
Numerical Packages for ODEs
adopted from Solving Differential Equations Using Simulink

Dr. R. L. Herman, UNCW

February 3, 2025

First Order ODEs in MATLAB

One can use MATLAB to obtain solutions and plots of solu-
tions of differential equations.1 This can be done either symbolically, 1 Later we discuss other platforms such

as GNU Octave, Python, and Malple. At
some point others can be added such as
Mathematica, SageMath and Julia.

using dsolve, or numerically, using numerical solvers like ode45. In
this section we will provide examples of using these to solve first
order differential equations. We will end with the code for drawing
direction fields, which are useful for looking at the general behavior
of solutions of first order equations without explicitly finding the
solutions.

Symbolic Solutions

The function dsolve obtains the symbolic solution and
ezplot is used to quickly plot the symbolic solution. As an example,
we apply dsolve to solve the

x1 “ 2 sin t ´ 4x, xp0q “ 0 (1)

At the MATLAB prompt, type the following:

sol = dsolve('Dx=2*sin(t)-4*x','x(0)=0','t');

ezplot(sol,[0 10])

xlabel('t'),ylabel('x'), grid

The solution is given as

sol =

(2*exp(-4*t))/17 - (2*17^(1/2)*cos(t + atan(4)))/17

Figure 1 shows the solution plot.

ODE45 and Other Solvers.

There are several ODE solvers in MATLAB, implementing
Runge-Kutta and other numerical schemes. Examples of its use are in
the differential equations textbook. For example, one can implement

https://people.uncw.edu/hermanr/mat361/Simulink/index.htm

numerical packages for odes 2

t
0 1 2 3 4 5 6 7 8 9 10

x

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

(2 exp(-4 t))/17 - (2 171/2 cos(t + atan(4)))/17 Figure 1: The solution of Equation (1)
with xp0q “ 0 found using MATLAB’s
dsolve command.

ode45 to solve the initial value problem

dy
dt

“ ´
yt

a

2 ´ y2
, yp0q “ 1,

using the following code:

[t y]=ode45('func',[0 5],1);

plot(t,y)

xlabel('t'),ylabel('y')

title('y(t) vs t')

One can define the function func in a file func.m such as

function f=func(t,y)

f=-t*y/sqrt(2-y.^2);

Running the above code produces Figure 2.

t
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
y(t) vs t Figure 2: A plot of the solution of

dy
dt “ ´

yt?
2´y2

, yp0q “ 1, found using

MATLAB’s ode45 command.

One can also use ode45 to solve higher order differential equations.
Second order differential equations are discussed in Section . See
MATLAB help for other examples and other ODE solvers.

numerical packages for odes 3

Direction Fields

One can produce direction fields in MATLAB. For the differ-
ential equation

dy
dx

“ f px, yq,

we note that f px, yq is the slope of the solution curve passing through
the point in the xy=plane. Thus, the direction field is a collection of
tangent vectors at points px, yq indication the slope, f px, yq, at that
point.

A sample code for drawing direction fields in MATLAB is given by

dy=1-y;

dx=ones(size(dy));

quiver(x,y,dx,dy)

axis([0,2,0,1.5])

xlabel('x')

ylabel('y')

The mesh command sets up the xy-grid. In this case x is in r0, 2s

and y is in r0, 1.5s. In each case the grid spacing is 0.1.
We let dy = 1-y and dx =1. Thus,

dy
dx

“
1 ´ y

1
“ 1 ´ y.

The quiver command produces a vector (dx,dy) at (x,y). The slope
of each vector isdy{dx. The other commands label the axes and pro-
vides a window with xmin=0, xmax=2, ymin=0, ymax=1.5. The result
of using the above code is shown in Figure 3.

x
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

y

0

0.5

1

1.5
Figure 3: A direction field produced
using MATLAB’s quiver function for
y1 “ 1 ´ y.

One can add solution, or integral, curves to the direction field for
different initial conditions to further aid in seeing the connection

numerical packages for odes 4

between direction fields and integral curves. One needs to add to the
direction field code the following lines:

hold on

[t,y] = ode45(@(t,y) 1-y, [0 2], .5);

plot(t,y,'k','LineWidth',2)

[t,y] = ode45(@(t,y) 1-y, [0 2], 1.5);

plot(t,y,'k','LineWidth',2)

hold off

Here the function f pt, yq “ 1 ´ y is entered this time using MAT-
LAB’s anonymous function, @(t,y) 1-y. Before plotting, the hold com-
mand is invoked to allow plotting several plots on the same figure.
The result is shown in Figure 4

x
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

y

0

0.5

1

1.5
Figure 4: A direction field produced
using MATLAB’s quiver function for
y1 “ 1 ´ y with solution curves added.

Second Order ODEs in MATLAB

We can also use ode45 to solve second and higher order differ-
ential equations. The key is to rewrite the single differential equation
as a system of first order equations. Consider the simple harmonic
oscillator equation, :x ` ω2x “ 0. Defining y1 “ x and y2 “ 9x, and
noting that

:x ` ω2x “ 9y2 ` ω2y1,

we have

9y1 “ y2,

9y2 “ ´ω2y1.

Furthermore, we can view this system in the form 9y “ y. In partic-
ular, we have

d
dt

«

y1

y2

ff

“

«

y1

´ω2y2

ff

numerical packages for odes 5

Now, we can use ode45. We modify the code slightly from Chapter
1.

[t y]=ode45(’func’,[0 5],[1 0]);

Here [0 5] gives the time interval and [1 0] gives the initial conditions

y1p0q “ xp0q “ 1, y2p0q “ 9xp0q “ 1.

The function func is a set of commands saved to the file func.m
for computing the righthand side of the system of differential equa-
tions. For the simple harmonic oscillator, we enter the function as

function dy=func(t,y)

omega=1.0;

dy(1,1) = y(2);

dy(2,1) = -omega^2*y(1);

There are a variety of ways to introduce the parameter ω. Here we
simply defined it within the function. Furthermore, the output dy
should be a column vector.

After running the solver, we then need to display the solution.
The output should be a column vector with the position as the first
element and the velocity as the second element. So, in order to plot
the solution as a function of time, we can plot the first column of the
solution, y(:,1), vs t:

plot(t,y(:,1))

xlabel('t'),ylabel('y')

title('y(t) vs t')

The resulting solution is shown in Figure 5.

t
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

y

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
y(t) vs t Figure 5: Solution plot for the simple

harmonic oscillator.

We can also do a phase plot of velocity vs position. In this case,
one can plot the second column, y(:,2), vs the first column, y(:,1):

numerical packages for odes 6

plot(y(:,1),y(:,2))

xlabel('y'),ylabel('v')

title('v(t) vs y(t)')

The resulting solution is shown in Figure 6.

x
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

v

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
v(t) vs x(t) Figure 6: Phase plot for the simple

harmonic oscillator.

Finally, we can plot a direction field using a quiver plot and add
solution curves using ode45. The direction field is given for ω “ 1 by
dx=y and dy=-x.

clear

[x,y]=meshgrid(-2:.2:2,-2:.2:2);

dx=y;

dy=-x;

quiver(x,y,dx,dy)

axis([-2,2,-2,2])

xlabel('x')

ylabel('y')

hold on

[t y]=ode45('func',[0 6.28],[1 0]);

plot(y(:,1),y(:,2))

hold off

The resulting plot is given in Figure 7.

GNU Octave

Much of MATLAB’s functionality can be used in GNU
Octave. However, a simple solution of a differential equation is not
the same. Instead GNU Octave uses the Fortan lsode routine. The

numerical packages for odes 7

x
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

y

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Figure 7: Phase plot for the simple
harmonic oscillator.

main code below gives what is needed to solve the system

d
dt

«

x
y

ff

“

«

x
´cy

ff

.

global c

c=1;

y=lsode("oscf",[1,0],(tau=linspace(0,5,100))');

figure(1);

plot(tau,y(:,1));

xlabel('t')

ylabel('x(t)')

figure(2);

plot(y(:,1),y(:,2));

xlabel('x(t)')

ylabel('y(t)')

The function called by the lsode routine, oscf, looks similar to
MATLAB code. However, one needs to take care in the syntax and
ordering of the input variables. The output from this code is shown
in Figure 8.

function ydot=oscf(y,tau);

global c

ydot(1)=y(2);

ydot(2)=-c*y(1);

numerical packages for odes 8

Figure 8: Numerical solution of the
simple harmonic oscillator using GNU
Octave’s lsode routine. In these plots
are the position and velocity vs times
plots and a phase plot.

Python Implementation

One can also solve ordinary differential equations using
Python. One can use the odeint routine from scipy.inegrate. This
uses a variable step routine based on the Fortan lsoda routine. The
below code solves a simple harmonic oscillator equation and pro-
duces the plot in Figure 9.2 2 One can insert the following into an

online compiler such as myCompiler.
import numpy as np
import m a t p l o t l i b . pyplot as p l t
from sc ipy . i n t e g r a t e import odeint

S o l v e dv / d t = [y , − cx] f o r v = [x , y]
def odefn (v , t , c) :

x , y = v
dvdt = [y , −c * x]
return dvdt

v0 = [1 . 0 , 0 . 0]

https://www.mycompiler.io/new/python

numerical packages for odes 9

t = np . arange (0 . 0 , 1 0 . 0 , 0 . 1)
c = 5 ;

s o l = odeint (odefn , v0 , t , args =(c ,))

p l t . p l o t (t , s o l [: , 0] , ’ b ’)
p l t . x l a b e l (’ Time (sec) ’)
p l t . y l a b e l (’ P o s i t i o n ’)
p l t . t i t l e (’ P o s i t i o n vs Time ’)
p l t . show ()

Figure 9: Numerical solution of the
simple harmonic oscillator using
Python’s odeint.

If one wants to use something similar to the Runga-Kutta scheme,
then the ode routine can be used with a specification of ode solver.
The below code solves a simple harmonic oscillator equation and
produces the plot in Figure 10.

from sc ipy import *
from sc ipy . i n t e g r a t e import ode
from pylab import *

S o l v e dv / d t = [y , − cx] f o r v = [x , y]
def odefn (t , v , c) :

x , y = v
dvdt = [y , −c * x]
return dvdt

v0 = [1 . 0 , 0 . 0]

t0 =0 ;
t f =10 ;
dt = 0 . 1 ;

numerical packages for odes 10

c = 5 ;

Y = [] ;
T = [] ;

r = ode (odefn) . s e t _ i n t e g r a t o r (’ dopri5 ’)
r . set_f_params (c) . s e t _ i n i t i a l _ v a l u e (v0 , t0)

while r . s u c c e s s f u l () and r . t +dt < t f :
r . i n t e g r a t e (r . t +dt)
Y . append (r . y)
T . append (r . t)

Y = array (Y)

subplot (2 , 1 , 1)
p l o t (T , Y)
p l t . x l a b e l (’ Time (sec) ’)
p l t . y l a b e l (’ P o s i t i o n ’)

subplot (2 , 1 , 2)
p l o t (Y [: , 0] , Y [: , 1])
x l a b e l (’ P o s i t i o n ’)
y l a b e l (’ V e l o c i t y ’)
show ()

Figure 10: Numerical solution of the
simple harmonic oscillator using
Python’s ode routine. In these plots are
the position and velocity vs times plots
and a phase plot.

Maple Implementation

Maple also has built-in routines for solving differential

equations. First, we consider the symbolic solutions of a differ-

numerical packages for odes 11

ential equation. An example of a symbolic solution of a first order
differential equation, y1 “ 1 ´ y with yp0q ´ 1.5, is given by

> restart: with(plots):

> EQ:=diff(y(x),x)=1-y(x):

> dsolve({EQ,y(0)=1.5});

The resulting solution from Maple is

ypxq “ 1 `
1
2

e´x.

One can also plot direction fields for first order equations. An
example is given below with the plot shown in Figure 11.

> restart: with(DEtools):

> ode := diff(y(t),t) = 1-y(t):

> DEplot(ode,y(t),t=0..2,y=0..1.5,color=black);

0.2

0.4

0.6

0.8

1

1.2

1.4

y(t)

0.5 1 1.5 2

t

Figure 11: Maple direction field plot for
first order differential equation.

In order to add solution curves, we specify initial conditions using
the following lines as seen in Figure 12.

> ics:=[y(0)=0.5,y(0)=1.5]:

> DEplot(ode,yt),t=0..2,y=0..1.5,ics,arrows=medium,linecolor=black,color=black);

These routines can be used to obtain solutions of a system of dif-
ferential equations.

> EQ:=diff(x(t),t)=y(t),diff(y(t),t)=-x(t):

> ICs:=x(0)=1,y(0)=0;

> dsolve([EQ, ICs]);

> plot(rhs(%[1]),t=0..5);

A phaseportrait with a direction field, as seen in Figure 13, is
found using the lines

numerical packages for odes 12

0.2

0.4

0.6

0.8

1

1.2

1.4

y(t)

0.5 1 1.5 2

t

Figure 12: Maple direction field plot
for first order differential equation with
solution curves added.

> with(DEtools):

> DEplot([EQ], [x(t),y(t)], t=0..5, x=-2..2, y=-2..2, [[x(0)=1,y(0)=0]],

arrows=medium,linecolor=black,color=black,scaling=constrained);

–2

–1

0

1

2

y

–2 –1 1 2

x

Figure 13: Maple system plot.

