MAT 463/563 Exam II Review

- 1. Nonlinear Systems of Differential Equations
 - a. Autonomous Equations $\frac{dy}{dt} = f(y)$
 - i. Equilibrium solutions $f(y_0) = 0$.
 - ii. Classification (stable, unstable)
 - iii. Phase Lines, Bifurcation Diagrams
 - iv. Types of bifurcation saddle node, transcritical, pitchfork, Hopf
 - b. Nonlinear Systems
 - i. Linearization About Equilibrium (Fixed) Points
 - ii. Stability of Fixed Points classify.
 - iii. Identifying Interesting Features of Nonlinear Systems
 - iv. Limit Cycles
 - c. Phase space plots Given a direction field, identify equilibria, limits cycles, etc.
 - d. Polar coordinate forms of systems
 - e. Flows, orbits, trajectories, semiorbits, asymptotics, ω -limits
 - f. Poincaré-Bendixon Theorem
 - g. Nonautonomous systems, Surface of Section
- 2. Application Problems
 - a. Mixing Problems, Compartmental Problems
 - b. Population Dynamics (Logistic, Lotka-Volterra, etc)
 - c. Masses plus springs
 - d. Nonlinear pendulum
 - e. Duffing Equation, Lorenz model, and other models
- 3. Simulink
 - a. Given a diagram, what is being solved, or
 - b. Given a simple ODE or system, sketch how one might set up a model.