations that can enhance both research
and education.
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Tools like Midjourney and DALL-E 3 create images from text prompts.
For mathematics, their primary use is for creating conceptual or artistic
illustrations (e.g., "an artistic rendering of a fractal landscape"). They are
generally useless for creating precise, data-driven plots or mathematical di-
agrams. For that, it is far better to use AI to generate the code for a plotting
library like Matplotlib or TikZ.

4.4 Proof Assistants and Formal Systems

Proof assistants represent a specialized but increasingly impor-
tant category of AI tools for mathematics. These systems provide formal
environments for constructing and verifying mathematical proofs, offering
unprecedented levels of rigor and verification.

Lean, developed by Microsoft Research, has gained significant attention
in the mathematical community for its modern design and growing library
of formalized mathematics. The system provides a powerful type theory
foundation for mathematical reasoning and has been used to formalize
significant mathematical results. The Lean community has developed
extensive libraries of mathematical knowledge, making it increasingly
accessible for research applications. Rocq Prover and Coq, https:

//rocq-prover.org/.Rocq Prover was formerly known as the Coq Proof Assistant Coq pro-
vides a mature environment for formal proof development with a long
history of successful applications in both mathematics and computer sci-
ence. The system’s tactics-based approach to proof construction offers
flexibility and power, though it requires significant investment in learning
the system’s methodology.

Isabelle is a higher-order logic (HOL)
theorem prover.

Isabelle, higher-order logic (HOL) theorem prover, offers another ma-
ture platform for formal mathematical reasoning, with particular strengths
in certain areas of mathematics and logic. The system has been used for
large-scale formalization projects and provides excellent support for math-
ematical automation.

The integration of these formal systems with AI tools represents an
exciting frontier, with potential applications including AI-assisted proof
construction, automated lemma discovery, and intelligent proof search.
These developments suggest that formal methods may become increas-
ingly accessible to working mathematicians. The future toolkit of the augmented

mathematician.A modern mathematician’s toolkit is no longer just pen and paper. It’s a
suite of software designed for different tasks, from symbolic manipulation
to text generation.

This is a rapidly growing area where AI and formal logic intersect.
Proof assistants, also known as interactive theorem provers, are tools used
to write formal proofs that can be automatically checked for correctness
by a computer. They bridge the gap between human-readable proofs and
machine-verifiable logic.

• Key Players: Lean 5, Coq, Isabelle/HOL. 5 Leonardo de Moura et al. The Lean
theorem prover (system description).
In 25th International Conference on Au-
tomated Deduction (CADE-25), volume
9195 of Lecture Notes in Computer Sci-
ence, pages 378–388. Springer, 2015

https://rocq-prover.org/
https://rocq-prover.org/
https://leanprover.github.io/


current tools and technologies 21

• Use Case: They are used to formalize complex theorems, ensuring every
step is logically sound. This has led to the verification of major results
like the Four Color Theorem and the Kepler Conjecture.

• Role for Undergraduates: While an advanced topic, interacting with a
proof assistant can provide profound insight into the rigorous founda-
tions of mathematics. LLMs can sometimes help by generating boiler-
plate code for these systems, but the logical reasoning must be human-
driven.





5 A Mathematician’s Guide to How

LLMs Work

All things are numbers.
— Pythagoras (c. 570 – c. 495 BC)

While you don’t need to build a car engine to drive, a good
driver knows what a transmission does and why oil is important. Simi-
larly, to effectively use a Large Language Model (LLM) in mathematical
research, you don’t need to build one from scratch, but you do need a
conceptual understanding of its mathematical engine.

The remarkable abilities of modern AI rest on a few profound mathe-
matical ideas. At their heart, these systems translate the complexities of
human language into the elegant, structured world of linear algebra and
probability. This chapter provides a high-level overview of the core math-
ematical concepts that power LLMs, framed for a mathematical audience.
For readers interested in a complete, implementation-level deep dive, we
refer you to Appendix B.

5.1 Words as Vectors

The foundational insight of modern AI is that words can be repre-
sented not as symbols, but as vectors in a high-dimensional vector space,
typically Rd where d might be several thousand. This is called an embed-
ding. Every word in the AI’s vocabulary is mapped to a unique vector.

kingqueen

manwoman

cat

feline

prince

gender

gender

royalty
royalty

Figure 5.1: A 2D projection of a word
embedding space. Words with similar
meanings, like ‘cat‘ and ‘feline‘, are
close together. The vector from ‘king‘
to ‘queen‘ is similar to the vector
from ‘man‘ to ‘woman‘, capturing the
analogical relationship.
Figure 5.2: A 2D projection of a word
embedding space. Words with similar
meanings, like ‘cat‘ and ‘feline‘, are
close together. The vector from ‘king‘
to ‘queen‘ is similar to the vector
from ‘man‘ to ‘woman‘, capturing the
analogical relationship.

This is not just a clever storage scheme; it’s a geometric representation
of meaning.

• Similarity is Distance: Words with similar meanings end up as vectors
that are close to each other in this space. The "distance" between two
words can be measured by the angle between their vectors, typically
using the cosine similarity.

sim(u, v) = u·v
∥u∥∥v∥

• Relationships are Vectors: The relationships between words can be
captured by vector arithmetic. The most famous example is the vector
equation:

vking − vman + vwoman ≈ vqueen

This demonstrates that the geometric structure of the embedding space
encodes deep semantic and analogical relationships.
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5.2 Attention: A Dynamic, Weighted Average

How does an AI know which words are important in a sentence?
The answer is the attention mechanism, one of the key innovations of the
Transformer architecture. The Transformer architecture, intro-

duced in the paper "Attention Is All
You Need," is the foundation for most
modern LLMs.

Mathematically, you can think of attention as a sophisticated, dynamic
way of computing a weighted average. For each word in a sentence, the
model calculates a set of "attention scores" that measure how relevant
every other word is to it.

Given a sequence of input word vectors (x1, x2, . . . , xn), the new repre-
sentation for word i, let’s call it yi, is computed as:

yi =
n

∑
j=1

αijxj

This is simply a weighted average of all the input vectors. The magic is in
how the weights, αij, are calculated. They are determined on-the-fly based
on the similarity between word i and every other word j.

The Core of Attention

The weights αij are calculated using matrix operations. The model
learns three matrices: WQ (for Queries), WK (for Keys), and WV

(for Values).

1. Each input vector xi is transformed into a query qi = xiWQ and
a key ki = xiWK.

2. The "relevance" between word i and word j is the dot product of
their query and key vectors: sij = qi · kj.

3. These scores are passed through a softmax function to
ensure they sum to 1, creating the final weights: αij =

softmax(si1, si2, . . . , sin)j.

This entire process is just a series of matrix multiplications, mak-
ing it incredibly fast and efficient to run on modern hardware like
GPUs. The Core of Attention

5.3 Prediction as a Probability Problem

At its core, an LLM is a machine for predicting the next word.
When you give it a prompt, it calculates the most probable word to come
next. Then it appends that word to the sequence and repeats the process,
generating text one word at a time.

This is fundamentally a problem in probability theory. The model learns
a massive conditional probability distribution, P(next word |previous words).
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• Training Objective: The AI is trained on a vast corpus of text (like a
large portion of the internet and digitized books). Its goal is to min-
imize a loss function. The most common is the cross-entropy loss,
which measures the difference between the probability distribution the
model predicts for the next word and the actual word that appeared in
the training text.

• Optimization: The process of "learning" is simply a massive optimiza-
tion problem. The model’s parameters (the entries in its weight matri-
ces, like WQ, WK, WV) are adjusted iteratively using gradient descent-
based methods (like the Adam optimizer) to minimize this loss function
over the entire training dataset.

A neural network, then, can be thought of as a very complex, high-
dimensional function, fθ(input text), where the parameters θ are the mil-
lions or billions of weights in the model. The training process is all about
finding the optimal θ that makes the function a good predictor of human
language.

This conceptual framework—words as vectors, attention as a weighted
average, and prediction as probability—is the mathematical foundation
upon which modern AI is built. With this intuition in hand, you are now
equipped to understand not just what AI can do for your mathematical
research, but to develop a better sense of how it does it, and more impor-
tantly, where its limitations lie.





6 Effective Prompting Strategies

The art of asking the right question is more important than solving the problem.
— John Tukey (1915-2000)

Learning without thinking is useless; thinking without learning is dangerous.
学而不思则罔，思而不学则殆。

— Confucius (孔子)

The art and science of effective prompting represents one of the
most crucial skills for successfully integrating AI tools into mathematical
research. Unlike traditional computational tools that require specific syn-
tax and commands, AI systems respond to natural language instructions
that can be crafted and refined to achieve desired outcomes. Understand-
ing how to construct effective prompts is essential for maximizing the
value of AI assistance while maintaining mathematical rigor and accuracy. Effective prompting for mathematical

AI systemsEffective prompting for mathematical AI systems requires understand-
ing both the capabilities and limitations of the underlying models. These
systems excel at pattern recognition, analogical reasoning, and the appli-
cation of learned mathematical procedures, but they may struggle with
novel constructions, highly specialized notation, or problems that require
genuine creativity. Successful prompting strategies leverage the strengths
of AI systems while compensating for their limitations through careful
instruction design and iterative refinement.

The fundamental principle of effective mathematical prompting is clar-
ity and specificity. Unlike human collaborators who can interpret ambigu- clarity and specificity

ous instructions based on context and shared understanding, AI systems
benefit from explicit, detailed instructions that leave little room for misin-
terpretation. This requires prompt designers to be precise about their ex-
pectations, provide sufficient context for the problem domain, and clearly
specify the desired format and level of detail for responses.

Context establishment forms the foundation of effective mathematical
prompting. When presenting a problem to an AI system, it is crucial to
provide sufficient background information to enable the system to under-
stand not only what is being asked but also the mathematical framework
within which the problem exists. This might include defining notation,
specifying the mathematical domain, indicating the level of rigor expected,
and providing relevant background theorems or definitions.

Consider the difference between a poorly constructed prompt: Poorly constructed vs well-constructed
prompts.

Prompt: Solve this differential equation: y” + 2y’ + y = 0

and a well-constructed alternative:
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Prompt: I’m working on a second-order linear ordinary differential equation
with constant coefficients: y” + 2y’ + y = 0. Please provide a complete solution
including: (1) identification of the characteristic equation, (2) determination
of the roots, (3) construction of the general solution, and (4) verification that
the solution satisfies the original equation. Please use standard mathematical
notation and show all intermediate steps.

The enhanced prompt provides several advantages: it establishes the
mathematical context, specifies the expected solution format, requests
verification steps, and indicates the desired level of detail. This approach
significantly increases the likelihood of receiving a comprehensive and
accurate response.

Getting high-quality, academic-style writing from an LLM is a skill. The
default conversational style is often unsuitable for a formal paper. The key
is to provide constraints on persona, format, and style. Provide constraints on persona, format,

and style.Let’s compare two prompts. The first is vague and will likely produce a
conversational, high-level summary with bullet points, suitable for a blog
post. Vague Prompt about Riemann Hypoth-

esis

Prompt to AI

Before (Vague Prompt): Explain the Riemann Hypothesis.

The second prompt dictates the audience, tone, structure, length, and
content, forcing the LLM to produce a much more sophisticated and useful
draft. Specific, Constrained Prompt

Prompt to AI

After (Specific, Constrained Prompt): Act as a mathematics pro-
fessor writing an introductory section for a survey paper aimed at
advanced undergraduates.
Write a 300-word narrative introduction to the Riemann Hypoth-
esis. The style should be formal and academic. Begin by situating
the hypothesis in the context of the distribution of prime numbers,
referencing the Prime Number Theorem as a starting point. Then,
introduce the Riemann zeta function, ζ(s), and clearly state the hy-
pothesis in terms of the location of its non-trivial zeros. Avoid using
bullet points or subheadings. Ensure smooth transitions between
concepts.

In general, models like Anthropic’s Claude 3 Opus and OpenAI’s GPT-4
are currently recognized for their ability to handle such nuanced writing
tasks. Iterative refinement

Iterative refinement represents another crucial strategy for effective
prompting. Initial prompts rarely produce perfect results, and successful
AI integration requires the ability to analyze responses, identify areas
for improvement, and refine instructions accordingly. This process might
involve asking follow-up questions, requesting clarification of specific
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steps, or providing additional constraints to guide the AI’s reasoning. role-playing

The concept of role-playing in prompts has proven particularly effective
for mathematical applications. By instructing the AI to adopt the persona
of a specific type of mathematical expert—such as a topology specialist,
number theorist, or applied mathematician—users can often obtain more
focused and specialized responses. For example, beginning a prompt with

Prompt: You are an expert in algebraic topology. Please explain the concept of
homology groups...

often yields more sophisticated and accurate explanations than generic
requests. Structured prompting techniques

Structured prompting techniques can significantly improve the qual-
ity of mathematical AI responses. This involves breaking complex prob-
lems into smaller, manageable components and requesting specific types
of analysis for each component. For instance, when seeking help with a
proof, a structured approach might request: (1) problem analysis and key
insight identification, (2) proof strategy development, (3) detailed proof
construction, and (4) verification and alternative approaches.

The use of examples in prompts can dramatically improve AI perfor- Use of examples in prompts

mance on mathematical tasks. By providing one or more examples of the
desired response format, users can guide the AI toward producing outputs
that match their expectations. This technique is particularly effective for
standardized tasks such as problem-solving, proof formatting, or mathe-
matical exposition. Constraint specification

Constraint specification is another powerful prompting strategy. By ex-
plicitly stating limitations or requirements—such as "use only elementary
methods," "avoid advanced topology," or "provide a proof suitable for un-
dergraduate students"—users can ensure that AI responses align with their
specific needs and contexts. Error handling and verification

Error handling and verification instructions should be integrated into
mathematical prompts whenever possible. This might include requests
for the AI to "double-check your work," "identify potential errors in your
reasoning," or "provide alternative solution methods for verification." Such
instructions help activate the AI’s self-evaluation capabilities and can im-
prove the reliability of responses.

The timing and sequencing of prompts can significantly impact their
effectiveness. Rather than attempting to solve complex problems with a
single, comprehensive prompt, users often achieve better results by break-
ing the problem-solving process into stages, using the output of one inter-
action to inform the next. This approach allows for course correction and
refinement throughout the problem-solving process.

Advanced prompting techniques include chain-of-thought prompting,
which explicitly requests that the AI show its reasoning process, and meta-
prompting, which involves asking the AI to analyze and improve its own
responses. These techniques can be particularly valuable for complex
mathematical problems that require multiple reasoning steps or creative



30 ai in mathematics research

problem-solving approaches.



7 LLM Chaining

In mathematics you don’t understand things. You just get used to them.
— John von Neumann (1903 – 1957)

Innovation is the soul of scientific and technological progress.
创新是科技进步的灵魂。

— Qian Xuesen (钱学森)

Large Language Model chaining represents a sophisticated approach
to AI integration that leverages the strengths of multiple AI systems or
multiple interactions with the same system to achieve results that surpass
what any single interaction might produce. This technique has particu-
lar relevance for mathematical research, where complex problems often
require multiple types of analysis, verification steps, and refinement pro-
cesses that can benefit from sequential AI assistance. Create a pipeline of AI-assisted analysis

and refinement.The fundamental concept of LLM chaining involves structuring AI
interactions so that the output of one interaction becomes the input for
subsequent interactions, creating a pipeline of AI-assisted analysis and
refinement. This approach recognizes that while individual AI interactions
may have limitations, carefully orchestrated sequences of interactions
can overcome many of these limitations and produce more sophisticated,
accurate, and comprehensive results.

In mathematical applications, LLM chaining can be particularly effec-
tive for complex problem-solving scenarios that require multiple types of
expertise or analysis. For example, a challenging proof might benefit from
an initial interaction focused on problem analysis and strategy develop-
ment, followed by a second interaction that constructs the detailed proof,
and a third interaction that verifies the logic and checks for errors. Each
stage builds upon the previous work while bringing specialized focus to
different aspects of the problem.

The design of effective LLM chains requires careful consideration of the
logical flow between interactions and the specific contributions that each
stage should make to the overall process. Successful chains often begin
with broad analysis and strategy development, progress through detailed
implementation or construction phases, and conclude with verification and
refinement steps. This structure mirrors many natural problem-solving
processes and allows each AI interaction to focus on tasks that are well-
suited to its strengths.

One powerful application of LLM chaining in mathematics involves
the iterative refinement of mathematical exposition. An initial interaction
might focus on generating a rough draft of a mathematical explanation or
proof, a second interaction might focus on improving clarity and organiza-
tion, and a third might focus on ensuring mathematical rigor and accuracy.
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This approach can produce explanations that are both mathematically
sound and clearly communicated.

The concept of specialized chains involves using different AI systems
or different prompting strategies at various stages of the chain to leverage
particular strengths. For instance, one might use a system known for cre-
ative problem-solving in the initial stages, switch to a system known for
rigorous analysis in the middle stages, and conclude with a system known
for clear communication in the final stages. While this approach requires
access to multiple AI systems, it can produce superior results for complex
tasks.

Error detection and correction represent another important application
of LLM chaining. A chain might include dedicated verification steps where
the AI is specifically instructed to identify potential errors, inconsistencies,
or gaps in reasoning from previous stages. This approach can significantly
improve the reliability of AI-assisted mathematical work by building verifi-
cation directly into the process.

The integration of computational tools into LLM chains opens addi-
tional possibilities for mathematical applications. A chain might begin
with AI-generated problem analysis, proceed to computational verification
using computer algebra systems, and conclude with AI-assisted interpre-
tation of results. This hybrid approach combines the natural language
capabilities of LLMs with the computational precision of specialized math-
ematical tools.

Practical implementation of LLM chaining requires attention to several
technical considerations. The format and structure of outputs from each
stage must be designed to serve as effective inputs for subsequent stages.
This might involve requesting specific formatting, ensuring that key infor-
mation is clearly highlighted, or including explicit instructions for how the
output should be used in the next stage.

Documentation and tracking become crucial in complex LLM chains.
Maintaining clear records of each interaction, the reasoning behind design
decisions, and the evolution of ideas throughout the chain is essential for
understanding the process and verifying the final results. This documenta-
tion also supports reproducibility and enables refinement of the chain for
future applications.

Quality control in LLM chains requires particular attention to error
propagation. Errors introduced in early stages can compound through
subsequent interactions, potentially leading to sophisticated but funda-
mentally flawed results. Effective chains incorporate multiple verification
points and error-checking mechanisms to identify and correct problems
before they propagate through the entire process.

The evaluation of LLM chain outputs requires different approaches
than the evaluation of single AI interactions. The final output must be
assessed not only for accuracy and quality but also for internal consistency
across the various stages of the chain. This might involve checking that
conclusions align with initial analysis, that detailed work supports general
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claims, and that verification steps actually validate the proposed solutions.

Example LLM Chain for Proof Development

Stage 1: Problem Analysis

Prompt: Analyze the following theorem statement and identify key
challenges, potential proof strategies, and relevant background knowl-
edge needed ...

Stage 2: Strategy Development

Prompt: Based on the analysis from Stage 1, develop a detailed proof
strategy including major steps, key lemmas that might be needed, and
potential difficulties ...

Stage 3: Proof Construction

Prompt: Using the strategy from Stage 2, construct a detailed proof.
Focus on logical rigor and clear argumentation ...

Stage 4: Verification

Prompt: Review the proof from Stage 3 and identify any logical gaps,
unclear steps, or potential errors ...

Stage 5: Refinement

Prompt: Refine the proof addressing the issues identified in Stage 4,
improving clarity and ensuring completeness ...

Example LLM Chain for Proof Devel-
opment

LLM Chaining is the process of using a sequence of prompts to itera-
tively build and refine a complex piece of work. Instead of trying to get a
perfect result from a single prompt, you break the task down into logical
steps, much like the human process of outlining, drafting, and revising.
You can even use different LLMs for different steps (e.g., one for brain-
storming, another for prose). This technique is especially powerful for
refining a draft without condensing it.

Exercise 7.1 (Writing a Section on the Prime Number Theorem). Let’s
build a section of a paper step-by-step.

First, we ask the AI to act as a structured thinker and create a logical
outline.

Prompt to AI

Prompt 1: Generate a logical outline for a section in an undergrad-
uate paper about the historical development of the Prime Number
Theorem. The outline should include the early empirical obser-
vations, the work of Legendre and Gauss, Chebyshev’s bounds,
Riemann’s contribution, and the final proofs by Hadamard and de
la Vallée Poussin.

Next, we take one part of the outline and ask the AI to flesh it out into a
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prose draft.

Prompt to AI

Prompt 2: Using the first two points of the previous outline, write a
draft of about 150 words covering the early empirical observations
and the conjectures of Legendre and Gauss regarding the density of
primes. Maintain a formal, academic tone.

This is the key chaining step. We take the draft and ask for refinement,
not summarization.

Prompt to AI

Prompt 3: Act as a university writing tutor. Your task is to refine
and enrich the following text. Do not shorten it. Your goals are
to: 1. Improve the academic vocabulary and sentence structure.
2. Strengthen the transition between the empirical observations
and the specific conjectures. 3. Ensure the tone is appropriate for a
formal mathematical survey paper.
Here is the text to refine: [Paste the text from the Step 2 output
here]

By following this process, you guide the AI’s output at each stage, en-
suring the final product aligns with your vision and quality standards.



8 AI-Assisted Mathematical Problem

Solving

The art of doing mathematics consists in finding that special case which contains all
the germs of generality.

— David Hilbert (1862-1943)

Self-study is the method; diligence is the attitude; and innovation is the goal.
自学是方法，勤奋是态度，创新是目标。

— Hua Luogeng (华罗庚) (1910–1985)

The integration of artificial intelligence into mathemati-
cal research represents a paradigm shift in how we approach complex
problems. From elementary optimization tasks to sophisticated partial dif-
ferential equations, AI tools can serve as powerful computational partners
that enhance our analytical capabilities. This chapter explores practical
applications of AI in mathematical problem-solving, demonstrating how
large language models can assist in formulating problems, generating
code, and interpreting results across various mathematical domains.

Figure 8.1: Comprehensive workflow
for AI-assisted mathematical problem
solving. The process involves iterative
cycles of human guidance, AI assis-
tance, and verification, with multiple
feedback loops ensuring mathematical
rigor.

The systematic approach to AI-assisted mathematical problem solving
follows the workflow illustrated in Figure 8.1. This process emphasizes
the iterative nature of mathematical research, where initial AI suggestions
are refined through multiple cycles of evaluation and improvement. The
workflow highlights three critical principles: human oversight at every
stage, rigorous verification of AI outputs, and transparent documentation
of AI assistance.
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8.1 Solving Ordinary Differential Equations

A powerful demonstration of AI capability is in solving Ordinary
Differential Equations (ODEs), a fundamental task in all areas of science.
AI can not only generate code to find numerical solutions but also plot
them against known analytical solutions for verification. Simple first order ODE.

Example 8.1. Solving a Simple ODE Let’s ask an AI to solve and
visualize the solution to a simple first-order ODE: y′(t) = −2ty
with the initial condition y(0) = 1. This is a separable equation
with a known analytical solution, y(t) = e−t2

, making it perfect for
verification.

Prompt to AI

Write a Python script to solve the ODE y′(t) = −2ty with y(0) = 1
on the interval t ∈ [0, 2]. Then, create a plot that shows both the
numerical solution from SciPy’s solve_ivp and the exact analytical
solution y(t) = exp(−t2).

AI Output

1 import numpy as np

2 from scipy.integrate import solve_ivp

3 import matplotlib.pyplot as plt

4

5 # Define the ODE function dy/dt = f(t, y)

6 def ode_func(t, y):

7 return -2 * t * y

8

9 # Initial condition and time span

10 y0 = [1]

11 t_span = [0, 2]

12 t_eval = np.linspace(t_span[0], t_span[1], 100)

13

14 # Solve the ODE

15 sol = solve_ivp(ode_func, t_span, y0, t_eval=t_eval)

16

17 # Analytical solution for comparison

18 y_analytical = np.exp(-t_eval**2)

19

20 # Plotting the results

21 plt.figure(figsize=(8, 6))

22 plt.plot(sol.t, sol.y[0], ’b-’, label=’Numerical Solution’)

23 plt.plot(t_eval, y_analytical, ’r--’, label=r’Analytical: $e^{-

t^2}$’)

24 plt.title("Solution of $y’(t) = -2ty$ with $y(0)=1$")

25 plt.xlabel(’t’); plt.ylabel(’y(t)’)

26 plt.legend(); plt.grid(True)

27 plt.show()
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This simple workflow demonstrates the core process: the AI gen-
erates code for both the numerical solution and the analytical verifi-
cation, providing immediate confirmation of the result.

Lotka-Volterra equations

Exercise 8.1. Analyzing the Lotka-Volterra System The Lotka-
Volterra equations model predator-prey dynamics and produce fas-
cinating periodic orbits in the phase plane. Analyzing this system
requires finding equilibria, checking their stability via linearization,
and plotting trajectories.

Prompt to AI

I want to analyze the Lotka-Volterra predator-prey system

ẋ = ax − bxy, ẏ = −cy + dxy.

Help me find the equilibrium points, analyze their stability using
the Jacobian, and create a comprehensive phase portrait showing
the direction field and several trajectories with different initial con-
ditions. Use a = 1, b = 1, c = 1.5, d = 0.75.

Task:

1. Use the prompt above with a capable AI.

2. The AI should provide a mathematical analysis of the equilibrium
points (extinction and coexistence) and their stability.

3. It should then generate a Python script to produce a phase portrait.

4. Run the code and verify it produces a plot showing the stable center
and periodic orbits.

5. Can you identify the stable center in the plot? Does it match the AI’s
analytical calculation?

Expected Skills: Equilibrium analysis, Jacobian matrices, phase
plane analysis, numerical integration of ODEs.

8.2 Solving Partial Differential Equations

Partial Differential Equations (PDEs) are notoriously dif-
ficult to solve analytically. AI-assisted numerical methods provide a
powerful toolkit for exploring their solutions. A revolutionary modern
approach is the Physics-Informed Neural Network (PINN), which embeds
the PDE directly into the loss function of a neural network. Heat equation example

Example 8.2. Solving the Heat Equation with PINNs The heat equa-
tion,

∂u
∂t

= α
∂2u
∂x2
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, is a canonical parabolic PDE. A PINN can solve it without tradi-
tional mesh-based methods. The loss function combines three terms: Loss function

Ltotal = Lphysics + Lboundary + Linitial

Prompt to AI

I want to solve the 1D heat equation using a PINN. The equation is
ut = αuxx with initial condition u(x, 0) = sin(πx) and zero bound-
ary conditions. Provide a simple implementation using PyTorch
showing the key components: network definition, physics loss, and
training loop.

AI Output

1 import torch

2 import torch.nn as nn

3 import numpy as np

4

5 class HeatPINN(nn.Module):

6 def __init__(self):

7 super(HeatPINN, self).__init__()

8 self.net = nn.Sequential(

9 nn.Linear(2, 20), nn.Tanh(),

10 nn.Linear(20, 20), nn.Tanh(),

11 nn.Linear(20, 1)

12 )

13

14 def forward(self, x, t):

15 inputs = torch.cat([x, t], dim=1)

16 return self.net(inputs)

17

18 def physics_loss(self, x, t, alpha=0.01):

19 x.requires_grad_(True)

20 t.requires_grad_(True)

21

22 u = self.forward(x, t)

23 u_t = torch.autograd.grad(u, t, torch.ones_like(u),

create_graph=True)[0]

24 u_x = torch.autograd.grad(u, x, torch.ones_like(u),

create_graph=True)[0]

25 u_xx = torch.autograd.grad(u_x, x, torch.ones_like(u_x)

, create_graph=True)[0]

26

27 return u_t - alpha * u_xx

28

29 # Training loop

30 model = HeatPINN()

31 optimizer = torch.optim.Adam(model.parameters(), lr=0.001)

32

33 for epoch in range(1000):

34 # Generate training points
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35 x_train = torch.rand(100, 1)

36 t_train = torch.rand(100, 1)

37

38 # Physics loss

39 physics_residual = model.physics_loss(x_train, t_train)

40 loss = torch.mean(physics_residual**2)

41

42 # Add boundary and initial losses here...

43

44 optimizer.zero_grad()

45 loss.backward()

46 optimizer.step()

47

48 if epoch % 200 == 0:

49 print(f’Epoch {epoch}, Loss: {loss.item():.6f}’)

This example demonstrates the key innovation of PINNs: embed-
ding physical laws directly into neural network training through
automatic differentiation. KdV Soliton example

Exercise 8.2. Simulating Soliton Collisions Nonlinear PDEs like the
Korteweg-de Vries (KdV) equation, ut + 6uux + uxxx = 0, have
remarkable soliton solutions that maintain their shape after collision.

Prompt to AI

I want to explore soliton solutions of the KdV equation. Implement
a spectral method in Python to solve the equation for an initial con-
dition consisting of two solitons of different amplitudes. Generate
a space-time plot that visualizes their collision and shows that they
emerge with their shapes and speeds intact.

Task:

1. Use the prompt to generate a Python script using scipy.fft.

2. The AI should set up an initial condition with two sech2 profiles.

3. It should implement time-stepping where spatial derivatives are com-
puted in Fourier space.

4. Run your code and verify it produces a collision visualization showing
phase shift after interaction.

Expected Skills: Spectral methods, FFT, nonlinear wave equations,
advanced visualization.
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8.3 Data Analysis and Statistics

Modern data analysis benefits enormously from AI assistance,
particularly for exploratory data analysis, statistical modeling, and visual-
ization. AI can help translate research questions into appropriate statistical
tests and generate comprehensive analysis pipelines. Data analysis example

Example 8.3. Exploratory Data Analysis Let’s demonstrate how AI
can assist with a complete data analysis workflow for a dataset with
demographic and satisfaction variables.

Prompt to AI

I have a dataset with columns ’age’, ’income’, ’education_years’,
and ’satisfaction_score’. Help me perform exploratory data anal-
ysis including summary statistics, correlation analysis, and visu-
alizations. Also implement a simple regression model to predict
satisfaction_score.

AI Output

1 import pandas as pd

2 import numpy as np

3 import matplotlib.pyplot as plt

4 import seaborn as sns

5 from sklearn.linear_model import LinearRegression

6 from sklearn.model_selection import train_test_split

7

8 # Load and examine data

9 print("Dataset Overview:")

10 print(data.describe())

11

12 # Correlation matrix

13 plt.figure(figsize=(8, 6))

14 correlation_matrix = data.corr()

15 sns.heatmap(correlation_matrix, annot=True, cmap=’coolwarm’,

center=0)

16 plt.title(’Correlation Matrix’)

17 plt.show()

18

19 # Regression analysis

20 X = data[[’age’, ’income’, ’education_years’]]

21 y = data[’satisfaction_score’]

22

23 X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size=0.2)

24 model = LinearRegression()

25 model.fit(X_train, y_train)

26

27 print(f"R^2 Score: {model.score(X_test, y_test):.3f}")

28 print("Coefficients:")
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29 for feature, coef in zip(X.columns, model.coef_):

30 print(f" {feature}: {coef:.4f}")

This workflow demonstrates how AI can quickly generate a com-
plete analysis pipeline from data loading through model interpreta-
tion. times series example

Exercise 8.3. Time Series Analysis with ARIMA Time series analysis
is crucial in many fields. Practice using AI to implement and tune an
ARIMA model.

Prompt to AI

I have daily stock price data for the past 2 years. Help me imple-
ment an ARIMA model to forecast the next 30 days. Include: 1)
stationarity testing with ADF test, 2) finding optimal parameters us-
ing AIC, 3) fitting the model, 4) generating forecasts with confidence
intervals, and 5) visualizing results.

Expected Skills: ARIMA model components, stationarity testing,
parameter selection, forecast evaluation.

8.4 Combinatorics and Graph Theory

AI excels at helping with combinatorial problems, from basic
counting to complex optimization problems on graphs and networks. social network example

Example 8.4. Social Network Analysis Graph theory provides pow-
erful tools for analyzing social networks, transportation systems, and
many other networked structures.

Prompt to AI

Help me analyze a social network graph. Create a random graph
with some community structure, compute basic network metrics
(degree centrality, betweenness centrality, clustering coefficient), de-
tect communities, and visualize the results with meaningful colors
and layouts.

AI Output

1 import networkx as nx

2 import numpy as np

3 import matplotlib.pyplot as plt

4 import community as community_louvain

5

6 # Create a graph with community structure

7 G = nx.karate_club_graph() # Classic example
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8

9 # Compute network metrics

10 degree_centrality = nx.degree_centrality(G)

11 betweenness_centrality = nx.betweenness_centrality(G)

12 clustering = nx.clustering(G)

13

14 # Community detection

15 partition = community_louvain.best_partition(G)

16

17 # Visualization

18 fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5))

19

20 # Plot 1: Node size by degree centrality

21 pos = nx.spring_layout(G, seed=42)

22 node_sizes = [3000 * degree_centrality[node] for node in G.

nodes()]

23 nx.draw(G, pos, node_size=node_sizes, node_color=’lightblue’,

24 with_labels=True, ax=ax1)

25 ax1.set_title(’Node Size = Degree Centrality’)

26

27 # Plot 2: Communities

28 community_colors = [partition[node] for node in G.nodes()]

29 nx.draw(G, pos, node_color=community_colors, cmap=’Set3’,

30 node_size=300, with_labels=True, ax=ax2)

31 ax2.set_title(’Detected Communities’)

32

33 plt.show()

34

35 print(f"Graph has {G.number_of_nodes()} nodes and {G.

number_of_edges()} edges")

36 print(f"Average clustering: {nx.average_clustering(G):.3f}")

37 print(f"Number of communities: {len(set(partition.values()))}")

This example shows how AI can help analyze complex network
structures with just a few lines of code.

Traveling Salesman Problem

Exercise 8.4. Traveling Salesman Problem The TSP is a classic op-
timization problem that demonstrates the difference between exact
and heuristic algorithms.

Prompt to AI

Help me implement and compare different approaches to solve
the Traveling Salesman Problem for 15 cities. Include: 1) nearest
neighbor heuristic, 2) 2-opt improvement, and 3) genetic algorithm.
Visualize the tours and compare solution quality and runtime.

Expected Skills: Heuristic algorithms, local search, metaheuristics,
computational complexity analysis.
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8.5 Pure Mathematics: Number Theory

AI can assist even with pure mathematics, helping to explore pat-
terns, test conjectures, and implement number-theoretic algorithms.

Example 8.5. Prime Number Exploration Let’s explore patterns in
prime numbers using computational methods.

Prompt to AI

Help me explore prime number patterns. Generate the first 1000

primes, analyze gaps between consecutive primes, find twin primes,
and visualize the prime counting function π(x) compared to the
approximation x/ ln(x).

AI Output

1 import numpy as np

2 import matplotlib.pyplot as plt

3 from collections import Counter

4

5 def sieve_of_eratosthenes(limit):

6 is_prime = [True] * (limit + 1)

7 is_prime[0] = is_prime[1] = False

8

9 for i in range(2, int(limit**0.5) + 1):

10 if is_prime[i]:

11 for j in range(i*i, limit + 1, i):

12 is_prime[j] = False

13

14 return [i for i in range(2, limit + 1) if is_prime[i]]

15

16 # Generate first 1000 primes

17 primes = sieve_of_eratosthenes(10000)[:1000]

18

19 # Analyze prime gaps

20 gaps = [primes[i+1] - primes[i] for i in range(len(primes)-1)]

21

22 # Find twin primes

23 twin_primes = [(primes[i], primes[i+1]) for i in range(len(

primes)-1)

24 if primes[i+1] - primes[i] == 2]

25

26 # Prime counting function vs approximation

27 x_values = range(10, 1000)

28 pi_x = [sum(1 for p in primes if p <= x) for x in x_values]

29 approximation = [x / np.log(x) for x in x_values]

30

31 # Visualizations

32 fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(12,

8))
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33

34 ax1.hist(gaps, bins=20, alpha=0.7)

35 ax1.set_title(’Distribution of Prime Gaps’)

36

37 ax2.scatter(range(len(twin_primes)), [p[0] for p in twin_primes

], s=10)

38 ax2.set_title(’Twin Primes’)

39

40 ax3.plot(x_values, pi_x, ’b-’, label=’pi(x)’)

41 ax3.plot(x_values, approximation, ’r--’, label=’x/ln(x)’)

42 ax3.set_title(’Prime Counting Function’)

43 ax3.legend()

44

45 ax4.scatter(primes[:100], [1]*100, s=5)

46 ax4.set_title(’First 100 Primes’)

47

48 plt.tight_layout()

49 plt.show()

50

51 print(f"1000th prime: {primes[999]}")

52 print(f"Twin primes found: {len(twin_primes)}")

53 print(f"Most common gap: {Counter(gaps).most_common(1)[0]}")

This exploration reveals patterns in prime distribution and demon-
strates computational number theory techniques.

Exercise 8.5. Investigating the Collatz Conjecture Collatz Conjecture

The Collatz Conjecture is one of the most famous unsolved prob-
lems in mathematics.

Prompt to AI

Investigate the Collatz Conjecture (3n + 1 problem). Create func-
tions to compute Collatz sequences, analyze stopping times for
numbers 1-1000, find the number with the longest sequence, visu-
alize the distribution of stopping times, and create a tree showing
how different numbers converge.

Expected Skills: Recursive algorithms, statistical analysis of se-
quences, mathematical conjectures, data visualization.

8.6 Advanced Prompting Techniques

The effectiveness of AI assistance depends critically on the quality
and specificity of prompts. Sophisticated mathematical problems require
carefully crafted queries that build understanding through sequences of
related questions.
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Layered Prompting Strategy

Rather than attempting to solve complex problems in a single query, effec-
tive prompting involves building understanding incrementally. Euler’s formula

Example 8.6. Creative Mathematical Discovery Historical perspective
can illuminate modern mathematical concepts. Consider this creative
prompt:

Prompt to AI

Imagine you are Euler discovering the relationship between expo-
nentials and trigonometric functions. Walk me through the thought
process that might have led to eix = cos(x) + i sin(x). Then show
me how this connects to Fourier analysis and create a visualization
showing the unit circle representation.

This approach demonstrates how framing exploration as historical
discovery provides both mathematical rigor and intuitive under-
standing.

Exercise 8.6. Advanced Mathematical Connections Choose one of
these advanced prompting challenges: Hopf bifurcation

Option A: Hopf Bifurcation Analysis

Prompt to AI

I’m studying Hopf bifurcations in dynamical systems. Explain the
mathematical conditions for a Hopf bifurcation, show me how to
detect it using eigenvalue analysis, and demonstrate with the van
der Pol oscillator including bifurcation diagrams.

Golden ratio and Fibonacci sequence
Option B: Golden Ratio Exploration

Prompt to AI

Explore mathematical connections of the golden ratio ϕ. Show how
it appears in Fibonacci sequences, continued fractions, regular pen-
tagons, and optimization. Create visualizations demonstrating these
connections.

Expected Skills: Advanced prompting strategies, interdisciplinary
mathematical connections, mathematical communication.

8.7 Optimization and Machine Learning

Modern optimization techniques form the backbone of machine
learning and can be applied across many mathematical domains. portfolio optimization problem

Example 8.7. Portfolio Optimization Consider the classical problem
where an investor seeks to maximize returns while minimizing risk.
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Prompt to AI

I need to solve a portfolio optimization problem. I have 4 assets
with expected returns [0.12, 0.08, 0.15, 0.10] and a covariance matrix.
Find portfolio weights that minimize risk for a target return of 0.11.
Formulate as quadratic programming and solve.

AI Output

1 import numpy as np

2 import cvxpy as cp

3

4 # Problem data

5 mu = np.array([0.12, 0.08, 0.15, 0.10]) # Expected returns

6 Sigma = np.array([[0.04, 0.01, 0.02, 0.01],

7 [0.01, 0.02, 0.00, 0.01],

8 [0.02, 0.00, 0.06, 0.02],

9 [0.01, 0.01, 0.02, 0.03]]) # Covariance

matrix

10 r_target = 0.11

11

12 # Optimization variables

13 w = cp.Variable(4)

14

15 # Objective: minimize portfolio variance

16 objective = cp.Minimize(0.5 * cp.quad_form(w, Sigma))

17

18 # Constraints

19 constraints = [

20 mu.T @ w == r_target, # Target return

21 cp.sum(w) == 1, # Weights sum to 1

22 w >= 0 # No short selling

23 ]

24

25 # Solve

26 prob = cp.Problem(objective, constraints)

27 prob.solve()

28

29 print(f"Optimal weights: {w.value}")

30 print(f"Portfolio return: {mu.T @ w.value:.4f}")

31 print(f"Portfolio risk: {np.sqrt(2 * prob.value):.4f}")

This demonstrates how AI correctly identifies the problem type
and provides both mathematical formulation and working imple-
mentation. Neural Network Training

Exercise 8.7. Neural Network Training from Scratch Understanding
optimization in machine learning provides insights into both fields.
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Prompt to AI

Help me implement a neural network from scratch for binary clas-
sification. Include forward propagation, backpropagation, and
compare SGD, momentum, and Adam optimizers. Use a synthetic
dataset and visualize convergence behavior.

Expected Skills: Automatic differentiation, gradient-based opti-
mization, machine learning fundamentals.

8.8 Capstone Research Projects

Choose one research-level project to explore throughout the
semester, applying AI assistance techniques learned in this chapter.

Project Options

1. Mathematical Biology: Model epidemic spread, population dynamics,
or tumor growth

2. Financial Engineering: Develop quantitative trading strategies using
mathematical models

3. Computational Physics: Simulate physical systems using numerical
methods

4. Cryptography: Explore number-theoretic algorithms in modern cryp-
tography

5. Operations Research: Solve real-world optimization problems

6. Data Science: Apply advanced statistical methods to analyze complex
datasets

Project Requirements

For your chosen project:

• Literature Review: Research existing mathematical approaches

• Implementation: Code solutions using AI assistance, documenting
prompting strategies

• Analysis: Validate results, perform sensitivity analysis, compare ap-
proaches

• Visualization: Create compelling graphics communicating findings

• Reflection: Discuss AI’s role in your mathematical discovery process
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Prompting Best Practices

Throughout your projects, apply these strategies:

• Start Simple: Begin with basic versions before adding complexity

• Be Specific: Include mathematical notation, parameters, expected out-
puts

• Iterate: Build understanding through sequences of related questions

• Validate: Always request verification methods and analytical solutions

• Explain: Request explanations of concepts, not just code

8.9 Conclusion and Future Directions

The exploration of AI-assisted mathematical problem-solving

reveals both tremendous potential and inherent limitations. Throughout
this chapter, we have seen how large language models can serve as pow-
erful mathematical partners, capable of translating conceptual ideas into
rigorous formulations, implementing sophisticated algorithms, and pro-
viding insights that bridge different mathematical domains.

Several key themes emerge from our analysis. First, AI tools excel at
connecting different mathematical areas, revealing unexpected relation-
ships between seemingly disparate fields. The progression from simple
optimization problems to complex interdisciplinary models illustrates how
AI can help synthesize knowledge across differential equations, probability
theory, numerical analysis, and applied mathematics.

Second, the combination of symbolic and numerical approaches be-
comes particularly powerful when mediated by AI assistance. Physics-
Informed Neural Networks exemplify this synthesis, embedding math-
ematical constraints directly into machine learning frameworks while
maintaining flexibility for complex problems.

Third, the role of visualization and computational exploration becomes
central to mathematical understanding. AI-generated code consistently
emphasizes graphical representation and numerical experimentation,
supporting intuitive development that complements formal analysis.

Looking forward, advances in multimodal AI systems and integration
with computer algebra systems will enhance mathematical AI capabilities.
However, the fundamental importance of mathematical understanding,
creativity, and critical thinking remains unchanged. AI tools amplify hu-
man mathematical capabilities but cannot replace the deep conceptual
insights and careful reasoning that drive mathematical discovery.

The exercises in this chapter provide a foundation for this collaboration,
demonstrating how AI can serve as an intelligent mathematical partner.
As you work through these exercises, remember that the goal is not just to
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generate working code, but to develop mathematical intuition, problem-
solving skills, and the ability to leverage AI tools effectively in your future
mathematical endeavors.

The most successful applications of AI in mathematics will continue
to emphasize the collaborative relationship between human insight and
computational power, where mathematicians provide direction, interpre-
tation, and validation while AI systems contribute pattern recognition,
implementation expertise, and the ability to rapidly explore mathematical
landscapes.





9 Using AI for Problem Solving

A problem well stated is a problem half solved.
— Charles Kettering (1876 –1958)

In mathematics there are no shortcuts to anywhere.
数学中没有捷径可走。

— Hua Luogeng (华罗庚) (1910 –1985)

The application of artificial intelligence to mathematical problem-
solving represents one of the most immediate and practical benefits of AI
integration in mathematics. Modern AI systems demonstrate remarkable
capabilities in approaching mathematical problems across diverse do-
mains, from elementary calculus to advanced topics in algebra, analysis,
and discrete mathematics. However, effective utilization of these capabili-
ties requires understanding not only what AI systems can do but also how
to structure interactions to maximize their problem-solving potential while
maintaining mathematical rigor.

AI systems excel at pattern recognition and the application of learned
solution strategies to new problems. When presented with a mathematical
problem, these systems can often identify relevant techniques, suggest
solution approaches, and even carry out detailed solution procedures.
This capability makes them valuable collaborators in the problem-solving
process, offering fresh perspectives and alternative approaches that might
not be immediately apparent to human mathematicians.

The strength of AI in mathematical problem-solving lies particularly in
its ability to draw connections between seemingly disparate areas of math-
ematics. AI systems trained on broad mathematical corpora can recognize
when techniques from one domain might be applicable to problems in an-
other, suggesting interdisciplinary approaches that human experts might
overlook. This cross-pollination of ideas can lead to elegant solutions and
new insights into mathematical relationships. limitations

However, AI problem-solving capabilities are not without limitations.
These systems may struggle with problems requiring genuine creativity,
novel constructions, or deep conceptual insights that go beyond learned
patterns. They may also have difficulty with problems involving very
recent mathematical developments or highly specialized notation that was
not well-represented in their training data.

The most effective approach to AI-assisted problem-solving involves
treating the AI as a sophisticated collaborator rather than an infallible ora-
cle. This means using AI to generate ideas, suggest approaches, and carry
out routine calculations while maintaining human oversight of the over-
all problem-solving strategy and verification of results. This collaborative
approach leverages the complementary strengths of human insight and AI
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computational capability. Problem decomposition

Problem decomposition represents one of the most powerful techniques
for AI-assisted mathematical problem-solving. Complex problems can of-
ten be broken down into smaller, more manageable components that are
well-suited to AI assistance. This might involve identifying subproblems,
isolating key calculations, or separating conceptual issues from compu-
tational ones. Each component can then be addressed through focused
AI interactions, with human oversight ensuring that the components are
properly integrated into a complete solution. iteration

The iterative nature of mathematical problem-solving aligns well with
AI capabilities. Problems often require multiple attempts, refinements, and
approaches before reaching a satisfactory solution. AI systems can assist
at each stage of this process, suggesting modifications to unsuccessful
approaches, identifying errors in reasoning, and proposing alternative
strategies when initial attempts fail. Verification and validation

Verification and validation represent crucial aspects of AI-assisted
problem-solving. While AI systems can generate solutions and approaches,
human oversight is essential for ensuring that these solutions are correct,
complete, and appropriately rigorous. This might involve checking calcula-
tions, verifying logical steps, or testing solutions against known results or
special cases. Computational tool integration

The integration of AI problem-solving with computational tools creates
powerful hybrid approaches. AI can suggest analytical strategies while
computational tools handle numerical verification, or AI can interpret
computational results and suggest theoretical explanations. This combi-
nation of natural language reasoning and computational precision can be
particularly effective for applied mathematics problems. documentation

Documentation of AI-assisted problem-solving processes is important
for several reasons. It supports reproducibility, enables learning from
successful approaches, and provides transparency about the role of AI in
the solution process. This documentation should include not only the final
solution but also the reasoning process, alternative approaches considered,
and verification steps taken.

Example: AI-Assisted Optimization Problem

Problem: Find the maximum value of f (x, y) = x2 + y2 subject to
the constraint x2 + 2y2 = 1.
AI Interaction 1: “I have an optimization problem with constraint.
Please suggest solution approaches and identify the most appropri-
ate method.”
AI Response: Suggests Lagrange multipliers, geometric interpreta-
tion, and substitution methods. Recommends Lagrange multipliers
for systematic approach.
AI Interaction 2: “Using Lagrange multipliers, please set up the
system of equations and solve for critical points.”
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AI Response: Establishes ∇ f = λ∇g, solves the system, identifies
critical points.
AI Interaction 3: “Please verify the solution and check boundary
conditions.”
AI Response: Confirms calculations, evaluates function at critical
points, identifies maximum. Example: AI-Assisted Optimization

Problem

In the early stages of research, AI can help you explore a topic, formu-
late questions, and test ideas. Brainstorming

Example 9.1 (Brainstorming Conjectures). You can use an AI to
explore a new mathematical area or generate ideas.

Prompt to AI

I’m starting a project on spectral graph theory. Can you suggest
some interesting, accessible research questions or conjectures related
to the Laplacian matrix of a graph for an undergraduate?

AI Output

Certainly. Here are a few accessible directions:

1. Relationship between Graph Structure and Eigenvalues: How
do small changes to a graph (e.g., adding/removing an edge)
affect the algebraic connectivity (λ2)? Can you characterize the
graphs for which adding an edge causes the largest possible
increase in λ2?

2. Cospectral Graphs: Investigate methods for constructing non-
isomorphic graphs that share the same Laplacian spectrum
(cospectral mates). This is a classic problem with many open
questions.

Counterexamples

Example 9.2 (Finding Counterexamples). AIs can be surprisingly
effective at finding counterexamples to nascent conjectures.

Conjecture 9.1 (Incorrect). For any two n × n matrices A and B,
det(A + B) = det(A) + det(B).

Prompt to AI

Find a counterexample to the conjecture that for any two n × n
matrices A and B, det(A + B) = det(A) + det(B).

AI Output

Let A =

(
1 0
0 0

)
and B =

(
0 0
0 1

)
. Then det(A) = 0 and det(B) =
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0, so det(A) + det(B) = 0. However, A + B =

(
1 0
0 1

)
= I.

det(A + B) = det(I) = 1. Since 1 ̸= 0, this is a valid counterexam-
ple.



10 Code Generation and Computation

The computer was born to solve problems that did not exist before.
— Bill Gates (1955 – )

Let the computer do what computers do best, and let humans do what humans do
best.
让计算机做计算机最擅长的，让人做人最擅长的。

— Wu Wenjun (吴文俊) (1919 – 2017)

The ability of modern AI systems to generate code represents a
transformative capability for mathematical research, offering new possibil-
ities for implementing algorithms, creating visualizations, and integrating
computational tools into research workflows. This capability extends be-
yond simple code generation to include the creation of complete computa-
tional environments, the integration of multiple programming languages
and tools, and the development of custom mathematical applications.

AI systems demonstrate remarkable proficiency in generating code
across multiple programming languages commonly used in mathematical
research. Whether working in Python, MATLAB, Mathematica, or other
mathematical computing environments, AI can translate mathematical
concepts into executable code, implement algorithms from theoretical
descriptions, and create custom tools for specific research applications.
This capability significantly reduces the barrier to entry for computational
mathematics and enables researchers to focus on mathematical concepts
rather than programming syntax.

The integration of AI code generation with mathematical research work-
flows creates powerful synergies. Researchers can describe mathematical
procedures in natural language and receive working implementations, re-
quest modifications to existing code through conversational interfaces, and
even generate entire analysis pipelines from high-level descriptions. This
natural language programming capability makes computational tools more
accessible to mathematicians who may not have extensive programming
backgrounds. Python

Python has emerged as a particularly important language for AI-
assisted mathematical computing due to its extensive ecosystem of mathe-
matical libraries and the fluency of AI systems in Python code generation.
Libraries such as NumPy, SciPy, SymPy, and Matplotlib provide compre-
hensive capabilities for numerical computation, symbolic mathematics,
and visualization. AI systems can effectively utilize these libraries to create
sophisticated mathematical applications and analysis tools. publication-quality graphics

The generation of publication-quality graphics represents a particularly
valuable application of AI code generation. AI systems can create code
that produces professional mathematical visualizations, including plots,
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diagrams, and animations that meet publication standards. This capability
includes proper handling of mathematical notation, appropriate scaling
and formatting, and integration with LATEX document preparation systems. Verification and testing

Verification and testing of AI-generated code require special attention
in mathematical applications. While AI systems can produce syntactically
correct and functionally appropriate code, mathematical accuracy cannot
be assumed without verification. Effective practices include testing code
against known results, implementing multiple solution approaches for
comparison, and including assertion statements and error checking in
generated code. iterative refinement

The iterative refinement of AI-generated code mirrors the iterative na-
ture of mathematical problem-solving. Initial code generation provides
a foundation that can be refined through subsequent interactions, with
modifications addressing performance issues, accuracy concerns, or fea-
ture enhancements. This iterative approach allows researchers to develop
sophisticated computational tools through collaboration with AI systems. Integration

Integration with existing computational environments represents an-
other important aspect of AI code generation. AI systems can generate
code that interfaces with established mathematical software, imports data
from various sources, and exports results in appropriate formats. This
integration capability enables researchers to incorporate AI-generated
components into existing research workflows without requiring complete
system overhauls. documentation

The documentation and explanation of AI-generated code is crucial for
research reproducibility and collaboration. AI systems can generate not
only functional code but also accompanying documentation, comments,
and explanations that help researchers understand and maintain the gener-
ated implementations. This documentation capability supports the sharing
of computational tools and methods within the research community. Performance optimization

Performance optimization represents an area where AI code genera-
tion can be particularly valuable. AI systems can suggest optimizations
for mathematical algorithms, identify inefficient code patterns, and rec-
ommend alternative implementations that better leverage available com-
putational resources. This capability is especially important for research
involving large-scale computations or real-time applications.

This is where AI can save you countless hours. Its ability to generate,
debug, and translate code is one of its most reliable features.

The integration of AI-generated code with mathematical research work-
flows extends beyond simple function implementation to encompass entire
research pipelines. AI systems can generate code that handles data prepro-
cessing, implements multiple analysis methods, performs statistical tests,
and generates comprehensive reports. This capability enables researchers
to rapidly prototype analysis approaches and explore different method-
ological options. comprehensive error checking and

validationError handling and robustness represent critical considerations in AI-
generated mathematical code. AI systems can be instructed to include
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comprehensive error checking, input validation, and graceful handling
of edge cases. This attention to robustness is particularly important in
research applications where code may be used with diverse datasets or
parameter ranges.

Example: AI-Generated Numerical Integration Code

Prompt: Generate Python code to implement adaptive quadrature for
numerical integration with error estimation.

AI-Generated Code:

1 import numpy as np

2 from scipy.integrate import quad

3 import matplotlib.pyplot as plt

4

5 def adaptive_quadrature(f, a, b, tolerance=1e-6, max_depth=10):

6 """

7 Adaptive quadrature implementation with error estimation

8 """

9 def simpson_rule(f, a, b):

10 c = (a + b) / 2

11 return (b - a) / 6 * (f(a) + 4*f(c) + f(b))

12

13 def adaptive_recursive(f, a, b, tolerance, depth):

14 if depth > max_depth:

15 return simpson_rule(f, a, b), False

16

17 c = (a + b) / 2

18 whole = simpson_rule(f, a, b)

19 left = simpson_rule(f, a, c)

20 right = simpson_rule(f, c, b)

21

22 if abs(left + right - whole) < 15 * tolerance:

23 return left + right, True

24 else:

25 left_result, left_success = adaptive_recursive(

26 f, a, c, tolerance/2, depth+1)

27 right_result, right_success = adaptive_recursive(

28 f, c, b, tolerance/2, depth+1)

29 return left_result + right_result, left_success and

right_success

30

31 result, success = adaptive_recursive(f, a, b, tolerance, 0)

32 return result, success

33

34 # Example usage and verification

35 def test_function(x):

36 return np.sin(x) * np.exp(-x)

37

38 # Test the implementation

39 result, success = adaptive_quadrature(test_function, 0, np.pi)

40 reference = quad(test_function, 0, np.pi)[0]
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41 print(f"Adaptive result: {result:.8f}")

42 print(f"Reference result: {reference:.8f}")

43 print(f"Error: {abs(result - reference):.2e}")

44 print(f"Convergence: {success}")
Example: AI-Generated Numerical
Integration Code
weak Goldbach conjectureExample 10.1 (Numerical Simulation). Let’s test the weak Goldbach

conjecture, which states that every odd number greater than 5 can be
expressed as the sum of three primes.

Prompt to AI

Write a Python script using SymPy to verify the weak Goldbach
conjecture for all odd numbers between 7 and 1000.

AI Output

1 import sympy

2

3 def verify_weak_goldbach(limit):

4 primes = list(sympy.primerange(2, limit))

5 for n in range(7, limit + 1, 2):

6 found_sum = False

7 for p1 in primes:

8 if p1 >= n: break

9 for p2 in primes:

10 if p1 + p2 >= n: break

11 for p3 in primes:

12 if p1 + p2 + p3 > n: break

13 if p1 + p2 + p3 == n:

14 found_sum = True; break

15 if found_sum: break

16 if found_sum: break

17 if not found_sum:

18 print(f"Conjecture failed for n = {n}")

19 return False

20 print("\nConjecture holds for all tested odd numbers.")

21 return True

22

23 if __name__ == ’__main__’:

24 verify_weak_goldbach(1000)
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Prompt to AI

My Python code for prime factorization is slow and sometimes
gives errors. Can you fix and optimize it?
Example 10.2 (Debugging and Refactoring Code). def factor(n):

factors = []

d = 2

while n > 1

while n % d = 0

factors.add(d)

d = d + 1

return factors

AI Output

The provided code has syntax errors and is inefficient. Here is a
corrected and optimized version:

25 import math

26 def prime_factorization(n):

27 factors = []

28 while n % 2 == 0:

29 factors.append(2)

30 n //= 2

31 for i in range(3, int(math.sqrt(n)) + 1, 2):

32 while n % i == 0:

33 factors.append(i)

34 n //= i

35 if n > 2:

36 factors.append(n)

37 return factors

The generation of interactive computational tools represents an excit-
ing frontier in AI-assisted mathematical computing. AI systems can create
web-based applications, interactive notebooks, and graphical user inter-
faces that make mathematical tools accessible to broader audiences. This
capability supports both research collaboration and educational applica-
tions.





11 Verification and Validation Results

Proof is an idol before whom the pure mathematician tortures himself.
— Arthur Eddington (1882–1944)

Science has no national boundaries, but scientists have their motherland.
科学无国界，但科学家有祖国。

— Tsung-Dao Lee (李政道) (1926–2024)

The verification and validation of AI-generated mathemati-
cal content represents one of the most critical aspects of responsible AI
integration in mathematical research. While AI systems demonstrate im-
pressive capabilities in generating mathematical solutions, proofs, and
analyses, the fundamental requirement for mathematical accuracy and
rigor means that all AI-generated content must be subjected to careful
verification before being accepted or used in research contexts.

The challenge of verification is compounded by the sophisticated nature
of modern AI systems, which can produce results that appear mathemat-
ically sound and are presented with appropriate mathematical language
and formatting. This superficial plausibility can mask underlying errors,
logical gaps, or conceptual misunderstandings that require expert analysis
to identify. The verification process must therefore go beyond surface-level
checking to include deep analysis of mathematical logic, consistency, and
correctness. basic consistency checking

Systematic verification approaches for AI-generated mathematical con-
tent should incorporate multiple layers of checking, each designed to
identify different types of potential errors. The first layer involves basic
consistency checking, ensuring that mathematical notation is used cor-
rectly, that definitions are applied consistently, and that basic algebraic or
logical manipulations are performed accurately. This level of verification
can often be performed relatively quickly and can identify obvious errors
or inconsistencies. logical structure analysis

The second layer of verification involves logical structure analysis, ex-
amining the overall argument structure of proofs or solutions to ensure
that conclusions follow from premises and that each step in the reasoning
process is justified. This level of verification requires deeper mathematical
understanding and may involve reconstructing key steps of the argument
to ensure their validity. conceptual verification

The third layer involves conceptual verification, ensuring that the AI’s
understanding of mathematical concepts is accurate and that the appli-
cation of these concepts is appropriate for the given context. This level of
verification may require consulting authoritative sources, comparing with
known results, or testing the AI’s reasoning against established mathemati-
cal principles. Independent verification
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Independent verification using alternative methods represents a power-
ful approach to validating AI-generated results. This might involve solving
the same problem using different mathematical techniques, implementing
independent computational verification, or consulting multiple AI systems
to compare their approaches and results. Consistency across different veri-
fication methods provides strong evidence for the correctness of results. formal verification tools

The integration of formal verification tools with AI-generated content
offers promising possibilities for ensuring mathematical rigor. Proof as-
sistants and formal verification systems can be used to check the logical
validity of AI-generated proofs, while computer algebra systems can verify
computational results. This hybrid approach combines the natural lan-
guage capabilities of AI with the rigorous verification capabilities of formal
systems. Testing and validation protocols

Testing and validation protocols should be established for different
types of AI-generated mathematical content. For computational results,
this might involve testing against known solutions, checking limiting
cases, or performing sensitivity analysis. For theoretical results, valida-
tion might involve checking consistency with established theory, testing
implications, or seeking counterexamples. documentation

The documentation of verification processes is crucial for maintain-
ing scientific integrity and enabling reproducibility. This documentation
should include not only the verification methods used but also any errors
or issues identified during the verification process and how they were ad-
dressed. This transparency supports the broader scientific community in
understanding and evaluating AI-assisted research. Collaborative verification

Collaborative verification approaches leverage the expertise of multiple
researchers to ensure the accuracy of AI-generated content. This might
involve peer review processes specifically designed for AI-assisted work,
collaborative checking of complex proofs or analyses, or the development
of community standards for AI verification in mathematical research.

The temporal aspect of verification deserves special attention, as the
capabilities and limitations of AI systems evolve rapidly. Verification stan-
dards and methods must be regularly updated to address new types of AI
capabilities and potential failure modes. This ongoing evolution requires
the mathematical community to maintain awareness of AI developments
and adapt verification practices accordingly.
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Common Verification Pitfalls

• Overconfidence in AI output: Assuming that sophisticated pre-
sentation implies correctness

• Insufficient testing: Failing to test edge cases or limiting behav-
iors

• Circular verification: Using AI to verify AI-generated results
without independent checks

• Neglecting conceptual errors: Focusing on computational accu-
racy while missing conceptual mistakes

• Inadequate documentation: Failing to record verification pro-
cesses and findings Common Verification Pitfalls

automated verification tools

The development of automated verification tools specifically designed
for AI-generated mathematical content represents an important research
direction. These tools might include specialized checking algorithms, pat-
tern recognition systems for identifying common AI errors, and integration
platforms that connect AI generation with formal verification systems.

Quality metrics and assessment frameworks for AI-generated mathe-
matical content can help standardize verification processes and provide
objective measures of reliability. These metrics might include accuracy
rates, consistency measures, and assessments of mathematical rigor that
can be applied across different types of mathematical content.

The training of researchers in verification techniques represents a crucial
educational component. As AI tools become more prevalent in mathemat-
ical research, the ability to effectively verify AI-generated content becomes
an essential skill for maintaining scientific integrity. This training should
cover both technical verification methods and the development of appro-
priate skepticism and critical thinking skills.

Verify Claims

You must independently verify every single claim, calculation, and
line of code an AI produces. Verify Claims

The most reliable way to verify a mathematical calculation generated by
an LLM is to perform it yourself or, for complex tasks, to use a trusted
Computer Algebra System. Symbolic integration

Example 11.1 (Symbolic Integration). An LLM can quickly generate
the answer to a definite integral, which is much faster and less error-
prone than performing integration by parts twice by hand. However,
you must validate this result.
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Prompt to AI

Using SymPy syntax, compute the definite integral of x2 sin(x) from
0 to π.

AI Output

38 import sympy

39 from sympy import sin, pi

40

41 x = sympy.Symbol(’x’)

42 integral_expr = x**2 * sin(x)

43 result = sympy.integrate(integral_expr, (x, 0, pi))

44 # result is pi**2 - 4

Here, the validation is running the trusted SymPy code yourself.
SymPy is a CAS, so its result can be relied upon. The LLM’s role was
to generate the correct code syntax.



12 Creating Graphics and

Visualizations

A picture is worth a thousand words. An interface is worth a thousand pictures.
— Ben Shneiderman (1947– )

Mathematics is the foundation of all sciences.
数学是一切科学的基础。

— Su Buqing (苏步青) (1902–2003)

12.1 Integration of AI with Mathematical Visualization Tools

The creation of high-quality mathematical graphics and vi-
sualizations represents a crucial aspect of mathematical research and
communication, and AI tools are increasingly capable of assisting in this
process. Modern AI systems can generate code for creating sophisticated
visualizations, suggest appropriate graphical representations for math-
ematical concepts, and even assist in the design of publication-quality
figures that meet professional standards.

The integration of AI with mathematical visualization tools creates
powerful synergies for creating both explanatory and research-oriented
graphics. AI systems can translate conceptual descriptions of desired vi-
sualizations into executable code, suggest appropriate plotting techniques
for different types of mathematical data, and generate customized visu-
alization solutions that address specific research needs. This capability
is particularly valuable for researchers who may have clear ideas about
what they want to visualize but lack the technical expertise to implement
complex graphics. Python

Python has emerged as a particularly powerful platform for AI-assisted
mathematical visualization due to its extensive ecosystem of plotting li-
braries and the fluency of AI systems in generating Python code. Libraries
such as Matplotlib, Plotly, and Seaborn provide comprehensive capabilities
for creating mathematical plots, while specialized libraries like Mayavi and
VTK enable three-dimensional visualization of mathematical objects and
data. publication-quality graphics

The generation of publication-quality graphics requires attention to nu-
merous technical details that AI systems can help manage. This includes
proper handling of mathematical notation in labels and titles, appropri-
ate scaling and aspect ratios for different types of plots, consistent color
schemes and styling, and optimization for different output formats. AI
systems can generate code that addresses these technical requirements
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while allowing researchers to focus on the mathematical content of their
visualizations. Matplotlib

Matplotlib, as the foundational plotting library in Python, provides
extensive capabilities for creating mathematical graphics, and AI sys-
tems demonstrate strong proficiency in generating Matplotlib code. The
library’s integration with LATEX for mathematical typesetting makes it
particularly suitable for creating publication-quality figures that include
complex mathematical notation. AI-generated Matplotlib code can handle
everything from simple function plots to complex multi-panel figures with
sophisticated annotation and styling. interactive visualizations

The creation of interactive visualizations represents an exciting frontier
in AI-assisted mathematical graphics. Tools like Plotly and Bokeh enable
the creation of interactive plots that allow users to explore mathematical
relationships dynamically. AI systems can generate code for creating these
interactive visualizations, including user interface elements, responsive
behaviors, and dynamic updates based on user input. Three-dimensional visualization

Three-dimensional visualization of mathematical objects presents
unique challenges and opportunities for AI assistance. Libraries like
Mayavi and VTK provide powerful capabilities for creating three-dimensional
mathematical visualizations, but they require significant technical exper-
tise to use effectively. AI systems can generate code that leverages these
libraries to create sophisticated three-dimensional plots, surface visualiza-
tions, and animated mathematical objects. symbolic mathematics

The integration of symbolic mathematics with visualization creates
powerful possibilities for mathematical exploration. AI systems can gen-
erate code that combines symbolic computation libraries like SymPy with
visualization tools to create graphics that automatically update based on
mathematical relationships. This integration enables the creation of dy-
namic visualizations that respond to changes in mathematical parameters
or expressions. dynamic visualization

Animation and dynamic visualization represent important capabilities
for illustrating mathematical concepts and processes. AI systems can gen-
erate code for creating mathematical animations that show the evolution
of mathematical objects over time, the behavior of iterative processes, or
the relationships between different mathematical parameters. These ani-
mations can be particularly valuable for educational applications and for
illustrating complex mathematical concepts. optimization of graphics

The optimization of graphics for different output formats requires care-
ful attention to technical details. Vector formats like PDF and SVG are gen-
erally preferred for publication due to their scalability and crisp rendering
of mathematical notation, while raster formats may be more appropriate
for web applications or presentations. AI systems can generate code that
optimizes graphics for specific output requirements and applications.



creating graphics and visualizations 67

Example: AI-Generated 3D Mathematical Visualization

Prompt: Create a 3D visualization of the function
f (x, y) = sin(x2 + y2)e−(x2+y2)/4 with contour lines and gradient field.

AI-Generated Code:

1 import numpy as np
2 import m a t p l o t l i b . pyplot as p l t
3 from mpl_too lk i t s . mplot3d import Axes3D
4 from m a t p l o t l i b import cm
5 import m a t p l o t l i b . patches as patches
6

7 # D e f i n e t h e f u n c t i o n
8 def f ( x , y ) :
9 r2 = x * * 2 + y * * 2

10 return np . s i n ( r2 ) * np . exp( − r2 /4)
11

12 # C r e a t e meshgr id
13 x = np . l i n s p a c e ( −3 , 3 , 100 )
14 y = np . l i n s p a c e ( −3 , 3 , 100 )
15 X , Y = np . meshgrid ( x , y )
16 Z = f (X , Y)
17

18 # C r e a t e f i g u r e with s u b p l o t s
19 f i g = p l t . f i g u r e ( f i g s i z e =(15 , 5 ) )
20

21 # 3D s u r f a c e p l o t
22 ax1 = f i g . add_subplot ( 1 3 1 , p r o j e c t i o n = ’ 3d ’ )
23 s u r f = ax1 . p l o t _ s u r f a c e (X , Y , Z , cmap=cm . v i r i d i s , alpha = 0 . 8 )
24 ax1 . s e t _ t i t l e ( r ’ $ f ( x , y ) = \s in ( x^2+y^2) e ^{ −( x^2+y^2) / 4 } )
25 ax1 . s e t _ x l a b e l ( ’ x ’ )
26 ax1 . s e t _ y l a b e l ( ’ y ’ )
27 ax1 . s e t _ z l a b e l ( ’ f ( x , y ) ’ )
28 f i g . co lo rb a r ( surf , ax=ax1 , shr ink = 0 . 5 )
29

30 # Contour p l o t
31 ax2 = f i g . add_subplot ( 1 3 2 )
32 contour = ax2 . contour (X , Y , Z , l e v e l s =20 , cmap=cm . v i r i d i s )
33 ax2 . c l a b e l ( contour , i n l i n e =True , f o n t s i z e =8)
34 ax2 . s e t _ t i t l e ( ’ Contour Lines ’ )
35 ax2 . s e t _ x l a b e l ( ’ x ’ )
36 ax2 . s e t _ y l a b e l ( ’ y ’ )
37 ax2 . s e t _ a s p e c t ( ’ equal ’ )
38

39 # Gradient f i e l d
40 ax3 = f i g . add_subplot ( 1 3 3 )
41 # Ca l c u l a te gradient
42 dx = np . gradient (Z , a x i s =1)
43 dy = np . gradient (Z , a x i s =0)
44 # Subsample f o r c l a r i t y
45 skip = 8

46 ax3 . quiver (X [ : : skip , : : skip ] , Y [ : : skip , : : skip ] ,
47 dx [ : : skip , : : skip ] , dy [ : : skip , : : skip ] ,
48 s c a l e =20 , alpha = 0 . 7 )
49 ax3 . contour (X , Y , Z , l e v e l s =10 , alpha = 0 . 3 , c o l o r s = ’ gray ’ )
50 ax3 . s e t _ t i t l e ( ’ Gradient F i e l d ’ )
51 ax3 . s e t _ x l a b e l ( ’ x ’ )
52 ax3 . s e t _ y l a b e l ( ’ y ’ )
53 ax3 . s e t _ a s p e c t ( ’ equal ’ )
54

55 p l t . t i g h t _ l a y o u t ( )
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56 p l t . show ( )
Example: AI-Generated 3D Mathemat-
ical Visualization
Matplotlib

Example 12.1 (Generating Plots with Matplotlib). Here is an exam-
ple using Matplotlib. Matplotlib is a Python library and provides a
MATLAB-like plotting interface through its pyplot module.

Prompt to AI

Write a Python script using Matplotlib to plot the function f (x) =
sin(πx)

πx and its envelope functions g(x) = ± 1
πx for x ∈ [−5, 5]. Label

the axes and add a title.

AI Output

1 import numpy as np

2 import matplotlib.pyplot as plt

3

4 x = np.linspace(-5, 5, 1000)

5 x = x[x != 0]

6

7 sinc_func = np.sin(np.pi * x) / (np.pi * x)

8 envelope = 1 / (np.pi * np.abs(x))

9

10 plt.figure(figsize=(10, 6))

11 plt.plot(x, sinc_func, label=r’$f(x) = \frac{\sin(\pi x)}{\pi x

}$’)

12 plt.plot(x, envelope, ’r--’, label=r’Envelope $\pm \frac{1}{|\

pi x|}$’)

13 plt.plot(x, -envelope, ’r--’)

14 plt.title(’Normalized Sinc Function and its Envelope’)

15 plt.xlabel(’x’), plt.ylabel(’f(x)’), plt.grid(True)

16 plt.legend(), plt.show()

The integration of AI-generated graphics with LATEX document prepara-
tion systems represents an important workflow consideration. AI systems
can generate code that produces graphics in formats that integrate seam-
lessly with LATEX, including proper handling of fonts, sizing, and mathe-
matical notation. This integration is crucial for maintaining consistency
between textual and graphical elements in mathematical documents. Color theory and accessibility

Color theory and accessibility considerations in mathematical graph-
ics represent important aspects that AI systems can help address. This
includes generating graphics that are accessible to individuals with color
vision deficiencies, ensuring sufficient contrast for readability, and se-
lecting color schemes that are appropriate for the intended audience and
publication medium. documentation and reproducibility

The documentation and reproducibility of AI-generated graphics re-
quire special attention. This includes maintaining records of the code used
to generate graphics, documenting any manual modifications or enhance-
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ments, and ensuring that graphics can be regenerated if needed. This
documentation is crucial for maintaining scientific integrity and enabling
collaboration. Quality control and review

Quality control and review processes for AI-generated graphics should
include verification of mathematical accuracy, assessment of visual clarity
and effectiveness, and checking for consistency with publication standards.
This review process should involve both technical verification of the un-
derlying mathematics and aesthetic evaluation of the visual presentation.

For papers and posters, always use vector graphics (.pdf, .svg, .eps) over
raster graphics (.png, .jpg). Vector graphics are mathematical descriptions
of shapes and are infinitely scalable, ensuring they are always crisp.

12.2 The Art and Science of Mathematical Graphics

A clear, well-designed graphic can illuminate a complex idea more effec-
tively than pages of text. A poor graphic can confuse and mislead.

Figure 12.1 demonstrates the stark difference between effective and inef-
fective mathematical graphics. The poor example exhibits several common
problems: excessive grid lines that distract from the data, garish colors that
are difficult to distinguish and unprofessional in appearance, and text that
is too small to read clearly. In contrast, the good example shows how pro-
fessional mathematical graphics should appear: clean lines, a limited color
palette that maintains readability, and appropriately sized text with clear
axis labels. The comparison of vector versus raster graphics at the bottom
illustrates why vector formats (.pdf, .svg, .eps) are essential for academic
publications—they remain crisp at any scale, unlike raster images that
become pixelated when enlarged.

Figure 12.1: Comparison of poor and
good mathematical graphics practices.
The poor example shows common
mistakes including cluttered elements,
inappropriate colors, and unreadable
text. The good example demonstrates
professional formatting with clear
labels, appropriate color schemes, and
readable fonts. The bottom panels
illustrate the critical difference between
raster and vector graphics for academic
publications.
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Principles of Effective Visualization

• Clarity Over Clutter: Every element should serve a purpose. Avoid dis-
tracting backgrounds, 3D effects, and unnecessary colors ("chartjunk").

• Label Everything: Axes, titles, legends, and important data points
should be clearly and legibly labeled. Use font sizes that will be read-
able when the figure is scaled down for a paper.

• Use Color Purposefully: Use color to distinguish categories of data,
not for decoration. Be mindful of colorblindness; use palettes that are
distinguishable in grayscale.

• Choose the Right Format: This is the most crucial technical decision.

Vector vs. Raster: A Critical Distinction

There are two families of image formats. Understanding the difference is
non-negotiable for academic publishing.

• Raster Graphics (or bitmap) store an image as a grid of pixels. Exam-
ples: .png, .jpg, .gif. They are ideal for photographs but scale poorly.
When you zoom in, you see the individual pixels, resulting in a "blocky"
or "blurry" look.

• Vector Graphics store an image as a set of mathematical instructions
(e.g., "draw a line from point A to point B"). Examples: .pdf, .svg, .eps.
They are infinitely scalable. A vector graphic will remain perfectly crisp
and clear no matter how much you zoom in.

For papers and posters, always use vector formats for plots and dia-
grams.

Exporting from Your Tools

• Python/Matplotlib: When saving, specify a vector format.

1 # Instead of plt.show(), use plt.savefig()

2 plt.savefig("goldbach_comet.pdf", format="pdf", bbox_inches="tight"

)

3 plt.savefig("goldbach_comet.svg", format="svg", bbox_inches="tight"

)

• Mathematica: Use the ‘Export‘ command.

1 (* Assuming plotObject is a graphic you’ve generated *)

2 Export["damped_wave.pdf", plotObject]

3 Export["damped_wave.svg", plotObject]

• LATEX/TikZ: This is the purest vector format, as it is compiled directly
with your document. The diagrams in this guide were made with TikZ.
It has a steep learning curve but offers unparalleled quality and control.
Use LLMs to generate initial TikZ code!
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Vector Graphics (.pdf, .svg)

Zoom In

Raster Graphics (.png, .jpg)

Zoom In

Perfectly Crisp Pixelated

Figure 12.2: A visual comparison of
vector and raster graphics when scaled.

Example 12.2 (Generating Diagrams with TikZ). PGF/TikZ is a pair
of languages for producing vector graphics from a geometric/al-
gebraic description. This can be embedded in a LATEX document to
generate diagrams, plots, and other visualizations. LATEX code using TikZ

Prompt to AI

Generate LATEX code using the TikZ package to draw a cycle graph
C4 with labeled vertices.

AI Output

1 \begin{tikzpicture}[

2 node_style/.style={circle, draw=blue!50, fill=blue!20,

thick, minimum size=7mm},

3 edge_style/.style={draw=black, thick}

4 ]

5 \node[node_style] (v1) at (0, 2) {$v_1$};

6 \node[node_style] (v2) at (2, 0) {$v_2$};

7 \node[node_style] (v3) at (0, -2) {$v_3$};

8 \node[node_style] (v4) at (-2, 0) {$v_4$};

9 \draw[edge_style] (v1) -- (v2) -- (v3) -- (v4) -- cycle;

10 \end{tikzpicture}
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12.3 Refining Graphics

While generating graphics from scratch is a powerful ca-
pability, one of the most common and effective uses of AI is in refining
existing code. Often, the first version of a graphic—whether written by
a human or generated by an AI—is just a starting point. AI can act as an
expert assistant to improve aesthetics, add complexity, and increase the
modularity of your code.

Example 12.3 (Refining a TikZ Diagram). Suppose we used an AI
to generate a simple diagram of a cycle graph C4, and it produced
the following functional but basic code and the corresponding image
shown in Figure 12.3 (left).

% Initial, basic TikZ code for C4

\begin{tikzpicture}

\node[circle,draw,fill=blue!20] (v1) at (0,2) {$v_1$};

\node[circle,draw,fill=blue!20] (v2) at (2,0) {$v_2$};

\node[circle,draw,fill=blue!20] (v3) at (0,-2) {$v_3$};

\node[circle,draw,fill=blue!20] (v4) at (-2,0) {$v_4$};

\draw[thick] (v1) -- (v2) -- (v3) -- (v4) -- cycle;

\end{tikzpicture}

The diagram is correct, but the code is repetitive and not easy
to modify. Now, we want to adapt this diagram to communicate a
more specific mathematical idea: highlighting the path graph P3 as
a subgraph within C4. This requires more than just a new diagram;
it requires a more sophisticated code structure. We can ask the AI to
perform this refinement.

Prompt to AI

I have this basic TikZ code for a cycle graph C4. I need you to refine
it to highlight the path P3 (from v1 to v2 to v3) as a subgraph.
Please do the following: 1. Restructure the code to use \tikzset

or local /.style definitions for nodes and edges to make it more
modular. 2. Create separate styles for "standard" elements (in gray)
and "highlighted" elements (in red). 3. Apply the highlight style to
nodes v1, v2, v3 and the edges connecting them. 4. Make the high-
lighted edges thicker to make them stand out.

AI Output

Here is the refined TikZ code that uses modular styles to highlight
the specified subgraph:

1 \begin{tikzpicture}[

2 % Define reusable styles

3 node_std/.style={circle, draw=gray, fill=gray!20, thick,
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minimum size=7mm},

4 edge_std/.style={draw=gray, thick},

5 node_hl/.style={node_std, draw=red!80, fill=red!20, text=

black},

6 edge_hl/.style={edge_std, draw=red!80, line width=1.5pt},

7 ]

8 % Place the nodes using the defined styles

9 \node[node_hl] (v1) at (0,2) {$v_1$};

10 \node[node_hl] (v2) at (2,0) {$v_2$};

11 \node[node_hl] (v3) at (0,-2) {$v_3$};

12 \node[node_std] (v4) at (-2,0) {$v_4$};

13

14 % Draw the edges using the defined styles

15 \draw[edge_hl] (v1) -- (v2);

16 \draw[edge_hl] (v2) -- (v3);

17 \draw[edge_std] (v3) -- (v4);

18 \draw[edge_std] (v4) -- (v1);

19 \end{tikzpicture}

v1

v2

v3

v4

Initial AI-Generated Graphic

v1

v2

v3

v4

Refined Graphic

Figure 12.3: A comparison of the
initial AI-generated TikZ diagram
(left) and the refined version after a
specific modification prompt (right).
The refined version uses modular styles
and highlights a specific mathematical
substructure.

This iterative process transformed a simple, correct diagram into a
more sophisticated and communicative one. The refined code is not
only aesthetically better but also more maintainable and adaptable
for future use, demonstrating the value of using AI as a partner in
the creative process.





13 LATEXDocument Preparation

The best way to communicate is to write clearly.
— Donald Knuth (1938– )

Mathematics is beautiful, and it should be presented beautifully.
数学是美的，应该美地呈现出来。

— Shiing-Shen Chern (陈省身) (1911 – 2004)

The integration of AI tools with LATEX document preparation

represents a transformative development in mathematical writing and
publishing. AI systems can assist with virtually every aspect of LATEX doc-
ument creation, from initial document structure and formatting to complex
mathematical typesetting and bibliography management. This integration
enables researchers to focus on mathematical content while leveraging AI
capabilities to handle the technical aspects of document preparation.

Modern AI systems demonstrate remarkable proficiency in LATEX syn-
tax and can generate properly formatted mathematical documents from
natural language descriptions. This capability includes not only basic
document structure but also sophisticated mathematical typesetting, com-
plex table and figure formatting, and integration with specialized LATEX
packages for mathematical applications. The ability to describe desired for-
matting in natural language and receive working LATEX code significantly
reduces the barrier to entry for professional mathematical typesetting.

The generation of mathematical content in LATEX format represents one
of the most valuable applications of AI integration. AI systems can convert
mathematical expressions from various formats into properly formatted
LATEX code, generate complete mathematical derivations with appropriate
formatting, and create complex mathematical displays that follow profes-
sional typesetting standards. This capability is particularly valuable for
researchers who may be comfortable with mathematical concepts but less
familiar with LATEX mathematical typesetting conventions. Document structure and organization

Document structure and organization represent areas where AI can
provide significant assistance. AI systems can generate LATEX document
templates that are appropriate for different types of mathematical publica-
tions, suggest organizational structures for complex documents, and create
consistent formatting schemes that enhance document readability. This
structural assistance is particularly valuable for lengthy documents such as
theses, research papers, and technical reports. integrating packages

The integration of AI with specialized LATEX packages opens numer-
ous possibilities for enhanced mathematical typesetting. Packages such
as amsmath, amsthm, and amssymb provide extensive capabilities for
mathematical formatting, while packages like tikz and pgfplots enable the
creation of sophisticated mathematical diagrams and plots directly within
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LATEX documents. AI systems can generate code that leverages these pack-
ages effectively, creating professional-quality mathematical documents
with minimal manual intervention. Bibliography management

Bibliography management represents another area where AI can pro-
vide valuable assistance. AI systems can generate BibTeX entries from
various citation formats, suggest appropriate citation styles for different
publication venues, and create formatted bibliographies that meet pro-
fessional standards. This capability is particularly valuable for managing
large numbers of references and ensuring consistent citation formatting
throughout lengthy documents. presentations

The creation of mathematical presentations using Beamer represents
an important application of AI-assisted LATEX document preparation. AI
systems can generate Beamer presentations with appropriate mathematical
formatting, suggest effective slide layouts for different types of mathemat-
ical content, and create consistent visual themes that enhance presentation
effectiveness. This capability enables researchers to create professional
mathematical presentations with minimal investment in learning complex
Beamer syntax.

Table and figure formatting in LATEX documents can be significantly en-
hanced through AI assistance. AI systems can generate properly formatted
tables for mathematical data, create figure environments with appropriate
captions and references, and handle complex multi-panel figures with con-
sistent formatting. This capability is particularly valuable for documents
that include extensive numerical results or multiple graphical elements. formatting

The automation of repetitive LATEX formatting tasks represents a sig-
nificant productivity enhancement. AI systems can generate consistent
formatting for mathematical definitions, theorems, and proofs, create stan-
dardized section headers and document elements, and apply consistent
styling throughout lengthy documents. This automation reduces the time
required for document preparation and minimizes formatting errors. Cross-referencing and navigation

Cross-referencing and document navigation represent important aspects
of professional mathematical documents that AI can help manage. AI
systems can generate appropriate label and reference schemes, create
consistent numbering systems for mathematical objects, and implement
navigation aids such as hyperlinks and bookmarks. This capability is
particularly important for complex documents with extensive internal
cross-references.

Example: AI-Generated LATEX Theorem Environment

Prompt: Create a LATEX document section with a theorem about conti-
nuity, its proof, and a related example.

AI-Generated LATEX :

1 \ s e c t i o n { Continuity and Limits }
2

3 \begin { theorem } [ Epsilon −Delta C h a r a c t e r i z a t i o n of Continuity ]
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4 \ l a b e l { thm : c o n t i n u i t y _ eps i lon _ d e l t a }
5 Let $ f : \mathbb {R} \ to \mathbb {R}$ and l e t $a \in \mathbb {R } $ .
6 Then $ f $ i s continuous a t $a$ i f and only i f f o r every
7 $\ varepsilon > 0$ , there e x i s t s $\ del ta > 0$ such t h a t
8 f o r a l l $x \in \mathbb {R } $ :
9 \[

10 |x − a| < \del ta \impl ies | f ( x ) − f ( a ) | < \varepsilon
11 \]
12 \end { theorem }
13

14 \begin { proof }
15 We prove both d i r e c t i o n s of the equivalence .
16

17 \ t e x t b f { ( $ \ Rightarrow $) } Assume $ f $ i s continuous a t $a $ .
18 By d e f i n i t i o n of cont inui ty , $\lim _{ x \ to a } f ( x ) = f ( a ) $ .
19 Let $\ varepsilon > 0$ be given . By the d e f i n i t i o n of l i m i t ,
20 there e x i s t s $\ del ta > 0$ such t h a t f o r a l l $x \neq a $ :
21 \[
22 |x − a| < \del ta \impl ies | f ( x ) − f ( a ) | < \varepsilon
23 \]
24 Since t h i s i n e q u a l i t y a l s o holds t r i v i a l l y when $x = a$
25 ( as $| f ( a ) − f ( a ) | = 0 < \varepsilon $) , we have the
26 desired r e s u l t .
27

28 \ t e x t b f { ( $ \ Leftarrow $) } Assume the epsi lon − d e l t a condi t ion holds .
29 We need to show t h a t $\lim _{ x \ to a } f ( x ) = f ( a ) $ .
30 Let $\ varepsilon > 0$ be given . By hypothesis , there e x i s t s
31 $\ del ta > 0$ such t h a t $|x − a| < \del ta $ impl ies
32 $| f ( x ) − f ( a ) | < \varepsilon $ . This i s p r e c i s e l y the
33 d e f i n i t i o n of $\lim _{ x \ to a } f ( x ) = f ( a ) $ .
34 \end { proof }
35

36 \begin { example }
37 \ l a b e l { ex : quadrat ic _ c o n t i n u i t y }
38 Consider $ f ( x ) = x ^2$. We show t h a t $ f $ i s continuous a t
39 $a = 2$ using the epsi lon − d e l t a d e f i n i t i o n .
40

41 Let $\ varepsilon > 0$ be given . We need to f ind $\ del ta > 0$
42 such t h a t $|x − 2| < \del ta $ impl ies $|x^2 − 4| < \varepsilon $ .
43

44 Note t h a t :
45 \begin { a l i g n }
46 |x^2 − 4| &= |x − 2||x + 2|
47 \end { a l i g n }
48

49 I f we r e s t r i c t $|x − 2| < 1$ , then $1 < x < 3$ , so
50 $|x + 2| < 5 $ . Thus :
51 \[
52 |x^2 − 4| = |x − 2||x + 2| < 5|x − 2|
53 \]
54

55 Choose $\ del ta = \min\ l e f t \{1 , \ f r a c {\ varepsilon } { 5 } \ r i g h t \ } $ .
56 Then f o r $|x − 2| < \del ta $ :
57 \[
58 |x^2 − 4| < 5|x − 2| < 5 \cdot \ f r a c {\ varepsilon } { 5 } = \varepsilon
59 \]
60

61 Therefore , $ f ( x ) = x^2$ i s continuous a t $x = 2 $ .
62 \end { example }

Example: AI-Generated LATEX Theo-
rem Environment

Result: AI-Generated LATEX Theorem Environment

10.1 Continuity and Limits

Theorem 13.1 (Epsilon-Delta Characterization of Continuity). Let f :
R → R and let a ∈ R. Then f is continuous at a if and only if for every
ε > 0, there exists δ > 0 such that for all x ∈ R:

|x − a| < δ ⇒ | f (x)− f (a)| < ε
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Proof. We prove both directions of the equivalence.
(⇒) Assume f is continuous at a. By definition of continuity,
limx→a f (x) = f (a). Let ε > 0 be given. By the definition of limit,
there exists δ > 0 such that for all x ̸= a:

|x − a| < δ ⇒ | f (x)− f (a)| < ε

Since this inequality also holds trivially when x = a (as | f (a) −
f (a)| = 0 < ε), we have the desired result.
(⇐) Assume the epsilon-delta condition holds. We need to show
that limx→a f (x) = f (a). Let ε > 0 be given. By hypothesis, there
exists δ > 0 such that |x − a| < δ implies | f (x) − f (a)| < ε. This is
precisely the definition of limx→a f (x) = f (a).

Example 13.1. Consider f (x) = x2. We show that f is continu-
ous at a = 2 using the epsilon-delta definition.
Let ε > 0 be given. We need to find δ > 0 such that |x − 2| < δ

implies |x2 − 4| < ε.
Note that:

|x2 − 4| = |x − 2||x + 2|

If we restrict |x − 2| < 1, then 1 < x < 3, so |x + 2| < 5. Thus:

|x2 − 4| = |x − 2||x + 2| < 5|x − 2|

Choose δ = min
{

1, ε
5
}

. Then for |x − 2| < δ:

|x2 − 4| < 5|x − 2| < 5 · ε

5
= ε

Therefore, f (x) = x2 is continuous at x = 2. Result: AI-Generated LATEX Theorem
Environment

The integration of AI-generated content with existing LATEX workflows
requires attention to consistency and compatibility. AI systems can gen-
erate LATEX code that integrates seamlessly with existing document struc-
tures, maintains consistent formatting styles, and respects established
conventions for mathematical typesetting. This integration capability is
crucial for collaborative projects and for maintaining consistency across
multiple documents. Error handling and debugging

Error handling and debugging in AI-generated LATEX code represent
important considerations for reliable document preparation. AI systems
can be instructed to generate robust LATEX code that includes appropriate
error checking, handles edge cases gracefully, and provides clear error
messages when problems occur. This attention to robustness is particularly
important for complex documents that may undergo multiple revisions
and modifications. customization and adaptation

The customization and adaptation of AI-generated LATEX code enables
researchers to tailor document formatting to specific requirements. AI sys-
tems can modify generated code to meet particular journal specifications,
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adapt formatting for different document types, and implement custom
styling requirements. This flexibility ensures that AI-generated LATEX code
can be adapted to diverse publication contexts and institutional require-
ments. Version control and collaboration

Version control and collaboration considerations become particularly
important when integrating AI-generated LATEX code into collaborative
research projects. This includes maintaining clear records of AI-generated
content, documenting modifications and customizations, and ensuring that
collaborative workflows can accommodate AI-assisted document prepa-
ration. These practices support effective collaboration while maintaining
transparency about the role of AI in document creation.

AI can be an invaluable partner when writing LATEX documents, espe-
cially for complex syntax. Document Templates

Example 13.2 (Generating Document Templates). LLMs can generate
results and display them in a LATEX document.

Prompt to AI

Create a basic LATEX article template for a math paper. Include pack-
ages for math, theorems, graphics, and a bibliography.

AI Output

The preamble of this very document is a perfect example of such a
generated template. It includes packages for geometry, fonts, math
(‘amsmath‘, ‘amsthm‘), graphics (‘graphicx‘, ‘tikz‘, ‘xcolor‘), code
listings, and bibliography (‘biblatex‘).

Example 13.3 (Typesetting Complex Mathematics). LLMs can pro-
duce complicated LATEX code.

Prompt to AI

How do I typeset the following in LATEX: The set of integers Z, a
2x2 matrix with entries a, b, c, d, and the definition of the limit of a
sequence xn.

AI Output

Here are the LATEX commands for each:

• The set of integers: ‘Z‘. Requires \usepackage{amssymb}.

• A 2 × 2 matrix: (
a b
c d

)
.

Requires \usepackage{amsmath}.

• Limit definition: ‘∀ϵ > 0, ∃N ∈ N such that n > N ⇒ |xn − L| <
ϵ.‘





14 Presentations and Beamer

In the realm of mathematics, there is no place for authority; only truth matters.If you
can’t explain it simply, you don’t understand it well enough.

— Albert Einstein (1879–1955)

In the realm of mathematics, there is no place for authority; only truth matters.
在数学的领域里，没有权威的地位，只有真理是重要的。

— Chen Jingrun (陈景润) (1933–1996)

The creation of professional mathematical presentations

using LATEX Beamer represents an important application of AI-assisted
document preparation. Modern AI systems can generate complete Beamer
presentations with appropriate mathematical formatting, suggest effective
slide layouts for different types of mathematical content, and create consis-
tent visual themes that enhance presentation effectiveness. This capability
enables researchers to create high-quality mathematical presentations with
minimal investment in learning complex Beamer syntax.

AI systems demonstrate particular strength in generating Beamer pre-
sentations that effectively communicate mathematical concepts. This in-
cludes creating slide structures that support logical flow of mathematical
arguments, generating appropriately formatted mathematical displays that
are readable in presentation contexts, and suggesting visual elements that
enhance comprehension of complex mathematical ideas. The ability to de-
scribe presentation goals in natural language and receive working Beamer
code significantly reduces the barrier to creating professional mathematical
presentations.

The integration of mathematical content with visual presentation ele-
ments represents a crucial aspect of effective mathematical presentations.
AI systems can generate Beamer code that balances mathematical rigor
with visual clarity, creating presentations that are both mathematically ac-
curate and accessible to diverse audiences. This includes appropriate use
of mathematical notation, effective spacing and layout of mathematical ex-
pressions, and integration of graphical elements that support mathematical
exposition.

Slide design and layout optimization for mathematical presentations
require careful consideration of readability, visual hierarchy, and audi-
ence engagement. AI systems can generate Beamer templates that are
optimized for mathematical content, suggest appropriate font sizes and
spacing for different presentation contexts, and create consistent visual
themes that enhance professional appearance. This design assistance is
particularly valuable for researchers who may be experts in mathematical
content but less familiar with presentation design principles.

The creation of animated mathematical presentations represents an
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advanced application of AI-assisted Beamer generation. AI systems can
generate code for creating mathematical animations that illustrate dynamic
processes, show the evolution of mathematical proofs, or demonstrate the
behavior of mathematical systems over time. These animated presentations
can be particularly effective for explaining complex mathematical concepts
and engaging audiences with interactive content.

Fourier seriesExample: AI-Generated Beamer Presentation on Fourier Series

Prompt: Create a Beamer presentation introducing Fourier series with
definitions, examples, and visualizations.

AI-Generated Beamer Code:

1 \documentclass [12 pt ] { beamer }
2 \usetheme { Madrid }
3 \usepackage { amsmath , amssymb }
4 \usepackage { graphicx }
5 \usepackage { t i k z }
6 \usepackage { pgfp lo t s }
7 \ p g f p l o t s s e t { compat = 1 . 1 6 }
8

9 \ t i t l e { In t roduct ion to Four ier S e r i e s }
10 \ s u b t i t l e { Decomposing Functions i n t o Trigonometric Components }
11 \author { Your Name}
12 \ i n s t i t u t e { Department of Mathematics }
13 \date {\ today }
14

15 \begin { document }
16

17 \frame {\ t i t l e p a g e }
18

19 \begin { frame }
20 \ f r a m e t i t l e { Outl ine }
21 \ t a b l e o f c o n t e n t s
22 \end { frame }
23

24 \ s e c t i o n { In t roduct ion and Motivation }
25

26 \begin { frame }
27 \ f r a m e t i t l e { What are Four ier S e r i e s ? }
28 \begin { block } { Main Idea }
29 Any p e r i o d i c funct ion can be expressed as a sum of
30 s ine and cos ine f u n c t i o n s with d i f f e r e n t f r e q u e n c i e s .
31 \end { block }
32

33 \pause
34

35 \begin { block } { Mathematical Expression }
36 For a p e r i o d i c funct ion $ f ( x ) $ with period $2\ pi $ :
37 \[
38 f ( x ) = \ f r a c { a _ 0 } { 2 } + \sum_{ n=1}^{\ i n f t y }
39 \ l e f t ( a_n \cos ( nx ) + b_n \sin ( nx ) \ r i g h t )
40 \]
41 \end { block }
42

43 \pause
44

45 \begin { a l e r t b l o c k } { Key I n s i g h t }
46 Complex p e r i o d i c phenomena can be understood as
47 combinations of simple harmonic components .
48 \end { a l e r t b l o c k }
49 \end { frame }
50

51 \ s e c t i o n { Mathematical Foundation }
52

53 \begin { frame }
54 \ f r a m e t i t l e { Four ier C o e f f i c i e n t s }
55 The c o e f f i c i e n t s are determined by :
56

57 \begin { a l i g n }
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58 a_0 &= \ f r a c { 1 } { \ pi } \ i n t _{−\ pi }^{\ pi } f ( x ) \ , dx \\[0 .5em]
59 a_n &= \ f r a c { 1 } { \ pi } \ i n t _{−\ pi }^{\ pi } f ( x ) \cos ( nx ) \ , dx \\[0 .5em]
60 b_n &= \ f r a c { 1 } { \ pi } \ i n t _{−\ pi }^{\ pi } f ( x ) \sin ( nx ) \ , dx
61 \end { a l i g n }
62

63 \pause
64

65 \begin { block } { Orthogonal i ty }
66 These formulas a r i s e from the o r t ho go na l i ty of
67 t r igonometr i c f u n c t i o n s :
68 \[
69 \ i n t _{−\ pi }^{\ pi } \cos (mx) \cos ( nx ) \ , dx =
70 \begin { cases }
71 0 & \ t e x t { i f } m \neq n \\
72 \pi & \ t e x t { i f } m = n \neq 0

73 \end { cases }
74 \]
75 \end { block }
76 \end { frame }

Example: AI-Generated Beamer Pre-
sentation on Fourier Series

Square Wave Frames
Example: AI-Generated Beamer Presentation (cont’d)

AI-Generated Beamer Code:

1 \ s e c t i o n { Example : Square Wave}
2

3 \begin { frame }
4 \ f r a m e t i t l e { Square Wave Function }
5 \begin { columns }
6 \column { 0 . 5 \ textwidth }
7 Define the square wave :
8 \[
9 f ( x ) = \begin { cases }

10 1 & \ t e x t { i f } 0 < x < \pi \\
11 −1 & \ t e x t { i f } −\pi < x < 0

12 \end { cases }
13 \]
14

15 \pause
16

17 Computing the c o e f f i c i e n t s :
18 \begin { a l i g n }
19 a_0 &= 0 \\
20 a_n &= 0 \\
21 b_n &= \ f r a c { 4 } { n\pi } \ t e x t { ( odd } n \ t e x t { ) }
22 \end { a l i g n }
23

24 \column { 0 . 5 \ textwidth }
25 \begin { c e n t e r }
26 \begin { t i k z p i c t u r e } [ s c a l e = 0 . 8 ]
27 \begin { a x i s } [
28 domain = − 3 . 5 : 3 . 5 ,
29 samples =200 ,
30 a x i s l i n e s =middle ,
31 x l a b e l =$x $ ,
32 y l a b e l =$ f ( x ) $ ,
33 ymin= −1 .5 ,
34 ymax= 1 . 5 ,
35 grid=major
36 ]
37 \addplot [ blue , th ick , samples =50] {
38 ( x > −pi && x < 0 ) ? −1 :
39 ( x > 0 && x < pi ) ? 1 : 0

40 } ;
41 \end { a x i s }
42 \end { t i k z p i c t u r e }
43 \end { c e n t e r }
44 \end { columns }
45 \end { frame }
46

47 \begin { frame }
48 \ f r a m e t i t l e { Square Wave Four ier S e r i e s }
49 The Four ier s e r i e s r e p r e s e n t a t i o n :
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50 \[
51 f ( x ) = \ f r a c { 4 } { \ pi } \sum_{ n = 1 , 3 , 5 , . . . } ^ { \ i n f t y } \ f r a c {\ sin ( nx ) } { n }
52 \]
53

54 \pause
55

56 \begin { block } { P a r t i a l Sums }
57 \begin { a l i g n }
58 S _1 ( x ) &= \ f r a c { 4 } { \ pi } \sin ( x ) \\
59 S _3 ( x ) &= \ f r a c { 4 } { \ pi } \ l e f t ( \sin ( x ) + \ f r a c {\ sin (3 x ) } { 3 } \ r i g h t )

\\
60 S _5 ( x ) &= \ f r a c { 4 } { \ pi } \ l e f t ( \sin ( x ) + \ f r a c {\ sin (3 x ) } { 3 } + \ f r a c {\

sin (5 x ) } { 5 } \ r i g h t )
61 \end { a l i g n }
62 \end { block }
63

64 \pause
65

66 \begin { a l e r t b l o c k } { Convergence }
67 As we add more terms , the s e r i e s converges to the
68 square wave funct ion .
69 \end { a l e r t b l o c k }
70 \end { frame }

Example: AI-Generated Beamer Pre-
sentation (cont’d)

Fourier Series Applications Frames
Example: AI-Generated Beamer Presentation (cont’d)

AI-Generated Beamer Code:

1 \ s e c t i o n { Appl ica t ions }
2

3 \begin { frame }
4 \ f r a m e t i t l e { Appl ica t ions of Four ier S e r i e s }
5 \begin { enumerate }
6 \item \ t e x t b f { S igna l Process ing }
7 \begin { i temize }
8 \item Audio compression (MP3 )
9 \item Image process ing ( JPEG )

10 \item D i g i t a l communications
11 \end { i temize }
12

13 \pause
14

15 \item \ t e x t b f { Physics and Engineering }
16 \begin { i temize }
17 \item Heat conduction
18 \item Vibrat ion a n a l y s i s
19 \item E l e c t r i c a l c i r c u i t s
20 \end { i temize }
21

22 \pause
23

24 \item \ t e x t b f { Mathematics }
25 \begin { i temize }
26 \item Solving d i f f e r e n t i a l equat ions
27 \item Harmonic a n a l y s i s
28 \item Number theory
29 \end { i temize }
30 \end { enumerate }
31 \end { frame }
32

33 \begin { frame }
34 \ f r a m e t i t l e { Conclusion }
35 \begin { block } { Key Points }
36 \begin { i temize }
37 \item Four ier s e r i e s decompose p e r i o d i c f u n c t i o n s i n t o
38 harmonic components
39 \item The c o e f f i c i e n t s are computed using o r t ho go na l i t y
40 \item Appl icat ions span mult ip le f i e l d s of s c i e n c e and
41 engineer ing
42 \end { i temize }
43 \end { block }
44

45 \pause
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46

47 \begin { block } { Next Steps }
48 \begin { i temize }
49 \item Four ier transforms f o r non−p e r i o d i c f u n c t i o n s
50 \item D i s c r e t e Four ier Transform (DFT)
51 \item Fast Four ier Transform ( FFT ) algori thms
52 \end { i temize }
53 \end { block }
54 \end { frame }
55

56 \end { document }
Example: AI-Generated Beamer Pre-
sentation (cont’d)
graphics and visualizationsIntegration with mathematical graphics and visualizations represents

another important aspect of AI-assisted Beamer presentations. AI systems
can generate code that seamlessly integrates mathematical plots, diagrams,
and visualizations into presentation slides, ensuring consistent formatting
and appropriate sizing for presentation contexts. This integration capabil-
ity enables the creation of visually rich mathematical presentations that
effectively communicate complex ideas. mathematical notation and symbols

The management of mathematical notation and symbols in presentation
contexts requires special attention to readability and clarity. AI systems
can generate Beamer code that optimizes mathematical notation for pre-
sentation display, ensuring that mathematical expressions are clearly read-
able from typical viewing distances and that symbol sizing and spacing
are appropriate for projection environments. themes and styles

The customization of Beamer themes and styling for mathematical
presentations represents an important aspect of professional presentation
design. AI systems can generate custom Beamer themes that are optimized
for mathematical content, suggest appropriate color schemes and fonts for
different presentation contexts, and create consistent visual branding that
enhances professional appearance. This customization capability enables
researchers to create presentations that align with institutional branding or
personal preferences while maintaining readability and professionalism. Interactive elements

Interactive elements and audience engagement represent advanced ap-
plications of AI-assisted Beamer presentations. AI systems can generate
code for creating interactive mathematical demonstrations, clickable math-
ematical objects, and dynamic content that responds to audience input.
These interactive elements can significantly enhance audience engage-
ment and provide more effective communication of complex mathematical
concepts. multimedia elements

The integration of multimedia elements with mathematical content rep-
resents another important capability of AI-assisted Beamer generation.
AI systems can generate code that seamlessly integrates videos, anima-
tions, and interactive elements into mathematical presentations, ensuring
that multimedia content enhances rather than detracts from mathematical
exposition. This integration capability enables the creation of rich, multi-
modal presentations that appeal to diverse learning styles. Accessibility

Accessibility considerations in mathematical presentations require
special attention to ensure that content is accessible to individuals with
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diverse needs and abilities. AI systems can generate Beamer code that
incorporates accessibility features such as alternative text for images, high-
contrast color schemes, and clear navigation structures. This attention to
accessibility ensures that mathematical presentations can reach broader
audiences and comply with institutional accessibility requirements. optimize presentations

The optimization of presentations for different delivery contexts rep-
resents a practical consideration that AI systems can help address. This
includes generating presentations that are optimized for different screen
sizes and resolutions, creating handout versions that are suitable for print-
ing, and adapting content for online delivery platforms. This optimization
capability ensures that presentations remain effective across diverse deliv-
ery contexts.

AI can generate the boilerplate code for presentations using the ‘beamer‘
class, saving you time on setup and allowing you to focus on the content. Minimal Beamer Presentation

Example 14.1 (Creating a Minimal Beamer Presentation). Next ...

Prompt to AI

Generate a minimal Beamer presentation LATEX template with a title
slide and one frame containing a theorem and a block.

AI Output

1 \documentclass{beamer}

2 \usetheme{Madrid}

3 \usepackage{amsmath, amsthm}

4

5 \title{My Research Presentation}

6 \author{Your Name}, \institute{Your University}, \date{\today}

7

8 \begin{document}

9 \frame{\titlepage}

10

11 \begin{frame}

12 \frametitle{Main Results}

13 \begin{theorem}[Fermat’s Last Theorem]

14 For any integer $n > 2$, there are no positive integers $x, y,

z$ such that $x^n + y^n = z^n$.

15 \end{theorem}

16 \begin{block}{Key Idea}

17 The proof by Andrew Wiles connects this problem to the

modularity theorem for elliptic curves.

18 \end{block}

19 \end{frame}

20 \end{document}
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Figure 14.1: Introductory slides explain-
ing the concept of Fourier series.
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Figure 14.2: Slides showing the square
wave function and its Fourier series
approximation.



15 Case Study: From Conjecture to

Conclusion

Tis much better to do a little with certainty and leave the rest for others that come
after than to explain all things by conjecture without making sure of any thing.ugh.

— Isaac Newton (1643–1727)

He who knows that enough is enough will always have enough.
知足者常乐。

— Laozi (老子)

In the preceding chapters, we have explored the individual compo-
nents of an AI-assisted research workflow. We have seen how to use AI
for brainstorming, code generation, verification, and document prepara-
tion. This chapter aims to synthesize these skills by walking through a
complete, albeit miniature, research project from start to finish.

We will follow a realistic trajectory: a vague curiosity is honed into a
specific question with AI assistance; this question is investigated computa-
tionally; the resulting pattern is visualized and formally stated; and finally,
the finding is prepared for dissemination with the appropriate ethical
disclosures. This case study will demonstrate the role of the human re-
searcher as the director of the project, using AI as a powerful and versatile
tool at each stage.

15.1 The Spark of Curiosity: Problem Formulation

Our project begins not with a clear hypothesis, but with a gen-
eral interest in a fascinating area of combinatorics: integer partitions. As
a student entering this field, a great first step is to ask an AI to survey the
landscape for accessible yet interesting problems. This leverages the LLM’s
broad training data to act as a guide. Brainstorm to find a question

Example 15.1 (Brainstorming a Research Question). We start by
prompting an AI to suggest research directions suitable for an un-
dergraduate. This is an application of the techniques discussed in
Chapter 9.

Prompt to AI

I’m working on a project about integer partitions. Can you suggest
some interesting, accessible research questions or potential conjec-
tures for an undergraduate to investigate? For example, related to
partitions with specific restrictions.
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AI Output

Certainly! Here are a few accessible directions in the theory of inte-
ger partitions:

1. Congruence Properties: Ramanujan discovered that p(5k + 4) ≡
0 (mod 5). Are there similar, undiscovered congruence proper-
ties for partitions with specific restrictions? For example, let a(n)
be the number of partitions of n into parts that are all odd and
distinct. Does the sequence a(n) (mod 3) have any interesting
properties?

2. Bridging Different Restrictions: Explore potential connections
between two different types of restricted partitions. This relates
to Rogers-Ramanujan type identities.

3. Graphical Representation: Investigate the properties of Ferrers
diagrams for certain classes of partitions, such as the size of the
Durfee square.

The first suggestion is particularly intriguing. It gives us a concrete
function, a(n), and a specific modulus to investigate. This transforms our
vague interest into a testable hypothesis: Does the sequence a(n) (mod 3)
exhibit a pattern?

15.2 Computational Exploration: Code Generation

With a clear question in hand, we move from conceptualization to
experimentation. We need to generate data to see if a pattern exists. This is
a perfect task for AI-assisted code generation, as discussed in Chapter 15.2.
We need a script to compute the first several terms of the sequence a(n)
(mod 3). Generate an Experimental Script

Example 15.2 (Generating an Experimental Script). We ask the AI to
write a Python script for our experiment.

Prompt to AI

Write a Python script to compute a(n), the number of partitions of n
into odd, distinct parts, for n from 1 to 60. Then, print the sequence
of a(n) (mod 3).

AI Output

45 import sympy

46

47 # Using a dictionary for memoization to speed up computation

48 memo = {}

49
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50 def a(n):

51 """Computes the number of partitions of n into odd,

distinct parts."""

52 if n in memo:

53 return memo[n]

54 if n == 0:

55 return 1

56 if n < 0:

57 return 0

58

59 # Using generating functions: product_{k=1 to inf} (1 + q

^(2k-1))

60 # A direct dynamic programming approach is clearer here.

61

62 parts = [i for i in range(1, n + 1) if i % 2 != 0]

63 dp = [0] * (n + 1)

64 dp[0] = 1

65

66 for part in parts:

67 for i in range(n, part - 1, -1):

68 dp[i] += dp[i - part]

69

70 memo[n] = dp[n]

71 return dp[n]

72

73 if __name__ == ’__main__’:

74 print("Sequence of a(n) mod 3 for n=1 to 60:")

75 results = [str(a(i) % 3) for i in range(1, 61)]

76

77 # Print in blocks of 8 for easy pattern recognition

78 for i in range(0, len(results), 8):

79 print(" ".join(results[i:i+8]))

Running this code produces the following output: Output indicating periodicity.

1 1 1 2 1 1 2 0

1 1 1 2 1 1 2 0

1 1 1 2 1 1 2 0

1 1 1 2 1 1 2 0

1 1 1 2 1 1 2 0

1 1 1 2 1 1 2 0

1 1 1 2 1 1 2 0

1 1 1 2

A clear pattern emerges! The sequence a(n) (mod 3) appears to be peri-
odic with a period of 8.
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15.3 Verification and Visualization

The computational experiment provides strong evidence, but it
is not a proof. The next steps are to validate this pattern and visualize it
for clear communication, drawing on the skills from Chapters 15.3 and 12.

First, we can ask the AI to help us find a path towards a formal proof.
This moves beyond simple code generation into a query about mathemati-
cal reasoning. Finding a proof.

Prompt to AI

The sequence a(n) (mod 3) appears to be periodic with period 8.
Can you provide a proof sketch or a key idea for how to prove this,
perhaps using generating functions?

AI Output

This is an excellent observation. The standard way to prove such
congruence properties is through the generating function for a(n),
which is:

A(q) =
∞

∑
n=0

a(n)qn =
∞

∏
k=1

(1 + q2k−1)

To analyze this modulo 3, we can use the fact that (1 + x)3 ≡ 1 + x3

(mod 3). This suggests we should look at A(q)3. While a full proof
is complex and relies on identities like the Jacobi Triple Product,
the core idea is to show that the generating function satisfies a spe-
cific polynomial identity modulo 3 that implies the periodicity of
its coefficients. Investigating the properties of A(q) modulo 3 is the
correct path.

This response gives us confidence that the pattern is not a numerical
artifact and points us toward established proof techniques. Next, to com-
municate this finding effectively, we create a visualization.

Example 15.3 (Visualizing the Periodic Pattern). Now you want to
visualize the result. Visualization

Prompt to AI

Using the Python code from before, add Matplotlib code to create a
stem plot visualizing the periodicity of a(n) (mod 3) for n = 1 to
32. Save the plot as a vector graphic.

AI Output

80 import matplotlib.pyplot as plt

81 # (Assume the function a(n) from the previous example is

defined)
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82

83 n_vals = range(1, 33)

84 mod_vals = [a(n) % 3 for n in n_vals]

85

86 plt.figure(figsize=(12, 6))

87 (markers, stemlines, baseline) = plt.stem(n_vals, mod_vals)

88 plt.setp(markers, color=’red’, markersize=8)

89 plt.setp(stemlines, color=’blue’, linewidth=2)

90 plt.setp(baseline, color=’gray’, linewidth=2, linestyle=’-’)

91

92 plt.title(r’Periodicity of $a(n) \pmod{3}$’, fontsize=16)

93 plt.xlabel(’$n$’, fontsize=12)

94 plt.ylabel(r’$a(n) \pmod{3}$’, fontsize=12)

95 plt.xticks(range(0, 33, 4))

96 plt.yticks([0, 1, 2])

97 plt.grid(True, axis=’y’, linestyle=’--’)

98

99 # Save as a vector graphic for publication quality

100 plt.savefig("partition_periodicity.pdf", format="pdf",

bbox_inches="tight")

101 plt.show()

15.4 Dissemination: LATEX and Ethical Disclosure

We now have a computationally-supported conjecture, a plausi-
ble path to a proof, and a clear visualization. The final step is to formally
write up our finding, as discussed in Chapters 13 and 16.

First, we use AI to help us typeset our conjecture in formal mathemati-
cal language. Generate LATEX code

Prompt to AI

Generate the LATEX code for a ‘conjecture‘ environment stating that
for n ≥ 1, the sequence a(n) (mod 3) is periodic with period 8, and
list the repeating values.

AI Output

21 \begin{conjecture}

22 Let $a(n)$ be the number of partitions of an integer $n$ into

odd, distinct parts. For $n \ge 1$, the sequence of

residues of $a(n)$ modulo 3 is periodic with period 8.

Specifically, for $k \ge 0$ and $1 \le r \le 8$:

23 \[ a(8k+r) \equiv a(r) \pmod 3 \]

24 The repeating sequence of residues $\{a(r) \pmod 3\}_{r=1}^8$

is $\{1, 1, 1, 2, 1, 1, 2, 0\}$.

25 \end{conjecture}
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Finally, and most importantly, we must include a transparent disclo-
sure of the AI’s role in our research. This statement would appear in the
acknowledgments or methodology section of our paper. Disclosure Statement

Remark (Example Disclosure Statement). The initial conjecture regarding
the periodicity of a(n) (mod 3) was formulated after an exploratory in-
teraction with Anthropic’s Claude 3 Opus, which suggested investigating
the sequence as a potentially fruitful research direction. The Python scripts
used for numerical verification and visualization were initially gener-
ated with assistance from the same AI model and subsequently reviewed,
validated, and modified by the author. The AI’s suggestion for a proof
strategy involving generating functions was used as a starting point for the
formal proof.

This case study demonstrates the power of a human-AI partnership.
The human researcher directed the inquiry, verified the results, and re-
tained intellectual ownership, while the AI served as a powerful assistant
to accelerate discovery, experimentation, and communication.



16 Ethics and AI-Assisted Mathematics

Scientific knowledge is an enabling power to do either good or bad — but it does not
carry instructions on how to use it.

— Richard Feynman (1918 – 1988)

The superior man thinks of virtue; the small man thinks of comfort.
君子喻于义，小人喻于利。

— Confucius (孔子)

The integration of artificial intelligence into mathematical
research raises profound ethical questions that extend beyond simple con-
cerns about accuracy and reliability. As AI systems become increasingly
sophisticated and widely adopted in mathematical practice, the research
community must grapple with fundamental questions about intellectual
integrity, attribution, transparency, and the changing nature of mathemat-
ical knowledge production. These ethical considerations are not merely
academic concerns but have practical implications for how mathematical
research is conducted, evaluated, and communicated.

The question of intellectual contribution represents one of the most
fundamental ethical challenges in AI-assisted mathematics. When an AI
system generates a proof, suggests a novel approach, or creates substan-
tial mathematical content, determining appropriate attribution becomes
complex. Traditional notions of authorship assume human agency and
creativity, but AI systems can produce genuinely useful and even creative
mathematical contributions.

Consider the scenario where an AI system suggests a key lemma that
enables the completion of a proof. The human researcher may have posed
the problem, guided the AI’s exploration, and verified the final result, but
the crucial insight came from the AI. In such cases, the ethical question
becomes: what constitutes sufficient human contribution to warrant sole
authorship? The mathematical community has not yet developed clear
consensus on these attribution questions, but several principles are emerg-
ing as important considerations.

Transparency emerges as a critical ethical imperative in AI-assisted
mathematical research. When AI tools contribute to mathematical work,
researchers have an ethical obligation to disclose this assistance in their
publications. This transparency serves multiple purposes: it allows readers
to properly evaluate the work, enables reproducibility, and maintains the
integrity of the mathematical record. However, the level of detail required
in such disclosures remains a matter of ongoing debate.



96 ai in mathematics research

16.1 Intellectual Integrity and Attribution

The concept of intellectual integrity in mathematics has tra-
ditionally been built around the assumption of human authorship. Math-
ematical theorems, proofs, and insights were understood to be products
of human reasoning, creativity, and effort. The introduction of AI sys-
tems that can generate mathematical content challenges this foundational
assumption and requires a reconceptualization of what constitutes intellec-
tual contribution.

When evaluating the role of AI in mathematical work, researchers must
consider the spectrum of AI assistance. At one end, AI might serve as a
sophisticated calculator or computational tool, performing routine calcu-
lations or checking arithmetic. At the other end, AI might generate novel
mathematical insights, suggest creative proof strategies, or identify unex-
pected connections between different areas of mathematics. The ethical
implications vary significantly across this spectrum.

For routine computational assistance, the ethical requirements are rel-
atively straightforward. Just as mathematicians have always acknowl-
edged the use of computational tools, the use of AI for basic calculations
or symbolic manipulation should be noted but does not necessarily require
detailed attribution. However, when AI systems contribute substantive
mathematical ideas, the ethical obligations become more complex.

Attribution Guidelines for AI Assistance

• Computational Role: When AI performs routine calculations,
acknowledge in methods section

• Exploratory Role: When AI suggests directions for investigation,
note in acknowledgments

• Creative Role: When AI generates key insights or proof strate-
gies, consider co-authorship or detailed attribution

• Generative Role: When AI produces substantial mathematical
content, full disclosure and potentially shared credit required Attribution Guidelines for AI Assis-

tance

The challenge of attribution is further complicated by the collabora-
tive nature of AI-human interaction. Mathematical research assisted by
AI is rarely a simple matter of the AI producing output and the human
accepting it. Instead, it typically involves iterative dialogue, where the hu-
man guides the AI’s exploration, refines its suggestions, and integrates its
contributions into a broader mathematical framework. This collaborative
process makes it difficult to cleanly separate human and AI contributions.

The cardinal rule is simple: You are the author. You are responsible
for the final work. An AI cannot be a co-author because it cannot be held
accountable. Presenting AI-generated text, proofs, or code as your own
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without significant intellectual contribution, verification, and modification
is plagiarism.

16.2 Transparency and Disclosure Requirements

Transparency in AI-assisted mathematical research serves mul-
tiple stakeholders and purposes. For the broader mathematical commu-
nity, transparency enables proper evaluation of research contributions and
maintains the integrity of mathematical knowledge. For reviewers and ed-
itors, detailed disclosure allows for appropriate assessment of the work’s
originality and significance. For future researchers, transparency enables
reproducibility and builds upon previous work effectively.

The scope of required disclosure extends beyond simply mentioning
that AI tools were used. Ethical transparency requires providing suffi-
cient detail about the nature and extent of AI assistance to allow readers
to make informed judgments about the work. This includes information
about which AI systems were used, how they were employed, what types
of contributions they made, and how their outputs were verified and vali-
dated.

Current best practices in transparency are still evolving, but several
principles are gaining acceptance. First, the disclosure should be propor-
tional to the AI’s contribution. Minor computational assistance might war-
rant only brief mention, while substantial AI-generated content requires
detailed explanation. Second, the disclosure should be specific rather than
generic. Instead of simply stating that "AI tools were used," researchers
should explain precisely how and where AI assistance was employed.

Common Transparency Failures

• Vague statements like "AI was used for some calculations"

• Failure to disclose AI assistance in key insights or proof strate-
gies

• Inadequate information about AI tool versions and configura-
tions

• Missing details about verification and validation procedures

• Unclear boundaries between human and AI contributions Common Transparency Failures

The timing and placement of disclosure also raise important consid-
erations. Some journals now require disclosure of AI assistance during
the submission process, while others expect it to be included in the pub-
lished article. The mathematical community is moving toward requiring
disclosure both during review and in the final publication, ensuring that
AI assistance is transparent throughout the research process.

If an AI played a significant role in your work, you must disclose it.
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This is a matter of academic honesty and reproducibility. The standard
is to include a statement in your methods or acknowledgements and a
citation in your bibliography.

Example 16.1 (Example In-text Description). "The Python code for
the numerical simulation (see Appendix A) was initially generated
using OpenAI’s GPT-4 model 1 and subsequently verified and modi- 1 OpenAI. ChatGPT, 2024. Model:

GPT-4. Accessed on: 2024-05-21fied by the author."

16.3 Verification and Critical Evaluation

The ethical use of AI in mathematical research requires rig-
orous verification and critical evaluation of AI-generated content. This
responsibility cannot be delegated to the AI system itself, regardless of
how sophisticated or reliable it may appear. Human mathematicians must
maintain ultimate responsibility for the correctness and validity of their
research, even when AI systems contribute substantially to the work.

Verification strategies for AI-assisted mathematical research must be
more comprehensive than traditional mathematical verification. While tra-
ditional mathematical work primarily requires checking logical consistency
and computational accuracy, AI-assisted work also requires evaluating
the appropriateness of AI contributions, the reliability of AI-generated
insights, and the completeness of the mathematical reasoning.

The verification process should begin with a critical assessment of the
AI system’s capabilities and limitations. Different AI tools have different
strengths and weaknesses, and understanding these characteristics is es-
sential for appropriate use. Large language models, for example, may excel
at generating plausible-sounding mathematical explanations but may lack
the rigorous logical reasoning required for valid proofs. Computer alge-
bra systems may perform symbolic manipulations accurately but may not
recognize when their operations are mathematically meaningful.

Verification Checklist for AI-Assisted Mathematics

1. Logical Consistency: Does the AI-generated content follow
logical rules and mathematical principles?

2. Computational Accuracy: Are calculations and symbolic manip-
ulations correct?

3. Conceptual Soundness: Do AI suggestions align with estab-
lished mathematical knowledge?

4. Completeness: Are there gaps in reasoning that the AI may have
overlooked?

5. Originality: Is the AI output genuinely novel or merely recom-
bining existing knowledge?
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6. Relevance: Do AI contributions actually address the mathemati-
cal question at hand? Verification Checklist for AI-Assisted

Mathematics

The verification process must also consider the broader context of the
mathematical research. AI systems may generate locally correct mathemat-
ical statements that are nonetheless inappropriate for the specific research
context. For example, an AI might suggest a valid mathematical technique
that is unnecessarily complex for the problem at hand, or it might provide
a correct but uninformative proof that fails to illuminate the underlying
mathematical structure.

LLMs invent things. They create plausible but false theorems, proofs,
and citations. This is not a bug, but a feature of their probabilistic nature.
Your academic duty is to be professionally skeptical. Verify every fact,
check every calculation with a CAS, and look up every citation.

16.4 Bias and Fairness in AI-Assisted Research

The training data and algorithms underlying AI systems can in-
troduce biases that affect mathematical research in subtle but important
ways. These biases may manifest in the types of mathematical problems AI
systems are better equipped to handle, the approaches they tend to sug-
gest, or the mathematical traditions they draw upon. Understanding and
addressing these biases is crucial for maintaining fairness and inclusivity
in mathematical research.

Training data bias represents a significant concern in AI-assisted mathe-
matical research. AI systems are typically trained on existing mathematical
literature, which may reflect historical biases in mathematical publishing,
funding, and recognition. If certain mathematical approaches, cultural per-
spectives, or research areas are underrepresented in the training data, the
AI system may be less capable of supporting research in those areas.

The implications of such bias extend beyond individual research projects
to the broader development of mathematical knowledge. If AI systems
consistently favor certain types of mathematical approaches or problems,
they may inadvertently steer the field toward some areas while neglect-
ing others. This could lead to a narrowing of mathematical research or
the perpetuation of existing inequalities in mathematical opportunity and
recognition.
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Potential Sources of Bias in Mathematical AI

• Historical Bias: Training data reflects past inequalities in mathe-
matical publishing

• Language Bias: AI systems may be better equipped for mathe-
matics in certain languages

• Cultural Bias: Different mathematical traditions may be un-
equally represented

• Institutional Bias: Work from certain institutions or regions may
be overrepresented

• Methodological Bias: Some proof techniques or approaches may
be favored over others Potential Sources of Bias in Mathemat-

ical AI

Addressing bias in AI-assisted mathematical research requires both
individual and collective action. Individual researchers can work to recog-
nize and compensate for potential biases in their AI tools, seeking diverse
perspectives and approaches in their mathematical work. The mathemat-
ical community as a whole must work to ensure that AI development in-
cludes diverse voices and perspectives, and that the benefits of AI-assisted
research are distributed equitably.

AI models are trained on vast datasets from the internet. While less of
a concern in pure mathematics than in other fields, they may still reflect
biases present in their training data (e.g., in historical narratives or by
over-representing certain research directions). Be aware of this potential.

16.5 The Future of Mathematical Authorship

The integration of AI into mathematical research is fundamen-
tally changing the nature of mathematical authorship and contribution.
As AI systems become more sophisticated and capable of generating sub-
stantial mathematical content, the traditional model of individual human
authorship may need to evolve to accommodate new forms of collabora-
tion between humans and AI systems.

Several models for AI-human collaboration in mathematical authorship
are emerging. The traditional model treats AI as a tool, similar to compu-
tational software or mathematical instruments. In this model, the human
researcher remains the sole author, but acknowledges AI assistance in
the methodology or acknowledgments section. This approach works well
when AI contributions are primarily computational or supportive.

An alternative model recognizes AI systems as collaborators rather than
tools. In this model, AI contributions are acknowledged more prominently,
potentially including AI systems in author lists or providing detailed attri-
bution for AI-generated content. This approach becomes more appropriate
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as AI systems begin to generate substantial mathematical insights and
creative contributions.

Future Models of AI-Human Mathematical Collaboration

• AI as Tool: Traditional authorship with AI assistance acknowl-
edged

• AI as Collaborator: Shared credit for AI contributions to mathe-
matical insights

• AI as Co-author: Formal recognition of AI systems in authorship

• Hybrid Models: Flexible approaches based on the nature and
extent of AI contribution Future Models of AI-Human Mathe-

matical Collaboration

The evolution of mathematical authorship will likely require new stan-
dards and practices for evaluating mathematical contributions. Traditional
metrics for assessing mathematical research, such as originality, signifi-
cance, and rigor, may need to be refined to account for AI assistance. New
metrics might consider the quality of human-AI collaboration, the appro-
priateness of AI tool selection, and the effectiveness of verification and
validation procedures.

The line between a tool and a collaborator is becoming blurred. The
academic community is still developing standards for what constitutes
appropriate use versus co-authorship. For now, the consensus is clear:
humans are authors, and AIs are tools to be cited. This may evolve, but
your guiding principle should always be intellectual honesty.

16.6 Ethical Guidelines for Practice

Based on the ethical considerations discussed above, several
practical guidelines emerge for the responsible use of AI in mathematical
research. These guidelines are not absolute rules but rather principles that
should be adapted to specific research contexts and evolving technological
capabilities.

First, researchers should maintain transparency about AI assistance
throughout the research process. This includes documenting AI tool usage,
preserving records of AI interactions, and providing clear disclosure in
publications. The level of detail should be proportional to the significance
of AI contributions, with more substantial AI assistance requiring more
detailed disclosure.

Second, researchers must take responsibility for verification and vali-
dation of AI-generated content. This responsibility cannot be delegated
to AI systems themselves, regardless of their apparent reliability. Human
researchers must develop and maintain the skills necessary to critically
evaluate AI contributions and ensure the correctness of their mathematical
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work.
Third, researchers should consider the broader implications of their

AI use for mathematical knowledge and practice. This includes being
mindful of potential biases in AI systems, considering the impact of AI use
on mathematical education and training, and working to ensure that AI
benefits are distributed equitably across the mathematical community.

Ethical Guidelines Checklist

1. Transparency: Clearly document and disclose AI assistance

2. Verification: Rigorously validate all AI-generated content

3. Attribution: Provide appropriate credit for AI contributions

4. Responsibility: Maintain human accountability for mathematical
correctness

5. Fairness: Consider and address potential biases in AI systems

6. Education: Maintain and develop human mathematical capabili-
ties

7. Community: Consider broader implications for mathematical
practice Ethical Guidelines Checklist

Power requires responsibility. Using these tools effectively means using
them ethically.

The decision tree in Figure 16.1 provides a practical framework for
navigating the ethical complexities of AI use in mathematical research.
The flowchart distinguishes between different types of AI assistance, from
brainstorming and technical help (which are generally appropriate with
proper disclosure) to core research claims (which require extreme caution).
The key insight is that the appropriateness of AI use depends heavily on
the specific application and the researcher’s ability to verify the results
independently. Notice that the tree includes an alternative path for content
generation—rather than using AI to generate mathematical proofs directly,
students should use AI to generate testable hypotheses, then conduct the
research themselves using reliable tools.

Figure 16.2 provides a practical decision-making model for students.
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Figure 16.1: Decision tree for ethical
AI use in mathematical research. The
flowchart guides students through
key decision points, from initial tool
selection to final documentation. Color
coding indicates appropriate use
(green), situations requiring careful
verification (yellow), and inappropriate
use (red). The tree emphasizes that
core research insights must originate
from human reasoning, while AI can
appropriately assist with technical
tasks.

I want to use
an AI tool

Is this for brain-
storming, coding

help, or LATEX
typesetting?

Use the tool. You
are the author, so
you must verify,
edit, and under-
stand the output.

Is it for generating
a core scientific

claim, proof,
or conclusion?

STOP! This is the
AI’s idea, not yours.

This is academ-
ically dishonest.

Use the AI to gen-
erate a testable

hypothesis.

Perform the research,
calculation, or
proof yourself

using reliable tools
(CAS, your brain).

Did you verify
the result in-
dependently?

Write up your
verified findings.

Cite the AI’s role in
your methodology.

Yes

No

Yes

No

No

Yes

Figure 16.2: A decision-making
flowchart for the ethical use of AI in
research.





17 Research Methodology and Best

Practices

It is not knowledge, but the act of learning, not possession but the act of getting
there, which grants the greatest enjoyment.

— Carl Friedrich Gauss (1777 – 1855)

A journey of a thousand miles begins with a single step.
千里之行，始于足下。

— Laozi (老子)

The integration of AI into mathematical research requires the
development of new methodological approaches that effectively combine
human expertise with artificial intelligence capabilities. This chapter ex-
amines best practices for incorporating AI into mathematical research
workflows, from initial problem formulation through publication and dis-
semination. The goal is not to replace traditional mathematical research
methods but to augment them with AI capabilities while maintaining the
rigor and integrity that define mathematical scholarship.

Effective AI-assisted mathematical research begins with careful prob-
lem formulation and planning. Unlike traditional mathematical research,
which often follows a relatively linear progression from problem iden-
tification to solution, AI-assisted research requires more iterative and
exploratory approaches. Researchers must consider not only the mathe-
matical aspects of their problem but also the capabilities and limitations of
available AI tools.

The problem formulation phase should include an assessment of which
aspects of the research problem are most suitable for AI assistance. Some
mathematical tasks, such as symbolic computation, pattern recognition, or
exhaustive case analysis, may be well-suited to AI assistance. Others, such
as developing mathematical intuition, making creative leaps, or providing
conceptual understanding, may require primarily human involvement.

17.1 Planning AI-Assisted Research Projects

Strategic planning becomes crucial when incorporating AI into
mathematical research. Researchers must develop comprehensive plans
that account for both the mathematical and technological aspects of their
projects. This planning should include clear objectives for AI use, selec-
tion of appropriate AI tools, development of verification strategies, and
consideration of ethical implications.

The planning process should begin with a thorough analysis of the
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mathematical problem and its structure. This analysis should identify
specific tasks or subproblems that might benefit from AI assistance, as
well as areas where human expertise will be essential. For example, a
research project in number theory might benefit from AI assistance in
computational searches for examples or counterexamples, while requiring
human insight for developing theoretical frameworks and proofs.

Tool selection represents a critical component of research planning.
Different AI systems have different strengths and limitations, and match-
ing the right tool to the right task is essential for effective research. Large
language models might excel at generating mathematical explanations or
suggesting proof strategies, while computer algebra systems are better
suited for symbolic computation and algebraic manipulation. Machine
learning systems might be appropriate for pattern recognition tasks, while
theorem provers are designed for formal verification.

Research Planning Framework

1. Problem Analysis: Identify mathematical structure and require-
ments

2. Task Decomposition: Break problem into AI-suitable and
human-suitable components

3. Tool Selection: Choose appropriate AI systems for each task

4. Verification Strategy: Plan methods for validating AI contribu-
tions

5. Integration Approach: Design workflow for combining human
and AI work

6. Ethical Considerations: Address transparency, attribution, and
responsibility Research Planning Framework

The integration approach requires careful consideration of how human
and AI contributions will be combined throughout the research process.
This may involve iterative cycles of AI-generated content followed by
human analysis and refinement, or it may involve more concurrent col-
laboration where AI systems provide real-time assistance during human
mathematical work.

When planning a project, explicitly define the roles AI will play. Will
it be used for literature discovery, code generation, or text refinement? A
clear plan prevents over-reliance and ensures the core intellectual work
remains your own. Treat the AI as a specific tool for a specific task.
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17.2 Collaborative Workflows and Documentation

Effective AI-assisted mathematical research requires robust
documentation and workflow management. Unlike traditional mathemat-
ical research, where the primary documentation consists of mathematical
notation and reasoning, AI-assisted research must also document the AI
tools used, the nature of AI contributions, and the verification processes
employed.

Documentation should begin from the earliest stages of research and
continue throughout the project. This includes maintaining records of
AI tool configurations, preserving AI-generated content, documenting
verification procedures, and tracking the evolution of mathematical ideas
through human-AI collaboration. Such documentation serves multiple
purposes: it enables reproducibility, supports transparency requirements,
and provides a foundation for future research.

The documentation process should capture not only the final results of
AI assistance but also the iterative process of human-AI collaboration. This
includes recording failed attempts, documenting the reasoning behind AI
tool choices, and preserving the context in which AI contributions were
made. Such comprehensive documentation provides valuable insights for
both the current research project and future work.

Documentation Requirements

• AI Tool Information: Versions, configurations, and capabilities

• Interaction Records: Prompts, responses, and iterative refine-
ments

• Verification Procedures: Methods used to validate AI contribu-
tions

• Integration Process: How AI and human contributions were
combined

• Decision Rationale: Reasoning behind AI tool selection and
usage Documentation Requirements

Collaborative workflows must also account for the different timescales
and working patterns of human and AI contributors. While AI systems
can generate responses quickly, human evaluation and integration of AI
contributions typically requires more time and reflection. Effective work-
flows balance the speed of AI generation with the deliberation required for
rigorous mathematical reasoning.

When working in a team, establish clear guidelines for AI use. All
members should document when and how they used AI tools. For re-
producibility, it is good practice to save important AI conversations or
generated code snippets in a project repository, along with notes on how
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they were verified and modified.

17.3 Quality Assurance and Peer Review

The integration of AI into mathematical research necessitates
enhanced quality assurance procedures that go beyond traditional math-
ematical peer review. While traditional peer review focuses primarily on
mathematical correctness and significance, AI-assisted research requires
additional evaluation of AI tool usage, verification procedures, and the
appropriateness of human-AI collaboration.

Quality assurance should begin with self-evaluation by the research
team. This includes systematic verification of AI-generated content, assess-
ment of the appropriateness of AI tool usage, and evaluation of the overall
integration of human and AI contributions. Researchers should develop
internal protocols for reviewing AI-assisted work before submission for
external review.

The peer review process for AI-assisted mathematical research may
require reviewers with expertise in both mathematical content and AI
systems. Traditional mathematical reviewers may not have the technical
knowledge necessary to evaluate AI tool usage, while AI experts may
lack the mathematical expertise to assess the mathematical content. This
suggests the need for expanded review teams or reviewers with interdisci-
plinary expertise.

Extended Review Criteria for AI-Assisted Mathematics

• Mathematical Correctness: Traditional verification of mathemati-
cal content

• AI Tool Appropriateness: Assessment of AI system selection
and usage

• Verification Adequacy: Evaluation of validation procedures

• Transparency Compliance: Review of disclosure and documen-
tation

• Integration Quality: Assessment of human-AI collaboration
effectiveness

• Ethical Compliance: Review of ethical considerations and guide-
lines Extended Review Criteria for AI-

Assisted Mathematics

AI-generated content requires an even more stringent review process.
When you receive code or text from an AI, treat it as a submission from a
new, un-trusted collaborator. You must perform a thorough peer review
of its output before incorporating it into your work. This means checking
logic, verifying facts, and testing code rigorously.
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17.4 Publication and Dissemination Strategies

The publication of AI-assisted mathematical research requires
careful consideration of disclosure requirements, formatting standards,
and dissemination strategies. Different journals and conferences are de-
veloping varying standards for AI-assisted research, and researchers must
navigate these evolving requirements while maintaining transparency and
integrity.

Publication strategies should consider the appropriate venues for AI-
assisted mathematical research. Some journals may be more welcoming
of AI-assisted work, while others may require more extensive justification
or documentation. Researchers should familiarize themselves with the
policies and expectations of their target publications before submitting
AI-assisted work.

The presentation of AI-assisted research in publications requires careful
attention to clarity and completeness. Readers should be able to under-
stand the nature and extent of AI assistance, the verification procedures
employed, and the integration of human and AI contributions. This may
require new formatting conventions or supplementary materials that docu-
ment AI assistance in detail.

When submitting your work for publication, be upfront about your use
of AI. Check the journal or conference’s specific policies on AI disclosure.
A transparent approach builds trust with reviewers and readers and con-
tributes to the community’s understanding of these new methodologies.





18 Future Directions and Emerging

Technologies

The future is not some place we are going to, but one we are creating. The paths are
not to be found, but made, and the activity of making them changes both the maker
and the destination.

— John Schaar (1928 – 2011)

Mathematics is the language that describes the fundamental structure of the uni-
verse.
数学是描述宇宙基本结构的语言。

— Yau Shing-Tung (丘成桐) (1949 – )

The landscape of AI-assisted mathematical research contin-
ues to evolve rapidly, with new technologies and methodologies emerging
regularly. Understanding these developments and their potential implica-
tions is crucial for researchers who want to effectively incorporate AI into
their work and for the mathematical community as a whole to navigate the
changing research environment.

Recent advances in AI technology suggest several promising directions
for mathematical research. Large language models are becoming increas-
ingly sophisticated in their ability to understand and generate mathemati-
cal content, while specialized AI systems are being developed specifically
for mathematical reasoning and proof generation. Computer algebra sys-
tems are incorporating more AI capabilities, and new hybrid systems are
emerging that combine multiple AI approaches.

The development of multimodal AI systems that can process mathemat-
ical notation, diagrams, and natural language simultaneously represents a
significant advancement for mathematical research. These systems can po-
tentially understand mathematical content in a more holistic way, similar
to how human mathematicians integrate visual, symbolic, and conceptual
information.

18.1 Emerging AI Technologies for Mathematics

Several categories of emerging AI technologies show particular
promise for mathematical research. Advanced theorem provers are being
developed that can generate and verify mathematical proofs with increas-
ing sophistication. These systems go beyond traditional automated reason-
ing to incorporate heuristic search strategies, machine learning techniques,
and large-scale mathematical knowledge bases.

Neural theorem proving represents a particularly exciting develop-
ment, combining the logical rigor of formal proof systems with the pattern
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recognition capabilities of neural networks. These systems can potentially
discover new proof strategies, identify relevant lemmas, and generate
mathematical insights that would be difficult for traditional automated
reasoning systems.

Emerging AI Technologies for Mathematics

• Neural Theorem Provers: AI systems that combine logical rea-
soning with machine learning

• Multimodal Mathematical AI: Systems that process text, sym-
bols, and diagrams together

• Automated Conjecture Generation: AI that proposes new math-
ematical hypotheses

• Interactive Proof Assistants: AI-enhanced tools for collaborative
proof development

• Mathematical Discovery Systems: AI that identifies patterns
and generates insights Emerging AI Technologies for Mathe-

matics

Automated conjecture generation represents another promising area of
development. AI systems are being developed that can analyze mathemat-
ical structures, identify patterns, and propose new conjectures for human
investigation. These systems have the potential to accelerate mathemati-
cal discovery by suggesting new directions for research and highlighting
previously unnoticed connections between different areas of mathematics.

The field is moving incredibly fast. We are seeing the development of
AI models specifically trained on mathematical and scientific literature.
Furthermore, the combination of LLMs with formal proof assistants (like
Lean) is a major area of research, with the goal of creating AIs that can
help discover and verify novel proofs. Landmark results like DeepMind’s
AlphaTensor 1 show that AI can already discover new and more efficient 1 Alhussein Fawzi, Matej Balog, et al.

Discovering faster matrix multiplication
algorithms with reinforcement learning,
2022

algorithms.

18.2 Integration with Traditional Mathematical Tools

The future of AI-assisted mathematical research lies not in re-
placing traditional mathematical tools but in integrating AI capabilities
with established mathematical software and methodologies. This integra-
tion is happening at multiple levels, from AI-enhanced computer algebra
systems to intelligent mathematical editors that provide real-time assis-
tance during mathematical writing.

Modern computer algebra systems are incorporating AI capabilities
that enhance their traditional symbolic computation abilities. These en-
hanced systems can provide more intuitive interfaces, suggest appropriate
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computational strategies, and offer explanations for their operations. The
integration of AI with traditional mathematical software creates more
powerful and accessible tools for mathematical research.

The development of AI-enhanced mathematical editors and document
preparation systems represents another important area of integration.
These tools can provide real-time feedback on mathematical writing,
suggest improvements to mathematical exposition, and help maintain
consistency in mathematical notation and terminology throughout large
documents.

The future is not about replacing tools like Mathematica or MATLAB,
but integrating them. Expect to see more AI environments that can seam-
lessly call upon a CAS for reliable calculations, write code for a numerical
environment like MATLAB, and then summarize the results in natural
language, combining the strengths of all platforms.

18.3 Challenges and Limitations

Despite the promising developments in AI-assisted mathemat-
ical research, significant challenges and limitations remain. Under-
standing these limitations is crucial for the responsible and effective use of
AI in mathematical research.

One of the primary challenges is the difficulty of ensuring mathematical
rigor in AI-generated content. While AI systems can generate mathemat-
ically plausible content, they may lack the deep understanding of mathe-
matical logic and structure necessary for rigorous mathematical reasoning.
This challenge requires ongoing development of verification and validation
techniques.

The scalability of AI-assisted mathematical research presents another
significant challenge. While AI systems may work well for specific math-
ematical tasks or domains, extending their capabilities to broader areas
of mathematics or more complex reasoning tasks remains difficult. This
limitation affects the generalizability of AI-assisted research techniques.
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Current Limitations of Mathematical AI

• Rigor Verification: Difficulty ensuring mathematical correctness

• Scalability Issues: Limited ability to handle complex mathemati-
cal reasoning

• Context Understanding: Challenges in maintaining mathemati-
cal context across long proofs

• Creative Insight: Limited capacity for genuine mathematical
creativity

• Interdisciplinary Integration: Difficulty connecting mathematics
with other fields Current Limitations of Mathematical

AI

The core challenge remains reasoning. While AIs are becoming better
at multi-step logical tasks, true abstract reasoning and the creative leap of
insight that defines much of mathematical discovery remain human do-
mains. The "hallucination" problem will likely persist, requiring constant
human oversight.

18.4 Implications for Mathematical Education

The integration of AI into mathematical research has signif-
icant implications for mathematical education at all levels. Students en-
tering mathematics research must develop new skills for working with
AI systems while maintaining traditional mathematical competencies.
This creates challenges for curriculum development and pedagogical ap-
proaches.

Mathematical education must balance the benefits of AI assistance with
the need for students to develop fundamental mathematical skills and un-
derstanding. There is a risk that over-reliance on AI tools could lead to a
reduction in students’ mathematical problem-solving abilities or concep-
tual understanding.

The development of AI literacy among mathematics students becomes
increasingly important. Students need to understand the capabilities and
limitations of AI systems, learn to use AI tools effectively, and develop the
judgment necessary to evaluate AI-generated content critically.

Education will need to adapt, shifting focus from rote calculation
(which can be automated) to conceptual understanding, critical think-
ing, and the skill of asking good questions. Curricula may soon include
"AI literacy" as a core competency for STEM students.
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18.5 Long-term Vision for AI-Assisted Mathematics

Looking toward the future, several long-term possibilities

emerge for AI-assisted mathematical research. The development of truly
collaborative AI systems that can engage in extended mathematical dia-
logue with human researchers could fundamentally change the nature of
mathematical research. Such systems might serve as intelligent research
partners, contributing insights and suggestions throughout the research
process.

The possibility of AI systems that can generate genuinely novel mathe-
matical insights raises profound questions about the nature of mathemati-
cal discovery and creativity. If AI systems can discover new mathematical
truths or develop innovative proof techniques, the relationship between
human mathematical intuition and mechanical reasoning may need to be
reconsidered.

The integration of AI with other emerging technologies, such as quan-
tum computing or advanced visualization systems, could create new possi-
bilities for mathematical research that are difficult to imagine today. These
technological convergences may enable investigations into mathematical
problems that are currently intractable.

The long-term vision is a human-AI partnership where the mathemati-
cian acts as the strategist, posing questions, guiding the exploration, and
verifying key insights. The AI will serve as a tireless tactical assistant,
exploring vast possibility spaces, handling complex computations, and
managing data, freeing up human researchers to operate at a higher level
of abstraction.





19 Conclusion and Recommendations

The important thing is not to stop questioning. Curiosity has its own reason for
existing.

— Albert Einstein (1879 – 1955)

The best time to plant a tree was 20 years ago. The second best time is now.
种树最好的时间是二十年前，其次是现在。

— Chinese Proverb (中国谚语)

The integration of artificial intelligence into mathematical

research represents a transformative development that offers signifi-
cant opportunities while presenting important challenges. Throughout
this guide, we have explored various aspects of AI-assisted mathematical
research, from practical techniques for using AI tools to ethical considera-
tions and future directions. As we conclude, it is important to synthesize
these insights into actionable recommendations for senior undergraduate
mathematics students beginning their research careers.

The most fundamental recommendation is to approach AI-assisted
mathematical research with both enthusiasm and critical judgment. AI
tools offer powerful capabilities that can enhance mathematical research
in numerous ways, from computational assistance to insight generation.
However, these tools must be used thoughtfully, with careful attention to
their limitations and appropriate verification of their outputs.

Developing competency in AI-assisted mathematical research requires
building skills in multiple areas. Students must maintain and develop their
traditional mathematical abilities while also learning to work effectively
with AI systems. This includes understanding the capabilities and limita-
tions of different AI tools, developing effective prompting strategies, and
building robust verification and validation procedures.

19.1 Key Principles for Responsible AI Use

Several key principles should guide the responsible use of AI in
mathematical research. First, transparency must be maintained throughout
the research process. This includes documenting AI tool usage, preserving
records of AI interactions, and providing clear disclosure in publications.
Transparency serves multiple purposes: it enables reproducibility, supports
peer review, and maintains the integrity of mathematical scholarship.

Second, human responsibility for mathematical correctness cannot be
delegated to AI systems. Regardless of how sophisticated AI tools be-
come, human mathematicians must maintain ultimate responsibility for
the validity and correctness of their research. This requires developing and
maintaining the skills necessary to critically evaluate AI-generated content.
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Third, ethical considerations must be integrated into all aspects of
AI-assisted research. This includes considering issues of attribution, ad-
dressing potential biases in AI systems, and being mindful of the broader
implications of AI use for mathematical knowledge and practice.

Fundamental Principles for AI-Assisted Mathematics

1. Maintain Transparency: Document and disclose AI assistance
appropriately

2. Ensure Human Responsibility: Take accountability for mathe-
matical correctness

3. Practice Ethical Use: Consider attribution, bias, and community
impact

4. Verify Rigorously: Validate all AI-generated content thoroughly

5. Integrate Thoughtfully: Combine AI capabilities with human
expertise effectively

6. Continue Learning: Stay current with evolving AI technologies
and best practices Fundamental Principles for AI-

Assisted Mathematics

1. You are the authority. The final responsibility for correctness and in-
tegrity is yours.

2. Verify, then trust. Never accept an AI’s output without independent
verification.

3. Use AI to augment, not replace, your thinking. The goal is to enhance
your skills, not to atrophy them.

4. Be transparent. Disclose your use of AI tools in your work.

19.2 Building AI Literacy for Mathematical Research

Success in AI-assisted mathematical research requires developing
comprehensive AI literacy that encompasses both technical understanding
and practical skills. This literacy includes understanding the underlying
technologies that power AI systems, recognizing their capabilities and
limitations, and developing the judgment necessary to use them effectively.

Technical AI literacy for mathematics students should include under-
standing the basic principles of machine learning, natural language pro-
cessing, and automated reasoning. Students need not become AI experts,
but they should understand enough about these technologies to use them
effectively and evaluate their outputs critically.

Practical AI literacy involves developing skills in prompting AI systems,
interpreting AI outputs, and integrating AI assistance into mathemati-
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cal workflows. These skills require practice and experience, and students
should seek opportunities to work with AI tools in low-stakes environ-
ments before applying them to significant research projects.

To be an effective modern mathematician, you must become literate in
these tools. This means actively experimenting with different platforms,
learning the art of prompt engineering, and understanding the funda-
mental limitations of the technology. This guide is a starting point for that
journey.

The most successful researchers will be those who develop intelligent
workflows that integrate AI. This means knowing when to use an LLM for
a creative task, when to use a CAS for a rigorous calculation, and when
to rely on traditional methods. The LLM chaining technique is a prime
example of such a workflow.

19.3 Developing Effective Research Workflows

Effective AI-assisted mathematical research requires developing
systematic workflows that combine human expertise with AI capabili-
ties. These workflows should be designed to maximize the benefits of AI
assistance while maintaining mathematical rigor and integrity.

The development of effective workflows begins with careful planning
and problem analysis. Researchers should identify which aspects of their
research problems are most suitable for AI assistance and select appropri-
ate tools for each task. This requires understanding both the mathematical
structure of the problem and the capabilities of available AI systems.

Iterative refinement represents a key component of effective AI-assisted
research workflows. Rather than viewing AI assistance as a one-time in-
put, researchers should engage in ongoing dialogue with AI systems,
using their outputs as starting points for further investigation and refine-
ment.

The tools you use today will be outdated in a few years. The most im-
portant skill you can develop is not mastery of a single platform, but the
adaptability to learn and integrate new technologies as they emerge. Stay
curious and engaged with the evolution of the field.

19.4 Preparing for Future Developments

The field of AI-assisted mathematical research continues to
evolve rapidly, and students entering the field must be prepared to adapt
to new technologies and methodologies. This requires maintaining a learn-
ing mindset and staying current with developments in both mathematical
research and AI technology.

Preparation for future developments includes building strong founda-
tional skills in both mathematics and AI that can adapt to new tools and
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techniques. Rather than focusing exclusively on current AI systems, stu-
dents should develop the underlying knowledge and skills that will enable
them to work effectively with future AI technologies.

Professional development in AI-assisted mathematical research should
include engagement with the broader community of researchers working
in this area. This includes attending conferences, participating in work-
shops, and contributing to the ongoing development of best practices and
ethical guidelines.

19.5 Contributing to the Mathematical Community

Students entering AI-assisted mathematical research have an
opportunity to contribute to the development of this emerging field. This
includes participating in the establishment of best practices, contributing
to the development of ethical guidelines, and helping to shape the future
direction of AI-assisted mathematical research.

Contributing to the mathematical community also involves sharing
knowledge and experiences with other researchers. This includes publish-
ing research that demonstrates effective use of AI tools, sharing method-
ological innovations, and contributing to the broader conversation about
the role of AI in mathematical research.

The mathematical community benefits from diverse perspectives and
approaches to AI-assisted research. Students from different mathematical
backgrounds and with different research interests can contribute unique
insights and help ensure that AI benefits are distributed broadly across the
mathematical community.

As you become proficient, share your knowledge. Discuss best practices
with your peers, help develop ethical guidelines in your department, and
contribute to the community’s collective understanding of how to best
leverage these powerful new capabilities for the advancement of mathe-
matics.

19.6 Final Thoughts

The integration of AI into mathematical research represents
both an opportunity and a responsibility. The opportunity lies in the po-
tential for AI to enhance mathematical research, accelerate discovery, and
make mathematical tools more accessible. The responsibility lies in ensur-
ing that these benefits are realized while maintaining the integrity, rigor,
and ethical standards that define mathematical scholarship.

Success in AI-assisted mathematical research requires more than tech-
nical proficiency with AI tools. It requires developing the judgment to use
these tools appropriately, the skills to verify and validate their outputs,
and the ethical sensibility to consider their broader implications. Most im-
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portantly, it requires maintaining the curiosity, creativity, and dedication to
understanding that drive mathematical research.

As AI technologies continue to evolve, the specific tools and techniques
discussed in this guide will undoubtedly change. However, the funda-
mental principles of transparency, responsibility, and ethical use will re-
main constant. Students who internalize these principles while developing
practical skills with current AI tools will be well-positioned to contribute
meaningfully to the future of mathematical research.

The journey of integrating AI into mathematical research is just begin-
ning, and the next generation of mathematicians will play a crucial role
in shaping its direction. By embracing the opportunities while remaining
mindful of the challenges, today’s students can help ensure that AI serves
to enhance rather than replace human mathematical insight and creativity.

Mathematical research has always been a collaborative endeavor, build-
ing upon the work of previous generations while pushing the boundaries
of human knowledge. The integration of AI into this process represents a
new form of collaboration – one that combines human creativity and in-
sight with artificial intelligence capabilities. Success in this new paradigm
requires not only technical skills but also wisdom, judgment, and a deep
commitment to the values that make mathematical research meaningful.

The future of mathematics will be shaped by those who can navigate
effectively between human intuition and artificial intelligence, between
traditional mathematical reasoning and new computational capabilities,
and between individual insight and collaborative discovery. This guide
provides a foundation for that navigation, but the journey itself belongs
to each researcher who chooses to explore the intersection of mathematics
and artificial intelligence.

The core of mathematics remains unchanged. It is a discipline of rigor,
creativity, and profound human thought. The most powerful tool you will
ever have is your own mind. By learning to augment it with the technolo-
gies described in this guide—approaching them with skill, skepticism, and
a strong ethical compass—you will be well-equipped to not only succeed
in your studies, but to contribute to the future of mathematics itself.





A Resources and Further Reading

A.1 AI Tools and Platforms

Large Language Models

• Claude (Anthropic): https://claude.ai - Advanced reasoning and
mathematical problem-solving

• GPT-4 (OpenAI): https://openai.com - Comprehensive language
model with mathematical capabilities

• Gemini (Google): https://gemini.google.com - Multimodal AI with
mathematical reasoning

• Llama (Meta): https://llama.meta.com - Open-source large language
model

Computer Algebra Systems

• Mathematica: https://www.wolfram.com/mathematica/ - Comprehen-
sive symbolic computation

• Maple: https://www.maplesoft.com/products/maple/ - Advanced
mathematical software

• MATLAB: https://www.mathworks.com/products/matlab.html - Nu-
merical computing environment

• SageMath: https://www.sagemath.org - Free open-source mathematics
software

• SymPy: https://www.sympy.org - Python library for symbolic mathe-
matics

Proof Assistants and Formal Systems

• Lean: https://leanprover.github.io - Modern theorem prover

• Coq: https://coq.inria.fr - Formal proof management system

• Isabelle/HOL: https://isabelle.in.tum.de - Generic proof assistant

• Agda: https://wiki.portal.chalmers.se/agda/ - Dependently typed
functional programming language

https://claude.ai
https://openai.com
https://gemini.google.com
https://llama.meta.com
https://www.wolfram.com/mathematica/
https://www.maplesoft.com/products/maple/
https://www.mathworks.com/products/matlab.html
https://www.sagemath.org
https://www.sympy.org
https://leanprover.github.io
https://coq.inria.fr
https://isabelle.in.tum.de
https://wiki.portal.chalmers.se/agda/
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Specialized Mathematical AI Tools

• Wolfram Alpha: https://www.wolframalpha.com - Computational
knowledge engine

• DeepMind AlphaGeometry: Research tool for geometric theorem prov-
ing

• OpenAI Codex: AI system for code generation and mathematical com-
putation

A.2 Educational Resources

Books on AI in Mathematics

• Bundy, A. (2023). Automated Theorem Proving in Mathematics. Cambridge
University Press.

• Harrison, J. (2022). Handbook of Practical Logic and Automated Reasoning.
Cambridge University Press.

• Wiedijk, F. (Ed.). (2021). The Seventeen Provers of the World. Springer.

• Paulson, L. C. (2020). Logic and Computation: Interactive Proof with Cam-
bridge LCF. Cambridge University Press.

Online Courses and Tutorials

• Coursera: "Mathematics for Machine Learning" specialization

• edX: "Automated Reasoning" course series

• MIT OpenCourseWare: "Artificial Intelligence" and "Mathematics for
Computer Science"

• Stanford Online: "Introduction to Mathematical Thinking"

A.3 Professional Organizations and Communities

Mathematical Societies

• American Mathematical Society (AMS): https://www.ams.org

• Mathematical Association of America (MAA): https://www.maa.org

• Society for Industrial and Applied Mathematics (SIAM): https://
www.siam.org

• International Mathematical Union (IMU): https://www.mathunion.org

https://www.wolframalpha.com
https://www.ams.org
https://www.maa.org
https://www.siam.org
https://www.siam.org
https://www.mathunion.org
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AI and Computing Organizations

• Association for Computing Machinery (ACM): https://www.acm.org

• IEEE Computer Society: https://www.computer.org

• Association for the Advancement of Artificial Intelligence (AAAI):
https://www.aaai.org

A.4 Conferences and Workshops

AI in Mathematics Conferences

• Conference on Automated Deduction (CADE)

• International Conference on Automated Reasoning (IJCAR)

• Conference on Intelligent Computer Mathematics (CICM)

• Workshop on AI for Mathematical Reasoning

General Mathematics Conferences

• Joint Mathematics Meetings (JMM)

• International Congress of Mathematicians (ICM)

• SIAM Annual Meeting

https://www.acm.org
https://www.computer.org
https://www.aaai.org




B Bibliography

[1] Mark J. Ablowitz and Peter A. Clarkson. Solitons, Nonlinear Evolution
Equations and Inverse Scattering. Cambridge University Press, 2011.

[2] Anthropic. Claude AI Assistant. AI-generated content within ’AI in
Mathematics Research: A Comprehensive Guide for Senior Under-
graduate Students’, 2025. Conversation dated July 8, 2025. Claude
Sonnet 4 model.

[3] Jeremy Avigad. Mathematical reasoning and artificial intelligence.
Communications of the ACM, 65(8):44–51, 2022.

[4] Kshitij Bansal, Sarah Loos, Markus Rabe, Christian Szegedy, and
Stewart Wilcox. Holist: An environment for machine learning of
higher order logic theorem proving. In International Conference on
Machine Learning, pages 454–463, 2019.

[5] Fischer Black and Myron Scholes. The pricing of options and corpo-
rate liabilities. Journal of Political Economy, 81(3):637–654, 1973.

[6] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D.
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam,
Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse,
Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learn-
ers. In Advances in Neural Information Processing Systems, volume 33,
pages 1877–1901, 2020.

[7] Alan Bundy. Automated Theorem Proving in Mathematics. Cambridge
University Press, 2023.

[8] François Chollet. On the measure of intelligence. arXiv preprint, 2019.

[9] K. M. Collins, Albert Q. Jiang, Simon Frieder, L. Wong, M. Zilka,
M. Lukasik, J. Ridder, D. Ranaldi, T. Salvatori, C. Sloper, E. O’Keefe,
A. Engel, J. Y. Lee, and Mateja Jamnik. Structured, flexible, and ro-
bust: benchmarking and improving large language models towards
more human-like behavior in out-of-distribution reasoning tasks.
arXiv preprint, 2022.

[10] Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane Hung, Eric
Frank, Piero Molino, Jason Yosinski, and Cédric Rosset. Plug and play
language models: A simple approach to controlled text generation. In
International Conference on Learning Representations, 2020.



128 ai in mathematics research

[11] Ernest Davis and Gary Marcus. The scope and limits of simulation in
automated reasoning. Journal of Automated Reasoning, 67(2):1–25, 2023.

[12] Leonardo de Moura et al. The Lean theorem prover (system de-
scription). In 25th International Conference on Automated Deduction
(CADE-25), volume 9195 of Lecture Notes in Computer Science, pages
378–388. Springer, 2015.

[13] Lawrence C. Evans. Partial Differential Equations. American Mathemat-
ical Society, 2nd edition, 2010.

[14] Alhussein Fawzi, Matej Balog, et al. Discovering faster matrix multi-
plication algorithms with reinforcement learning, 2022.

[15] Eitan First, Markus N. Rabe, Talia Ringer, and Yuriy Brun. Baldur:
Whole-proof generation and repair with large language models. In
Proceedings of the 2023 ACM SIGSOFT International Symposium on Soft-
ware Testing and Analysis, pages 1–12, 2023.

[16] Wendell H. Fleming and Raymond W. Rishel. Deterministic and
Stochastic Optimal Control. Springer-Verlag, 2006.

[17] Simon Frieder, Luca Pinchetti, Ryan-Rhys Griffiths, Tommaso Sal-
vatori, M. Lukasik, P. C. Petersen, A. Chevalier, J. Berner, M. Ganea,
A. T. Cemgil, and Mateja Jamnik. Mathematical capabilities of Chat-
GPT. arXiv preprint, 2023.

[18] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
MIT Press, 2016.

[19] W. T. Gowers and M. Ganesalingam. Can a computer recognize a
mathematical proof? Philosophical Transactions of the Royal Society A,
380(2229):20210068, 2022.

[20] John Harrison. Handbook of Practical Logic and Automated Reasoning.
Cambridge University Press, 2022.

[21] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven
Basart, Eric Tang, Dawn Song, and Jacob Steinhardt. Measuring
mathematical problem solving with the math dataset. In Advances
in Neural Information Processing Systems, volume 34, pages 7893–7906,
2021.

[22] Albert Q. Jiang, Sean Welleck, Jin Peng Zhou, Wenda Li, Jiacheng Liu,
Mateja Jamnik, Guillaume Lample, and Yuhuai Wu. Draft, sketch,
and prove: Guiding formal theorem proving with informal proofs. In
International Conference on Learning Representations, 2023.

[23] Andrej Karpathy. State of GPT. Talk at Microsoft Build Conference,
2023.



bibliography 129

[24] Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer,
Henryk Michalewski, Vinay Ramasesh, Ambrose Slone, Cem Anil,
Imanol Schlag, Theo Gutman, Aristotelis Zhmoginov, Yuhuai Dronov,
Dani Yogatama, Wojciech Fedus, Cédric Urban, Gergely van den
Driessche, Jiaming Li, Da Zhou, Da Yan, Sean Welleck, Borja Gar-
cía, Yi Yuan, Jason Wei, Feiyang Niu, Laria Zou, Muge Smaili, Awa
Kasirzadeh, Johnny Liao, Noah schärli, Wy Schalk, Josip Hacene,
Hylary Soyer, Machel Bosma, and xiang Chen. Solving quantitative
reasoning problems with language models. In Advances in Neural
Information Processing Systems, volume 35, pages 3843–3857, 2022.

[25] Wenda Li, Linyuan Yu, Yuhuai Wu, and Lawrence C. Paulson. Formal
mathematics statement curriculum learning. In International Conference
on Learning Representations, 2023.

[26] Sarah Loos, Geoffrey Irving, Christian Szegedy, and Cezary Kaliszyk.
Deep network guided proof search. In International Conference on Logic
for Programming, Artificial Intelligence, and Reasoning, pages 85–105,
2017.

[27] Maplesoft. Maple. Waterloo, Ontario: Maplesoft, a division of Water-
loo Maple Inc., 2024.

[28] Gary Marcus. Very preliminary notes on ChatGPT. Substack post,
2022.

[29] M. Meadows and A. Freitas. Teaching large language models to
reason with reinforcement learning. arXiv preprint, 2023.

[30] James D. Murray. Mathematical Biology I: An Introduction. Springer-
Verlag, 3rd edition, 2002.

[31] Jorge Nocedal and Stephen J. Wright. Numerical Optimization.
Springer, 2nd edition, 2006.

[32] OpenAI. ChatGPT, 2024. Model: GPT-4. Accessed on: 2024-05-21.

[33] OpenAI. Image generated by ChatGPT-4o based on user prompt.
ChatGPT, July 2025.

[34] Stanislas Polu and Ilya Sutskever. Generative language modeling for
automated theorem proving. arXiv preprint, 2020.

[35] Markus N. Rabe, Dennis Lee, Kshitij Bansal, and Christian Szegedy.
Mathematical reasoning via self-supervised skip-tree training. In
International Conference on Learning Representations, 2021.

[36] Maziar Raissi, Paris Perdikaris, and George E. Karniadakis. Physics-
informed neural networks: A deep learning framework for solving
forward and inverse problems involving nonlinear partial differential
equations. Journal of Computational Physics, 378:686–707, 2019.



130 ai in mathematics research

[37] David Saxton, Edward Grefenstette, Felix Hill, and Pushmeet Kohli.
Analysing mathematical reasoning abilities of neural models. In
International Conference on Learning Representations, 2019.

[38] Steven H. Strogatz. Nonlinear Dynamics and Chaos: With Applications
to Physics, Biology, Chemistry, and Engineering. Westview Press, 2nd
edition, 2014.

[39] Animesh Thakur, Tsun-Hsuan Tsai, Aditya Grover, and Pieter Abbeel.
Augmented neural ODEs. In Advances in Neural Information Processing
Systems, volume 34, pages 3134–3145, 2021.

[40] The MathWorks, Inc. MATLAB version R2024a, 2024.

[41] The Sage Developers. SageMath, the Sage Mathematics Software
System (Version 10.3), 2024.

[42] Thang H. Trinh, Yuhuai Wu, Quoc V. Le, He He, and Thang Luong.
Solving olympiad geometry without human demonstrations. Nature,
625:476–482, 2024.
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