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Introduction

“A mathematical theory is not to be considered complete until you have made it so
clear that you can explain it to the first man whom you meet on the street.” David
Hilbert (1862-1943)

This is an introduction to topics in
Fourier analysis and complex analysis.
These notes have been class tested sev-
eral times since 2005.

This book is based on a course in applied mathematics originally taught
at the University of North Carolina Wilmington in 2004 and set to book form
in 2005. The notes were used and modified in several times since 2005. The
course is an introduction to topics in Fourier analysis and complex analysis.
Students are introduced to Fourier series, Fourier transforms, and a basic
complex analysis. As motivation for these topics, we aim for an elementary
understanding of how analog and digital signals are related through the
spectral analysis of time series. There are many applications using spectral
analysis. These course is aimed at students majoring in mathematics and
science who are at least at their junior level of mathematical maturity.

At the root of these studies is the belief that continuous waveforms are
composed of a number of harmonics. Such ideas stretch back to the Pythagore-
ans study of the vibrations of strings, which led to their program of a world
of harmony. This idea was carried further by Johannes Kepler (1571-1630) in
his harmony of the spheres approach to planetary orbits. In the 1700’s oth-
ers worked on the superposition theory for vibrating waves on a stretched
spring, starting with the wave equation and leading to the superposition
of right and left traveling waves. This work was carried out by people
such as John Wallis (1616-1703), Brook Taylor (1685-1731) and Jean le Rond
d’Alembert (1717-1783).

y

x

Figure 1: Plot of the second harmonic of
a vibrating string at different times.

In 1742 d’Alembert solved the wave equation

c2 ∂2y
∂x2 −

∂2y
∂t2 = 0,

where y is the string height and c is the wave speed. However, this solution
led himself and others, like Leonhard Euler (1707-1783) and Daniel Bernoulli
(1700-1782), to investigate what "functions" could be the solutions of this
equation. In fact, this led to a more rigorous approach to the study of
analysis by first coming to grips with the concept of a function. For example,
in 1749 Euler sought the solution for a plucked string in which case the
initial condition y(x, 0) = h(x) has a discontinuous derivative! (We will see
how this led to important questions in analysis.)

Solutions of the wave equation, such
as the one shown, are solved using the
Method of Separation of Variables. Such
solutions are studies in courses in partial
differential equations and mathematical
physics.
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In 1753 Daniel Bernoulli viewed the solutions as a superposition of sim-
ple vibrations, or harmonics. Such superpositions amounted to looking at
solutions of the form

y(x, t) = ∑
k

ak sin
kπx

L
cos

kπct
L

,

where the string extend over the interval [0, L] with fixed ends at x = 0 and
x = L.

y

x
0 L

2
L

AL
2

Figure 2: Plot of an initial condition for
a plucked string.

However, the initial conditions for such superpositions are

y(x, 0) = ∑
k

ak sin
kπx

L
.

It was determined that many functions could not be represented by a finite
number of harmonics, even for the simply plucked string given by an initial
condition of the form

y(x, 0) =

{
Ax, 0 ≤ x ≤ L/2,

A(L− x), L/2 ≤ x ≤ L.

Thus, the solution consists generally of an infinite series of trigonometric
functions.

The one dimensional version of the heat
equation is a partial differential equation
for u(x, t) of the form

∂u
∂t

= k
∂2u
∂x2 .

Solutions satisfying boundary condi-
tions u(0, t) = 0 and u(L, t) = 0, are of
the form

u(x, t) =
∞

∑
n=0

bn sin
nπx

L
e−n2π2kt/L2

.

In this case, setting u(x, 0) = f (x), one
has to satisfy the condition

f (x) =
∞

∑
n=0

bn sin
nπx

L
.

This is another example leading to an in-
finite series of trigonometric functions.

Such series expansions were also of importance in Joseph Fourier’s (1768-
1830) solution of the heat equation. The use of such Fourier expansions
has become an important tool in the solution of linear partial differential
equations, such as the wave equation and the heat equation. More generally,
using a technique called the Method of Separation of Variables, allowed
higher dimensional problems to be reduced to one-dimensional boundary
value problems. However, these studies led to very important questions,
which in turn opened the doors to whole fields of analysis. Some of the
problems raised were

1. What functions can be represented as the sum of trigonometric
functions?

2. How can a function with discontinuous derivatives be represented
by a sum of smooth functions, such as the above sums of trigono-
metric functions?

3. Do such infinite sums of trigonometric functions actually converge
to the functions they represent?

There are many other systems in which it makes sense to interpret the so-
lutions as sums of sinusoids of particular frequencies. One example comes
from the study of ocean waves. Ocean waves are affected by the gravita-
tional pull of the moon and the sun (and many other forces). These periodic
forces lead to the tides, which in turn have their own periods of motion. In
an analysis of ocean wave heights, one can separate out the tidal compo-
nents by making use of Fourier analysis. Typically, we views the tide height
y(t) as a continuous function. One sits at a specific location and measures



CONTENTS ix

the movement of the ocean surface as a function of time. Such a function,
or time series, is called an analog function. Another common analog signal
is an audio signal, giving the amplitude of a sound (musical note, noise,
speech, etc.) as a function of time (or space). However, in both of these
cases, we actually observe a part of the signal. This is because we can only
sample a finite amount of data over a finite time interval. Thus, we have
only the values yn = y(tn). However, we are still interested in the spectral
(frequency) content of our signals even if the signal is not continuous in
time.

For example, for the case of ocean waves we would like to use the discrete
signal (the sampled heights) to determine the tidal components. For the
case of audio signals, we may want to save a finite amount of discretized
information as an audio file to play back later on our computer.

So, how are the analog and discrete signals related? We sample an analog
signal, obtaining a discrete version of the signal. By sampling an analog
signal, we might wonder how the sampling affects the spectral content of the
original analog signal. What mathematics do we need to understand these
processes? That is what we will study in this course. We will look at Fourier
trigonometric series, integral transforms, and discrete transforms. However,
we will actually begin with a review of infinite series. We will recall what
infinite series are and when they do, or do not, converge. Then we will be
ready to talk about the convergence of series of sinusoidal functions, which
occur in Fourier series.

We will see how Fourier series are related to analog signals. A true repre-
sentation of an analog signal comes from an infinite interval and not a finite
interval, such as that the vibrating string lives on. This will lead to Fourier
Transforms. In order to work with continuous transforms, we will need a
little complex analysis. So, we will spend a few sections on an introduc-
tion to complex analysis. This consists of the introduction of complex func-
tion, their derivatives, series representations, and integration in the complex
plane.

Having represented continuous signals and their spectral content by Fourier
transforms, we will then see what needs to be done to represent discrete sig-
nals. We end the course by investigating the connection between these two
types of signals and some of the consequences of processing analog data
through real measurement and/or storage devices.

However, the theory of Fourier analysis is much deeper than just looking
at sampling time series. The idea of representing functions as an expansion
of oscillatory functions extends far intro both physics and mathematics. In
physics, oscillatory and wave motion are crucial in electromagnetism, optics
and even quantum mechanics. In mathematics, the concepts of expansion
of functions in sinusoidal functions is the basis of expanding functions over
an infinite dimensional basis. These ideas can be expanded beyond the
sinusoidal basis, as we will see later in the book. Thus, the background to
much of what we are doing involves delving into infinite dimensional vector
spaces. Hopefully, the basics presented here will be useful in your future
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studies.
The topics to be studied in the book are laid out as follows:

1. Sequences and Infinite Series

2. Fourier Trigonometric Series

3. Vector Spaces

4. Generalized Fourier Series

5. Complex Analysis

6. Integral Transforms

7. Analog vs Discrete Signals

8. Signal Analysis

At this point I should note that most of the examples and ideas in this
book are not original. These notes are based upon mostly standard exam-
ples from assorted calculus texts, like Thomas and Finney1, advanced calcu-

1 G. B. Thomas and R. L. Finney. Calculus
and Analytic Geometry. Addison-Wesley
Press, Cambridge, MA, ninth edition,
1995

lus texts like Kaplan’s Advanced Calculus, 2, texts in mathematical physics3,

2 K. Kaplan. Advanced Calculus. Addison
Wesley Publishing Company, fourth edi-
tion, 19913 G. Arfken. Mathematical Methods for
Physicists. Academic Press, second edi-
tion, 1970 and other areas4. A collection of some of these well known sources are
4 A. J. Jerri. Integral and Discrete Trans-
forms with Applications and Error Analysis.
Marcal Dekker, Inc, 1992

given in the bibliography and on occasion specific references will be given
for somewhat hard to find ideas.



1
Review of Sequences and Infinite Series

“Once you eliminate the impossible, whatever remains, no matter how improbable,
must be the truth.” Sherlock Holmes (by Sir Arthur Conan Doyle, 1859-1930)

The material in this chapter is a review
of material covered in a standard course
in calculus with some additional notions
from advanced calculus. It is provided
as a review before encountering the no-
tion of Fourier series and their conver-
gence as seen in the next chapter.

In this chapter we will review and extend some of the concepts and
definitions related to infinite series that you might have seen previously in
your calculus class 1 2 3. Working with infinite series can be a little tricky

1 G. B. Thomas and R. L. Finney. Calculus
and Analytic Geometry. Addison-Wesley
Press, Cambridge, MA, ninth edition,
1995

2 J. Stewart. Calculus: Early Transcenden-
tals. Brooks Cole, sixth edition, 2007

3 K. Kaplan. Advanced Calculus. Addison
Wesley Publishing Company, fourth edi-
tion, 1991

and we need to understand some of the basics before moving on to the
study of series of trigonometric functions.

As we will see,

ln(1 + x) = x− x
2
+

x
3
− . . . .

So, inserting x = 1 yields the first re-
sult - at least formally! It was shown in
Cowen, Davidson and Kaufman (in The
American Mathematical Monthly, Vol. 87,
No. 10. (Dec., 1980), pp. 817-819) that
expressions like

f (x) =
1
2

[
ln

1 + x
1− x

+ ln(1− x4)

]
=

1
2

ln
[
(1 + x)2(1 + x2)

]
lead to alternate sums of the rearrange-
ment of the alternating harmonic series.
See Problem 6

For example, one can show that the infinite series

S = 1− 1
2
+

1
3
− 1

4
+

1
5
− · · ·

converges to ln 2. However, the terms can be rearranged to give

1 +
(

1
3
− 1

2
+

1
5

)
+

(
1
7
− 1

4
+

1
9

)
+

(
1

11
− 1

6
+

1
13

)
+ · · · = 3

2
ln 2.

In fact, other rearrangements can be made to give any desired sum!
Other problems with infinite series can occur. Try to sum the following

infinite series to find that

∞

∑
k=2

ln k
k2 ∼ 0.937548 . . . .

A sum of even as many as a million terms only gives convergence to four
or five decimal places.

The series
1
x
− 1

x2 +
2!
x3 −

3!
x4 +

4!
x5 − · · · , x > 0

diverges for all x. So, you might think this divergent series is useless. How-
ever, truncation of this divergent series leads to an approximation of the
integral ∫ ∞

0

e−t

x + t
dt, x > 0.

So, can we make sense out of any of these, or other manipulations, of
infinite series? We will not answer all of these questions, but we will go
back and review what you have seen in your calculus classes.
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1.1 Sequences of Real Numbers

We begin with the definitions for sequences and series of numbers. A
sequence is a function whose domain is the set of positive integers, a(n),
n ∈ N [N = {1, 2, . . . .}].

an

n1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9

10

Figure 1.1: Plot of the terms of the se-
quence an = n− 1, n = 1, 2, . . . , 10.

Examples are

1. a(n) = n yields the sequence {1, 2, 3, 4, 5, . . .},

2. a(n) = 3n yields the sequence {3, 6, 9, 12, . . .}.

However, one typically uses subscript notation and not functional nota-
tion: an = a(n). We then call an the nth term of the sequence. Furthermore,
we will denote sequences by {an}∞

n=1. Sometimes we will only give the nth
term of the sequence and will assume that n ∈ N unless otherwise noted.an

n1 2 3 4 5 6 7 8 9 10

.1

.2

.3

.4

.5

.6

.7

.8

.9
1.0

Figure 1.2: Plot of the terms of the se-

quence an =
1
2n , for n = 1, 2, . . . , 10.

Another way to define a particular sequence is recursively. A recursive
sequence is defined in two steps:

1. The value of first term (or first few terms) is given.

2. A rule, or recursion formula, to determine later terms from earlier
ones is given.

Example 1.1. A typical example is given by the Fibonacci4 sequence. It can be

4 Leonardo Pisano Fibonacci (c.1170-
c.1250) is best known for this sequence
of numbers. This sequence is the solu-
tion of a problem in one of his books:
A certain man put a pair of rabbits in a
place surrounded on all sides by a wall. How
many pairs of rabbits can be produced from
that pair in a year if it is supposed that
every month each pair begets a new pair
which from the second month on becomes
productive http://www-history.mcs.st-
and.ac.uk

defined by the recursion formula an+1 = an + an−1, n ≥ 2 and the starting values
of a1 = 0 and a1 = 1. The resulting sequence is {an}∞

n=1 = {0, 1, 1, 2, 3, 5, 8, . . .}.
Writing the general expression for the nth term is possible, but it is not as simply
stated. Recursive definitions are often useful in doing computations for large values
of n.

1.2 Convergence of Sequences

an

n1 2 3 4 5 6 7 8 9 10

.1

.2

.3

.4

.5

-.1
-.2
-.3
-.4
-.5

Figure 1.3: Plot of the terms of the se-
quence an = (−1)n

2n , for n = 1, 2, . . . , 10.

Next we are interested in the behavior of sequences as n gets
large. For the sequence defined by an = n − 1, we find the behavior as
shown in Figure 1.1. Notice that as n gets large, an also gets large. This
sequence is said to be divergent.

On the other hand, the sequence defined by an = 1
2n approaches a limit

as n gets large. This is depicted in Figure 1.2. Another related series, an =
(−1)n

2n , is shown in Figure 1.3 and it is also seen to approach 0.. The latter
sequence is called an alternating sequence since the signs alternate from
term to term. The terms in the sequence are {− 1

2 , 1
4 ,− 1

8 , . . .}
The last two sequences are said to converge. In general, a sequence an

converges to the number L if to every positive number ε there corresponds
an integer N such that for all n,

n > N ⇒ |an − L| < ε.

If no such number exists, then the sequence is said to diverge.
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In Figures 1.4-1.5 we see what this means. For the sequence given by
an = (−1)n

2n , we see that the terms approach L = 0. Given an ε > 0, we ask
for what value of N the nth terms (n > N) lie in the interval [L− ε, L + ε].
In these figures this interval is depicted by a horizontal band. We see that
for convergence, sooner, or later, the tail of the sequence ends up entirely
within this band.

an

n
1 2 3 4 5 6 7 8 9 10

.1

.2

.3

.4

.5

-.1
-.2
-.3
-.4
-.5

L + ε

L− ε

Figure 1.4: Plot of an = (−1)n

2n for n =
1 . . . 10. Picking ε = 0.1, one sees that the
tail of the sequence lies between L + ε
and L− ε for n > 3.

an

n
1 2 3 4 5 6 7 8 9 10

.1

.2

.3

.4

.5

-.1
-.2
-.3
-.4
-.5

L + ε

L− ε

Figure 1.5: Plot of an = (−1)n

2n for n =
1 . . . 10. Picking ε = 0.015, one sees that
the tail of the sequence lies between L +
ε and L− ε for n > 4.

If a sequence {an}∞
n=1 converges to a limit L, then we write either an → L

as n → ∞ or limn→∞ an = L. For example, we have already seen in Figure
1.3 that limn→∞

(−1)n

2n = 0.

1.3 Limit Theorems

Once we have defined the notion of convergence of a sequence to
some limit, then we can investigate the properties of the limits of sequences.
Here we list a few general limit theorems and some special limits, which
arise often.

Limit Theorem

Theorem 1.1. Consider two convergent sequences {an} and {bn} and
a number k. Assume that limn→∞ an = A and limn→∞ bn = B. Then
we have

1. limn→∞(an ± bn) = A± B.

2. limn→∞(kbn) = kB.

3. limn→∞(anbn) = AB.

4. limn→∞
an
bn

= A
B , B 6= 0.

Some special limits are given next. These are generally first encountered
in a second course in calculus.

Special Limits

Theorem 1.2. The following are special cases:

1. limn→∞
ln n

n = 0.

2. limn→∞ n
1
n = 1.

3. limn→∞ x
1
n = 1, x > 0.

4. limn→∞ xn = 0, |x| < 1.

5. limn→∞(1 + x
n )

n = ex.

6. limn→∞
xn

n! = 0.

The proofs generally are straightforward. For example, one can prove
the first limit by first realizing that limn→∞

ln n
n = limx→∞

ln x
x . This limit in

its current form is indeterminate as x gets large (x → ∞) since the numer-
ator and the denominator get large for large x. In such cases one employs
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L’Hopital’s Rule. We find thatL’Hopital’s Rule is used often in comput-
ing limits. We recall this powerful rule
here as a reference for the reader.

Theorem 1.3. Let c be a finite number
or c = ∞. If limx→c f (x) = 0 and
limx→c g(x) = 0, then

lim
x→c

f (x)
g(x)

= lim
x→c

f ′(x)
g′(x)

.

If limx→c f (x) = ∞ and limx→c g(x) = ∞,
then

lim
x→c

f (x)
g(x)

= lim
x→c

f ′(x)
g′(x)

.

lim
x→∞

ln x
x

= lim
x→∞

1/x
1

= 0.

The second limit in Theorem 1.2 can be proven by first looking at

lim
n→∞

ln n1/n = lim
n→∞

1
n

ln n = 0

from the previous limit case. Now, if limn→∞ ln f (n) = 0, then limn→∞ f (n) =
e0 = 1. Thus proving the second limit.5

5 We should note that we are assum-
ing something about limits of compos-
ite functions. Let a and b be real num-
bers. Suppose f and g are continu-
ous functions, limx→a f (x) = f (a) and
limx→b g(x) = b, and g(b) = a. Then,

lim
x→b

f (g(x)) = f
(

lim
x→b

g(x)
)

= f (g(b)) = f (a).

The third limit can be done similarly. The reader is left to confirm the
other limits. We finish this section with a few selected examples.

Example 1.2. Evaluate limn→∞
n2+2n+3

n3+n .
Divide the numerator and denominator by n2. Then,

lim
n→∞

n2 + 2n + 3
n3 + n

= lim
n→∞

1 + 2
n + 3

n2

n + 1
n

= lim
n→∞

1
n
= 0.

Another approach to this type of problem is to consider the behavior of the nu-
merator and denominator as n → ∞. As n gets large, the numerator behaves like
n2, since 2n + 3 becomes negligible for large enough n. Similarly, the denominator
behaves like n3 for large n. Thus,

lim
n→∞

n2 + 2n + 3
n3 + n

= lim
n→∞

n2

n3 = 0.

Example 1.3. Evaluate limn→∞
ln n2

n .
Rewriting ln n2

n = 2 ln n
n , we find from identity 1 of Theorem 1.2 that

lim
n→∞

ln n2

n
= 2 lim

n→∞

ln n
n

= 0.

Example 1.4. Evaluate limn→∞(n2)
1
n .

To compute this limit, we rewrite

lim
n→∞

(n2)
1
n = lim

n→∞
(n)

1
n (n)

1
n = 1,

using identity 2 of Theorem 1.2.

Example 1.5. Evaluate limn→∞( n−2
n )n.

This limit can be written as

lim
n→∞

(
n− 2

n

)n
= lim

n→∞

(
1 +

(−2)
n

)n
= e−2.

Here we used identity 5 of Theorem 1.2.

1.4 Infinite Series

In this section we investigate the meaning of infinite series, which are
infinite sums of the form

a1 + a2 + a2 + . . . . (1.1)
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A typical example is the infinite series

1 +
1
2
+

1
4
+

1
8
+ . . . . (1.2)

There is story described in E.T. Bell’s
“Men of Mathematics” about Carl
Friedrich Gauß (1777-1855). Gauß’ third
grade teacher needed to occupy the stu-
dents, so she asked the class to sum
the first 100 integers thinking that this
would occupy the students for a while.
However, Gauß was able to do so in
practically no time. He recognized the
sum could be written as (1+ 100) + (2+
99) + . . . (50 + 51) = 50(101). This sum
is a special case of

n

∑
k=1

k =
n(n + 1)

2
.

This is an example of an arithmetic pro-
gression that is a finite sum of terms. .

E. T. Bell. Men of Mathematics. Fireside
Books, 1965

How would one evaluate this sum? We begin by just adding the terms.
For example,

1 +
1
2
=

3
2

,

1 +
1
2
+

1
4
=

7
4

,

1 +
1
2
+

1
4
+

1
8
=

15
8

,

1 +
1
2
+

1
4
+

1
8
+

1
16

=
31
16

, . . . . (1.3)

The values tend to a limit. We can see this graphically in Figure 1.6.

sn

n1 2 3 4 5 6 7 8 9 10

.2

.4

.6

.8
1.0
1.2
1.4
1.6
1.8
2.0

Figure 1.6: Plot of sn = ∑n
k=1

1
2k−1 for n =

1 . . . 10.

In general, we want to make sense out of Equation (1.1). As with the
example, we look at a sequence of partial sums . Thus, we consider the
sums

s1 = a1,

s2 = a1 + a2,

s3 = a1 + a2 + a3,

s4 = a1 + a2 + a3 + a4, . . . . (1.4)

In general, we define the nth partial sum as

sn = a1 + a2 + . . . + an.

If the infinite series (1.1) is to make any sense, then the sequence of partial
sums should converge to some limit. We define this limit to be the sum of
the infinite series, S = limn→∞ sn. If the sequence of partial sums converges
to the limit L as n gets large, then the infinite series is said to have the sum
L.

We will use the compact summation notation

∞

∑
n=1

an = a1 + a2 + . . . + an + . . . .

Here, n will be referred to as the index and it may start at values other than
n = 1.

1.5 Geometric Series

Geometric series are fairly common and
will be used throughout the book. You
should learn to recognize them and
work with them.

Infinite series occur often in mathematics and physics. In this section
we look at the special case of a geometric series. A geometric series is of
the form

∞

∑
n=0

arn = a + ar + ar2 + . . . + arn + . . . . (1.5)
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Here a is the first term and r is called the ratio. It is called the ratio because
the ratio of two consecutive terms in the sum is r.

Example 1.6. For example,

1 +
1
2
+

1
4
+

1
8
+ . . .

is an example of a geometric series. We can write this using summation notation,

1 +
1
2
+

1
4
+

1
8
+ . . . =

∞

∑
n=0

1
(

1
2

)n
.

Thus, a = 1 is the first term and r = 1
2 is the common ratio of successive terms.

Next, we seek the sum of this infinite series, if it exists.

The sum of a geometric series, when it exists, can easily be determined.
We consider the nth partial sum:

sn = a + ar + . . . + arn−2 + arn−1. (1.6)

Now, multiply this equation by r.

rsn = ar + ar2 + . . . + arn−1 + arn. (1.7)

Subtracting these two equations, while noting the many cancelations, we
have

(1− r)sn = (a + ar + . . . + arn−2 + arn−1)

−(ar + ar2 + . . . + arn−1 + arn)

= a− arn

= a(1− rn). (1.8)

Thus, the nth partial sums can be written in the compact form

sn =
a(1− rn)

1− r
. (1.9)

The sum, if it exists, is given by S = limn→∞ sn. Letting n get large in the
partial sum (1.9), we need only evaluate limn→∞ rn. From the special limits
in the Appendix we know that this limit is zero for |r| < 1. Thus, we have

Geometric Series

The sum of the geometric series exists for |r| < 1 and is given by

∞

∑
n=0

arn =
a

1− r
, |r| < 1. (1.10)

The reader should verify that the geometric series diverges for all other
values of r. Namely, consider what happens for the separate cases |r| > 1,
r = 1 and r = −1.

Next, we present a few typical examples of geometric series.
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Example 1.7. ∑∞
n=0

1
2n

In this case we have that a = 1 and r = 1
2 . Therefore, this infinite series con-

verges and the sum is

S =
1

1− 1
2
= 2.

Example 1.8. ∑∞
k=2

4
3k

In this example we first note that the first term occurs for k = 2. It sometimes
helps to write out the terms of the series,

∞

∑
k=2

4
3k =

4
32 +

4
33 +

4
34 +

4
35 + . . . .

Looking at the series, we see that a = 4
9 and r = 1

3 . Since |r|<1, the geometric
series converges. So, the sum of the series is given by

S =
4
9

1− 1
3
=

2
3

.

Example 1.9. ∑∞
n=1(

3
2n − 2

5n )

Finally, in this case we do not have a geometric series, but we do have the differ-
ence of two geometric series. Of course, we need to be careful whenever rearranging
infinite series. In this case it is allowed 6. Thus, we have

6 A rearrangement of terms in an infinite
series is allowed when the series is abso-
lutely convergent. (See the Appendix.)

∞

∑
n=1

(
3
2n −

2
5n

)
=

∞

∑
n=1

3
2n −

∞

∑
n=1

2
5n .

Now we can add both geometric series to obtain
∞

∑
n=1

(
3
2n −

2
5n

)
=

3
2

1− 1
2
−

2
5

1− 1
5
= 3− 1

2
=

5
2

.

Geometric series are important because they are easily recognized and
summed. Other series which can be summed include special cases of Taylor
series and telescoping series. Next, we show an example of a telescoping
series.

Example 1.10. ∑∞
n=1

1
n(n+1) The first few terms of this series are

∞

∑
n=1

1
n(n + 1)

=
1
2
+

1
6
+

1
12

+
1

20
+ . . . .

It does not appear that we can sum this infinite series. However, if we used the
partial fraction expansion

1
n(n + 1)

=
1
n
− 1

n + 1
,

then we find the kth partial sum can be written as

sk =
k

∑
n=1

1
n(n + 1)

=
k

∑
n=1

(
1
n
− 1

n + 1

)
=

(
1
1
− 1

2

)
+

(
1
2
− 1

3

)
+ · · ·+

(
1
k
− 1

k + 1

)
. (1.11)
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We see that there are many cancelations of neighboring terms, leading to the series
collapsing (like a retractable telescope) to something manageable:

sk = 1− 1
k + 1

.

Taking the limit as k→ ∞, we find ∑∞
n=1

1
n(n+1) = 1.

1.6 Convergence Tests

Given a general infinite series, it would be nice to know if it con-
verges, or not. Often, we are only interested in the convergence and not
the actual sum as it is often difficult to determine the sum even if the se-
ries converges. In this section we will review some of the standard tests for
convergence, which you should have seen in Calculus II.

First, we have the nth Term Divergence Test. This is motivated by two
examples:

1. ∑∞
n=0 2n = 1 + 2 + 4 + 8 + . . . .

2. ∑∞
n=1

n+1
n = 2

1 + 3
2 + 4

3 + . . . .

In the first example, it is easy to see that each term is getting larger and
larger, and thus the partial sums will grow without bound. In the second
case, each term is bigger than one. Thus, the series will be bigger than
adding the same number of ones as there are terms in the sum. Obviously,
this series will also diverge.The nth Term Divergence Test.

This leads to the nth Term Divergence Test:

Theorem 1.4. If lim an 6= 0 or if this limit does not exist, then ∑n an diverges.

This theorem does not imply that just because the terms are getting
smaller, the series will converge. Otherwise, we would not need any other
convergence theorems.

For the next theorems, we will assume that the series has nonnegative
terms.
Comparison TestThe Comparison Test.

The series ∑ an converges if there is a convergent series ∑ cn such that
an ≤ cn for all n > N for some N. The series ∑ an diverges if there is a
divergent series ∑ dn such that dn ≤ an for all n > N for some N.

This is easily seen. In the first case, we have

an ≤ cn, ∀n > N.

Summing both sides of the inequality, we have

∑
n

an ≤∑
n

cn.

If ∑ cn converges, ∑ cn < ∞, the ∑ an converges as well. A similar argument
applies for the divergent series case.
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For this test, one has to dream up a second series for comparison. Typi-
cally, this requires some experience with convergent series. Often it is better
to use other tests first, if possible.

Example 1.11. Determine if ∑∞
n=0

1
3n converges using the Comparison Test.

We already know that ∑∞
n=0

1
2n converges. So, we compare these two series. In

the above notation, we have an = 1
3n and cn = 1

2n . Because 1
3n ≤ 1

2n for n ≥ 0 and
∑∞

n=0
1

2n converges, then ∑∞
n=0

1
3n converges by the Comparison Test.

Limit Comparison Test The Limit Comparison Test.

If limn→∞
an
bn

is finite, then ∑ an and ∑ bn converge together or diverge
together.

Example 1.12. Determine if ∑∞
n=1

2n+1
(n+1)2 converges using the Limit Comparison

Test.
In order to establish the convergence, or divergence, of this series, we look to see

how the terms, an = 2n+1
(n+1)2 , behave for large n. As n gets large, the numerator

behaves like 2n and the denominator behaves like n2. Therefore, an behaves like
2n
n2 = 2

n . The factor of 2 does not really matter.

sn

n

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

2015105

Figure 1.7: Plot of the partial sums of the
harmonic series ∑∞

n=1
1
n .

This leads us to compare the infinite series ∑∞
n=1

2n+1
(n+1)2 with the series ∑∞

n=1
1
n .

Then,

lim
n→∞

an

bn
= lim

n→∞

2n2 + n
(n + 1)2 = 2.

We can conclude that these two series both converge or both diverge.
If we knew the behavior of the second series, then we could finish the problem.

Using the next test, we will prove that ∑∞
n=1

1
n diverges. Therefore, ∑∞

n=1
2n+1
(n+1)2

also diverges by the Limit Comparison Test. Another example of this test is given
in Example 1.14.

Integral Test The Integral Test.

Consider the infinite series ∑∞
n=1 an, where an = f (n). Then, ∑∞

n=1 an and∫ ∞
1 f (x) dx both converge or both diverge. Here we mean that the integral

converges or diverges as an improper integral.

x
1 2 3 4 5 6 7 8 9 10

.1

.2

.3

.4

.5

.6

.7

.8

.9
1.0

f (x) =
1
x

Figure 1.8: Plot of f (x) = 1
x and boxes

of height 1
n and width 1.

Example 1.13. Does the harmonic series, ∑∞
n=1

1
n , converge?

We are interested in the convergence or divergence of the infinite series ∑∞
n=1

1
n

that we saw in the Limit Comparison Test example. This infinite series is famous
and is called the harmonic series. The plot of the partial sums is given in Figure
1.7. It appears that the series could possibly converge or diverge. It is hard to tell
graphically.

In this case we can use the Integral Test. In Figure 1.8 we plot f (x) = 1
x and at

each integer n we plot a box from n to n + 1 of height 1
n . We can see from the figure

that the total area of the boxes is greater than the area under the curve. Because the
area of each box is 1

n , then we have that∫ ∞

1

dx
x

<
∞

∑
n=1

1
n

.

But, we can compute the integral∫ ∞

1

dx
x

= lim
x→∞

(ln x) = ∞.



10 fourier and complex analysis

Thus, the integral diverges. However, the infinite series is larger than this! So, the
harmonic series diverges by the Integral Test.

The Integral Test provides us with the convergence behavior for a class
of infinite series called a p-series . These series are of the form ∑∞

n=1
1

np .
Recalling that the improper integrals

∫ ∞
1

dx
xp converge for p > 1 and diverge

otherwise, we have the p-test :

∞

∑
n=1

1
np converges for p > 1

and diverges otherwise.p-series and p-test.

Example 1.14. Does the series ∑∞
n=1

n+1
n3−2 converge?

We first note that as n gets large, the general term behaves like 1
n2 since the

numerator behaves like n and the denominator behaves like n3. So, we expect that
this series behaves like the series ∑∞

n=1
1

n2 . Thus, by the Limit Comparison Test,

lim
n→∞

n + 1
n3 − 2

(n2) = 1.

These series both converge, or both diverge. However, we know that ∑∞
n=1

1
n2

converges by the p-test since p = 2. Therefore, the original series converges.

Ratio TestThe Ratio Test.

Consider the series ∑∞
n=1 an for an > 0. Let

ρ = lim
n→∞

an+1

an
.

Then, the behavior of the infinite series can be determined from the condi-
tions

ρ < 1, converges
ρ > 1, diverges.

Example 1.15. Use the Ratio Test to determine the convergence of ∑∞
n=1

n10

10n .
We compute

ρ = lim
n→∞

an+1

an

= lim
n→∞

(n + 1)10

n10
10n

10n+1

= lim
n→∞

(
1 +

1
n

)10 1
10

=
1

10
< 1.

(1.12)

Therefore, the series is said to converge by the Ratio Test.

Example 1.16. Use the Ratio Test to determine the convergence of ∑∞
n=1

3n

n! .
In this case we make use of the fact that7 (n + 1)! = (n + 1)n!. We compute

7 Note that the Ratio Test works when
factorials are involved because using
(n + 1)! = (n + 1)n! helps to reduce the
needed ratios into something manage-
able.
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ρ = lim
n→∞

an+1

an

= lim
n→∞

3n+1

3n
n!

(n + 1)!

= lim
n→∞

3
n + 1

= 0 < 1.

(1.13)

This series also converges by the Ratio Test.

nth Root Test The nth Root Test.

Consider the series ∑∞
n=1 an for an > 0. Let

ρ = lim
n→∞

an
1/n.

Then the behavior of the infinite series can be determined using

ρ < 1, converges
ρ > 1, diverges.

Example 1.17. Use the nth Root Test to determine the convergence of ∑∞
n=0 e−n.

We use the nth Root Test: limn→∞ n
√

an = limn→∞ e−1 = e−1 < 1. Thus, this
series converges by the nth Root Test.8 8 Note that the Root Test works when

there are no factorials and simple pow-
ers are involved. In such cases special
limit rules help in the evaluation.

Example 1.18. Use the nth Root Test to determine the convergence of ∑∞
n=1

nn

2n2 .
This series also converges by the nth Root Test.

lim
n→∞

n
√

an = lim
n→∞

(
nn

2n2

)1/n
= lim

n→∞

n
2n = 0 < 1.

Absolute and Conditional Convergence
We next turn to series that have both positive and negative terms. We can

toss out the signs by taking absolute values of each of the terms. We note
that since an ≤ |an|, we have

−
∞

∑
n=1
|an| ≤

∞

∑
n=1

an ≤
∞

∑
n=1
|an|.

If the sum ∑∞
n=1 |an| converges, then the original series converges. For ex-

ample, if ∑∞
n=1 |an| = S, then by this inequality, −S ≤ ∑∞

n=1 an ≤ S
Convergence of the series ∑ |an| is useful, because we can use the previ-

ous tests to establish convergence of such series. Thus, we say that a series
converges absolutely if ∑∞

n=1 |an| converges. If a series converges, but does Conditional and absolute convergence.

not converge absolutely, then it is said to converge conditionally.

Example 1.19. Show that the series ∑∞
n=1

cos πn
n2 converges absolutely.

This series converges absolutely because ∑∞
n=1 |an| = ∑∞

n=1
1

n2 is a p-series with
p = 2.

Finally, there is one last test that we recall from your introductory calcu-
lus class. We consider the alternating series, given by ∑∞

n=1(−1)n+1an. The
convergence of an alternating series is determined from Leibniz’s Theorem.9

9 Gottfried Wilhelm Leibniz (1646-1716)
developed calculus independently of Sir
Isaac Newton (1643-1727).

.
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Theorem 1.5. The series ∑∞
n=1(−1)n+1an converges if

1. an’s are positive.

2. an ≥ an+1 for all n.

3. an → 0.
Convergence of alternating series.

The first condition guarantees that we have alternating signs in the series.
The next condition says that the magnitude of the terms gets smaller and
the last condition imposes further that the terms approach zero.

Example 1.20. Establish the type of convergence of the alternating harmonic series,

∑∞
n=1

(−1)n+1

n .
First of all, this series is an alternating series. The an’s in Leibniz’s Theorem are

given by an = 1
n . Condition 2 for this case is

1
n
≥ 1

n + 1
.

This is certainly true, as condition 2 just means that the terms are not getting bigger
as n increases. Finally, condition 3 says that the terms are in fact going to zero as
n increases. This is true in this example. Therefore, the alternating harmonic series
converges by Leibniz’s Theorem.

Note: The alternating harmonic series converges conditionally, since the series

of absolute values ∑∞
n=1

∣∣∣ (−1)n+1

n

∣∣∣ = ∑∞
n=1

1
n gives the (divergent) harmonic series.

So, the alternating harmonic series does not converge absolutely.

Example 1.21. Determine the type of convergence of the series ∑∞
n=0

(−1)n

2n .

∑∞
n=0

(−1)n

2n also passes the conditions of Leibniz’s Theorem. It should be clear
that the terms of this alternating series are getting smaller and approach zero. Fur-
thermore, this series converges absolutely!

1.7 Sequences of Functions

Our immediate goal is to prepare for studying Fourier series, which
are series whose terms are functions. So, in this section we begin to discuss
series of functions and the convergence of such series. Once more we will
need to resort to the convergence of the sequence of partial sums. This
means we really need to start with sequences of functions. A sequence
of functions is simply a set of functions fn(x), n = 1, 2, . . . defined on a
common domain D. A frequently used example will be the sequence of
functions {1, x, x2, . . .}, x ∈ [−1, 1].

Evaluating each sequence of functions at a given value of x, we obtain a
sequence of real numbers. As before, we can ask if this sequence converges.
Doing this for each point in the domain D, we then ask if the resulting
collection of limits defines a function on D. More formally, this leads us to
the idea of pointwise convergence.

A sequence of functions fn converges pointwise on D to a limit g ifPointwise convergence of sequences of
functions.
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lim
n→∞

fn(x) = g(x)

for each x ∈ D. More formally, we write that

lim
n→∞

fn = g (pointwise on D)

if given x ∈ D and ε > 0, there exists an integer N such that The symbol ∀ means “for all.”

| fn(x)− g(x)| < ε, ∀n ≥ N.

Example 1.22. Consider the sequence of functions

fn(x) =
1

1 + nx
, |x| < ∞, n = 1, 2, 3, . . . .

The limits depends on the value of x. We consider two cases, x = 0 and x 6= 0.

1. x = 0. Here limn→∞ fn(0) = limn→∞ 1 = 1.

2. x 6= 0. Here limn→∞ fn(x) = limn→∞
1

1+nx = 0.

Therefore, we can say that fn → g pointwise for |x| < ∞, where

g(x) =

{
0, x 6= 0,
1, x = 0.

(1.14)

We also note that for a sequence that converges pointwise, N generally
depends on both x and ε, N(x, ε). We will show this by example.

Example 1.23. Consider the functions fn(x) = xn, x ∈ [0, 1], n = 1, 2, . . . .
We recall that the definition for pointwise convergence suggests that for each x

we seek an N such that | fn(x)− g(x)| < ε, ∀n ≥ N. This is not at first easy to
see. So, we will provide some simple examples showing how N can depend on both
x and ε.

1. x = 0. Here we have fn(0) = 0 for all n. So, given ε > 0 we seek an N such
that | fn(0)− 0| < ε, ∀n ≥ N. Inserting fn(0) = 0, we have 0 < ε. Since
this is true for all n, we can pick N = 1.

fn(x)

x
.5 1.0−.5−1.0

−1.0

−.5

.5

1.0

Figure 1.9: Plot of fn(x) = xn showing
how N depends on x = 0, 0.1, 0.5, 0.9 (the
vertical lines) and ε = 0.1 (the horizontal
line). Look at the intersection of a given
vertical line with the horizontal line and
determine N from the number of curves
not under the intersection point.

2. x = 1
2 . In this case we have fn(

1
2 ) =

1
2n , for n = 1, 2, . . . .

As n gets large, fn → 0. So, given ε > 0, we seek N such that

| 1
2n − 0| < ε, ∀n ≥ N.

This result means that 1
2n < ε.

Solving the inequality for n, we have

n > N ≥ − ln ε

ln 2
.

We choose N ≥ − ln ε
ln 2 . Thus, our choice of N depends on ε.

For, ε = 0.1, this gives

N ≥ − ln 0.1
ln 2

=
ln 10
ln 2

≈ 3.32.

So, we pick N = 4 and we have n > N = 4.
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3. x = 1
10 . This case can be examined like the last example.

We have fn(
1

10 ) = 1
10n , for n = 1, 2, . . . . This leads to N ≥ − ln ε

ln 10 For
ε = 0.1, this gives N ≥ 1, or n > 1.

4. x = 9
10 . This case can be examined like the last two examples. We have

fn(
9

10 ) =
( 9

10
)n

, for n = 1, 2, . . . . So given an ε > 0, we seek an N such
that

( 9
10
)n

< ε for all n > N. Therefore,

n > N ≥ ln ε

ln
( 9

10
) .

For ε = 0.1, we have N ≥ 21.85, or n > N = 22.

So, for these cases, we have shown that N can depend on both x and ε. These cases
are shown in Figure 1.9.

There are other questions that can be asked about sequences of functions.
Let the sequence of functions fn be continuous on D. If the sequence of
functions converges pointwise to g on D, then we can ask the following.

1. Is g continuous on D?

2. If each fn is integrable on [a, b], then does

lim
n→∞

∫ b

a
fn(x) dx =

∫ b

a
g(x) dx?

3. If each fn is differentiable at c, then does

lim
n→∞

f ′n(c) = g′(c)?

It turns out that pointwise convergence is not enough to provide an affir-
mative answer to any of these questions. Though we will not prove it here,
what we will need is uniform convergence.

fn(x)

x
0.5 1.0−0.5−1.0

−1.5

−1.0

−0.5

0.5

1.0

1.5

2.0

2.5

3.0

3.5

g + ε

g− ε

f1

f2
fn

Figure 1.10: For uniform convergence, as
n gets large, fn(x) lies in the band g(x)−
ε, g(x)− ε.

Consider a sequence of functions { fn(x)}∞
n=1 on D. Let g(x) be defined

for x ∈ D. Then the sequence converges uniformly on D, or

Uniform convergence of sequences of
functions.

lim
n→∞

fn = g uniformly on D,

if given ε > 0, there exists an N such that

| fn(x)− g(x)| < ε, ∀n ≥ N and ∀x ∈ D.

This definition almost looks like the definition for pointwise convergence.
However, the seemingly subtle difference lies in the fact that N does not
depend upon x. The sought N works for all x in the domain. As seen in
Figure 1.10 as n gets large, fn(x) lies in the band (g(x)− ε, g(x) + ε).

Example 1.24. Does the sequence of functions fn(x) = xn, converge uniformly on
[0, 1]?

fn(x)

x
.5 1.0−.5−1.0

−1.0

−.5

.5

1.0

g(x) + ε

g(x)− ε

Figure 1.11: Plot of fn(x) = xn on [-1,1]
for n = 1, . . . , 10 and g(x)± ε for ε = 0.2.

Note that in this case as n gets large, fn(x) does not lie in the band (g(x) −
ε, g(x) + ε) as seen in Figure 1.11. Therefore, this sequence of functions does not
converge uniformly on [−1, 1].
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Example 1.25. Does the sequence of functions fn(x) = cos(nx)/n2 converge
uniformly on [−1, 1]?

For this example, we plot the first several members of the sequence in Figure
1.12. We can see that eventually (n ≥ N) members of this sequence do lie inside a
band of width ε about the limit g(x) ≡ 0 for all values of x. Thus, this sequence of
functions will converge uniformly to the limit.

Finally, we should note that if a sequence of functions is uniformly con-
vergent then it converges pointwise. However, the examples should bear
out that the converse is not true.

fn(x)

x
−3 −2 −1 1 2 3

−.3

.3 g(x) + ε

g(x)− ε

Figure 1.12: Plot of fn(x) = cos(nx)/n2

on [−π, π] for n = 1 . . . 10 and g(x)± ε
for ε = 0.2.

1.8 Infinite Series of Functions

We now turn our attention to infinite series of functions, which
will form the basis of our study of Fourier series. An infinite series of
functions is given by ∑∞

n=1 fn(x), x ∈ D. Using powers of x, an example
of an infinite series of functions might be ∑∞

n=1 xn, x ∈ [−1, 1]. In order to
investigate the convergence of this series, we could substitute values for x
and determine if the resulting series of numbers converges. In general, to
investigate the convergence of infinite series of functions, we would consider
the Nth partial sums

sN(x) =
N

∑
n=1

fn(x)

and ask if this sequence converges? We will begin to answer this question by
defining pointwise and uniform convergence of infinite series of functions.

The infinite series ∑ f j(x) converges pointwise to f (x) on D if given Pointwise convergence of an infinite se-
ries.x ∈ D, and ε > 0, there exists an N such that

| f (x)− sn(x)| < ε

for all n > N.
The infinite series ∑ f j(x) converges uniformly to f (x) on D given ε > 0, Uniform convergence of an infinite se-

ries.there exists and N such that

| f (x)− sn(x)| < ε

for all n > N and all x ∈ D.
Again, we state without proof the following important properties of uni-

form convergence for infinite series of functions:
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1. Uniform convergence implies pointwise convergence.

2. If fn is continuous on D, and ∑∞
n fn converges uniformly to f on D,

then f is continuous on D.Uniform convergence gives nice proper-
ties under some additional conditions,
such as being able to integrate, or dif-
ferentiate, term by term.

3. If fn is continuous on [a, b] ⊂ D, ∑∞
n fn converges uniformly on D to

g, and
∫ b

a fn(x) dx exists, then

∞

∑
n

∫ b

a
fn(x) dx =

∫ b

a

∞

∑
n

fn(x) dx =
∫ b

a
g(x) dx.

4. If f ′n is continuous on [a, b] ⊂ D, ∑∞
n fn converges pointwise to g on

D, and ∑∞
n f ′n converges uniformly on D, then

∞

∑
n

f ′n(x) =
d

dx
(

∞

∑
n

fn(x)) = g′(x)

for x ∈ (a, b).

Since uniform convergence of series gives so much, like term by term
integration and differentiation, we would like to be able to recognize when
we have a uniformly convergent series. One test for such convergence is the
Weierstraß M-Test10.

10 Karl Theodor Wilhelm Weierstraß
(1815-1897) was a German mathemati-
cian who may be thought of as the father
of analysis.

Theorem 1.6. Weierstraß M-Test Let { fn}∞
n=1 be a sequence of functions on D.

If | fn(x)| ≤ Mn, for x ∈ D and ∑∞
n=1 Mn converges, then ∑∞

n=1 fn converges
uniformly of D.

Proof. First, we note that for x ∈ D,

∞

∑
n=1
| fn(x)| ≤

∞

∑
n=1

Mn.

Since by the assumption that ∑∞
n=1 Mn converges, we have that ∑∞

n=1 fn con-
verges absolutely on D. Therefore, ∑∞

n=1 fn converges pointwise on D. So,
we let ∑∞

n=1 fn = g.
We now want to prove that this convergence is, in fact, uniform. So, given

an ε > 0, we need to find an N such that∣∣∣g(x)−
n

∑
j=1

f j(x)
∣∣∣ < ε

if n ≥ N for all x ∈ D. Therefore, for any x ∈ D, we find a bound on∣∣∣g(x)−∑n
j=1 f j(x)

∣∣∣ :

∣∣∣g(x)−
n

∑
j=1

f j(x)
∣∣∣ =

∣∣∣ ∞

∑
j=1

f j(x)−
n

∑
j=1

f j(x)
∣∣∣

=
∣∣∣ ∞

∑
j=n+1

f j(x)
∣∣∣

≤
∞

∑
j=n+1

| f j(x)|, by the triangle inequality

≤
∞

∑
j=n+1

Mj. (1.15)
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Now, the sum over the Mj’s is convergent, so we can choose N such that

∞

∑
j=n+1

Mj < ε, n ≥ N.

Combining these results, we have∣∣∣g(x)−
n

∑
j=1

f j(x)
∣∣∣ ≤ ∞

∑
j=n+1

Mj < ε

for all n ≥ N and x ∈ D. Thus, we conclude that the series ∑ f j converges
uniformly to g, which we write ∑ f j → g uniformly on D.

We now give an example of how to use the Weierstraß M-Test.

Example 1.26. Show that the series ∑∞
n=1

cos nx
n2 converges uniformly on [−π, π].

Each term of the infinite series is bounded by
∣∣∣ cos nx

n2

∣∣∣ = 1
n2 ≡ Mn. We also

know that ∑∞
n=1 Mn = ∑∞

n=1
1

n2 < ∞. Thus, we can conclude that the original
series converges uniformly, as it satisfies the conditions of the Weierstraß M-Test.

1.9 Special Series Expansions

Examples of infinite series are geometric series, power series, and
binomial series. These are discussed more fully in Sections 1.5, 1.10, and
1.11, respectively. These series are defined as follows:

1. The sum of the geometric series exists for |r| < 1 and is given by The geometric series.

∞

∑
n=0

arn =
a

1− r
, |r| < 1. (1.16)

2. A power series expansion about x = a with coefficient sequence cn is
given by ∑∞

n=0 cn(x− a)n.

3. A Taylor series expansion of f (x) about x = a is the series Taylor series expansion.

f (x) ∼
∞

∑
n=0

cn(x− a)n, (1.17)

where

cn =
f (n)(a)

n!
. (1.18)

4. A Maclaurin series expansion of f (x) is a Taylor series expansion of Maclaurin series expansion.

f (x) about x = 0, or

f (x) ∼
∞

∑
n=0

cnxn, (1.19)

where

cn =
f (n)(0)

n!
. (1.20)

Some common expansions are provided in Table 1.1.
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Table 1.1: Common Mclaurin Series Ex-
pansions

Series Expansions You Should Know

ex = 1 + x +
x2

2
+

x3

3!
+

x4

4!
+ . . . =

∞

∑
n=0

xn

n!

cos x = 1− x2

2
+

x4

4!
− . . . =

∞

∑
n=0

(−1)n x2n

(2n)!

sin x = x− x3

3!
+

x5

5!
− . . . =

∞

∑
n=0

(−1)n x2n+1

(2n + 1)!

cosh x = 1 +
x2

2
+

x4

4!
+ . . . =

∞

∑
n=0

x2n

(2n)!

sinh x = x +
x3

3!
+

x5

5!
+ . . . =

∞

∑
n=0

x2n+1

(2n + 1)!
1

1− x
= 1 + x + x2 + x3 + . . . =

∞

∑
n=0

xn

1
1 + x

= 1− x + x2 − x3 + . . . =
∞

∑
n=0

(−x)n

tan−1 x = x− x3

3
+

x5

5
− x7

7
+ . . . =

∞

∑
n=0

(−1)n x2n+1

2n + 1

ln(1 + x) = x− x2

2
+

x3

3
− . . . =

∞

∑
n=1

(−1)n+1 xn

n

5. The binomial series indexbinomial series is a special Maclaurin series.
Namely, it is the series expansion of (1 + x)p for p a nonnegative
integer.

We also considered the convergence of power series, ∑∞
n=0 cn(x − a)n.

For x = a, the series obviously converges. In general, if ∑∞
n=0 cn(b − a)n

converges for b 6= a, then ∑∞
n=0 cn(x − a)n converges absolutely for all x

satisfying |x− a| < |b− a|.
This leads to the three possibilities:

1. ∑∞
n=0 cn(x− a)n may only converge at x = a.

2. ∑∞
n=0 cn(x− a)n may converge for all real numbers.

3. ∑∞
n=0 cn(x − a)n converges for |x − a| < R and diverges for |x −

a| > R.

The number R is called the radius of convergence of the power series andInterval and radius of convergence.

(a − R, a + R) is called the interval of convergence. Convergence at the
endpoints of this interval has to be tested for each power series.

Finally, we have the special case of the general binomial expansion for
(1 + x)p for p real. The series is given by theThe binomial expansion.

(1 + x)p =
∞

∑
r=0

p(p− 1) · · · (p− r + 1)
r!

xr, |x| < 1. (1.21)

In practice, one only needs the first few terms for |x| � 1. Then,The binomial approximation.

(1 + x)p ≈ 1 + px +
p(p− 1)

2
x2|x| � 1. (1.22)
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1.10 Power Series

Another example of an infinite series that the student has encoun-
tered in previous courses is the power series. Examples of such series are
provided by Taylor and Maclaurin series.

Actually, what are now known as Taylor
and Maclaurin series were known long
before they were named. James Gregory
(1638-1675) has been recognized for dis-
covering Taylor series, which were later
named after Brook Taylor (1685-1731) .
Similarly, Colin Maclaurin (1698-1746)
did not actually discover Maclaurin se-
ries, but the name was adopted because
of his particular use of series.

A power series expansion about x = a with coefficient sequence cn is
given by ∑∞

n=0 cn(x− a)n. For now we will consider all constants to be real
numbers with x in some subset of the set of real numbers.

Consider the following expansion about x = 0 :

∞

∑
n=0

xn = 1 + x + x2 + . . . . (1.23)

We would like to make sense of such expansions. For what values of x
will this infinite series converge? Until now we did not pay much attention
to which infinite series might converge. However, this particular series is
already familiar to us. It is a geometric series. Note that each term is gotten
from the previous one through multiplication by r = x. The first term is
a = 1. So, from Equation (1.10), we have that the sum of the series is given
by

∞

∑
n=0

xn =
1

1− x
, |x| < 1.

f (x)

x
−0.2−0.1 0.1 0.2

0.80

0.90

1.00

1.10

1.20

(a)

f (x)

x
−0.2−0.1 0.1 0.2

0.80

0.90

1.00

1.10

1.20

(b)

Figure 1.13: (a) Comparison of 1
1−x

(solid) to 1 + x (dashed) for x ∈
[−0.2, 0.2]. (b) Comparison of 1

1−x (solid)
to 1 + x + x2 (dashed) for x ∈ [−0.2, 0.2].

In this case we see that the sum, when it exists, is a simple function. In
fact, when x is small, we can use this infinite series to provide approxima-
tions to the function (1− x)−1. If x is small enough, we can write

(1− x)−1 ≈ 1 + x.

In Figure 1.13a we see that for small values of x these functions do agree.

f (x)

x
−1.0 −.5 0 .5

1.0

2.0

3.0

Figure 1.14: Comparison of 1
1−x (solid)

to 1+ x+ x2 (dashed) and 1+ x+ x2 + x3

(dotted) for x ∈ [−1.0, 0.7].
Of course, if we want better agreement, we select more terms. In Fig-

ure 1.13b we see what happens when we do so. The agreement is much
better. But extending the interval, we see in Figure 1.14 that keeping only
quadratic terms may not be good enough. Keeping the cubic terms gives
better agreement over the interval.
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Finally, in Figure 1.15 we show the sum of the first 21 terms over the
entire interval [−1, 1]. Note that there are problems with approximations
near the endpoints of the interval, x = ±1.

f (x)

x
−1.0 −.5 0 .5 1.0

1.0

2.0

3.0

4.0

5.0

Figure 1.15: Comparison of 1
1−x (solid)

to ∑20
n=0 xn for x ∈ [−1, 1].

Such polynomial approximations are called Taylor polynomials. Thus,
T3(x) = 1 + x + x2 + x3 is the third order Taylor polynomial approximation
of f (x) = 1

1−x .
With this example we have seen how useful a series representation might

be for a given function. However, the series representation was a simple
geometric series, which we already knew how to sum. Is there a way to
begin with a function and then find its series representation? Once we have
such a representation, will the series converge to the function with which
we started? For what values of x will it converge? These questions can be
answered by recalling the definitions of Taylor and Maclaurin series.

A Taylor series expansion of f (x) about x = a is the seriesTaylor series expansion.

f (x) ∼
∞

∑
n=0

cn(x− a)n, (1.24)

where

cn =
f (n)(a)

n!
. (1.25)

Note that we use ∼ to indicate that we have yet to determine when the
series may converge to the given function. A special class of series are
those Taylor series for which the expansion is about x = 0. These are called
Maclaurin series.

A Maclaurin series expansion of f (x) is a Taylor series expansion ofMaclaurin series expansion.

f (x) about x = 0, or

f (x) ∼
∞

∑
n=0

cnxn, (1.26)

where

cn =
f (n)(0)

n!
. (1.27)

Example 1.27. Expand f (x) = ex about x = 0.
We begin by creating a table. In order to compute the expansion coefficients, cn,

we will need to perform repeated differentiations of f (x). So, we provide a table for
these derivatives. Then, we only need to evaluate the second column at x = 0 and
divide by n!.

n f (n)(x) f (n)(0) cn

0 ex e0 = 1 1
0! = 1

1 ex e0 = 1 1
1! = 1

2 ex e0 = 1 1
2!

3 ex e0 = 1 1
3!
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Next, we look at the last column and try to determine a pattern so that we can
write down the general term of the series. If there is only a need to get a polynomial
approximation, then the first few terms may be sufficient. In this case, the pattern
is obvious: cn = 1

n! . So,

ex ∼
∞

∑
n=0

xn

n!
.

Example 1.28. Expand f (x) = ex about x = 1.
Here we seek an expansion of the form ex ∼ ∑∞

n=0 cn(x− 1)n. We could create
a table like the last example. In fact, the last column would have values of the form
e
n! . (You should confirm this.) However, we will make use of the Maclaurin series
expansion for ex and get the result quicker. Note that ex = ex−1+1 = eex−1. Now,
apply the known expansion for ex :

ex ∼ e
(

1 + (x− 1) +
(x− 1)2

2
+

(x− 1)3

3!
+ . . .

)
=

∞

∑
n=0

e(x− 1)n

n!
.

Example 1.29. Expand f (x) = 1
1−x about x = 0.

This is the example with which we started our discussion. We can set up a table
in order to find the Maclaurin series coefficients. We see from the last column of the
table that we get back the geometric series (1.23).

n f (n)(x) f (n)(0) cn

0 1
1−x 1 1

0! = 1

1 1
(1−x)2 1 1

1! = 1

2 2(1)
(1−x)3 2(1) 2!

2! = 1

3 3(2)(1)
(1−x)4 3(2)(1) 3!

3! = 1

So, we have found
1

1− x
∼

∞

∑
n=0

xn.

We can replace ∼ by equality if we can determine the range of x-values
for which the resulting infinite series converges. We will investigate such
convergence shortly.

Series expansions for many elementary functions arise in a variety of
applications. Some common expansions are provided in Table 1.2.

We still need to determine the values of x for which a given power series
converges. The first five of the above expansions converge for all reals, but
the others only converge for |x| < 1.

We consider the convergence of ∑∞
n=0 cn(x − a)n. For x = a the series

obviously converges. Will it converge for other points? One can prove

Theorem 1.7. If ∑∞
n=0 cn(b− a)n converges for b 6= a, then

∑∞
n=0 cn(x− a)n converges absolutely for all x satisfying |x− a| < |b− a|.
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Table 1.2: Common Mclaurin Series Ex-
pansions

Series Expansions You Should Know

ex = 1 + x +
x2

2
+

x3

3!
+

x4

4!
+ . . . =

∞

∑
n=0

xn

n!

cos x = 1− x2

2
+

x4

4!
− . . . =

∞

∑
n=0

(−1)n x2n

(2n)!

sin x = x− x3

3!
+

x5

5!
− . . . =

∞

∑
n=0

(−1)n x2n+1

(2n + 1)!

cosh x = 1 +
x2

2
+

x4

4!
+ . . . =

∞

∑
n=0

x2n

(2n)!

sinh x = x +
x3

3!
+

x5

5!
+ . . . =

∞

∑
n=0

x2n+1

(2n + 1)!
1

1− x
= 1 + x + x2 + x3 + . . . =

∞

∑
n=0

xn

1
1 + x

= 1− x + x2 − x3 + . . . =
∞

∑
n=0

(−x)n

tan−1 x = x− x3

3
+

x5

5
− x7

7
+ . . . =

∞

∑
n=0

(−1)n x2n+1

2n + 1

ln(1 + x) = x− x2

2
+

x3

3
− . . . =

∞

∑
n=1

(−1)n+1 xn

n

This leads to three possibilities

1. ∑∞
n=0 cn(x− a)n may only converge at x = a.

2. ∑∞
n=0 cn(x− a)n may converge for all real numbers.

3. ∑∞
n=0 cn(x − a)n converges for |x − a| < R and diverges for |x −

a| > R.

The number R is called the radius of convergence of the power seriesInterval and radius of convergence.

and (a− R, a + R) is called the interval of convergence. Convergence at the
endpoints of this interval has to be tested for each power series.

In order to determine the interval of convergence, one needs only note
that when a power series converges, it does so absolutely. So, we need only
test the convergence of ∑∞

n=0 |cn(x− a)n| = ∑∞
n=0 |cn||x− a|n. This is easily

done using either the ratio test or the nth root test. We first identify the
nonnegative terms an = |cn||x − a|n, using the notation from Section 1.4.
Then, we apply one of the convergence tests.

For example, the nth Root Test gives the convergence condition for an =

|cn||x− a|n,

ρ = lim
n→∞

n
√

an = lim
n→∞

n
√
|cn||x− a| < 1.

Since |x− a| is independent of n,, we can factor it out of the limit and divide
the value of the limit to obtain

|x− a| <
(

lim
n→∞

n
√
|cn|
)−1

≡ R.

Thus, we have found the radius of convergence, R.
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Similarly, we can apply the Ratio Test.

ρ = lim
n→∞

an+1

an
= lim

n→∞

|cn+1|
|cn|

|x− a| < 1.

Again, we rewrite this result to determine the radius of convergence:

|x− a| <
(

lim
n→∞

|cn+1|
|cn|

)−1

≡ R.

Example 1.30. Find the radius of convergence of the series ex = ∑∞
n=0

xn

n! .
Since there is a factorial, we will use the Ratio Test.

ρ = lim
n→∞

|n!|
|(n + 1)!| |x| = lim

n→∞

1
n + 1

|x| = 0.

Since ρ = 0, it is independent of |x| and thus the series converges for all x. We also
can say that the radius of convergence is infinite.

Example 1.31. Find the radius of convergence of the series 1
1−x = ∑∞

n=0 xn.
In this example we will use the nth Root Test.

ρ = lim
n→∞

n√1|x| = |x| < 1.

Thus, we find that we have absolute convergence for |x| < 1. Setting x = 1 or
x = −1, we find that the resulting series do not converge. So, the endpoints are not
included in the complete interval of convergence.

In this example we could have also used the Ratio Test. Thus,

ρ = lim
n→∞

1
1
|x| = |x| < 1.

We have obtained the same result as when we used the nth Root Test.

Example 1.32. Find the radius of convergence of the series ∑∞
n=1

3n(x−2)n

n .
In this example, we have an expansion about x = 2. Using the nth Root Test we

find that

ρ = lim
n→∞

n

√
3n

n
|x− 2| = 3|x− 2| < 1.

Solving for |x− 2| in this inequality, we find |x− 2| < 1
3 . Thus, the radius of

convergence is R = 1
3 and the interval of convergence is

(
2− 1

3 , 2 + 1
3

)
=
( 5

3 , 7
3
)

.

As for the endpoints, we first test the point x = 7
3 . The resulting series is

∑∞
n=1

3n( 1
3 )

n

n = ∑∞
n=1

1
n . This is the harmonic series, and thus it does not converge.

Inserting x = 5
3 , we get the alternating harmonic series. This series does converge.

So, we have convergence on [ 5
3 , 7

3 ). However, it is only conditionally convergent at
the left endpoint, x = 5

3 .

Example 1.33. Find an expansion of f (x) = 1
x+2 about x = 1.

Instead of explicitly computing the Taylor series expansion for this function, we
can make use of an already known function. We first write f (x) as a function of
x− 1, since we are expanding about x = 1; i.e., we are seeking a series whose terms
are powers of x− 1.
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This expansion is easily done by noting that 1
x+2 = 1

(x−1)+3 . Factoring out a 3,
we can rewrite this expression as a sum of a geometric series. Namely, we use the
expansion for

g(z) =
1

1 + z
= 1− z + z2 − z3 + . . . . (1.28)

and then we rewrite f (x) as

f (x) =
1

x + 2

=
1

(x− 1) + 3

=
1

3[1 + 1
3 (x− 1)]

=
1
3

1
1 + 1

3 (x− 1)
. (1.29)

Note that f (x) = 1
3 g( 1

3 (x− 1)) for g(z) = 1
1+z . So, the expansion becomes

f (x) =
1
3

[
1− 1

3
(x− 1) +

(
1
3
(x− 1)

)2
−
(

1
3
(x− 1)

)3
+ . . .

]
.

This can further be simplified as

f (x) =
1
3
− 1

9
(x− 1) +

1
27

(x− 1)2 − . . . .

Convergence is easily established. The expansion for g(z) converges for |z| < 1.
So, the expansion for f (x) converges for | − 1

3 (x − 1)| < 1. This implies that
|x − 1| < 3. Putting this inequality in interval notation, we have that the power
series converges absolutely for x ∈ (−2, 4). Inserting the endpoints, one can show
that the series diverges for both x = −2 and x = 4. You should verify this!

Example 1.34. Prove Euler’s Formula: eiθ = cos θ + i sin θ.
Euler’s Formula, eiθ = cos θ + i sin θ,
is an important formula and is used
throughout the text.

As a final application, we can derive Euler’s Formula ,

eiθ = cos θ + i sin θ,

where i =
√
−1. We naively use the expansion for ex with x = iθ. This leads us to

eiθ = 1 + iθ +
(iθ)2

2!
+

(iθ)3

3!
+

(iθ)4

4!
+ . . . .

Next we note that each term has a power of i. The sequence of powers of i is
given as {1, i,−1,−i, 1, i,−1,−i, 1, i,−1,−i, . . .}. See the pattern? We conclude
that

in = ir, where r = remainder after dividing n by 4.

This gives

eiθ =

(
1− θ2

2!
+

θ4

4!
− . . .

)
+ i
(

θ − θ3

3!
+

θ5

5!
− . . .

)
.

We recognize the expansions in the parentheses as those for the cosine and sine
functions. Thus, we end with Euler’s Formula.
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We further derive relations from this result, which will be important for
our next studies. From Euler’s formula we have that for integer n:

einθ = cos(nθ) + i sin(nθ).

We also have

einθ =
(

eiθ
)n

= (cos θ + i sin θ)n .

Equating these two expressions, we are led to de Moivre’s Formula, named de Moivre’s Formula.

after Abraham de Moivre (1667-1754),

(cos θ + i sin θ)n = cos(nθ) + i sin(nθ). (1.30)

This formula is useful for deriving identities relating powers of sines or
cosines to simple functions. For example, if we take n = 2 in Equation
(1.30), we find

cos 2θ + i sin 2θ = (cos θ + i sin θ)2 = cos2 θ − sin2 θ + 2i sin θ cos θ.

Looking at the real and imaginary parts of this result leads to the well
known double angle identities

cos 2θ = cos2 θ − sin2 θ, sin 2θ = 2 sin θ cos θ.

Here we see elegant proofs of well
known trigonometric identities.

cos 2θ = cos2 θ − sin2 θ, (1.31)

sin 2θ = 2 sin θ cos θ,

cos2 θ =
1
2
(1 + cos 2θ),

sin2 θ =
1
2
(1− cos 2θ).

Replacing cos2 θ = 1− sin2 θ or sin2 θ = 1− cos2 θ leads to the half angle
formulae:

cos2 θ =
1
2
(1 + cos 2θ), sin2 θ =

1
2
(1− cos 2θ).

Trigonometric functions can be written
in terms of complex exponentials:

cos θ =
eiθ + e−iθ

2
,

sin θ =
eiθ − e−iθ

2i
.

We can also use Euler’s Formula to write sines and cosines in terms of
complex exponentials. We first note that due to the fact that the cosine is an
even function and the sine is an odd function, we have

e−iθ = cos θ − i sin θ.

Combining this with Euler’s Formula, we have that

cos θ =
eiθ + e−iθ

2
, sin θ =

eiθ − e−iθ

2i
.

Hyperbolic functions and trigonometric
functions are intimately related.

cos(ix) = cosh x,

sin(ix) = −i sinh x.

We finally note that there is a simple relationship between hyperbolic
functions and trigonometric functions. Recall that

cosh x =
ex + e−x

2
.

If we let x = iθ, then we have that cosh(iθ) = cos θ and cos(ix) = cosh x.
Similarly, we can show that sinh(iθ) = i sin θ and sin(ix) = −i sinh x.
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1.11 Binomial Series

Another series expansion which occurs often in examples and ap-
plications is the binomial expansion. This is simply the expansion of the
expression (a + b)p in powers of a and b. We will investigate this expan-
sion first for nonnegative integer powers p and then derive the expansion
for other values of p. While the binomial expansion can be obtained using
Taylor series, we will provide a more intuitive derivation to show thatThe binomial expansion is a special se-

ries expansion used to approximate ex-
pressions of the form (a + b)p for b� a,
or (1 + x)p for |x| � 1. (a + b)n =

n

∑
r=0

Cn
r an−rbr, (1.32)

where the Cn
r are called the binomial coefficients.

Lets list some of the common expansions for nonnegative integer powers.

(a + b)0 = 1

(a + b)1 = a + b

(a + b)2 = a2 + 2ab + b2

(a + b)3 = a3 + 3a2b + 3ab2 + b3

(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4

· · · (1.33)

We now look at the patterns of the terms in the expansions. First, we
note that each term consists of a product of a power of a and a power of
b. The powers of a are decreasing from n to 0 in the expansion of (a + b)n.
Similarly, the powers of b increase from 0 to n. The sums of the exponents in
each term is n. So, we can write the (k+ 1)st term in the expansion as an−kbk.
For example, in the expansion of (a + b)51 the 6th term is a51−5b5 = a46b5.
However, we do not yet know the numerical coefficients in the expansion.

Let’s list the coefficients for the above expansions.

n = 0 : 1
n = 1 : 1 1
n = 2 : 1 2 1
n = 3 : 1 3 3 1
n = 4 : 1 4 6 4 1

(1.34)

This pattern is the famous Pascal’s triangle.11 There are many interesting

11 Pascal’s triangle is named after Blaise
Pascal (1623-1662). While such configu-
rations of numbers were known earlier
in history, Pascal published them and
applied them to probability theory.

Pascal’s triangle has many unusual
properties and a variety of uses:

• Horizontal rows add to powers of 2.

• The horizontal rows are powers of 11

(1, 11, 121, 1331, etc.).

• Adding any two successive numbers
in the diagonal 1-3-6-10-15-21-28...
results in a perfect square.

• When the first number to the right of
the 1 in any row is a prime number,
all numbers in that row are divisible
by that prime number. The reader
can readily check this for the n = 5
and n = 7 rows.

• Sums along certain diagonals leads
to the Fibonacci sequence. These
diagonals are parallel to the line con-
necting the first 1 for n = 3 row and
the 2 in the n = 2 row.

features of this triangle. But we will first ask how each row can be generated.
We see that each row begins and ends with a one. The second term and

next to last term have a coefficient of n. Next we note that consecutive pairs
in each row can be added to obtain entries in the next row. For example, we
have for rows n = 2 and n = 3 that 1 + 2 = 3 and 2 + 1 = 3 :

n = 2 : 1 2 1
↘ ↙ ↘ ↙

n = 3 : 1 3 3 1
(1.35)
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With this in mind, we can generate the next several rows of our triangle.

n = 3 : 1 3 3 1
n = 4 : 1 4 6 4 1
n = 5 : 1 5 10 10 5 1
n = 6 : 1 6 15 20 15 6 1

(1.36)

So, we use the numbers in row n = 4 to generate entries in row n = 5 :
1 + 4 = 5, 4 + 6 = 10. We then use row n = 5 to get row n = 6, etc.

Of course, it would take a while to compute each row up to the desired n.
Fortunately, there is a simple expression for computing a specific coefficient.
Consider the kth term in the expansion of (a + b)n. Let r = k − 1, for
k = 1, . . . , n + 1. Then this term is of the form Cn

r an−rbr. We have seen that
the coefficients satisfy

Cn
r = Cn−1

r + Cn−1
r−1 .

Actually, the binomial coefficients, Cn
r , have been found to take a simple

form,

Cn
r =

n!
(n− r)!r!

≡
(

n
r

)
.

This is nothing other than the combinatoric symbol for determining how to
choose n objects r at a time. In the binomial expansions this makes sense.
We have to count the number of ways that we can arrange r products of b
with n− r products of a. There are n slots to place the b’s. For example, the
r = 2 case for n = 4 involves the six products: aabb, abab, abba, baab, baba,
and bbaa. Thus, it is natural to use this notation. Andreas Freiherr von Ettingshausen

(1796-1878) was a German mathemati-
cian and physicist who in 1826 intro-

duced the notation
(

n
r

)
. However,

the binomial coefficients were known by
the Hindus centuries beforehand.

So, we have found that

(a + b)n =
n

∑
r=0

(
n
r

)
an−rbr. (1.37)

Now consider the geometric series 1 + x + x2 + . . . . We have seen that
such this geometric series converges for |x| < 1, giving

1 + x + x2 + . . . =
1

1− x
.

But, 1
1−x = (1− x)−1. This is a binomial to a power, but the power is not an

integer.
It turns out that the coefficients of such a binomial expansion can be

written similar to the form in Equation(1.37). This example suggests that
our sum may no longer be finite. So, for p a real number, a = 1 and b = x,
we generalize Equation(1.37) as

(1 + x)p =
∞

∑
r=0

(
p
r

)
xr (1.38)

and see if the resulting series makes sense. However, we quickly run into
problems with the coefficients in the series.
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Consider the coefficient for r = 1 in an expansion of (1 + x)−1. This is
given by (

−1
1

)
=

(−1)!
(−1− 1)!1!

=
(−1)!
(−2)!1!

.

But what is (−1)!? By definition, it is

(−1)! = (−1)(−2)(−3) · · · .

This product does not seem to exist! But with a little care, we note that

(−1)!
(−2)!

=
(−1)(−2)!

(−2)!
= −1.

So, we need to be careful not to interpret the combinatorial coefficient liter-
ally. There are better ways to write the general binomial expansion. We can
write the general coefficient as(

p
r

)
=

p!
(p− r)!r!

=
p(p− 1) · · · (p− r + 1)(p− r)!

(p− r)!r!

=
p(p− 1) · · · (p− r + 1)

r!
. (1.39)

With this in mind we now state the theorem:

General Binomial Expansion

The general binomial expansion for (1 + x)p is a simple gener-
alization of Equation (1.37). For p real, we have the following
binomial series:

(1 + x)p =
∞

∑
r=0

p(p− 1) · · · (p− r + 1)
r!

xr, |x| < 1. (1.40)

Often in physics we only need the first few terms for the case that x � 1 :

(1 + x)p = 1 + px +
p(p− 1)

2
x2 + O(x3). (1.41)

Example 1.35. Approximate γ = 1√
1− v2

c2

for v� c.The factor γ =
(

1− v2

c2

)−1/2
is impor-

tant in special relativity. Namely, this
is the factor relating differences in time
and length measurements by observers
moving relative inertial frames. For ter-
restrial speeds, this gives an appropriate
approximation.

For v� c the first approximation is found inserting v/c = 0. Thus, one obtains
γ = 1. This is the Newtonian approximation and does not provide enough of an
approximation for terrestrial speeds. Thus, we need to expand γ in powers of v/c.

First, we rewrite γ as

γ =
1√

1− v2

c2

=

[
1−

(v
c

)2
]−1/2

.

Using the binomial expansion for p = −1/2, we have

γ ≈ 1 +
(
−1

2

)(
−v2

c2

)
= 1 +

v2

2c2 .
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Example 1.36. Time Dilation Example
The average speed of a large commercial jet airliner is about 500 mph. If you

flew for an hour (measured from the ground), then how much younger would you
be than if you had not taken the flight, assuming these reference frames obeyed the
postulates of special relativity?

This is the problem of time dilation. Let ∆t be the elapsed time in a stationary
reference frame on the ground and ∆τ be that in the frame of the moving plane.
Then from the Theory of Special Relativity these are related by

∆t = γ∆τ.

The time differences would then be

∆t− ∆τ = (1− γ−1)∆t

=

(
1−

√
1− v2

c2

)
∆t. (1.42)

The plane speed, 500 mph, is roughly 225 m/s and c = 3.00× 108 m/s. Since
V � c, we would need to use the binomial approximation to get a nonzero result.

∆t− ∆τ =

(
1−

√
1− v2

c2

)
∆t

=

(
1−

(
1− v2

2c2 + . . .
))

∆t

≈ v2

2c2 ∆t

=
(225)2

2(3.00× 108)2 (1 h) = 1.01 ns. (1.43)

Thus, you have aged one nanosecond less than if you did not take the flight.

Example 1.37. Small differences in large numbers: Compute f (R, h) =√
R2 + h2 − R for R = 6378.164 km and h = 1.0 m.
Inserting these values into a scientific calculator, one finds that

f (6378164, 1) =
√

63781642 + 1− 6378164 = 1× 10−7 m.

In some calculators one might obtain 0, in other calculators, or computer algebra
systems like Maple, one might obtain other answers. What answer do you get and
how accurate is your answer?

The problem with this computation is that R � h. Therefore, the computation
of f (R, h) depends on how many digits the computing device can handle. The best
way to get an answer is to use the binomial approximation. Writing h = Rx, or
x = h

R , we have

f (R, h) =
√

R2 + h2 − R

= R
√

1 + x2 − R

' R
[

1 +
1
2

x2
]
− R
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=
1
2

Rx2

=
1
2

h
R2 = 7.83926× 10−8 m. (1.44)

Of course, you should verify how many digits should be kept in reporting the result.

In the next examples, we generalize this example. Such general com-
putations appear in proofs involving general expansions without specific
numerical values given.

Example 1.38. Obtain an approximation to (a + b)p when a is much larger than
b, denoted by a� b.

If we neglect b then (a + b)p ' ap. How good of an approximation is this?
This is where it would be nice to know the order of the next term in the expansion.
Namely, what is the power of b/a of the first neglected term in this expansion?

In order to do this we first divide out a as

(a + b)p = ap
(

1 +
b
a

)p
.

Now we have a small parameter, b
a . According to what we have seen earlier, we can

use the binomial expansion to write(
1 +

b
a

)n
=

∞

∑
r=0

(
p
r

)(
b
a

)r
. (1.45)

Thus, we have a sum of terms involving powers of b
a . Since a � b, most of these

terms can be neglected. So, we can write(
1 +

b
a

)p
= 1 + p

b
a
+ O

((
b
a

)2
)

.

Here we used O(), big-Oh notation, to indicate the size of the first neglected term.
Summarizing, we have

(a + b)p = ap
(

1 +
b
a

)p

= ap

(
1 + p

b
a
+ O

((
b
a

)2
))

= ap + pap b
a
+ apO

((
b
a

)2
)

. (1.46)

Therefore, we can approximate (a + b)p ' ap + pbap−1, with an error on the order
of b2ap−2. Note that the order of the error does not include the constant factor from
the expansion. We could also use the approximation that (a + b)p ' ap, but it
is not typically good enough in applications because the error in this case is of the
order bap−1.

Example 1.39. Approximate f (x) = (a + x)p − ap for x � a.
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In an earlier example we computed f (R, h) =
√

R2 + h2 − R for R = 6378.164
km and h = 1.0 m. We can make use of the binomial expansion to determine
the behavior of similar functions in the form f (x) = (a + x)p − ap. Inserting the
binomial expression into f (x), we have as x

a → 0 that

f (x) = (a + x)p − ap

= ap
[(

1 +
x
a

)p
− 1
]

= ap
[

px
a

+ O
(( x

a

)2
)]

= O
( x

a

)
as

x
a
→ 0. (1.47)

This result might not be the approximation that we desire. So, we could back up
one step in the derivation to write a better approximation as

(a + x)p − ap = ap−1 px + O
(( x

a

)2
)

as
x
a
→ 0.

We now use this approximation to compute f (R, h) =
√

R2 + h2 − R for R =

6378.164 km and h = 1.0 m in the earlier example. We let a = R2, x = 1 and
p = 1

2 . Then, the leading order approximation would be of order

O
(( x

a

)2
)
= O

((
1

63781642

)2
)
∼ 2.4× 10−14.

Thus, we have √
63781642 + 1− 6378164 ≈ ap−1 px

where
ap−1 px = (63781642)−1/2(0.5)1 = 7.83926× 10−8.

This is the same result we had obtained before. However, we have also an estimate
of the size of the error and this might be useful in indicating how many digits we
should trust in the answer.

1.12 The Order of Sequences and Functions

Often we are interested in comparing the rates of convergence of
sequences or asymptotic behavior of functions. This is also useful in ap-
proximation theory. We begin with the comparison of sequences and intro-
duce big-Oh notation. We will then extend this to functions of continuous Big-Oh notation.

variables.
Let {an} and {bn} be two sequences. Then, if there are numbers N and

K (independent of N) such that∣∣∣∣ an

bn

∣∣∣∣ < K whenever n > N,

we say that an is of the order of bn. We write this as

an = O(bn) as n→ ∞

and say an is “big O” of bn.
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Example 1.40. Consider the sequences given by an = 2n+1
3n2+2 and bn = 1

n .
In this case, we consider the ratio∣∣∣∣ an

bn

∣∣∣∣ =
∣∣∣∣∣

2n+1
3n2+2

1
n

∣∣∣∣∣ =
∣∣∣∣2n2 + n

3n2 + 2

∣∣∣∣ .

We want to find a bound on the last expression as n gets large. We divide the
numerator and denominator by n2 and find that∣∣∣∣ an

bn

∣∣∣∣ = ∣∣∣∣ 2 + 1/n
3 + 2/n2

∣∣∣∣ .

Further dividing out a 2/3, we find∣∣∣∣ an

bn

∣∣∣∣ = 2
3

∣∣∣∣ 1 + 1/2n
1 + 2/3n2

∣∣∣∣ .

The last expression is largest for n = 3. This givesConsidering the function f (x) = 2x2+x
3x2+2 ,

setting f ′(x) = 0, we find the maximum
is actually at x = 1

3 (4 +
√

22) ≈ 2.897.
Also, inserting the first few
integers yields the sequence
{0.6000, 0.7143, 0.7241, 0.7200, 0.7143, . . .}.
In both cases this supports choosing
n = 3 in the example.

∣∣∣∣ an

bn

∣∣∣∣ = 2
3

∣∣∣∣ 1 + 1/2n
1 + 2/3n2

∣∣∣∣ ≤ 2
3

∣∣∣∣ 1 + 1/6
1 + 2/27

∣∣∣∣ = 21
29

.

Thus, for n > 3, we have that ∣∣∣∣ an

bn

∣∣∣∣ ≤ 21
29

< 1 ≡ K.

We then conclude from the definition of big-oh that

an = O(bn) = O
(

1
n

)
.

In practice, one is often given a sequence like an, but the second simpler
sequence needs to be found by looking at the large n behavior of an.

Referring to the last example, we are given an = 2n+1
3n2+2 . We look at the

large n behavior. The numerator behaves like 2n and the denominator be-
haves like 3n2. Thus, an = 2n+1

3n2+2 ∼
2n
3n2 = 2

3n for large n. Therefore, we
say that an = O( 1

n ) for large n. Note that we are only interested in the
n-dependence and not the multiplicative constant since 1

n and 2
3n have the

same growth rate.
In a similar way, we can compare functions. We modify our definition of

big-Oh for functions of a continuous variable: f (x) is of the order of g(x), or
f (x) = O(g(x)), as x → x0 if

lim
x→x0

∣∣∣∣ f (x)
g(x)

∣∣∣∣ < K

for some finite nonzero constant K independent of x0.

Example 1.41. Show that

cos x− 1 +
x2

2
= O(x4) as x→ 0.
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This should be apparent from the Taylor series expansion for cos x,

cos x = 1− x2

2
+ O(x4) as x → 0.

However, we will show that cos x− 1+ x2

2 is of the order of O(x4) using the above
definition.

We need to compute

lim
x→0

∣∣∣∣∣cos x− 1 + x2

2
x4

∣∣∣∣∣ .

The numerator and denominator separately go to zero, so we have an indeterminate
form. This suggests that we need to apply L’Hopital’s Rule. (See Theorem 1.3.) In
fact, we apply it several times to find that

lim
x→0

∣∣∣∣∣cos x− 1 + x2

2
x4

∣∣∣∣∣ = lim
x→0

∣∣∣∣− sin x + x
4x3

∣∣∣∣
= lim

x→0

∣∣∣∣− cos x + 1
12x2

∣∣∣∣
= lim

x→0

∣∣∣∣ sin x
24x

∣∣∣∣ = 1
24

.

Thus, for any number K > 1
24 , we have that

lim
x→0

∣∣∣∣∣cos x− 1 + x2

2
x4

∣∣∣∣∣ < K.

We conclude that

cos x− 1 +
x2

2
= O(x4) as x→ 0.

Example 1.42. Determine the order of f (x) = (x3 − x)1/3 − x as x → ∞. We
can use a binomial expansion to write the first term in powers of x. However, since
x → ∞, we want to write f (x) in powers of 1

x , so that we can neglect higher order
powers. We can do this by first factoring out the x3 :

(x3 − x)1/3 − x = x
(

1− 1
x2

)1/3
− x

= x
(

1− 1
3x2 + O

(
1
x4

))
− x

= − 1
3x

+ O
(

1
x3

)
. (1.48)

Now we can see from the first term on the right that (x3 − x)1/3 − x = O
(

1
x

)
as

x → ∞.
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Problems

1. For those sequences that converge, find the limit limn→∞ an.

a. an = n2+1
n3+1 .

b. an = 3n+1
n+2 .

c. an =
( 3

n
)1/n

.

d. an = 2n2+4n3

n3+5
√

2+n6 .

e. an = n ln
(

1 + 1
n

)
.

f. an = n sin
(

1
n

)
.

g. an = (2n+3)!
(n+1)! .

2. Find the sum for each of the series:

a. ∑∞
n=0

(−1)n3
4n .

b. ∑∞
n=2

2
5n .

c. ∑∞
n=0

(
5

2n + 1
3n

)
.

d. ∑∞
n=1

3
n(n+3) .

3. Determine if the following converge, or diverge, using one of the con-
vergence tests. If the series converges, is it absolute or conditional?

a. ∑∞
n=1

n+4
2n3+1 .

b. ∑∞
n=1

sin n
n2 .

c. ∑∞
n=1

( n
n+1
)n2

.

d. ∑∞
n=1(−1)n n−1

2n2−3 .

e. ∑∞
n=1

ln n
n .

f. ∑∞
n=1

100n

n200 .

g. ∑∞
n=1(−1)n n

n+3 .

h. ∑∞
n=1(−1)n

√
5n

n+1 .

4. Do the following:

a. Compute: limn→∞ n ln
(
1− 3

n
)

.

b. Use L’Hopital’s Rule to evaluate L = limx→∞

(
1− 4

x

)x
.

[Hint: Consider ln L.]

c. Determine the convergence of ∑∞
n=1

( n
3n+2

)n2
.

d. Sum the series ∑∞
n=1

[
tan−1 n− tan−1(n + 1)

]
by first writing the

Nth partial sum and then computing limN→∞ sN .

5. Consider the sum ∑∞
n=1

1
(n+2)(n+1) .
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a. Use an appropriate convergence test to show that this series con-
verges.

b. Verify that

∞

∑
n=1

1
(n + 2)(n + 1)

=
∞

∑
n=1

(
n + 1
n + 2

− n
n + 1

)
.

c. Find the nth partial sum of the series ∑∞
n=1

(
n+1
n+2 −

n
n+1

)
and use

it to determine the sum of the resulting telescoping series.

6. Recall that the alternating harmonic series converges conditionally.

a. From the Taylor series expansion for f (x) = ln(1 + x), inserting
x = 1 gives the alternating harmonic series. What is the sum of the
alternating harmonic series?

b Since the alternating harmonic series does not converge absolutely,
then a rearrangement of the terms in the series will result in se-
ries whose sums vary. One such rearrangement in alternating p
positive terms and n negative terms leads to the following sum12: 12 This is discussed by Lawrence H. Rid-

dle in the Kenyon Math. Quarterly, 1(2),
6-21.1

2
ln

4p
n

=

(
1 +

1
3
+ · · ·+ 1

2p− 1

)
︸ ︷︷ ︸

p terms

−
(

1
2
+

1
4
+ · · ·+ 1

2n

)
︸ ︷︷ ︸

n terms

+

(
1

2p + 1
+ · · ·+ 1

4p− 1

)
︸ ︷︷ ︸

p terms

−
(

1
2n + 2

+ · · ·+ 1
4n

)
︸ ︷︷ ︸

n terms

+ · · · .

Find rearrangements of the alternating harmonic series to give the
following sums; i.e., determine p and n for the given expression
and write down the above series explicitly; i.e, determine p and n
leading to the following sums.

i. 5
2 ln 2.

ii. ln 8.

iii. 0.

iv. A sum that is close to π.

7. Determine the radius and interval of convergence of the following infi-
nite series:

a. ∑∞
n=1(−1)n (x−1)n

n .

b. ∑∞
n=1

xn

2nn! .

c. ∑∞
n=1

1
n
( x

5
)n

d. ∑∞
n=1(−1)n xn

√
n .

8. Find the Taylor series centered at x = a and its corresponding radius of
convergence for the given function. In most cases, you need not employ the
direct method of computation of the Taylor coefficients.
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a. f (x) = sinh x, a = 0.

b. f (x) =
√

1 + x, a = 0.

c. f (x) = xex, a = 1.

d. f (x) = x−1
2+x , a = 1.

9. Test for pointwise and uniform convergence on the given set. [The Weier-
straß M-Test might be helpful.]

a. f (x) = ∑∞
n=1

ln nx
n2 , x ∈ [1, 2].

b. f (x) = ∑∞
n=1

1
3n cos x

2n on R.

10. Consider Gregory’s expansion

tan−1 x = x− x3

3
+

x5

5
− · · · =

∞

∑
k=0

(−1)k

2k + 1
x2k+1.

a. Derive Gregory’s expansion using the definition

tan−1 x =
∫ x

0

dt
1 + t2 ,

expanding the integrand in a Maclaurin series, and integrating the
resulting series term by term.

b. From this result, derive Gregory’s series for π by inserting an ap-
propriate value for x in the series expansion for tan−1 x.

11. Use deMoivre’s Theorem to write sin3 θ in terms of sin θ and sin 3θ.
[Hint: Focus on the imaginary part of e3iθ .]

12. Evaluate the following expressions at the given point. Use your calcula-
tor and your computer (such as Maple). Then use series expansions to find
an approximation to the value of the expression to as many places as you
trust.

a. 1√
1+x3 − cos x2 at x = 0.015.

b. ln
√

1+x
1−x − tan x at x = 0.0015.

c. f (x) = 1√
1+2x2 − 1 + x2 at x = 5.00× 10−3.

d. f (R, h) = R−
√

R2 + h2 for R = 1.374× 103 km and h = 1.00 m.

e. f (x) = 1− 1√
1−x

for x = 2.5× 10−13.

13. Determine the order, O(xp), of the following functions. You may need
to use series expansions in powers of x when x → 0, or series expansions in
powers of 1/x when x → ∞.

a.
√

x(1− x) as x → 0.

b. x5/4

1−cos x as x → 0.

c. x
x2−1 as x → ∞.

d.
√

x2 + x− x as x → ∞.



2
Fourier Trigonometric Series

"Profound study of nature is the most fertile source of mathematical discoveries."
Joseph Fourier (1768-1830)

2.1 Introduction to Fourier Series

As noted in the Introduction, Joseph
Fourier (1768-1830) and others studied
trigonometric series solutions of the heat
and wave equations.
The temperature, u(x, t), of a one dimen-
sional rod of length L satisfies the heat
equation,

∂u
∂t

= k
∂2u
∂x2 .

The general solution, which satisfies the
conditions u(0, t) = 0 and u(L, t) = 0, is
given by

u(x, t) =
∞

∑
n=0

bn sin
nπx

L
e−n2π2kt/L2

.

If the initial temperature is given by
u(x, 0) = f (x), one has to satisfy the con-
dition

f (x) =
∞

∑
n=0

bn sin
nπx

L
.

The height, u(x, t), of a one dimensional
vibrating string of length L satisfies the
wave equation,

∂2u
∂t2 = c2 ∂2u

∂x2 .

The general solution, which satisfies the
fixed ends u(0, t) = 0 and u(L, t) = 0, is
given by

u(x, t) =
∞

∑
n=1

An cos
nπct

L
sin

nπx
L

+Bn sin
nπct

L
sin

nπx
L

.

If the initial profile and velocity are
given by u(x, 0) = f (x) and ut(x, 0) =
g(x), respectively, then one has to satisfy
the conditions

f (x) = u(x, 0) =
∞

∑
n=1

An sin
nπx

L

and

g(x) = ut(x, 0) =
∞

∑
n=1

nπc
L

Bn sin
nπx

L
.

We will now turn to the study of trigonometric series. You have seen
that functions have series representations as expansions in powers of x, or
x − a, in the form of Maclaurin and Taylor series. Recall that the Taylor
series expansion is given by

f (x) =
∞

∑
n=0

cn(x− a)n,

where the expansion coefficients are determined as

cn =
f (n)(a)

n!
.

From the study of the heat equation and wave equation, Fourier showed
that there are infinite series expansions over other functions, such as sine
functions. We now turn to such expansions and in the next chapter we will
find out that expansions over special sets of functions are not uncommon in
physics. But, first we turn to Fourier trigonometric series.

We will begin with the study of the Fourier trigonometric series expan-
sion

f (x) =
a0

2
+

∞

∑
n=1

an cos
nπx

L
+ bn sin

nπx
L

.

We will find expressions useful for determining the Fourier coefficients
{an, bn} given a function f (x) defined on [−L, L]. We will also see if the
resulting infinite series reproduces f (x). However, we first begin with some
basic ideas involving simple sums of sinusoidal functions.

There is a natural appearance of such sums over sinusoidal functions in
music. A pure note can be represented as

y(t) = A sin(2π f t),
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where A is the amplitude, f is the frequency in Hertz (Hz), and t is time in
seconds. The amplitude is related to the volume of the sound. The larger
the amplitude, the louder the sound. In Figure 2.1 we show plots of two
such tones with f = 2 Hz in the top plot and f = 5 Hz in the bottom one.

0 1 2 3

−2

0

2

t

y(t)

(a) y(t) = 2 sin(4π f t)

0 1 2 3

−2

0

2

t

(b) y(t) = sin(10π f t)

y(t)

Figure 2.1: Plots of y(t) = A sin(2π f t)
on [0, 5] for f = 2 Hz and f = 5 Hz.

In these plots you should notice the difference due to the amplitudes and
the frequencies. You can easily reproduce these plots and others in your
favorite plotting utility.

As an aside, you should be cautious when plotting functions, or sampling
data. The plots you get might not be what you expect, even for a simple sine
function. In Figure 2.2 we show four plots of the function y(t) = 2 sin(4πt).
In the top left, you see a proper rendering of this function. However, if you
use a different number of points to plot this function, the results may be sur-
prising. In this example we show what happens if you use N = 200, 100, 101
points instead of the 201 points used in the first plot. Such disparities are
not only possible when plotting functions, but are also present when collect-
ing data. Typically, when you sample a set of data, you only gather a finite
amount of information at a fixed rate. This could happen when getting data
on ocean wave heights, digitizing music, and other audio to put on your
computer, or any other process when you attempt to analyze a continuous
signal.

Figure 2.2: Problems can occur while
plotting. Here we plot the func-
tion y(t) = 2 sin 4πt using N =
201, 200, 100, 101 points.
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y(t)=2 sin(4 π t) for N=201 points
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y(t)=2 sin(4 π t) for N=200 points
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y(t)=2 sin(4 π t) for N=100 points

Time

y(
t)
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4
y(t)=2 sin(4 π t) for N=101 points

Time

y(
t)

Next, we consider what happens when we add several pure tones. After
all, most of the sounds that we hear are, in fact, a combination of pure tones
with different amplitudes and frequencies. In Figure 2.3 we see what hap-
pens when we add several sinusoids. Note that as one adds more and more
tones with different characteristics, the resulting signal gets more compli-
cated. However, we still have a function of time. In this chapter we will ask,
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“Given a function f (t), can we find a set of sinusoidal functions whose sum
converges to f (t)?”

0 1 2 3

−2

0

2

t

y(t)

(a) Sum of signals with frequencies

f = 2 Hz and f = 5 Hz.

0 1 2 3

−2

0

2

t

(b) Sum of signals with frequencies

f = 2 Hz, f = 5 Hz, and f = 8 Hz.

y(t)

Figure 2.3: Superposition of several si-
nusoids.

Looking at the superpositions in Figure 2.3, we see that the sums yield
functions that appear to be periodic. This is not unexpected. We recall that a
periodic function is one in which the function values repeat over the domain
of the function. The length of the smallest part of the domain which repeats
is called the period. We can define this more precisely: A function is said to
be periodic with period T if f (t + T) = f (t) for all t and the smallest such
positive number T is called the period.

For example, we consider the functions used in Figure 2.3. We began with
y(t) = 2 sin(4πt). Recall from your first studies of trigonometric functions
that one can determine the period by dividing the coefficient of t into 2π to
get the period. In this case we have

T =
2π

4π
=

1
2

.

Looking at the top plot in Figure 2.1 we can verify this result. (You can
count the full number of cycles in the graph and divide this into the total
time to get a more accurate value of the period.)

In general, if y(t) = A sin(2π f t), the period is found as

T =
2π

2π f
=

1
f

.

Of course, this result makes sense, as the unit of frequency, the hertz, is also
defined as s−1, or cycles per second.

Returning to Figure 2.3, the functions y(t) = 2 sin(4πt), y(t) = sin(10πt),
and y(t) = 0.5 sin(16πt) have periods of 0.5s, 0.2s, and 0.125s, respectively.
Each superposition in Figure 2.3 retains a period that is the least common
multiple of the periods of the signals added. For both plots, this is 1.0 s
= 2(0.5) s = 5(.2) s = 8(.125) s.

Our goal will be to start with a function and then determine the ampli-
tudes of the simple sinusoids needed to sum to that function. We will see
that this might involve an infinite number of such terms. Thus, we will be
studying an infinite series of sinusoidal functions.

Secondly, we will find that using just sine functions will not be enough
either. This is because we can add sinusoidal functions that do not neces-
sarily peak at the same time. We will consider two signals that originate
at different times. This is similar to when your music teacher would make
sections of the class sing a song like “Row, Row, Row Your Boat” starting at
slightly different times.

0 1 2 3

−2

0

2

t

y(t)

(a) Plot of each function.

0 1 2 3

−2

0

2

t

(b) Plot of the sum of the functions.

y(t)

Figure 2.4: Plot of the functions y(t) =
2 sin(4πt) and y(t) = 2 sin(4πt + 7π/8)
and their sum.

We can easily add shifted sine functions. In Figure 2.4 we show the
functions y(t) = 2 sin(4πt) and y(t) = 2 sin(4πt + 7π/8) and their sum.
Note that this shifted sine function can be written as y(t) = 2 sin(4π(t +
7/32)). Thus, this corresponds to a time shift of −7/32.

So, we should account for shifted sine functions in the general sum. Of
course, we would then need to determine the unknown time shift as well
as the amplitudes of the sinusoidal functions that make up the signal, f (t).
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While this is one approach that some researchers use to analyze signals,
there is a more common approach. This results from another reworking of
the shifted function.We should note that the form in the

lower plot of Figure 2.4 looks like a sim-
ple sinusoidal function for a reason. Let

y1(t) = 2 sin(4πt),

y2(t) = 2 sin(4πt + 7π/8).

Then,

y1 + y2 = 2 sin(4πt + 7π/8) + 2 sin(4πt)

= 2[sin(4πt + 7π/8) + sin(4πt)]

= 4 cos
7π

16
sin
(

4πt +
7π

16

)
.

Consider the general shifted function

y(t) = A sin(2π f t + φ). (2.1)

Note that 2π f t + φ is called the phase of the sine function and φ is called
the phase shift. We can use the trigonometric identity (2.9) for the sine of
the sum of two angles1 to obtain

1 Recall the identities (2.9) and (2.10)

sin(x + y) = sin x cos y + sin y cos x,

cos(x + y) = cos x cos y− sin x sin y.

y(t) = A sin(2π f t + φ)

= A sin(φ) cos(2π f t) + A cos(φ) sin(2π f t). (2.2)

Defining a = A sin(φ) and b = A cos(φ), we can rewrite this as

y(t) = a cos(2π f t) + b sin(2π f t).

Thus, we see that the signal in Equation (2.1) is a sum of sine and cosine
functions with the same frequency and different amplitudes. If we can find
a and b, then we can easily determine A and φ:

A =
√

a2 + b2, tan φ =
b
a

.

We are now in a position to state our goal:

Goal - Fourier Analysis

Given a signal f (t), we would like to determine its frequency content by
finding out what combinations of sines and cosines of varying frequencies
and amplitudes will sum to the given function. This is called Fourier
Analysis.

2.2 Fourier Trigonometric Series

As we have seen in the last section, we are interested in finding
representations of functions in terms of sines and cosines. Given a function
f (x) we seek a representation in the form

f (x) ∼ a0

2
+

∞

∑
n=1

[an cos nx + bn sin nx] . (2.3)

Notice that we have opted to drop the references to the time-frequency form
of the phase. This will lead to a simpler discussion for now and one can
always make the transformation nx = 2π fnt when applying these ideas to
applications.

The series representation in Equation (2.3) is called a Fourier trigonomet-
ric series. We will simply refer to this as a Fourier series for now. The set
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of constants a0, an, bn, n = 1, 2, . . . are called the Fourier coefficients. The
constant term is chosen in this form to make later computations simpler,
though some other authors choose to write the constant term as a0. Our
goal is to find the Fourier series representation given f (x). Having found
the Fourier series representation, we will be interested in determining when
the Fourier series converges and to what function it converges.

0 10 20

0.5

1

1.5

t

y(t)

(a) Plot of function f (t).

0 10 20

0.5

1

1.5

t

(b) Periodic extension of f (t).

y(t)

Figure 2.5: Plot of the function f (t) de-
fined on [0, 2π] and its periodic exten-
sion.

From our discussion in the last section, we see that The Fourier series is
periodic. The periods of cos nx and sin nx are 2π

n . Thus, the largest period,
T = 2π, comes from the n = 1 terms and the Fourier series has period 2π.
This means that the series should be able to represent functions that are
periodic of period 2π.

While this appears restrictive, we could also consider functions that are
defined over one period. In Figure 2.5 we show a function defined on [0, 2π].
In the same figure, we show its periodic extension. These are just copies of
the original function shifted by the period and glued together. The extension
can now be represented by a Fourier series and restricting the Fourier series
to [0, 2π] will give a representation of the original function. Therefore, we
will first consider Fourier series representations of functions defined on this
interval. Note that we could just as easily considered functions defined on
[−π, π] or any interval of length 2π. We will consider more general intervals
later in the chapter.

Fourier Coefficients

Theorem 2.1. The Fourier series representation of f (x) defined on [0, 2π], when
it exists, is given by Equation (2.3) with Fourier coefficients

an =
1
π

∫ 2π

0
f (x) cos nx dx, n = 0, 1, 2, . . . ,

bn =
1
π

∫ 2π

0
f (x) sin nx dx, n = 1, 2, . . . . (2.4)

These expressions for the Fourier coefficients are obtained by considering
special integrations of the Fourier series. We will now derive the an integrals
in Equation (2.4).

We begin with the computation of a0. Integrating the Fourier series term
by term in Equation (2.3), we have∫ 2π

0
f (x) dx =

∫ 2π

0

a0

2
dx +

∫ 2π

0

∞

∑
n=1

[an cos nx + bn sin nx] dx. (2.5)

We will assume that we can integrate the infinite sum term by term. Then Evaluating the integral of an infinite se-
ries by integrating term by term depends
on the convergence properties of the se-
ries.

we will need to compute∫ 2π

0

a0

2
dx =

a0

2
(2π) = πa0,∫ 2π

0
cos nx dx =

[
sin nx

n

]2π

0
= 0,

∫ 2π

0
sin nx dx =

[
− cos nx

n

]2π

0
= 0. (2.6)
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From these results we see that only one term in the integrated sum does not
vanish, leaving ∫ 2π

0
f (x) dx = πa0.

This confirms the value for a0.2

2 Note that a0
2 is the average of f (x) over

the interval [0, 2π]. Recall from the first
semester of calculus, that the average of
a function defined on [a, b] is given by

fave =
1

b− a

∫ b

a
f (x) dx.

For f (x) defined on [0, 2π], we have

fave =
1

2π

∫ 2π

0
f (x) dx =

a0

2
.

Next, we will find the expression for an. We multiply the Fourier series in
Equation (2.3) by cos mx for some positive integer m. This is like multiplying
by cos 2x, cos 5x, etc. We are multiplying by all possible cos mx functions
for different integers m all at the same time. We will see that this will allow
us to solve for the an’s.

We find the integrated sum of the series times cos mx is given by∫ 2π

0
f (x) cos mx dx =

∫ 2π

0

a0

2
cos mx dx

+
∫ 2π

0

∞

∑
n=1

[an cos nx + bn sin nx] cos mx dx.

(2.7)

Integrating term by term, the right side becomes∫ 2π

0
f (x) cos mx dx =

a0

2

∫ 2π

0
cos mx dx

+
∞

∑
n=1

[
an

∫ 2π

0
cos nx cos mx dx + bn

∫ 2π

0
sin nx cos mx dx

]
.

(2.8)

We have already established that
∫ 2π

0 cos mx dx = 0, which implies that the
first term vanishes.

Next we need to compute integrals of products of sines and cosines. This
requires that we make use of some of the well known trigonometric. For
quick reference, we list these here.

Useful Trigonometric Identities

sin(x± y) = sin x cos y± sin y cos x (2.9)

cos(x± y) = cos x cos y∓ sin x sin y (2.10)

sin2 x =
1
2
(1− cos 2x) (2.11)

cos2 x =
1
2
(1 + cos 2x) (2.12)

sin x sin y =
1
2
(cos(x− y)− cos(x + y)) (2.13)

cos x cos y =
1
2
(cos(x + y) + cos(x− y)) (2.14)

sin x cos y =
1
2
(sin(x + y) + sin(x− y)) (2.15)

We first want to evaluate
∫ 2π

0 cos nx cos mx dx. We do this using the prod-
uct identity (2.14). In case you forgot how to derive this identity, we will
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quickly review the derivation. Using the identities (2.10), we have

cos(A + B) = cos A cos B− sin A sin B,

cos(A− B) = cos A cos B + sin A sin B.

Adding these equations,

2 cos A cos B = cos(A + B) + cos(A− B).

We can use this result with A = mx and B = nx to complete the integra-
tion. We have∫ 2π

0
cos nx cos mx dx =

1
2

∫ 2π

0
[cos(m + n)x + cos(m− n)x] dx

=
1
2

[
sin(m + n)x

m + n
+

sin(m− n)x
m− n

]2π

0
= 0. (2.16)

There is one caveat when doing such integrals. What if one of the de-
nominators m± n vanishes? For this problem, m + n 6= 0, as both m and n
are positive integers. However, it is possible for m = n. This means that the
vanishing of the integral can only happen when m 6= n. So, what can we do
about the m = n case? One way is to start from scratch with our integration.
(Another way is to compute the limit as n approaches m in our result and
use L’Hopital’s Rule. Try it!)

For n = m we have to compute
∫ 2π

0 cos2 mx dx. This can also be handled
using a trigonometric identity. Using the half angle formula, Equation (2.12),
with θ = mx, we find∫ 2π

0
cos2 mx dx =

1
2

∫ 2π

0
(1 + cos 2mx) dx

=
1
2

[
x +

1
2m

sin 2mx
]2π

0

=
1
2
(2π) = π. (2.17)

To summarize, we have shown that

∫ 2π

0
cos nx cos mx dx =

{
0, m 6= n,
π, m = n.

(2.18)

This holds true for m, n = 0, 1, . . . . [Why did we include m, n = 0?] When
we have such a set of functions, they are said to be an orthogonal set over the
integration interval. A set of (real) functions {φn(x)} is said to be orthogonal
on [a, b] if

∫ b
a φn(x)φm(x) dx = 0 when n 6= m. Furthermore, if we also have

that
∫ b

a φ2
n(x) dx = 1, these functions are called orthonormal. Definition of an orthogonal set of func-

tions and orthonormal functions.The set of functions {cos nx}∞
n=0 is orthogonal on [0, 2π]. Actually, the set

is orthogonal on any interval of length 2π. We can make them orthonormal
by dividing each function by

√
π, as indicated by Equation (2.17). This is

sometimes referred to as normalization of the set of functions.
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The notion of orthogonality is actually a generalization of the orthogonal-
ity of vectors in finite dimensional vector spaces. The integral

∫ b
a f (x) f (x) dx

is the generalization of the dot product, and is called the scalar product of
f (x) and g(x), which are thought of as vectors in an infinite dimensional
vector space spanned by a set of orthogonal functions. We will return to
these ideas in the next chapter.

Returning to the integrals in equation (2.8), we still have to evaluate∫ 2π
0 sin nx cos mx dx. We can use the trigonometric identity involving prod-

ucts of sines and cosines, Equation (2.15). Setting A = nx and B = mx, weIdentity (2.15) is found from adding the
identities

sin(A + B) = sin A cos B + sin B cos A,

sin(A− B) = sin A cos B− sin B cos A.

find that∫ 2π

0
sin nx cos mx dx =

1
2

∫ 2π

0
[sin(n + m)x + sin(n−m)x] dx

=
1
2

[
− cos(n + m)x

n + m
+
− cos(n−m)x

n−m

]2π

0

= (−1 + 1) + (−1 + 1) = 0. (2.19)

So, ∫ 2π

0
sin nx cos mx dx = 0. (2.20)

For these integrals we should also be careful about setting n = m. In this
special case, we have the integrals∫ 2π

0
sin mx cos mx dx =

1
2

∫ 2π

0
sin 2mx dx =

1
2

[
− cos 2mx

2m

]2π

0
= 0.

Finally, we can finish evaluating the expression in Equation (2.8). We
have determined that all but one integral vanishes. In that case, n = m. This
leaves us with ∫ 2π

0
f (x) cos mx dx = amπ.

Solving for am gives

am =
1
π

∫ 2π

0
f (x) cos mx dx.

Since this is true for all m = 1, 2, . . . , we have proven this part of the theorem.
The only part left is finding the bn’s This will be left as an exercise for the
reader.

We now consider examples of finding Fourier coefficients for given func-
tions. In all of these cases, we define f (x) on [0, 2π].

Example 2.1. f (x) = 3 cos 2x, x ∈ [0, 2π].
We first compute the integrals for the Fourier coefficients:

a0 =
1
π

∫ 2π

0
3 cos 2x dx = 0,

an =
1
π

∫ 2π

0
3 cos 2x cos nx dx = 0, n 6= 2,

a2 =
1
π

∫ 2π

0
3 cos2 2x dx = 3,

bn =
1
π

∫ 2π

0
3 cos 2x sin nx dx = 0, ∀n.



fourier trigonometric series 45

The integrals for a0, an, n 6= 2, and bn are the result of orthogonality. For a2, the
integral can be computed as follows:

a2 =
1
π

∫ 2π

0
3 cos2 2x dx

=
3

2π

∫ 2π

0
[1 + cos 4x] dx

=
3

2π

x +
1
4

sin 4x︸ ︷︷ ︸
This term vanishes!


2π

0

= 3. (2.21)

Therefore, we have that the only nonvanishing coefficient is a2 = 3. So there is
one term and f (x) = 3 cos 2x.

Well, we should have known the answer to the last example before doing
all of those integrals. If we have a function expressed simply in terms of
sums of simple sines and cosines, then it should be easy to write the Fourier
coefficients without much work. This is seen by writing out the Fourier
series,

f (x) ∼ a0

2
+

∞

∑
n=1

[an cos nx + bn sin nx] .

=
a0

2
+ a1 cos x + b1 sin x ++a2 cos 2x + b2 sin 2x + . . . . (2.22)

For the last problem, f (x) = 3 cos 2x. Comparing this to the expanded
Fourier series, one can immediately read off the Fourier coefficients without
doing any integration. In the next example, we emphasize this point.

Example 2.2. f (x) = sin2 x, x ∈ [0, 2π].
We could determine the Fourier coefficients by integrating as in the last example.

However, it is easier to use trigonometric identities. We know that

sin2 x =
1
2
(1− cos 2x) =

1
2
− 1

2
cos 2x.

There are no sine terms, so bn = 0, n = 1, 2, . . . . There is a constant term, implying
a0/2 = 1/2. So, a0 = 1. There is a cos 2x term, corresponding to n = 2, so
a2 = − 1

2 . That leaves an = 0 for n 6= 0, 2. So, a0 = 1, a2 = − 1
2 , and all other

Fourier coefficients vanish.

Example 2.3. f (x) =

{
1, 0 < x < π,
−1, π < x < 2π,

.
π 2π

−2

−1

0

1

2

x

Figure 2.6: Plot of discontinuous func-
tion in Example 2.3.

This example will take a little more work. We cannot bypass evaluating any
integrals this time. As seen in Figure 2.6, this function is discontinuous. So, we
will break up any integration into two integrals, one over [0, π] and the other over
[π, 2π].

a0 =
1
π

∫ 2π

0
f (x) dx
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=
1
π

∫ π

0
dx +

1
π

∫ 2π

π
(−1) dx

=
1
π
(π) +

1
π
(−2π + π) = 0. (2.23)

an =
1
π

∫ 2π

0
f (x) cos nx dx

=
1
π

[∫ π

0
cos nx dx−

∫ 2π

π
cos nx dx

]
=

1
π

[(
1
n

sin nx
)π

0
−
(

1
n

sin nx
)2π

π

]
= 0. (2.24)

bn =
1
π

∫ 2π

0
f (x) sin nx dx

=
1
π

[∫ π

0
sin nx dx−

∫ 2π

π
sin nx dx

]
=

1
π

[(
− 1

n
cos nx

)π

0
+

(
1
n

cos nx
)2π

π

]

=
1
π

[
− 1

n
cos nπ +

1
n
+

1
n
− 1

n
cos nπ

]
=

2
nπ

(1− cos nπ). (2.25)

We have found the Fourier coefficients for this function. Before inserting them
into the Fourier series (2.3), we note that cos nπ = (−1)n. Therefore,

Often we see expressions involving
cos nπ = (−1)n and 1 ± cos nπ = 1 ±
(−1)n. This is an example showing how
to re-index series containing cos nπ.

1− cos nπ =

{
0, n even,
2, n odd.

(2.26)

So, half of the bn’s are zero. While we could write the Fourier series representation
as

f (x) ∼ 4
π

∞

∑
n=1
n odd

1
n

sin nx,

we could let n = 2k− 1 in order to capture the odd numbers only. The answer can
be written as

f (x) =
4
π

∞

∑
k=1

sin(2k− 1)x
2k− 1

,

Having determined the Fourier representation of a given function, we
would like to know if the infinite series can be summed; i.e., does the series
converge? Does it converge to f (x)? We will discuss this question later in
the chapter after we generalize the Fourier series to intervals other than for
x ∈ [0, 2π].
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2.3 Fourier Series over Other Intervals

In many applications we are interested in determining Fourier series
representations of functions defined on intervals other than [0, 2π]. In this
section, we will determine the form of the series expansion and the Fourier
coefficients in these cases.

The most general type of interval is given as [a, b]. However, this often
is too general. More common intervals are of the form [−π, π], [0, L], or
[−L/2, L/2]. The simplest generalization is to the interval [0, L]. Such in-
tervals arise often in applications. For example, for the problem of a one-
dimensional string of length L, we set up the axes with the left end at x = 0
and the right end at x = L. Similarly for the temperature distribution along
a one dimensional rod of length L we set the interval to x ∈ [0, 2π]. Such
problems naturally lead to the study of Fourier series on intervals of length
L. We will see later that symmetric intervals, [−a, a], are also useful.

Given an interval [0, L], we could apply a transformation to an interval
of length 2π by simply rescaling the interval. Then we could apply this
transformation to the Fourier series representation to obtain an equivalent
one useful for functions defined on [0, L].

t
0 L

x
0 2π

Figure 2.7: A sketch of the transforma-
tion between intervals x ∈ [0, 2π] and
t ∈ [0, L].

We define x ∈ [0, 2π] and t ∈ [0, L]. A linear transformation relating these
intervals is simply x = 2πt

L as shown in Figure 2.7. So, t = 0 maps to x = 0
and t = L maps to x = 2π. Furthermore, this transformation maps f (x) to
a new function g(t) = f (x(t)), which is defined on [0, L]. We will determine
the Fourier series representation of this function using the representation
for f (x) from the last section.

Recall the form of the Fourier representation for f (x) in Equation (2.3):

f (x) ∼ a0

2
+

∞

∑
n=1

[an cos nx + bn sin nx] . (2.27)

Inserting the transformation relating x and t, we have

g(t) ∼ a0

2
+

∞

∑
n=1

[
an cos

2nπt
L

+ bn sin
2nπt

L

]
. (2.28)

This gives the form of the series expansion for g(t) with t ∈ [0, L]. But, we
still need to determine the Fourier coefficients.

Recall that

an =
1
π

∫ 2π

0
f (x) cos nx dx.

We need to make a substitution in the integral of x = 2πt
L . We also will need

to transform the differential, dx = 2π
L dt. Thus, the resulting form for the

Fourier coefficients is

an =
2
L

∫ L

0
g(t) cos

2nπt
L

dt. (2.29)

Similarly, we find that

bn =
2
L

∫ L

0
g(t) sin

2nπt
L

dt. (2.30)
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We note first that when L = 2π, we get back the series representation
that we first studied. Also, the period of cos 2nπt

L is L/n, which means that
the representation for g(t) has a period of L corresponding to n = 1.

At the end of this section, we present the derivation of the Fourier series
representation for a general interval for the interested reader. In Table 2.1
we summarize some commonly used Fourier series representations.

Table 2.1: Special Fourier Series Repre-
sentations on Different Intervals Fourier Series on [0, L]

f (x) ∼ a0

2
+

∞

∑
n=1

[
an cos

2nπx
L

+ bn sin
2nπx

L

]
. (2.31)

an =
2
L

∫ L

0
f (x) cos

2nπx
L

dx. n = 0, 1, 2, . . . ,

bn =
2
L

∫ L

0
f (x) sin

2nπx
L

dx. n = 1, 2, . . . . (2.32)

Fourier Series on [− L
2 , L

2 ]

f (x) ∼ a0

2
+

∞

∑
n=1

[
an cos

2nπx
L

+ bn sin
2nπx

L

]
. (2.33)

an =
2
L

∫ L
2

− L
2

f (x) cos
2nπx

L
dx. n = 0, 1, 2, . . . ,

bn =
2
L

∫ L
2

− L
2

f (x) sin
2nπx

L
dx. n = 1, 2, . . . . (2.34)

Fourier Series on [−π, π]

f (x) ∼ a0

2
+

∞

∑
n=1

[an cos nx + bn sin nx] . (2.35)

an =
1
π

∫ π

−π
f (x) cos nx dx. n = 0, 1, 2, . . . ,

bn =
1
π

∫ π

−π
f (x) sin nx dx. n = 1, 2, . . . . (2.36)

Integration of even and odd functions
over symmetric intervals, [−a, a]. At this point we need to remind the reader about the integration of even

and odd functions on symmetric intervals.Even Functions.

We first recall that f (x) is an even function if f (−x) = f (x) for all x.
One can recognize even functions as they are symmetric with respect to the
y-axis as shown in Figure 2.8.

If one integrates an even function over a symmetric interval, then one has
that ∫ a

−a
f (x) dx = 2

∫ a

0
f (x) dx. (2.37)

One can prove this by splitting off the integration over negative values of x,
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using the substitution x = −y, and employing the evenness of f (x). Thus,

a−a x

y(x)

Figure 2.8: Area under an even function
on a symmetric interval, [−a, a].

∫ a

−a
f (x) dx =

∫ 0

−a
f (x) dx +

∫ a

0
f (x) dx

= −
∫ 0

a
f (−y) dy +

∫ a

0
f (x) dx

=
∫ a

0
f (y) dy +

∫ a

0
f (x) dx

= 2
∫ a

0
f (x) dx. (2.38)

This can be visually verified by looking at Figure 2.8.
A similar computation could be done for odd functions. f (x) is an odd

function if f (−x) = − f (x) for all x. The graphs of such functions are sym- Odd Functions.

metric with respect to the origin, as shown in Figure 2.9. If one integrates
an odd function over a symmetric interval, then one has that∫ a

−a
f (x) dx = 0. (2.39)

a
−a

x

y(x)

Figure 2.9: Area under an odd function
on a symmetric interval, [−a, a].

Example 2.4. Let f (x) = |x| on [−π, π] We compute the coefficients, beginning
as usual with a0. We have, using the fact that |x| is an even function,

a0 =
1
π

∫ π

−π
|x| dx

=
2
π

∫ π

0
x dx = π (2.40)

We continue with the computation of the general Fourier coefficients for f (x) =
|x| on [−π, π]. We have

an =
1
π

∫ π

−π
|x| cos nx dx =

2
π

∫ π

0
x cos nx dx. (2.41)

Here we have made use of the fact that |x| cos nx is an even function.
In order to compute the resulting integral, we need to use integration by parts ,

∫ b

a
u dv = uv

∣∣∣b
a
−
∫ b

a
v du,

by letting u = x and dv = cos nx dx. Thus, du = dx and v =
∫

dv = 1
n sin nx.

Continuing with the computation, we have

an =
2
π

∫ π

0
x cos nx dx.

=
2
π

[
1
n

x sin nx
∣∣∣π
0
− 1

n

∫ π

0
sin nx dx

]
= − 2

nπ

[
− 1

n
cos nx

]π

0

= − 2
πn2 (1− (−1)n). (2.42)
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Here we have used the fact that cos nπ = (−1)n for any integer n. This leads
to a factor (1− (−1)n). This factor can be simplified as

1− (−1)n =

{
2, n odd,
0, n even.

(2.43)

So, an = 0 for n even and an = − 4
πn2 for n odd.

Computing the bn’s is simpler. We note that we have to integrate |x| sin nx from
x = −π to π. The integrand is an odd function and this is a symmetric interval.
So, the result is that bn = 0 for all n.

Putting this all together, the Fourier series representation of f (x) = |x| on
[−π, π] is given as

f (x) ∼ π

2
− 4

π

∞

∑
n=1
n odd

cos nx
n2 . (2.44)

While this is correct, we can rewrite the sum over only odd n by re-indexing. We
let n = 2k− 1 for k = 1, 2, 3, . . . . Then we only get the odd integers. The series
can then be written as

f (x) ∼ π

2
− 4

π

∞

∑
k=1

cos(2k− 1)x
(2k− 1)2 . (2.45)

Throughout our discussion we have referred to such results as Fourier
representations. We have not looked at the convergence of these series.
Here is an example of an infinite series of functions. What does this series
sum to? We show in Figure 2.10 the first few partial sums. They appear to
be converging to f (x) = |x| fairly quickly.

Even though f (x) was defined on [−π, π], we can still evaluate the Fourier
series at values of x outside this interval. In Figure 2.11, we see that the rep-
resentation agrees with f (x) on the interval [−π, π]. Outside this interval,
we have a periodic extension of f (x) with period 2π.

Another example is the Fourier series representation of f (x) = x on
[−π, π] as left for Problem 7. This is determined to be

f (x) ∼ 2
∞

∑
n=1

(−1)n+1

n
sin nx. (2.46)

As seen in Figure 2.12, we again obtain the periodic extension of the
function. In this case, we needed many more terms. Also, the vertical parts
of the first plot are nonexistent. In the second plot, we only plot the points
and not the typical connected points that most software packages plot as
the default style.

Example 2.5. It is interesting to note that one can use Fourier series to obtain
sums of some infinite series. For example, in the last example, we found that

x ∼ 2
∞

∑
n=1

(−1)n+1

n
sin nx.

Now, what if we chose x = π
2 ? Then, we have

π

2
= 2

∞

∑
n=1

(−1)n+1

n
sin

nπ

2
= 2

[
1− 1

3
+

1
5
− 1

7
+ . . .

]
.
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Figure 2.10: Plot of the first partial sums
of the Fourier series representation for
f (x) = |x|.
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Figure 2.11: Plot of the first 10 terms
of the Fourier series representation for
f (x) = |x| on the interval [−2π, 4π].
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Figure 2.12: Plot of the first 10 terms
and 200 terms of the Fourier series rep-
resentation for f (x) = x on the interval
[−2π, 4π].
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This gives a well known expression for π:

π = 4
[

1− 1
3
+

1
5
− 1

7
+ . . .

]
.

2.3.1 Fourier Series on [a, b]

A Fourier series representation is also possible for a general interval,
t ∈ [a, b]. As before, we just need to transform this interval to [0, 2π]. LetThis section can be skipped on first read-

ing. It is here for completeness and the
end result, Theorem 2.2 provides the re-
sult of the section. x = 2π

t− a
b− a

.

Inserting this into the Fourier series (2.3) representation for f (x), we obtain

g(t) ∼ a0

2
+

∞

∑
n=1

[
an cos

2nπ(t− a)
b− a

+ bn sin
2nπ(t− a)

b− a

]
. (2.47)

Well, this expansion is ugly. It is not like the last example, where the
transformation was straightforward. If one were to apply the theory to
applications, it might seem to make sense to just shift the data so that a = 0
and be done with any complicated expressions. However, some students
enjoy the challenge of developing such generalized expressions. So, let’s see
what is involved.

First, we apply the addition identities for trigonometric functions and
rearrange the terms.

g(t) ∼ a0

2
+

∞

∑
n=1

[
an cos

2nπ(t− a)
b− a

+ bn sin
2nπ(t− a)

b− a

]
=

a0

2
+

∞

∑
n=1

[
an

(
cos

2nπt
b− a

cos
2nπa
b− a

+ sin
2nπt
b− a

sin
2nπa
b− a

)
+ bn

(
sin

2nπt
b− a

cos
2nπa
b− a

− cos
2nπt
b− a

sin
2nπa
b− a

)]
=

a0

2
+

∞

∑
n=1

[
cos

2nπt
b− a

(
an cos

2nπa
b− a

− bn sin
2nπa
b− a

)
+ sin

2nπt
b− a

(
an sin

2nπa
b− a

+ bn cos
2nπa
b− a

)]
. (2.48)

Defining A0 = a0 and

An ≡ an cos
2nπa
b− a

− bn sin
2nπa
b− a

Bn ≡ an sin
2nπa
b− a

+ bn cos
2nπa
b− a

, (2.49)

we arrive at the more desirable form for the Fourier series representation of
a function defined on the interval [a, b].

g(t) ∼ A0

2
+

∞

∑
n=1

[
An cos

2nπt
b− a

+ Bn sin
2nπt
b− a

]
. (2.50)
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We next need to find expressions for the Fourier coefficients. We insert
the known expressions for an and bn and rearrange. First, we note that
under the transformation x = 2π t−a

b−a , we have

an =
1
π

∫ 2π

0
f (x) cos nx dx

=
2

b− a

∫ b

a
g(t) cos

2nπ(t− a)
b− a

dt, (2.51)

and

bn =
1
π

∫ 2π

0
f (x) cos nx dx

=
2

b− a

∫ b

a
g(t) sin

2nπ(t− a)
b− a

dt. (2.52)

Then, inserting these integrals in An, combining integrals, and making use
of the addition formula for the cosine of the sum of two angles, we obtain

An ≡ an cos
2nπa
b− a

− bn sin
2nπa
b− a

=
2

b− a

∫ b

a
g(t)

[
cos

2nπ(t− a)
b− a

cos
2nπa
b− a

− sin
2nπ(t− a)

b− a
sin

2nπa
b− a

]
dt

=
2

b− a

∫ b

a
g(t) cos

2nπt
b− a

dt. (2.53)

A similar computation gives

Bn =
2

b− a

∫ b

a
g(t) sin

2nπt
b− a

dt. (2.54)

Summarizing, we have shown that:

Theorem 2.2. The Fourier series representation of f (x) defined on
[a, b] when it exists, is given by

f (x) ∼ a0

2
+

∞

∑
n=1

[
an cos

2nπx
b− a

+ bn sin
2nπx
b− a

]
. (2.55)

with Fourier coefficients

an =
2

b− a

∫ b

a
f (x) cos

2nπx
b− a

dx. n = 0, 1, 2, . . . ,

bn =
2

b− a

∫ b

a
f (x) sin

2nπx
b− a

dx. n = 1, 2, . . . . (2.56)

2.4 Sine and Cosine Series

In the last two examples ( f (x) = |x| and f (x) = x on [−π, π]), we
have seen Fourier series representations that contain only sine or cosine
terms. As we know, the sine functions are odd functions and thus sum
to odd functions. Similarly, cosine functions sum to even functions. Such
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occurrences happen often in practice. Fourier representations involving just
sines are called sine series and those involving just cosines (and the constant
term) are called cosine series.

Another interesting result, based upon these examples, is that the orig-
inal functions, |x| and x, agree on the interval [0, π]. Note from Figures
2.10 through 2.12 that their Fourier series representations do as well. Thus,
more than one series can be used to represent functions defined on finite
intervals. All they need to do is agree with the function over that partic-
ular interval. Sometimes one of these series is more useful because it has
additional properties needed in the given application.

We have made the following observations from the previous examples:

1. There are several trigonometric series representations for a func-
tion defined on a finite interval.

2. Odd functions on a symmetric interval are represented by sine
series and even functions on a symmetric interval are represented
by cosine series.

These two observations are related and are the subject of this section.
We begin by defining a function f (x) on interval [0, L]. We have seen that
the Fourier series representation of this function appears to converge to a
periodic extension of the function.

In Figure 2.13, we show a function defined on [0, 1]. To the right is its
periodic extension to the whole real axis. This representation has a period
of L = 1. The bottom left plot is obtained by first reflecting f about the y-
axis to make it an even function and then graphing the periodic extension of
this new function. Its period will be 2L = 2. Finally, in the last plot, we flip
the function about each axis and graph the periodic extension of the new
odd function. It will also have a period of 2L = 2.

Figure 2.13: This is a sketch of a func-
tion and its various extensions. The orig-
inal function f (x) is defined on [0, 1] and
graphed in the upper left corner. To its
right is the periodic extension, obtained
by adding replicas. The two lower plots
are obtained by first making the original
function even or odd and then creating
the periodic extensions of the new func-
tion. −1 0 1 2 3
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In general, we obtain three different periodic representations. In order to
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distinguish these, we will refer to them simply as the periodic, even, and
odd extensions. Now, starting with f (x) defined on [0, L], we would like
to determine the Fourier series representations leading to these extensions.
[For easy reference, the results are summarized in Table 2.2]

Fourier Series on [0, L]

f (x) ∼ a0

2
+

∞

∑
n=1

[
an cos

2nπx
L

+ bn sin
2nπx

L

]
. (2.57)

an =
2
L

∫ L

0
f (x) cos

2nπx
L

dx. n = 0, 1, 2, . . . ,

bn =
2
L

∫ L

0
f (x) sin

2nπx
L

dx. n = 1, 2, . . . . (2.58)

Fourier Cosine Series on [0, L]

f (x) ∼ a0/2 +
∞

∑
n=1

an cos
nπx

L
. (2.59)

where

an =
2
L

∫ L

0
f (x) cos

nπx
L

dx. n = 0, 1, 2, . . . . (2.60)

Fourier Sine Series on [0, L]

f (x) ∼
∞

∑
n=1

bn sin
nπx

L
. (2.61)

where

bn =
2
L

∫ L

0
f (x) sin

nπx
L

dx. n = 1, 2, . . . . (2.62)

Table 2.2: Fourier Cosine and Sine Series
Representations on [0, L]

We have already seen from Table 2.1 that the periodic extension of f (x),
defined on [0, L], is obtained through the Fourier series representation

f (x) ∼ a0

2
+

∞

∑
n=1

[
an cos

2nπx
L

+ bn sin
2nπx

L

]
, (2.63)

where

an =
2
L

∫ L

0
f (x) cos

2nπx
L

dx. n = 0, 1, 2, . . . ,

bn =
2
L

∫ L

0
f (x) sin

2nπx
L

dx. n = 1, 2, . . . . (2.64)

Given f (x) defined on [0, L], the even periodic extension is obtained by Even periodic extension.

simply computing the Fourier series representation for the even function

fe(x) ≡
{

f (x), 0 < x < L,
f (−x) −L < x < 0.

(2.65)
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Since fe(x) is an even function on a symmetric interval [−L, L], we expect
that the resulting Fourier series will not contain sine terms. Therefore, the
series expansion will be given by [Use the general case in Equation (2.55)
with a = −L and b = L.]:

fe(x) ∼ a0

2
+

∞

∑
n=1

an cos
nπx

L
. (2.66)

with Fourier coefficients

an =
1
L

∫ L

−L
fe(x) cos

nπx
L

dx. n = 0, 1, 2, . . . . (2.67)

However, we can simplify this by noting that the integrand is even and
the interval of integration can be replaced by [0, L]. On this interval fe(x) =
f (x). So, we have the Cosine Series Representation of f (x) for x ∈ [0, L] is
given asFourier Cosine Series.

f (x) ∼ a0

2
+

∞

∑
n=1

an cos
nπx

L
. (2.68)

where

an =
2
L

∫ L

0
f (x) cos

nπx
L

dx. n = 0, 1, 2, . . . . (2.69)

Similarly, given f (x) defined on [0, L], the odd periodic extension isOdd periodic extension.

obtained by simply computing the Fourier series representation for the odd
function

fo(x) ≡
{

f (x), 0 < x < L,
− f (−x) −L < x < 0.

(2.70)

The resulting series expansion leads to defining the Sine Series Representa-
tion of f (x) for x ∈ [0, L] asFourier Sine Series Representation.

f (x) ∼
∞

∑
n=1

bn sin
nπx

L
, (2.71)

where

bn =
2
L

∫ L

0
f (x) sin

nπx
L

dx. n = 1, 2, . . . . (2.72)

Example 2.6. In Figure 2.13, we actually provided plots of the various extensions
of the function f (x) = x2 for x ∈ [0, 1]. Let’s determine the representations of the
periodic, even, and odd extensions of this function.

For a change, we will use a CAS (Computer Algebra System) package to do the
integrals. In this case, we can use Maple. A general code for doing this for the
periodic extension is shown in Table 2.3.

Example 2.7. Periodic Extension - Trigonometric Fourier Series Using the
code in Table 2.3, we have that a0 = 2

3 , an = 1
n2π2 , and bn = − 1

nπ . Thus, the
resulting series is given as

f (x) ∼ 1
3
+

∞

∑
n=1

[
1

n2π2 cos 2nπx− 1
nπ

sin 2nπx
]

.
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In Figure 2.14, we see the sum of the first 50 terms of this series. Generally,
we see that the series seems to be converging to the periodic extension of f . There
appear to be some problems with the convergence around integer values of x. We
will later see that this is because of the discontinuities in the periodic extension and
the resulting overshoot is referred to as the Gibbs phenomenon, which is discussed
in the last section of this chapter.

0
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0.8

1

–1 1 2 3

x

Figure 2.14: The periodic extension of
f (x) = x2 on [0, 1].

> restart:

> L:=1:

> f:=x^2:

> assume(n,integer):

> a0:=2/L*int(f,x=0..L);

a0 := 2/3

> an:=2/L*int(f*cos(2*n*Pi*x/L),x=0..L);

1

an := -------

2 2

n~ Pi

> bn:=2/L*int(f*sin(2*n*Pi*x/L),x=0..L);

1

bn := - -----

n~ Pi

> F:=a0/2+sum((1/(k*Pi)^2)*cos(2*k*Pi*x/L)

-1/(k*Pi)*sin(2*k*Pi*x/L),k=1..50):

> plot(F,x=-1..3,title=‘Periodic Extension‘,

titlefont=[TIMES,ROMAN,14],font=[TIMES,ROMAN,14]);

Table 2.3: Maple code for computing
Fourier coefficients and plotting partial
sums of the Fourier series.

Example 2.8. Even Periodic Extension - Cosine Series
In this case we compute a0 = 2

3 and an = 4(−1)n

n2π2 . Therefore, we have

f (x) ∼ 1
3
+

4
π2

∞

∑
n=1

(−1)n

n2 cos nπx.
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In Figure 2.15, we see the sum of the first 50 terms of this series. In this case the
convergence seems to be much better than in the periodic extension case. We also
see that it is converging to the even extension.

Figure 2.15: The even periodic extension
of f (x) = x2 on [0, 1].
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Example 2.9. Odd Periodic Extension - Sine Series
Finally, we look at the sine series for this function. We find that

bn = − 2
n3π3 (n

2π2(−1)n − 2(−1)n + 2).

Therefore,

f (x) ∼ − 2
π3

∞

∑
n=1

1
n3 (n

2π2(−1)n − 2(−1)n + 2) sin nπx.

Once again we see discontinuities in the extension as seen in Figure 2.16. However,
we have verified that our sine series appears to be converging to the odd extension
as we first sketched in Figure 2.13.

Figure 2.16: The odd periodic extension
of f (x) = x2 on [0, 1].
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2.5 The Gibbs Phenomenon

We have seen the Gibbs phenomenon when there is a jump discontinu-
ity in the periodic extension of a function, whether the function originally
had a discontinuity or developed one due to a mismatch in the values of
the endpoints. This can be seen in Figures 2.12, 2.14, and 2.16. The Fourier
series has a difficult time converging at the point of discontinuity and these
graphs of the Fourier series show a distinct overshoot which does not go
away. This is called the Gibbs phenomenon3 and the amount of overshoot 3 The Gibbs phenomenon was named af-

ter Josiah Willard Gibbs (1839-1903) even
though it was discovered earlier by the
Englishman Henry Wilbraham (1825-
1883). Wilbraham published a soon for-
gotten paper about the effect in 1848. In
1889 Albert Abraham Michelson (1852-
1931), an American physicist,observed
an overshoot in his mechanical graphing
machine. Shortly afterwards J. Willard
Gibbs published papers describing this
phenomenon, which was later to be
called the Gibbs phenomena. Gibbs was
a mathematical physicist and chemist
and is considered the father of physical
chemistry.

can be computed.
In one of our first examples, Example 2.3, we found the Fourier series

representation of the piecewise defined function

f (x) =

{
1, 0 < x < π,
−1, π < x < 2π,

to be

f (x) ∼ 4
π

∞

∑
k=1

sin(2k− 1)x
2k− 1

.
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Figure 2.17: The Fourier series represen-
tation of a step function on [−π, π] for
N = 10.

In Figure 2.17, we display the sum of the first ten terms. Note the wig-
gles, overshoots and undershoots. These are seen more when we plot the
representation for x ∈ [−3π, 3π], as shown in Figure 2.18.

We note that the overshoots and undershoots occur at discontinuities in
the periodic extension of f (x). These occur whenever f (x) has a disconti-
nuity or if the values of f (x) at the endpoints of the domain do not agree.

One might expect that we only need to add more terms. In Figure 2.19 we
show the sum for twenty terms. Note the sum appears to converge better
for points far from the discontinuities. But, the overshoots and undershoots
are still present. Figures 2.20 and 2.21 show magnified plots of the overshoot
at x = 0 for N = 100 and N = 500, respectively. We see that the overshoot
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Figure 2.18: The Fourier series represen-
tation of a step function on [−π, π] for
N = 10 plotted on [−3π, 3π] displaying
the periodicity.
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Figure 2.19: The Fourier series represen-
tation of a step function on [−π, π] for
N = 20.
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persists. The peak is at about the same height, but its location seems to be
getting closer to the origin. We will show how one can estimate the size of
the overshoot.
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Figure 2.20: The Fourier series represen-
tation of a step function on [−π, π] for
N = 100.
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Figure 2.21: The Fourier series represen-
tation of a step function on [−π, π] for
N = 500.

We can study the Gibbs phenomenon by looking at the partial sums of
general Fourier trigonometric series for functions f (x) defined on the inter-
val [−L, L]. Writing out the partial sums, inserting the Fourier coefficients,
and rearranging, we have

SN(x) = a0 +
N

∑
n=1

[
an cos

nπx
L

+ bn sin
nπx

L

]
=

1
2L

∫ L

−L
f (y) dy +

N

∑
n=1

[(
1
L

∫ L

−L
f (y) cos

nπy
L

dy
)

cos
nπx

L

+

(
1
L

∫ L

−L
f (y) sin

nπy
L

dy.
)

sin
nπx

L

]

=
1
L

L∫
−L

{
1
2

+
N

∑
n=1

(
cos

nπy
L

cos
nπx

L
+ sin

nπy
L

sin
nπx

L

)}
f (y) dy

=
1
L

L∫
−L

{
1
2
+

N

∑
n=1

cos
nπ(y− x)

L

}
f (y) dy

≡ 1
L

L∫
−L

DN(y− x) f (y) dy

We have defined

DN(x) =
1
2
+

N

∑
n=1

cos
nπx

L
,

which is called the N-th Dirichlet kernel .
We now prove

Lemma 2.1. The N-th Dirichlet kernel is given by

DN(x) =


sin((N+ 1

2 )
πx
L )

2 sin πx
2L

, sin πx
2L 6= 0,

N + 1
2 , sin πx

2L = 0.

Proof. Let θ = πx
L and multiply DN(x) by 2 sin θ

2 to obtain

2 sin
θ

2
DN(x) = 2 sin

θ

2

[
1
2
+ cos θ + · · ·+ cos Nθ

]
= sin

θ

2
+ 2 cos θ sin

θ

2
+ 2 cos 2θ sin

θ

2
+ · · ·+ 2 cos Nθ sin

θ

2

= sin
θ

2
+

(
sin

3θ

2
− sin

θ

2

)
+

(
sin

5θ

2
− sin

3θ

2

)
+ · · ·

+

[
sin
(

N +
1
2

)
θ − sin

(
N − 1

2

)
θ

]
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= sin
(

N +
1
2

)
θ. (2.73)

Thus,

2 sin
θ

2
DN(x) = sin

(
N +

1
2

)
θ.

If sin θ
2 6= 0, then

DN(x) =
sin
(

N + 1
2

)
θ

2 sin θ
2

, θ =
πx
L

.

If sin θ
2 = 0, then one needs to apply L’Hospital’s Rule as θ → 2mπ:

lim
θ→2mπ

sin
(

N + 1
2

)
θ

2 sin θ
2

= lim
θ→2mπ

(N + 1
2 ) cos

(
N + 1

2

)
θ

cos θ
2

=
(N + 1

2 ) cos (2mπN + mπ)

cos mπ

=
(N + 1

2 )(cos 2mπN cos mπ − sin 2mπN sin mπ)

cos mπ

= N +
1
2

. (2.74)

We further note that DN(x) is periodic with period 2L and is an even
function.

So far, we have found that the Nth partial sum is given by

SN(x) =
1
L

L∫
−L

DN(y− x) f (y) dy. (2.75)

Making the substitution ξ = y− x, we have

SN(x) =
1
L

∫ L−x

−L−x
DN(ξ) f (ξ + x) dξ

=
1
L

∫ L

−L
DN(ξ) f (ξ + x) dξ. (2.76)

In the second integral, we have made use of the fact that f (x) and DN(x)
are periodic with period 2L and shifted the interval back to [−L, L].

We now write the integral as the sum of two integrals over positive and
negative values of ξ and use the fact that DN(x) is an even function. Then,

SN(x) =
1
L

∫ 0

−L
DN(ξ) f (ξ + x) dξ +

1
L

∫ L

0
DN(ξ) f (ξ + x) dξ

=
1
L

∫ L

0
[ f (x− ξ) + f (ξ + x)] DN(ξ) dξ. (2.77)

We can use this result to study the Gibbs phenomenon whenever it oc-
curs. In particular, we will only concentrate on the earlier example. For this
case, we have

SN(x) =
1
π

∫ π

0
[ f (x− ξ) + f (ξ + x)] DN(ξ) dξ (2.78)
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for

DN(x) =
1
2
+

N

∑
n=1

cos nx.

Also, one can show that

f (x− ξ) + f (ξ + x) =


2, 0 ≤ ξ < x,
0, x ≤ ξ < π − x,
−2, π − x ≤ ξ < π.

Thus, we have

SN(x) =
2
π

∫ x

0
DN(ξ) dξ − 2

π

∫ π

π−x
DN(ξ) dξ

=
2
π

∫ x

0
DN(z) dz +

2
π

∫ x

0
DN(π − z) dz. (2.79)

Here we made the substitution z = π − ξ in the second integral.
The Dirichlet kernel for L = π is given by

DN(x) =
sin(N + 1

2 )x
2 sin x

2
.

For N large, we have N + 1
2 ≈ N; and for small x, we have sin x

2 ≈
x
2 . So,

under these assumptions,

DN(x) ≈ sin Nx
x

.

Therefore,

SN(x)→ 2
π

∫ x

0

sin Nξ

ξ
dξ for large N, and small x.

If we want to determine the locations of the minima and maxima, where
the undershoot and overshoot occur, then we apply the first derivative test
for extrema to SN(x). Thus,

d
dx

SN(x) =
2
π

sin Nx
x

= 0.

The extrema occur for Nx = mπ, m = ±1,±2, . . . . One can show that there
is a maximum at x = π/N and a minimum for x = 2π/N. The value for
the overshoot can be computed as

SN(π/N) =
2
π

∫ π/N

0

sin Nξ

ξ
dξ

=
2
π

∫ π

0

sin t
t

dt

=
2
π

Si(π)

= 1.178979744 . . . . (2.80)

Note that this value is independent of N and is given in terms of the sine
integral,

Si(x) ≡
∫ x

0

sin t
t

dt.
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2.6 Multiple Fourier Series

Functions of several variables can have Fourier series repre-
sentations as well. We motivate this discussion by looking at the vibra-
tions of a rectangular membrane. You can think of this as a drumhead with
a rectangular cross section as shown in Figure 2.22. We stretch the mem-
brane over the drumhead and fasten the material to the boundary of the
rectangle. The height of the vibrating membrane is described by its height
from equilibrium, u(x, y, t).

x

y

H

L0
0

Figure 2.22: The rectangular membrane
of length L and width H. There are fixed
boundary conditions along the edges.

Example 2.10. The vibrating rectangular membrane.
The problem is given by the two-dimensional wave equation in Cartesian coordi-

nates,
utt = c2(uxx + uyy), t > 0, 0 < x < L, 0 < y < H, (2.81)

a set of boundary conditions,

u(0, y, t) = 0, u(L, y, t) = 0, t > 0, 0 < y < H,

u(x, 0, t) = 0, u(x, H, t) = 0, t > 0, 0 < x < L, (2.82)

and a pair of initial conditions (since the equation is second order in time),

u(x, y, 0) = f (x, y), ut(x, y, 0) = g(x, y). (2.83)

The general solution is obtained in a course on partial differential equa-
tions using what is called the Method of Separation of Variables. One as-
sumes solutions of the form u(x, y, t) = X(x)Y(y)T(t) which satisfy the
given boundary conditions, u(0, y, t) = 0, u(L, y, t) = 0, u(x, 0, t) = 0, and
u(x, H, t) = 0. After some work, one finds the general solution is given by a
linear superposition of these product solutions. The general solution isThe general solution for the vibrating

rectangular membrane.

u(x, y, t) =
∞

∑
n=1

∞

∑
m=1

(anm cos ωnmt + bnm sin ωnmt) sin
nπx

L
sin

mπy
H

, (2.84)

where

ωnm = c

√(nπ

L

)2
+
(mπ

H

)2
. (2.85)

Next, one imposes the initial conditions just like we had indicated in
the side note at the beginning of this chapter for the one-dimensional wave
equation. The first initial condition is u(x, y, 0) = f (x, y). Setting t = 0 in
the general solution, we obtain

f (x, y) =
∞

∑
n=1

∞

∑
m=1

anm sin
nπx

L
sin

mπy
H

. (2.86)

This is a double Fourier sine series. The goal is to find the unknown coeffi-
cients anm.

The coefficients anm can be found knowing what we already know about
Fourier sine series. We can write the initial condition as the single sum

f (x, y) =
∞

∑
n=1

An(y) sin
nπx

L
, (2.87)
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where

An(y) =
∞

∑
m=1

anm sin
mπy

H
. (2.88)

These are two Fourier sine series. Recalling from Chapter 2 that the
coefficients of Fourier sine series can be computed as integrals, we have

An(y) =
2
L

∫ L

0
f (x, y) sin

nπx
L

dx,

anm =
2
H

∫ H

0
An(y) sin

mπy
H

dy. (2.89)

Inserting the integral for An(y) into that for anm, we have an integral
representation for the Fourier coefficients in the double Fourier sine series,

anm =
4

LH

∫ H

0

∫ L

0
f (x, y) sin

nπx
L

sin
mπy

H
dxdy. (2.90)

The Fourier coefficients for the double
Fourier sine series.We can carry out the same process for satisfying the second initial condi-

tion, ut(x, y, 0) = g(x, y) for the initial velocity of each point. Inserting the
general solution into this initial condition, we obtain

g(x, y) =
∞

∑
n=1

∞

∑
m=1

bnmωnm sin
nπx

L
sin

mπy
H

. (2.91)

Again, we have a double Fourier sine series. But, now we can quickly de-
termine the Fourier coefficients using the above expression for anm to find
that

bnm =
4

ωnmLH

∫ H

0

∫ L

0
g(x, y) sin

nπx
L

sin
mπy

H
dxdy. (2.92)

This completes the full solution of the vibrating rectangular membrane
problem. Namely, we have obtained the solution The full solution of the vibrating rectan-

gular membrane.

u(x, y, t) =
∞

∑
n=1

∞

∑
m=1

(anm cos ωnmt+ bnm sin ωnmt) sin
nπx

L
sin

mπy
H

,

(2.93)
where

anm =
4

LH

∫ H

0

∫ L

0
f (x, y) sin

nπx
L

sin
mπy

H
dxdy, (2.94)

bnm =
4

ωnmLH

∫ H

0

∫ L

0
g(x, y) sin

nπx
L

sin
mπy

H
dxdy, (2.95)

and the angular frequencies are given by

ωnm = c

√(nπ

L

)2
+
(mπ

H

)2
. (2.96)

In this example we encountered a double Fourier sine series. This sug-
gests a function f (x, y) defined on the rectangular region [0, L]× [0, H] has
a double Fourier sine series representation,

f (x, y) =
∞

∑
n=1

∞

∑
m=1

bnm sin
nπx

L
sin

mπy
H

, (2.97)



66 fourier and complex analysis

where

bnm =
4

LH

∫ H

0

∫ L

0
f (x, y) sin

nπx
L

sin
mπy

H
dxdy n, m = 1, 2, . . . . (2.98)

Of course, we would expect some of the same convergence problems already
seen with Fourier series.

Example 2.11. Find the double Fourier sine series representation of f (x, y) = xy
on the unit square.

For this example, we seek the series representation

f (x, y) =
∞

∑
n=1

∞

∑
m=1

bnm sin nπx sin mπy. (2.99)

We compute the Fourier coefficients:

bnm = 4
∫ 1

0

∫ 1

0
f (x, y) sin nπx sin mπy dxdy

= 4
∫ 1

0

∫ 1

0
xy sin nπx sin mπy dxdy

= 4
(∫ 1

0
x sin nπx dx

)(∫ 1

0
sin mπy dy

)
= 4

[
−cos nπ

nπ

] [
−cos mπ

mπ

]
=

4(−1)n+m

nmπ2 .

Therefore,

xy ∼ 4
∞

∑
n=1

∞

∑
m=1

(−1)n+m

nmπ2 sin nπx sin mπy. (2.100)

We could just as well seek a double Fourier cosine series on [0, L]× [0, H],

f (x, y) ∼ a00

4
+

1
2

∞

∑
n=1

an0 cos
nπx

L
+

1
2

∞

∑
m=1

a0m cos
mπy

H

+
∞

∑
n=1

∞

∑
m=1

anm cos
nπx

L
cos

mπy
H

, (2.101)

where the Fourier coefficients are given by

anm =
4

LH

∫ H

0

∫ L

0
f (x, y) cos

nπx
L

cos
mπy

H
dxdy, n, m = 0, 1, . . . . (2.102)

The more general double Fourier trigonometric series on [0, L] × [0, H]

would take the form

f (x, y) ∼ a00

4
+

1
2

∞

∑
n=1

[
an0 cos

2nπx
L

+ bn0 sin
2nπx

L

]
+

1
2

∞

∑
m=1

[
a0m cos

2mπy
H

+ b0m sin
2mπy

H

]
+

∞

∑
n=1

∞

∑
m=1

anm cos
2nπx

L
cos

2mπy
H

,
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+
∞

∑
n=1

∞

∑
m=1

bnm sin
2nπx

L
sin

2mπy
H

,

+
∞

∑
n=1

∞

∑
m=1

cnm cos
2nπx

L
sin

2mπy
H

,

+
∞

∑
n=1

∞

∑
m=1

dnm sin
2nπx

L
cos

2mπy
H

. (2.103)

The corresponding double Fourier coefficients would take the form you
might expect.

Problems

1. Write y(t) = 3 cos 2t− 4 sin 2t in the form y(t) = A cos(2π f t + φ).

2. Determine the period of the following functions:

a. f (x) = cos x
3 .

b. f (x) = sin 2πx.

c. f (x) = sin 2πx− 0.1 cos 3πx.

d. f (x) = | sin 5πx|.

e. f (x) = cot 2πx.

f. f (x) = cos2 x
2 .

g. f (x) = 3 sin πx
2 + 2 cos 3πx

4 .

3. Derive the coefficients bn in Equation (2.4).

4. Let f (x) be defined for x ∈ [−L, L]. Parseval’s identity is given by

1
L

∫ L

−L
f 2(x) dx =

a2
0

2
+

∞

∑
n=1

a2
n + b2

n.

Assuming the the Fourier series of f (x) converges uniformly in (−L, L),
prove Parseval’s identity by multiplying the Fourier series representation
by f (x) and integrating from x = −L to x = L. [In Section 5.6.3 we will
encounter Parseval’s equality for Fourier transforms which is a continuous
version of this identity.]

5. Consider the square wave function

f (x) =

{
1, 0 < x < π,
−1, π < x < 2π.

a. Find the Fourier series representation of this function and plot the
first 50 terms.

b. Apply Parseval’s identity in Problem 4 to the result in part a.

c. Use the result of part b to show π2

8 =
∞

∑
n=1

1
(2n− 1)2 .
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6. For the following sets of functions: (i) show that each is orthogonal on
the given interval, and (ii) determine the corresponding orthonormal set.
[See page 43.]

a. {sin 2nx}, n = 1, 2, 3, . . . , 0 ≤ x ≤ π.

b. {cos nπx}, n = 0, 1, 2, . . . , 0 ≤ x ≤ 2.

c. {sin nπx
L }, n = 1, 2, 3, . . . , x ∈ [−L, L].

7. Consider f (x) = 4 sin3 2x.

a. Derive the trigonometric identity giving sin3 θ in terms of sin θ and
sin 3θ using DeMoivre’s Formula.

b. Find the Fourier series of f (x) = 4 sin3 2x on [0, 2π] without com-
puting any integrals.

8. Find the Fourier series of the following:

a. f (x) = x, x ∈ [0, 2π].

b. f (x) = x2

4 , |x| < π.

c. f (x) =

{
π
2 , 0 < x < π,
−π

2 , π < x < 2π.

d. f (x) =

{
x, 0 < x < π,
π, π < x < 2π.

e. f (x) =

{
π − x, 0 < x < π,

0, π < x < 2π.

9. Find the Fourier series of each function f (x) of period 2π. For each
series, plot the Nth partial sum,

SN =
a0

2
+

N

∑
n=1

[an cos nx + bn sin nx] ,

for N = 5, 10, 50 and describe the convergence (Is it fast? What is it con-
verging to?, etc.) [Some simple Maple code for computing partial sums is
shown in the notes.]

a. f (x) = x, |x| < π.

b. f (x) = |x|, |x| < π.

c. f (x) = cos x, |x| < π.

d. f (x) =

{
0, −π < x < 0,
1, 0 < x < π.

10. Find the Fourier series of f (x) = x on the given interval. Plot the Nth
partial sums and describe what you see.

a. 0 < x < 2.

b. −2 < x < 2.
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c. 1 < x < 2.

11. The result in Problem 8b above gives a Fourier series representation of
x2

4 . By picking the right value for x and a little arrangement of the series,
show that [See Example 2.5.]

a.
π2

6
= 1 +

1
22 +

1
32 +

1
42 + · · · .

b.
π2

8
= 1 +

1
32 +

1
52 +

1
72 + · · · .

Hint: Consider how the series in part a. can be used to do this.

c. Use the Fourier series representation result in Problem 8e to obtain
the series in part b.

12. Sketch (by hand) the graphs of each of the following functions over
four periods. Then sketch the extensions of each of the functions as both an
even and odd periodic function. Determine the corresponding Fourier sine
and cosine series and verify the convergence to the desired function using
Maple.

a. f (x) = x2, 0 < x < 1.

b. f (x) = x(2− x), 0 < x < 2.

c. f (x) =

{
0, 0 < x < 1,
1, 1 < x < 2.

d. f (x) =

{
π, 0 < x < π,

2π − x, π < x < 2π.

13. Consider the function f (x) = x, −π < x < π.

a. Show that x = 2 ∑∞
n=1(−1)n+1 sin nx

n .

b. Integrate the series in part a and show that

x2 =
π2

3
− 4

∞

∑
n=1

(−1)n+1 cos nx
n2 .

c. Find the Fourier cosine series of f (x) = x2 on [0, π] and compare
it to the result in part b.

d. Apply Parseval’s identity in Problem 4 to the series in part a for
f (x) = x on −π < x < π. This gives another means to finding the
value ζ(2), where the Riemann zeta function is defined by

ζ(s) =
∞

∑
n=1

1
ns .

14. Consider the function f (x) = x, 0 < x < 2.

a. Find the Fourier sine series representation of this function and plot
the first 50 terms.
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b. Find the Fourier cosine series representation of this function and
plot the first 50 terms.

c. Apply Parseval’s identity in Problem 4 to the result in part b.

d. Use the result of part c to find the sum ∑∞
n=1

1
n4 .

15. Differentiate the Fourier sine series term by term in Problem 14. Show
that the result is not the derivative of f (x) = x.

16. The temperature, u(x, t), of a one-dimensional rod of length L satisfies
the heat equation,

∂u
∂t

= k
∂2u
∂x2 .

a. Show that the general solution,

u(x, t) =
∞

∑
n=0

bn sin
nπx

L
e−n2π2kt/L2

,

satisfies the one-dimensional heat equation and the boundary con-
ditions u(0, t) = 0 and u(L, t) = 0.

b. For k = 1 and L = π, find the solution satisfying the initial con-
dition u(x, 0) = sin x. Plot six solutions on the same set of axes for
t ∈ [0, 1].

c. For k = 1 and L = 1, find the solution satisfying the initial condi-
tion u(x, 0) = x(1− x). Plot six solutions on the same set of axes
for t ∈ [0, 1].

17. The height, u(x, t), of a one-dimensional vibrating string of length L
satisfies the wave equation,

∂2u
∂t2 = c2 ∂2u

∂x2 .

a. Show that the general solution,

u(x, t) =
∞

∑
n=1

An cos
nπct

L
sin

nπx
L

+Bn sin
nπct

L
sin

nπx
L

,

satisfies the one-dimensional wave equation and the boundary con-
ditions u(0, t) = 0 and u(L, t) = 0.

b. For c = 1 and L = 1, find the solution satisfying the initial condi-
tions u(x, 0) = x(1− x) and ut(x, 0) = x(1− x). Plot five solutions
for t ∈ [0, 1].

c. For c = 1 and L = 1, find the solution satisfying the initial condi-
tion

u(x, 0) =

{
4x, 0 ≤ x ≤ 1

4 ,
4
3 (1− x), 1

4 ≤ x ≤ 1.

Plot five solutions for t ∈ [0, 0.5].
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18. Show that

u(x, y, t) =
∞

∑
n=1

∞

∑
m=1

(anm cos ωnmt + bnm sin ωnmt) sin
nπx

L
sin

mπy
H

,

where

ωnm = c

√(nπ

L

)2
+
(mπ

H

)2
,

satisfies the two-dimensional wave equation

utt = c2(uxx + uyy), t > 0, 0 < x < L, 0 < y < H,

and the boundary conditions,

u(0, y, t) = 0, u(L, y, t) = 0, t > 0, 0 < y < H,

u(x, 0, t) = 0, u(x, H, t) = 0, t > 0, 0 < x < L,

19. Find the double Fourier sine series representation of the following:

a. f (x, y) = sin πx sin 2πy on [0, 1]× [0, 1].

b. f (x, y) = x(2− x) sin y on [0, 2]× [0, π].

c. f (x, y) = x2y3 on [0, 1]× [0, 1].

20. Derive the Fourier coefficients in the double Fourier trigonometric series
in Equation (2.103).





3
Generalized Fourier Series and Function
Spaces

"Understanding is, after all, what science is all about and science is a great deal
more than mindless computation." Sir Roger Penrose (1931-)

In this chapter we provide a glimpse into more general notions for gen-
eralized Fourier series and the convergence of Fourier series. It is useful to
think about the general context in which one finds oneself when discussing
Fourier series and transforms. We can view the sine and cosine functions
in the Fourier trigonometric series representations as basis vectors in an in-
finite dimensional function space. A given function in that space may then
be represented as a linear combination over this infinite basis. With this in
mind, we might wonder

• Do we have enough basis vectors for the function space?

• Are the infinite series expansions convergent?

• For other other bases, what functions can be represented by such expan-
sions?

In this chapter we touch a little on these ideas, leaving some of the deeper
results for more advanced courses.

3.1 Finite Dimensional Vector Spaces

Much of the discussion and terminology that we will use comes
from the theory of vector spaces . Until now you may only have dealt with
finite dimensional vector spaces. Even then, you might only be comfortable
with two and three dimensions. We will review a little of what we know
about finite dimensional spaces so that we can introduce more general func-
tion spaces later.

The notion of a vector space is a generalization of three dimensional vec-
tors and operations on them. In three dimensions, we have objects called
vectors,1 which are represented by arrows of a specific length and pointing

1 In introductory physics one defines a
vector as any quantity that has both
magnitude and direction.
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in a given direction. To each vector, we can associate a point in a three di-
mensional Cartesian system. We just attach the tail of the vector v to the
origin and the head lands at the point (x, y, z).2 We then use unit vectors i,2 In multivariate calculus one concen-

trates on the component form of vectors.
These representations are easily general-
ized as we will see.

j and k along the coordinate axes to write

v = xi + yj + zk.

Having defined vectors, we then learned how to add vectors and multiply
vectors by numbers, or scalars. We then learned that there were two types
of multiplication of vectors. We could multiply them to get a scalar or a
vector. This led to dot products and cross products, respectively. The dot
product is useful for determining the length of a vector, the angle between
two vectors, if the vectors are perpendicular, or projections of one vector
onto another. The cross product is used to produce orthogonal vectors,
areas of parallelograms, and volumes of parallelepipeds.

In physics you first learned about vector products when you defined
work, W = F · r. Cross products were useful in describing things like torque,
τ = r× F, or the force on a moving charge in a magnetic field, F = qv× B.
We will return to these more complicated vector operations later when we
need them.Properties and definition of vector

spaces. The properties three dimensional vectors are generalized to spaces of
more than three dimensions in linear algebra courses. The properties roughly
outlined above need to be preserved. So, we will start with a space of vec-
tors and the operations of addition and scalar multiplication. We will need
a set of scalars, which generally come from some field. However, in ourA field is a set together with two oper-

ations, usually addition and multiplica-
tion, such that we have

• Closure under addition and multipli-
cation

• Associativity of addition and multi-
plication

• Commutativity of addition and mul-
tiplication

• Additive and multiplicative identity

• Additive and multiplicative inverses

• Distributivity of multiplication over
addition

applications the field will either be the set of real numbers or the set of
complex numbers.

A vector space V over a field F is a set that is closed under addition and
scalar multiplication and satisfies the following conditions:

For any u, v, w ∈ V and a, b ∈ F

1. u + v = v + u.

2. (u + v) + w = u + (v + w).

3. There exists a 0 such that 0 + v= v.

4. There exists an additive inverse, −v, such that v + (−v) = 0.

There are also several distributive properties:

5. a(bv) = (ab)v.

6. (a + b)v = av + bv.

7. a(u + v) = au + av.

8. There exists a multiplicative identity, 1, such that 1(v) = v.

For now, we will restrict our examples to two and three dimensions and
the field will consist of the set of real numbers.Basis vectors.
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In three dimensions the unit vectors i, j, and k play an important role.
Any vector in the three dimensional space can be written as a linear combi-
nation of these vectors,

v = xi + yj + zk.

In fact, given any three non-coplanar vectors, {a1, a2, a3}, all vectors can be
written as a linear combination of those vectors,

v = c1a1 + c2a2 + c3a3.

Such vectors are said to span the space and are called a basis for the space.
We can generalize these ideas. In an n-dimensional vector space any vec- n-dimensional vector spaces.

tor in the space can be represented as the sum over n linearly independent
vectors (the equivalent of non-coplanar vectors). Such a linearly indepen-
dent set of vectors {vj}n

j=1 satisfies the condition Linearly independent vectors.

n

∑
j=1

cjvj = 0 ⇔ cj = 0.

Note that we will often use summation notation instead of writing out all
of the terms in the sum. Also, the symbol ⇔ means "if and only if," or "is
equivalent to." Each side of the symbol implies the other side.

Now we can define a basis for an n-dimensional vector space. We The standard basis vectors, ek are a nat-
ural generalization of i, j and k.begin with the standard basis in an n-dimensional vector space. It is a

generalization of the standard basis in three dimensions (i, j and k).
We define the standard basis with the notation

ek = (0, . . . , 0, 1︸︷︷︸
kth space

, 0, . . . , 0), k = 1, . . . , n. (3.1)

We can expand any v ∈ V as

v =
n

∑
k=1

vkek, (3.2)

where the vk’s are called the components of the vector in this basis. Some-
times we will write v as an n-tuple (v1, v2, . . . , vn). This is similar to the
ambiguous use of (x, y, z) to denote both vectors and points in the three
dimensional space.

The only other thing we will need at this point is to generalize the dot
product. Recall that there are two forms for the dot product in three For more general vector spaces the term

inner product is used to generalize the
notions of dot and scalar products as we
will see below.

dimensions. First, one has that

u · v = uv cos θ, (3.3)

where u and v denote the length of the vectors. The other form is the
component form:

u · v = u1v1 + u2v2 + u3v3 =
3

∑
k=1

ukvk. (3.4)
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Of course, this form is easier to generalize. So, we define the scalar product
between two n-dimensional vectors as

〈u, v〉 =
n

∑
k=1

ukvk. (3.5)

Actually, there are a number of notations that are used in other texts. One
can write the scalar product as (u, v) or even in the Dirac bra-ket notation33 The bra-ket notation was introduced by

Paul Adrien Maurice Dirac (1902-1984)
in order to facilitate computations of in-
ner products in quantum mechanics. In
the notation 〈u|v〉, 〈u| is the bra and
|v〉 is the ket. The kets live in a vector
space and represented by column vec-
tors with respect to a given basis. The
bras live in the dual vector space and
are represented by row vectors. The
correspondence between bra and kets is
|v〉 = |v〉T . One can operate on kets,
A|v〉, and make sense out of operations
like〈u|A|v〉, which are used to obtain ex-
pectation values associated with the op-
erator. Finally, the outer product, |v〉〈v|
is used to perform vector space projec-
tions.

〈u|v〉.
We note that the (real) scalar product satisfies some simple properties.

For vectors v, w and real scalar α we have

1. 〈v, v〉 ≥ 0 and 〈v, v〉 = 0 if and only if v = 0.

2. 〈v, w〉 = 〈w, v〉.

3. 〈αv, w〉 = α〈v, w〉.

While it does not always make sense to talk about angles between general
vectors in higher dimensional vector spaces, there is one concept that is
useful. It is that of orthogonality, which in three dimensions is another way
of saying the vectors are perpendicular to each other. So, we also say that
vectors u and v are orthogonal if and only if 〈u, v〉 = 0. If {ak}n

k=1, is a set
of basis vectors such that

〈aj, ak〉 = 0, k 6= j,

then it is called an orthogonal basis.Orthogonal basis vectors.

If in addition each basis vector is a unit vector, then one has an orthonor-
mal basis. This generalization of the unit basis can be expressed more com-
pactly. We will denote such a basis of unit vectors by ej for j = 1 . . . n.
Then,

〈ej, ek〉 = δjk, (3.6)

where we have introduced the Kronecker delta (named after Leopold Kro-
necker (1823-1891))

δjk ≡
{

0, j 6= k
1, j = k

(3.7)

The process of making vectors have unit length is called normalization.Normalization of vectors.

This is simply done by dividing by the length of the vector. Recall that the
length of a vector, v, is obtained as v =

√
v · v. So, if we want to find a unit

vector in the direction of v, then we simply normalize it as

v̂ =
v
v

.

Notice that we used a hat to indicate that we have a unit vector. Further-
more, if {aj}n

j=1, is a set of orthogonal basis vectors, then

âj =
ai√
〈aj, aj〉

, j = 1 . . . n.
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Example 3.1. Find the angle between the vectors u = (−2, 1, 3) and v = (1, 0, 2).
we need the lengths of each vector,

u =
√
(−2)2 + 12 + 32 =

√
14,

v =
√

12 + 02 + 22 =
√

5.

We also need the scalar product of these vectors,

u · v = −2 + 6 = 4.

This gives

cos θ =
u · v
uv

=
4√

5
√

14
.

So, θ = 61.4◦.

Example 3.2. Normalize the vector v = 2i + j− 2k.
The length of the vector is v =

√
22 + 12 + (−2)2 =

√
9 = 3. So, the unit

vector in the direction of v is v̂ = 2
3 i + 1

3 j− 2
3 k.

Let {ak}n
k=1, be a set of orthogonal basis vectors for vector space V. We

know that any vector v can be represented in terms of this basis, v =

∑n
k=1 vkak. If we know the basis and vector, can we find the components,

vk? The answer is yes. We can use the scalar product of v with each basis el-
ement aj. Using the properties of the scalar product, we have for j = 1, . . . , n

〈aj, v〉 = 〈aj,
n

∑
k=1

vkak〉

=
n

∑
k=1

vk〈aj, ak〉. (3.8)

Since we know the basis elements, we can easily compute the numbers

Ajk ≡ 〈aj, ak〉

and
bj ≡ 〈aj, v〉.

Therefore, the system (3.8) for the vk’s is a linear algebraic system, which
takes the form

bj =
n

∑
k=1

Ajkvk. (3.9)

We can write this set of equations in a more compact form. The set of
numbers Ajk, j, k = 1, . . . n are the elements of an n× n matrix A with Ajk

being an element in the jth row and kth column. We write such matrices
with the n2 entries Aij as

A =


A11 A12 . . . A1n

A21 A22 . . . A2n
...

...
. . .

...
An1 An2 . . . Ann

 . (3.10)
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Also, vj and bj can be written as column vectors, v and b, respectively.
Thus, system (3.8) can be written in matrix form as

Av = b.

However, if the basis is orthogonal, then the matrix Ajk ≡ 〈aj, ak〉 is
diagonal,

A =



A11 0 . . . . . . 0

0 A22
. . . . . . 0

... 0
. . . . . .

...
...

. . . . . . . . . 0
0 0 . . . 0 Ann


. (3.11)

and the system is easily solvable. Recall that two vectors are orthogonal if
and only if

〈ai, aj〉 = 0, i 6= j. (3.12)

Thus, in this case we have that

〈aj, v〉 = vj〈aj, aj〉, j = 1, . . . , n. (3.13)

or

vj =
〈aj, v〉
〈aj, aj〉

. (3.14)

In fact, if the basis is orthonormal, i.e., the basis consists of an orthogonal
set of unit vectors, then A is the identity matrix and the solution takes on a
simpler form:

vj = 〈aj, v〉. (3.15)

Example 3.3. Consider the set of vectors a1 = i + j and a2 = i− 2j.

1. Determine the matrix elements Ajk = 〈aj, ak〉.

2. Is this an orthogonal basis?

3. Expand the vector v = 2i + 3j in the basis {a1, a2}.

First, we compute the matrix elements of A:

A11 = 〈a1, a1〉 = 2

A12 = 〈a1, a2〉 = −1

A21 = 〈a2, a1〉 = −1

A22 = 〈a2, a2〉 = 5 (3.16)

So,

A =

(
2 −1
−1 5

)
.

Since A12 = A21 6= 0, the vectors are not orthogonal. However, they are
linearly independent. Obviously, if c1 = c2 = 0, then the linear combination
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c1a1 + c2a2 = 0. Conversely, we assume that c1a1 + c2a2 = 0 and solve for the
coefficients. Inserting the given vectors, we have

0 = c1(i + j) + c2(i− 2j)

= (c1 + c2)i + (c1 − 2c2)j. (3.17)

This implies that

c1 + c2 = 0

c1 − 2c2 = 0. (3.18)

Solving this system, one has c1 = 0, c2 = 0. Therefore, the two vectors are linearly
independent.

In order to determine the components of v with respect to the new basis, we need
to set up the system (3.8) and solve for the vk’s. We have first,

b =

(
〈a1, v〉
〈a2, v〉

)

=

(
〈i + j, 2i + 3j〉
〈i− 2j, 2i + 3j〉

)

=

(
5
−4

)
. (3.19)

So, now we have to solve the system Av = b for v :(
2 −1
−1 5

)(
v1

v2

)
=

(
5
−4

)
. (3.20)

We can solve this with matrix methods, v = A−1b, or rewrite it as a system of two
equations and two unknowns as

2v1 − v2 = 5

−v1 + 5v2 = −4. (3.21)

The solution of this set of algebraic equations is v1 = 7
3 , v2 = − 1

3 . Thus, v =
7
3 a1 − 1

3 a2. We will return later to using matrix methods to solve such systems.

3.2 Function Spaces

Earlier we studied finite dimensional vector spaces. Given a set
of basis vectors, {ak}n

k=1, in vector space V, we showed that we can expand
any vector v ∈ V in terms of this basis, v = ∑n

k=1 vkak. We then spent
some time looking at the simple case of extracting the components vk of the
vector. The keys to doing this simply were to have a scalar product and an
orthogonal basis set. These are also the key ingredients that we will need in
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the infinite dimensional case. In fact, we already did this when we studied
Fourier series.

Recall when we found Fourier trigonometric series representations of
functions, we started with a function (vector) that we wanted to expand in a
set of trigonometric functions (basis) and we sought the Fourier coefficients
(components). In this section we will extend our notions from finite dimen-We note that the above determination

of vector components for finite dimen-
sional spaces is precisely what we did
to compute the Fourier coefficients us-
ing trigonometric bases. Reading fur-
ther, you will see how this works.

sional spaces to infinite dimensional spaces and we will develop the needed
background in which to think about more general Fourier series expansions.
This conceptual framework is very important in other areas in mathematics
(such as ordinary and partial differential equations) and physics (such as
quantum mechanics and electrodynamics).

We will consider various infinite dimensional function spaces. Functions
in these spaces would differ by their properties. For example, we could con-
sider the space of continuous functions on [0,1], the space of differentiably
continuous functions, or the set of functions integrable from a to b. As you
will see, there are many types of function spaces . In order to view these
spaces as vector spaces, we must be able to add functions and multiply them
by scalars in such as way that they satisfy the definition of a vector space as
defined in Chapter 3.

We will also need a scalar product defined on this space of functions.
There are several types of scalar products, or inner products, that we can
define. An inner product 〈, 〉 on a real vector space V is a mapping from
V ×V into R such that for u, v, w ∈ V and α ∈ R, one has

1. 〈v, v〉 ≥ 0 and 〈v, v〉 = 0 iff v = 0.

2. 〈v, w〉 = 〈w, v〉.

3. 〈αv, w〉 = α〈v, w〉.

4. 〈u + v, w〉 = 〈u, w〉+ 〈v, w〉.

A real vector space equipped with the above inner product leads to what
is called a real inner product space. For complex inner product spaces, the
above properties hold with the third property replaced with 〈v, w〉 = 〈w, v〉.

For the time being, we will only deal with real valued functions and,
thus we will need an inner product appropriate for such spaces. One such
definition is the following. Let f (x) and g(x) be functions defined on [a, b]
and introduce the weight function σ(x) > 0. Then, we define the inner
product, if the integral exists, as

〈 f , g〉 =
∫ b

a
f (x)g(x)σ(x) dx. (3.22)

Spaces in which 〈 f , f 〉 < ∞ under this inner product are called the spaceThe space of square integrable functions.

of square integrable functions on (a, b) under weight σ and are denoted as
L2

σ(a, b). In what follows, we will assume for simplicity that σ(x) = 1. This
is possible to do using a change of variables.

Now that we have function spaces equipped with an inner product, we
seek a basis for the space. For an n-dimensional space we need n basis
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vectors. For an infinite dimensional space, how many will we need? How
do we know when we have enough? We will provide some answers to these
questions later.

Let’s assume that we have a basis of functions {φn(x)}∞
n=1. Given a func-

tion f (x), how can we go about finding the components of f in this basis?
In other words, let

f (x) =
∞

∑
n=1

cnφn(x).

How do we find the cn’s? Does this remind you of Fourier series expan-
sions? Does it remind you of the problem we had earlier for finite dimen-
sional spaces? [You may want to review the discussion at the end of Section
3.1 as you read the next derivation.]

Formally, we take the inner product of f with each φj and use the prop-
erties of the inner product to find

〈φj, f 〉 = 〈φj,
∞

∑
n=1

cnφn〉

=
∞

∑
n=1

cn〈φj, φn〉. (3.23)

If the basis is an orthogonal basis, then we have

〈φj, φn〉 = Njδjn, (3.24)

where δjn is the Kronecker delta. Recall from Chapter 3 that the Kronecker
delta is defined as

δij =

{
0, i 6= j
1, i = j.

(3.25)

Continuing with the derivation, we have For the generalized Fourier series expan-
sion f (x) = ∑∞

n=1 cnφn(x), we have de-
termined the generalized Fourier coeffi-
cients to be cj = 〈φj, f 〉/〈φj, φj〉.〈φj, f 〉 =

∞

∑
n=1

cn〈φj, φn〉

=
∞

∑
n=1

cnNjδjn. (3.26)

Expanding the sum, we see that the Kronecker delta picks out one nonzero
term:

〈φj, f 〉 = c1Njδj1 + c2Njδj2 + . . . + cjNjδjj + . . .

= cjNj. (3.27)

So, the expansion coefficients are

cj =
〈φj, f 〉

Nj
=
〈φj, f 〉
〈φj, φj〉

j = 1, 2, . . . .

We summarize this important result:
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Generalized Basis Expansion

Let f (x) be represented by an expansion over a basis of orthogonal func-
tions, {φn(x)}∞

n=1,

f (x) =
∞

∑
n=1

cnφn(x).

Then, the expansion coefficients are formally determined as

cn =
〈φn, f 〉
〈φn, φn〉

.

This will be referred to as the general Fourier series expansion and the
cj’s are called the Fourier coefficients. Technically, equality only holds
when the infinite series converges to the given function on the interval of
interest.

Example 3.4. Find the coefficients of the Fourier sine series expansion of f (x),
given by

f (x) =
∞

∑
n=1

bn sin nx, x ∈ [−π, π].

In the last chapter we established that the set of functions φn(x) = sin nx for
n = 1, 2, . . . is orthogonal on the interval [−π, π]. Recall that using trigonometric
identities, we have for n 6= m

〈φn, φm〉 =
∫ π

−π
sin nx sin mx dx = πδnm. (3.28)

Therefore, the set φn(x) = sin nx for n = 1, 2, . . . is an orthogonal set of functions
on the interval [−π, π].

We determine the expansion coefficients using

bn =
〈φn, f 〉

Nn
=
〈φn, f 〉
〈φn, φn〉

=
1
π

∫ π

−π
f (x) sin nx dx.

Does this result look familiar?
Just as with vectors in three dimensions, we can normalize these basis functions

to arrive at an orthonormal basis. This is simply done by dividing by the length of
the vector. Recall that the length of a vector is obtained as v =

√
v · v. In the same

way, we define the norm of a function by

‖ f ‖ =
√
〈 f , f 〉.

Note that there are many types of norms, but this induced norm will be sufficient.4

4 The norm defined here is the natural,
or induced, norm on the inner product
space. Norms are a generalization of the
concept of lengths of vectors. Denoting
‖v‖ the norm of v, it needs to satisfy the
properties

1. ‖v‖ ≥ 0. ‖v‖ = 0 if and only if v = 0.

2. ‖αv‖ = |α|‖v‖.
3. ‖u + v‖ ≤ ‖u‖+ ‖v‖.
Examples of common norms are

1. Euclidean norm:

‖v‖ =
√

v2
1 + · · ·+ v2

n.

2. Taxicab norm:

‖v‖ = |v1|+ · · ·+ |vn|.

3. Lp norm:

‖ f ‖ =
(∫

[ f (x)]p dx
) 1

p
.

For this example, the norms of the basis functions are ‖φn‖ =
√

π. Defining
ψn(x) = 1√

π
φn(x), we can normalize the φn’s and have obtained an orthonormal

basis of functions on [−π, π].
We can also use the normalized basis to determine the expansion coefficients. In

this case we have

bn =
〈ψn, f 〉

Nn
= 〈ψn, f 〉 = 1

π

∫ π

−π
f (x) sin nx dx.
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3.3 Classical Orthogonal Polynomials

There are other basis functions that can be used to develop series
representations of functions. In this section we introduce the classical or-
thogonal polynomials. We begin by noting that the sequence of functions
{1, x, x2, . . .} is a basis of linearly independent functions. In fact, by the
Stone-Weierstraß Approximation Theorem5 this set is a basis of L2

σ(a, b), the 5 Stone-Weierstraß Approximation The-
orem Suppose f is a continuous function
defined on the interval [a, b]. For every
ε > 0, there exists a polynomial func-
tion P(x) such that for all x ∈ [a, b], we
have | f (x)− P(x)| < ε. Therefore, every
continuous function defined on [a, b] can
be uniformly approximated as closely as
we wish by a polynomial function.

space of square integrable functions over the interval [a, b] relative to weight
σ(x). However, we will show that the sequence of functions {1, x, x2, . . .}
does not provide an orthogonal basis for these spaces. We will then proceed
to find an appropriate orthogonal basis of functions.

We are familiar with being able to expand functions over a basis of pow-
ers of x, {1, x, x2, . . .}, since these expansions are just Maclaurin series rep-
resentations of the functions about x = 0,

f (x) ∼
∞

∑
n=0

cnxn.

However, this basis is not an orthogonal set of basis functions. One can
easily see this by integrating the product of two even, or two odd, basis
functions with σ(x) = 1 and (a, b)=(−1, 1). For example,∫ 1

−1
x0x2 dx =

2
3

.

The Gram-Schmidt Orthogonalization
Process.Since we have found that orthogonal bases have been useful in determin-

ing the coefficients for expansions of given functions, we might ask, “Given
a set of linearly independent basis vectors, can one find an orthogonal basis
of the given space?" The answer is yes. We recall from introductory linear
algebra, which mostly covers finite dimensional vector spaces, that there is
a method for carrying out this so-called Gram-Schmidt Orthogonalization
Process. We will review this process for finite dimensional vectors and then
generalize to function spaces.

Let’s assume that we have three vectors that span the usual three-dimensional
space, R3, given by a1, a2, and a3 and shown in Figure 3.1. We seek an or-
thogonal basis e1, e2, and e3, beginning one vector at a time. a

aa
3 2

1

Figure 3.1: The basis a1, a2, and a3, of
R3.

First we take one of the original basis vectors, say a1, and define

e1 = a1.

It is sometimes useful to normalize these basis vectors, denoting such a
normalized vector with a “hat”:

ê1 =
e1

e1
,

where e1 =
√

e1 · e1.
Next, we want to determine an e2 that is orthogonal to e1. We take an-

other element of the original basis, a2. In Figure 3.2 we show the orientation
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of the vectors. Note that the desired orthogonal vector is e2. We can now
write a2 as the sum of e2 and the projection of a2 on e1. Denoting this pro-
jection by pr1a2, we then have

e2 = a2 − pr1a2. (3.29)e

a
2

1

pr a
1 2

e
2

Figure 3.2: A plot of the vectors e1, a2,
and e2 needed to find the projection of
a2, on e1.

Recall the projection of one vector onto another from your vector calculus
class.

pr1a2 =
a2 · e1

e2
1

e1. (3.30)

This is easily proven by writing the projection as a vector of length a2 cos θ

in direction ê1, where θ is the angle between e1 and a2. Using the definition
of the dot product, a · b = ab cos θ, the projection formula follows.

Combining Equations (3.29) and (3.30), we find that

e2 = a2 −
a2 · e1

e2
1

e1. (3.31)

It is a simple matter to verify that e2 is orthogonal to e1:

e2 · e1 = a2 · e1 −
a2 · e1

e2
1

e1 · e1

= a2 · e1 − a2 · e1 = 0. (3.32)

e

a

a
3

2

1

pr a
1 3

pr a
2 3

e
2

Figure 3.3: A plot of vectors for deter-
mining e3.

Next, we seek a third vector e3 that is orthogonal to both e1 and e2. Picto-
rially, we can write the given vector a3 as a combination of vector projections
along e1 and e2 with the new vector. This is shown in Figure 3.3. Thus, we
can see that

e3 = a3 −
a3 · e1

e2
1

e1 −
a3 · e2

e2
2

e2. (3.33)

Again, it is a simple matter to compute the scalar products with e1 and e2

to verify orthogonality.
We can easily generalize this procedure to the N-dimensional case. Let

an, n = 1, ..., N be a set of linearly independent vectors in RN . Then, an
orthogonal basis can be found by setting e1 = a1 and defining

en = an −
n−1

∑
j=1

an · ej

e2
j

ej, n = 2, 3, . . . , N. (3.34)

Now we can generalize this idea to (real) function spaces. Let fn(x),
n ∈ N0 = {0, 1, 2, . . .}, be a linearly independent sequence of continuous
functions defined for x ∈ [a, b]. Then, an orthogonal basis of functions,
φn(x), n ∈ N0 can be found and is given by

φ0(x) = f0(x)

and

φn(x) = fn(x)−
n−1

∑
j=0

〈 fn, φj〉
‖φj‖2 φj(x), n = 1, 2, . . . . (3.35)
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Here we are using inner products relative to weight σ(x),

〈 f , g〉 =
∫ b

a
f (x)g(x)σ(x) dx. (3.36)

Note the similarity between the orthogonal basis in Equation (3.35) and the
expression for the finite dimensional case in Equation (3.34).

Example 3.5. Apply the Gram-Schmidt Orthogonalization Process to the set fn(x) =
xn, n ∈ N0, when x ∈ (−1, 1) and σ(x) = 1.

First, we have φ0(x) = f0(x) = 1. Note that∫ 1

−1
φ2

0(x) dx = 2.

We could use this result to fix the normalization of the new basis, but we will hold
off doing that for now.

Now we compute the second basis element:

φ1(x) = f1(x)− 〈 f1, φ0〉
‖φ0‖2 φ0(x)

= x− 〈x, 1〉
‖1‖2 1 = x, (3.37)

since 〈x, 1〉 is the integral of an odd function over a symmetric interval.
For φ2(x), we have

φ2(x) = f2(x)− 〈 f2, φ0〉
‖φ0‖2 φ0(x)− 〈 f2, φ1〉

‖φ1‖2 φ1(x)

= x2 − 〈x
2, 1〉
‖1‖2 1− 〈x

2, x〉
‖x‖2 x

= x2 −
∫ 1
−1 x2 dx∫ 1
−1 dx

= x2 − 1
3

. (3.38)

So far, we have the orthogonal set {1, x, x2 − 1
3}. If one chooses to normalize

these by forcing φn(1) = 1, then one obtains the classical Legendre polynomials,
Pn(x). Thus,

P2(x) =
1
2
(3x2 − 1).

Note that this normalization is different from the usual one. In fact, we see that
P2(x) does not have a unit norm,

‖P2‖2 =
∫ 1

−1
P2

2 (x) dx =
2
5

.

The set of Legendre6 polynomials is just one set of classical orthogo- 6 Adrien-Marie Legendre (1752-1833)
was a French mathematician who made
many contributions to analysis and
algebra.

nal polynomials that can be obtained in this way. Many of these special
functions had originally appeared as solutions of important boundary value
problems in physics. They all have similar properties and we will just elab-
orate some of these for the Legendre functions in the next section. Others
in this group are shown in Table 3.1.
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Table 3.1: Common Classical Orthogo-
nal Polynomials with the Interval and
Weight Function Used to Define Them.

Polynomial Symbol Interval σ(x)
Hermite Hn(x) (−∞, ∞) e−x2

Laguerre Lα
n(x) [0, ∞) e−x

Legendre Pn(x) (-1,1) 1

Gegenbauer Cλ
n (x) (-1,1) (1− x2)λ−1/2

Tchebychef of the 1st kind Tn(x) (-1,1) (1− x2)−1/2

Tchebychef of the 2nd kind Un(x) (-1,1) (1− x2)−1/2

Jacobi P(ν,µ)
n (x) (-1,1) (1− x)ν(1− x)µ

3.4 Fourier-Legendre Series

In the last chapter we saw how useful Fourier series expansions were
for solving the heat and wave equations. In the study of partial differential
equations in higher dimensions and one finds that problems with spheri-
cal symmetry can lead to the series representations in terms of a basis of
Legendre polynomials. For example, we could consider the steady-state
temperature distribution inside a hemispherical igloo, which takes the form

φ(r, θ) =
∞

∑
n=0

AnrnPn(cos θ)

in spherical coordinates. Evaluating this function at the surface r = a as
φ(a, θ) = f (θ), leads to a Fourier-Legendre series expansion of function f :

f (θ) =
∞

∑
n=0

cnPn(cos θ),

where cn = Anan.
In this section we would like to explore Fourier-Legendre series expan-

sions of functions f (x) defined on (−1, 1):

f (x) ∼
∞

∑
n=0

cnPn(x). (3.39)

As with Fourier trigonometric series, we can determine the expansion coef-
ficients by multiplying both sides of Equation (3.39) by Pm(x) and integrat-
ing for x ∈ [−1, 1]. Orthogonality gives the usual form for the generalized
Fourier coefficients,

cn =
〈 f , Pn〉
‖Pn‖2 , n = 0, 1, . . . .

We will later show that

‖Pn‖2 =
2

2n + 1
.

Therefore, the Fourier-Legendre coefficients are

cn =
2n + 1

2

∫ 1

−1
f (x)Pn(x) dx. (3.40)
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3.4.1 Properties of Legendre Polynomials
The Rodrigues Formula.

We can do examples of Fourier-Legendre expansions given just a
few facts about Legendre polynomials. The first property that the Legendre
polynomials have is the Rodrigues Formula:

Pn(x) =
1

2nn!
dn

dxn (x2 − 1)n, n ∈ N0. (3.41)

From the Rodrigues formula, one can show that Pn(x) is an nth degree
polynomial. Also, for n odd, the polynomial is an odd function and for n
even, the polynomial is an even function.

Example 3.6. Determine P2(x) from the Rodrigues Formula:

P2(x) =
1

222!
d2

dx2 (x2 − 1)2

=
1
8

d2

dx2 (x4 − 2x2 + 1)

=
1
8

d
dx

(4x3 − 4x)

=
1
8
(12x2 − 4)

=
1
2
(3x2 − 1). (3.42)

Note that we get the same result as we found in the last section using orthogonal-
ization.

n (x2 − 1)n dn

dxn (x2 − 1)n 1
2nn! Pn(x)

0 1 1 1 1

1 x2 − 1 2x 1
2 x

2 x4 − 2x2 + 1 12x2 − 4 1
8

1
2 (3x2 − 1)

3 x6 − 3x4 + 3x2 − 1 120x3 − 72x 1
48

1
2 (5x3 − 3x)

Table 3.2: Tabular computation of the
Legendre polynomials using the Ro-
drigues Formula.

The first several Legendre polynomials are given in Table 3.2. In Figure
3.4 we show plots of these Legendre polynomials. The Three-Term Recursion Formula.

All of the classical orthogonal polynomials satisfy a three-term recursion
formula (or, recurrence relation or formula). In the case of the Legendre
polynomials, we have

(n + 1)Pn+1(x) = (2n + 1)xPn(x)− nPn−1(x), n = 1, 2, . . . . (3.43)

This can also be rewritten by replacing n with n− 1 as

(2n− 1)xPn−1(x) = nPn(x) + (n− 1)Pn−2(x), n = 1, 2, . . . . (3.44)

Example 3.7. Use the recursion formula to find P2(x) and P3(x), given that
P0(x) = 1 and P1(x) = x.

We first begin by inserting n = 1 into Equation (3.43):

2P2(x) = 3xP1(x)− P0(x) = 3x2 − 1.
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Figure 3.4: Plots of the Legendre poly-
nomials P2(x), P3(x), P4(x), and P5(x).

P (x) 5

P (x) 4

P (x) 3

P (x) 2

–1

–0.5

0.5

1

–1 –0.8 –0.6 –0.4 –0.2 0.2 0.4 0.6 0.8 1

x

So, P2(x) = 1
2 (3x2 − 1).

For n = 2, we have

3P3(x) = 5xP2(x)− 2P1(x)

=
5
2

x(3x2 − 1)− 2x

=
1
2
(15x3 − 9x). (3.45)

This gives P3(x) = 1
2 (5x3 − 3x). These expressions agree with the earlier results.

We will prove the three-term recursion formula in two ways. First, we

The first proof of the three-term recur-
sion formula is based upon the nature of
the Legendre polynomials as an orthog-
onal basis, while the second proof is de-
rived using generating functions.

use the orthogonality properties of Legendre polynomials and the following
lemma.

Lemma 3.1. The leading coefficient of xn in Pn(x) is 1
2nn!

(2n)!
n! .

Proof. We can prove this using the Rodrigues Formula. First, we focus on
the leading coefficient of (x2 − 1)n, which is x2n. The first derivative of x2n

is 2nx2n−1. The second derivative is 2n(2n− 1)x2n−2. The jth derivative is

djx2n

dxj = [2n(2n− 1) . . . (2n− j + 1)]x2n−j.

Thus, the nth derivative is given by

dnx2n

dxn = [2n(2n− 1) . . . (n + 1)]xn.

This proves that Pn(x) has degree n. The leading coefficient of Pn(x) can
now be written as

[2n(2n− 1) . . . (n + 1)]
2nn!

=
[2n(2n− 1) . . . (n + 1)]

2nn!
n(n− 1) . . . 1
n(n− 1) . . . 1

=
1

2nn!
(2n)!

n!
. (3.46)
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Theorem 3.1. Legendre polynomials satisfy the three-term recursion formula

(2n− 1)xPn−1(x) = nPn(x) + (n− 1)Pn−2(x), n = 1, 2, . . . . (3.47)

Proof. In order to prove the three-term recursion formula, we consider the
expression (2n− 1)xPn−1(x)− nPn(x). While each term is a polynomial of
degree n, the leading order terms cancel. We need only look at the coeffi-
cient of the leading order term first expression. It is

2n− 1
2n−1(n− 1)!

(2n− 2)!
(n− 1)!

=
1

2n−1(n− 1)!
(2n− 1)!
(n− 1)!

=
(2n− 1)!

2n−1 [(n− 1)!]2
.

The coefficient of the leading term for nPn(x) can be written as

n
1

2nn!
(2n)!

n!
= n

(
2n
2n2

)(
1

2n−1(n− 1)!

)
(2n− 1)!
(n− 1)!

(2n− 1)!

2n−1 [(n− 1)!]2
.

It is easy to see that the leading order terms in the expression (2n− 1)xPn−1(x)−
nPn(x) cancel.

The next terms will be of degree n− 2. This is because the Pn’s are either
even or odd functions, thus only containing even, or odd, powers of x. We
conclude that

(2n− 1)xPn−1(x)− nPn(x) = polynomial of degree n− 2.

Therefore, since the Legendre polynomials form a basis, we can write this
polynomial as a linear combination of Legendre polynomials:

(2n− 1)xPn−1(x)− nPn(x) = c0P0(x) + c1P1(x) + . . . + cn−2Pn−2(x). (3.48)

Multiplying Equation (3.48) by Pm(x) for m = 0, 1, . . . , n− 3, integrating
from −1 to 1, and using orthogonality, we obtain

0 = cm‖Pm‖2, m = 0, 1, . . . , n− 3.

[Note:
∫ 1
−1 xkPn(x) dx = 0 for k ≤ n − 1. Thus,

∫ 1
−1 xPn−1(x)Pm(x) dx = 0

for m ≤ n− 3.]
Thus, all these cm’s are zero, leaving Equation (3.48) as

(2n− 1)xPn−1(x)− nPn(x) = cn−2Pn−2(x).

The final coefficient can be found using the normalization condition, Pn(1) =
1. Thus, cn−2 = (2n− 1)− n = n− 1.

3.4.2 The Generating Function for Legendre Polynomials

A second proof of the three-term recursion formula can be ob-
tained from the generating function of the Legendre polynomials. Many
special functions have such generating functions. In this case, it is given by

g(x, t) =
1√

1− 2xt + t2
=

∞

∑
n=0

Pn(x)tn, |x| ≤ 1, |t| < 1. (3.49)
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Figure 3.5: The position vectors used to
describe the tidal force on the Earth due
to the moon. r

2

r
1

r
1

r  -
2

This generating function occurs often in applications. In particular, it
arises in potential theory, such as electromagnetic or gravitational potentials.
These potential functions are 1

r type functions.
For example, the gravitational potential between the Earth and the moon

is proportional to the reciprocal of the magnitude of the difference between
their positions relative to some coordinate system. An even better example
would be to place the origin at the center of the Earth and consider the
forces on the non-pointlike Earth due to the moon. Consider a piece of the
Earth at position r1 and the moon at position r2 as shown in Figure 3.5. The
tidal potential Φ is proportional to

Φ ∝
1

|r2 − r1|
=

1√
(r2 − r1) · (r2 − r1)

=
1√

r2
1 − 2r1r2 cos θ + r2

2

,

where θ is the angle between r1 and r2.
Typically, one of the position vectors is much larger than the other. Let’s

assume that r1 � r2. Then, one can write

Φ ∝
1√

r2
1 − 2r1r2 cos θ + r2

2

=
1
r2

1√
1− 2 r1

r2
cos θ +

(
r1
r2

)2
.

Now, define x = cos θ and t = r1
r2

. We then have that the tidal potential is
proportional to the generating function for the Legendre polynomials! So,
we can write the tidal potential as

Φ ∝
1
r2

∞

∑
n=0

Pn(cos θ)

(
r1

r2

)n
.

The first term in the expansion, 1
r2

, is the gravitational potential that gives
the usual force between the Earth and the moon. [Recall that the gravita-
tional potential for mass m at distance r from M is given by Φ = −GMm

r and

that the force is the gradient of the potential, F = −∇Φ ∝ ∇
(

1
r

)
.] The next

terms will give expressions for the tidal effects.
Now that we have some idea as to where this generating function might

have originated, we can proceed to use it. First of all, the generating function
can be used to obtain special values of the Legendre polynomials.

Example 3.8. Evaluate Pn(0) using the generating function. Pn(0) is found by
considering g(0, t). Setting x = 0 in Equation (3.49), we have

g(0, t) =
1√

1 + t2
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=
∞

∑
n=0

Pn(0)tn

= P0(0) + P1(0)t + P2(0)t2 + P3(0)t3 + . . . . (3.50)

We can use the binomial expansion to find the final answer. Namely, we have

1√
1 + t2

= 1− 1
2

t2 +
3
8

t4 + . . . .

Comparing these expansions, we have the Pn(0) = 0 for n odd and for even integers
one can show (see Problem 12) that7 7 This example can be finished by first

proving that

(2n)!! = 2nn!

and

(2n− 1)!! =
(2n)!
(2n)!!

=
(2n)!
2nn!

.

P2n(0) = (−1)n (2n− 1)!!
(2n)!!

, (3.51)

where n!! is the double factorial,

n!! =


n(n− 2) . . . (3)1, n > 0, odd,
n(n− 2) . . . (4)2, n > 0, even,
1, n = 0,−1.

.

Example 3.9. Evaluate Pn(−1). This is a simpler problem. In this case we have

g(−1, t) =
1√

1 + 2t + t2
=

1
1 + t

= 1− t + t2 − t3 + . . . .

Therefore, Pn(−1) = (−1)n.
Proof of the three-term recursion for-
mula using the generating function.

Example 3.10. Prove the three-term recursion formula,

(k + 1)Pk+1(x)− (2k + 1)xPk(x) + kPk−1(x) = 0, k = 1, 2, . . . ,

using the generating function.
We can also use the generating function to find recurrence relations. To prove the

three term recursion (3.43) that we introduced above, then we need only differentiate
the generating function with respect to t in Equation (3.49) and rearrange the result.
First note that

∂g
∂t

=
x− t

(1− 2xt + t2)3/2 =
x− t

1− 2xt + t2 g(x, t).

Combining this with
∂g
∂t

=
∞

∑
n=0

nPn(x)tn−1,

we have

(x− t)g(x, t) = (1− 2xt + t2)
∞

∑
n=0

nPn(x)tn−1.

Inserting the series expression for g(x, t) and distributing the sum on the right side,
we obtain

(x− t)
∞

∑
n=0

Pn(x)tn =
∞

∑
n=0

nPn(x)tn−1 −
∞

∑
n=0

2nxPn(x)tn +
∞

∑
n=0

nPn(x)tn+1.
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Multiplying out the x− t factor and rearranging, leads to three separate sums:

∞

∑
n=0

nPn(x)tn−1 −
∞

∑
n=0

(2n + 1)xPn(x)tn +
∞

∑
n=0

(n + 1)Pn(x)tn+1 = 0. (3.52)

Each term contains powers of t that we would like to combine into a single sum.
This is done by reindexing. For the first sum, we could use the new index k = n− 1.
Then, the first sum can be written

∞

∑
n=0

nPn(x)tn−1 =
∞

∑
k=−1

(k + 1)Pk+1(x)tk.

Using different indices is just another way of writing out the terms. Note that

∞

∑
n=0

nPn(x)tn−1 = 0 + P1(x) + 2P2(x)t + 3P3(x)t2 + . . .

and
∞

∑
k=−1

(k + 1)Pk+1(x)tk = 0 + P1(x) + 2P2(x)t + 3P3(x)t2 + . . .

actually give the same sum. The indices are sometimes referred to as dummy indices
because they do not show up in the expanded expression and can be replaced with
another letter.

If we want to do so, we could now replace all the k’s with n’s. However, we will
leave the k’s in the first term and now reindex the next sums in Equation (3.52).
The second sum just needs the replacement n = k and the last sum we re-index
using k = n + 1. Therefore, Equation (3.52) becomes

∞

∑
k=−1

(k + 1)Pk+1(x)tk −
∞

∑
k=0

(2k + 1)xPk(x)tk +
∞

∑
k=1

kPk−1(x)tk = 0. (3.53)

We can now combine all the terms, noting the k = −1 term is automatically
zero and the k = 0 terms give

P1(x)− xP0(x) = 0. (3.54)

Of course, we know this already. So, that leaves the k > 0 terms:

∞

∑
k=1

[(k + 1)Pk+1(x)− (2k + 1)xPk(x) + kPk−1(x)] tk = 0. (3.55)

Since this is true for all t, the coefficients of the tk’s are zero, or

(k + 1)Pk+1(x)− (2k + 1)xPk(x) + kPk−1(x) = 0, k = 1, 2, . . . .

While this is the standard form for the three-term recurrence relation, the earlier
form is obtained by setting k = n− 1.

There are other recursion relations that we list in the box below. Equation
(3.56) was derived using the generating function. Differentiating it with re-
spect to x, we find Equation (3.57). Equation (3.58) can be proven using the
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generating function by differentiating g(x, t) with respect to x and rearrang-
ing the resulting infinite series just as in this last manipulation. This will be
left as Problem 4. Combining this result with Equation (3.56), we can derive
Equations (3.59) and (3.60). Adding and subtracting these equations yields
Equations (3.61) and (3.62).

Recursion Formulae for Legendre Polynomials for n = 1, 2, . . . .

(n + 1)Pn+1(x) = (2n + 1)xPn(x)− nPn−1(x) (3.56)

(n + 1)P′n+1(x) = (2n + 1)[Pn(x) + xP′n(x)]− nP′n−1(x)

(3.57)

Pn(x) = P′n+1(x)− 2xP′n(x) + P′n−1(x) (3.58)

P′n−1(x) = xP′n(x)− nPn(x) (3.59)

P′n+1(x) = xP′n(x) + (n + 1)Pn(x) (3.60)

P′n+1(x) + P′n−1(x) = 2xP′n(x) + Pn(x). (3.61)

P′n+1(x)− P′n−1(x) = (2n + 1)Pn(x). (3.62)

(x2 − 1)P′n(x) = nxPn(x)− nPn−1(x) (3.63)

Finally, Equation (3.63) can be obtained using Equations (3.59) and (3.60).
Just multiply Equation (3.59) by x,

x2P′n(x)− nxPn(x) = xP′n−1(x).

Now use Equation (3.60), but first replace n with n − 1 to eliminate the
xP′n−1(x) term:

x2P′n(x)− nxPn(x) = P′n(x)− nPn−1(x).

Rearranging gives the Equation (3.63).

Example 3.11. Use the generating function to prove

‖Pn‖2 =
∫ 1

−1
P2

n(x) dx =
2

2n + 1
.

Another use of the generating function is to obtain the normalization constant.
This can be done by first squaring the generating function in order to get the prod-
ucts Pn(x)Pm(x), and then integrating over x. The normalization constant.

Squaring the generating function must be done with care, as we need to make
proper use of the dummy summation index. So, we first write

1
1− 2xt + t2 =

[
∞

∑
n=0

Pn(x)tn

]2

=
∞

∑
n=0

∞

∑
m=0

Pn(x)Pm(x)tn+m. (3.64)

Integrating from x = −1 to x = 1 and using the orthogonality of the Legendre
polynomials, we have∫ 1

−1

dx
1− 2xt + t2 =

∞

∑
n=0

∞

∑
m=0

tn+m
∫ 1

−1
Pn(x)Pm(x) dx
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=
∞

∑
n=0

t2n
∫ 1

−1
P2

n(x) dx. (3.65)

However, one can show that88 You will need the integral∫ dx
a + bx

=
1
b

ln(a + bx) + C. ∫ 1

−1

dx
1− 2xt + t2 =

1
t

ln
(

1 + t
1− t

)
.

Expanding this expression about t = 0, we obtain99 You will need the series expansion

ln(1 + x) =
∞

∑
n=1

(−1)n+1 xn

n

= x− x2

2
+

x3

3
− · · · .

1
t

ln
(

1 + t
1− t

)
=

∞

∑
n=0

2
2n + 1

t2n.

Comparing this result with Equation (3.65), we find that

‖Pn‖2 =
∫ 1

−1
P2

n(x) dx =
2

2n + 1
. (3.66)

3.4.3 The Differential Equation for Legendre Polynomials

The Legendre polynomials satisfy a second-order linear differential
equation. This differential equation occurs naturally in the solution of initial-
boundary value problems in three dimensions which possess some spherical
symmetry. There are two approaches we could take in showing that the Leg-
endre polynomials satisfy a particular differential equation. Either we can
write down the equations and attempt to solve it, or we could use the above
properties to obtain the equation. For now, we will seek the differential
equation satisfied by Pn(x) using the above recursion relations.

We begin by differentiating Equation (3.63) and using Equation (3.59) to
simplify:

d
dx

(
(x2 − 1)P′n(x)

)
= nPn(x) + nxP′n(x)− nP′n−1(x)

= nPn(x) + n2Pn(x)

= n(n + 1)Pn(x). (3.67)

Therefore, Legendre polynomials, or Legendre functions of the first kind,
are solutions of the differential equation

(1− x2)y′′ − 2xy′ + n(n + 1)y = 0.

As this is a linear second-order differential equation, we expect two linearlyA generalization of the Legendre equa-
tion is given by (1 − x2)y′′ − 2xy′ +[

n(n + 1)− m2

1−x2

]
y = 0. Solutions to

this equation, Pm
n (x) and Qm

n (x), are
called the associated Legendre functions
of the first and second kind.

independent solutions. The second solution, called the Legendre function
of the second kind, is given by Qn(x) and is not well behaved at x = ±1.
For example,

Q0(x) =
1
2

ln
1 + x
1− x

.

We will not need these for physically interesting examples in this book.
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3.4.4 Fourier-Legendre Series Examples

With these properties of Legendre functions, we are now prepared
to compute the expansion coefficients for the Fourier-Legendre series repre-
sentation of a given function.

Example 3.12. Expand f (x) = x3 in a Fourier-Legendre series.
We simply need to compute

cn =
2n + 1

2

∫ 1

−1
x3Pn(x) dx. (3.68)

We first note that ∫ 1

−1
xmPn(x) dx = 0 for m > n.

As a result, we have that cn = 0 for n > 3. We could just compute
∫ 1
−1 x3Pm(x) dx

for m = 0, 1, 2, . . . outright by looking up Legendre polynomials. We note that x3

is an odd function. So, c0 = 0 and c2 = 0.
This leaves us with only two coefficients to compute. We refer to Table 3.2 and

find that

c1 =
3
2

∫ 1

−1
x4 dx =

3
5

c3 =
7
2

∫ 1

−1
x3
[

1
2
(5x3 − 3x)

]
dx =

2
5

.

Thus,

x3 =
3
5

P1(x) +
2
5

P3(x).

Of course, this is simple to check using Table 3.2:

3
5

P1(x) +
2
5

P3(x) =
3
5

x +
2
5

[
1
2
(5x3 − 3x)

]
= x3.

We could have obtained this result without doing any integration. Write x3 as a
linear combination of P1(x) and P3(x) :

x3 = c1x +
1
2

c2(5x3 − 3x)

= (c1 −
3
2

c2)x +
5
2

c2x3. (3.69)

Equating coefficients of like terms, we have that c2 = 2
5 and c1 = 3

2 c2 = 3
5 .

Example 3.13. Expand the Heaviside10 function in a Fourier-Legendre series. 10 Oliver Heaviside (1850-1925) was an
English mathematician, physicist, and
engineer who used complex analysis to
study circuits and was a co-founder of
vector analysis. The Heaviside function
is also called the step function.

The Heaviside function is defined as

H(x) =

{
1, x > 0,
0, x < 0.

(3.70)

In this case, we cannot find the expansion coefficients without some integration. We
have to compute

cn =
2n + 1

2

∫ 1

−1
f (x)Pn(x) dx

=
2n + 1

2

∫ 1

0
Pn(x) dx. (3.71)
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We can make use of identity (3.62),

P′n+1(x)− P′n−1(x) = (2n + 1)Pn(x), n > 0. (3.72)

We have for n > 0

cn =
1
2

∫ 1

0
[P′n+1(x)− P′n−1(x)] dx =

1
2
[Pn−1(0)− Pn+1(0)].

For n = 0, we have

c0 =
1
2

∫ 1

0
dx =

1
2

.

This leads to the expansion

f (x) ∼ 1
2
+

1
2

∞

∑
n=1

[Pn−1(0)− Pn+1(0)]Pn(x).

We still need to evaluate the Fourier-Legendre coefficients

cn =
1
2
[Pn−1(0)− Pn+1(0)].

Since Pn(0) = 0 for n odd, the cn’s vanish for n even. Letting n = 2k− 1, we
re-index the sum, obtaining

f (x) ∼ 1
2
+

1
2

∞

∑
k=1

[P2k−2(0)− P2k(0)]P2k−1(x).

We can compute the nonzero Fourier coefficients, c2k−1 = 1
2 [P2k−2(0)− P2k(0)],

using a result from Problem 12:

P2k(0) = (−1)k (2k− 1)!!
(2k)!!

. (3.73)

Namely, we have

c2k−1 =
1
2
[P2k−2(0)− P2k(0)]

=
1
2

[
(−1)k−1 (2k− 3)!!

(2k− 2)!!
− (−1)k (2k− 1)!!

(2k)!!

]
= −1

2
(−1)k (2k− 3)!!

(2k− 2)!!

[
1 +

2k− 1
2k

]
= −1

2
(−1)k (2k− 3)!!

(2k− 2)!!
4k− 1

2k
. (3.74)
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Figure 3.6: Sum of first 21 terms for
Fourier-Legendre series expansion of
Heaviside function.

Thus, the Fourier-Legendre series expansion for the Heaviside function is given
by

f (x) ∼ 1
2
− 1

2

∞

∑
n=1

(−1)n (2n− 3)!!
(2n− 2)!!

4n− 1
2n

P2n−1(x). (3.75)

The sum of the first 21 terms of this series are shown in Figure 3.6. We note the slow
convergence to the Heaviside function. Also, we see that the Gibbs phenomenon is
present due to the jump discontinuity at x = 0. [See Section 2.5.]



generalized fourier series and function spaces 97

3.5 Gamma Function

A function that often occurs in the study of special functions

is the Gamma function. We will need the Gamma function in the next
section on Fourier-Bessel series. The name and symbol for the Gamma

function were first given by Legendre in
1811. However, the search for a gener-
alization of the factorial extends back to
the 1720’s when Euler provided the first
representation of the factorial as an infi-
nite product, later to be modified by oth-
ers like Gauß, Weierstraß, and Legendre.

For x > 0 we define the Gamma function as

Γ(x) =
∫ ∞

0
tx−1e−t dt, x > 0. (3.76)

The Gamma function is a generalization of the factorial function and a plot
is shown in Figure 3.7. In fact, we have

Γ(1) = 1

and
Γ(x + 1) = xΓ(x).

The reader can prove this identity by simply performing an integration by
parts. (See Problem 7.) In particular, for integers n ∈ Z+, we then have

Γ(n + 1) = nΓ(n) = n(n− 1)Γ(n− 2) = n(n− 1) · · · 2Γ(1) = n!.

–6

–4

–2

2

4

1 2 3 4–1–2–3–4–6

x

Figure 3.7: Plot of the Gamma function.

We can also define the Gamma function for negative, non-integer values
of x. We first note that by iteration on n ∈ Z+, we have

Γ(x + n) = (x + n− 1) · · · (x + 1)xΓ(x), x > 0.

Solving for Γ(x), we then find

Γ(x) =
Γ(x + n)

(x + n− 1) · · · (x + 1)x
, −n < x < 0.

Note that the Gamma function is undefined at zero and the negative inte-
gers.

Example 3.14. We now prove that

Γ
(

1
2

)
=
√

π.

This is done by direct computation of the integral:

Γ
(

1
2

)
=
∫ ∞

0
t−

1
2 e−t dt.

Letting t = z2, we have

Γ
(

1
2

)
= 2

∫ ∞

0
e−z2

dz.

Due to the symmetry of the integrand, we obtain the classic integral

Γ
(

1
2

)
=
∫ ∞

−∞
e−z2

dz,
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which can be performed using a standard trick. Consider the integral

I =
∫ ∞

−∞
e−x2

dx.

Then,
I2 =

∫ ∞

−∞
e−x2

dx
∫ ∞

−∞
e−y2

dy.

Note that we changed the integration variable. This will allow us to write this
product of integrals as a double integral:In Example 5.5 we show the more gen-

eral result:∫ ∞

−∞
e−βy2

dy =

√
π

β
. I2 =

∫ ∞

−∞

∫ ∞

−∞
e−(x2+y2) dxdy.

This is an integral over the entire xy-plane. We can transform this Cartesian inte-
gration to an integration over polar coordinates. The integral becomes

I2 =
∫ 2π

0

∫ ∞

0
e−r2

rdrdθ.

This is simple to integrate and we have I2 = π. So, the final result is found by
taking the square root of both sides:

Γ
(

1
2

)
= I =

√
π.

In Problem 12, the reader will prove the identity

Γ(n +
1
2
) =

(2n− 1)!!
2n

√
π.

Another useful relation, which we only state, is

Γ(x)Γ(1− x) =
π

sin πx
.

The are many other important relations, including infinite products, which
we will not need at this point. The reader is encouraged to read about
these elsewhere. In the meantime, we move on to the discussion of another
important special function in physics and mathematics.

3.6 Fourier-Bessel Series

Bessel functions arise in many problems in physics possessing cylin-
drical symmetry, such as the vibrations of circular drumheads and the radial
modes in optical fibers. They also provide us with another orthogonal set
of basis functions.

The first occurrence of Bessel functions (zeroth order) was in the workBessel functions have a long history
and were named after Friedrich Wilhelm
Bessel (1784-1846).

of Daniel Bernoulli on heavy chains (1738). More general Bessel functions
were studied by Leonhard Euler in 1781 and in his study of the vibrating
membrane in 1764. Joseph Fourier found them in the study of heat conduc-
tion in solid cylinders and Siméon Poisson (1781-1840) in heat conduction
of spheres (1823).
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The history of Bessel functions, did not just originate in the study of the
wave and heat equations. These solutions originally came up in the study
of the Kepler problem, describing planetary motion. According to G. N.
Watson in his Treatise on Bessel Functions, the formulation and solution of
Kepler’s Problem was discovered by Joseph-Louis Lagrange (1736-1813), in
1770. Namely, the problem was to express the radial coordinate and what
is called the eccentric anomaly, E, as functions of time. Lagrange found
expressions for the coefficients in the expansions of r and E in trigonometric
functions of time. However, he only computed the first few coefficients. In
1816, Friedrich Wilhelm Bessel (1784-1846) had shown that the coefficients
in the expansion for r could be given an integral representation. In 1824, he
presented a thorough study of these functions, which are now called Bessel
functions.

You might have seen Bessel functions in a course on differential equations
as solutions of the differential equation

x2y′′ + xy′ + (x2 − p2)y = 0. (3.77)

Solutions to this equation are obtained in the form of series expansions.
Namely, one seeks solutions of the form

y(x) =
∞

∑
j=0

ajxj+n

by determining the form the coefficients must take. We will leave this for a
homework exercise and simply report the results.

One solution of the differential equation is the Bessel function of the first
kind of order p, given as

y(x) = Jp(x) =
∞

∑
n=0

(−1)n

Γ(n + 1)Γ(n + p + 1)

( x
2

)2n+p
. (3.78)

J (x) 3

J (x) 2

J (x) 1

J (x) 0
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Figure 3.8: Plots of the Bessel functions
J0(x), J1(x), J2(x), and J3(x).
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In Figure 3.8, we display the first few Bessel functions of the first kind
of integer order. Note that these functions can be described as decaying
oscillatory functions.

A second linearly independent solution is obtained for p not an integer as
J−p(x). However, for p an integer, the Γ(n+ p+ 1) factor leads to evaluations
of the Gamma function at zero, or negative integers, when p is negative.
Thus, the above series is not defined in these cases.

Another method for obtaining a second linearly independent solution is
through a linear combination of Jp(x) and J−p(x) as

Np(x) = Yp(x) =
cos πpJp(x)− J−p(x)

sin πp
. (3.79)

These functions are called the Neumann functions, or Bessel functions of
the second kind of order p.

Figure 3.9: Plots of the Neumann func-
tions N0(x), N1(x), N2(x), and N3(x).
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In Figure 3.9, we display the first few Bessel functions of the second kind
of integer order. Note that these functions are also decaying oscillatory
functions. However, they are singular at x = 0.

In many applications, one desires bounded solutions at x = 0. These
functions do not satisfy this boundary condition. For example, one stan-
dard problem is to describe the oscillations of a circular drumhead. For
this problem one solves the two dimensional wave equation using separa-
tion of variables in cylindrical coordinates. The radial equation leads to a
Bessel equation. The Bessel function solutions describe the radial part of
the solution and one does not expect a singular solution at the center of
the drum. The amplitude of the oscillation must remain finite. Thus, only
Bessel functions of the first kind can be used.

Bessel functions satisfy a variety of properties, which we will only list
at this time for Bessel functions of the first kind. The reader will have the
opportunity to prove these for homework.

Derivative Identities These identities follow directly from the manipula-
tion of the series solution.
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d
dx
[
xp Jp(x)

]
= xp Jp−1(x). (3.80)

d
dx
[
x−p Jp(x)

]
= −x−p Jp+1(x). (3.81)

Recursion Formulae The next identities follow from adding, or subtract-
ing, the derivative identities.

Jp−1(x) + Jp+1(x) =
2p
x

Jp(x). (3.82)

Jp−1(x)− Jp+1(x) = 2J′p(x). (3.83)

Orthogonality One can recast the Bessel equation into an eigenvalue
problem whose solutions form an orthogonal basis of functions on L2

x(0, a).
Using Sturm-Liouville Theory, one can show that

∫ a

0
xJp(jpn

x
a
)Jp(jpm

x
a
) dx =

a2

2
[

Jp+1(jpn)
]2

δn,m, (3.84)

where jpn is the nth root of Jp(x), Jp(jpn) = 0, n = 1, 2, . . . . A list of some
of these roots is provided in Table 3.3.

n m = 0 m = 1 m = 2 m = 3 m = 4 m = 5
1 2.405 3.832 5.136 6.380 7.588 8.771

2 5.520 7.016 8.417 9.761 11.065 12.339

3 8.654 10.173 11.620 13.015 14.373 15.700

4 11.792 13.324 14.796 16.223 17.616 18.980

5 14.931 16.471 17.960 19.409 20.827 22.218

6 18.071 19.616 21.117 22.583 24.019 25.430

7 21.212 22.760 24.270 25.748 27.199 28.627

8 24.352 25.904 27.421 28.908 30.371 31.812

9 27.493 29.047 30.569 32.065 33.537 34.989

Table 3.3: The zeros of Bessel Functions,
Jm(jmn) = 0.

Generating Function

ex(t− 1
t )/2 =

∞

∑
n=−∞

Jn(x)tn, x > 0, t 6= 0. (3.85)

Integral Representation

Jn(x) =
1
π

∫ π

0
cos(x sin θ − nθ) dθ, x > 0, n ∈ Z. (3.86)

Fourier-Bessel Series

Since the Bessel functions are an orthogonal set of functions of a Sturm-
Liouville problem, we can expand square integrable functions in this ba-
sis. In fact, the Sturm-Liouville problem is given in the form

x2y′′ + xy′ + (λx2 − p2)y = 0, x ∈ [0, a], (3.87)
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satisfying the boundary conditions: y(x) is bounded at x = 0 and y(a) =
0. The solutions are then of the form Jp(

√
λx), as can be shown by making

the substitution t =
√

λx in the differential equation. Namely, we let
y(x) = u(t) and note that

dy
dx

=
dt
dx

du
dt

=
√

λ
du
dt

.

Then,
t2u′′ + tu′ + (t2 − p2)u = 0,

which has a solution u(t) = Jp(t).In the study of boundary value prob-
lems in differential equations, Sturm-
Liouville problems are a bountiful
source of basis functions for the space
of square integrable functions, as will be
seen in the next section.

Using Sturm-Liouville theory, one can show that Jp(jpn
x
a ) is a basis

of eigenfunctions and the resulting Fourier-Bessel series expansion of f (x)
defined on x ∈ [0, a] is

f (x) =
∞

∑
n=1

cn Jp(jpn
x
a
), (3.88)

where the Fourier-Bessel coefficients are found using the orthogonality
relation as

cn =
2

a2
[

Jp+1(jpn)
]2 ∫ a

0
x f (x)Jp(jpn

x
a
) dx. (3.89)

Example 3.15. Expand f (x) = 1 for 0 < x < 1 in a Fourier-Bessel series of
the form

f (x) =
∞

∑
n=1

cn J0(j0nx)

.
We need only compute the Fourier-Bessel coefficients in Equation (3.89):

cn =
2

[J1(j0n)]
2

∫ 1

0
xJ0(j0nx) dx. (3.90)

From the identity

d
dx
[
xp Jp(x)

]
= xp Jp−1(x), (3.91)

we have ∫ 1

0
xJ0(j0nx) dx =

1
j20n

∫ j0n

0
yJ0(y) dy

=
1

j20n

∫ j0n

0

d
dy

[yJ1(y)] dy

=
1

j20n
[yJ1(y)]

j0n
0

=
1

j0n
J1(j0n). (3.92)

As a result, the desired Fourier-Bessel expansion is given as

1 = 2
∞

∑
n=1

J0(j0nx)
j0n J1(j0n)

, 0 < x < 1. (3.93)

In Figure 3.10, we show the partial sum for the first fifty terms of this series.
Note once again the slow convergence due to the Gibbs phenomenon.
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Figure 3.10: Plot of the first 50 terms
of the Fourier-Bessel series in Equation
(3.93) for f (x) = 1 on 0 < x < 1.

3.7 Appendix: The Least Squares Approximation

In the first section of this chapter, we showed that we can expand
functions over an infinite set of basis functions as

f (x) =
∞

∑
n=1

cnφn(x)

and that the generalized Fourier coefficients are given by

cn =
< φn, f >

< φn, φn >
.

In this section we turn to a discussion of approximating f (x) by the partial
sums ∑N

n=1 cnφn(x) and showing that the Fourier coefficients are the best
coefficients minimizing the deviation of the partial sum from f (x). This will
lead us to a discussion of the convergence of Fourier series.

More specifically, we set the following goal:

Goal

To find the best approximation of f (x) on [a, b] by SN(x) =
N
∑

n=1
cnφn(x)

for a set of fixed functions φn(x); i.e., to find the expansion coefficients,
cn, such that SN(x) approximates f (x) in the least squares sense.

We want to measure the deviation of the finite sum from the given func-
tion. Essentially, we want to look at the error made in the approximation.
This is done by introducing the mean square deviation:

EN =
∫ b

a
[ f (x)− SN(x)]2ρ(x) dx,
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where we have introduced the weight function ρ(x) > 0. It gives us a sense
as to how close the Nth partial sum is to f (x).The mean square deviation.

We want to minimize this deviation by choosing the right cn’s. We begin
by inserting the partial sums and expand the square in the integrand:

EN =
∫ b

a
[ f (x)− SN(x)]2ρ(x) dx

=
∫ b

a

[
f (x)−

N

∑
n=1

cnφn(x)

]2

ρ(x) dx

=

b∫
a

f 2(x)ρ(x) dx− 2
b∫

a

f (x)
N

∑
n=1

cnφn(x)ρ(x) dx

+

b∫
a

N

∑
n=1

cnφn(x)
N

∑
m=1

cmφm(x)ρ(x) dx. (3.94)

Looking at the three resulting integrals, we see that the first term is just
the inner product of f with itself. The other integrations can be rewritten
after interchanging the order of integration and summation. The double
sum can be reduced to a single sum using the orthogonality of the φn’s.
Thus, we have

EN = < f , f > −2
N

∑
n=1

cn < f , φn > +
N

∑
n=1

N

∑
m=1

cncm < φn, φm >

= < f , f > −2
N

∑
n=1

cn < f , φn > +
N

∑
n=1

c2
n < φn, φn > . (3.95)

We are interested in finding the coefficients, so we will complete the
square in cn. Focusing on the last two terms, we have

−2
N

∑
n=1

cn < f , φn > +
N

∑
n=1

c2
n < φn, φn >

=
N

∑
n=1

< φn, φn > c2
n − 2 < f , φn > cn

=
N

∑
n=1

< φn, φn >

[
c2

n −
2 < f , φn >

< φn, φn >
cn

]

=
N

∑
n=1

< φn, φn >

[(
cn −

< f , φn >

< φn, φn >

)2
−
(

< f , φn >

< φn, φn >

)2
]

.

(3.96)

Up to this point, we have shown that the mean square deviation is given
as

EN =< f , f > +
N

∑
n=1

< φn, φn >

[(
cn −

< f , φn >

< φn, φn >

)2
−
(

< f , φn >

< φn, φn >

)2
]

.
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So, EN is minimized by choosing

cn =
< f , φn >

< φn, φn >
.

However, these are the Fourier Coefficients. This minimization is often Minimization in Least Squares Sense

referred to as Minimization in Least Squares Sense.
Inserting the Fourier coefficients into the mean square deviation yields Bessel’s Inequality.

0 ≤ EN =< f , f > −
N

∑
n=1

c2
n < φn, φn > .

Thus, we obtain Bessel’s Inequality:

< f , f >≥
N

∑
n=1

c2
n < φn, φn > .

Convergence in the mean.
For convergence, we next let N get large and see if the partial sums con-

verge to the function. In particular, we say that the infinite series converges
in the mean if ∫ b

a
[ f (x)− SN(x)]2ρ(x) dx → 0 as N → ∞.

Letting N get large in Bessel’s inequality shows that the sum ∑N
n=1 c2

n <

φn, φn > converges if

(< f , f >=
∫ b

a
f 2(x)ρ(x) dx < ∞.

The space of all such f is denoted L2
ρ(a, b), the space of square integrable

functions on (a, b) with weight ρ(x).
From the nth term divergence test from calculus, we know that the con-

vergence of ∑ an implies that an → 0 as n → ∞. Therefore, in this problem,
the terms c2

n < φn, φn > approach zero as n gets large. This is only possible
if the cn’s go to zero as n gets large. Thus, if ∑N

n=1 cnφn converges in the
mean to f , then

∫ b
a [ f (x)− ∑N

n=1 cnφn]2ρ(x) dx approaches zero as N → ∞.
This implies from the above derivation of Bessel’s inequality that

< f , f > −
N

∑
n=1

c2
n(φn, φn)→ 0.

This leads to Parseval’s equality: Parseval’s equality.

< f , f >=
∞

∑
n=1

c2
n < φn, φn > .

Parseval’s equality holds if and only if

lim
N→∞

b∫
a

( f (x)−
N

∑
n=1

cnφn(x))2ρ(x) dx = 0.

If this is true for every square integrable function in L2
ρ(a, b), then the set of

functions {φn(x)}∞
n=1 is said to be complete. One can view these functions
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as an infinite dimensional basis for the space of square integrable functions
on (a, b) with weight ρ(x) > 0.

One can extend the above limit cn → 0 as n→ ∞, by assuming that φn(x)
‖φn‖

is uniformly bounded and that
b∫
a
| f (x)|ρ(x) dx < ∞. This is the Riemann-

Lebesgue Lemma, but will not be proven here.

3.8 Appendix: Convergence of Trigonometric Fourier Series

In this section we list definitions, lemmas and theorems needed to pro-
vide convergence arguments for trigonometric Fourier series. We will not
attempt to discuss the derivations in depth, but provide enough for the in-
terested reader to see what is involved in establishing convergence.

Definitions

1. For any nonnegative integer k, a function u is Ck if every k-th order
partial derivative of u exists and is continuous.

2. For two functions f and g defined on an interval [a, b], we will
define the inner product as < f , g >=

∫ b
a f (x)g(x) dx.

3. A function f is periodic with period p if f (x + p) = f (x) for all x.

4. Let f be a function defined on [−L, L] such that f (−L) = f (L).
The periodic extension f̃ of f is the unique periodic function of
period 2L such that f̃ (x) = f (x)for all x ∈ [−L, L].

5. The expression

DN(x) =
1
2
+

N

∑
n=1

cos
nπx

L

is called the N-th Dirichlet Kernel. [This will be summed later
and the sequences of kernels converges to what is called the Dirac
Delta function.]

6. A sequence of functions {s1(x), s2(x), . . .} is said to converge point-
wise to f (x) on the interval [−L, L] if for each fixed x in the inter-
val,

lim
N→∞

| f (x)− sN(x)| = 0.

7. A sequence of functions {s1(x), s2(x), . . .} is said to converge uni-
formly to f (x) on the interval [−L, L] if

lim
N→∞

(
max
|x|≤L

| f (x)− sN(x)|
)
= 0.

8. One-sided limits: f (x+0 ) = lim
x↓x0

f (x) and f (x−0 ) = lim
x↑x0

f (x).

9. A function f is piecewise continuous on [a, b] if the function sat-
isfies

a. f is defined and continuous at all but a finite number of points
of [a, b].
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b. For all x ∈ (a, b), the limits f (x+) and f (x−) exist.
c. f (a+) and f (b−) exist.

10. A function is piecewise C1 on [a, b] if f (x) and f ′(x) are piecewise
continuous on [a, b].

Lemmas

1. Bessel’s Inequality: Let f (x) be defined on [−L, L] and∫
_−LL f 2(x) dx < ∞. If the trigonometric Fourier coefficients exist,

then a2
0 + ∑N

n=1(a2
n + b2

n) ≤ 1
L
∫ L
−L f 2(x) dx. This follows from the

earlier section on the Least Squares Approximation.

2. Riemann-Lebesgue Lemma: Under the conditions of Bessel’s In-
equality, the Fourier coefficients approach zero as n → 0. This
is based upon some earlier convergence results seen in Calculus
in which one learns for a series of nonnegative terms, ∑ cnwith
cn ≥ 0, if cndoes not approach 0 as n → ∞, then ∑ cndoes not con-
verge. Therefore, the contrapositive holds, if ∑ cn converges, then
cn → 0 as n→ ∞. From Bessel’s Inequality, we see that when f is
square integrable, the series formed by the sums of squares of the
Fourier coefficients converges. Therefore, the Fourier coefficients
must go to zero as n increases. This is also referred to in the earlier
section on the Least Squares Approximation. However, an exten-
sion to absolutely integrable functions exists, which is called the
Riemann-Lebesgue Lemma.

3. Green’s Formula: Let f and gbe C2 functions on [a, b]. Then <

f ′′, g > − < f , g′′ >= [ f ′(x)g(x)− f (x)g′(x)]|ba . [Note: This is
just an iteration of integration by parts.]

4. Special Case of Green’s Formula: Let f and gbe C2 functions on
[−L, L] and both functions satisfy the conditions f (−L) = f (L)
and f ′(−L) = f ′(L). Then < f ′′, g >=< f , g′′ > .

5. Lemma 1: If g is a periodic function of period 2Land c any real
number, then

∫ L+c
−L+c g(x) dx =

∫ L
−L g(x) dx.

6. Lemma 2: Let f be a C2 function on [−L, L] such that f (−L) =

f (L) and f ′(−L) = f ′(L). Then for M = max|x|≤L | f ′′(x)| and
n ≥ 1,

|an| =

∣∣∣∣∣∣ 1
L

L∫
−L

f (x) cos
nπx

L
dx

∣∣∣∣∣∣ ≤ 2L2M
n2π2 (3.97)

|bn| =

∣∣∣∣∣∣ 1
L

L∫
−L

f (x) sin
nπx

L
dx

∣∣∣∣∣∣ ≤ 2L2M
n2π2 . (3.98)

7. Lemma 3: For any real θ such that sin θ
2 6= 0,

1
2
+ cos θ + cos 2θ + · · ·+ cos nθ =

sin((n + 1
2 )θ)

2 sin θ
2
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8. Lemma 4: Let h(x) be C1 on [−L, L]. Then

lim
n→∞

1
L

L∫
−L

Dn(x)h(x) dx = h(0).

Convergence Theorems

1. Theorem 1. (Pointwise Convergence) Let f be C1 on [−L, L] with
f (−L) = f (L), f ′(−L) = f ′(L). Then FS f (x) = f (x) for all x in
[−L, L].

2. Theorem 2. (Uniform Convergence) Let f be C2 on [−L, L] with
f (−L) = f (L), f ′(−L) = f ′(L). Then FS f (x) converges uniformly
to f (x). In particular,

| f (x)− SN(x)| ≤ 4L2M
π2N

for all x in [−L, L], where M = max
|x|≤L

| f ′′(x)| .

3. Theorem 3. (Piecewise C1 - Pointwise Convergence) Let f be a
piecewise C1 function on [−L, L]. Then FS f (x) converges to the
periodic extension of

f (x) =

{
1
2 [ f (x+) + f (x−)], −L < x < L
1
2 [ f (L+) + f (L−)], x = ±L

for all x in [−L, L].

4. Theorem 4. (Piecewise C1 - Uniform Convergence) Let f be a
piecewise C1 function on [−L, L] such that f (−L) = f (L). Then
FS f (x) converges uniformly to f (x).

Proof of Convergence
We are considering the Fourier series of f (x) :

FS f (x) = a0 +
∞

∑
n=1

[
an cos

nπx
L

+ bn sin
nπx

L

]
,

where the Fourier coefficients are given by

a0 = 1
2L

L∫
−L

f (x) dx,

an = 1
L

L∫
−L

f (x) cos nπx
L dx,

bn = 1
L

L∫
−L

f (x) sin nπx
L dx.

We are first interested in the pointwise convergence of the infinite series.
Thus, we need to look at the partial sums for each x. Writing out the partial
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sums, inserting the Fourier coefficients and rearranging, we have

SN(x) = a0 +
N

∑
n=1

[
an cos

nπx
L

+ bn sin
nπx

L

]
=

1
2L

∫ L

−L
f (y) dy +

N

∑
n=1

[(
1
L

∫ L

−L
f (y) cos

nπy
L

dy
)

cos
nπx

L

+

(
1
L

∫ L

−L
f (y) sin

nπy
L

dy.
)

sin
nπx

L

]

=
1
L

L∫
−L

{
1
2
+

N

∑
n=1

(
cos

nπy
L

cos
nπx

L
+ sin

nπy
L

sin
nπx

L

)}
f (y) dy

=
1
L

L∫
−L

{
1
2
+

N

∑
n=1

cos
nπ(y− x)

L

}
f (y) dy

≡ 1
L

L∫
−L

DN(y− x) f (y) dy (3.99)

Here

DN(x) =
1
2
+

N

∑
n=1

cos
nπx

L

is called the N-th Dirichlet Kernel. What we seek to prove is (Lemma 4)
that

lim
N→∞

1
L

L∫
−L

DN(y− x) f (y) dy = f (x).

[Technically, we need the periodic extension of f .] So, we need to consider
the Dirichlet kernel. Then pointwise convergence follows, as lim

N→∞
SN(x) =

f (x).
Proposition:

Dn(x) =


sin((n+ 1

2 )
πx
L )

2 sin πx
2L

, sin πx
2L 6= 0

n + 1
2 , sin πx

2L = 0
.

Proof: Actually, this follows from Lemma 3. Let θ = πx
L and multiply

Dn(x) by 2 sin θ
2 to obtain:

2 sin
θ

2
Dn(x) = 2 sin

θ

2

[
1
2
+ cos θ + · · ·+ cos nθ

]
= sin

θ

2
+ 2 cos θ sin

θ

2
+ 2 cos 2θ sin

θ

2
+ · · ·+ 2 cos nθ sin

θ

2

= sin
θ

2
+

(
sin

3θ

2
− sin

θ

2

)
+

(
sin

5θ

2
− sin

3θ

2

)
+ · · ·

+

(
sin
(
(n +

1
2
)θ

)
− sin

(
(n− 1

2
)θ

))
= sin

(
(n +

1
2
)θ

)
. (3.100)
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Thus,

2 sin
θ

2
Dn(x) = sin

(
(n +

1
2
)θ

)
,

or if sin θ
2 6= 0,

Dn(x) =
sin
(
(n + 1

2 )θ
)

2 sin θ
2

, θ =
πx
L

.

If sin θ
2 = 0, then one needs to apply L’Hospital’s Rule:

lim
θ→2mπ

sin
(
(n + 1

2 )θ
)

2 sin θ
2

= lim
θ→2mπ

(n + 1
2 ) cos

(
(n + 1

2 )θ
)

cos θ
2

=
(n + 1

2 ) cos (2mnπ + mπ)

cos mπ

= n +
1
2

. (3.101)

As n → ∞, Dn(x) → δ(x), the Dirac delta function, on the interval
[−L, L]. In Figures 5.13-5.14 are some plots for L = πand n = 25, 50, 100.
Note how the central peaks of DN(x) grow as N gets large and the values
of DN(x) tend towards zero for nonzero x.

Figure 3.11: Nth Dirichlet Kernel for
N=25.

Figure 3.12: Nth Dirichlet Kernel for
N=50.

The Dirac delta function can be defined as that quantity satisfying

a. δ(x) = 0, x 6= 0;
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Figure 3.13: Nth Dirichlet Kernel for
N=100.

b.
∞∫
−∞

δ(x) dx = 1.

This generalized function, or distribution, also has the property:
∞∫
−∞

f (x)δ(x− a) dx = f (a).

Thus, under the appropriate conditions on f , one can show

lim
N→∞

1
L

L∫
−L

DN(y− x) f (y) dy = f (x).

We need to prove Lemma 4 first.

Proof: Since 1
L

L∫
−L

DN(x) dx = 1
2L

L∫
−L

dx = 1, we have that

1
L

L∫
−L

DN(x)h(x) dx− h(0) =
1
L

L∫
−L

DN(x) [h(x)− h(0)] dx

=
1

2L

L∫
−L

[
cos

nπx
L

+ cot
πx
L

sin
nπx

L

]
[h(x)− h(0)] dx.

(3.102)

The two terms look like the Fourier coefficients. An application of the
Riemann-L:ebesgue Lemma indicates that these coefficients tend to zero as
n → ∞, provided the functions being expanded are square integrable and
the integrals above exist. The cosine integral follows, but a little work is
needed for the sine integral. One can use L’Hospital’s Rule with h ∈ C1.

Now we apply Lemma 4 to get the convergence from

lim
N→∞

1
L

L∫
−L

DN(y− x) f (y) dy = f (x).

Due to periodicity, we have

1
L

L∫
−L

DN(y− x) f (y) dy =
1
L

L∫
−L

DN(y− x) f̃ (y) dy
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=
1
L

L+x∫
−L+x

DN(y− x) f̃ (y) dy

=
1
L

L∫
−L

DN(z) f̃ (x + z) dz. (3.103)

We can apply Lemma 4 providing f̃ (z + x) is C1 in z, which is true since
f is C1 and behaves well at ±L.

To prove Theorem 2 on uniform convergence, we need only combine
Theorem 1 with Lemma 2. Then we have,

| f (x)− SN(x)| = | f (x)− SN(x)|

≤
∞

∑
n=N+1

[∣∣∣an cos
nπx

L

∣∣∣+ ∣∣∣bn sin
nπx

L

∣∣∣]
≤

∞

∑
n=N+1

[|an|+ |bn|] (3.104)

≤ 4L2M
π2

∞

∑
n=N+1

1
n2

≤ 4L2M
π2N

. (3.105)

This gives the uniform convergence.
These Theorems can be relaxed to include piecewise C1 functions. Lemma

4 needs to be changed for such functions to the result that

lim
n→∞

1
L

L∫
−L

Dn(x)h(x) dx =
1
2
[h(0+) + h(0−)]

by splitting the integral into integrals over [−L, 0], [0, L] and applying a one-
sided L’Hospital’s Rule. Proving uniform convergence under the conditions
in Theorem 4 takes a little more effort, but it can be done.

Problems

1. Consider the set of vectors (−1, 1, 1), (1,−1, 1), (1, 1,−1).

a. Use the Gram-Schmidt process to find an orthonormal basis for R3

using this set in the given order.

b. What do you get if you do reverse the order of these vectors?

2. Use the Gram-Schmidt process to find the first four orthogonal polyno-
mials satisfying the following:

a. Interval: (−∞, ∞) Weight Function: e−x2
.

b. Interval: (0, ∞) Weight Function: e−x.

3. Find P4(x) using
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a. The Rodrigues Formula in Equation (3.41).

b. The three-term recursion formula in Equation (3.43).

4. In Equations (3.56) through (3.63) we provide several identities for Leg-
endre polynomials. Derive the results in Equations (3.57) through (3.63) as
described in the text. Namely,

a. Differentiating Equation (3.56) with respect to x, derive Equation
(3.57).

b. Derive Equation (3.58) by differentiating g(x, t) with respect to x
and rearranging the resulting infinite series.

c. Combining the previous result with Equation (3.56), derive Equa-
tions (3.59) and (3.60).

d. Adding and subtracting Equations (3.59) and (3.60), obtain Equa-
tions (3.61) and (3.62).

e. Derive Equation (3.63) using some of the other identities.

5. Use the recursion relation (3.43) to evaluate
∫ 1
−1 xPn(x)Pm(x) dx, n ≤ m.

6. Expand the following in a Fourier-Legendre series for x ∈ (−1, 1).

a. f (x) = x2.

b. f (x) = 5x4 + 2x3 − x + 3.

c. f (x) =

{
−1, −1 < x < 0,
1, 0 < x < 1.

d. f (x) =

{
x, −1 < x < 0,
0, 0 < x < 1.

7. Use integration by parts to show Γ(x + 1) = xΓ(x).

8. Prove the double factorial identities:

(2n)!! = 2nn!

and

(2n− 1)!! =
(2n)!
2nn!

.

9. Express the following as Gamma functions. Namely, noting the form
Γ(x + 1) =

∫ ∞
0 txe−t dt and using an appropriate substitution, each expres-

sion can be written in terms of a Gamma function.

a.
∫ ∞

0 x2/3e−x dx.

b.
∫ ∞

0 x5e−x2
dx.

c.
∫ 1

0

[
ln
(

1
x

)]n
dx.

10. The coefficients Cp
k in the binomial expansion for (1 + x)p are given by

Cp
k =

p(p− 1) · · · (p− k + 1)
k!

.
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a. Write Cp
k in terms of Gamma functions.

b. For p = 1/2, use the properties of Gamma functions to write C1/2
k

in terms of factorials.

c. Confirm your answer in part b by deriving the Maclaurin series
expansion of (1 + x)1/2.

11. The Hermite polynomials, Hn(x), satisfy the following:

i. < Hn, Hm >=
∫ ∞
−∞ e−x2

Hn(x)Hm(x) dx =
√

π2nn!δn,m.

ii. H′n(x) = 2nHn−1(x).

iii. Hn+1(x) = 2xHn(x)− 2nHn−1(x).

iv. Hn(x) = (−1)nex2 dn

dxn

(
e−x2

)
.

Using these, show that

a. H′′n − 2xH′n + 2nHn = 0. [Use properties ii. and iii.]

b.
∫ ∞
−∞ xe−x2

Hn(x)Hm(x) dx =
√

π2n−1n! [δm,n−1 + 2(n + 1)δm,n+1] .
[Use properties i. and iii.]

c. Hn(0) =

{
0, n odd,

(−1)m (2m)!
m! , n = 2m.

[Let x = 0 in iii. and iterate.

Note from iv. that H0(x) = 1 and H1(x) = 2x. ]

12. In Maple one can type simplify(LegendreP(2*n-2,0)-LegendreP(2*n,0));
to find a value for P2n−2(0)− P2n(0). It gives the result in terms of Gamma
functions. However, in Example 3.13 for Fourier-Legendre series, the value
is given in terms of double factorials! So, we have

P2n−2(0)− P2n(0) =
√

π(4n− 1)
2Γ(n + 1)Γ

( 3
2 − n

) = (−1)n−1 (2n− 3)!!
(2n− 2)!!

4n− 1
2n

.

You will verify that both results are the same by doing the following:

a. Prove that P2n(0) = (−1)n (2n−1)!!
(2n)!! using the generating function

and a binomial expansion.

b. Prove that Γ
(

n + 1
2

)
= (2n−1)!!

2n
√

π using Γ(x) = (x − 1)Γ(x − 1)
and iteration.

c. Verify the result from Maple that P2n−2(0)− P2n(0) =
√

π(4n−1)
2Γ(n+1)Γ( 3

2−n)
.

d. Can either expression for P2n−2(0)− P2n(0) be simplified further?

13. A solution of Bessel’s equation, x2y′′ + xy′ + (x2 − n2)y = 0, , can
be found using the guess y(x) = ∑∞

j=0 ajxj+n. One obtains the recurrence
relation aj = −1

j(2n+j) aj−2. Show that for a0 = (n!2n)−1, we get the Bessel
function of the first kind of order n from the even values j = 2k:

Jn(x) =
∞

∑
k=0

(−1)k

k!(n + k)!

( x
2

)n+2k
.
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14. Use the infinite series in Problem 13 to derive the derivative identities
(3.80) and (3.81):

a. d
dx [x

n Jn(x)] = xn Jn−1(x).

b. d
dx [x

−n Jn(x)] = −x−n Jn+1(x).

15. Prove the following identities based on those in Problem 14.

a. Jp−1(x) + Jp+1(x) = 2p
x Jp(x).

b. Jp−1(x)− Jp+1(x) = 2J′p(x).

16. Use the derivative identities of Bessel functions, (3.80) and (3.81), and
integration by parts to show that∫

x3 J0(x) dx = x3 J1(x)− 2x2 J2(x) + C.

17. Use the generating function to find Jn(0) and J′n(0).

18. Bessel functions Jp(λx) are solutions of x2y′′ + xy′ + (λ2x2 − p2)y = 0.
Assume that x ∈ (0, 1) and that Jp(λ) = 0 and Jp(0) is finite.

a. Show that this equation can be written in the form

d
dx

(
x

dy
dx

)
+ (λ2x− p2

x
)y = 0.

This is the standard Sturm-Liouville form for Bessel’s equation.

b. Prove that ∫ 1

0
xJp(λx)Jp(µx) dx = 0, λ 6= µ

by considering∫ 1

0

[
Jp(µx)

d
dx

(
x

d
dx

Jp(λx)
)
− Jp(λx)

d
dx

(
x

d
dx

Jp(µx)
)]

dx.

Thus, the solutions corresponding to different eigenvalues (λ, µ)
are orthogonal.

c. Prove that ∫ 1

0
x
[

Jp(λx)
]2 dx =

1
2

J2
p+1(λ) =

1
2

J′2p (λ).

19. We can rewrite Bessel functions, Jν(x), in a form which will allow the
order to be non-integer by using the gamma function. You will need the

results from Problem 12b for Γ
(

k + 1
2

)
.

a. Extend the series definition of the Bessel function of the first kind
of order ν, Jν(x), for ν ≥ 0 by writing the series solution for y(x)
in Problem 13 using the gamma function.

b. Extend the series to J−ν(x), for ν ≥ 0. Discuss the resulting series
and what happens when ν is a positive integer.
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c. Use these results to obtain the closed form expressions

J1/2(x) =

√
2

πx
sin x,

J−1/2(x) =

√
2

πx
cos x.

d. Use the results in part c with the recursion formula for Bessel
functions to obtain a closed form for J3/2(x).

20. In this problem you will derive the expansion

x2 =
c2

2
+ 4

∞

∑
j=2

J0(αjx)
α2

j J0(αjc)
, 0 < x < c,

where the α′js are the positive roots of J1(αc) = 0, by following the below
steps.

a. List the first five values of α for J1(αc) = 0 using Table 3.3 and
Figure 3.8. [Note: Be careful in determining α1.]

b. Show that ‖J0(α1x)‖2 = c2

2 . Recall,

‖J0(αjx)‖2 =
∫ c

0
xJ2

0 (αjx) dx.

c. Show that ‖J0(αjx)‖2 = c2

2
[

J0(αjc)
]2 , j = 2, 3, . . . . (This is the most

involved step.) First note from Problem 18 that y(x) = J0(αjx) is a
solution of

x2y′′ + xy′ + α2
j x2y = 0.

i. Verify the Sturm-Liouville form of this differential equation:
(xy′)′ = −α2

j xy.
ii. Multiply the equation in part i. by y(x) and integrate from

x = 0 to x = c to obtain∫ c

0
(xy′)′y dx = −α2

j

∫ c

0
xy2 dx

= −α2
j

∫ c

0
xJ2

0 (αjx) dx. (3.106)

iii. Noting that y(x) = J0(αjx), integrate the left hand side by parts
and use the following to simplify the resulting equation.
1. J′0(x) = −J1(x) from Equation (3.81).
2. Equation (3.84).
3. J2(αjc) + J0(αjc) = 0 from Equation (3.82).

iv. Now you should have enough information to complete this
part.

d. Use the results from parts b and c and Problem 16 to derive the
expansion coefficients for

x2 =
∞

∑
j=1

cj J0(αjx)

in order to obtain the desired expansion.



4
Complex Analysis

“He is not a true man of science who does not bring some sympathy to his studies,
and expect to learn something by behavior as well as by application. It is childish
to rest in the discovery of mere coincidences, or of partial and extraneous laws. The
study of geometry is a petty and idle exercise of the mind, if it is applied to no larger
system than the starry one. Mathematics should be mixed not only with physics but
with ethics; that is mixed mathematics. The fact which interests us most is the life
of the naturalist. The purest science is still biographical.” Henry David Thoreau
(1817 - 1862)

We have seen that we can seek the frequency content of a signal
f (t) defined on an interval [0, T] by looking for the the Fourier coefficients
in the Fourier series expansion In this chapter we introduce complex

numbers and complex functions. We
will later see that the rich structure of
complex functions will lead to a deeper
understanding of analysis, interesting
techniques for computing integrals, and
a natural way to express analog and dis-
crete signals.

f (t) =
a0

2
+

∞

∑
n=1

an cos
2πnt

T
+ bn sin

2πnt
T

.

The coefficients can be written as integrals such as

an =
2
T

∫ T

0
f (t) cos

2πnt
T

dt.

However, we have also seen that, using Euler’s Formula, trigonometric func-
tions can be written in a complex exponential form,

cos
2πnt

T
=

e2πint/T + e−2πint/T

2
.

We can use these ideas to rewrite the trigonometric Fourier series as a
sum over complex exponentials in the form

f (t) =
∞

∑
n=−∞

cne2πint/T ,

where the Fourier coefficients now take the form

cn =
∫ T

0
f (t)e−2πint/T dt.

This representation will be useful in the analysis of analog signals, which
are ideal signals defined on an infinite interval and containing a continuum
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of frequencies. We will see the above sum become an integral and will nat-
urally find ourselves needing to work with functions of complex variables
and performing integrals of complex functions.

With this ultimate goal in mind, we will now take a tour of complex
analysis. We will begin with a review of some facts about complex numbers
and then introduce complex functions. This will lead us to the calculus of
functions of a complex variable, including differentiation and integration of
complex functions.

4.1 Complex Numbers

Complex numbers were first introduced in order to solve some sim-
ple problems. The history of complex numbers only extends about five
hundred years. In essence, it was found that we need to find the roots of
equations such as x2 + 1 = 0. The solution is x = ±

√
−1. Due to the use-

fulness of this concept, which was not realized at first, a special symbol was
introduced - the imaginary unit, i =

√
−1. In particular, Girolamo Cardano

(1501− 1576) was one of the first to use square roots of negative numbers
when providing solutions of cubic equations. However, complex numbers
did not become an important part of mathematics or science until the late
seventh century after people like Abraham de Moivre (1667 - 1754), the
Bernoulli1 family, and Leonhard Euler (1707 - 1783) took them seriously.

1 The Bernoulli’s were a family of Swiss
mathematicians spanning three genera-
tions. It all started with Jacob Bernoulli
(1654 - 1705) and his brother Johann
Bernoulli (1667 - 1748). Jacob had a
son, Nicolaus Bernoulli (1687 - 1759)
and Johann (1667 - 1748) had three
sons, Nicolaus Bernoulli II (1695 - 1726),
Daniel Bernoulli (1700 - 1872), and Jo-
hann Bernoulli II (1710 - 1790). The last
generation consisted of Johann II’s sons,
Johann Bernoulli III (1747 - 1807) and Ja-
cob Bernoulli II (1759 - 1789). Johann, Ja-
cob and Daniel Bernoulli were the most
famous of the Bernoulli’s. Jacob stud-
ied with Leibniz, Johann studied under
his older brother and later taught Leon-
hard Euler and Daniel Bernoulli, who is
known for his work in hydrodynamics.

z

x

y

r

θ

Figure 4.1: The Argand diagram for plot-
ting complex numbers in the complex z-
plane.

A complex number is a number of the form z = x + iy, where x and y
are real numbers. x is called the real part of z and y is the imaginary part
of z. Examples of such numbers are 3 + 3i, −1i = −i, 4i and 5. Note that
5 = 5 + 0i and 4i = 0 + 4i.

The complex modulus, |z| =
√

x2 + y2.

There is a geometric representation of complex numbers in a two-dimensional
plane, known as the complex plane C. This is given by the Argand dia-
gram as shown in Figure 4.1. Here we can think of the complex number
z = x + iy as a point (x, y) in the z-complex plane or as a vector. The mag-
nitude, or length, of this vector is called the complex modulus of z, denoted
by |z| =

√
x2 + y2. We can also use the geometric picture to develop a po-

lar representation of complex numbers. From Figure 4.1 we can see that in
terms of r and θ, we have that

x = r cos θ,

y = r sin θ. (4.1)

Thus, using Euler’s Formula (Example 1.34), we haveComplex numbers can be represented in
rectangular (Cartesian), z = x + iy, or
polar form, z = reiθ . Here we define the
argument, θ, and modulus, |z| = r, of
complex numbers.

z = x + iy = r(cos θ + i sin θ) = reiθ . (4.2)

So, given r and θ we have z = reiθ . However, given the Cartesian form,
z = x + iy, we can also determine the polar form, since

r =
√

x2 + y2,

tan θ =
y
x

. (4.3)
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Note that r = |z|.
Locating 1 + i in the complex plane, it is possible to immediately deter-

mine the polar form from the angle and length of the “complex vector.” This
is shown in Figure 4.2. It is obvious that θ = π

4 and r =
√

2.

−i

i

2i

2−1 1

z = 1 + i

x

y

Figure 4.2: Locating 1 + i in the complex
z-plane.

Example 4.1. Write z = 1 + i in polar form.
If one did not see the polar form from the plot in the z-plane, then one could

systematically determine the results. First, write z = 1 + i in polar form, z = reiθ ,
for some r and θ.

Using the above relations between polar and Cartesian representations, we have
r =

√
x2 + y2 =

√
2 and tan θ = y

x = 1. This gives θ = π
4 . So, we have found

that
1 + i =

√
2eiπ/4.

We can also define binary operations of addition, subtraction, multiplica-
tion, and division of complex numbers to produce a new complex number.

The addition of two complex numbers is simply done by adding the real We can easily add, subtract, multiply,
and divide complex numbers.and imaginary parts of each number. So,

(3 + 2i) + (1− i) = 4 + i.

Subtraction is just as easy,

(3 + 2i)− (1− i) = 2 + 3i.

We can multiply two complex numbers just like we multiply any binomials,
though we now can use the fact that i2 = −1. For example, we have

(3 + 2i)(1− i) = 3 + 2i− 3i + 2i(−i) = 5− i.

We can even divide one complex number into another one and get a
complex number as the quotient. Before we do this, we need to introduce
the complex conjugate, z̄, of a complex number. The complex conjugate of
z = x + iy, where x and y are real numbers, is given as The complex conjugate of z = x + iy is

given as z = x− iy.

z = x− iy.

Complex conjugates satisfy the following relations for complex numbers
z and w and real number x.

z + w = z + w.

zw = zw.

z = z.

x = x. (4.4)

One consequence is that the complex conjugate of reiθ is

reiθ = cos θ + i sin θ = cos θ − i sin θ = re−iθ .
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Another consequence is that

zz = reiθre−iθ = r2.

Thus, the product of a complex number with its complex conjugate is a real
number. We can also prove this result using the Cartesian form

zz = (x + iy)(x− iy) = x2 + y2 = |z|2.

Now we are in a position to write the quotient of two complex numbers
in the standard form of a real plus an imaginary number.

Example 4.2. Simplify the expression z = 3+2i
1−i .

This simplification is accomplished by multiplying the numerator and denomi-
nator of this expression by the complex conjugate of the denominator:

z =
3 + 2i
1− i

=
3 + 2i
1− i

1 + i
1 + i

=
1 + 5i

2
.

Therefore, the quotient is a complex number and in standard form is given by z =
1
2 + 5

2 i.

We can also consider powers of complex numbers. For example,

(1 + i)2 = 2i,

(1 + i)3 = (1 + i)(2i) = 2i− 2.

But, what is (1 + i)1/2 =
√

1 + i?
In general, we want to find the nth root of a complex number. Let t =

z1/n. To find t in this case is the same as asking for the solution of

z = tn

given z. But, this is the root of an nth degree equation, for which we expect
n roots. If we write z in polar form, z = reiθ , then we would naively compute

z1/n =
(

reiθ
)1/n

= r1/neiθ/n

= r1/n
[

cos
θ

n
+ i sin

θ

n

]
. (4.5)

For example,

(1 + i)1/2 =
(√

2eiπ/4
)1/2

= 21/4eiπ/8.

But this is only one solution. We expected two solutions for n = 2.The function f (z) = z1/n is multivalued:
z1/n = r1/nei(θ+2kπ)/n, k = 0, 1, . . . , n− 1. The reason we only found one solution is that the polar representation

for z is not unique. We note that

e2kπi = 1, k = 0,±1,±2, . . . .

So, we can rewrite z as z = reiθe2kπi = rei(θ+2kπ). Now we have that
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z1/n = r1/nei(θ+2kπ)/n, k = 0, 1, . . . , n− 1.

Note that these are the only distinct values for the roots. We can see this by
considering the case k = n. Then we find that

ei(θ+2πin)/n = eiθ/ne2πi = eiθ/n.

So, we have recovered the n = 0 value. Similar results can be shown for the
other k values larger than n.

Now we can finish the example we started.

Example 4.3. Determine the square roots of 1 + i, or
√

1 + i.
As we have seen, we first write 1 + i in polar form: 1 + i =

√
2eiπ/4. Then we

introduce e2kπi = 1 and find the roots:

(1 + i)1/2 =
(√

2eiπ/4e2kπi
)1/2

, k = 0, 1,

= 21/4ei(π/8+kπ), k = 0, 1,

= 21/4eiπ/8, 21/4e9πi/8. (4.6)

Finally, what is n
√

1? Our first guess would be n
√

1 = 1. But we now know
that there should be n roots. These roots are called the nth roots of unity. The nth roots of unity, n√1.

Using the above result with r = 1 and θ = 0, we have that

n√1 =

[
cos

2πk
n

+ i sin
2πk

n

]
, k = 0, . . . , n− 1.

For example, we have

3√1 =

[
cos

2πk
3

+ i sin
2πk

3

]
, k = 0, 1, 2.

These three roots can be written out as

1−1

−i

i

x

y

Figure 4.3: Locating the cube roots of
unity in the complex z-plane.

3√1 = 1,−1
2
+

√
3

2
i,−1

2
−
√

3
2

i.

We can locate these cube roots of unity in the complex plane. In Figure
4.3, we see that these points lie on the unit circle and are at the vertices of an
equilateral triangle. In fact, all nth roots of unity lie on the unit circle and
are the vertices of a regular n-gon with one vertex at z = 1.

4.2 Complex Valued Functions

We would like to next explore complex functions and the calculus
of complex functions. We begin by defining a function that takes complex
numbers into complex numbers, f : C → C. It is difficult to visualize such
functions. For real functions of one variable, f : R → R, we graph these
functions by first drawing two intersecting copies of R and then proceed to
map the domain into the range of f .
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It would be more difficult to do this for complex functions. Imagine plac-
ing together two orthogonal copies of the complex plane, C. One would
need a four-dimensional space in order to complete the visualization. In-
stead, one typically uses two copies of the complex plane side by side in
order to indicate how such functions behave. Over the years there have
been several ways to visualize complex functions. We will describe a few of
these in this chapter.

We will assume that the domain lies in the z-plane and the image lies in
the w-plane. We will then write the complex function as w = f (z). We show
these planes in Figure 4.4 as well as the mapping between the planes.

Figure 4.4: Defining a complex valued
function, w = f (z), on C for z = x + iy
and w = u + iv.

z

w

x

y

u

v
w = f (z)

Letting z = x + iy and w = u + iv, we can write the real and imaginary
parts of f (z) :

w = f (z) = f (x + iy) = u(x, y) + iv(x, y).

We see that one can view this function as a function of z or a function of
x and y. Often, we have an interest in writing out the real and imaginary
parts of the function, u(x, y) and v(x, y), which are functions of two real
variables, x and y. We will look at several functions to determine the real
and imaginary parts.

Example 4.4. Find the real and imaginary parts of f (z) = z2.
For example, we can look at the simple function f (z) = z2. It is a simple matter

to determine the real and imaginary parts of this function. Namely, we have

z2 = (x + iy)2 = x2 − y2 + 2ixy.

Therefore, we have that

u(x, y) = x2 − y2, v(x, y) = 2xy.

In Figure 4.5 we show how a grid in the z-plane is mapped by f (z) = z2 into
the w-plane. For example, the horizontal line x = 1 is mapped to u(1, y) = 1− y2

and v(1, y) = 2y. Eliminating the “parameter” y between these two equations, we
have u = 1− v2/4. This is a parabolic curve. Similarly, the horizontal line y = 1
results in the curve u = v2/4− 1.

If we look at several curves, x =const and y =const, then we get a family of
intersecting parabolae, as shown in Figure 4.5.
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Figure 4.5: 2D plot showing how the
function f (z) = z2 maps the lines x = 1
and y = 1 in the z-plane into parabolae
in the w-plane.
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Figure 4.6: 2D plot showing how the
function f (z) = z2 maps a grid in the
z-plane into the w-plane.

Example 4.5. Find the real and imaginary parts of f (z) = ez.
For this case, we make use of Euler’s Formula (from Example 1.34):

ez = ex+iy

= exeiy

= ex(cos y + i sin y). (4.7)

Thus, u(x, y) = ex cos y and v(x, y) = ex sin y. In Figure 4.7 we show how a
grid in the z-plane is mapped by f (z) = ez into the w-plane.
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Figure 4.7: 2D plot showing how the
function f (z) = ez maps a grid in the
z-plane into the w-plane.

Example 4.6. Find the real and imaginary parts of f (z) = z1/2.
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We have that

z1/2 =
√

x2 + y2 (cos (θ + kπ) + i sin (θ + kπ)) , k = 0, 1. (4.8)

Thus,
u = |z| cos (θ + kπ) , u = |z| cos (θ + kπ) ,

for |z| =
√

x2 + y2 and θ = tan−1(y/x). For each k-value, one has a different
surface and curves of constant θ give u/v = c1; and, curves of constant nonzero
complex modulus give concentric circles, u2 + v2 = c2, for c1 and c2 constants.
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v

Figure 4.8: 2D plot showing how the
function f (z) =

√
z maps a grid in the

z-plane into the w-plane.

Example 4.7. Find the real and imaginary parts of f (z) = ln z.
In this case, we make use of the polar form of a complex number, z = reiθ . Our

first thought would be to simply compute

ln z = ln r + iθ.

However, the natural logarithm is multivalued, just like the square root function.
Recalling that e2πik = 1 for k an integer, we have z = rei(θ+2πk). Therefore,

ln z = ln r + i(θ + 2πk), k = integer.

The natural logarithm is a multivalued function. In fact, there are an infinite
number of values for a given z. Of course, this contradicts the definition of a
function that you were first taught.

Figure 4.9: Domain coloring of the com-
plex z-plane assigning colors to arg(z).

Thus, one typically will only report the principal value, Log z = ln r + iθ, for θ

restricted to some interval of length 2π, such as [0, 2π). In order to account for the
multivaluedness, one introduces a way to extend the complex plane so as to include
all of the branches. This is done by assigning a plane to each branch, using (branch)
cuts along lines, and then gluing the planes together at the branch cuts to form
what is called a Riemann surface. We will not elaborate upon this any further here
and refer the interested reader to more advanced texts. Comparing the multivalued
logarithm to the principal value logarithm, we have

ln z = Log z + 2nπi.

We should note that some books use log z instead of ln z. It should not be confused
with the common logarithm.

4.2.1 Complex Domain Coloring

Another method for visualizing complex functions is domain col-
oring. The idea was described by Frank A. Farris. There are a few ap-
proaches to this method. The main idea is that one colors each point of the
z-plane (the domain) according to arg(z) as shown in Figure 4.9. The mod-
ulus, | f (z)| is then plotted as a surface. Examples are shown for f (z) = z2

in Figure 4.10 and f (z) = 1/z(1− z) in Figure 4.11.
We would like to put all of this information in one plot. We can do this

by adjusting the brightness of the colored domain using the modulus of the
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Figure 4.10: Domain coloring for f (z) =
z2. The left figure shows the phase color-
ing. The right figure shows the colored
surface with height | f (z)|.

Figure 4.11: Domain coloring for f (z) =
1/z(1 − z). The left figure shows the
phase coloring. The right figure shows
the colored surface with height | f (z)|.

function. In the plots that follow we use the fractional part of ln |z|. In Figure
4.12 we show the effect for the z-plane using f (z) = z. In the figures that
follow, we look at several other functions. In these plots, we have chosen to
view the functions in a circular window.

Figure 4.12: Domain coloring for the
function f (z) = z showing a coloring for
arg(z) and brightness based on | f (z)|.

One can see the rich behavior hidden in these figures. As you progress
in your reading, especially after the next chapter, you should return to these
figures and locate the zeros, poles, branch points, and branch cuts. A search
online will lead you to other colorings and superposition of the uv grid on
these figures.

As a final picture, we look at iteration in the complex plane. Consider
the function f (z) = z2− 0.75− 0.2i. Interesting figures result when studying
the iteration in the complex plane. In Figure 4.15 we show f (z) and f 20(z),
which is the iteration of f twenty times. It leads to an interesting coloring.
What happens when one keeps iterating? Such iterations lead to the study
of Julia and Mandelbrot sets . In Figure 4.16 we show six iterations of
f (z) = (1− i/2) sin x. Figure 4.13: Domain coloring for the

function f (z) = z2.
The following code was used in MATLAB to produce these figures.

fn = @(x) (1-i/2)*sin(x);

xmin=-2; xmax=2; ymin=-2; ymax=2;

Nx=500;

Ny=500;



126 fourier and complex analysis

Figure 4.14: Domain coloring for sev-
eral functions. On the top row, the do-
main coloring is shown for f (z) = z4

and f (z) = sin z. On the second row,
plots for f (z) =

√
1 + z and f (z) =

1
z(1/2−z)(z−i)(z−i+1) are shown. In the last
row, domain colorings for f (z) = ln z
and f (z) = sin(1/z) are shown.

Figure 4.15: Domain coloring for f (z) =
z2 − 0.75− 0.2i. The left figure shows the
phase coloring. On the right is the plot
for f 20(z).

Figure 4.16: Domain coloring for six it-
erations of f (z) = (1− i/2) sin x.
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x=linspace(xmin,xmax,Nx);

y=linspace(ymin,ymax,Ny);

[X,Y] = meshgrid(x,y); z = complex(X,Y);

tmp=z; for n=1:6

tmp = fn(tmp);

end Z=tmp;

XX=real(Z);

YY=imag(Z);

R2=max(max(X.^2));

R=max(max(XX.^2+YY.^2));

circle(:,:,1) = X.^2+Y.^2 < R2;

circle(:,:,2)=circle(:,:,1);

circle(:,:,3)=circle(:,:,1);

addcirc(:,:,1)=circle(:,:,1)==0;

addcirc(:,:,2)=circle(:,:,1)==0;

addcirc(:,:,3)=circle(:,:,1)==0;

warning off MATLAB:divideByZero;

hsvCircle=ones(Nx,Ny,3);

hsvCircle(:,:,1)=atan2(YY,XX)*180/pi+(atan2(YY,XX)*180/pi<0)*360;

hsvCircle(:,:,1)=hsvCircle(:,:,1)/360; lgz=log(XX.^2+YY.^2)/2;

hsvCircle(:,:,2)=0.75; hsvCircle(:,:,3)=1-(lgz-floor(lgz))/2;

hsvCircle(:,:,1) = flipud((hsvCircle(:,:,1)));

hsvCircle(:,:,2) = flipud((hsvCircle(:,:,2)));

hsvCircle(:,:,3) =flipud((hsvCircle(:,:,3)));

rgbCircle=hsv2rgb(hsvCircle);

rgbCircle=rgbCircle.*circle+addcirc;

image(rgbCircle)

axis square

set(gca,’XTickLabel’,{})

set(gca,’YTickLabel’,{})

4.3 Complex Differentiation

Next we want to differentiate complex functions. We generalize
the definition from single variable calculus,

f ′(z) = lim
∆z→0

f (z + ∆z)− f (z)
∆z

, (4.9)
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provided this limit exists.
The computation of this limit is similar to what one sees in multivariable

calculus for limits of real functions of two variables. Letting z = x + iy and
δz = δx + iδy, then

z + δx = (x + δx) + i(y + δy).

Letting ∆z → 0 means that we get closer to z. There are many paths that
one can take that will approach z. [See Figure 4.17.]

z

x

y

Figure 4.17: There are many paths that
approach z as ∆z→ 0.

It is sufficient to look at two paths in particular. We first consider the
path y = constant. This horizontal path is shown in Figure 4.18. For this
path, ∆z = ∆x + i∆y = ∆x, since y does not change along the path. The
derivative, if it exists, is then computed as

z

x

y

Figure 4.18: A path that approaches z
with y = constant.

f ′(z) = lim
∆z→0

f (z + ∆z)− f (z)
∆z

= lim
∆x→0

u(x + ∆x, y) + iv(x + ∆x, y)− (u(x, y) + iv(x, y))
∆x

= lim
∆x→0

u(x + ∆x, y)− u(x, y)
∆x

+ lim
∆x→0

i
v(x + ∆x, y)− v(x, y)

∆x
.

(4.10)

The last two limits are easily identified as partial derivatives of real valued
functions of two variables. Thus, we have shown that when f ′(z) exists,

f ′(z) =
∂u
∂x

+ i
∂v
∂x

. (4.11)

A similar computation can be made if, instead, we take the vertical path,
x = constant, in Figure 4.17). In this case, ∆z = i∆y and

f ′(z) = lim
∆z→0

f (z + ∆z)− f (z)
∆z

= lim
∆y→0

u(x, y + ∆y) + iv(x, y + ∆y)− (u(x, y) + iv(x, y))
i∆y

= lim
∆y→0

u(x, y + ∆y)− u(x, y)
i∆y

+ lim
∆y→0

v(x, y + ∆y)− v(x, y)
∆y

.

(4.12)

Therefore,

f ′(z) =
∂v
∂y
− i

∂u
∂y

. (4.13)

We have found two different expressions for f ′(z) by following two dif-
ferent paths to z. If the derivative exists, then these two expressions must be
the same. Equating the real and imaginary parts of these expressions, we
have
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∂u
∂x

=
∂v
∂y

∂v
∂x

= −∂u
∂y

. (4.14)

These are known as the Cauchy-Riemann Equations2. 2 The Cauchy-Riemann Equations.
Augustin-Louis Cauchy (1789 - 1857)
was a French mathematician well known
for his work in analysis. Georg Friedrich
Bernhard Riemann (1826 - 1866) was a
German mathematician who made ma-
jor contributions to geometry and analy-
sis.

Theorem 4.1. f (z) is holomorphic (differentiable) if and only if the Cauchy-Riemann
Equations are satisfied.

Example 4.8. f (z) = z2.
In this case we have already seen that z2 = x2− y2 + 2ixy. Therefore, u(x, y) =

x2 − y2 and v(x, y) = 2xy. We first check the Cauchy-Riemann Equations.

∂u
∂x

= 2x =
∂v
∂y

∂v
∂x

= 2y = −∂u
∂y

. (4.15)

Therefore, f (z) = z2 is differentiable.
We can further compute the derivative using either Equation (4.11) or Equation

(4.13). Thus,

f ′(z) =
∂u
∂x

+ i
∂v
∂x

= 2x + i(2y) = 2z.

This result is not surprising.

Example 4.9. f (z) = z̄.
In this case we have f (z) = x− iy. Therefore, u(x, y) = x and v(x, y) = −y.

But, ∂u
∂x = 1 and ∂v

∂y = −1. Thus, the Cauchy-Riemann Equations are not satisfied
and we conclude that f (z) = z̄ is not differentiable.

Harmonic functions satisfy Laplace’s
Equation.Another consequence of the Cauchy-Riemann Equations is that both u(x, y)

and v(x, y) are harmonic functions. A real-valued function u(x, y) is har-
monic if it satisfies Laplace’s Equation in 2D, ∇2u = 0, or

∂2u
∂x2 +

∂2u
∂y2 = 0.

Theorem 4.2. f (z) = u(x, y) + iv(x, y) is differentiable only if u and v are har-
monic functions.

This is easily proven using the Cauchy-Riemann Equations.

∂2u
∂x2 =

∂

∂x
∂u
∂x

=
∂

∂x
∂v
∂y

=
∂

∂y
∂v
∂x

= − ∂

∂y
∂u
∂y

= −∂2u
∂y2 . (4.16)
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Example 4.10. Is u(x, y) = x2 + y2 harmonic?

∂2u
∂x2 +

∂2u
∂y2 = 2 + 2 6= 0.

No, it is not.

Example 4.11. Is u(x, y) = x2 − y2 harmonic?

∂2u
∂x2 +

∂2u
∂y2 = 2− 2 = 0.

Yes, it is.

Given a harmonic function u(x, y), can one find a function, v(x, y), suchThe harmonic conjugate function.

f (z) = u(x, y) + iv(x, y) is differentiable? In this case, v are called the har-
monic conjugate of u.

Example 4.12. Find the harmonic conjugate of u(x, y) = x2 − y2 and determine
f (z) = u + iv such that u + iv is differentiable.

The Cauchy-Riemann Equations tell us the following about the unknown func-
tion, v(x, y) :

∂v
∂x

= −∂u
∂y

= 2y,

∂v
∂y

=
∂u
∂x

= 2x.

We can integrate the first of these equations to obtain

v(x, y) =
∫

2y dx = 2xy + c(y).

Here, c(y) is an arbitrary function of y. One can check to see that this works by
simply differentiating the result with respect to x.

However, the second equation must also hold. So, we differentiate the result with
respect to y to find that

∂v
∂y

= 2x + c′(y).

Since we were supposed to get 2x, we have that c′(y) = 0. Thus, c(y) = k is a
constant.

We have just shown that we get an infinite number of functions,

v(x, y) = 2xy + k,

such that

f (z) = x2 − y2 + i(2xy + k)

is differentiable. In fact, for k = 0, this is nothing other than f (z) = z2.
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4.4 Complex Integration

We have introduced functions of a complex variable. We also
established when functions are differentiable as complex functions, or holo-
morphic. In this chapter we will turn to integration in the complex plane.
We will learn how to compute complex path integrals, or contour integrals.
We will see that contour integral methods are also useful in the computa-
tion of some of the real integrals that we will face when exploring Fourier
transforms in the next chapter.

z1

z2

x

y

Figure 4.19: We would like to integrate a
complex function f (z) over the path Γ in
the complex plane.

4.4.1 Complex Path Integrals

In this section we will investigate the computation of complex path
integrals. Given two points in the complex plane, connected by a path Γ as
shown in Figure 4.19, we would like to define the integral of f (z) along Γ,∫

Γ
f (z) dz.

A natural procedure would be to work in real variables, by writing∫
Γ

f (z) dz =
∫

Γ
[u(x, y) + iv(x, y)] (dx + idy),

since z = x + iy and dz = dx + idy.

Figure 4.20: Examples of (a) a connected
set and (b) a disconnected set.

In order to carry out the integration, we then have to find a parametriza-
tion of the path and use methods from a multivariate calculus class. Namely,
let u and v be continuous in domain D, and Γ a piecewise smooth curve in
D. Let (x(t), y(t)) be a parametrization of Γ for t0 ≤ t ≤ t1 and f (z) =

u(x, y) + iv(x, y) for z = x + iy. Then

∫
Γ

f (z) dz =
∫ t1

t0

[u(x(t), y(t)) + iv(x(t), y(t))] (
dx
dt

+ i
dy
dt

)dt.

(4.17)

Here we have used

dz = dx + idy =

(
dx
dt

+ i
dy
dt

)
dt.

Furthermore, a set D is called a domain if it is both open and connected.
Before continuing, we first define open and connected. A set D is con-

nected if and only if for all z1, and z2 in D, there exists a piecewise smooth
curve connecting z1 to z2 and lying in D. Otherwise it is called disconnected.
Examples are shown in Figure 4.20

A set D is open if and only if for all z0 in D, there exists an open disk
|z− z0| < ρ in D. In Figure 4.21 we show a region with two disks.

Figure 4.21: Locations of open disks in-
side and on the boundary of a region.

For all points on the interior of the region, one can find at least one disk
contained entirely in the region. The closer one is to the boundary, the
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smaller the radii of such disks. However, for a point on the boundary, every
such disk would contain points inside and outside the disk. Thus, an open
set in the complex plane would not contain any of its boundary points.

We now have a prescription for computing path integrals. Let’s see how
this works with a couple of examples.

−i

i

2i

2−1 1 x

y

Figure 4.22: Contour for Example 4.13.

Example 4.13. Evaluate
∫

C z2 dz, where C = the arc of the unit circle in the first
quadrant as shown in Figure 4.22.

There are two ways we could carry out the parametrization. First, we note that
the standard parametrization of the unit circle is

(x(θ), y(θ)) = (cos θ, sin θ), 0 ≤ θ ≤ 2π.

For a quarter circle in the first quadrant, 0 ≤ θ ≤ π
2 , we let z = cos θ + i sin θ.

Therefore, dz = (− sin θ + i cos θ) dθ and the path integral becomes

∫
C

z2 dz =
∫ π

2

0
(cos θ + i sin θ)2(− sin θ + i cos θ) dθ.

We can expand the integrand and integrate, having to perform some trigonometric
integrations.

∫ π
2

0
[sin3 θ − 3 cos2 θ sin θ + i(cos3 θ − 3 cos θ sin2 θ)] dθ.

The reader should work out these trigonometric integrations and confirm the result.
For example, you can use

sin3 θ = sin θ(1− cos2 θ))

to write the real part of the integrand as

sin θ − 4 cos2 θ sin θ.

The resulting antiderivative becomes

− cos θ +
4
3

cos3 θ.

The imaginary integrand can be integrated in a similar fashion.
While this integral is doable, there is a simpler procedure. We first note that

z = eiθ on C. So, dz = ieiθdθ. The integration then becomes

∫
C

z2 dz =
∫ π

2

0
(eiθ)2ieiθ dθ

= i
∫ π

2

0
e3iθ dθ

=
ie3iθ

3i

∣∣∣π/2

0

= −1 + i
3

. (4.18)
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Example 4.14. Evaluate
∫

Γ z dz, for the path Γ = γ1 ∪ γ2 shown in Figure 4.23.
In this problem we have a path that is a piecewise smooth curve. We can compute

the path integral by computing the values along the two segments of the path and
adding the results. Let the two segments be called γ1 and γ2 as shown in Figure
4.23 and parametrize each path separately.

Over γ1 we note that y = 0. Thus, z = x for x ∈ [0, 1]. It is natural to take x
as the parameter. So, we let dz = dx to find∫

γ1

z dz =
∫ 1

0
x dx =

1
2

.

For path γ2, we have that z = 1 + iy for y ∈ [0, 1] and dz = i dy. Inserting this
parametrization into the integral, the integral becomes∫

γ2

z dz =
∫ 1

0
(1 + iy) idy = i− 1

2
.

−i

i

2i

2−1 1γ1

γ2
0

1 + i

x

y

Figure 4.23: Contour for Example 4.14

with Γ = γ1 ∪ γ2.

Combining the results for the paths γ1 and γ2, we have
∫

Γ z dz = 1
2 + (i− 1

2 ) =

i.

Example 4.15. Evaluate
∫

γ3
z dz, where γ3 is the path shown in Figure 4.24.

In this case we take a path from z = 0 to z = 1 + i along a different path than
in the last example. Let γ3 = {(x, y)|y = x2, x ∈ [0, 1]} = {z|z = x + ix2, x ∈
[0, 1]}. Then, dz = (1 + 2ix) dx.

−i

i

2i

2−1 1γ1

γ2
γ3

0

1 + i

x

y

Figure 4.24: Contour for Example 4.15.

The integral becomes∫
γ3

z dz =
∫ 1

0
(x + ix2)(1 + 2ix) dx

=
∫ 1

0
(x + 3ix2 − 2x3) dx =

=

[
1
2

x2 + ix3 − 1
2

x4
]1

0
= i. (4.19)

In the last case we found the same answer as obtained in Example 4.14.
But we should not take this as a general rule for all complex path integrals.
In fact, it is not true that integrating over different paths always yields the
same results. However, when this is true, then we refer to this property as
path independence. In particular, the integral

∫
f (z) dz is path independent

if ∫
Γ1

f (z) dz =
∫

Γ2

f (z) dz

for all paths from z1 to z2 as shown in Figure 4.25.

z1

z2

x

y

Γ1

Γ2

Figure 4.25:
∫

Γ1
f (z) dz =

∫
Γ2

f (z) dz for
all paths from z1 to z2 when the integral
of f (z) is path independent.

We can show that if
∫

f (z) dz is path independent, then the integral of
f (z) over all closed loops is zero:∫

closed loops
f (z) dz = 0.

A common notation for integrating over closed loops is
∮

C f (z) dz. But first
we have to define what we mean by a closed loop. A simple closed contour

A simple closed contour.is a path satisfying
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a. The end point is the same as the beginning point. (This makes the
loop closed.)

b. The are no self-intersections. (This makes the loop simple.)

A loop in the shape of a figure eight is closed, but it is not simple.
Now consider an integral over the closed loop C shown in Figure 4.26.

We pick two points on the loop, breaking it into two contours, C1 and C2.
Then we make use of the path independence by defining C−2 to be the path
along C2 but in the opposite direction. Then,

∮
C f (z) dz = 0 if the integral is path in-

dependent. ∮
C

f (z) dz =
∫

C1

f (z) dz +
∫

C2

f (z) dz

=
∫

C1

f (z) dz−
∫

C−2
f (z) dz. (4.20)

Assuming that the integrals from point 1 to point 2 are path independent,
then the integrals over C1 and C−2 are equal. Therefore, we have

∮
C f (z) dz =

0.

1

2

C1
C2

x

y

Figure 4.26: The integral
∮

C f (z) dz
around C is zero if the integral

∫
Γ f (z) dz

is path independent.

Example 4.16. Consider the integral
∮

C z dz for C the closed contour shown in
Figure 4.24 starting at z = 0 following path γ1, then γ2 and returning to z = 0.
Based on the earlier examples and the fact that going backward on γ3 introduces a
negative sign, we have∮

C
z dz =

∫
γ1

z dz +
∫

γ2

z dz−
∫

γ3

z dz =
1
2
+

(
i− 1

2

)
− i = 0.

4.4.2 Cauchy’s Theorem

Next we want to investigate if we can determine that integrals over
simple closed contours vanish without doing all the work of parametrizing
the contour. First, we need to establish the direction about which we traverse
the contour. We can define the orientation of a curve by referring to the
normal of the curve.

Recall that the normal is a perpendicular to the curve. There are two such
perpendiculars. The above normal points outward and the other normal
points toward the interior of a closed curve. We will define a positively
oriented contour as one that is traversed with the outward normal pointing
to the right. As one follows loops, the interior would then be on the left.A curve with parametriza-

tion (x(t), y(t)) has a normal
(nx , ny) = (− dx

dt , dy
dt ).

We now consider
∮

C(u + iv) dz over a simple closed contour. This can be
written in terms of two real integrals in the xy-plane.∮

C
(u + iv) dz =

∫
C
(u + iv)(dx + i dy)

=
∫

C
u dx− v dy + i

∫
C

v dx + u dy. (4.21)

These integrals in the plane can be evaluated using Green’s Theorem in the
Plane. Recall this theorem from your last semester of calculus:
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Green’s Theorem in the Plane.

Theorem 4.3. Let P(x, y) and Q(x, y) be continuously differentiable functions
on and inside the simple closed curve C as shown in Figure 4.27. Denoting the
enclosed region S, we have∫

C
P dx + Q dy =

∫ ∫
S

(
∂Q
∂x
− ∂P

∂y

)
dxdy. (4.22)

S

C

Figure 4.27: Region used in Green’s The-
orem.

Green’s Theorem in the Plane is one of
the major integral theorems of vector
calculus. It was discovered by George
Green (1793 - 1841) and published in
1828, about four years before he entered
Cambridge as an undergraduate.

Using Green’s Theorem to rewrite the first integral in Equation (4.21), we
have ∫

C
u dx− v dy =

∫ ∫
S

(
−∂v
∂x
− ∂u

∂y

)
dxdy.

If u and v satisfy the Cauchy-Riemann Equations (4.14), then the integrand
in the double integral vanishes. Therefore,∫

C
u dx− v dy = 0.

In a similar fashion, one can show that∫
C

v dx + u dy = 0.

We have thus proven the following theorem:

Cauchy’s Theorem

Theorem 4.4. If u and v satisfy the Cauchy-Riemann Equations (4.14) inside
and on the simple closed contour C, then∮

C
(u + iv) dz = 0. (4.23)

Corollary
∮

C f (z) dz = 0 when f is differentiable in domain D with C ⊂ D.

Either one of these is referred to as Cauchy’s Theorem.

Example 4.17. Evaluate
∮
|z−1|=3 z4 dz.

Since f (z) = z4 is differentiable inside the circle |z − 1| = 3, this integral
vanishes.

We can use Cauchy’s Theorem to show that we can deform one contour
into another, perhaps simpler, contour.

One can deform contours into simpler
ones.Theorem 4.5. If f (z) is holomorphic between two simple closed contours, C and

C′, then
∮

C f (z) dz =
∮

C′ f (z) dz.

Proof. We consider the two curves C and C′ as shown in Figure 4.28. Con-
necting the two contours with contours Γ1 and Γ2 (as shown in the figure),
C is seen to split into contours C1 and C2 and C′ into contours C′1 and C′2.
Note that f (z) is differentiable inside the newly formed regions between the
curves. Also, the boundaries of these regions are now simple closed curves.
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Therefore, Cauchy’s Theorem tells us that the integrals of f (z) over these
regions are zero.

Noting that integrations over contours opposite the positive orientation
are the negative of integrals that are positively oriented, we have from
Cauchy’s Theorem that∫

C1

f (z) dz +
∫

Γ1

f (z) dz−
∫

C′1
f (z) dz +

∫
Γ2

f (z) dz = 0

and ∫
C2

f (z) dz−
∫

Γ2

f (z) dz−
∫

C′2
f (z) dz−

∫
Γ1

f (z) dz = 0.

In the first integral, we have traversed the contours in the following order:
C1, Γ1, C′1 backward, and Γ2. The second integral denotes the integration
over the lower region, but going backward over all contours except for C2.

C

Γ2

Γ1

C′1C′2

C1

C2

Figure 4.28: The contours needed to
prove that

∮
C f (z) dz =

∮
C′ f (z) dz when

f (z) is holomorphic between the con-
tours C and C′. Combining these results by adding the two equations above, we have∫

C1

f (z) dz +
∫

C2

f (z) dz−
∫

C′1
f (z) dz−

∫
C′2

f (z) dz = 0.

Noting that C = C1 + C2 and C′ = C′1 + C′2, we have∮
C

f (z) dz =
∮

C′
f (z) dz,

as was to be proven.

Example 4.18. Compute
∮

R
dz
z for R the rectangle [−2, 2]× [−2i, 2i].

−2i

−i

i

2i

−2 2−1 1

γ1

γ2

γ3

γ4

x

y

R

C

Figure 4.29: The contours used to com-
pute

∮
R

dz
z . Note that to compute the in-

tegral around R we can deform the con-
tour to the circle C since f (z) is differ-
entiable in the region between the con-
tours.

We can compute this integral by looking at four separate integrals over the sides
of the rectangle in the complex plane. One simply parametrizes each line segment,
perform the integration and sum the four separate results. From the deformation
theorem, we can instead integrate over a simpler contour by deforming the rectangle
into a circle as long as f (z) = 1

z is differentiable in the region bounded by the
rectangle and the circle. So, using the unit circle, as shown in Figure 4.29, the
integration might be easier to perform.

More specifically, the the deformation theorem tells us that∮
R

dz
z

=
∮
|z|=1

dz
z

The latter integral can be computed using the parametrization z = eiθ for θ ∈
[0, 2π]. Thus, ∮

|z|=1

dz
z

=
∫ 2π

0

ieiθ dθ

eiθ

= i
∫ 2π

0
dθ = 2πi. (4.24)

Therefore, we have found that
∮

R
dz
z = 2πi by deforming the original simple closed

contour.

−2i

−i

i

2i

−2 2−1 1

γ1

γ2

γ3

γ4

x

y

R

Figure 4.30: The contours used to com-
pute

∮
R

dz
z . The added diagonals are

for the reader to easily see the argu-
ments used in the evaluation of the lim-
its when integrating over the segments
of the square R.

For fun, let’s do this the long way to see how much effort was saved. We will label
the contour as shown in Figure 4.30. The lower segment, γ4, of the square can be
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simple parametrized by noting that along this segment z = x− 2i for x ∈ [−2, 2].
Then, we have∮

γ4

dz
z

=
∫ 2

−2

dx
x− 2i

= ln
∣∣∣x− 2i

∣∣∣2
−2

=

(
ln(2
√

2)− πi
4

)
−
(

ln(2
√

2)− 3πi
4

)
=

πi
2

. (4.25)

We note that the arguments of the logarithms are determined from the angles made
by the diagonals provided in Figure 4.30.

Similarly, the integral along the top segment, z = x + 2i, x ∈ [−2, 2], is com-
puted as ∮

γ2

dz
z

=
∫ −2

2

dx
x + 2i

= ln
∣∣∣x + 2i

∣∣∣−2

2

=

(
ln(2
√

2) +
3πi

4

)
−
(

ln(2
√

2) +
πi
4

)
=

πi
2

. (4.26)

The integral over the right side, z = 2 + iy, y ∈ [−2, 2], is∮
γ1

dz
z

=
∫ 2

−2

idy
2 + iy

= ln
∣∣∣2 + iy

∣∣∣2
−2

=

(
ln(2
√

2) +
πi
4

)
−
(

ln(2
√

2)− πi
4

)
=

πi
2

. (4.27)

Finally, the integral over the left side, z = −2 + iy, y ∈ [−2, 2], is∮
γ3

dz
z

=
∫ −2

2

idy
−2 + iy

= ln
∣∣∣− 2 + iy

∣∣∣2
−2

=

(
ln(2
√

2) +
5πi

4

)
−
(

ln(2
√

2) +
3πi

4

)
=

πi
2

. (4.28)

Therefore, we have that∮
R

dz
z

=
∫

γ1

dz
z

+
∫

γ2

dz
z

+
∫

γ3

dz
z

+
∫

γ4

dz
z
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=
πi
2

+
πi
2

+
πi
2

+
πi
2

= 4
(

πi
2

)
= 2πi. (4.29)

This gives the same answer as we found using a simple contour deformation.

The converse of Cauchy’s Theorem is not true, namely
∮

C f (z) dz = 0
does not always imply that f (z) is differentiable. What we do have is Mor-
era’s Theorem (Giacinto Morera, 1856 - 1909):Morera’s Theorem.

Theorem 4.6. Let f be continuous in a domain D. Suppose that for every simple
closed contour C in D,

∮
C f (z) dz = 0. Then f is differentiable in D.

The proof is a bit more detailed than we need to go into here. However,
this theorem is useful in the next section.

4.4.3 Analytic Functions and Cauchy’s Integral Formula

In the previous section we saw that Cauchy’s Theorem was useful for
computing particular integrals without having to parametrize the contours
or for deforming contours into simpler contours. The integrand needs to
possess certain differentiability properties. In this section, we will general-
ize the functions that we can integrate slightly so that we can integrate a
larger family of complex functions. This will lead us to the Cauchy’s Inte-
gral Formula, which extends Cauchy’s Theorem to functions analytic in an
annulus. However, first we need to explore the concept of analytic functions.

A function f (z) is analytic in domain D if for every open disk |z− z0| < ρ

lying in D, f (z) can be represented as a power series in z0. Namely,

f (z) =
∞

∑
n=0

cn(z− z0)
n.

This series converges uniformly and absolutely inside the circle of conver-
gence, |z− z0| < R, with radius of convergence R. [See the Appendix for a
review of convergence.]

Since f (z) can be written as a uniformly convergent power series, we can

There are various types of complex-
valued functions.

A holomorphic function is (com-
plex) differentiable in a neighborhood of
every point in its domain.

An analytic function has a conver-
gent Taylor series expansion in a neigh-
borhood of each point in its domain. We
see here that analytic functions are holo-
morphic and vice versa.

If a function is holomorphic
throughout the complex plane, then it is
called an entire function.

Finally, a function which is holomor-
phic on all of its domain except at a set of
isolated poles (to be defined later), then
it is called a meromorphic function.

integrate it term by term over any simple closed contour in D containing z0.
In particular, we have to compute integrals like

∮
C(z− z0)

n dz. As we will
see in the homework problems, these integrals evaluate to zero for most n.
Thus, we can show that for f (z) analytic in D and on any closed contour C
lying in D,

∮
C f (z) dz = 0. Also, f is a uniformly convergent sum of con-

tinuous functions, so f (z) is also continuous. Thus, by Morera’s Theorem,
we have that f (z) is differentiable if it is analytic. Often terms like analytic,
differentiable, and holomorphic are used interchangeably, though there is a
subtle distinction due to their definitions.

As examples of series expansions about a given point, we will consider
series expansions and regions of convergence for f (z) = 1

1+z .
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Example 4.19. Find the series expansion of f (z) = 1
1+z about z0 = 0.

This case is simple. From Chapter 1 we recall that f (z) is the sum of a geometric
series for |z| < 1. We have

f (z) =
1

1 + z
=

∞

∑
n=0

(−z)n.

Thus, this series expansion converges inside the unit circle (|z| < 1) in the complex
plane.

Example 4.20. Find the series expansion of f (z) = 1
1+z about z0 = 1

2 .
We now look into an expansion about a different point. We could compute the

expansion coefficients using Taylor’s formula for the coefficients. However, we can
also make use of the formula for geometric series after rearranging the function. We
seek an expansion in powers of z− 1

2 . So, we rewrite the function in a form that is
a function of z− 1

2 . Thus,

f (z) =
1

1 + z
=

1
1 + (z− 1

2 + 1
2 )

=
1

3
2 + (z− 1

2 )
.

This is not quite in the form we need. It would be nice if the denominator were
of the form of one plus something. [Note: This is similar to what we had seen in
Example 1.33.] We can get the denominator into such a form by factoring out the
3
2 . Then we would have

f (z) =
2
3

1
1 + 2

3 (z−
1
2 )

.

The second factor now has the form 1
1−r , which would be the sum of a geometric se-

ries with first term a = 1 and ratio r = − 2
3 (z−

1
2 ) provided that |r|<1. Therefore,

we have found that

f (z) =
2
3

∞

∑
n=0

[
−2

3
(z− 1

2
)

]n

for ∣∣∣− 2
3
(z− 1

2
)
∣∣∣ < 1.

This convergence interval can be rewritten as∣∣∣z− 1
2

∣∣∣ < 3
2

,

which is a circle centered at z = 1
2 with radius 3

2 .

In Figure 4.31 we show the regions of convergence for the power series
expansions of f (z) = 1

1+z about z = 0 and z = 1
2 . We note that the first

expansion gives that f (z) is at least analytic inside the region |z| < 1. The
second expansion shows that f (z) is analytic in a larger region, |z− 1

2 | <
3
2 .

We will see later that there are expansions which converge outside these
regions and that some yield expansions involving negative powers of z− z0.

−2i

−i

i

2i

−2 2−1 1 x

y

Figure 4.31: Regions of convergence for
expansions of f (z) = 1

1+z about z = 0
and z = 1

2 .We now present the main theorem of this section:
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Cauchy Integral Formula

Theorem 4.7. Let f (z) be analytic in |z− z0| < ρ and let C be the boundary
(circle) of this disk. Then,

f (z0) =
1

2πi

∮
C

f (z)
z− z0

dz. (4.30)

Proof. In order to prove this, we first make use of the analyticity of f (z). We
insert the power series expansion of f (z) about z0 into the integrand. Then
we have

f (z)
z− z0

=
1

z− z0

[
∞

∑
n=0

cn(z− z0)
n

]

=
1

z− z0

[
c0 + c1(z− z0) + c2(z− z0)

2 + . . .
]

=
c0

z− z0
+ c1 + c2(z− z0) + . . .︸ ︷︷ ︸

analytic function

. (4.31)

As noted, the integrand can be written as

f (z)
z− z0

=
c0

z− z0
+ h(z),

where h(z) is an analytic function, since h(z) is representable as a series
expansion about z0. We have already shown that analytic functions are dif-
ferentiable, so by Cauchy’s Theorem

∮
C h(z) dz = 0.

Noting also that c0 = f (z0) is the first term of a Taylor series expansion
about z = z0, we have∮

C

f (z)
z− z0

dz =
∮

C

[
c0

z− z0
+ h(z)

]
dz = f (z0)

∮
C

1
z− z0

dz.

We need only compute the integral
∮

C
1

z−z0
dz to finish the proof of Cauchy’s

Integral Formula. This is done by parametrizing the circle, |z− z0| = ρ, as
shown in Figure 4.32. This is simply done by letting

z− z0 = ρeiθ .

(Note that this has the right complex modulus since |eiθ | = 1. Then dz =

iρeiθdθ. Using this parametrization, we have

∮
C

dz
z− z0

=
∫ 2π

0

iρeiθ dθ

ρeiθ = i
∫ 2π

0
dθ = 2πi.

z0
C

x

y

ρ

Figure 4.32: Circular contour used in
proving the Cauchy Integral Formula.

Therefore, ∮
C

f (z)
z− z0

dz = f (z0)
∮

C

1
z− z0

dz = 2πi f (z0),

as was to be shown.
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Example 4.21. Compute
∮
|z|=4

cos z
z2−6z+5 dz.

In order to apply the Cauchy Integral Formula, we need to factor the denomi-
nator, z2 − 6z + 5 = (z− 1)(z− 5). We next locate the zeros of the denominator.
In Figure 4.33 we show the contour and the points z = 1 and z = 5. The only
point inside the region bounded by the contour is z = 1. Therefore, we can apply
the Cauchy Integral Formula for f (z) = cos z

z−5 to the integral∫
|z|=4

cos z
(z− 1)(z− 5)

dz =
∫
|z|=4

f (z)
(z− 1)

dz = 2πi f (1).

Therefore, we have ∫
|z|=4

cos z
(z− 1)(z− 5)

dz = −πi cos(1)
2

.

We have shown that f (z0) has an integral representation for f (z) analytic
in |z− z0| < ρ. In fact, all derivatives of an analytic function have an integral
representation. This is given by

f (n)(z0) =
n!

2πi

∮
C

f (z)
(z− z0)n+1 dz. (4.32)

−2i

−i

i

2i

−2 2−1 1−3 3−4 4 5

−3i

3i

|z| = 4
ρ = 4

x

y

Figure 4.33: Circular contour used in
computing

∮
|z|=4

cos z
z2−6z+5 dz.

This can be proven following a derivation similar to that for the Cauchy
Integral Formula. Inserting the Taylor series expansion for f (z) into the
integral on the right hand side, we have∮

C

f (z)
(z− z0)n+1 dz =

∞

∑
m=0

cm

∮
C

(z− z0)
m

(z− z0)n+1 dz

=
∞

∑
m=0

cm

∮
C

dz
(z− z0)n−m+1 . (4.33)

Picking k = n− m, the integrals in the sum can be computed using the
following result: ∮

C

dz
(z− z0)k+1 =

{
0, k 6= 0,

2πi, k = 0.
(4.34)

The proof is left for the exercises.
The only nonvanishing integrals,

∮
C

dz
(z−z0)n−m+1 , occur when k = n−m =

0, or m = n. Therefore, the series of integrals collapses to one term and we
have ∮

C

f (z)
(z− z0)n+1 dz = 2πicn.

We finish the proof by recalling that the coefficients of the Taylor series
expansion for f (z) are given by

cn =
f (n)(z0)

n!
.

Then, ∮
C

f (z)
(z− z0)n+1 dz =

2πi
n!

f (n)(z0)

and the result follows.
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4.4.4 Laurent Series

Until this point we have only talked about series whose terms have
nonnegative powers of z− z0. It is possible to have series representations in
which there are negative powers. In the last section we investigated expan-
sions of f (z) = 1

1+z about z = 0 and z = 1
2 . The regions of convergence

for each series was shown in Figure 4.31. Let us reconsider each of these
expansions, but for values of z outside the region of convergence previously
found.

Example 4.22. f (z) = 1
1+z for |z| > 1.

As before, we make use of the geometric series . Since |z| > 1, we instead rewrite
the function as

f (z) =
1

1 + z
=

1
z

1
1 + 1

z
.

We now have the function in a form of the sum of a geometric series with first term
a = 1 and ratio r = − 1

z . We note that |z| > 1 implies that |r| < 1. Thus, we have
the geometric series

f (z) =
1
z

∞

∑
n=0

(
−1

z

)n
.

This can be re-indexed3 as

3 Re-indexing a series is often useful in
series manipulations. In this case, we
have the series

∞

∑
n=0

(−1)nz−n−1 = z−1 − z−2 + z−3 + . . . .

The index is n. You can see that the in-
dex does not appear when the sum is
expanded showing the terms. The sum-
mation index is sometimes referred to
as a dummy index for this reason. Re-
indexing allows one to rewrite the short-
hand summation notation while captur-
ing the same terms. In this example, the
exponents are −n − 1. We can simplify
the notation by letting −n− 1 = −j, or
j = n + 1. Noting that j = 1 when n = 0,
we get the sum ∑∞

j=1(−1)j−1z−j.

f (z) =
∞

∑
n=0

(−1)nz−n−1 =
∞

∑
j=1

(−1)j−1z−j.

Note that this series, which converges outside the unit circle, |z| > 1, has negative
powers of z.

Example 4.23. f (z) = 1
1+z for |z− 1

2 | >
3
2 .

As before, we express this in a form in which we can use a geometric series
expansion. We seek powers of z− 1

2 . So, we add and subtract 1
2 to the z to obtain:

f (z) =
1

1 + z
=

1
1 + (z− 1

2 + 1
2 )

=
1

3
2 + (z− 1

2 )
.

Instead of factoring out the 3
2 as we had done in Example 4.20, we factor out the

(z− 1
2 ) term. Then, we obtain

f (z) =
1

1 + z
=

1
(z− 1

2 )

1[
1 + 3

2 (z−
1
2 )
−1
] .

Now we identify a = 1 and r = − 3
2 (z−

1
2 )
−1. This leads to the series

f (z) =
1

z− 1
2

∞

∑
n=0

(
−3

2
(z− 1

2
)−1
)n

=
∞

∑
n=0

(
−3

2

)n (
z− 1

2

)−n−1
. (4.35)

This converges for |z− 1
2 | >

3
2 and can also be re-indexed to verify that this series

involves negative powers of z− 1
2 .
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This leads to the following theorem:

Theorem 4.8. Let f (z) be analytic in an annulus, R1 < |z− z0| < R2, with C a
positively oriented simple closed curve around z0 and inside the annulus as shown
in Figure 4.34. Then,

f (z) =
∞

∑
j=0

aj(z− z0)
j +

∞

∑
j=1

bj(z− z0)
−j,

with

aj =
1

2πi

∮
C

f (z)
(z− z0)j+1 dz,

and

bj =
1

2πi

∮
C

f (z)
(z− z0)−j+1 dz.

The above series can be written in the more compact form

f (z) =
∞

∑
j=−∞

cj(z− z0)
j.

Such a series expansion is called a Laurent series expansion, named after its
discoverer Pierre Alphonse Laurent (1813 - 1854).

z0

C
R2

R1

x

y

Figure 4.34: This figure shows an an-
nulus, R1 < |z − z0| < R2, with C a
positively oriented simple closed curve
around z0 and inside the annulus.

Example 4.24. Expand f (z) = 1
(1−z)(2+z) in the annulus 1 < |z| < 2.

Using partial fractions, we can write this as

f (z) =
1
3

[
1

1− z
+

1
2 + z

]
.

We can expand the first fraction, 1
1−z , as an analytic function in the region |z| > 1

and the second fraction, 1
2+z , as an analytic function in |z| < 2. This is done as

follows. First, we write

1
2 + z

=
1

2[1− (− z
2 )]

=
1
2

∞

∑
n=0

(
− z

2

)n
.

Then, we write
1

1− z
= − 1

z[1− 1
z ]

= −1
z

∞

∑
n=0

1
zn .

Therefore, in the common region, 1 < |z| < 2, we have that

1
(1− z)(2 + z)

=
1
3

[
1
2

∞

∑
n=0

(
− z

2

)n
−

∞

∑
n=0

1
zn+1

]

=
∞

∑
n=0

(−1)n

6(2n)
zn +

∞

∑
n=1

(−1)
3

z−n. (4.36)

We note that this is not a Taylor series expansion due to the existence of terms with
negative powers in the second sum.
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Example 4.25. Find series representations of f (z) = 1
(1−z)(2+z) throughout the

complex plane.
In the last example we found series representations of f (z) = 1

(1−z)(2+z) in the
annulus 1 < |z| < 2. However, we can also find expansions which converge for
other regions. We first write

f (z) =
1
3

[
1

1− z
+

1
2 + z

]
.

We then expand each term separately.
The first fraction, 1

1−z , can be written as the sum of the geometric series

1
1− z

=
∞

∑
n=0

zn, |z| < 1.

This series converges inside the unit circle. We indicate this by region 1 in Figure
4.35.

In the last example, we showed that the second fraction, 1
2+z , has the series

expansion
1

2 + z
=

1
2[1− (− z

2 )]
=

1
2

∞

∑
n=0

(
− z

2

)n
.

which converges in the circle |z| < 2. This is labeled as region 2 in Figure 4.35.

−2i

−i

i

2i

−2 2−1 1 x

y

1

2

2

3

3

4

Figure 4.35: Regions of convergence for
Laurent expansions of f (z) = 1

(1−z)(2+z) .

Regions 1 and 2 intersect for |z| < 1, so, we can combine these two series
representations to obtain

1
(1− z)(2 + z)

=
1
3

[
∞

∑
n=0

zn +
1
2

∞

∑
n=0

(
− z

2

)n
]

, |z| < 1.

In the annulus, 1 < |z| < 2, we had already seen in the last example that we
needed a different expansion for the fraction 1

1−z . We looked for an expansion in
powers of 1/z which would converge for large values of z. We had found that

1
1− z

= − 1

z
(

1− 1
z

) = −1
z

∞

∑
n=0

1
zn , |z| > 1.

This series converges in region 3 in Figure 4.35. Combining this series with the
one for the second fraction, we obtain a series representation that converges in the
overlap of regions 2 and 3. Thus, in the annulus 1 < |z| < 2, we have

1
(1− z)(2 + z)

=
1
3

[
1
2

∞

∑
n=0

(
− z

2

)n
−

∞

∑
n=0

1
zn+1

]
.

So far, we have series representations for |z| < 2. The only region not covered
yet is outside this disk, |z| > 2. In Figure 4.35 we see that series 3, which con-
verges in region 3, will converge in the last section of the complex plane. We just
need one more series expansion for 1/(2 + z) for large z. Factoring out a z in the
denominator, we can write this as a geometric series with r = 2/z :

1
2 + z

=
1

z[ 2
z + 1]

=
1
z

∞

∑
n=0

(
−2

z

)n
.
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This series converges for |z| > 2. Therefore, it converges in region 4 and the final
series representation is

1
(1− z)(2 + z)

=
1
3

[
1
z

∞

∑
n=0

(
−2

z

)n
−

∞

∑
n=0

1
zn+1

]
.

4.4.5 Singularities and The Residue Theorem

In the last section we found, that we could integrate functions sat-
isfying some analyticity properties along contours without using detailed
parametrizations around the contours. We can deform contours if the func-
tion is analytic in the region between the original and new contour. In this
section we will extend our tools for performing contour integrals.

The integrand in the Cauchy Integral Formula was of the form g(z) =
f (z)

z−z0
, where f (z) is well behaved at z0. The point z = z0 is called a singu- Singularities of complex functions.

larity of g(z), as g(z) is not defined there. More specifically, a singularity of
f (z) is a point at which f (z) fails to be analytic.

We can also classify these singularities. Typically, these are isolated sin-
gularities. As we saw from the proof of the Cauchy Integral Formula,
g(z) = f (z)

z−z0
has a Laurent series expansion about z = z0, given by

g(z) =
f (z0)

z− z0
+ f ′(z0) +

1
2

f ′′(z0)(z− z0) + . . . .

It is the nature of the first term that gives information about the type of
singularity that g(z) has. Namely, in order to classify the singularities of
f (z), we look at the principal part of the Laurent series of f (z) about z = z0,
∑∞

j−1 bj(z− z0)
−j, which consists of the negative powers of z− z0. Classification of singularities.

There are three types of singularities: removable, poles, and essential
singularities. They are defined as follows:

1. If f (z) is bounded near z0, then z0 is a removable singularity.

2. If there are a finite number of terms in the principal part of the Lau-
rent series of f (z) about z = z0, then z0 is called a pole.

3. If there are an infinite number of terms in the principal part of the
Laurent series of f (z) about z = z0, then z0 is called an essential
singularity.

Example 4.26. f (z) = sin z
z has a removable singularity at z = 0.

At first it looks like there is a possible singularity at z = 0, since the denomi-
nator is zero at z = 0. However, we know from the first semester of calculus that
limz→0

sin z
z = 1. Furthermore, we can expand sin z about z = 0 and see that

sin z
z

=
1
z
(z− z3

3!
+ . . .) = 1− z2

3!
+ . . . .

Thus, there are only nonnegative powers in the series expansion. So, z = 0 is a
removable singularity.
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Example 4.27. f (z) = ez

(z−1)n has poles at z = 1 for n a positive integer.

For n = 1, we have f (z) = ez

z−1 . This function has a singularity at z = 1. The
series expansion is found by expanding ez about z = 1:

f (z) =
e

z− 1
ez−1 =

e
z− 1

+ e +
e
2!
(z− 1) + . . . .

Note that the principal part of the Laurent series expansion about z = 1 only has
one term, e

z−1 . Therefore, z = 1 is a pole. Since the leading term has an exponent
of −1, z = 1 is called a pole of order one, or a simple pole.Simple pole.

For n = 2 we have f (z) = ez

(z−1)2 . The series expansion is again found by
expanding ez about z = 1:

f (z) =
e

(z− 1)2 ez−1 =
e

(z− 1)2 +
e

z− 1
+

e
2!

+
e
3!
(z− 1) + . . . .

Note that the principal part of the Laurent series has two terms involving (z− 1)−2

and (z− 1)−1. Since the leading term has an exponent of −2, z = 1 is called a pole
of order 2, or a double pole.Double pole.

Example 4.28. f (z) = e
1
z has an essential singularity at z = 0.

In this case, we have the series expansion about z = 0 given by

f (z) = e
1
z =

∞

∑
n=0

(
1
z

)n

n!
=

∞

∑
n=0

1
n!

z−n.

We see that there are an infinite number of terms in the principal part of the Laurent
series. So, this function has an essential singularity at z = 0.

In the above examples we have seen poles of order one (a simple pole)Poles of order k.

and two (a double pole). In general, we can say that f (z) has a pole of order
k at z0 if and only if (z − z0)

k f (z) has a removable singularity at z0, but
(z− z0)

k−1 f (z) for k > 0 does not.

Example 4.29. Determine the order of the pole of f (z) = cot z csc z at z = 0.
First we rewrite f (z) in terms of sines and cosines.

f (z) = cot z csc z =
cos z
sin2 z

.

We note that the denominator vanishes at z = 0.
How do we know that the pole is not a simple pole? Well, we check to see if

(z− 0) f (z) has a removable singularity at z = 0:

lim
z→0

(z− 0) f (z) = lim
z→0

z cos z
sin2 z

=

(
lim
z→0

z
sin z

)(
lim
z→0

cos z
sin z

)
= lim

z→0

cos z
sin z

. (4.37)

We see that this limit is undefined. So now we check to see if (z− 0)2 f (z) has a
removable singularity at z = 0:

lim
z→0

(z− 0)2 f (z) = lim
z→0

z2 cos z
sin2 z
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=

(
lim
z→0

z
sin z

)(
lim
z→0

z cos z
sin z

)
= lim

z→0

z
sin z

cos(0) = 1. (4.38)

In this case, we have obtained a finite, nonzero, result. So, z = 0 is a pole of order
2.

We could have also relied on series expansions. Expanding both the sine and
cosine functions in a Taylor series expansion, we have

f (z) =
cos z
sin2 z

=
1− 1

2! z
2 + . . .

(z− 1
3! z

3 + . . .)2
.

Factoring a z from the expansion in the denominator,

f (z) =
1
z2

1− 1
2! z

2 + . . .

(1− 1
3! z + . . .)2

=
1
z2

(
1 + O(z2)

)
,

we can see that the leading term will be a 1/z2, indicating a pole of order 2.

We will see how knowledge of the poles of a function can aid in the
computation of contour integrals. We now show that if a function, f (z), has
a pole of order k, then Integral of a function with a simple pole

inside C.∮
C

f (z) dz = 2πi Res[ f (z); z0],

where we have defined Res[ f (z); z0] as the residue of f (z) at z = z0. In
particular, for a pole of order k the residue is given by

Residues of a function with poles of or-
der k.

Residues for Poles of order k

Res[ f (z); z0] = lim
z→z0

1
(k− 1)!

dk−1

dzk−1

[
(z− z0)

k f (z)
]

. (4.39)

Proof. Let φ(z) = (z − z0)
k f (z) be an analytic function. Then φ(z) has a

Taylor series expansion about z0. As we had seen in the last section, we can
write the integral representation of any derivative of φ as

φ(k−1)(z0) =
(k− 1)!

2πi

∮
C

φ(z)
(z− z0)k dz.

Inserting the definition of φ(z), we then have

φ(k−1)(z0) =
(k− 1)!

2πi

∮
C

f (z) dz.

Solving for the integral, we have the following result:∮
C

f (z) dz =
2πi

(k− 1)!
dk−1

dzk−1

[
(z− z0)

k f (z)
]

z=z0

≡ 2πi Res[ f (z); z0] (4.40)
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Note: If z0 is a simple pole, the residue is easily computed as

Res[ f (z); z0] = lim
z→z0

(z− z0) f (z).

The residue for a simple pole.
In fact, one can show (Problem 18) that for g and h analytic functions at z0,
with g(z0) 6= 0, h(z0) = 0, and h′(z0) 6= 0,

Res
[

g(z)
h(z)

; z0

]
=

g(z0)

h′(z0)
.

Example 4.30. Find the residues of f (z) = z−1
(z+1)2(z2+4) .

f (z) has poles at z = −1, z = 2i, and z = −2i. The pole at z = −1 is a double
pole (pole of order 2). The other poles are simple poles. We compute those residues
first:

Res[ f (z); 2i] = lim
z→2i

(z− 2i)
z− 1

(z + 1)2(z + 2i)(z− 2i)

= lim
z→2i

z− 1
(z + 1)2(z + 2i)

=
2i− 1

(2i + 1)2(4i)
= − 1

50
− 11

100
i. (4.41)

Res[ f (z);−2i] = lim
z→−2i

(z + 2i)
z− 1

(z + 1)2(z + 2i)(z− 2i)

= lim
z→−2i

z− 1
(z + 1)2(z− 2i)

=
−2i− 1

(−2i + 1)2(−4i)
= − 1

50
+

11
100

i. (4.42)

For the double pole, we have to do a little more work.

Res[ f (z);−1] = lim
z→−1

d
dz

[
(z + 1)2 z− 1

(z + 1)2(z2 + 4)

]
= lim

z→−1

d
dz

[
z− 1
z2 + 4

]
= lim

z→−1

d
dz

[
z2 + 4− 2z(z− 1)

(z2 + 4)2

]
= lim

z→−1

d
dz

[
−z2 + 2z + 4
(z2 + 4)2

]
=

1
25

. (4.43)

Example 4.31. Find the residue of f (z) = cot z at z = 0.
We write f (z) = cot z = cos z

sin z and note that z = 0 is a simple pole. Thus,

Res[cot z; z = 0] = lim
z→0

z cos z
sin z

= cos(0) = 1.

The residue of f (z) at z0 is the coefficient
of the (z − z0)

−1 term, c−1 = b1, of the
Laurent series expansion about z0.

Another way to find the residue of a function f (z) at a singularity z0 is to
look at the Laurent series expansion about the singularity. This is because
the residue of f (z) at z0 is the coefficient of the (z− z0)

−1 term, or c−1 = b1.
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Example 4.32. Find the residue of f (z) = 1
z(3−z) at z = 0 using a Laurent series

expansion.
First, we need the Laurent series expansion about z = 0 of the form ∑∞

−∞ cnzn.
A partial fraction expansion gives

f (z) =
1

z(3− z)
=

1
3

(
1
z
+

1
3− z

)
.

The first term is a power of z. The second term needs to be written as a convergent
series for small z. This is given by

1
3− z

=
1

3(1− z/3)

=
1
3

∞

∑
n=0

( z
3

)n
. (4.44)

Thus, we have found

f (z) =
1
3

(
1
z
+

1
3

∞

∑
n=0

( z
3

)n
)

.

The coefficient of z−1 can be read off to give Res[ f (z); z = 0] = 1
3 .

Example 4.33. Find the residue of f (z) = z cos 1
z at z = 0 using a Laurent series

expansion. Finding the residue at an essential sin-
gularity.In this case, z = 0 is an essential singularity. The only way to find residues at

essential singularities is to use Laurent series. Since

cos z = 1− 1
2!

z2 +
1
4!

z4 − 1
6!

z6 + . . . ,

then we have

f (z) = z
(

1− 1
2!z2 +

1
4!z4 −

1
6!z6 + . . .

)
= z− 1

2!z
+

1
4!z3 −

1
6!z5 + . . . . (4.45)

From the second term we have that Res[ f (z); z = 0] = − 1
2 .

We are now ready to use residues in order to evaluate integrals.
−i

i

−1 1 x

y

|z| = 1

Figure 4.36: Contour for computing∮
|z|=1

dz
sin z .

Example 4.34. Evaluate
∮
|z|=1

dz
sin z .

We begin by looking for the singularities of the integrand. These are located at
values of z for which sin z = 0. Thus, z = 0,±π,±2π, . . . , are the singularities.
However, only z = 0 lies inside the contour, as shown in Figure 4.36. We note
further that z = 0 is a simple pole, since

lim
z→0

(z− 0)
1

sin z
= 1.

Therefore, the residue is one and we have∮
|z|=1

dz
sin z

= 2πi.
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In general, we could have several poles of different orders. For example,
we will be computing ∮

|z|=2

dz
z2 − 1

.

The integrand has singularities at z2 − 1 = 0, or z = ±1. Both poles are
inside the contour, as seen in Figure 4.38. One could do a partial fraction
decomposition and have two integrals with one pole each integral. Then,
the result could be found by adding the residues from each pole.

In general, when there are several poles, we can use the Residue Theorem:
The Residue Theorem.

The Residue Theorem

Theorem 4.9. Let f (z) be a function which has poles zj, j = 1, . . . , N inside a
simple closed contour C and no other singularities in this region. Then,

∮
C

f (z) dz = 2πi
N

∑
j=1

Res[ f (z); zj], (4.46)

where the residues are computed using Equation (4.39),

Res[ f (z); z0] = lim
z→z0

1
(k− 1)!

dk−1

dzk−1

[
(z− z0)

k f (z)
]

.
C

C2

C1

C2

Figure 4.37: A depiction of how one
cuts out poles to prove that the inte-
gral around C is the sum of the integrals
around circles with the poles at the cen-
ter of each.

The proof of this theorem is based upon the contours shown in Figure
4.37. One constructs a new contour C′ by encircling each pole, as show in
the figure. Then one connects a path from C to each circle. In the figure
two separated paths along the cut are shown only to indicate the direction
followed on the cut. The new contour is then obtained by following C and
crossing each cut as it is encountered. Then one goes around a circle in the
negative sense and returns along the cut to proceed around C. The sum of
the contributions to the contour integration involve two integrals for each
cut, which will cancel due to the opposing directions. Thus, we are left with∮

C′
f (z) dz =

∮
C

f (z) dz−
∮

C1

f (z) dz−
∮

C2

f (z) dz−
∮

C3

f (z) dz = 0.

Of course, the sum is zero because f (z) is analytic in the enclosed region,
since all singularities have been cut out. Solving for

∮
C f (z) dz, one has that

this integral is the sum of the integrals around the separate poles, which
can be evaluated with single residue computations. Thus, the result is that∮

C f (z) dz is 2πi times the sum of the residues.

Example 4.35. Evaluate
∮
|z|=2

dz
z2−1 .

We first note that there are two poles in this integral since

1
z2 − 1

=
1

(z− 1)(z + 1)
.

In Figure 4.38 we plot the contour and the two poles, denoted by an “x.” Since both
poles are inside the contour, we need to compute the residues for each one. They are
each simple poles, so we have
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Res
[

1
z2 − 1

; z = 1
]

= lim
z→1

(z− 1)
1

z2 − 1

= lim
z→1

1
z + 1

=
1
2

, (4.47)

and

Res
[

1
z2 − 1

; z = −1
]

= lim
z→−1

(z + 1)
1

z2 − 1

= lim
z→−1

1
z− 1

= −1
2

. (4.48)

−2i

−i

i

2i

−2 2−1 1 x

y

|z| = 2

Figure 4.38: Contour for computing∮
|z|=2

dz
z2−1 .

Then, ∮
|z|=2

dz
z2 − 1

= 2πi(
1
2
− 1

2
) = 0.

Example 4.36. Evaluate
∮
|z|=3

z2+1
(z−1)2(z+2) dz.

In this example, there are two poles z = 1,−2 inside the contour. [See Figure
4.39.] z = 1 is a second-order pole and z = −2 is a simple pole. Therefore, we need
to compute the residues at each pole of f (z) = z2+1

(z−1)2(z+2) :

Res[ f (z); z = 1] = lim
z→1

1
1!

d
dz

[
(z− 1)2 z2 + 1

(z− 1)2(z + 2)

]
= lim

z→1

(
z2 + 4z− 1
(z + 2)2

)
=

4
9

. (4.49)

Res[ f (z); z = −2] = lim
z→−2

(z + 2)
z2 + 1

(z− 1)2(z + 2)

= lim
z→−2

z2 + 1
(z− 1)2

=
5
9

. (4.50)

−3i

−2i

−i

i

2i

3i

−3 3−2 2−1 1 x

y

|z| = 3

Figure 4.39: Contour for computing∮
|z|=3

z2+1
(z−1)2(z+2) dz.

The evaluation of the integral is found by computing 2πi times the sum of the
residues: ∮

|z|=3

z2 + 1
(z− 1)2(z + 2)

dz = 2πi
(

4
9
+

5
9

)
= 2πi.

Example 4.37. Compute
∮
|z|=2 z3e2/z dz.

In this case, z = 0 is an essential singularity and is inside the contour. A
Laurent series expansion about z = 0 gives

z3e2/z = z3
∞

∑
n=0

1
n!

(
2
z

)n

=
∞

∑
n=0

2n

n!
z3−n

= z3 +
2
2!

z2 +
4
3!

z +
8
4!

+
16
5!z

+ . . . . (4.51)
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The residue is the coefficient of z−1, or Res[z3e2/z; z = 0] = − 2
15 . Therefore,

∮
|z|=2

z3e2/z dz =
4

15
πi.

Example 4.38. Evaluate
∫ 2π

0
dθ

2+cos θ .
Here we have a real integral in which there are no signs of complex functions.

In fact, we could apply simpler methods from a calculus course to do this integral,
attempting to write 1 + cos θ = 2 cos2 θ

2 . However, we do not get very far.
One trick, useful in computing integrals whose integrand is in the form f (cos θ, sin θ),

is to transform the integration to the complex plane through the transformation
z = eiθ . Then,

cos θ =
eiθ + e−iθ

2
=

1
2

(
z +

1
z

)
,

sin θ =
eiθ − e−iθ

2i
= − i

2

(
z− 1

z

)
.

Computation of integrals of functions of
sines and cosines, f (cos θ, sin θ).

Under this transformation, z = eiθ , the integration now takes place around the
unit circle in the complex plane. Noting that dz = ieiθ dθ = iz dθ, we have

∫ 2π

0

dθ

2 + cos θ
=

∮
|z|=1

dz
iz

2 + 1
2

(
z + 1

z

)
= −i

∮
|z|=1

dz
2z + 1

2 (z
2 + 1)

= −2i
∮
|z|=1

dz
z2 + 4z + 1

. (4.52)

−i

i

−4 −3 −2 −1 1 x

y

|z| = 1

Figure 4.40: Contour for computing∫ 2π
0

dθ
2+cos θ .

We can apply the Residue Theorem to the resulting integral. The singularities
occur at the roots of z2 + 4z + 1 = 0. Using the quadratic formula, we have the
roots z = −2±

√
3.

The location of these poles are shown in Figure 4.40. Only z = −2 +
√

3 lies
inside the integration contour. We will therefore need the residue of f (z) = −2i

z2+4z+1
at this simple pole:

Res[ f (z); z = −2 +
√

3] = lim
z→−2+

√
3
(z− (−2 +

√
3))

−2i
z2 + 4z + 1

= −2i lim
z→−2+

√
3

z− (−2 +
√

3)
(z− (−2 +

√
3))(z− (−2−

√
3))

= −2i lim
z→−2+

√
3

1
z− (−2−

√
3)

=
−2i

−2 +
√

3− (−2−
√

3)

=
−i√

3

=
−i
√

3
3

. (4.53)
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Therefore, we have

∫ 2π

0

dθ

2 + cos θ
= −2i

∮
|z|=1

dz
z2 + 4z + 1

= 2πi

(
−i
√

3
3

)
=

2π
√

3
3

. (4.54)

Before moving on to further applications, we note that there is another
way to compute the integral in the last example. Karl Theodor Wilhelm
Weierstraß (1815 - 1897) introduced a substitution method for computing
integrals involving rational functions of sine and cosine. One makes the
substitution t = tan θ

2 and converts the integrand into a rational function of
t. One can show that this substitution implies that The Weierstraß substitution method.

sin θ =
2t

1 + t2 , cos θ =
1− t2

1 + t2 ,

and

dθ =
2dt

1 + t2 .

The details are left for Problem 8. In order to see how it works, we will
apply the Weierstraß substitution method to the last example.

Example 4.39. Apply the Weierstraß substitution method to compute
∫ 2π

0
dθ

2+cos θ .

∫ 2π

0

dθ

2 + cos θ
=

∫ ∞

−∞

1

2 + 1−t2

1+t2

2dt
1 + t2

= 2
∫ ∞

−∞

dt
t2 + 3

=
2
3

√
3

[
tan−1

(√
3

3
t

)]∞

−∞

=
2π
√

3
3

. (4.55)

4.4.6 Infinite Integrals

Infinite integrals of the form

∫ ∞
−∞ f (x) dx occur often in physics.

They can represent wave packets, wave diffraction, Fourier transforms, and
arise in other applications. In this section, we will see that such integrals
may be computed by extending the integration to a contour in the complex
plane.

Recall from your calculus experience that these integrals are improper
integrals. The way that one determines if improper integrals exist, or con-
verge, is to carefully compute these integrals using limits such as

∫ ∞

−∞
f (x) dx = lim

R→∞

∫ R

−R
f (x) dx.

For example, we evaluate the integral of f (x) = x as

∫ ∞

−∞
x dx = lim

R→∞

∫ R

−R
x dx = lim

R→∞

(
R2

2
− (−R)2

2

)
= 0.
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One might also be tempted to carry out this integration by splitting the
integration interval, (−∞, 0] ∪ [0, ∞). However, the integrals

∫ ∞
0 x dx and∫ 0

−∞ x dx do not exist. A simple computation confirms this.

∫ ∞

0
x dx = lim

R→∞

∫ R

0
x dx = lim

R→∞

(
R2

2

)
= ∞.

Therefore, ∫ ∞

−∞
f (x) dx =

∫ 0

−∞
f (x) dx +

∫ ∞

0
f (x) dx

does not exist while limR→∞
∫ R
−R f (x) dx does exist. We will be interested in

computing the latter type of integral. Such an integral is called the Cauchy
Principal Value Integral and is denoted with either a P, PV, or a bar throughThe Cauchy principal value integral.

the integral:

P
∫ ∞

−∞
f (x) dx = PV

∫ ∞

−∞
f (x) dx = −

∫ ∞

−∞
f (x) dx = lim

R→∞

∫ R

−R
f (x) dx. (4.56)

If there is a discontinuity in the integral, one can further modify this
definition of principal value integral to bypass the singularity. For example,
if f (x) is continuous on a ≤ x ≤ b and not defined at x = x0 ∈ [a, b], then∫ b

a
f (x) dx = lim

ε→0

(∫ x0−ε

a
f (x) dx +

∫ b

x0+ε
f (x) dx

)
.

In our discussions we will be computing integrals over the real line in the
Cauchy principal value sense.

Example 4.40. Compute
∫ 1
−1

dx
x3 in the Cauchy Principal Value sense.

In this case, f (x) = 1
x3 is not defined at x = 0. So, we have

∫ 1

−1

dx
x3 = lim

ε→0

(∫ −ε

−1

dx
x3 +

∫ 1

ε

dx
x3

)
= lim

ε→0

(
− 1

2x2

∣∣∣−ε

−1
− 1

2x2

∣∣∣1
ε

)
= 0. (4.57)

We now proceed to the evaluation of principal value integrals usingComputation of real integrals by embed-
ding the problem in the complex plane. complex integration methods. We want to evaluate the integral

∫ ∞
−∞ f (x) dx.

We will extend this into an integration in the complex plane. We extend f (x)
to f (z) and assume that f (z) is analytic in the upper half plane (Im(z) > 0)
except at isolated poles. We then consider the integral

∫ R
−R f (x) dx as an

integral over the interval (−R, R). We view this interval as a piece of a
larger contour CR obtained by completing the contour with a semicircle
ΓR of radius R extending into the upper half plane as shown in Figure
4.41. Note that a similar construction is sometimes needed extending the
integration into the lower half plane (Im(z) < 0) as we will later see.

R−R x

y

ΓR

R

Figure 4.41: Contours for computing
P
∫ ∞
−∞ f (x) dx.

The integral around the entire contour CR can be computed using the
Residue Theorem and is related to integrations over the pieces of the contour
by ∮

CR

f (z) dz =
∫

ΓR

f (z) dz +
∫ R

−R
f (z) dz. (4.58)
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Taking the limit R → ∞ and noting that the integral over (−R, R) is the
desired integral, we have

P
∫ ∞

−∞
f (x) dx =

∮
C

f (z) dz− lim
R→∞

∫
ΓR

f (z) dz, (4.59)

where we have identified C as the limiting contour as R gets large.
Now the key to carrying out the integration is that the second integral

vanishes in the limit. This is true if R| f (z)| → 0 along ΓR as R → ∞. This
can be seen by the following argument. We parametrize the contour ΓR

using z = Reiθ . Then, when | f (z)| < M(R),∣∣∣∣∫ΓR

f (z) dz
∣∣∣∣ =

∣∣∣∣∫ 2π

0
f (Reiθ)Reiθ dθ

∣∣∣∣
≤ R

∫ 2π

0

∣∣∣ f (Reiθ)
∣∣∣ dθ

< RM(R)
∫ 2π

0
dθ

= 2πRM(R). (4.60)

So, if limR→∞ RM(R) = 0, then limR→∞
∫

ΓR
f (z) dz = 0.

We now demonstrate how to use complex integration methods in evalu-
ating integrals over real valued functions.

Example 4.41. Evaluate
∫ ∞
−∞

dx
1+x2 .

We already know how to do this integral using calculus without complex analy-
sis. We have that∫ ∞

−∞

dx
1 + x2 = lim

R→∞

(
2 tan−1 R

)
= 2

(π

2

)
= π.

We will apply the methods of this section and confirm this result. The needed
contours are shown in Figure 4.42 and the poles of the integrand are at z = ±i. We
first write the integral over the bounded contour CR as the sum of an integral from
−R to R along the real axis plus the integral over the semicircular arc in the upper
half complex plane, ∫

CR

dz
1 + z2 =

∫ R

−R

dx
1 + x2 +

∫
ΓR

dz
1 + z2 .

Next, we let R get large.
R−R x

y

ΓR

i

−i

Figure 4.42: Contour for computing∫ ∞
−∞

dx
1+x2 .

We first note that f (z) = 1
1+z2 goes to zero fast enough on ΓR as R gets large.

R| f (z)| = R
|1 + R2e2iθ| =

R√
1 + 2R2 cos θ + R4

.

Thus, as R→ ∞, R| f (z)| → 0 and CR → C. So,∫ ∞

−∞

dx
1 + x2 =

∮
C

dz
1 + z2 .

We need only compute the residue at the enclosed pole, z = i.

Res[ f (z); z = i] = lim
z→i

(z− i)
1

1 + z2 = lim
z→i

1
z + i

=
1
2i

.
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Then, using the Residue Theorem, we have∫ ∞

−∞

dx
1 + x2 = 2πi

(
1
2i

)
= π.

Example 4.42. Evaluate P
∫ ∞
−∞

sin x
x dx.

For this example, the integral is unbounded at z = 0. Constructing the contours
as before we are faced for the first time with a pole lying on the contour. We cannot
ignore this fact. We can proceed with the computation by carefully going around
the pole with a small semicircle of radius ε, as shown in Figure 4.43. Then the
principal value integral computation becomes

P
∫ ∞

−∞

sin x
x

dx = lim
ε→0,R→∞

(∫ −ε

−R

sin x
x

dx +
∫ R

ε

sin x
x

dx
)

. (4.61)

We will also need to rewrite the sine function in terms of exponentials in this
integral. There are two approaches that we could take. First, we could employ the
definition of the sine function in terms of complex exponentials. This gives two
integrals to compute:

P
∫ ∞

−∞

sin x
x

dx =
1
2i

(
P
∫ ∞

−∞

eix

x
dx− P

∫ ∞

−∞

e−ix

x
dx
)

. (4.62)

The other approach would be to realize that the sine function is the imaginary part
of an exponential, Im eix = sinx. Then, we would have

P
∫ ∞

−∞

sin x
x

dx = Im
(

P
∫ ∞

−∞

eix

x
dx
)

. (4.63)

ε R−R −ε x

y

Cε

ΓR

Figure 4.43: Contour for computing
P
∫ ∞
−∞

sin x
x dx.

We first consider P
∫ ∞
−∞

eix

x dx, which is common to both approaches. We use the
contour in Figure 4.43. Then we have

∮
CR

eiz

z
dz =

∫
ΓR

eiz

z
dz +

∫ −ε

−R

eiz

z
dz +

∫
Cε

eiz

z
dz +

∫ R

ε

eiz

z
dz.

The integral
∮

CR
eiz

z dz vanishes since there are no poles enclosed in the contour!
The sum of the second and fourth integrals gives the integral we seek as ε → 0
and R→ ∞. The integral over ΓR will vanish as R gets large according to Jordan’s
Lemma.

Jordan’s Lemma gives conditions for the vanishing of integrals over ΓR as R gets
large. We state a version of Jordan’s Lemma here for reference and give a proof at
the end of this chapter.

Jordan’s Lemma

If f (z) converges uniformly to zero as z→ ∞, then

lim
R→∞

∫
CR

f (z)eikz dz = 0,

where k > 0 and CR is the upper half of the circle |z| = R.
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A similar result applies for k < 0, but one closes the contour in the lower half plane.
[See Section 4.4.8 for the proof of Jordan’s Lemma.]

The remaining integral around the small semicircular arc must be done sepa-
rately. We have∫

Cε

eiz

z
dz =

∫ 0

π

exp(iεeiθ)

εeiθ iεeiθ dθ = −
∫ π

0
i exp(iεeiθ) dθ.

Taking the limit as ε goes to zero, the integrand goes to i and we have∫
Cε

eiz

z
dz = −πi.

Note that we have not previously done
integrals in which a singularity lies on
the contour. One can show, as in this
example, that points on the contour can
be accounted for using half of a residue
(times 2πi). For the semicircle Cε, the
reader can verify this. The negative sign
comes from going clockwise around the
semicircle.

So far, we have that

P
∫ ∞

−∞

eix

x
dx = − lim

ε→0

∫
Cε

eiz

z
dz = πi.

At this point, we can get the answer using the second approach in Equation (4.63).
Namely,

P
∫ ∞

−∞

sin x
x

dx = Im
(

P
∫ ∞

−∞

eix

x
dx
)
= Im(πi) = π. (4.64)

It is instructive to carry out the first approach in Equation (4.62). We will need to
compute P

∫ ∞
−∞

e−ix

x dx. This is done in a similar maaner to the above computation,
being careful with the sign changes due to the orientations of the contours as shown
in Figure 4.44.

We note that the contour is closed in the lower half plane. This is because k < 0
in the application of Jordan’s Lemma. One can understand why this is the case
from the following observation. Consider the exponential in Jordan’s Lemma. Let
z = zR + izI . Then,

eikz = eik(zR+izI) = e−kzI eikzR .

As |z| gets large, the second factor just oscillates. The first factor would go to zero
if kzI > 0. So, if k > 0, we would close the contour in the upper half plane. If
k < 0, then we would close the contour in the lower half plane. In the current
computation, k = −1, so we use the lower half plane.

Working out the details, we find the same value for

P
∫ ∞

−∞

e−ix

x
dx = πi.

ε R−R −ε

x

y

Cε

ΓR

Figure 4.44: Contour in the lower half
plane for computing P

∫ ∞
−∞

e−ix

x dx.

Finally, we can compute the original integral as

P
∫ ∞

−∞

sin x
x

dx =
1
2i

(
P
∫ ∞

−∞

eix

x
dx− P

∫ ∞

−∞

e−ix

x
dx
)

=
1
2i

(πi + πi)

= π. (4.65)

This is the same result as we obtained using Equation(4.63).
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Example 4.43. Evaluate
∮
|z|=1

dz
z2+1 .

In this example, there are two simple poles, z = ±i lying on the contour, as
seen in Figure 4.45. This problem is similar to Problem 1c, except we will do it
using contour integration instead of a parametrization. We bypass the two poles
by drawing small semicircles around them. Since the poles are not included in the
closed contour, the Residue Theorem tells us that the integral over the path vanishes.
We can write the full integration as a sum over three paths: C± for the semicircles
and C for the original contour with the poles cut out. Then we take the limit as the
semicircle radii go to zero. So,

0 =
∫

C

dz
z2 + 1

+
∫

C+

dz
z2 + 1

+
∫

C−

dz
z2 + 1

.

−i

i

−1 1 x

y

|z| = 1

Figure 4.45: Example with poles on con-
tour.

The integral over the semicircle around i can be done using the parametrization
z = i + εeiθ . Then z2 + 1 = 2iεeiθ + ε2e2iθ . This gives

∫
C+

dz
z2 + 1

= lim
ε→0

∫ −π

0

iεeiθ

2iεeiθ + ε2e2iθ dθ =
1
2

∫ −π

0
dθ = −π

2
.

As in the last example, we note that this is just πi times the residue, Res
[

1
z2+1 ; z = i

]
=

1
2i . Since the path is traced clockwise, we find that the contribution is −πiRes =

−π
2 , which is what we obtained above. A Similar computation will give the con-

tribution from z = −i as π
2 . Adding these values gives the total contribution from

C± as zero. So, the final result is that∮
|z|=1

dz
z2 + 1

= 0.

Example 4.44. Evaluate
∫ ∞
−∞

eax

1+ex dx, for 0 < a < 1.
In dealing with integrals involving exponentials or hyperbolic functions it is

sometimes useful to use different types of contours. This example is one such case.
We will replace x with z and integrate over the contour in Figure 4.46. Letting
R → ∞, the integral along the real axis is the integral that we desire. The integral
along the path for y = 2π leads to a multiple of this integral since z = x + 2πi
along this path. Integration along the vertical paths vanishes as R → ∞. This is
captured in the following integrals:

∮
CR

eaz

1 + ez dz =
∫ R

−R

eax

1 + ex dx +
∫ 2π

0

ea(R+iy)

1 + eR+iy dy

+
∫ −R

R

ea(x+2πi)

1 + ex+2πi dx +
∫ 0

2π

ea(−R+iy)

1 + e−R+iy dy (4.66)

x

y

R

R + 2πi−R + 2πi

−R

Figure 4.46: Example using a rectangular
contour.

We can now let R → ∞. For large R, the second integral decays as e(a−1)R and
the fourth integral decays as e−aR. Thus, we are left with

∮
C

eaz

1 + ez dz = lim
R→∞

(∫ R

−R

eax

1 + ex dx− e2πia
∫ R

−R

eax

1 + ex dx
)

= (1− e2πia)
∫ ∞

−∞

eax

1 + ex dx. (4.67)
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We need only evaluate the left contour integral using the Residue Theorem. The
poles are found from

1 + ez = 0.

Within the contour, this is satisfied by z = iπ. So,

Res
[

eaz

1 + ez ; z = iπ
]
= lim

z→iπ
(z− iπ)

eaz

1 + ez = −eiπa.

Applying the Residue Theorem, we have

(1− e2πia)
∫ ∞

−∞

eax

1 + ex dx = −2πieiπa.

Therefore, we have found that∫ ∞

−∞

eax

1 + ex dx =
−2πieiπa

1− e2πia =
π

sin πa
, 0 < a < 1.

4.4.7 Integration over Multivalued Functions

We have seen that some complex functions inherently possess mul-
tivaluedness; that is, such “functions” do not evaluate to a single value, but
have many values. The key examples were f (z) = z1/n and f (z) = ln z.
The nth roots have n distinct values and logarithms have an infinite num-
ber of values as determined by the range of the resulting arguments. We
mentioned that the way to handle multivaluedness is to assign different
branches to these functions, introduce a branch cut, and glue them together
at the branch cuts to form Riemann surfaces. In this way we can draw con-
tinuous paths along the Riemann surfaces as we move from one Riemann
sheet to another.

Before we do examples of contour integration involving multivalued func-
tions, let’s first try to get a handle on multivaluedness in a simple case. We
will consider the square root function,

w = z1/2 = r1/2ei( θ
2+kπ), k = 0, 1.

There are two branches, corresponding to each k value. If we follow a
path not containing the origin, then we stay in the same branch, so the final
argument (θ) will be equal to the initial argument. However, if we follow a
path that encloses the origin, this will not be true. In particular, for an initial
point on the unit circle, z0 = eiθ0 , we have its image as w0 = eiθ0/2. However,
if we go around a full revolution, θ = θ0 + 2π, then

z1 = eiθ0+2πi = eiθ0 ,

but
w1 = e(iθ0+2πi)/2 = eiθ0/2eπi 6= w0.

Here we obtain a final argument (θ) that is not equal to the initial argument!
Somewhere, we have crossed from one branch to another. Points, such as



160 fourier and complex analysis

the origin in this example, are called branch points. Actually, there are two
branch points, because we can view the closed path around the origin as
a closed path around complex infinity in the compactified complex plane.
However, we will not go into that at this time.

We can demonstrate this in the following figures. In Figure 4.47 we show
how the points A through E are mapped from the z-plane into the w-plane
under the square root function for the principal branch, k = 0. As we trace
out the unit circle in the z-plane, we only trace out a semicircle in the w-
plane. If we consider the branch k = 1, we then trace out a semicircle in the
lower half plane, as shown in Figure 4.48 following the points from F to J.

Figure 4.47: In this figure we show how
points on the unit circle in the z-plane
are mapped to points in the w-plane un-
der the principal square root function.
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Figure 4.48: In this figure we show how
points on the unit circle in the z-plane
are mapped to points in the w-plane un-
der the square root function for the sec-
ond branch, k = 1. x
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Figure 4.49: In this figure we show the
combined mapping using two branches
of the square root function.
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We can combine these into one mapping depicting how the two complex
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planes corresponding to each branch provide a mapping to the w-plane.
This is shown in Figure 4.49.

A common way to draw this domain, which looks like two separate com-
plex planes, would be to glue them together. Imagine cutting each plane
along the positive x-axis, extending between the two branch points, z = 0
and z = ∞. As one approaches the cut on the principal branch, one can
move onto the glued second branch. Then one continues around the ori-
gin on this branch until one once again reaches the cut. This cut is glued
to the principal branch in such a way that the path returns to its starting
point. The resulting surface we obtain is the Riemann surface shown in
Figure 4.50. Note that there is nothing that forces us to place the branch
cut at a particular place. For example, the branch cut could be along the
positive real axis, the negative real axis, or any path connecting the origin
and complex infinity.

Figure 4.50: Riemann surface for f (z) =
z1/2.

We now look at examples involving integrals of multivalued functions.

Example 4.45. Evaluate
∫ ∞

0

√
x

1+x2 dx.

We consider the contour integral
∮

C

√
z

1+z2 dz.
The first thing we can see in this problem is the square root function in the

integrand. Being that there is a multivalued function, we locate the branch point
and determine where to draw the branch cut. In Figure 4.51 we show the contour
that we will use in this problem. Note that we picked the branch cut along the
positive x-axis.

x

y

CR

Cε

i

−i

Figure 4.51: An example of a contour
which accounts for a branch cut.

We take the contour C to be positively oriented, being careful to enclose the two
poles and to hug the branch cut. It consists of two circles. The outer circle CR is a
circle of radius R and the inner circle Cε will have a radius of ε. The sought-after
answer will be obtained by letting R → ∞ and ε → 0. On the large circle we
have that the integrand goes to zero fast enough as R → ∞. The integral around
the small circle vanishes as ε → 0. We can see this by parametrizing the circle as
z = εeiθ for θ ∈ [0, 2π] :∮

Cε

√
z

1 + z2 dz =
∫ 2π

0

√
εeiθ

1 + (εeiθ)2 iεeiθdθ

= iε3/2
∫ 2π

0

e3iθ/2

1 + (ε2e2iθ)
dθ. (4.68)

It should now be easy to see that as ε→ 0, this integral vanishes.
The integral above the branch cut is the one we are seeking,

∫ ∞
0

√
x

1+x2 dx. The
integral under the branch cut, where z = re2πi, is∫ √

z
1 + z2 dz =

∫ 0

∞

√
re2πi

1 + r2e4πi dr

=
∫ ∞

0

√
r

1 + r2 dr. (4.69)

We note that this is the same as that above the cut.
Up to this point, we have that the contour integral, as R→ ∞ and ε→ 0, is∮

C

√
z

1 + z2 dz = 2
∫ ∞

0

√
x

1 + x2 dx.
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In order to finish this problem, we need the residues at the two simple poles.

Res
[ √

z
1 + z2 ; z = i

]
=

√
i

2i
=

√
2

4
(1 + i),

Res
[ √

z
1 + z2 ; z = −i

]
=

√
−i
−2i

=

√
2

4
(1− i).

So,

2
∫ ∞

0

√
x

1 + x2 dx = 2πi

(√
2

4
(1 + i) +

√
2

4
(1− i)

)
= π
√

2.

Finally, we have the value of the integral that we were seeking,∫ ∞

0

√
x

1 + x2 dx =
π
√

2
2

.

Example 4.46. Compute
∫ ∞

a f (x) dx using contour integration involving loga-
rithms.4

4 This approach was originally published
in Neville, E. H., 1945, Indefinite integra-
tion by means of residues. The Mathemat-
ical Student, 13, 16-35, and discussed in
Duffy, D. G., Transform Methods for Solv-
ing Partial Differential Equations, 1994.

In this example, we will apply contour integration to the integral∮
C

f (z) ln(a− z) dz

for the contour shown in Figure 4.52.x

y

C2

C4
C1

C3

Figure 4.52: Contour needed to compute∮
C f (z) ln(a− z) dz.

We will assume that f (z) is single valued and vanishes as |z| → ∞. We will
choose the branch cut to span from the origin along the positive real axis. Employing
the Residue Theorem and breaking up the integrals over the pieces of the contour in
Figure 4.52, we have schematically that

2πi ∑ Res[ f (z) ln(a− z)] =
(∫

C1

+
∫

C2

+
∫

C3

+
∫

C4

)
f (z) ln(a− z) dz.

First of all, we assume that f (z) is well behaved at z = a and vanishes fast
enough as |z| = R → ∞. Then, the integrals over C2 and C4 will vanish. For
example, for the path C4, we let z = a + εeiθ , 0 < θ < 2π. Then,∫

C4

f (z) ln(a− z) dz. = lim
ε→0

∫ 0

2π
f (a + εeiθ) ln(εeiθ)iεeiθ dθ.

If f (a) is well behaved, then we only need to show that limε→0 ε ln ε = 0. This is
left to the reader.

Similarly, we consider the integral over C2 as R gets large,∫
C2

f (z) ln(a− z) dz = lim
R→∞

∫ 2π

0
f (Reiθ) ln(Reiθ)iReiθ dθ.

Thus, we need only require that

lim
R→∞

R ln R| f (Reiθ)| = 0.

Next, we consider the two straight line pieces. For C1, the integration along the
real axis occurs for z = x, so∫

C1

f (z) ln(a− z) dz =
∫ ∞

a
f (x) ln(a− x) dz.
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However, integration over C3 requires noting that we need the branch for the loga-
rithm such that ln z = ln(a− x) + 2πi. Then,∫

C3

f (z) ln(a− z) dz =
∫ a

∞
f (x)[ln(a− x) + 2πi] dz.

Combining these results, we have

2πi ∑ Res[ f (z) ln(a− z)] =
∫ ∞

a
f (x) ln(a− x) dz

+
∫ a

∞
f (x)[ln(a− x) + 2πi] dz.

= −2πi
∫ ∞

a
f (x) dz. (4.70)

Therefore, ∫ ∞

a
f (x) dx = −∑ Res[ f (z) ln(a− z)]. x

y

C

1
2- 1

2

Figure 4.53: Contour needed to compute∫ ∞
1

dx
4x2−1 .

Example 4.47. Compute
∫ ∞

1
dx

4x2−1 .
We can apply the last example to this case. We see from Figure 4.53 that the two

poles at z = ± 1
2 are inside contour C. So, we compute the residues of ln(1−z)

4z2−1 at
these poles and find that∫ ∞

1

dx
4x2 − 1

= −Res
[

ln(1− z)
4z2 − 1

;
1
2

]
− Res

[
ln(1− z)
4z2 − 1

;−1
2

]
= −

ln 1
2

4
+

ln 3
2

4
=

ln 3
4

. (4.71)

4.4.8 Appendix: Jordan’s Lemma

For completeness, we prove Jordan’s Lemma.

Theorem 4.10. If f (z) converges uniformly to zero as z→ ∞, then

lim
R→∞

∫
CR

f (z)eikz dz = 0,

where k > 0 and CR is the upper half of the circle |z| = R.

Proof. We consider the integral

IR =
∫

CR

f (z)eikz dz,

where k > 0 and CR is the upper half of the circle |z| = R in the complex
plane. Let z = Reiθ be a parametrization of CR. Then,

IR =
∫ π

0
f (Reiθ)eikR cos θ−aR sin θ iReiθ dθ.

Since
lim
|z|→∞

f (z) = 0, 0 ≤ arg z ≤ π,
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then for large |R|, | f (z)| < ε for some ε > 0. Then,

|IR| =

∣∣∣∣∫ π

0
f (Reiθ)eikR cos θ−aR sin θ iReiθ dθ

∣∣∣∣
≤

∫ π

0

∣∣∣ f (Reiθ)
∣∣∣ ∣∣∣eikR cos θ

∣∣∣ ∣∣∣e−aR sin θ
∣∣∣ ∣∣∣iReiθ

∣∣∣ dθ

≤ εR
∫ π

0
e−aR sin θ dθ

= 2εR
∫ π/2

0
e−aR sin θ dθ. (4.72)

0 π
2

π

0.5

1

1.5

θ

Figure 4.54: Plots of y = sin θ and y =
2
π θ to show where sin θ ≥ 2

π θ.

The resulting integral still cannot be computed, but we can get a bound
on it over the range θ ∈ [0, π/2]. Note from Figure 4.54 that

sin θ ≥ 2
π

θ, θ ∈ [0, π/2].

Therefore, we have

|IR| ≤ 2εR
∫ π/2

0
e−2aRθ/π dθ =

2εR
2aR/π

(1− e−aR).

For large R, we have

lim
R→∞

|IR| ≤
πε

a
.

So, as ε→ 0, the integral vanishes.

Problems

1. Write the following in standard form.

a. (4 + 5i)(2− 3i).

b. (1 + i)3.

c. 5+3i
1−i .

2. Write the following in polar form, z = reiθ .

a. i− 1.

b. −2i.

c.
√

3 + 3i.

3. Write the following in rectangular form, z = a + ib.

a. 4eiπ/6.

b.
√

2e5iπ/4.

c. (1− i)100.

4. Find all z such that z4 = 16i. Write the solutions in rectangular form,
z = a + ib, with no decimal approximation or trig functions.

5. Show that sin(x + iy) = sin x cosh y + i cos x sinh y using trigonometric
identities and the exponential forms of these functions.
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6. Find all z such that cos z = 2, or explain why there are none. You will
need to consider cos(x + iy) and equate real and imaginary parts of the
resulting expression similar to Problem 5.

7. Find the principal value of ii. Rewrite the base, i, as an exponential first.

8. Consider the circle |z− 1| = 1.

a. Rewrite the equation in rectangular coordinates by setting z =

x + iy.

b. Sketch the resulting circle using part a.

c. Consider the image of the circle under the mapping f (z) = z2,
given by |z2 − 1| = 1.

i. By inserting z = reiθ = r(cos θ + i sin θ), find the equation of the
image curve in polar coordinates.

ii. Sketch the image curve. You may need to refer to your Calculus
II text for polar plots. [Maple might help.]

9. Find the real and imaginary parts of the functions:

a. f (z) = z3.

b. f (z) = sinh(z).

c. f (z) = cos z.

10. Find the derivative of each function in Problem 9 when the derivative
exists. Otherwise, show that the derivative does not exist.

11. Let f (z) = u + iv be differentiable. Consider the vector field given by
F = vi+ uj. Show that the equations∇ · F = 0 and ∇× F = 0 are equivalent
to the Cauchy-Riemann Equations. [You will need to recall from multivari-
able calculus the del operator, ∇ = i ∂

∂x + j ∂
∂y + k ∂

∂z .]

12. What parametric curve is described by the function

γ(t) = (t− 3) + i(2t + 1),

0 ≤ t ≤ 2? [Hint: What would you do if you were instead considering the
parametric equations x = t− 3 and y = 2t + 1?]

13. Write the equation that describes the circle of radius 3 which is centered
at z = 2− i in (a) Cartesian form (in terms of x and y); (b) polar form (in
terms of θ and r); (c) complex form (in terms of z, r, and eiθ).

14. Consider the function u(x, y) = x3 − 3xy2.

a. Show that u(x, y) is harmonic; that is, ∇2u = 0.

b. Find its harmonic conjugate, v(x, y).

c. Find a differentiable function, f (z), for which u(x, y) is the real
part.
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d. Determine f ′(z) for the function in part c. [Use f ′(z) = ∂u
∂x + i ∂v

∂x
and rewrite your answer as a function of z.]

15. Evaluate the following integrals:

a.
∫

C z dz, where C is the parabola y = x2 from z = 0 to z = 1 + i.

b.
∫

C f (z) dz, where f (z) = 2z − z and C is the path from z = 0 to
z = 2 + i consisting of two line segments from z = 0 to z = 2 and
then z = 2 to z = 2 + i.

c.
∫

C
1

z2+4 dz for C the positively oriented circle, |z| = 2. [Hint: Parametrize
the circle as z = 2eiθ , multiply numerator and denominator by e−iθ ,
and put in trigonometric form.]

16. Let C be the positively oriented ellipse 3x2 + y2 = 9. Define

F(z0) =
∫

C

z2 + 2z
z− z0

dz.

Find F(2i) and F(2). [Hint: Sketch the ellipse in the complex plane. Use the
Cauchy Integral Theorem with an appropriate f (z), or Cauchy’s Theorem if
z0 is outside the contour.]

17. Show that ∫
C

dz
(z− 1− i)n+1 =

{
0, n 6= 0,

2πi, n = 0,

for C the boundary of the square 0 ≤ x ≤ 2, 0 ≤ y ≤ 2 taken counterclock-
wise. [Hint: Use the fact that contours can be deformed into simpler shapes
(like a circle) as long as the integrand is analytic in the region between them.
After picking a simpler contour, integrate using parametrization.]

18. Show that for g and h analytic functions at z0, with g(z0) 6= 0, h(z0) = 0,
and h′(z0) 6= 0,

Res
[

g(z)
h(z)

; z0

]
=

g(z0)

h′(z0)
.

19. For the following, determine if the given point is a removable singular-
ity, an essential singularity, or a pole (indicate its order).

a. 1−cos z
z2 , z = 0.

b. sin z
z2 , z = 0.

c. z2−1
(z−1)2 , z = 1.

d. ze1/z, z = 0.

e. cos π
z−π , z = π.

20. Find the Laurent series expansion for f (z) = sinh z
z3 about z = 0. [Hint:

You need to first do a MacLaurin series expansion for the hyperbolic sine.]

21. Find series representations for all indicated regions.

a. f (z) = z
z−1 , |z| < 1, |z| > 1.
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b. f (z) = 1
(z−i)(z+2) , |z| < 1, 1 < |z| < 2, |z| > 2. [Hint: Use partial

fractions to write this as a sum of two functions first.]

22. Find the residues at the given points:

a. 2z2+3z
z−1 at z = 1.

b. ln(1+2z)
z at z = 0.

c. cos z
(2z−π)3 at z = π

2 .

23. Consider the integral
∫ 2π

0
dθ

5−4 cos θ .

a. Evaluate this integral by making the substitution 2 cos θ = z + 1
z ,

z = eiθ , and using complex integration methods.

b. In the 1800’s Weierstrass introduced a method for computing in-
tegrals involving rational functions of sine and cosine. One makes
the substitution t = tan θ

2 and converts the integrand into a ratio-
nal function of t. Note that the integration around the unit circle
corresponds to t ∈ (−∞, ∞).

i. Show that

sin θ =
2t

1 + t2 , cos θ =
1− t2

1 + t2 .

ii. Show that

dθ =
2dt

1 + t2 .

iii. Use the Weierstrass substitution to compute the above integral.

24. Do the following integrals:

a. ∮
|z−i|=3

ez

z2 + π2 dz.

b. ∮
|z−i|=3

z2 − 3z + 4
z2 − 4z + 3

dz.

c. ∫ ∞

−∞

sin x
x2 + 4

dx.

[Hint: This is Im
∫ ∞
−∞

eix

x2+4 dx.]

25. Evaluate the integral
∫ ∞

0
(ln x)2

1+x2 dx.
[Hint: Replace x with z = et and use the rectangular contour in Figure

4.55 with R→ ∞.]

x

y

R

R + πi−R + πi

−R

Figure 4.55: Rectangular contour for
Problem 25.

26. Do the following integrals for fun!

a. For C the boundary of the square |x| ≤ 2, |y| ≤ 2,∮
C

dz
z(z− 1)(z− 3)2 .
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b. ∫ π

0

sin2 θ

13− 12 cos θ
dθ.

c. ∫ ∞

−∞

dx
x2 + 5x + 6

.

d. ∫ ∞

0

cos πx
1− 9x2 dx.

e. ∫ ∞

−∞

dx
(x2 + 9)(1− x)2 .

f. ∫ ∞

0

√
x

(1 + x)2 dx.



5
Fourier and Laplace Transforms

“There is no branch of mathematics, however abstract, which may not some day be
applied to phenomena of the real world.”, Nikolai Lobatchevsky (1792-1856)

5.1 Introduction

In this chapter we turn to the study of Fourier transforms,
which provide integral representations of functions defined on the entire
real line. Such functions can represent analog signals. Recall that analog
signals are continuous signals which are sums over a continuous set of fre-
quencies. Our starting point will be to rewrite Fourier trigonometric series
as Fourier exponential series. The sums over discrete frequencies will lead
to a sum (integral) over continuous frequencies. The resulting integrals will
be complex integrals, which can be evaluated using contour methods. We
will investigate the properties of these Fourier transforms and get prepared
to ask how the analog signal representations are related to the Fourier se-
ries expansions over discrete frequencies which we had seen in Chapter
2. Fourier series represented functions which were defined over finite do-
mains such as x ∈ [0, L]. Our explorations will lead us into a discussion of
the sampling of signals in the next chapter.

We will also discuss a related integral transform, the Laplace transform. In this chapter we will explore the use
of integral transforms. Given a function
f (x), we define an integral transform to
a new function F(k) as

F(k) =
∫ b

a
f (x)K(x, k) dx.

Here K(x, k) is called the kernel of the
transform. We will concentrate specifi-
cally on Fourier transforms,

f̂ (k) =
∫ ∞

−∞
f (x)eikx dx,

and Laplace transforms

F(s) =
∫ ∞

0
f (t)e−st dt.

Laplace transforms are useful in solving initial value problems in differen-
tial equations and can be used to relate the input to the output of a linear
system. Both transforms provide an introduction to a more general theory
of transforms, which are used to transform specific problems to simpler
ones.

In Figure 5.1 we summarize the transform scheme for solving an initial
value problem. One can solve the differential equation directly, evolving the
initial condition y(0) into the solution y(t) at a later time.

However, the transform method can be used to solve the problem indi-
rectly. Starting with the differential equation and an initial condition, one
computes its Transform (T) using

Y(s) =
∫ ∞

0
y(t)e−st dt.
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Figure 5.1: Schematic of using trans-
forms to solve a linear ordinary differ-
ential equation.

ODE, y(0)

solve

y(t)

T

IT

Alg Eqn

solve

Y(s)

Applying the transform to the differential equation, one obtains a simpler
(algebraic) equation satisfied by Y(s), which is simpler to solve than the
original differential equation. Once Y(s) has been found, then one applies
the Inverse Transform (IT) to Y(s) in order to get the desired solution, y(t).
We will see how all of this plays out by the end of the chapter.

We will begin by introducing the Fourier transform. First, we need to see
how one can rewrite a trigonometric Fourier series as complex exponential
series. Then we can extend the new representation of such series to ana-
log signals, which typically have infinite periods. In later chapters we will
highlight the connection between these analog signals and their associated
digital signals.

5.2 Complex Exponential Fourier Series

Before deriving the Fourier transform, we will need to rewrite
the trigonometric Fourier series representation as a complex exponential
Fourier series. We first recall from Chapter 2 the trigonometric Fourier se-
ries representation of a function defined on [−π, π] with period 2π. The
Fourier series is given by

f (x) ∼ a0

2
+

∞

∑
n=1

(an cos nx + bn sin nx) , (5.1)

where the Fourier coefficients were found as

an =
1
π

∫ π

−π
f (x) cos nx dx, n = 0, 1, . . . ,

bn =
1
π

∫ π

−π
f (x) sin nx dx, n = 1, 2, . . . . (5.2)

In order to derive the exponential Fourier series, we replace the trigono-
metric functions with exponential functions and collect like exponential
terms. This gives

f (x) ∼ a0

2
+

∞

∑
n=1

[
an

(
einx + e−inx

2

)
+ bn

(
einx − e−inx

2i

)]
=

a0

2
+

∞

∑
n=1

(
an − ibn

2

)
einx +

∞

∑
n=1

(
an + ibn

2

)
e−inx. (5.3)
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The coefficients of the complex exponentials can be rewritten by defining

cn =
1
2
(an + ibn), n = 1, 2, . . . . (5.4)

This implies that

c̄n =
1
2
(an − ibn), n = 1, 2, . . . . (5.5)

So far, the representation is rewritten as

f (x) ∼ a0

2
+

∞

∑
n=1

c̄neinx +
∞

∑
n=1

cne−inx.

Re-indexing the first sum, by introducing k = −n, we can write

f (x) ∼ a0

2
+
−∞

∑
k=−1

c̄−ke−ikx +
∞

∑
n=1

cne−inx.

Since k is a dummy index, we replace it with a new n as

f (x) ∼ a0

2
+
−∞

∑
n=−1

c̄−ne−inx +
∞

∑
n=1

cne−inx.

We can now combine all the terms into a simple sum. We first define cn

for negative n’s by
cn = c̄−n, n = −1,−2, . . . .

Letting c0 = a0
2 , we can write the complex exponential Fourier series repre-

sentation as

f (x) ∼
∞

∑
n=−∞

cne−inx, (5.6)

where

cn =
1
2
(an + ibn), n = 1, 2, . . . ,

cn =
1
2
(a−n − ib−n), n = −1,−2, . . . ,

c0 =
a0

2
. (5.7)

Given such a representation, we would like to write out the integral forms
of the coefficients, cn. So, we replace the an’s and bn’s with their integral
representations and replace the trigonometric functions with complex expo-
nential functions. Doing this, we have for n = 1, 2, . . . ,

cn =
1
2
(an + ibn)

=
1
2

[
1
π

∫ π

−π
f (x) cos nx dx +

i
π

∫ π

−π
f (x) sin nx dx

]
=

1
2π

∫ π

−π
f (x)

(
einx + e−inx

2

)
dx +

i
2π

∫ π

−π
f (x)

(
einx − e−inx

2i

)
dx

=
1

2π

∫ π

−π
f (x)einx dx. (5.8)
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It is a simple matter to determine the cn’s for other values of n. For n = 0,
we have that

c0 =
a0

2
=

1
2π

∫ π

−π
f (x) dx.

For n = −1,−2, . . ., we find that

cn = c̄n =
1

2π

∫ π

−π
f (x)e−inx dx =

1
2π

∫ π

−π
f (x)einx dx.

Therefore, we have obtained the complex exponential Fourier series coeffi-
cients for all n. Now we can define the complex exponential Fourier series
for the function f (x) defined on [−π, π] as shown below.

Complex Exponential Series for f (x) Defined on [−π, π]

f (x) ∼
∞

∑
n=−∞

cne−inx, (5.9)

cn =
1

2π

∫ π

−π
f (x)einx dx. (5.10)

We can easily extend the above analysis to other intervals. For example,
for x ∈ [−L, L] the Fourier trigonometric series is

f (x) ∼ a0

2
+

∞

∑
n=1

(
an cos

nπx
L

+ bn sin
nπx

L

)
with Fourier coefficients

an =
1
L

∫ L

−L
f (x) cos

nπx
L

dx, n = 0, 1, . . . ,

bn =
1
L

∫ L

−L
f (x) sin

nπx
L

dx, n = 1, 2, . . . .

This can be rewritten as an exponential Fourier series of the form

Complex Exponential Series for f (x) Defined on [−L, L]

f (x) ∼
∞

∑
n=−∞

cne−inπx/L, (5.11)

cn =
1

2L

∫ L

−L
f (x)einπx/L dx. (5.12)

We can now use this complex exponential Fourier series for function de-
fined on [−L, L] to derive the Fourier transform by letting L get large. This
will lead to a sum over a continuous set of frequencies, as opposed to the
sum over discrete frequencies, which Fourier series represent.

5.3 Exponential Fourier Transform

Both the trigonometric and complex exponential Fourier series
provide us with representations of a class of functions of finite period in
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terms of sums over a discrete set of frequencies. In particular, for functions
defined on x ∈ [−L, L], the period of the Fourier series representation is
2L. We can write the arguments in the exponentials, e−inπx/L, in terms of
the angular frequency, ωn = nπ/L, as e−iωnx. We note that the frequencies,
νn, are then defined through ωn = 2πνn = nπ

L . Therefore, the complex
exponential series is seen to be a sum over a discrete, or countable, set of
frequencies.

We would now like to extend the finite interval to an infinite interval,
x ∈ (−∞, ∞), and to extend the discrete set of (angular) frequencies to a
continuous range of frequencies, ω ∈ (−∞, ∞). One can do this rigorously.
It amounts to letting L and n get large and keeping n

L fixed.
We first define ∆ω = π

L , so that ωn = n∆ω. Inserting the Fourier coeffi-
cients (5.12) into Equation (5.11), we have

f (x) ∼
∞

∑
n=−∞

cne−inπx/L

=
∞

∑
n=−∞

(
1

2L

∫ L

−L
f (ξ)einπξ/L dξ

)
e−inπx/L

=
∞

∑
n=−∞

(
∆ω

2π

∫ L

−L
f (ξ)eiωnξ dξ

)
e−iωnx. (5.13)

Now, we let L get large, so that ∆ω becomes small and ωn approaches
the angular frequency ω. Then,

f (x) ∼ lim
∆ω→0,L→∞

1
2π

∞

∑
n=−∞

(∫ L

−L
f (ξ)eiωnξ dξ

)
e−iωnx∆ω

=
1

2π

∫ ∞

−∞

(∫ ∞

−∞
f (ξ)eiωξ dξ

)
e−iωx dω. (5.14)

Looking at this last result, we formally arrive at the definition of the Definitions of the Fourier transform and
the inverse Fourier transform.Fourier transform. It is embodied in the inner integral and can be written

as
F[ f ] = f̂ (ω) =

∫ ∞

−∞
f (x)eiωx dx. (5.15)

This is a generalization of the Fourier coefficients (5.12).
Once we know the Fourier transform, f̂ (ω), we can reconstruct the orig-

inal function, f (x), using the inverse Fourier transform, which is given by
the outer integration,

F−1[ f̂ ] = f (x) =
1

2π

∫ ∞

−∞
f̂ (ω)e−iωx dω. (5.16)

We note that it can be proven that the Fourier transform exists when f (x) is
absolutely integrable, that is,∫ ∞

−∞
| f (x)| dx < ∞.

Such functions are said to be L1.
We combine these results below, defining the Fourier and inverse Fourier

transforms and indicating that they are inverse operations of each other.
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We will then prove the first of the equations, Equation (5.19). [The second
equation, Equation (5.20), follows in a similar way.]

The Fourier transform and inverse Fourier transform are inverse
operations. Defining the Fourier transform as

F[ f ] = f̂ (ω) =
∫ ∞

−∞
f (x)eiωx dx. (5.17)

and the inverse Fourier transform as

F−1[ f̂ ] = f (x) =
1

2π

∫ ∞

−∞
f̂ (ω)e−iωx dω, (5.18)

then
F−1[F[ f ]] = f (x) (5.19)

and
F[F−1[ f̂ ]] = f̂ (ω). (5.20)

Proof. The proof is carried out by inserting the definition of the Fourier
transform, Equation (5.17), into the inverse transform definition, Equation
(5.18), and then interchanging the orders of integration. Thus, we have

F−1[F[ f ]] =
1

2π

∫ ∞

−∞
F[ f ]e−iωx dω

=
1

2π

∫ ∞

−∞

[∫ ∞

−∞
f (ξ)eiωξ dξ

]
e−iωx dω

=
1

2π

∫ ∞

−∞

∫ ∞

−∞
f (ξ)eiω(ξ−x) dξdω

=
1

2π

∫ ∞

−∞

[∫ ∞

−∞
eiω(ξ−x) dω

]
f (ξ) dξ. (5.21)

In order to complete the proof, we need to evaluate the inside integral,
which does not depend upon f (x). This is an improper integral, so we first
define

DΩ(x) =
∫ Ω

−Ω
eiωx dω

and compute the inner integral as∫ ∞

−∞
eiω(ξ−x) dω = lim

Ω→∞
DΩ(ξ − x).

x

y

−5 5

−2

8

Figure 5.2: A plot of the function DΩ(x)
for Ω = 4.

We can compute DΩ(x). A simple evaluation yields

DΩ(x) =
∫ Ω

−Ω
eiωx dω

=
eiωx

ix

∣∣∣∣Ω
−Ω

=
eixΩ − e−ixΩ

2ix

=
2 sin xΩ

x
. (5.22)
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A plot of this function is given in Figure 5.2 for Ω = 4. For large Ω, the
peak grows and the values of DΩ(x) for x 6= 0 tend to zero as shown in
Figure 5.3. In fact, as x approaches 0, DΩ(x) approaches 2Ω. For x 6= 0, the
DΩ(x) function tends to zero.

We further note that

lim
Ω→∞

DΩ(x) = 0, x 6= 0,

and limΩ→∞ DΩ(x) is infinite at x = 0. However, the area is constant for
each Ω. In fact, ∫ ∞

−∞
DΩ(x) dx = 2π.

We can show this by recalling the computation in Example 4.42,∫ ∞

−∞

sin x
x

dx = π.

Then,

x

y

−3 3

−20

80

Figure 5.3: A plot of the function DΩ(x)
for Ω = 40.

∫ ∞

−∞
DΩ(x) dx =

∫ ∞

−∞

2 sin xΩ
x

dx

=
∫ ∞

−∞
2

sin y
y

dy

= 2π. (5.23)

x1
2- 1

2
1
4- 1

4
1
8- 1

8

1

2

4

Figure 5.4: A plot of the functions fn(x)
for n = 2, 4, 8.

Another way to look at DΩ(x) is to consider the sequence of functions
fn(x) = sin nx

πx , n = 1, 2, . . . . Thus we have shown that this sequence of
functions satisfies the two properties,

lim
n→∞

fn(x) = 0, x 6= 0,

∫ ∞

−∞
fn(x) dx = 1.

This is a key representation of such generalized functions. The limiting
value vanishes at all but one point, but the area is finite.

Such behavior can be seen for the limit of other sequences of functions.
For example, consider the sequence of functions

fn(x) =

{
0, |x| > 1

n ,
n
2 , |x| ≤ 1

n .

This is a sequence of functions as shown in Figure 5.4. As n → ∞, we find
the limit is zero for x 6= 0 and is infinite for x = 0. However, the area under
each member of the sequences is one. Thus, the limiting function is zero at
most points but has area one.

The limit is not really a function. It is a generalized function. It is called
the Dirac delta function, which is defined by

1. δ(x) = 0 for x 6= 0.

2.
∫ ∞
−∞ δ(x) dx = 1.
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Before returning to the proof that the inverse Fourier transform of the
Fourier transform is the identity, we state one more property of the Dirac
delta function, which we will prove in the next section. Namely, we will
show that ∫ ∞

−∞
δ(x− a) f (x) dx = f (a).

Returning to the proof, we now have that∫ ∞

−∞
eiω(ξ−x) dω = lim

Ω→∞
DΩ(ξ − x) = 2πδ(ξ − x).

Inserting this into Equation (5.21), we have

F−1[F[ f ]] =
1

2π

∫ ∞

−∞

[∫ ∞

−∞
eiω(ξ−x) dω

]
f (ξ) dξ

=
1

2π

∫ ∞

−∞
2πδ(ξ − x) f (ξ) dξ

= f (x). (5.24)

Thus, we have proven that the inverse transform of the Fourier transform of
f is f .

5.4 The Dirac Delta Function

In the last section we introduced the Dirac delta function, δ(x).P. A. M. Dirac (1902 - 1984) introduced
the δ function in his book, The Principles
of Quantum Mechanics, 4th Ed., Oxford
University Press, 1958, originally pub-
lished in 1930, as part of his orthogonal-
ity statement for a basis of functions in
a Hilbert space, < ξ ′|ξ ′′ >= cδ(ξ ′ − ξ ′′)
in the same way we introduced discrete
orthogonality using the Kronecker delta.

As noted above, this is one example of what is known as a generalized
function, or a distribution. Dirac had introduced this function in the 1930’s
in his study of quantum mechanics as a useful tool. It was later studied
in a general theory of distributions and found to be more than a simple
tool used by physicists. The Dirac delta function, as any distribution, only
makes sense under an integral.

Two properties were used in the last section. First, one has that the area
under the delta function is one:∫ ∞

−∞
δ(x) dx = 1.

Integration over more general intervals gives

∫ b

a
δ(x) dx =

{
1, 0 ∈ [a, b],
0, 0 6∈ [a, b].

(5.25)

The other property that was used was the sifting property:∫ ∞

−∞
δ(x− a) f (x) dx = f (a).

This can be seen by noting that the delta function is zero everywhere except
at x = a. Therefore, the integrand is zero everywhere and the only contribu-
tion from f (x) will be from x = a. So, we can replace f (x) with f (a) under
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the integral. Since f (a) is a constant, we have that∫ ∞

−∞
δ(x− a) f (x) dx =

∫ ∞

−∞
δ(x− a) f (a) dx

= f (a)
∫ ∞

−∞
δ(x− a) dx = f (a). (5.26)

Properties of the Dirac delta function:∫ ∞

−∞
δ(x− a) f (x) dx = f (a).

∫ ∞

−∞
δ(ax) dx =

1
|a|

∫ ∞

−∞
δ(y) dy.

∫ ∞

−∞
δ( f (x)) dx =

∫ ∞

−∞

n

∑
j=1

δ(x− xj)

| f ′(xj)|
dx.

(For n simple roots.)
These and other properties are often

written outside the integral:

δ(ax) =
1
|a| δ(x).

δ(−x) = δ(x).

δ((x− a)(x− b)) =
[δ(x− a) + δ(x− a)]

|a− b| .

δ( f (x)) = ∑
j

δ(x− xj)

| f ′(xj)|
,

for f (xj) = 0, f ′(xj) 6= 0.

Another property results from using a scaled argument, ax. In this case,
we show that

δ(ax) = |a|−1δ(x). (5.27)

As usual, this only has meaning under an integral sign. So, we place δ(ax)
inside an integral and make a substitution y = ax:∫ ∞

−∞
δ(ax) dx = lim

L→∞

∫ L

−L
δ(ax) dx

= lim
L→∞

1
a

∫ aL

−aL
δ(y) dy. (5.28)

If a > 0 then ∫ ∞

−∞
δ(ax) dx =

1
a

∫ ∞

−∞
δ(y) dy.

However, if a < 0 then∫ ∞

−∞
δ(ax) dx =

1
a

∫ −∞

∞
δ(y) dy = −1

a

∫ ∞

−∞
δ(y) dy.

The overall difference in a multiplicative minus sign can be absorbed into
one expression by changing the factor 1/a to 1/|a|. Thus,∫ ∞

−∞
δ(ax) dx =

1
|a|

∫ ∞

−∞
δ(y) dy. (5.29)

Example 5.1. Evaluate
∫ ∞
−∞(5x + 1)δ(4(x − 2)) dx. This is a straight-forward

integration:∫ ∞

−∞
(5x + 1)δ(4(x− 2)) dx =

1
4

∫ ∞

−∞
(5x + 1)δ(x− 2) dx =

11
4

.

The first step is to write δ(4(x− 2)) = 1
4 δ(x− 2). Then, the final evaluation is

given by
1
4

∫ ∞

−∞
(5x + 1)δ(x− 2) dx =

1
4
(5(2) + 1) =

11
4

.

Even more general than δ(ax) is the delta function δ( f (x)). The integral
of δ( f (x)) can be evaluated, depending upon the number of zeros of f (x).
If there is only one zero, f (x1) = 0, then one has that∫ ∞

−∞
δ( f (x)) dx =

∫ ∞

−∞

1
| f ′(x1)|

δ(x− x1) dx.

This can be proven using the substitution y = f (x) and is left as an exercise
for the reader. This result is often written as

δ( f (x)) =
1

| f ′(x1)|
δ(x− x1),

again keeping in mind that this only has meaning when placed under an
integral.
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Example 5.2. Evaluate
∫ ∞
−∞ δ(3x− 2)x2 dx.

This is not a simple δ(x− a). So, we need to find the zeros of f (x) = 3x− 2.
There is only one, x = 2

3 . Also, | f ′(x)| = 3. Therefore, we have

∫ ∞

−∞
δ(3x− 2)x2 dx =

∫ ∞

−∞

1
3

δ(x− 2
3
)x2 dx =

1
3

(
2
3

)2
=

4
27

.

Note that this integral can be evaluated the long way using the substitution
y = 3x− 2. Then, dy = 3 dx and x = (y + 2)/3. This gives

∫ ∞

−∞
δ(3x− 2)x2 dx =

1
3

∫ ∞

−∞
δ(y)

(
y + 2

3

)2
dy =

1
3

(
4
9

)
=

4
27

.

More generally, one can show that when f (xj) = 0 and f ′(xj) 6= 0 for
j = 1, 2, . . . , n, (i.e., when one has n simple zeros), then

δ( f (x)) =
n

∑
j=1

1
| f ′(xj)|

δ(x− xj).

Example 5.3. Evaluate
∫ 2π

0 cos x δ(x2 − π2) dx.
In this case, the argument of the delta function has two simple roots. Namely,

f (x) = x2 − π2 = 0 when x = ±π. Furthermore, f ′(x) = 2x. Therefore,
| f ′(±π)| = 2π. This gives

δ(x2 − π2) =
1

2π
[δ(x− π) + δ(x + π)].

Inserting this expression into the integral and noting that x = −π is not in the
integration interval, we have

∫ 2π

0
cos x δ(x2 − π2) dx =

1
2π

∫ 2π

0
cos x [δ(x− π) + δ(x + π)] dx

=
1

2π
cos π = − 1

2π
. (5.30)

H(x)

x

1

0

Figure 5.5: The Heaviside step function,
H(x).

Example 5.4. Show H′(x) = δ(x), where the Heaviside function (or, step func-
tion) is defined as

H(x) =

{
0, x < 0
1, x > 0

and is shown in Figure 5.5.
Looking at the plot, it is easy to see that H′(x) = 0 for x 6= 0. In order to check

that this gives the delta function, we need to compute the area integral. Therefore,
we have ∫ ∞

−∞
H′(x) dx = H(x)

∣∣∣∞
−∞

= 1− 0 = 1.

Thus, H′(x) satisfies the two properties of the Dirac delta function.
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5.5 Properties of the Fourier Transform

We now return to the Fourier transform. Before actually comput-
ing the Fourier transform of some functions, we prove a few of the proper-
ties of the Fourier transform.

First we note that there are several forms that one may encounter for the
Fourier transform. In applications, functions can either be functions of time,
f (t), or space, f (x). The corresponding Fourier transforms are then written
as

f̂ (ω) =
∫ ∞

−∞
f (t)eiωt dt, (5.31)

or

f̂ (k) =
∫ ∞

−∞
f (x)eikx dx. (5.32)

ω is called the angular frequency and is related to the frequency ν by ω =

2πν. The units of frequency are typically given in Hertz (Hz). Sometimes
the frequency is denoted by f when there is no confusion. k is called the
wavenumber. It has units of inverse length and is related to the wavelength,
λ, by k = 2π

λ .
We explore a few basic properties of the Fourier transform and use them

in examples in the next section.

1. Linearity: For any functions f (x) and g(x) for which the Fourier
transform exists and constant a, we have

F[ f + g] = F[ f ] + F[g]

and

F[a f ] = aF[ f ].

These simply follow from the properties of integration and establish
the linearity of the Fourier transform.

2. Transform of a Derivative: F
[

d f
dx

]
= −ik f̂ (k)

Here we compute the Fourier transform (5.17) of the derivative by
inserting the derivative in the Fourier integral and using integration
by parts:

F
[

d f
dx

]
=

∫ ∞

−∞

d f
dx

eikx dx

= lim
L→∞

[
f (x)eikx

]L

−L
− ik

∫ ∞

−∞
f (x)eikx dx.

(5.33)

The limit will vanish if we assume that limx→±∞ f (x) = 0. This last
integral is recognized as the Fourier transform of f , proving the given
property.
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3. Higher Order Derivatives: F
[

dn f
dxn

]
= (−ik)n f̂ (k)

The proof of this property follows from the last result, or doing several
integration by parts. We will consider the case when n = 2. Noting
that the second derivative is the derivative of f ′(x) and applying the
last result, we have

F
[

d2 f
dx2

]
= F

[
d

dx
f ′
]

= −ikF
[

d f
dx

]
= (−ik)2 f̂ (k). (5.34)

This result will be true if

lim
x→±∞

f (x) = 0 and lim
x→±∞

f ′(x) = 0.

The generalization to the transform of the nth derivative easily fol-
lows.

4. Multiplication by x: F [x f (x)] = −i d
dk f̂ (k)

This property can be shown by using the fact that d
dk eikx = ixeikx and

the ability to differentiate an integral with respect to a parameter.

F[x f (x)] =
∫ ∞

−∞
x f (x)eikx dx

=
∫ ∞

−∞
f (x)

d
dk

(
1
i

eikx
)

dx

= −i
d
dk

∫ ∞

−∞
f (x)eikx dx

= −i
d
dk

f̂ (k). (5.35)

This result can be generalized to F [xn f (x)] as an exercise.

5. Shifting Properties: For constant a, we have the following shifting
properties:These are the first and second shift-

ing properties, or First and Second Shift
Theorems. f (x− a)↔ eika f̂ (k), (5.36)

f (x)e−iax ↔ f̂ (k− a). (5.37)

Here we have denoted the Fourier transform pairs using a double
arrow as f (x)↔ f̂ (k). These are easily proved by inserting the desired
forms into the definition of the Fourier transform (5.17), or inverse
Fourier transform (5.18). The first shift property (5.36) is shown by
the following argument. We evaluate the Fourier transform:

F[ f (x− a)] =
∫ ∞

−∞
f (x− a)eikx dx.

Now perform the substitution y = x− a. Then,

F[ f (x− a)] =
∫ ∞

−∞
f (y)eik(y+a) dy

= eika
∫ ∞

−∞
f (y)eiky dy

= eika f̂ (k). (5.38)
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The second shift property (5.37) follows in a similar way.

6. Convolution of Functions: We define the convolution of two func-
tions f (x) and g(x) as

( f ∗ g)(x) =
∫ ∞

−∞
f (t)g(x− t) dx. (5.39)

Then, the Fourier transform of the convolution is the product of the
Fourier transforms of the individual functions:

F[ f ∗ g] = f̂ (k)ĝ(k). (5.40)

We will return to the proof of this property in Section 5.6.

5.5.1 Fourier Transform Examples

In this section we will compute the Fourier transforms of several func-
tions.

Example 5.5. Find the Fourier transform of a Gaussian, f (x) = e−ax2/2.
x

e−ax2/2

Figure 5.6: Plots of the Gaussian func-
tion f (x) = e−ax2/2 for a = 1, 2, 3.This function, shown in Figure 5.6, is called the Gaussian function. It has many

applications in areas such as quantum mechanics, molecular theory, probability, and
heat diffusion. We will compute the Fourier transform of this function and show
that the Fourier transform of a Gaussian is a Gaussian. In the derivation, we will
introduce classic techniques for computing such integrals.

We begin by applying the definition of the Fourier transform,

f̂ (k) =
∫ ∞

−∞
f (x)eikx dx =

∫ ∞

−∞
e−ax2/2+ikx dx. (5.41)

The first step in computing this integral is to complete the square in the argument
of the exponential. Our goal is to rewrite this integral so that a simple substitution
will lead to a classic integral of the form

∫ ∞
−∞ eβy2

dy, which we can integrate. The
completion of the square follows as usual:

− a
2

x2 + ikx = − a
2

[
x2 − 2ik

a
x
]

= − a
2

[
x2 − 2ik

a
x +

(
− ik

a

)2
−
(
− ik

a

)2
]

= − a
2

(
x− ik

a

)2
− k2

2a
. (5.42)

We now put this expression into the integral and make the substitutions y =

x− ik
a and β = a

2 .

f̂ (k) =
∫ ∞

−∞
e−ax2/2+ikx dx

= e−
k2
2a

∫ ∞

−∞
e−

a
2 (x− ik

a )
2

dx

= e−
k2
2a

∫ ∞− ik
a

−∞− ik
a

e−βy2
dy. (5.43)
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One would be tempted to absorb the − ik
a terms in the limits of integration.

However, we know from our previous study that the integration takes place over a
contour in the complex plane as shown in Figure 5.7.

x

y

z = x− ik
a

Figure 5.7: Simple horizontal contour.

In this case, we can deform this horizontal contour to a contour along the real
axis since we will not cross any singularities of the integrand. So, we now safely
write

f̂ (k) = e−
k2
2a

∫ ∞

−∞
e−βy2

dy.

The resulting integral is a classic integral and can be performed using a standard
trick. Define I by1

1 Here we show∫ ∞

−∞
e−βy2

dy =

√
π

β
.

Note that we solved the β = 1 case in
Example 3.14, so a simple variable trans-
formation z =

√
βy is all that is needed

to get the answer. However, it cannot
hurt to see this classic derivation again.

I =
∫ ∞

−∞
e−βy2

dy.

Then,
I2 =

∫ ∞

−∞
e−βy2

dy
∫ ∞

−∞
e−βx2

dx.

Note that we needed to change the integration variable so that we can write this
product as a double integral:

I2 =
∫ ∞

−∞

∫ ∞

−∞
e−β(x2+y2) dxdy.

This is an integral over the entire xy-plane. We now transform to polar coordinates
to obtain

I2 =
∫ 2π

0

∫ ∞

0
e−βr2

rdrdθ

= 2π
∫ ∞

0
e−βr2

rdr

= −π

β

[
e−βr2

]∞

0
=

π

β
. (5.44)

The final result is obtained by taking the square root, yielding

I =
√

π

β
.

We can now insert this result to give the Fourier transform of the Gaussian
function:

f̂ (k) =

√
2π

a
e−k2/2a. (5.45)

Therefore, we have shown that the Fourier transform of a Gaussian is a Gaussian.The Fourier transform of a Gaussian is a
Gaussian.

Example 5.6. Find the Fourier transform of the box, or gate, function,

f (x) =

{
b, |x| ≤ a,
0, |x| > a.

y

x

b

a−a

Figure 5.8: A plot of the box function in
Example 5.6.

This function is called the box function, or gate function. It is shown in Figure
5.8. The Fourier transform of the box function is relatively easy to compute. It is
given by

f̂ (k) =
∫ ∞

−∞
f (x)eikx dx
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=
∫ a

−a
beikx dx

=
b
ik

eikx
∣∣∣a
−a

=
2b
k

sin ka. (5.46)

We can rewrite this as

f̂ (k) = 2ab
sin ka

ka
≡ 2ab sinc ka.

Here we introduced the sinc function,

sinc x =
sin x

x
.

A plot of this function is shown in Figure 5.9. This function appears often in signal
analysis and it plays a role in the study of diffraction.

x

y

−20 −10 10 20

−0.5

0.5

1

Figure 5.9: A plot of the Fourier trans-
form of the box function in Example 5.6.
This is the general shape of the sinc func-
tion.

We will now consider special limiting values for the box function and its trans-
form. This will lead us to the Uncertainty Principle for signals, connecting the
relationship between the localization properties of a signal and its transform.

1. a→ ∞ and b fixed.

In this case, as a gets large, the box function approaches the constant function
f (x) = b. At the same time, we see that the Fourier transform approaches
a Dirac delta function. We had seen this function earlier when we first de-
fined the Dirac delta function. Compare Figure 5.9 with Figure 5.2. In fact,
f̂ (k) = bDa(k). [Recall the definition of DΩ(x) in Equation (5.22).] So,
in the limit, we obtain f̂ (k) = 2πbδ(k). This limit implies the fact that the
Fourier transform of f (x) = 1 is f̂ (k) = 2πδ(k). As the width of the box
becomes wider, the Fourier transform becomes more localized. In fact, we
have arrived at the important result that

∫ ∞

−∞
eikx dx = 2πδ(k).∫ ∞

−∞
eikx dx = 2πδ(k). (5.47)

2. b→ ∞, a→ 0, and 2ab = 1.
In this case, the box narrows and becomes steeper while maintaining a

constant area of one. This is the way we had found a representation of the
Dirac delta function previously. The Fourier transform approaches a constant
in this limit. As a approaches zero, the sinc function approaches one, leaving
f̂ (k) → 2ab = 1. Thus, the Fourier transform of the Dirac delta function is
one. Namely, we have

∫ ∞

−∞
δ(x)eikx dx = 1. (5.48)

In this case, we have that the more localized the function f (x) is, the
more spread out the Fourier transform, f̂ (k), is. We will summarize these
notions in the next item by relating the widths of the function and its Fourier
transform.
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3. The Uncertainty Principle: ∆x∆k = 4π.
The widths of the box function and its Fourier transform are related, as

we have seen in the last two limiting cases. It is natural to define the width,
∆x, of the box function as

∆x = 2a.

The width of the Fourier transform is a little trickier. This function actually
extends along the entire k-axis. However, as f̂ (k) became more localized, the
central peak in Figure 5.9 became narrower. So, we define the width of this
function, ∆k as the distance between the first zeros on either side of the main
lobe as shown in Figure 5.10. This gives

∆k =
2π

a
.

x

y
2ab

π

a
−π

a

Figure 5.10: The width of the function
2ab sin ka

ka is defined as the distance be-
tween the smallest magnitude zeros.

Combining these two relations, we find that

∆x∆k = 4π.

Thus, the more localized a signal, the less localized its transform and vice
versa. This notion is referred to as the Uncertainty Principle. For general
signals, one needs to define the effective widths more carefully, but the main
idea holds:

∆x∆k ≥ c > 0.

More formally, the Uncertainty Principle
for signals is about the relation between
duration and bandwidth, which are de-
fined by ∆t = ‖t f ‖2

‖ f ‖2
and ∆ω = ‖ω f̂ ‖2

‖ f̂ ‖2
, re-

spectively, where ‖ f ‖2 =
∫ ∞
−∞ | f (t)|

2 dt
and ‖ f̂ ‖2 = 1

2π

∫ ∞
−∞ | f̂ (ω)|2 dω. Under

appropriate conditions, one can prove
that ∆t∆ω ≥ 1

2 . Equality holds for Gaus-
sian signals. Werner Heisenberg (1901 -
1976) introduced the Uncertainty Princi-
ple into quantum physics in 1926, relat-
ing uncertainties in the position (∆x) and
momentum (∆px) of particles. In this
case, ∆x∆px ≥ 1

2 h̄. Here, the uncertain-
ties are defined as the positive square
roots of the quantum mechanical vari-
ances of the position and momentum.

We now turn to other examples of Fourier transforms.

Example 5.7. Find the Fourier transform of f (x) =

{
e−ax, x ≥ 0

0, x < 0
, a > 0.

The Fourier transform of this function is

f̂ (k) =
∫ ∞

−∞
f (x)eikx dx

=
∫ ∞

0
eikx−ax dx

=
1

a− ik
. (5.49)

Next, we will compute the inverse Fourier transform of this result and recover
the original function.

Example 5.8. Find the inverse Fourier transform of f̂ (k) = 1
a−ik .

The inverse Fourier transform of this function is

f (x) =
1

2π

∫ ∞

−∞
f̂ (k)e−ikx dk =

1
2π

∫ ∞

−∞

e−ikx

a− ik
dk.

This integral can be evaluated using contour integral methods. We evaluate the
integral

I =
∫ ∞

−∞

e−ixz

a− iz
dz,
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using Jordan’s Lemma from Section 4.4.8. According to Jordan’s Lemma, we need
to enclose the contour with a semicircle in the upper half plane for x < 0 and in the
lower half plane for x > 0, as shown in Figure 5.11.

The integrations along the semicircles will vanish and we will have

f (x) =
1

2π

∫ ∞

−∞

e−ikx

a− ik
dk

= ± 1
2π

∮
C

e−ixz

a− iz
dz

=

{
0, x < 0

− 1
2π 2πi Res [z = −ia], x > 0

=

{
0, x < 0

e−ax, x > 0
. (5.50)

R−R x

y

CR

−ia

R−R
x

y

CR

−ia

Figure 5.11: Contours for inverting
f̂ (k) = 1

a−ik .

Note that without paying careful attention to Jordan’s Lemma, one might not
retrieve the function from the last example.

Example 5.9. Find the inverse Fourier transform of f̂ (ω) = πδ(ω + ω0) +

πδ(ω−ω0).
We would like to find the inverse Fourier transform of this function. Instead of

carrying out any integration, we will make use of the properties of Fourier trans-
forms. Since the transforms of sums are the sums of transforms, we can look at each
term individually. Consider δ(ω − ω0). This is a shifted function. From the shift
theorems in Equations (5.36) and (5.37) we have the Fourier transform pair

eiω0t f (t)↔ f̂ (ω−ω0).

Recalling from Example 5.6 that∫ ∞

−∞
eiωt dt = 2πδ(ω),

we have from the shift property that

F−1[δ(ω−ω0)] =
1

2π
e−iω0t.

The second term can be transformed similarly. Therefore, we have

F−1[πδ(ω + ω0) + πδ(ω−ω0] =
1
2

eiω0t +
1
2

e−iω0t = cos ω0t.

Example 5.10. Find the Fourier transform of the finite wave train.

f (t) =

{
cos ω0t, |t| ≤ a,

0, |t| > a.

For the last example, we consider the finite wave train, which will reappear in
the last chapter on signal analysis. In Figure 5.12 we show a plot of this function.

a0
t

f (t)

Figure 5.12: A plot of the finite wave
train.

A straight-forward computation gives

f̂ (ω) =
∫ ∞

−∞
f (t)eiωt dt
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=
∫ a

−a
[cos ω0t + i sin ω0t]eiωt dt

=
∫ a

−a
cos ω0t cos ωt dt + i

∫ a

−a
sin ω0t sin ωt dt

=
1
2

∫ a

−a
[cos((ω + ω0)t) + cos((ω−ω0)t)] dt

=
sin((ω + ω0)a)

ω + ω0
+

sin((ω−ω0)a)
ω−ω0

. (5.51)

5.6 The Convolution Operation

In the list of properties of the Fourier transform, we defined the
convolution of two functions, f (x) and g(x), to be the integral

( f ∗ g)(x) =
∫ ∞

−∞
f (t)g(x− t) dt. (5.52)

In some sense one is looking at a sum of the overlaps of one of the functions
and all of the shifted versions of the other function. The German word
for convolution is faltung, which means “folding” and in old texts this is
referred to as the Faltung Theorem. In this section we will look into the
convolution operation and its Fourier transform.

Before we get too involved with the convolution operation, it should be
noted that there are really two things you need to take away from this dis-
cussion. The rest is detail. First, the convolution of two functions is a new
functions as defined by Equation (5.52) when dealing with the Fourier trans-
form. The second and most relevant is that the Fourier transform of the con-
volution of two functions is the product of the transforms of each function.
The rest is all about the use and consequences of these two statements. In
this section we will show how the convolution works and how it is useful.The convolution is commutative.

First, we note that the convolution is commutative: f ∗ g = g ∗ f . This is
easily shown by replacing x− t with a new variable, y = x− t and dy = −dt.

(g ∗ f )(x) =
∫ ∞

−∞
g(t) f (x− t) dt

= −
∫ −∞

∞
g(x− y) f (y) dy

=
∫ ∞

−∞
f (y)g(x− y) dy

= ( f ∗ g)(x). (5.53)

The best way to understand the folding of the functions in the convolu-
tion is to take two functions and convolve them. The next example gives
a graphical rendition followed by a direct computation of the convolution.
The reader is encouraged to carry out these analyses for other functions.

Example 5.11. Graphical convolution of the box function and a triangle function.
In order to understand the convolution operation, we need to apply it to specific
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functions. We will first do this graphically for the box function

f (x) =

{
1, |x| ≤ 1,
0, |x| > 1,

and the triangular function

g(x) =

{
x, 0 ≤ x ≤ 1,
0, otherwise,

as shown in Figure 5.13.

x

f (x)

1−1

1

x

g(x)

1−1

1

Figure 5.13: A plot of the box function
f (x) and the triangle function g(x).

t

g(−t)

1−1

1

Figure 5.14: A plot of the reflected trian-
gle function, g(−t).

Next, we determine the contributions to the integrand. We consider the shifted
and reflected function g(t− x) in Equation (5.52) for various values of t. For t = 0,
we have g(x − 0) = g(−x). This function is a reflection of the triangle function,
g(x), as shown in Figure 5.14.

We then translate the triangle function performing horizontal shifts by t. In
Figure 5.15 we show such a shifted and reflected g(x) for t = 2, or g(2− x).

t

g(2− t)

1−1

1

2

Figure 5.15: A plot of the reflected trian-
gle function shifted by two units, g(2−
t).

In Figure 5.15 we show several plots of other shifts, g(x− t), superimposed on
f (x).

The integrand is the product of f (t) and g(x− t) and the integral of the product
f (t)g(x− t) is given by the sum of the shaded areas for each value of x.

In the first plot of Figure 5.16, the area is zero, as there is no overlap of the
functions. Intermediate shift values are displayed in the other plots in Figure 5.16.
The value of the convolution at x is shown by the area under the product of the two
functions for each value of x.

Plots of the areas of the convolution of the box and triangle functions for several
values of x are given in Figure 5.15. We see that the value of the convolution
integral builds up and then quickly drops to zero as a function of x. In Figure 5.17
the values of these areas is shown as a function of x.

t

y

t

y

t

y

t

y

t

y

t

y

t

y

t

y

t

y

Figure 5.16: A plot of the box and trian-
gle functions with the overlap indicated
by the shaded area.

The plot of the convolution in Figure 5.17 is not easily determined using
the graphical method. However, we can directly compute the convolution
as shown in the next example.
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Example 5.12. Analytically find the convolution of the box function and the tri-
angle function.

The nonvanishing contributions to the convolution integral are when both f (t)
and g(x− t) do not vanish. f (t) is nonzero for |t| ≤ 1, or −1 ≤ t ≤ 1. g(x− t)
is nonzero for 0 ≤ x− t ≤ 1, or x− 1 ≤ t ≤ x. These two regions are shown in
Figure 5.18. On this region, f (t)g(x− t) = x− t.

x

( f ∗ g)(x)

1−1

0.5

2

Figure 5.17: A plot of the convolution of
the box and triangle functions.

Figure 5.18: Intersection of the support
of g(x) and f (x).

x

t

−1

−1

1

1

2

2

g(x)

f (x)

Isolating the intersection in Figure 5.19, we see in Figure 5.19 that there are
three regions as shown by different shadings. These regions lead to a piecewise
defined function with three different branches of nonzero values for −1 < x < 0,
0 < x < 1, and 1 < x < 2.

Figure 5.19: Intersection of the support
of g(x) and f (x) showing the integration
regions.

x

t

−1

−1

1

1

2

2

g(x)

f (x)

The values of the convolution can be determined through careful integration. The
resulting integrals are given as

( f ∗ g)(x) =
∫ ∞

−∞
f (t)g(x− t) dt

=


∫ x
−1(x− t) dt, −1 < x < 0,∫ x

x−1(x− t) dt, 0 < x < 1,∫ 1
x−1(x− t) dt, 1 < x < 2

=


1
2 (x + 1)2, −1 < x < 0,

1
2 , 0 < x < 1,

1
2
[
1− (x− 1)2] 1 < x < 2.

(5.54)



fourier and laplace transforms 189

A plot of this function is shown in Figure 5.17.

5.6.1 Convolution Theorem for Fourier Transforms

In this section we compute the Fourier transform of the convolution in-
tegral and show that the Fourier transform of the convolution is the product
of the transforms of each function,

F[ f ∗ g] = f̂ (k)ĝ(k). (5.55)

First, we use the definitions of the Fourier transform and the convolution
to write the transform as

F[ f ∗ g] =
∫ ∞

−∞
( f ∗ g)(x)eikx dx

=
∫ ∞

−∞

(∫ ∞

−∞
f (t)g(x− t) dt

)
eikx dx

=
∫ ∞

−∞

(∫ ∞

−∞
g(x− t)eikx dx

)
f (t) dt. (5.56)

We now substitute y = x− t on the inside integral and separate the integrals:

F[ f ∗ g] =
∫ ∞

−∞

(∫ ∞

−∞
g(x− t)eikx dx

)
f (t) dt

=
∫ ∞

−∞

(∫ ∞

−∞
g(y)eik(y+t) dy

)
f (t) dt

=
∫ ∞

−∞

(∫ ∞

−∞
g(y)eiky dy

)
f (t)eikt dt

=

(∫ ∞

−∞
f (t)eikt dt

)(∫ ∞

−∞
g(y)eiky dy

)
. (5.57)

We see that the two integrals are just the Fourier transforms of f and g.
Therefore, the Fourier transform of a convolution is the product of the
Fourier transforms of the functions involved:

F[ f ∗ g] = f̂ (k)ĝ(k).

Example 5.13. Compute the convolution of the box function of height one and
width two with itself.

Let f̂ (k) be the Fourier transform of f (x). Then, the Convolution Theorem says
that F[ f ∗ f ](k) = f̂ 2(k), or

( f ∗ f )(x) = F−1[ f̂ 2(k)].

For the box function, we have already found that

f̂ (k) =
2
k

sin k.

So, we need to compute

( f ∗ f )(x) = F−1[
4
k2 sin2 k]

=
1

2π

∫ ∞

−∞

(
4
k2 sin2 k

)
e−ikx dk. (5.58)
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One way to compute this integral is to extend the computation into the complex
k-plane. We first need to rewrite the integrand. Thus,

( f ∗ f )(x) =
1

2π

∫ ∞

−∞

4
k2 sin2 ke−ikx dk

=
1
π

∫ ∞

−∞

1
k2 [1− cos 2k]e−ikx dk

=
1
π

∫ ∞

−∞

1
k2

[
1− 1

2
(eik + e−ik)

]
e−ikx dk

=
1
π

∫ ∞

−∞

1
k2

[
e−ikx − 1

2
(e−i(1−k) + e−i(1+k))

]
dk. (5.59)

We can compute the above integrals if we know how to compute the integral

I(y) =
1
π

∫ ∞

−∞

e−iky

k2 dk.

Then, the result can be found in terms of I(y) as

( f ∗ f )(x) = I(x)− 1
2
[I(1− k) + I(1 + k)].

We consider the integral ∮
C

e−iyz

πz2 dz

over the contour in Figure 5.20.

ε R−R −ε x

y

Cε

ΓR

Figure 5.20: Contour for computing
P
∫ ∞
−∞

e−iyz

πz2 dz.

We can see that there is a double pole at z = 0. The pole is on the real axis. So,
we will need to cut out the pole as we seek the value of the principal value integral.

Recall from Chapter 4 that∮
CR

e−iyz

πz2 dz =
∫

ΓR

e−iyz

πz2 dz +
∫ −ε

−R

e−iyz

πz2 dz +
∫

Cε

e−iyz

πz2 dz +
∫ R

ε

e−iyz

πz2 dz.

The integral
∮

CR
e−iyz

πz2 dz vanishes since there are no poles enclosed in the contour!
The sum of the second and fourth integrals gives the integral we seek as ε → 0
and R→ ∞. The integral over ΓR will vanish as R gets large according to Jordan’s
Lemma provided y < 0. That leaves the integral over the small semicircle.

As before, we can show that

lim
ε→0

∫
Cε

f (z) dz = −πi Res[ f (z); z = 0].

Therefore, we find

I(y) = P
∫ ∞

−∞

e−iyz

πz2 dz = πi Res
[

e−iyz

πz2 ; z = 0
]

.

A simple computation of the residue gives I(y) = −y, for y < 0.
When y > 0, we need to close the contour in the lower half plane in order to

apply Jordan’s Lemma. Carrying out the computation, one finds I(y) = y, for
y > 0. Thus,

I(y) =

{
−y, y > 0,
y, y < 0,

(5.60)
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We are now ready to finish the computation of the convolution. We have to
combine the integrals I(y), I(y + 1), and I(y − 1), since ( f ∗ f )(x) = I(x) −
1
2 [I(1− k) + I(1 + k)]. This gives different results in four intervals:

( f ∗ f )(x) = x− 1
2
[(x− 2) + (x + 2)] = 0, x < −2,

= x− 1
2
[(x− 2)− (x + 2)] = 2 + x − 2 < x < 0,

= −x− 1
2
[(x− 2)− (x + 2)] = 2− x, 0 < x < 2,

= −x− 1
2
[−(x− 2)− (x + 2)] = 0, x > 2. (5.61)

A plot of this solution is the triangle function:

( f ∗ f )(x) =


0, x < −2

2 + x, −2 < x < 0
2− x, 0 < x < 2

0, x > 2,

(5.62)

which was shown in the last example.

Example 5.14. Find the convolution of the box function of height one and width
two with itself using a direct computation of the convolution integral.

The nonvanishing contributions to the convolution integral are when both f (t)
and f (x− t) do not vanish. f (t) is nonzero for |t| ≤ 1, or −1 ≤ t ≤ 1. f (x− t)
is nonzero for |x− t| ≤ 1, or x− 1 ≤ t ≤ x + 1. These two regions are shown in
Figure 5.22. On this region, f (t)g(x− t) = 1.

x

t

−1
−1

1

1

2

2

−2

−2

3

−3

t = x + 1

t = x− 1

t = −1

t = 1
f (x− t)

f (t)

Figure 5.21: Plot of the regions of sup-
port for f (t) and f (x− t)..

Thus, the nonzero contributions to the convolution are

( f ∗ f )(x) =

{ ∫ x+1
−1 dt, 0 ≤ x ≤ 2,∫ 1
x−1 dt, −2 ≤ x ≤ 0,

=

{
2 + x, 0 ≤ x ≤ 2,
2− x, −2 ≤ x ≤ 0.

Once again, we arrive at the triangle function.

In the last section we showed the graphical convolution. For complete-
ness, we do the same for this example. In Figure 5.22 we show the results.
We see that the convolution of two box functions is a triangle function.
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t

f (x− t) f (t)

t

t

t

t

t

t

t

t

x1-1 2-2

2
( f ∗ g)(x)

Figure 5.22: A plot of the convolution of
a box function with itself. The areas of
the overlaps of as f (x − t) is translated
across f (t) are shown as well. The result
is the triangular function. Example 5.15. Show the graphical convolution of the box function of height one

and width two with itself.

Let’s consider a slightly more complicated example, the convolution of
two Gaussian functions.

Example 5.16. Convolution of two Gaussian functions f (x) = e−ax2
.

In this example we will compute the convolution of two Gaussian functions with
different widths. Let f (x) = e−ax2

and g(x) = e−bx2
. A direct evaluation of the

integral would be to compute

( f ∗ g)(x) =
∫ ∞

−∞
f (t)g(x− t) dt =

∫ ∞

−∞
e−at2−b(x−t)2

dt.

This integral can be rewritten as

( f ∗ g)(x) = e−bx2
∫ ∞

−∞
e−(a+b)t2+2bxt dt.

One could proceed to complete the square and finish carrying out the integration.
However, we will use the Convolution Theorem to evaluate the convolution and
leave the evaluation of this integral to Problem 12.

Recalling the Fourier transform of a Gaussian from Example 5.5, we have

f̂ (k) = F[e−ax2
] =

√
π

a
e−k2/4a (5.63)

and

ĝ(k) = F[e−bx2
] =

√
π

b
e−k2/4b.

Denoting the convolution function by h(x) = ( f ∗ g)(x), the Convolution Theorem
gives

ĥ(k) = f̂ (k)ĝ(k) =
π√
ab

e−k2/4ae−k2/4b.
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This is another Gaussian function, as seen by rewriting the Fourier transform of
h(x) as

ĥ(k) =
π√
ab

e−
1
4 (

1
a +

1
b )k2

=
π√
ab

e−
a+b
4ab k2

. (5.64)

In order to complete the evaluation of the convolution of these two Gaussian
functions, we need to find the inverse transform of the Gaussian in Equation (5.64).
We can do this by looking at Equation (5.63). We have first that

F−1
[√

π

a
e−k2/4a

]
= e−ax2

.

Moving the constants, we then obtain

F−1[e−k2/4a] =

√
a
π

e−ax2
.

We now make the substitution α = 1
4a ,

F−1[e−αk2
] =

√
1

4πα
e−x2/4α.

This is in the form needed to invert Equation (5.64). Thus, for α = a+b
4ab , we find

( f ∗ g)(x) = h(x) =
√

π

a + b
e−

ab
a+b x2

.

5.6.2 Application to Signal Analysis

f (t)

t

f̂ (ω)

ω

Figure 5.23: Schematic plot of a signal
f (t) and its Fourier transform f̂ (ω).

There are many applications of the convolution operation. One of
these areas is the study of analog signals. An analog signal is a continu-
ous signal and may contain either a finite or continuous set of frequencies.
Fourier transforms can be used to represent such signals as a sum over the
frequency content of these signals. In this section we will describe how
convolutions can be used in studying signal analysis. Filtering signals.

The first application is filtering. For a given signal, there might be some
noise in the signal, or some undesirable high frequencies. For example, a
device used for recording an analog signal might naturally not be able to
record high frequencies. Let f (t) denote the amplitude of a given analog
signal and f̂ (ω) be the Fourier transform of this signal such as the exam-
ple provided in Figure 5.23. Recall that the Fourier transform gives the
frequency content of the signal.

f̂ (ω)

ω

(a)

pω0 (ω)

ω-ω0 ω0

(b)

ĝ(ω)

ω

(c)

Figure 5.24: (a) Plot of the Fourier trans-
form f̂ (ω) of a signal. (b) The gate func-
tion pω0 (ω) used to filter out high fre-
quencies. (c) The product of the func-
tions, ĝ(ω) = f̂ (ω)pω0 (ω), in (a) and (b)
shows how the filters cuts out high fre-
quencies, |ω| > ω0.

There are many ways to filter out unwanted frequencies. The simplest
would be to just drop all the high (angular) frequencies. For example, for
some cutoff frequency ω0, frequencies |ω| > ω0 will be removed. The
Fourier transform of the filtered signal would then be zero for |ω| > ω0.
This could be accomplished by multiplying the Fourier transform of the
signal by a function that vanishes for |ω| > ω0. For example, we could use
the gate function

pω0(ω) =

{
1, |ω| ≤ ω0,
0, |ω| > ω0

(5.65)
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as shown in Figure 5.24.
In general, we multiply the Fourier transform of the signal by some fil-

tering function ĥ(t) to get the Fourier transform of the filtered signal,

ĝ(ω) = f̂ (ω)ĥ(ω).

The new signal, g(t) is then the inverse Fourier transform of this product,
giving the new signal as a convolution:

g(t) = F−1[ f̂ (ω)ĥ(ω)] =
∫ ∞

−∞
h(t− τ) f (τ) dτ. (5.66)

Such processes occur often in systems theory as well. One thinks of
f (t) as the input signal into some filtering device, which in turn produces
the output, g(t). The function h(t) is called the impulse response. This is
because it is a response to the impulse function, δ(t). In this case, one has∫ ∞

−∞
h(t− τ)δ(τ) dτ = h(t).

Windowing signals.
Another application of the convolution is in windowing. This represents

what happens when one measures a real signal. Real signals cannot be
recorded for all values of time. Instead, data is collected over a finite time
interval. If the length of time the data is collected is T, then the resulting
signal is zero outside this time interval. This can be modeled in the same
way as with filtering, except the new signal will be the product of the old
signal with the windowing function. The resulting Fourier transform of the
new signal will be a convolution of the Fourier transforms of the original
signal and the windowing function.

Example 5.17. Finite Wave Train, Revisited.
We return to the finite wave train in Example 5.10 given by

h(t) =

{
cos ω0t, |t| ≤ a,

0, |t| > a.
a0

t

f (t)

Figure 5.25: A plot of the finite wave
train.

We can view this as a windowed version of f (t) = cos ω0t obtained by multi-
plying f (t) by the gate function

ga(t) =

{
1, |x| ≤ a,
0, |x| > a.

(5.67)

This is shown in Figure 5.25. Then, the Fourier transform is given as a convolution,The convolution in spectral space is de-
fined with an extra factor of 1/2π so
as to preserve the idea that the inverse
Fourier transform of a convolution is the
product of the corresponding signals.

ĥ(ω) = ( f̂ ∗ ĝa)(ω)

=
1

2π

∫ ∞

−∞
f̂ (ω− ν)ĝa(ν) dν. (5.68)

Note that the convolution in frequency space requires the extra factor of 1/(2π).
We need the Fourier transforms of f and ga in order to finish the computation.

The Fourier transform of the box function was found in Example 5.6 as

ĝa(ω) =
2
ω

sin ωa.
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The Fourier transform of the cosine function, f (t) = cos ω0t, is

f̂ (ω) =
∫ ∞

−∞
cos(ω0t)eiωt dt

=
∫ ∞

−∞

1
2

(
eiω0t + e−iω0t

)
eiωt dt

=
1
2

∫ ∞

−∞

(
ei(ω+ω0)t + ei(ω−ω0)t

)
dt

= π [δ(ω + ω0) + δ(ω−ω0)] . (5.69)

Note that we had earlier computed the inverse Fourier transform of this function in
Example 5.9.

Inserting these results in the convolution integral, we have

ĥ(ω) =
1

2π

∫ ∞

−∞
f̂ (ω− ν)ĝa(ν) dν

=
1

2π

∫ ∞

−∞
π [δ(ω− ν + ω0) + δ(ω− ν−ω0)]

2
ν

sin νa dν

=
sin(ω + ω0)a

ω + ω0
+

sin(ω−ω0)a
ω−ω0

. (5.70)

This is the same result we had obtained in Example 5.10.

5.6.3 Parseval’s Equality
The integral/sum of the (modulus)
square of a function is the integral/sum
of the (modulus) square of the trans-
form.As another example of the convolution theorem, we derive Par-

seval’s Equality (named after Marc-Antoine Parseval (1755 - 1836)):∫ ∞

−∞
| f (t)|2 dt =

1
2π

∫ ∞

−∞
| f̂ (ω)|2 dω. (5.71)

This equality has a physical meaning for signals. The integral on the left
side is a measure of the energy content of the signal in the time domain.
The right side provides a measure of the energy content of the transform
of the signal. Parseval’s Equality, is simply a statement that the energy is
invariant under the Fourier transform. Parseval’s Equality is a special case
of Plancherel’s Formula (named after Michel Plancherel, 1885 - 1967).

Let’s rewrite the Convolution Theorem in its inverse form

F−1[ f̂ (k)ĝ(k)] = ( f ∗ g)(t). (5.72)

Then, by the definition of the inverse Fourier transform, we have∫ ∞

−∞
f (t− u)g(u) du =

1
2π

∫ ∞

−∞
f̂ (ω)ĝ(ω)e−iωt dω.

Setting t = 0,∫ ∞

−∞
f (−u)g(u) du =

1
2π

∫ ∞

−∞
f̂ (ω)ĝ(ω) dω. (5.73)
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Now, let g(t) = f (−t), or f (−t) = g(t). We note that the Fourier transform
of g(t) is related to the Fourier transform of f (t) :

ĝ(ω) =
∫ ∞

−∞
f (−t)eiωt dt

= −
∫ −∞

∞
f (τ)e−iωτ dτ

=
∫ ∞

−∞
f (τ)eiωτ dτ = f̂ (ω). (5.74)

So, inserting this result into Equation (5.73), we find that∫ ∞

−∞
f (−u) f (−u) du =

1
2π

∫ ∞

−∞
| f̂ (ω)|2 dω,

which yields Parseval’s Equality in the form in Equation (5.71) after substi-
tuting t = −u on the left.

As noted above, the forms in Equations (5.71) and (5.73) are often referred
to as the Plancherel Formula or Parseval Formula. A more commonly de-
fined Parseval equation is that given for Fourier series. For example, for a
function f (x) defined on [−π, π], which has a Fourier series representation,
we have

a2
0

2
+

∞

∑
n=1

(a2
n + b2

n) =
1
π

∫ π

−π
[ f (x)]2 dx.

In general, there is a Parseval identity for functions that can be expanded
in a complete sets of orthonormal functions, {φn(x)}, n = 1, 2, . . . , which is
given by

∞

∑
n=1

< f , φn >2= ‖ f ‖2.

Here, ‖ f ‖2 =< f , f > . The Fourier series example is just a special case of
this formula.

5.7 The Laplace Transform
The Laplace transform is named after
Pierre-Simon de Laplace (1749 - 1827).
Laplace made major contributions, espe-
cially to celestial mechanics, tidal analy-
sis, and probability.

Up to this point we have only explored Fourier exponential trans-
forms as one type of integral transform. The Fourier transform is useful
on infinite domains. However, students are often introduced to another
integral transform, called the Laplace transform, in their introductory dif-
ferential equations class. These transforms are defined over semi-infinite
domains and are useful for solving initial value problems for ordinary dif-
ferential equations.Integral transform on [a, b] with respect

to the integral kernel, K(x, k). The Fourier and Laplace transforms are examples of a broader class of
transforms known as integral transforms. For a function f (x) defined on an
interval (a, b), we define the integral transform

F(k) =
∫ b

a
K(x, k) f (x) dx,



fourier and laplace transforms 197

where K(x, k) is a specified kernel of the transform. Looking at the Fourier
transform, we see that the interval is stretched over the entire real axis and
the kernel is of the form, K(x, k) = eikx. In Table 5.1 we show several types
of integral transforms.

Laplace Transform F(s) =
∫ ∞

0 e−sx f (x) dx
Fourier Transform F(k) =

∫ ∞
−∞ eikx f (x) dx

Fourier Cosine Transform F(k) =
∫ ∞

0 cos(kx) f (x) dx
Fourier Sine Transform F(k) =

∫ ∞
0 sin(kx) f (x) dx

Mellin Transform F(k) =
∫ ∞

0 xk−1 f (x) dx
Hankel Transform F(k) =

∫ ∞
0 xJn(kx) f (x) dx

Table 5.1: A Table of Common Integral
Transforms.

It should be noted that these integral transforms inherit the linearity of
integration. Namely, let h(x) = α f (x) + βg(x), where α and β are constants.
Then,

H(k) =
∫ b

a
K(x, k)h(x) dx,

=
∫ b

a
K(x, k)(α f (x) + βg(x)) dx,

= α
∫ b

a
K(x, k) f (x) dx + β

∫ b

a
K(x, k)g(x) dx,

= αF(x) + βG(x). (5.75)

Therefore, we have shown linearity of the integral transforms. We have seen
the linearity property used for Fourier transforms and we will use linearity
in the study of Laplace transforms. The Laplace transform of f , F = L[ f ].

We now turn to Laplace transforms. The Laplace transform of a function
f (t) is defined as

F(s) = L[ f ](s) =
∫ ∞

0
f (t)e−st dt, s > 0. (5.76)

This is an improper integral and one needs

lim
t→∞

f (t)e−st = 0

to guarantee convergence.
Laplace transforms also have proven useful in engineering for solving

circuit problems and doing systems analysis. In Figure 5.26 it is shown that
a signal x(t) is provided as input to a linear system, indicated by h(t). One
is interested in the system output, y(t), which is given by a convolution
of the input and system functions. By considering the transforms of x(t)
and h(t), the transform of the output is given as a product of the Laplace
transforms in the s-domain. In order to obtain the output, one needs to
compute a convolution product for Laplace transforms similar to the convo-
lution operation we had seen for Fourier transforms earlier in the chapter.
Of course, for us to do this in practice, we have to know how to compute
Laplace transforms.
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Figure 5.26: A schematic depicting the
use of Laplace transforms in systems
theory.

x(t)

Laplace
Transform

X(s)

h(t)

H(s)

y(t) = h(t) ∗ x(t)

Inverse Laplace
Transform

Y(s) = H(s)X(s)

5.7.1 Properties and Examples of Laplace Transforms

It is typical that one makes use of Laplace transforms by referring to
a Table of transform pairs. A sample of such pairs is given in Table 5.2.
Combining some of these simple Laplace transforms with the properties of
the Laplace transform, as shown in Table 5.3, we can deal with many ap-
plications of the Laplace transform. We will first prove a few of the given
Laplace transforms and show how they can be used to obtain new trans-
form pairs. In the next section we will show how these transforms can be
used to sum infinite series and to solve initial value problems for ordinary
differential equations.

Table 5.2: Table of Selected Laplace
Transform Pairs.

f (t) F(s) f (t) F(s)

c
c
s

eat 1
s− a

, s > a

tn n!
sn+1 , s > 0 tneat n!

(s− a)n+1

sin ωt
ω

s2 + ω2 eat sin ωt ω
(s−a)2+ω2

cos ωt
s

s2 + ω2 eat cos ωt
s− a

(s− a)2 + ω2

t sin ωt
2ωs

(s2 + ω2)2 t cos ωt
s2 −ω2

(s2 + ω2)2

sinh at
a

s2 − a2 cosh at
s

s2 − a2

H(t− a)
e−as

s
, s > 0 δ(t− a) e−as, a ≥ 0, s > 0

We begin with some simple transforms. These are found by simply using
the definition of the Laplace transform.

Example 5.18. Show that L[1] = 1
s .

For this example, we insert f (t) = 1 into the definition of the Laplace transform:

L[1] =
∫ ∞

0
e−st dt.

This is an improper integral and the computation is understood by introducing an
upper limit of a and then letting a → ∞. We will not always write this limit,
but it will be understood that this is how one computes such improper integrals.



fourier and laplace transforms 199

Proceeding with the computation, we have

L[1] =
∫ ∞

0
e−st dt

= lim
a→∞

∫ a

0
e−st dt

= lim
a→∞

(
−1

s
e−st

)a

0

= lim
a→∞

(
−1

s
e−sa +

1
s

)
=

1
s

. (5.77)

Thus, we have found that the Laplace transform of 1 is 1
s . This result

can be extended to any constant c, using the linearity of the transform,
L[c] = cL[1]. Therefore,

L[c] = c
s

.

Example 5.19. Show that L[eat] = 1
s−a , for s > a.

For this example, we can easily compute the transform. Again, we only need to
compute the integral of an exponential function.

L[eat] =
∫ ∞

0
eate−st dt

=
∫ ∞

0
e(a−s)t dt

=

(
1

a− s
e(a−s)t

)∞

0

= lim
t→∞

1
a− s

e(a−s)t − 1
a− s

=
1

s− a
. (5.78)

Note that the last limit was computed as limt→∞ e(a−s)t = 0. This is only true
if a− s < 0, or s > a. [Actually, a could be complex. In this case we would only
need s to be greater than the real part of a, s > Re(a).]

Example 5.20. Show that L[cos at] = s
s2+a2 and L[sin at] = a

s2+a2 .
For these examples, we could again insert the trigonometric functions directly

into the transform and integrate. For example,

L[cos at] =
∫ ∞

0
e−st cos at dt.

Recall how one evaluates integrals involving the product of a trigonometric function
and the exponential function. One integrates by parts two times and then obtains
an integral of the original unknown integral. Rearranging the resulting integral
expressions, one arrives at the desired result. However, there is a much simpler way
to compute these transforms.

Recall that eiat = cos at + i sin at. Making use of the linearity of the Laplace
transform, we have

L[eiat] = L[cos at] + iL[sin at].

Thus, transforming this complex exponential will simultaneously provide the Laplace
transforms for the sine and cosine functions!
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The transform is simply computed as

L[eiat] =
∫ ∞

0
eiate−st dt =

∫ ∞

0
e−(s−ia)t dt =

1
s− ia

.

Note that we could easily have used the result for the transform of an exponential,
which was already proven. In this case, s > Re(ia) = 0.

We now extract the real and imaginary parts of the result using the complex
conjugate of the denominator:

1
s− ia

=
1

s− ia
s + ia
s + ia

=
s + ia

s2 + a2 .

Reading off the real and imaginary parts, we find the sought-after transforms,

L[cos at] =
s

s2 + a2 ,

L[sin at] =
a

s2 + a2 . (5.79)

Example 5.21. Show that L[t] = 1
s2 .

For this example we evaluate

L[t] =
∫ ∞

0
te−st dt.

This integral can be evaluated using the method of integration by parts:∫ ∞

0
te−st dt = −t

1
s

e−st
∣∣∣∞
0
+

1
s

∫ ∞

0
e−st dt

=
1
s2 . (5.80)

Example 5.22. Show that L[tn] = n!
sn+1 for nonnegative integer n.

We have seen the n = 0 and n = 1 cases: L[1] = 1
s and L[t] = 1

s2 . We now
generalize these results to nonnegative integer powers, n > 1, of t. We consider the
integral

L[tn] =
∫ ∞

0
tne−st dt.

Following the previous example, we again integrate by parts:22 This integral can just as easily be done
using differentiation. We note that(
− d

ds

)n ∫ ∞

0
e−st dt =

∫ ∞

0
tne−st dt.

Since ∫ ∞

0
e−st dt =

1
s

,∫ ∞

0
tne−st dt =

(
− d

ds

)n 1
s
=

n!
sn+1 .

∫ ∞

0
tne−st dt = −tn 1

s
e−st

∣∣∣∞
0
+

n
s

∫ ∞

0
t−ne−st dt

=
n
s

∫ ∞

0
t−ne−st dt. (5.81)

We could continue to integrate by parts until the final integral is computed.
However, look at the integral that resulted after one integration by parts. It is just
the Laplace transform of tn−1. So, we can write the result as

L[tn] =
n
s
L[tn−1].

We compute
∫ ∞

0 tne−st dt by turning it
into an initial value problem for a first-
order difference equation and finding
the solution using an iterative method.

This is an example of a recursive definition of a sequence. In this case, we have a
sequence of integrals. Denoting

In = L[tn] =
∫ ∞

0
tne−st dt
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and noting that I0 = L[1] = 1
s , we have the following:

In =
n
s

In−1, I0 =
1
s

. (5.82)

This is also what is called a difference equation. It is a first-order difference equation
with an “initial condition,” I0. The next step is to solve this difference equation.

Finding the solution of this first-order difference equation is easy to do using
simple iteration. Note that replacing n with n− 1, we have

In−1 =
n− 1

s
In−2.

Repeating the process, we find

In =
n
s

In−1

=
n
s

(
n− 1

s
In−2

)
=

n(n− 1)
s2 In−2

=
n(n− 1)(n− 2)

s3 In−3. (5.83)

We can repeat this process until we get to I0, which we know. We have to
carefully count the number of iterations. We do this by iterating k times and then
figure out how many steps will get us to the known initial value. A list of iterates
is easily written out:

In =
n
s

In−1

=
n(n− 1)

s2 In−2

=
n(n− 1)(n− 2)

s3 In−3

= . . .

=
n(n− 1)(n− 2) . . . (n− k + 1)

sk In−k. (5.84)

Since we know I0 = 1
s , we choose to stop at k = n obtaining

In =
n(n− 1)(n− 2) . . . (2)(1)

sn I0 =
n!

sn+1 .

Therefore, we have shown that L[tn] = n!
sn+1 .

Such iterative techniques are useful in obtaining a variety of integrals, such as
In =

∫ ∞
−∞ x2ne−x2

dx.

As a final note, one can extend this result to cases when n is not an
integer. To do this, we use the Gamma function, which was discussed in
Section 3.5. Recall that the Gamma function is the generalization of the
factorial function and is defined as

Γ(x) =
∫ ∞

0
tx−1e−t dt. (5.85)
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Note the similarity to the Laplace transform of tx−1 :

L[tx−1] =
∫ ∞

0
tx−1e−st dt.

For x− 1 an integer and s = 1, we have that

Γ(x) = (x− 1)!.

Thus, the Gamma function can be viewed as a generalization of the factorial
and we have shown that

L[tp] =
Γ(p + 1)

sp+1

for p > −1.
Now we are ready to introduce additional properties of the Laplace trans-

form in Table 5.3. We have already discussed the first property, which is a
consequence of the linearity of integral transforms. We will prove the other
properties in this and the following sections.

Table 5.3: Table of selected Laplace
transform properties.

Laplace Transform Properties
L[a f (t) + bg(t)] = aF(s) + bG(s)

L[t f (t)] = − d
ds

F(s)

L
[

d f
dt

]
= sF(s)− f (0)

L
[

d2 f
dt2

]
= s2F(s)− s f (0)− f ′(0)

L[eat f (t)] = F(s− a)
L[H(t− a) f (t− a)] = e−asF(s)

L[( f ∗ g)(t)] = L[
∫ t

0
f (t− u)g(u) du] = F(s)G(s)

Example 5.23. Show that L
[

d f
dt

]
= sF(s)− f (0).

We have to compute

L
[

d f
dt

]
=
∫ ∞

0

d f
dt

e−st dt.

We can move the derivative off f by integrating by parts. This is similar to what we
had done when finding the Fourier transform of the derivative of a function. Letting
u = e−st and v = f (t), we have

L
[

d f
dt

]
=

∫ ∞

0

d f
dt

e−st dt

= f (t)e−st
∣∣∣∞
0
+ s

∫ ∞

0
f (t)e−st dt

= − f (0) + sF(s). (5.86)

Here we have assumed that f (t)e−st vanishes for large t.
The final result is that

L
[

d f
dt

]
= sF(s)− f (0).
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Example 6: Show that L
[

d2 f
dt2

]
= s2F(s)− s f (0)− f ′(0).

We can compute this Laplace transform using two integrations by parts, or we
could make use of the last result. Letting g(t) = d f (t)

dt , we have

L
[

d2 f
dt2

]
= L

[
dg
dt

]
= sG(s)− g(0) = sG(s)− f ′(0).

But,

G(s) = L
[

d f
dt

]
= sF(s)− f (0).

So,

L
[

d2 f
dt2

]
= sG(s)− f ′(0)

= s [sF(s)− f (0)]− f ′(0)

= s2F(s)− s f (0)− f ′(0). (5.87)

We will return to the other properties in Table 5.3 after looking at a few
applications.

5.8 Applications of Laplace Transforms

Although the Laplace transform is a very useful transform, it
is often encountered only as a method for solving initial value problems
in introductory differential equations. In this section we will show how to
solve simple differential equations. Along the way we will introduce step
and impulse functions and show how the Convolution Theorem for Laplace
transforms plays a role in finding solutions. However, we will first explore
an unrelated application of Laplace transforms. We will see that the Laplace
transform is useful in finding sums of infinite series.

5.8.1 Series Summation Using Laplace Transforms

We saw in Chapter 2 that Fourier series can be used to sum series.
For example, in Problem 2.13, one proves that

∞

∑
n=1

1
n2 =

π2

6
.

In this section we will show how Laplace transforms can be used to sum
series.3 There is an interesting history of using integral transforms to sum 3 Albert D. Wheelon, Tables of Summable

Series and Integrals Involving Bessel Func-
tions, Holden-Day, 1968.

series. For example, Richard Feynman4 (1918 - 1988) described how one

4 R. P. Feynman, 1949, Phys. Rev. 76, p.
769

can use the Convolution Theorem for Laplace transforms to sum series with
denominators that involved products. We will describe this and simpler
sums in this section.

We begin by considering the Laplace transform of a known function,

F(s) =
∫ ∞

0
f (t)e−st dt.
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Inserting this expression into the sum ∑n F(n) and interchanging the sum
and integral, we find

∞

∑
n=0

F(n) =
∞

∑
n=0

∫ ∞

0
f (t)e−nt dt

=
∫ ∞

0
f (t)

∞

∑
n=0

(
e−t)n dt

=
∫ ∞

0
f (t)

1
1− e−t dt. (5.88)

The last step was obtained using the sum of a geometric series. The key is
being able to carry out the final integral as we show in the next example.

Example 5.24. Evaluate the sum ∑∞
n=1

(−1)n+1

n .
Since, L[1] = 1/s, we have

∞

∑
n=1

(−1)n+1

n
=

∞

∑
n=1

∫ ∞

0
(−1)n+1e−nt dt

=
∫ ∞

0

e−t

1 + e−t dt

=
∫ 2

1

du
u

= ln 2. (5.89)

Example 5.25. Evaluate the sum ∑∞
n=1

1
n2 .

This is a special case of the Riemann zeta function

ζ(s) =
∞

∑
n=1

1
ns . (5.90)

The Riemann zeta function5 is important in the study of prime numbers and more5 A translation of Riemann, Bernhard
(1859), “Über die Anzahl der Primzahlen
unter einer gegebenen Grösse” is in H.
M. Edwards (1974). Riemann’s Zeta Func-
tion. Academic Press. Riemann had
shown that the Riemann zeta function
can be obtained through contour in-
tegral representation, 2 sin(πs)Γζ(s) =

i
∮

C
(−x)s−1

ex−1 dx, for a specific contour C.

recently has seen applications in the study of dynamical systems. The series in this
example is ζ(2). We have already seen in Problem 2.13 that

ζ(2) =
π2

6
.

Using Laplace transforms, we can provide an integral representation of ζ(2).
The first step is to find the correct Laplace transform pair. The sum involves the

function F(n) = 1/n2. So, we look for a function f (t) whose Laplace transform is
F(s) = 1/s2. We know by now that the inverse Laplace transform of F(s) = 1/s2

is f (t) = t. As before, we replace each term in the series by a Laplace transform,
exchange the summation and integration, and sum the resulting geometric series:

∞

∑
n=1

1
n2 =

∞

∑
n=1

∫ ∞

0
te−nt dt

=
∫ ∞

0

t
et − 1

dt. (5.91)

So, we have that ∫ ∞

0

t
et − 1

dt =
∞

∑
n=1

1
n2 = ζ(2).
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Integrals of this type occur often in statistical mechanics in the form of Bose-
Einstein integrals. These are of the form

Gn(z) =
∫ ∞

0

xn−1

z−1ex − 1
dx.

Note that Gn(1) = Γ(n)ζ(n).

In general, the Riemann zeta function must be tabulated through other
means. In some special cases, one can use closed form expressions. For
example,

ζ(2n) =
22n−1π2n

(2n)!
Bn,

where the Bn’s are the Bernoulli numbers. Bernoulli numbers are defined
through the Maclaurin series expansion

x
ex − 1

=
∞

∑
n=0

Bn

n!
xn.

The first few Riemann zeta functions are

ζ(2) =
π2

6
, ζ(4) =

π4

90
, ζ(6) =

π6

945
.

We can extend this method of using Laplace transforms to summing se-
ries whose terms take special general forms. For example, from Feynman’s
1949 paper, we note that

1
(a + bn)2 = − ∂

∂a

∫ ∞

0
e−s(a+bn) ds.

This identity can be shown easily by first noting

∫ ∞

0
e−s(a+bn) ds =

[
−e−s(a+bn)

a + bn

]∞

0

=
1

a + bn
.

Now, differentiate the result with respect to a and the result follows.
The latter identity can be generalized further as

1
(a + bn)k+1 =

(−1)k

k!
∂k

∂ak

∫ ∞

0
e−s(a+bn) ds.

In Feynman’s 1949 paper, he develops methods for handling several other
general sums using the Convolution Theorem. Wheelon gives more exam-
ples of these. We will just provide one such result and an example. First,
we note that

1
ab

=
∫ 1

0

du
[a(1− u) + bu]2

.

However,
1

[a(1− u) + bu]2
=
∫ ∞

0
te−t[a(1−u)+bu] dt.

So, we have
1
ab

=
∫ 1

0
du
∫ ∞

0
te−t[a(1−u)+bu] dt.

We see in the next example how this representation can be useful.
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Example 5.26. Evaluate ∑∞
n=0

1
(2n+1)(2n+2) .

We sum this series by first letting a = 2n + 1 and b = 2n + 2 in the formula
for 1/ab. Collecting the n-dependent terms, we can sum the series leaving a double
integral computation in ut-space. The details are as follows:

∞

∑
n=0

1
(2n + 1)(2n + 2)

=
∞

∑
n=0

∫ 1

0

du
[(2n + 1)(1− u) + (2n + 2)u]2

=
∞

∑
n=0

∫ 1

0
du
∫ ∞

0
te−t(2n+1+u) dt

=
∫ 1

0
du
∫ ∞

0
te−t(1+u)

∞

∑
n=0

e−2nt dt

=
∫ ∞

0

te−t

1− e−2t

∫ 1

0
e−tu du dt

=
∫ ∞

0

te−t

1− e−2t
1− e−t

t
dt

=
∫ ∞

0

e−t

1 + e−t dt

= − ln(1 + e−t)
∣∣∣∞
0
= ln 2. (5.92)

5.8.2 Solution of ODEs Using Laplace Transforms

One of the typical applications of Laplace transforms is the so-
lution of nonhomogeneous linear constant coefficient differential equations.
In the following examples we will show how this works.

The general idea is that one transforms the equation for an unknown
function y(t) into an algebraic equation for its transform, Y(t). Typically,
the algebraic equation is easy to solve for Y(s) as a function of s. Then,
one transforms back into t-space using Laplace transform tables and the
properties of Laplace transforms. The scheme is shown in Figure 5.27.

Figure 5.27: The scheme for solving
an ordinary differential equation using
Laplace transforms. One transforms the
initial value problem for y(t) and obtains
an algebraic equation for Y(s). Solve for
Y(s) and the inverse transform gives the
solution to the initial value problem.

L[y] = g

y(t)

F(Y) = G

Y(s)

Laplace Transform

Inverse Laplace Transform

ODE
for y(t)

Algebraic

Equation

Y(s)

Example 5.27. Solve the initial value problem y′ + 3y = e2t, y(0) = 1.
The first step is to perform a Laplace transform of the initial value problem. The

transform of the left side of the equation is

L[y′ + 3y] = sY− y(0) + 3Y = (s + 3)Y− 1.
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Transforming the righthand side, we have

L[e2t] =
1

s− 2
.

Combining these two results, we obtain

(s + 3)Y− 1 =
1

s− 2
.

The next step is to solve for Y(s) :

Y(s) =
1

s + 3
+

1
(s− 2)(s + 3)

.

Now we need to find the inverse Laplace transform. Namely, we need to figure
out what function has a Laplace transform of the above form. We will use the tables
of Laplace transform pairs. Later we will show that there are other methods for
carrying out the Laplace transform inversion.

The inverse transform of the first term is e−3t. However, we have not seen any-
thing that looks like the second form in the table of transforms that we have com-
piled, but we can rewrite the second term using a partial fraction decomposition.
Let’s recall how to do this.

The goal is to find constants A and B such that

1
(s− 2)(s + 3)

=
A

s− 2
+

B
s + 3

. (5.93)

We picked this form because we know that recombining the two terms into one term This is an example of carrying out a par-
tial fraction decomposition.will have the same denominator. We just need to make sure the numerators agree

afterward. So, adding the two terms, we have

1
(s− 2)(s + 3)

=
A(s + 3) + B(s− 2)

(s− 2)(s + 3)
.

Equating numerators,
1 = A(s + 3) + B(s− 2).

There are several ways to proceed at this point.

a. Method 1.

We can rewrite the equation by gathering terms with common powers of s,
we have

(A + B)s + 3A− 2B = 1.

The only way that this can be true for all s is that the coefficients of the
different powers of s agree on both sides. This leads to two equations for A
and B:

A + B = 0,

3A− 2B = 1. (5.94)

The first equation gives A = −B, so the second equation becomes −5B = 1.
The solution is then A = −B = 1

5 .
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b. Method 2.

Since the equation 1
(s−2)(s+3) = A

s−2 + B
s+3 is true for all s, we can pick

specific values. For s = 2, we find 1 = 5A, or A = 1
5 . For s = −3, we find

1 = −5B, or B = − 1
5 . Thus, we obtain the same result as Method 1, but

much quicker.

1 2

2

4

6

8

t

y(t)

Figure 5.28: A plot of the solution to Ex-
ample 5.27.

c. Method 3.

We could just inspect the original partial fraction problem. Since the numer-
ator has no s terms, we might guess the form

1
(s− 2)(s + 3)

=
1

s− 2
− 1

s + 3
.

But, recombining the terms on the right hand side, we see that

1
s− 2

− 1
s + 3

=
5

(s− 2)(s + 3)
.

Since we were off by 5, we divide the partial fractions by 5 to obtain

1
(s− 2)(s + 3)

=
1
5

[
1

s− 2
− 1

s + 3

]
,

which once again gives the desired form.

Returning to the problem, we have found that

Y(s) =
1

s + 3
+

1
5

(
1

s− 2
− 1

s + 3

)
.

We can now see that the function with this Laplace transform is given by

y(t) = L−1
[

1
s + 3

+
1
5

(
1

s− 2
− 1

s + 3

)]
= e−3t +

1
5

(
e2t − e−3t

)
works. Simplifying, we have the solution of the initial value problem

y(t) =
1
5

e2t +
4
5

e−3t.

We can verify that we have solved the initial value problem.

y′ + 3y =
2
5

e2t − 12
5

e−3t + 3(
1
5

e2t +
4
5

e−3t) = e2t

and y(0) = 1
5 + 4

5 = 1.

Example 5.28. Solve the initial value problem y′′ + 4y = 0, y(0) = 1, y′(0) = 3.
We can probably solve this without Laplace transforms, but it is a simple exercise.

Transforming the equation, we have

0 = s2Y− sy(0)− y′(0) + 4Y

= (s2 + 4)Y− s− 3. (5.95)

Solving for Y, we have

Y(s) =
s + 3
s2 + 4

.
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We now ask if we recognize the transform pair needed. The denominator looks
like the type needed for the transform of a sine or cosine. We just need to play with
the numerator. Splitting the expression into two terms, we have

Y(s) =
s

s2 + 4
+

3
s2 + 4

.
2 4 6 8

−2

2

t

y(t)

Figure 5.29: A plot of the solution to Ex-
ample 5.28.

The first term is now recognizable as the transform of cos 2t. The second term
is not the transform of sin 2t. It would be if the numerator were a 2. This can be
corrected by multiplying and dividing by 2:

3
s2 + 4

=
3
2

(
2

s2 + 4

)
.

The solution is then found as

y(t) = L−1
[

s
s2 + 4

+
3
2

(
2

s2 + 4

)]
= cos 2t +

3
2

sin 2t.

The reader can verify that this is the solution of the initial value problem.

5.8.3 Step and Impulse Functions

Often, the initial value problems that one faces in differential
equations courses can be solved using either the Method of Undetermined
Coefficients or the Method of Variation of Parameters. However, using the
latter can be messy and involves some skill with integration. Many circuit
designs can be modeled with systems of differential equations using Kir-
choff’s Rules. Such systems can get fairly complicated. However, Laplace
transforms can be used to solve such systems, and electrical engineers have
long used such methods in circuit analysis.

In this section we add a couple more transform pairs and transform prop-
erties that are useful in accounting for things like turning on a driving force,
using periodic functions like a square wave, or introducing impulse forces.

We first recall the Heaviside step function, given by

H(t) =

{
0, t < 0,
1, t > 0.

(5.96)

t

H(t− a)

1

a

Figure 5.30: A shifted Heaviside func-
tion, H(t− a).

A more general version of the step function is the horizontally shifted
step function, H(t− a). This function is shown in Figure 5.30. The Laplace
transform of this function is found for a > 0 as

L[H(t− a)] =
∫ ∞

0
H(t− a)e−st dt

=
∫ ∞

a
e−st dt

=
e−st

s

∣∣∣∞
a
=

e−as

s
. (5.97)

Just like the Fourier transform, the Laplace transform has two Shift The-
orems involving the multiplication of the function, f (t), or its transform,
F(s), by exponentials. The First and Second Shift Properties/Theorems are
given by The Shift Theorems.
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L[eat f (t)] = F(s− a), (5.98)

L[ f (t− a)H(t− a)] = e−asF(s). (5.99)

We prove the First Shift Theorem and leave the other proof as an exercise
for the reader. Namely,

L[eat f (t)] =
∫ ∞

0
eat f (t)e−st dt

=
∫ ∞

0
f (t)e−(s−a)t dt = F(s− a). (5.100)

Example 5.29. Compute the Laplace transform of e−at sin ωt.
This function arises as the solution of the underdamped harmonic oscillator. We

first note that the exponential multiplies a sine function. The First Shift Theorem
tells us that we first need the transform of the sine function. So, for f (t) = sin ωt,
we have

F(s) =
ω

s2 + ω2 .

Using this transform, we can obtain the solution to this problem as

L[e−at sin ωt] = F(s + a) =
ω

(s + a)2 + ω2 .

More interesting examples can be found using piecewise defined func-
tions. First we consider the function H(t)− H(t− a). For t < 0, both terms
are zero. In the interval [0, a], the function H(t) = 1 and H(t− a) = 0. There-
fore, H(t)− H(t− a) = 1 for t ∈ [0, a]. Finally, for t > a, both functions are
one and therefore the difference is zero. The graph of H(t) − H(t − a) is
shown in Figure 5.31.t

1

0 a

Figure 5.31: The box function, H(t) −
H(t− a).

We now consider the piecewise defined function:

g(t) =

{
f (t), 0 ≤ t ≤ a,
0, t < 0, t > a.

This function can be rewritten in terms of step functions. We only need to
multiply f (t) by the above box function,

g(t) = f (t)[H(t)− H(t− a)].

We depict this in Figure 5.32.t

1

0 a

Figure 5.32: Formation of a piecewise
function, f (t)[H(t)− H(t− a)].

Even more complicated functions can be written in terms of step func-
tions. We only need to look at sums of functions of the form f (t)[H(t −
a) − H(t − b)] for b > a. This is similar to a box function. It is nonzero
between a and b and has height f (t).

We show as an example the square wave function in Figure 5.33. It can
be represented as a sum of an infinite number of boxes,

f (t) =
∞

∑
n=−∞

[H(t− 2na)− H(t− (2n + 1)a)],

for a > 0.
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t
-2a 0 a 2a 4a 6a

Figure 5.33: A square wave, f (t) =

∑∞
n=−∞[H(t− 2na)− H(t− (2n + 1)a)].

Example 5.30. Find the Laplace Transform of a square wave “turned on” at t = 0.
.

We let

f (t) =
∞

∑
n=0

[H(t− 2na)− H(t− (2n + 1)a)], a > 0.

Using the properties of the Heaviside function, we have

L[ f (t)] =
∞

∑
n=0

[L[H(t− 2na)]−L[H(t− (2n + 1)a)]]

=
∞

∑
n=0

[
e−2nas

s
− e−(2n+1)as

s

]

=
1− e−as

s

∞

∑
n=0

(
e−2as

)n

=
1− e−as

s

(
1

1− e−2as

)
=

1− e−as

s(1− e−2as)
. (5.101)

Note that the third line in the derivation is a geometric series. We summed this
series to get the answer in a compact form since e−2as < 1.

f (x)

x
a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

Figure 5.34: Plot representing im-
pulse forces of height f (ai). The sum
∑n

i=1 f (ai)δ(x − ai) describes a general
impulse function.

Other interesting examples are provided by the delta function. The Dirac
delta function can be used to represent a unit impulse. Summing over a
number of impulses, or point sources, we can describe a general function as
shown in Figure 5.34. The sum of impulses located at points ai, i = 1, . . . , n,
with strengths f (ai) would be given by

f (x) =
n

∑
i=1

f (ai)δ(x− ai).

A continuous sum could be written as

f (x) =
∫ ∞

−∞
f (ξ)δ(x− ξ) dξ.

This is simply an application of the sifting property of the delta function.
We will investigate a case when one would use a single impulse. While a
mass on a spring is undergoing simple harmonic motion, we hit it for an
instant at time t = a. In such a case, we could represent the force as a
multiple of δ(t− a). L[δ(t− a)] = e−as.

One would then need the Laplace transform of the delta function to solve
the associated initial value problem. Inserting the delta function into the
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Laplace transform, we find that for a > 0,

L[δ(t− a)] =
∫ ∞

0
δ(t− a)e−st dt

=
∫ ∞

−∞
δ(t− a)e−st dt

= e−as. (5.102)

Example 5.31. Solve the initial value problem y′′ + 4π2y = δ(t − 2), y(0) =

y′(0) = 0.
This initial value problem models a spring oscillation with an impulse force.

Without the forcing term, given by the delta function, this spring is initially at rest
and not stretched. The delta function models a unit impulse at t = 2. Of course,
we anticipate that at this time the spring will begin to oscillate. We will solve this
problem using Laplace transforms.

First, we transform the differential equation:

s2Y− sy(0)− y′(0) + 4π2Y = e−2s.

Inserting the initial conditions, we have

(s2 + 4π2)Y = e−2s.

Solving for Y(s), we obtain

Y(s) =
e−2s

s2 + 4π2 .

We now seek the function for which this is the Laplace transform. The form of
this function is an exponential times some Laplace transform, F(s). Thus, we need
the Second Shift Theorem since the solution is of the form Y(s) = e−2sF(s) for

F(s) =
1

s2 + 4π2 .

We need to find the corresponding f (t) of the Laplace transform pair. The de-
nominator in F(s) suggests a sine or cosine. Since the numerator is constant, we
pick sine. From the tables of transforms, we have

L[sin 2πt] =
2π

s2 + 4π2 .

So, we write

F(s) =
1

2π

2π

s2 + 4π2 .

This gives f (t) = (2π)−1 sin 2πt.
We now apply the Second Shift Theorem, L[ f (t− a)H(t− a)] = e−asF(s), or

y(t) = L−1
[
e−2sF(s)

]
= H(t− 2) f (t− 2)

=
1

2π
H(t− 2) sin 2π(t− 2). (5.103)

5 10 15 20

−0.2

0.2

t

y(t)

Figure 5.35: A plot of the solution to Ex-
ample 5.31 in which a spring at rest ex-
periences an impulse force at t = 2.

This solution tells us that the mass is at rest until t = 2 and then begins to
oscillate at its natural frequency. A plot of this solution is shown in Figure 5.35
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Example 5.32. Solve the initial value problem

y′′ + y = f (t), y(0) = 0, y′(0) = 0,

where

f (t) =

{
cosπt, 0 ≤ t ≤ 2,

0, otherwise.

We need the Laplace transform of f (t). This function can be written in terms
of a Heaviside function, f (t) = cos πtH(t − 2). In order to apply the Second
Shift Theorem, we need a shifted version of the cosine function. We find the shifted
version by noting that cos π(t− 2) = cos πt. Thus, we have

f (t) = cos πt [H(t)− H(t− 2)]

= cos πt− cos π(t− 2)H(t− 2), t ≥ 0. (5.104)

The Laplace transform of this driving term is

F(s) = (1− e−2s)L[cos πt] = (1− e−2s)
s

s2 + π2 .

Now we can proceed to solve the initial value problem. The Laplace transform of
the initial value problem yields

(s2 + 1)Y(s) = (1− e−2s)
s

s2 + π2 .

Therefore,
Y(s) = (1− e−2s)

s
(s2 + π2)(s2 + 1)

.

We can retrieve the solution to the initial value problem using the Second Shift
Theorem. The solution is of the form Y(s) = (1− e−2s)G(s) for

G(s) =
s

(s2 + π2)(s2 + 1)
.

Then, the final solution takes the form

y(t) = g(t)− g(t− 2)H(t− 2).

We only need to find g(t) in order to finish the problem. This is easily done
using the partial fraction decomposition

G(s) =
s

(s2 + π2)(s2 + 1)
=

1
π2 − 1

[
s

s2 + 1
− s

s2 + π2

]
.

Then,

g(t) = L−1
[

s
(s2 + π2)(s2 + 1)

]
=

1
π2 − 1

(cos t− cos πt) .

The final solution is then given by

y(t) =
1

π2 − 1
[cos t− cos πt− H(t− 2)(cos(t− 2)− cos πt)] .

A plot of this solution is shown in Figure 5.36

5 10

−0.4

−0.2

0.2

0.4

t

y(t)

Figure 5.36: A plot of the solution to Ex-
ample 5.32 in which a spring at rest ex-
periences an piecewise defined force.
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5.9 The Convolution Theorem

Finally, we consider the convolution of two functions. Often, we are
faced with having the product of two Laplace transforms that we know and
we seek the inverse transform of the product. For example, let’s say we have
obtained Y(s) = 1

(s−1)(s−2) while trying to solve an initial value problem. In
this case, we could find a partial fraction decomposition. But, there are
other ways to find the inverse transform, especially if we cannot perform a
partial fraction decomposition. We could use the Convolution Theorem for
Laplace transforms or we could compute the inverse transform directly. We
will look into these methods in the next two sections.We begin with defining
the convolution.

We define the convolution of two functions defined on [0, ∞) much the
same way as we had done for the Fourier transform. The convolution f ∗ g
is defined as

( f ∗ g)(t) =
∫ t

0
f (u)g(t− u) du. (5.105)

Note that the convolution integral has finite limits as opposed to the Fourier
transform case.

The convolution operation has two important properties:
The convolution is commutative.

1. The convolution is commutative: f ∗ g = g ∗ f

Proof. The key is to make a substitution y = t− u in the integral. This
makes f a simple function of the integration variable.

(g ∗ f )(t) =
∫ t

0
g(u) f (t− u) du

= −
∫ 0

t
g(t− y) f (y) dy

=
∫ t

0
f (y)g(t− y) dy

= ( f ∗ g)(t). (5.106)

The Convolution Theorem for Laplace
transforms.

2. The Convolution Theorem: The Laplace transform of a convolution is
the product of the Laplace transforms of the individual functions:

L[ f ∗ g] = F(s)G(s).

Proof. Proving this theorem takes a bit more work. We will make
some assumptions that will work in many cases. First, we assume
that the functions are causal, f (t) = 0 and g(t) = 0 for t < 0. Second,
we will assume that we can interchange integrals, which needs more
rigorous attention than will be provided here. The first assumption
will allow us to write the finite integral as an infinite integral. Then
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a change of variables will allow us to split the integral into the prod-
uct of two integrals that are recognized as a product of two Laplace
transforms.

Carrying out the computation, we have

L[ f ∗ g] =
∫ ∞

0

(∫ t

0
f (u)g(t− u) du

)
e−st dt

=
∫ ∞

0

(∫ ∞

0
f (u)g(t− u) du

)
e−st dt

=
∫ ∞

0
f (u)

(∫ ∞

0
g(t− u)e−st dt

)
du (5.107)

Now, make the substitution τ = t− u. We note that

int∞
0 f (u)

(∫ ∞

0
g(t− u)e−st dt

)
du =

∫ ∞

0
f (u)

(∫ ∞

−u
g(τ)e−s(τ+u) dτ

)
du

However, since g(τ) is a causal function, we have that it vanishes for
τ < 0 and we can change the integration interval to [0, ∞). So, after a
little rearranging, we can proceed to the result.

L[ f ∗ g] =
∫ ∞

0
f (u)

(∫ ∞

0
g(τ)e−s(τ+u) dτ

)
du

=
∫ ∞

0
f (u)e−su

(∫ ∞

0
g(τ)e−sτ dτ

)
du

=

(∫ ∞

0
f (u)e−su du

)(∫ ∞

0
g(τ)e−sτ dτ

)
= F(s)G(s). (5.108)

We make use of the Convolution Theorem to do the following examples.

Example 5.33. Find y(t) = L−1
[

1
(s−1)(s−2)

]
.

We note that this is a product of two functions:

Y(s) =
1

(s− 1)(s− 2)
=

1
s− 1

1
s− 2

= F(s)G(s).

We know the inverse transforms of the factors: f (t) = et and g(t) = e2t.
Using the Convolution Theorem, we find y(t) = ( f ∗ g)(t). We compute the

convolution:

y(t) =
∫ t

0
f (u)g(t− u) du

=
∫ t

0
eue2(t−u) du

= e2t
∫ t

0
e−u du

= e2t[−et + 1] = e2t − et. (5.109)

One can also confirm this by carrying out a partial fraction decomposition.
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Example 5.34. Consider the initial value problem, y′′ + 9y = 2 sin 3t, y(0) = 1,
y′(0) = 0.

The Laplace transform of this problem is given by

(s2 + 9)Y− s =
6

s2 + 9
.

Solving for Y(s), we obtain

Y(s) =
6

(s2 + 9)2 +
s

s2 + 9
.

The inverse Laplace transform of the second term is easily found as cos(3t); however,
the first term is more complicated.

We can use the Convolution Theorem to find the Laplace transform of the first
term. We note that

6
(s2 + 9)2 =

2
3

3
(s2 + 9)

3
(s2 + 9)

is a product of two Laplace transforms (up to the constant factor). Thus,

L−1
[

6
(s2 + 9)2

]
=

2
3
( f ∗ g)(t),

where f (t) = g(t) = sin3t. Evaluating this convolution product, we have

L−1
[

6
(s2 + 9)2

]
=

2
3
( f ∗ g)(t)

=
2
3

∫ t

0
sin 3u sin 3(t− u) du

=
1
3

∫ t

0
[cos 3(2u− t)− cos 3t] du

=
1
3

[
1
6

sin(6u− 3t)− u cos 3t
]t

0

=
1
9

sin 3t− 1
3

t cos 3t. (5.110)
2 4 6 8

−2

2

t

y(t)

Figure 5.37: Plot of the solution to Exam-
ple 5.34 showing a resonance.

Combining this with the inverse transform of the second term of Y(s), the solu-
tion to the initial value problem is

y(t) = −1
3

t cos 3t +
1
9

sin 3t + cos 3t.

Note that the amplitude of the solution will grow in time from the first term. You
can see this in Figure 5.37. This is known as a resonance.

Example 5.35. Find L−1[ 6
(s2+9)2 ] using partial fraction decomposition.

If we look at Table 5.2, we see that the Laplace transform pairs with the denomi-
nator (s2 + ω2)2 are

L[t sin ωt] =
2ωs

(s2 + ω2)2 ,

and

L[t cos ωt] =
s2 −ω2

(s2 + ω2)2 .
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So, we might consider rewriting a partial fraction decomposition as

6
(s2 + 9)2 =

A6s
(s2 + 9)2 +

B(s2 − 9)
(s2 + 9)2 +

Cs + D
s2 + 9

.

Combining the terms on the right over a common denominator, we find

6 = 6As + B(s2 − 9) + (Cs + D)(s2 + 9).

Collecting like powers of s, we have

Cs3 + (D + B)s2 + 6As + (D− B) = 6.

Therefore, C = 0, A = 0, D + B = 0, and D − B = 2
3 . Solving the last two

equations, we find D = −B = 1
3 .

Using these results, we find

6
(s2 + 9)2 = −1

3
(s2 − 9)
(s2 + 9)2 +

1
3

1
s2 + 9

.

This is the result we had obtained in the last example using the Convolution Theo-
rem.

5.10 The Inverse Laplace Transform

Up to this point we have seen that the inverse Laplace transform can be
found by making use of Laplace transform tables and properties of Laplace
transforms. This is typically the way Laplace transforms are taught and
used in a differential equations course. One can do the same for Fourier
transforms. However, in the case of Fourier transforms, we introduced an
inverse transform in the form of an integral. Does such an inverse integral
transform exist for the Laplace transform? Yes, it does! In this section we
will derive the inverse Laplace transform integral and show how it is used.

We begin by considering a causal function f (t), which vanishes for t < 0,
and define the function g(t) = f (t)e−ct with c > 0. For g(t) absolutely
integrable, A function f (t) is said to be of exponen-

tial order if
∫ ∞

0 | f (t)|e
−ct dt < ∞

∫ ∞

−∞
|g(t)| dt =

∫ ∞

0
| f (t)|e−ct dt < ∞,

we can write the Fourier transform,

ĝ(ω) =
∫ ∞

−∞
g(t)eiωtdt =

∫ ∞

0
f (t)eiωt−ctdt

and the inverse Fourier transform,

g(t) = f (t)e−ct =
1

2π

∫ ∞

−∞
ĝ(ω)e−iωt dω.

Multiplying by ect and inserting ĝ(ω) into the integral for g(t), we find

f (t) =
1

2π

∫ ∞

−∞

∫ ∞

0
f (τ)e(iω−c)τdτe−(iω−c)t dω.
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Letting s = c− iω (so dω = ids), we have

f (t) =
i

2π

∫ c−i∞

c+i∞

∫ ∞

0
f (τ)e−sτdτest ds.

Note that the inside integral is simply F(s). So, we have

f (t) =
1

2πi

∫ c+i∞

c−i∞
F(s)est ds. (5.111)

The integral in the last equation is the inverse Laplace transform, called
the Bromwich Integral and is named after Thomas John I’Anson Bromwich
(1875 - 1929) . This inverse transform is not usually covered in differen-
tial equations courses because the integration takes place in the complex
plane. This integral is evaluated along a path in the complex plane called
the Bromwich contour. The typical way to compute this integral is to first
choose c so that all poles are to the left of the contour. This guarantees that
f (t) is of exponential type. The contour is a closed semicircle enclosing all
the poles. One then relies on a generalization of Jordan’s Lemma to the
second and third quadrants.6

6 Closing the contour to the left of the
contour can be reasoned in a manner
similar to what we saw in Jordan’s
Lemma. Write the exponential as est =
e(sR+isI )t = esR teisI t. The second factor is
an oscillating factor and the growth in
the exponential can only come from the
first factor. In order for the exponential
to decay as the radius of the semicircle
grows, sRt < 0. Since t > 0, we need
s < 0 which is done by closing the con-
tour to the left. If t < 0, then the contour
to the right would enclose no singulari-
ties and preserve the causality of f (t).

c + iR

c− iR

x

y

CR

-1 c

Figure 5.38: The contour used for apply-
ing the Bromwich integral to the Laplace
transform F(s) = 1

s(s+1) .

Example 5.36. Find the inverse Laplace transform of F(s) = 1
s(s+1) .

The integral we have to compute is

f (t) =
1

2πi

∫ c+i∞

c−i∞

est

s(s + 1)
ds.

This integral has poles at s = 0 and s = −1. The contour we will use is shown
in Figure 5.38. We enclose the contour with a semicircle to the left of the path in
the complex s-plane. One has to verify that the integral over the semicircle vanishes
as the radius goes to infinity. Assuming that we have done this, then the result is
simply obtained as 2πi times the sum of the residues. The residues in this case are

Res
[

ezt

z(z + 1)
; z = 0

]
= lim

z→0

ezt

(z + 1)
= 1

and

Res
[

ezt

z(z + 1)
; z = −1

]
= lim

z→−1

ezt

z
= −e−t.

Therefore, we have

f (t) = 2πi
[

1
2πi

(1) +
1

2πi
(−e−t)

]
= 1− e−t.

We can verify this result using the Convolution Theorem or using a partial
fraction decomposition. The latter method is simplest. We note that

1
s(s + 1)

=
1
s
− 1

s + 1
.

The first term leads to an inverse transform of 1 and the second term gives e−t. So,

L−1
[

1
s
− 1

s + 1

]
= 1− e−t.

Thus, we have verified the result from doing contour integration.
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Example 5.37. Find the inverse Laplace transform of F(s) = 1
s(1+es)

.
In this case, we need to compute

f (t) =
1

2πi

∫ c+i∞

c−i∞

est

s(1 + es)
ds.

This integral has poles at complex values of s such that 1 + es = 0, or es = −1.
Letting s = x + iy, we see that

es = ex+iy = ex(cos y + i sin y) = −1.

We see x = 0 and y satisfies cos y = −1 and sin y = 0. Therefore, y = nπ for n
an odd integer. Therefore, the integrand has an infinite number of simple poles at
s = nπi, n = ±1,±3, . . . . It also has a simple pole at s = 0.

c + iR

c− iR
−7π

−5π

−3π

3π

5π

7π

π

−π
x

y

CR

c

Figure 5.39: The contour used for apply-
ing the Bromwich integral to the Laplace
transform F(s) = 1

1+es .

In Figure 5.39, we indicate the poles. We need to compute the residues at each
pole. At s = nπi, we have

Res
[

est

s(1 + es)
; s = nπi

]
= lim

s→nπi
(s− nπi)

est

s(1 + es)

= lim
s→nπi

est

ses

= − enπit

nπi
, n odd. (5.112)

At s = 0, the residue is

Res
[

est

s(1 + es)
; s = 0

]
= lim

s→0

est

1 + es =
1
2

.

Summing the residues and noting the exponentials for ±n can be combined to
form sine functions, we arrive at the inverse transform.

f (t) =
1
2
− ∑

n odd

enπit

nπi

=
1
2
− 2

∞

∑
k=1

sin (2k− 1)πt
(2k− 1)π

. (5.113)

Figure 5.40: Plot of the square wave re-
sult as the inverse Laplace transform of
F(s) = 1

s(1+es with 50 terms.

The series in this example might look familiar. It is a Fourier sine series with
odd harmonics whose amplitudes decay like 1/n. It is a vertically shifted square
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wave. In fact, we had computed the Laplace transform of a general square wave in
Example 5.30.

In that example, we found

L
[

∞

∑
n=0

[H(t− 2na)− H(t− (2n + 1)a)]

]
=

1− e−as

s(1− e−2as)

=
1

s(1 + e−as)
. (5.114)

In this example, one can show that

f (t) =
∞

∑
n=0

[H(t− 2n + 1)− H(t− 2n)].

The reader should verify that this result is indeed the square wave shown in Figure
5.40.

5.11 Transforms and Partial Differential Equations

As another application of the transforms, we will see that we
can use transforms to solve some linear partial differential equations. We
will first solve the one-dimensional heat equation and the two-dimensional
Laplace equations using Fourier transforms. The transforms of the partial
differential equations lead to ordinary differential equations which are eas-
ier to solve. The final solutions are then obtained using inverse transforms.

We could go further by applying a Fourier transform in space and a
Laplace transform in time to convert the heat equation into an algebraic
equation. We will also show that we can use a finite sine transform to
solve nonhomogeneous problems on finite intervals. Along the way we will
identify several Green’s functions.

5.11.1 Fourier Transform and the Heat Equation

We will first consider the solution of the heat equation on an
infinite interval using Fourier transforms. The basic scheme was discussed
earlier and is outlined in Figure 5.41.

Consider the heat equation on the infinite line:

ut = αuxx, −∞ < x < ∞, t > 0,

u(x, 0) = f (x), −∞ < x < ∞. (5.115)

We can Fourier transform the heat equation using the Fourier transform of
u(x, t),

F [u(x, t)] = û(k, t) =
∫ ∞

−∞
u(x, t)eikx dx.
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u(x, 0)

ut = αuxx

u(x, t)

û(k, 0)

ût = −αk2û

û(k, t)

Fourier Transform

Inverse Fourier Transform

Figure 5.41: Using Fourier transforms to
solve a linear partial differential equa-
tion.

We need to transform the derivatives in the equation. First we note that

F [ut] =
∫ ∞

−∞

∂u(x, t)
∂t

eikx dx

=
∂

∂t

∫ ∞

−∞
u(x, t)eikx dx

=
∂û(k, t)

∂t
. (5.116)

Assuming that lim|x|→∞ u(x, t) = 0 and lim|x|→∞ ux(x, t) = 0, we also
have that

F [uxx] =
∫ ∞

−∞

∂2u(x, t)
∂x2 eikx dx

= −k2û(k, t). (5.117)

Therefore, the heat equation becomes The transformed heat equation.

∂û(k, t)
∂t

= −αk2û(k, t).

This is a first-order differential equation which is readily solved as

û(k, t) = A(k)e−αk2t,

where A(k) is an arbitrary function of k. The inverse Fourier transform is

u(x, t) =
1

2π

∫ ∞

−∞
û(k, t)e−ikx dk.

=
1

2π

∫ ∞

−∞
Â(k)e−αk2te−ikx dk. (5.118)

We can determine A(k) using the initial condition. Note that

F [u(x, 0)] = û(k, 0) =
∫ ∞

−∞
f (x)eikx dx.

But we also have from the solution that

u(x, 0) =
1

2π

∫ ∞

−∞
Â(k)e−ikx dk.

Comparing these two expressions for û(k, 0), we see that

A(k) = F [ f (x)].
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We note that û(k, t) is given by the product of two Fourier transforms,
û(k, t) = A(k)e−αk2t. So, by the Convolution Theorem, we expect that u(x, t)
is the convolution of the inverse transforms:

u(x, t) = ( f ∗ g)(x, t) =
1

2π

∫ ∞

−∞
f (ξ, t)g(x− ξ, t) dξ,

where
g(x, t) = F−1[e−αk2t].

In order to determine g(x, t), we need only recall Example 5.5. In that
example, we saw that the Fourier transform of a Gaussian is a Gaussian.
Namely, we found that

F [e−ax2/2] =

√
2π

a
e−k2/2a,

or,

F−1[

√
2π

a
e−k2/2a] = e−ax2/2.

Applying this to the current problem, we have

g(x) = F−1[e−αk2t] =

√
π

αt
e−x2/4t.

Finally, we can write the solution to the problem:

u(x, t) = ( f ∗ g)(x, t) =
∫ ∞

−∞
f (ξ, t)

e−(x−ξ)2/4t
√

4παt
dξ,

The function in the integrand,

K(x, t) =
e−x2/4t
√

4παt
,

is called the heat kernel and acts as an initial value Green’s function. TheK(x, t) is called the heat kernel.

solution takes the form

u(x, t) =
∫
−∞

∞ f (ξ, t)K(x, ξ; t) dξ.

5.11.2 Laplace’s Equation on the Half Plane

We consider a steady-state solution in two dimensions. In particular,
we look for the steady-state solution, u(x, y), satisfying the two-dimensional
Laplace equation on a semi-infinite slab with given boundary conditions as
shown in Figure 5.42. The boundary value problem is given as

uxx + uyy = 0, −∞ < x < ∞, y > 0,

u(x, 0) = f (x), −∞ < x < ∞,

lim
y→∞

u(x, y) = 0, lim
|x|→∞

u(x, y) = 0. (5.119)

x

y

∇2u = 0

u(x, 0) = f (x)

Figure 5.42: This is the domain for a
semi-infinite slab with boundary value
u(x, 0) = f (x) and governed by
Laplace’s equation.
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This problem can be solved using a Fourier transform of u(x, y) with
respect to x. The transform scheme for doing this is shown in Figure 5.43.
We begin by defining the Fourier transform

û(k, y) = F [u] =
∫ ∞

−∞
u(x, y)eikx dx.

We can transform Laplace’s equation. We first note from the properties
of Fourier transforms that

F
[

∂2u
∂x2

]
= −k2û(k, y),

if lim|x|→∞ u(x, y) = 0 and lim|x|→∞ ux(x, y) = 0. Also,

F
[

∂2u
∂y2

]
=

∂2û(k, y)
∂y2 .

Thus, the transform of Laplace’s equation gives ûyy = k2û.

u(x, 0)

uxx + uyy = 0

u(x, y)

û(k, 0)

ûyy = k2û

û(k, y)

Fourier Transform

Inverse Fourier Transform

Figure 5.43: The transform scheme used
to convert Laplace’s equation to an ordi-
nary differential equation, which is eas-
ier to solve.

This is a simple ordinary differential equation. We can solve this equation
using the boundary conditions. The general solution is The transformed Laplace equation.

û(k, y) = a(k)eky + b(k)e−ky.

Since limy→∞ u(x, y) = 0 and k can be positive or negative, we have that
û(k, y) = a(k)e−|k|y. The coefficient a(k) can be determined using the re-
maining boundary condition, u(x, 0) = f (x). We find that a(k) = f̂ (k) since

a(k) = û(k, 0) =
∫ ∞

−∞
u(x, 0)eikx dx =

∫ ∞

−∞
f (x)eikx dx = f̂ (k).

We have found that û(k, y) = f̂ (k)e−|k|y. We can obtain the solution using
the inverse Fourier transform,

u(x, t) = F−1[ f̂ (k)e−|k|y].

We note that this is a product of Fourier transforms and use the Convolution
Theorem for Fourier transforms. Namely, we have that a(k) = F [ f ] and
e−|k|y = F [g] for g(x, y) = 2y

x2+y2 . This last result is essentially proven in
Problem 6.
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Then, the Convolution Theorem gives the solution

u(x, y) =
1

2π

∫ ∞

−∞
f (ξ)g(x− ξ) dξ

=
1

2π

∫ ∞

−∞
f (ξ)

2y
(x− ξ)2 + y2 dξ. (5.120)

We note that this solution is in the form

u(x, y) =
∫ ∞

−∞
f (ξ)G(x, ξ; y) dξ,

where
G(x, ξ; y) =

2y
π((x− ξ)2 + y2)

is the Green’s function for this problem.The Green’s function for the Laplace
equation.

5.11.3 Heat Equation on Infinite Interval, Revisited

We next consider the initial value problem for the heat equation
on an infinite interval,

ut = uxx, −∞ < x < ∞, t > 0,

u(x, 0) = f (x), −∞ < x < ∞. (5.121)

We can apply both a Fourier and a Laplace transform to convert this to an
algebraic problem. The general solution will then be written in terms of an
initial value Green’s function as

u(x, t) =
∫ ∞

−∞
G(x, t; ξ) f (ξ) dξ.

For the time dependence, we can use the Laplace transform; and, for
the spatial dependence, we use the Fourier transform. These combined
transforms lead us to define

û(k, s) = F [L[u]] =
∫ ∞

−∞

∫ ∞

0
u(x, t)e−steikx dtdx.

Applying this to the terms in the heat equation, we have

F [L[ut]] = sû(k, s)−F [u(x, 0)]

= sû(k, s)− f̂ (k)

F [L[uxx]] = −k2û(k, s). (5.122)

Here we have assumed that

lim
t→∞

u(x, t)e−st = 0, lim
|x|→∞

u(x, t) = 0, lim
|x|→∞

ux(x, t) = 0.

Therefore, the heat equation can be turned into an algebraic equation for
the transformed solution:

(s + k2)û(k, s) = f̂ (k),
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or

û(k, s) =
f̂ (k)

s + k2 .

The transformed heat equation.

The solution to the heat equation is obtained using the inverse transforms
for both the Fourier and Laplace transforms. Thus, we have

u(x, t) = F−1[L−1[û]]

=
1

2π

∫ ∞

−∞

(
1

2πi

∫ c+∞

c−i∞

f̂ (k)
s + k2 est ds

)
e−ikx dk. (5.123)

Since the inside integral has a simple pole at s = −k2, we can compute
the Bromwich Integral by choosing c > −k2. Thus,

1
2πi

∫ c+∞

c−i∞

f̂ (k)
s + k2 est ds = Res

[
f̂ (k)

s + k2 est; s = −k2

]
= e−k2t f̂ (k).

Inserting this result into the solution, we have

u(x, t) = F−1[L−1[û]]

=
1

2π

∫ ∞

−∞
f̂ (k)e−k2te−ikx dk. (5.124)

This solution is of the form

u(x, t) = F−1[ f̂ ĝ]

for ĝ(k) = e−k2t. So, by the Convolution Theorem for Fourier transforms,the
solution is a convolution:

u(x, t) =
∫ ∞

−∞
f (ξ)g(x− ξ) dξ.

All we need is the inverse transform of ĝ(k).
We note that ĝ(k) = e−k2t is a Gaussian. Since the Fourier transform of a

Gaussian is a Gaussian, we need only recall Example 5.5:

F [e−ax2/2] =

√
2π

a
e−k2/2a.

Setting a = 1/2t, this becomes

F [e−x2/4t] =
√

4πte−k2t.

So,

g(x) = F−1[e−k2t] =
e−x2/4t
√

4πt
.

Inserting g(x) into the solution, we have

u(x, t) =
1√
4πt

∫ ∞

−∞
f (ξ)e−(x−ξ)2/4t dξ

=
∫ ∞

−∞
G(x, t; ξ) f (ξ) dξ. (5.125)

Here we have identified the initial value Green’s function The initial value Green’s function for the
heat equation.

G(x, t; ξ) =
1√
4πt

e−(x−ξ)2/4t.
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5.11.4 Nonhomogeneous Heat Equation

We now consider the nonhomogeneous heat equation with homo-
geneous boundary conditions defined on a finite interval.

ut − kuxx = h(x, t), 0 ≤ x ≤ L, t > 0,

u(0, t) = 0, u(L, t) = 0, t > 0,

u(x, 0) = f (x), 0 ≤ x ≤ L. (5.126)

When h(x, t) ≡ 0, the general solution of the heat equation satisfying the
above boundary conditions, u(0, t) = 0, u(L, t) = 0, for t > 0, can be written
as a Fourier Sine Series:

u(x, t) =
∞

∑
n=1

bn sin
nπx

L
.

So, when h(x, t) 6= 0, we might assume that the solution takes the form

u(x, t) =
∞

∑
n=1

bn(t) sin
nπx

L

where the bn’s are the Finite Fourier Sine Transform of the desired solution,

bn(t) = Fs[u] =
2
L

∫ L

0
u(x, t) sin

nπx
L

dx

Note that the Finite Fourier Sine Transform is essentially the Fourier Sine
Series which we encountered in Section 2.4.

Figure 5.44: Using finite Fourier trans-
forms to solve the heat equation by solv-
ing an ODE instead of a PDE. u(x, 0)

ut − uxx = h(x, t)

u(x, t)

A(k, 0)

dbn
dt + ω2

nbb = Bn(t)

A(k, t)

Finite Fourier Sine Transform

Inverse Finite Fourier Sine Transform

The idea behind using the Finite Fourier Sine Transform is to solve the
given heat equation by transforming the heat equation to a simpler equation
for the transform, bn(t), solve for bn(t), and then do an inverse transform,
that is, insert the bn(t)’s back into the series representation. This is depicted
in Figure 5.44. Note that we had explored a similar diagram earlier when
discussing the use of transforms to solve differential equations.

First, we need to transform the partial differential equation. The finite
transform of the derivative terms are given by

Fs[ut] =
2
L

∫ L

0

∂u
∂t

(x, t) sin
nπx

L
dx
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=
d
dt

(
2
L

∫ L

0
u(x, t) sin

nπx
L

dx
)

=
dbn

dt
. (5.127)

Fs[uxx] =
2
L

∫ L

0

∂2u
∂x2 (x, t) sin

nπx
L

dx

=
[
ux sin

nπx
L

]L

0
−
(nπ

L

) 2
L

∫ L

0

∂u
∂x

(x, t) cos
nπx

L
dx

= −
[nπ

L
u cos

nπx
L

]L

0
−
(nπ

L

)2 2
L

∫ L

0
u(x, t) sin

nπx
L

dx

=
nπ

L
[u(0, t)− u(L, 0) cos nπ]−

(nπ

L

)2
b2

n

= −ω2
nb2

n, (5.128)

where ωn = nπ
L .

Furthermore, we define

Hn(t) = Fs[h] =
2
L

∫ L

0
h(x, t) sin

nπx
L

dx.

Then, the heat equation is transformed to

dbn

dt
+ ω2

nbn = Hn(t), n = 1, 2, 3, . . . .

This is a simple linear first-order differential equation. We can supple-
ment this equation with the initial condition

bn(0) =
2
L

∫ L

0
u(x, 0) sin

nπx
L

dx.

The differential equation for bn is easily solved using the integrating factor,
µ(t) = eω2

nt. Thus,
d
dt

(
eω2

ntbn(t)
)
= Hn(t)eω2

nt

and the solution is

bn(t) = bn(0)e−ω2
nt +

∫ t

0
Hn(τ)e−ω2

n(t−τ) dτ.

The final step is to insert these coefficients (Finite Fourier Sine Transform)
into the series expansion (inverse finite Fourier sine transform) for u(x, t).
The result is

u(x, t) =
∞

∑
n=1

bn(0)e−ω2
nt sin

nπx
L

+
∞

∑
n=1

[∫ t

0
Hn(τ)e−ω2

n(t−τ) dτ

]
sin

nπx
L

.

This solution can be written in a more compact form in order to identify
the Green’s function. We insert the expressions for bn(0) and Hn(t) in terms
of the initial profile and source term and interchange sums and integrals.



228 fourier and complex analysis

This leads to

u(x, t) =
∞

∑
n=1

(
2
L

∫ L

0
u(ξ, 0) sin

nπξ

L
dξ

)
e−ω2

nt sin
nπx

L

+
∞

∑
n=1

[∫ t

0

(
2
L

∫ L

0
h(ξ, τ) sin

nπξ

L
dξ

)
e−ω2

n(t−τ) dτ

]
sin

nπx
L

=
∫ L

0
u(ξ, 0)

[
2
L

∞

∑
n=1

sin
nπx

L
sin

nπξ

L
e−ω2

nt

]
dξ

+
∫ t

0

∫ L

0
h(ξ, τ)

[
2
L

∞

∑
n=1

sin
nπx

L
sin

nπξ

L
e−ω2

n(t−τ)

]

=
∫ L

0
u(ξ, 0)G(x, ξ; t, 0)dξ +

∫ t

0

∫ L

0
h(ξ, τ)G(x, ξ; t, τ) dξdτ.

(5.129)

Here we have defined the Green’s function

G(x, ξ; t, τ) =
2
L

∞

∑
n=1

sin
nπx

L
sin

nπξ

L
e−ω2

n(t−τ).

We note that G(x, ξ; t, 0) gives the initial value Green’s function.
Evaluating the Green’s function at t = τ, we have

G(x, ξ; t, t) =
2
L

∞

∑
n=1

sin
nπx

L
sin

nπξ

L
.

This is actually a series representation of the Dirac delta function. The
Fourier Sine Transform of the delta function is

Fs[δ(x− ξ)] =
2
L

∫ L

0
δ(x− ξ) sin

nπx
L

dx =
2
L

sin
nπξ

L
.

Then, the representation becomes

δ(x− ξ) =
2
L

∞

∑
n=1

sin
nπx

L
sin

nπξ

L
= G(x, ξ; t, τ).

Also, we note that
∂G
∂t

= −ω2
nG

∂2G
∂x2 = −

(nπ

L

)2
G.

Therefore, Gt = Gxx, at least for τ 6= t and ξ 6= x.
We can modify this problem by adding nonhomogeneous boundary con-

ditions.

ut − kuxx = h(x, t), 0 ≤ x ≤ L, t > 0,

u(0, t) = A, u(L, t) = B, t > 0,

u(x, 0) = f (x), 0 ≤ x ≤ L. (5.130)

One way to treat these conditions is to assume u(x, t) = w(x)+ v(x, t) where
vt − kvxx = h(x, t) and wxx = 0. Then, u(x, t) = w(x) + v(x, t) satisfies the
original nonhomogeneous heat equation.
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If v(x, t) satisfies v(0, t) = v(L, t) = 0 and w(x) satisfies w(0) = A and
w(L) = B, then u(0, t) = w(0) + v(0, t) = A u(L, t) = w(L) + v(L, t) = B

Finally, we note that

v(x, 0) = u(x, 0)− w(x) = f (x)− w(x).

Therefore, u(x, t) = w(x) + v(x, t) satisfies the original problem if

vt − kvxx = h(x, t), 0 ≤ x ≤ L, t > 0,

v(0, t) = 0, v(L, t) = 0, t > 0,

v(x, 0) = f (x)− w(x), 0 ≤ x ≤ L, (5.131)

and

wxx = 0, 0 ≤ x ≤ L,

w(0) = A, w(L) = B. (5.132)

We can solve the last problem to obtain w(x) = A + B−A
L x. The solution

to the problem for v(x, t) is simply the problem we solved already in terms
of Green’s functions with the new initial condition, f (x) = A− B−A

L x.

Problems

1. In this problem you will show that the sequence of functions

fn(x) =
n
π

(
1

1 + n2x2

)
approaches δ(x) as n→ ∞. Use the following to support your argument:

a. Show that limn→∞ fn(x) = 0 for x 6= 0.

b. Show that the area under each function is one.

2. Verify that the sequence of functions { fn(x)}∞
n=1, defined by fn(x) =

n
2 e−n|x|, approaches a delta function.

3. Evaluate the following integrals:

a.
∫ π

0 sin xδ
(

x− π
2
)

dx.

b.
∫ ∞
−∞ δ

( x−5
3 e2x) (3x2 − 7x + 2

)
dx.

c.
∫ π

0 x2δ
(

x + π
2
)

dx.

d.
∫ ∞

0 e−2xδ(x2 − 5x + 6) dx. [See Problem 4.]

e.
∫ ∞
−∞(x2 − 2x + 3)δ(x2 − 9) dx. [See Problem 4.]

4. For the case that a function has multiple roots, f (xi) = 0, i = 1, 2, . . . , it
can be shown that

δ( f (x)) =
n

∑
i=1

δ(x− xi)

| f ′(xi)|
.

Use this result to evaluate
∫ ∞
−∞ δ(x2 − 5x− 6)(3x2 − 7x + 2) dx.
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5. Find a Fourier series representation of the Dirac delta function, δ(x), on
[−L, L].

6. For a > 0, find the Fourier transform, f̂ (k), of f (x) = e−a|x|.

7. Use the result from Problem 6 plus properties of the Fourier transform
to find the Fourier transform, of f (x) = x2e−a|x| for a > 0.

8. Find the Fourier transform, f̂ (k), of f (x) = e−2x2+x.

9. Prove the Second Shift Property in the form

F
[
eiβx f (x)

]
= f̂ (k + β).

10. A damped harmonic oscillator is given by

f (t) =

{
Ae−αteiω0t, t ≥ 0,

0, t < 0.

.

a. Find f̂ (ω) and

b. the frequency distribution | f̂ (ω)|2.

c. Sketch the frequency distribution.

11. Show that the convolution operation is associative: ( f ∗ (g ∗ h))(t) =

(( f ∗ g) ∗ h)(t).

12. In this problem, you will directly compute the convolution of two Gaus-
sian functions in two steps.

a. Use completing the square to evaluate∫ ∞

−∞
e−αt2+βt dt.

b. Use the result from part a. to directly compute the convolution in
Example 5.16:

( f ∗ g)(x) = e−bx2
∫ ∞

−∞
e−(a+b)t2+2bxt dt.

13. You will compute the (Fourier) convolution of two box functions of the
same width. Recall, the box function is given by

fa(x) =

{
1, |x| ≤ a
0, |x| > a.

Consider ( fa ∗ fa)(x) for different intervals of x. A few preliminary sketches
will help. In Figure 5.45, the factors in the convolution integrand are show
for one value of x. The integrand is the product of the first two functions.
The convolution at x is the area of the overlap in the third figure. Think
about how these pictures change as you vary x. Plot the resulting areas as a
function of x. This is the graph of the desired convolution.
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fa(t)

1

a−a

fa(x− t)

1

a + x−a + x

fa(t) fa(x− t)

a−a

x

Figure 5.45: Sketch used to compute the
convolution of the box function with it-
self. In the top figure is the box func-
tion. The middle figure shows the box
shifted by x. The bottom figure indicates
the overlap of the functions.

14. Define the integrals In =
∫ ∞
−∞ x2ne−x2

dx. Noting that I0 =
√

π,

a. Find a recursive relation between In and In−1.

b. Use this relation to determine I1, I2, and I3.

c. Find an expression in terms of n for In.

15. Find the Laplace transform of the following functions:

a. f (t) = 9t2 − 7.

b. f (t) = e5t−3.

c. f (t) = cos 7t.

d. f (t) = e4t sin 2t.

e. f (t) = e2t(t + cosh t).

f. f (t) = t2H(t− 1).

g. f (t) =

{
sin t, t < 4π,

sin t + cos t, t > 4π.

h. f (t) =
∫ t

0 (t− u)2 sin u du.

i. f (t) = (t + 5)2 + te2t cos 3t and write the answer in the simplest
form.

16. Find the inverse Laplace transform of the following functions using the
properties of Laplace transforms and the table of Laplace transform pairs.

a. F(s) =
18
s3 +

7
s

.

b. F(s) =
1

s− 5
− 2

s2 + 4
.
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c. F(s) =
s + 1
s2 + 1

.

d. F(s) =
3

s2 + 2s + 2
.

e. F(s) =
1

(s− 1)2 .

f. F(s) =
e−3s

s2 − 1
.

g. F(s) =
1

s2 + 4s− 5
.

h. F(s) =
s + 3

s2 + 8s + 17
.

17. Compute the convolution ( f ∗ g)(t) (in the Laplace transform sense) and
its corresponding Laplace transform L[ f ∗ g] for the following functions:

a. f (t) = t2, g(t) = t3.

b. f (t) = t2, g(t) = cos 2t.

c. f (t) = 3t2 − 2t + 1, g(t) = e−3t.

d. f (t) = δ
(
t− π

4
)

, g(t) = sin 5t.

18. For the following problems, draw the given function and find the
Laplace transform in closed form.

a. f (t) = 1 + ∑∞
n=1(−1)n H(t− n).

b. f (t) = ∑∞
n=0[H(t− 2n + 1)− H(t− 2n)].

c. f (t) = ∑∞
n=0(t− 2n)[H(t− 2n)−H(t− 2n− 1)]+ (2n+ 2− t)[H(t−

2n− 1)− H(t− 2n− 2)].

19. Use the Convolution Theorem to compute the inverse transform of the
following:

a. F(s) =
2

s2(s2 + 1)
.

b. F(s) =
e−3s

s2 .

c. F(s) =
1

s(s2 + 2s + 5)
.

20. Find the inverse Laplace transform in two different ways: (i) Use tables.
(ii) Use the Bromwich Integral.

a. F(s) =
1

s3(s + 4)2 .

b. F(s) =
1

s2 − 4s− 5
.

c. F(s) =
s + 3

s2 + 8s + 17
.

d. F(s) =
s + 1

(s− 2)2(s + 4)
.
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e. F(s) =
s2 + 8s− 3

(s2 + 2s + 1)(s2 + 1)
.

21. Use Laplace transforms to solve the following initial value problems.
Where possible, describe the solution behavior in terms of oscillation and
decay.

a. y′′ − 5y′ + 6y = 0, y(0) = 2, y′(0) = 0.

b. y′′ − y = te2t, y(0) = 0, y′(0) = 1.

c. y′′ + 4y = δ(t− 1), y(0) = 3, y′(0) = 0.

d. y′′ + 6y′ + 18y = 2H(π − t), y(0) = 0, y′(0) = 0.

22. Use Laplace transforms to convert the following system of differential
equations into an algebraic system and find the solution of the differential
equations.

x′′ = 3x− 6y, x(0) = 1, x′(0) = 0,

y′′ = x + y, y(0) = 0, y′(0) = 0.

23. Use Laplace transforms to convert the following nonhomogeneous sys-
tems of differential equations into an algebraic system and find the solutions
of the differential equations.

a.

x′ = 2x + 3y + 2 sin 2t, x(0) = 1,

y′ = −3x + 2y, y(0) = 0.

b.

x′ = −4x− y + e−t, x(0) = 2,

y′ = x− 2y + 2e−3t, y(0) = −1.

c.

x′ = x− y + 2 cos t, x(0) = 3,

y′ = x + y− 3 sin t, y(0) = 2.

24. Use Laplace transforms to sum the following series:

a.
∞

∑
n=0

(−1)n

1 + 2n
.

b.
∞

∑
n=1

1
n(n + 3)

.

c.
∞

∑
n=1

(−1)n

n(n + 3)
.

d.
∞

∑
n=0

(−1)n

n2 − a2 .
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e.
∞

∑
n=0

1
(2n + 1)2 − a2 .

f.
∞

∑
n=1

1
n

e−an.

25. Use Laplace transforms to prove

∞

∑
n=1

1
(n + a)(n + b)

=
1

b− a

∫ 1

0

ua − ub

1− u
du.

Use this result to evaluate the following sums:

a.
∞

∑
n=1

1
n(n + 1)

.

b.
∞

∑
n=1

1
(n + 2)(n + 3)

.

26. Do the following:

a. Find the first four nonvanishing terms of the Maclaurin series ex-

pansion of f (x) =
x

ex − 1
.

b. Use the result in part a. to determine the first four nonvanishing
Bernoulli numbers, Bn.

c. Use these results to compute ζ(2n) for n = 1, 2, 3, 4.

27. Given the following Laplace transforms, F(s), find the function f (t).
Note that in each case there are an infinite number of poles, resulting in an
infinite series representation.

a. F(s) =
1

s2(1 + e−s)
.

b. F(s) =
1

s sinh s
.

c. F(s) =
sinh s

s2 cosh s
.

d. F(s) =
sinh(β

√
sx)

s sinh(β
√

sL)
.

28. Consider the initial boundary value problem for the heat equation:

ut = 2uxx, 0 < t, 0 ≤ x ≤ 1,
u(x, 0) = x(1− x), 0 < x < 1,

u(0, t) = 0, t > 0,
u(1, t) = 0, t > 0.

Use the finite transform method to solve this problem. Namely, assume
that the solution takes the form u(x, t) = ∑∞

n=1 bn(t) sin nπx and obtain an
ordinary differential equation for bn and solve for the bn’s for each n.



6
From Analog to Discrete Signals

You don’t have to be a mathematician to have a feel for numbers. - John Forbes Nash
(1928 - 2015)

As you may recall, a goal of this course has been to introduce some
of the tools of applied mathematics with an underlying theme of finding
the connection between analog and discrete signals. We began our studies
with Fourier series, which provided representations of periodic functions.
We then moved on to the study of Fourier transforms, which represent func-
tions defined over all space. Such functions can be used to describe analog
signals. However, we cannot record and store analog signals. There is an
uncountable amount of information in analog signals. We record a signal
for a finite amount of time and even then we can only store samples of the
signal over that time interval. The resulting signal is discrete. These dis-
crete signals are represented using the Discrete Fourier Transform (DFT). In
this chapter we will discuss the general steps of relating analog, periodic
and discrete signals. Then we will go further into the properties of the Dis-
crete Fourier Transform (DFT) and in the next chapter we will apply what
we have learned to the study of real signals.

6.1 Analog to Periodic Signals

We begin by considering a typical analog signal and its Fourier trans-
form as shown in Figure 6.1. Analog signals can be described as piece-
wise continuous functions defined over infinite time intervals. The resulting
Fourier transforms are also piecewise continuous and defined over infinite
intervals of frequencies. We represent an analog signal, f (t), and its trans-
form, f̂ (ω), using the inverse Fourier transform and the Fourier transform,
respectively:

f (t) =
1

2π

∫ ∞

−∞
f̂ (ω)e−iωt dω, (6.1)

f̂ (ω) =
∫ ∞

−∞
f (t)eiωt dt. (6.2)
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Note that the figures in this section are drawn as if the transform is real-
valued. (See Figure 6.1.) However, in general they are not and we will
investigate how this can be handled in the next chapter.

Figure 6.1: Plot of an analog signal f (t)
and its Fourier transform f̂ (ω).

Real signals cannot be studied on an infinite interval. Such signals are
captured as data over a finite time interval. Let’s assume that the recording
starts at t = 0. Then, the record interval will be written as [0, T], where T is
called the record length.

The natural representation of a function, f (t), for t ∈ [0, T], is obtained by
extending the signal to a periodic signal knowing that the physical signal
is only defined on [0, T]. Recall that periodic functions can be modeled by a
Fourier exponential series. We will denote the periodic extension of f (t) by
fp(t). The Fourier series representation of fp and its Fourier coefficients are
given byRecall from Chapter 6 that we defined

Fourier exponential series for intervals
of length 2L. It is easy to map that series
expansion to one of length T, resulting
in the representation used here.

fp(t) =
∞

∑
n=−∞

cne−iωnt,

cn =
1
T

∫ T

0
fp(t)eiωnt dt. (6.3)

Here we have defined the discrete angular frequency ωn = 2πn
T . The associ-

ated frequency is then νn = n
T .Here we begin with a signal f (t) defined

on [0, T] and obtain the Fourier series
representation (6.3) which gives the pe-
riodic extension of this function, fp(t).
The frequencies are discrete as shown
in Figure 6.2. We will determine the
Fourier transform as

f̂p(ω) =
2π

T
f̂ (ω)comb 2π

T
(ω)

and conclude that fp is the convolution
of the signal f with a comb function.

Given that fp(t) is a periodic function, we would like to relate its Fourier
series representation to the Fourier transform, f̂p(ω), of the corresponding
signal fp(t). This is done by simply computing its Fourier transform:

f̂p(ω) =
∫ ∞

−∞
fp(t)eiωt dt

=
∫ ∞

−∞

(
∞

∑
n=−∞

cne−iωnt

)
eiωt dt

=
∞

∑
n=−∞

cn

∫ ∞

−∞
ei(ω−ωn)t dt. (6.4)

Recalling from Equation (5.47) that∫ ∞

−∞
eiωx dx = 2πδ(ω),

we obtain the Fourier transform of fp(t) :

f̂p(ω) =
∞

∑
n=−∞

2πcnδ(ω−ωn). (6.5)
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Thus, the Fourier transform of a periodic function is a series of spikes at
discrete frequencies ωn = 2πn

T of strength 2πcn. This is represented in Figure
6.2. Note that the spikes are of finite height representing the factor 2πcn.

Figure 6.2: A periodic signal contains
discrete frequencies ωn = 2πn

T .

A simple example displaying this behavior is a signal with a single fre-
quency, f (t) = cos ω0t. Restricting this function to a finite interval [0, T],
one obtains a version of the finite wave train, which was first introduced in
Example 5.10 of the last chapter.

Example 6.1. Find the real part of the Fourier transform of the finite wave train
f (t) = cos ω0t, t ∈ [0, T].

Computing the real part of the Fourier transform, we find

Re f̂ (ω) = Re
∫ ∞

−∞
f (t)eiωt dt

= Re
∫ T

0
cos ω0teiωt dt

=
∫ T

0
cos ω0t cos ωt dt

=
1
2

∫ T

0
[cos((ω + ω0)t) + cos((ω−ω0)t)] dt

=
1
2

[
sin((ω + ω0)T)

ω + ω0
+

sin((ω−ω0)T)
ω−ω0

]
=

T
2
[sinc ((ω + ω0)T) + sinc ((ω−ω0)T)] . (6.6)

Thus, the real part of the Fourier transform of this finite wave train consists of the
sum of two sinc functions.

Two examples are provided in Figures 6.3 and 6.4. In both cases we consider
f (t) = cos 2πt, but with t ∈ [0, 5] or t ∈ [0, 2]. The corresponding Fourier
transforms are also provided. We first see the sum of the two sinc functions in
each case. Furthermore, the main peaks, centered at ω = ±ω0 = ±2π, are better
defined for T = 5 than for T = 2. This indicates that a larger record length will
provide a better frequency resolution.

Next, we determine the relationship between the Fourier transform of
fp(t) and the Fourier coefficients. Namely, evaluating f̂p(ω) at ω = ωk, we
have

f̂p(ωk) =
∞

∑
n=−∞

2πcnδ(ωk −ωn) = 2πck.
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Figure 6.3: Plot of f (t) = cos 2πt, t ∈
[0, 5] and the real and imaginary part of
the Fourier transform.

Figure 6.4: Plot of f (t) = cos 2πt, t ∈
[0, 2] and the real and imaginary part of
the Fourier transform.

Therefore, we can write the Fourier transform as

f̂p(ω) =
∞

∑
n=−∞

f̂p(ωn)δ(ω−ωn).

Further manipulation yields

f̂p(ω) =
∞

∑
n=−∞

f̂p(ωn)δ(ω−ωn)

=
∞

∑
n=−∞

f̂p(ω)δ(ω−ωn)

= f̂p(ω)
∞

∑
n=−∞

δ(ω− 2πn
T

). (6.7)

This shows that the Fourier transform of a periodic signal is the product of
the continuous function and a sum of δ function spikes of strength f̂p(ωn) at
frequencies ωn = 2πn

T as was shown in Figure 6.2. In Figure 6.5 the discrete
spectrum is superimposed on the continuous spectrum emphasizing this
connection.

The sum in the last line of Equation (6.7) is a special function, the Dirac
comb function,

comb 2π
T
(ω) =

∞

∑
n=−∞

δ(ω− 2πn
T

),

which we discuss further in the next section.

f(ω)

ω

Figure 6.5: The discrete spectrum ob-
tained from the Fourier transform of the
periodic extension of f (t), t ∈ [0, T] is
superimposed on the continuous spec-
trum of the analog signal.
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6.2 The Dirac Comb Function

A function that often occurs in signal analysis is the Dirac comb func-
tion defined by

comba(t) =
∞

∑
n=−∞

δ(t− na). (6.8)

This function is simply a set of translated delta function spikes as shown
in Figure 6.6. It is also called an impulse train or a sampling function. It is a
periodic distribution and care needs to be taken in studying the properties
of this function. We will show how the comb function can be used to relate
analog and finite length signals.

Figure 6.6: The Dirac comb function,
comba(t) = ∑∞

n=−∞ δ(t− na).

In some fields, the comb function is written using the Cyrillic uppercase
Sha function,

X(x) =
∞

∑
n=−∞

δ(x− n).

This is just a comb function with unit spacing, a = 1.
Employing the properties of the Dirac delta function, we can derive sev-

eral properties of the Shah function. First, we have dilation and translation
properties:

X(ax) =
∞

∑
n=−∞

δ(ax− n)

=
1
|a|

∞

∑
n=−∞

δ(x− n
a
)

=
1
|a|comb 1

a
(x). (6.9)

X(x + k) = X(x), k an integer. (6.10)

Also, we have the Sampling Property,

X(x) f (x) =
∞

∑
n=−∞

f (n)δ(x− n) (6.11)

and the Replicating Property

(X ∗ f ) (x) =
∞

∑
n=−∞

f (x− n). (6.12)

These properties are easily confirmed. The Sampling Property is shown
by

X(x) f (x) =
∞

∑
n=−∞

δ(x− n) f (x)

=
∞

∑
n=−∞

f (n)δ(x− n), (6.13)

while the Replicating Property is verified by a simple computation:

(X ∗ f ) (x) =
∫ ∞

−∞
X(ξ) f (x− ξ) dξ
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=
∫ ∞

−∞

(
∞

∑
n=−∞

δ(ξ − n)

)
f (x− ξ) dξ

=
∞

∑
n=−∞

(∫ ∞

−∞
δ(ξ − n) f (x− ξ) dξ

)
=

∞

∑
n=−∞

f (x− n). (6.14)

Thus, the convolution of a function with the Shah function results in a sum
of translations of the function.

The comb function inherits these properties, since it can be written using
the Shah function,

combT(t) =
∞

∑
n=−∞

δ(t− nT)

=
∞

∑
n=−∞

δ(T(
t
T
− n))

=
∞

∑
n=−∞

1
|T| δ(

t
T
− n)

=
1
|T|X

(
t
T

)
. (6.15)

In the following we will only use the comb function.
We further note that combT(t) has period T :

combT(t + T) =
∞

∑
n=−∞

δ(t + T − nT)

=
∞

∑
n=−∞

δ(t− nT) = combT(t). (6.16)

Thus, the comb function has a Fourier series representation on [0, T].

Example 6.2. Find the Fourier exponential series representation of combT(t).
Since combT(t) has period T, the Fourier series representation takes the form

combT(t) =
∞

∑
n=−∞

cne−iωnt,

where ωn = 2πn
T .

Useful results from this discussion are
the exponential Fourier series represen-
tation,

combT(t) =
1
T

∞

∑
n=−∞

e−2πint/T ,

and the sum of exponentials

∞

∑
n=−∞

e−inat =
2π

a
comb 2π

a
(t).

We can easily compute the Fourier coefficients:

cn =
1
T

∫ T

0
combT(t)eiωnt dt

=
1
T

∫ T

0

∞

∑
k=−∞

δ(t− kT)eiωnt dt

=
1
T

e0 =
1
T

. (6.17)

Note, the sum collapses because the only δ function contribution comes from the
k = 0 term (since kT ∈ [0, T] only for k = 0). As a result, we have obtained the
Fourier series representation of the comb function,

combT(t) =
1
T

∞

∑
n=−∞

e−2πint/T .
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From this result we note that

∞

∑
n=−∞

einat =
∞

∑
n=−∞

e2πint/(2π/a)

=
2π

a
comb 2π

a
(t). (6.18)

Example 6.3. Find the Fourier transform of comba(t).
We compute the Fourier transform of the comb function directly:

F[comba(t)] =
∫ ∞

−∞
comba(t)eiωt dt

=
∫ ∞

−∞

∞

∑
n=−∞

δ(t− na)eiωt dt

=
∞

∑
n=−∞

∫ ∞

−∞
δ(t− na)eiωt dt

=
∞

∑
n=−∞

eiωna

=
2π

a
comb 2π

a
(ω). (6.19)

The Fourier transform of a comb func-
tion is a comb function.

F[comba(t)] =
2π

a
comb 2π

a
(ω).

Example 6.4. Show that the convolution of a function with combT(x) is a periodic
function with period T. Since combT(t) is a periodic function with period T, we
have

( f ∗ combT)(t + T) =
∫ ∞

−∞
f (τ)combT(t + T − τ) dτ

=
∫ ∞

−∞
f (τ)combT(t− τ) dτ

= ( f ∗ combT)(t). (6.20)

Next, we will show that the periodic function fp(t) is nothing but a
(Fourier) convolution of the analog function and the comb function. We
first show that ( f ∗ comba)(t) = ∑∞

n=−∞ f (t− na).

Example 6.5. Evaluate the convolution ( f ∗ comba)(t) directly.
We carry out a direct computation of the convolution integral. We do this by first

considering the convolution of a function f (t) with a shifted Dirac delta function,
δa(t) = δ(t− a). This convolution is easily computed as

( f ∗ δa)(t) =
∫ ∞

−∞
f (t− τ)δ(τ − a) dτ = f (t− a).

Therefore, the convolution of a function with a shifted delta function is a copy of
f (t) that is shifted by a.

Now convolve f (t) with the comb function:

( f ∗ comba)(t) =
∫ ∞

−∞
f (t− τ)comba(τ) dτ

=
∫ ∞

−∞
f (t− τ)

∞

∑
n=−∞

δ(τ − na) dτ
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=
∞

∑
n=−∞

( f ∗ δna)(t)

=
∞

∑
n=−∞

f (t− na). (6.21)

From this result we see that the convolution of a function f (t) with a
comb function is then the sum of shifted copies of f (t), as shown in Figure
6.7. If the function has compact support on [− a

2 , a
2 ], i.e., the function is zero

for |t| > 1/a, then the convolution with the comb function will be periodic.

Example 6.6. Find the Fourier transform of the convolution ( f ∗ comba)(t).
This is done using the result of the last example and the first shift theorem.

F[ f ∗ comba] = F

[
∞

∑
n=−∞

f (t− na)

]

=
∞

∑
n=−∞

F[ f (t− na)]

=
∞

∑
n=−∞

f̂ (ω)einaω

= f̂ (ω)
∞

∑
n=−∞

einaω

=
2π

a
f̂ (ω)comb 2π

a
(ω). (6.22)

Figure 6.7: The convolution of f (t) with
the comb function, comba(t). The first
plot shows the function and the comb
function. In the second of these plots
we add the sum of several translations
of f (t). Incorrect sampling will lead to
overlap in the translates and cause prob-
lems like aliasing. In the last of these
plots, one has no overlap and the peri-
odicity is evident.

Another way to compute the Fourier transform of the convolution ( f ∗ comba)(t)
is to note that the Fourier of this convolution is the product of the transforms of f
and comba by the Convolution Theorem. Therefore,

F[ f ∗ comba] = f̂ (ω)F[comba](ω)

=
2π

a
f̂ (ω)comb 2π

a
(ω). (6.23)

We have obtained the same result, though in fewer steps.

For a function of period T, fp(t) = ( f ∗ combT)(t), we then have

f̂p(ω) =
2π

T
f̂ (ω)comb 2π

T
(ω).

Thus, the resulting spectrum is a series of scaled delta functions separated
by ∆ω = 2π

T .
The main message of this section has been that the Fourier transform of

a periodic function produces a series of delta function spikes. This series
of spikes is the transform of the convolution of f (t) and a comb function.
This is essentially a sampling of f̂ (ω) in frequency space. A similar result is
obtained if we instead had a periodic Fourier transform due to a sampling
in t-space. Combining both discrete functions in t and ω spaces, we have
discrete signals, as will be described next.
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6.3 Discrete Signals

We would like to sample a given signal at a discrete set of equally
spaced times, tn ∈ [0, T]. This is how one normally records signals. One
samples the signal with a sampling frequency νs, such as ten samples per
second, or 10 Hz. Therefore, the values are recorded in time steps of Ts =

1/νs For sampling at 10 Hz, this gives a sampling period of 0.1 s.
We can model this sampling at discrete time points by multiplying f (t) by

the comb function combTs(t). The Fourier transform will yield a convolution
of the Fourier transform of f (t) with the Fourier transform of the comb
function. But this is a convolution of f̂ (ω) with another comb function,
since the transform of a comb function is a comb function. Therefore, we
will obtain a periodic representation in Fourier space.

Example 6.7. Sample f (t) = cos ω0t with a sampling frequency of νs =
1
Ts

.
As noted, the sampling of this function can be represented as

fs(t) = cos ω0t combTs(t).

We now evaluate the Fourier transform of fs(t) :

F[cos ω0t combTs(t)] =
∫ ∞

−∞
cos ω0t combTs(t)e

iωt dt

=
∫ ∞

−∞
cos ω0t

(
∞

∑
n=−∞

δ(t− nTs)

)
eiωt dt

=
∞

∑
n=−∞

cos(ω0nTs)eiωnTs

=
1
2

∞

∑
n=−∞

[
ei(ω+ω0)nTs + ei(ω−ω0)nTs

]
=

π

Ts

[
comb 2π

Ts
(ω + ω0) + comb 2π

Ts
(ω−ω0)

]
.

(6.24)

Thus, we have shown that sampling f (t) = cos ω0t with a sampling period of
Ts results in a sum of translated comb functions. Each comb function consists of
spikes separated by ωs =

2π
Ts

. Each set of spikes are translated by ω0 to the left or
the right and then added. Since each comb function is periodic with “period” ωs in
Fourier space, then the result turns out to be periodic as noted above.

In collecting data, we not only sample at a discrete set of points, but
we also sample for a finite length of time. By sampling like this, we will
not gather enough information to obtain the high frequencies in a signal.
Thus, there will be a natural cutoff in the spectrum of the signal. This is
represented in Figure 6.8. This process will lead to the Discrete Fourier
Transform, the topic in the next section.

Here we will show that the sampling of
a function defined on [0, T] with sam-
pling period Ts can represented by the
convolution of fp with a comb function.
The resulting transform will be a sum of
translations of f̂p(ω)

Once again, we can use the comb function in the analysis of this process.
We define a discrete signal as one which is represented by the product of a
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Figure 6.8: Sampling the original signal
at a discrete set of times defined on a
finite interval leads to a discrete set of
frequencies in the transform that are re-
stricted to a finite interval of frequencies.

periodic function sampled at discrete times. This suggests the representa-
tion

fd(t) = fp(t)combTs(t). (6.25)

Here Ts denotes the period of the sampling and fp(t) has the form

fp(t) =
∞

∑
n=−∞

cne−iωnt.

Example 6.8. Evaluate the Fourier transform of fd(t).
The Fourier transform of fd(t) can be computed:

f̂d(ω) =
∫ ∞

−∞
fp(t)combTs(t)e

iωt dt

=
1

2π

∫ ∞

−∞

[∫ ∞

−∞
f̂p(µ)e−iµt dµ

]
combTs(t)e

iωt dt

=
1

2π

∫ ∞

−∞
f̂p(µ)

∫ ∞

−∞
combTs(t)e

i(ω−µ)t dt︸ ︷︷ ︸
Transform of combTs

at ω−µ

dµ

=
1

2π

∫ ∞

−∞
f̂p(µ)

2π

Ts
comb 2π

Ts
(ω− µ) dµ

=
1
Ts

∞

∑
n=−∞

f̂p(ω−
2π

Ts
n). (6.26)

Note that the Convolution Theorem for
the convolution of Fourier transforms
needs a factor of 2π.

We note that in the middle of this computation we find a convolution
integral:

1
2π

∫ ∞

−∞
f̂p(µ)

2π

Ts
comb 2π

Ts
(ω− µ) dµ =

(
f̂p ∗ comb 2π

Ts

)
(ω)

Also, it is easily seen that f̂d(ω) is a periodic function with period 2π
Ts

:

f̂d(ω +
2π

Ts
) = f̂d(ω).

We have shown that sampling a function fp(t) with sampling frequency
νs = 1/Ts, one obtains a periodic spectrum, f̂d(ω).

6.3.1 Summary

In this chapter we have taken an analog signal defined for t ∈ (−∞, ∞)

and shown that restricting it to interval t ∈ [0, T] leads to a periodic function
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of period T,
fp(t) = ( f ∗ combT)(t),

whose spectrum is discrete:

f̂p(ω) = f̂p(ω)
∞

∑
n=−∞

δ(ω− 2πn
T

). (6.27)

We then sampled this function at discrete times,

fd(t) = fp(t)combTs(t).

The Fourier transform of this discrete signal was found as

f̂d(ω) =
1
Ts

∞

∑
n=−∞

f̂p(ω−
2π

Ts
n). (6.28)

This function is periodic with period 2π
Ts

.
In Figure 6.9 we summarize the steps for going from analog signals to

discrete signals. In the next chapter we will investigate the Discrete Fourier
Transform.

Figure 6.9: Summary of transforming
analog to discrete signals. One starts
with a continuous signal f (t) defined on
(−∞, ∞) and a continuous spectrum. By
only recording the signal over a finite
interval [0, T], the recorded signal can
be represented by its periodic extension.
This in turn forces a discretization of the
transform as shown in the second row of
figures. Finally, by restricting the range
of the sampled, as shown in the last row,
the original signal appears as a discrete
signal. This is also interpreted as the
sampling of an analog signal leads to a
restricted set of frequencies in the trans-
form.

6.4 The Discrete (Trigonometric) Fourier Transform

Often one is interested in determining the frequency content of sig-
nals. Signals are typically represented as time dependent functions. Real
signals are continuous, or analog signals. However, through sampling the
signal by gathering data, the signal does not contain high frequencies and
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is finite in duration. The data is then discrete and the corresponding fre-
quencies are discrete and bounded. Thus, in the process of gathering data,
one may seriously affect the frequency content of the signal. This is true
for a simple superposition of signals with fixed frequencies. The situation
becomes more complicated if the data has an overall non-constant (in time)
trend or even exists in the presence of noise.

As described earlier in this chapter, we have seen that by restricting the
data to a time interval [0, T] for record length T, and periodically extending
the data for t ∈ (−∞, ∞), one generates a periodic function of infinite du-
ration at the cost of losing data outside the fundamental period. This is not
unphysical, as data is typically taken over a finite time period. In addition,
if one samples a finite number of values of the data on this finite interval,
then the signal will contain frequencies limited to a finite range of values.

This process, as reviewed in the last section, leads us to a study of what is
called the Discrete Fourier Transform, or DFT. We will investigate the discrete
Fourier transform in both trigonometric and exponential form. While ap-
plications such as MATLAB rely on the exponential version, it is sometimes
useful to deal with real functions using the familiar trigonometric functions.

Recall that in using Fourier series one seeks a representation of the signal,We will change the notation to using y(t)
for the signal and f for the frequency. y(t), valid for t ∈ [0, T], as

y(t) =
1
2

a0 +
∞

∑
n=1

[an cos ωnt + bn sin ωnt], (6.29)

where the angular frequency is given by ωn = 2π fn = 2πn
T . Note: In dis-

cussing signals, we will now use y(t) instead of f (t), allowing us to use f
to denote the frequency (in Hertz) without confusion.

The frequency content of a signal for a particular frequency, fn, is con-
tained in both the cosine and sine terms when the corresponding Fourier
coefficients, an, bn, are not zero. So, one may desire to combine these terms.
This is easily done by using trigonometric identities (as we had seen in
Equation(2.1)). Namely, we show that

an cos ωnt + bn sin ωnt = Cn cos(ωnt + ψ), (6.30)

where ψ is the phase shift. Recalling that

cos(ωnt + ψ) = cos ωnt cos ψ− sin ωnt sin ψ, (6.31)

one has

an cos ωnt + bn sin ωnt = Cn cos ωnt cos ψ− Cn sin ωnt sin ψ.

Equating the coefficients of sin ωnt and cos ωnt in this expression, we obtain

an = Cn cos ψ, bn = −Cn sin ψ.

Therefore,

Cn =
√

an + bn and tan ψ = − bn

an
.
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Recall that we had used orthogonality arguments in order to determine
the Fourier coefficients (an, n = 0, 1, 2, . . . and bn, n = 1, 2, 3, . . .). In par-
ticular, using the orthogonality of the trigonometric basis, we found that

In Chapter 2 we had shown that
one can write an cos ωnt + bn sin ωnt =
Cn sin(ωnt + φ). It is easy to shown that
psi and φ are related.

an = 2
T
∫ T

0 y(t) cos ωnt dt, n = 0, 1, 2, . . .
bn = 2

T
∫ T

0 y(t) sin ωnt dt, n = 1, 2, . . .
(6.32)

In the next section we will introduce the trigonometric version of the
Discrete Fourier Transform. Its appearance is similar to that of the Fourier
series representation in Equation (6.29). However, we will need to do a bit of
work to obtain the discrete Fourier coefficients using discrete orthogonality.

6.4.1 Discrete Trigonometric Series

For the Fourier series analysis of a signal, we had restricted time
to the interval [0, T], leading to a Fourier series with discrete frequencies
and a periodic function of time. In reality, taking data can only be done at
certain frequencies, thus eliminating high frequencies. Such a restriction on
the frequency leads to a discretization of the data in time. Another way to
view this is that when recording data we sample at a finite number of time
steps, limiting our ability to collect data with large oscillations. Thus, we
not only have discrete frequencies but we also have discrete times.

We first note that the data is sampled at N equally spaced times

tn = n∆t, n = 0, 1, . . . , N − 1,

where ∆t is the time increment. For a record length of T, we have ∆t = T/N.
We will denote the data at these times as yn = y(tn).

The DFT representation that we are seeking takes the form: Here we note the discretizations used for
future reference. Defining ∆t = T

N and
∆ f = 1

T , we have

tn = n∆t =
nT
N

,

ωp = p∆ω =
2πp

T
,

fp = p∆ f =
p
T

,

ωptn =
2πnp

N
,

for n = 0, 1, . . . , N − 1 and p = 1, . . . , M.

yn =
1
2

a0 +
M

∑
p=1

[ap cos ωptn + bp sin ωptn], n = 0, 1, . . . , N − 1. (6.33)

The trigonometric arguments are given by

ωptn =
2πp

T
nδt =

2πpn
N

.

Note that p = 1, . . . , M, thus allowing only for frequencies fp =
ωp
2π = p

T . Or,
we could write

fp = p∆ f

for
∆ f =

1
T

.

We need to determine M and the unknown coefficients. As for the Fourier
series, we will need some orthogonality relations, but this time the orthog-
onality statement will consist of a sum and not an integral.

Since there are N sample values, (6.33) gives us a set of N equations for
the unknown coefficients. Therefore, we should have N unknowns. For N
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samples, we want to determine N unknown coefficients a0, a1, . . . , aN/2 and
b1, . . . , bN/2−1. Thus, we need to fix M = N

2 . Often the coefficients b0 and
bN/2 are included for symmetry. Note that the corresponding sine function
factors evaluate to zero at p = 0, N

2 , leaving these two coefficients arbitrary.
Thus, we can take them to be zero when they are included.

We claim that for the Discrete (Trigonometric) Fourier Transform

yn =
1
2

a0 +
M

∑
p=1

[ap cos ωptn + bp sin ωptn], n = 0, 1, . . . , N − 1.

(6.34)
the DFT coefficients are given by

ap =
2
N

N−1

∑
n=0

yn cos(
2πpn

N
), p = 1, . . . N/2− 1

bp =
2
N

N−1

∑
n=0

yn sin(
2πpn

N
), p = 1, 2, . . . N/2− 1

a0 =
1
N

N−1

∑
n=0

yn,

aN/2 =
0
N

N−1

∑
n=1

yn cos nπ

b0 = bN/2 = 0

(6.35)

6.4.2 Discrete Orthogonality

The derivation of the discrete Fourier coefficients can be done
using the discrete orthogonality of the discrete trigonometric basis similar
to the derivation of the above Fourier coefficients for the Fourier series in
Chapter 2. We first prove the following

Theorem 6.1.

N−1
∑

n=0
cos

(
2πnk

N

)
=

{
0, k = 1, . . . , N − 1
N, k = 0, N

N−1
∑

n=0
sin
(

2πnk
N

)
= 0, k = 0, . . . , N

(6.36)

Proof. This can be done more easily using the exponential form,

N−1

∑
n=0

cos
(

2πnk
N

)
+ i

N−1

∑
n=0

sin
(

2πnk
N

)
=

N−1

∑
n=0

e2πink/N , (6.37)

by using Euler’s formula, eiθ = cos θ + i sin θ for each term in the sum.
The exponential sum is the sum of a geometric progression. Namely, we

note that
N−1

∑
n=0

e2πink/N =
N−1

∑
n=0

(
e2πik/N

)n
.
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Recall from Chapter 2 that a geometric progression is a sum of the form

SN =
N−1
∑

k=0
ark. This is a sum of N terms in which consecutive terms have a

constant ratio, r. The sum is easily computed. One multiplies the sum SN

by r and subtracts the resulting sum from the original sum to obtain

SN − rSN = (a + ar + · · ·+ arN−1)− (ar + · · ·+ arN + arN) = a− arN .
(6.38)

Factoring on both sides of this chain of equations yields the desired sum,

SN =
a(1− rN)

1− r
. (6.39)

Thus, we have

N−1

∑
n=0

e2πink/N =
N−1

∑
n=0

(
e2πik/N

)n

= 1 + e2πik/N +
(

e2πik/N
)2

+ · · ·+
(

e2πik/N
)N−1

=
1−

(
e2πik/N

)N

1− e2πik/N

=
1− e2πik

1− e2πik/N . (6.40)

As long as k 6= 0, N the numerator is 0 and 1− e2πik/N is not zero.
In the special cases that k = 0, N, we have e2πink/N = 1. So,

N−1

∑
n=0

e2πink/N =
N−1

∑
n=0

1 = N.

Therefore,

N−1

∑
n=0

cos
(

2πnk
N

)
+ i

N−1

∑
n=0

sin
(

2πnk
N

)
=

{
0, k = 1, . . . , N − 1
N, k = 0, N

(6.41)

and the Theorem is proved.

We can use this result to establish orthogonality relations.

Example 6.9. Evaluate the following:

N−1

∑
n=0

cos
(

2πpn
N

)
cos

(
2πqn

N

)
,

N−1

∑
n=0

sin
(

2πpn
N

)
cos

(
2πqn

N

)
,

and
N−1

∑
n=0

sin
(

2πpn
N

)
sin
(

2πqn
N

)
.

N−1

∑
n=0

cos
(

2πpn
N

)
cos

(
2πqn

N

)
=

1
2

N−1

∑
n=0

[
cos

(
2π(p− q)n

N

)
+ cos

(
2π(p + q)n

N

)]
.

(6.42)



250 fourier and complex analysis

Splitting the above sum into two sums and then evaluating the separate sums
from earlier in this section,

N−1

∑
n=0

cos
(

2π(p− q)n
N

)
=

{
0, p 6= q
N, p = q

,

N−1

∑
n=0

cos
(

2π(p + q)n
N

)
=

{
0, p + q 6= N
N, p + q = N

we obtain

N−1

∑
n=0

cos
(

2πpn
N

)
cos

(
2πqn

N

)
=


N/2, p = q 6= N/2
N, p = q = N/2
0, otherwise

. (6.43)

Similarly, we find

N−1

∑
n=0

sin
(

2πpn
N

)
cos

(
2πqn

N

)

=
1
2

N−1

∑
n=0

[
sin
(

2π(p− q)n
N

)
+ sin

(
2π(p + q)n

N

)]
= 0. (6.44)

and
N−1

∑
n=0

sin
(

2πpn
N

)
sin
(

2πqn
N

)

=
1
2

N−1

∑
n=0

[
cos

(
2π(p− q)n

N

)
− cos

(
2π(p + q)n

N

)]

=

{
N/2, p = q 6= N/2
0, otherwise

.

(6.45)

We have proven the following orthogonality relations

Theorem 6.2.

N−1

∑
n=0

cos
(

2πpn
N

)
cos

(
2πqn

N

)
=


N/2, p = q 6= N/2
N, p = q = N/2
0, otherwise

.

(6.46)
N−1

∑
n=0

sin
(

2πpn
N

)
cos

(
2πqn

N

)
= 0. (6.47)

N−1

∑
n=0

sin
(

2πpn
N

)
sin
(

2πqn
N

){
N/2, p = q 6= N/2
0, otherwise

. (6.48)

6.4.3 The Discrete Fourier Coefficients

The derivation of the coefficients for the DFT is now easily done
using the discrete orthogonality from the last section. We start with the
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expansion

yn =
1
2

a0 +
N/2

∑
p=1

[
ap cos

(
2πpn

N

)
+ bp sin

(
2πpn

N

)]
, n = 0, . . . , N − 1.

(6.49)
We first sum over n:

N−1

∑
n=0

yn =
N−1

∑
n=0

(
1
2

a0 +
N/2

∑
p=1

[
ap cos

(
2πpn

N

)
+ bp sin

(
2πpn

N

)])

=
1
2

a0

N−1

∑
n=0

1 +
N/2

∑
p=1

[
ap

N−1

∑
n=0

cos
(

2πpn
N

)
+ bp

N−1

∑
n=0

sin
(

2πpn
N

)]

=
1
2

a0N +
N/2

∑
p=1

[
ap · 0 + bp · 0

]
=

1
2

a0N. (6.50)

Therefore, we have a0 = 2
N

N−1
∑

n=0
yn

Now, we can multiply both sides of the expansion (6.77) by cos
(

2πqn
N

)
and sum over n. This gives

N−1

∑
n=0

yn cos
(

2πqn
N

)

=
N−1

∑
n=0

(
1
2

a0 +
N/2

∑
p=1

[
ap cos

(
2πpn

N

)
+ bp sin

(
2πpn

N

)])
cos

(
2πqn

N

)

=
1
2

a0

N−1

∑
n=0

cos
(

2πqn
N

)

+
N/2

∑
p=1

ap

N−1

∑
n=0

cos
(

2πpn
N

)
cos

(
2πqn

N

)

+
N/2

∑
p=1

bp

N−1

∑
n=0

sin
(

2πpn
N

)
cos

(
2πqn

N

)

=

 ∑N/2
p=1

[
ap

N
2 δp,q + bp · 0

]
, q 6= N/2,

∑N/2
p=1

[
apNδp,N/2 + bp · 0

]
, q = N/2,

=

{
1
2 aqN, q 6= N/2
aN/2N, q = N/2

. (6.51)

So, we have found that

aq =
2
N

N−1

∑
n=0

yn cos
(

2πqn
N

)
, q 6= N

2
, (6.52)

aN/2 =
1
N

N−1

∑
n=0

yn cos
(

2πn(N/2)
N

)

=
1
N

N−1

∑
n=0

yn cos (πn) . (6.53)
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Similarly,
N−1
∑

n=0
yn sin

(
2πqn

N

)
=

=
N−1

∑
n=0

(
1
2

a0 +
N/2

∑
p=1

[
ap cos

(
2πpn

N

)
+ bp sin

(
2πpn

N

)])
sin
(

2πqn
N

)

=
1
2

a0

N−1

∑
n=0

sin
(

2πqn
N

)

+
N/2

∑
p=1

ap

N−1

∑
n=0

cos
(

2πpn
N

)
sin
(

2πqn
N

)

+
N/2

∑
p=1

bp

N−1

∑
n=0

sin
(

2πpn
N

)
sin
(

2πqn
N

)

=
N/2

∑
p=1

[
ap · 0 + bp

N
2

δp,q

]
=

1
2

bqN. (6.54)

Finally, we have

bq =
2
N

N−1

∑
n=0

yn sin
(

2πqn
N

)
, q = 1, . . . ,

N
2
− 1. (6.55)

6.5 The Discrete Exponential Transform

The derivation of the coefficients for the trigonometric DFT was ob-
tained in the last section using the discrete orthogonality. However, appli-
cations like MATLAB do not typically use the trigonometric version of DFT
for spectral analysis. MATLAB instead uses a discrete Fourier exponential
transform in the form of the Fast Fourier Transform (FFT)1 . Its description1 The Fast Fourier Transform, or FFT,

refers to an efficient algorithm for com-
puting the discrete Fourier transform. It
was originally developed by James Coo-
ley and John Tukey in 1965 for comput-
ers based upon an algorithm invented by
Gauß.

in the help section does not involve sines and cosines. Namely, MATLAB
defines the transform and inverse transform (by typing help fft) as

For length N input vector x, the DFT is a length N vector X,

with elements

N

X(k) = sum x(n)*exp(-j*2*pi*(k-1)*(n-1)/N), 1 <= k <= N.

n=1

The inverse DFT (computed by IFFT) is given by

N

x(n) = (1/N) sum X(k)*exp( j*2*pi*(k-1)*(n-1)/N), 1 <= n <= N.

k=1

It also provides in the new help system,

X(k) =
N

∑
j=1

x(j)ω(j−1)(k−1)
N ,
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x(j) =
1
N

N

∑
k=1

X(k)ω−(j−1)(k−1)
N ,

where ωN = e−2πi/N are the Nth roots of unity. You will note a few differ-
ences between these representations and the discrete Fourier transform in
the last section. First of all, there are no trigonometric functions. Next, the
sums do not have a zero index, a feature of indexing in MATLAB. Also, in
the older definition, MATLAB uses a “j” and not an “i” for the imaginary
unit.

In this section we will derive the discrete Fourier exponential transform
in the form

Fk =
N−1

∑
j=0

W jk f j. (6.56)

where WN = e−2πi/N and k = 0, . . . , N − 1. We will find the relationship
between what MATLAB is computing and the discrete Fourier trigonometic
series. This will also be useful as a preparation for a discussion of the FFT
in the next chapter.

We will start with the DFT (Discrete Fourier Transform):

yn =
1
2

a0 +
N/2

∑
p=1

[
ap cos

(
2πpn

N

)
+ bp sin

(
2πpn

N

)]
(6.57)

for n = 0, 1, . . . , N − 1.
We use Euler’s formula to rewrite the trigonometric functions in terms of

exponentials. The DFT formula can be written as

yn =
1
2

a0 +
N/2

∑
p=1

[
ap

e2πipn/N + e−2πipn/N

2
+ bp

e2πipn/N − e−2πipn/N

2i

]

=
1
2

a0 +
N/2

∑
p=1

[
1
2
(
ap − ibp

)
e2πipn/N +

1
2
(
ap + ibp

)
e−2πipn/N

]
.

(6.58)

We define Cp = 1
2
(
ap − ibp

)
and note that the above result can be written

as

yn = C0 +
N/2

∑
p=1

[
Cpe2πipn/N + C̄pe−2πipn/N

]
, n = 0, 1, . . . , N − 1. (6.59)

The terms in the sums look similar. We can actually combine them into
one form. Note that e2πiN = cos(2πN) + i sin(2πN) = 1. Thus, we can
write

e−2πipn/N = e−2πipn/Ne−2πiN = e2πi(N−p)n/N

in the second sum. Since p = 1, . . . , N/2, we see that N − p = N − 1, N −
2, . . . , N/2. So, we can rewrite the second sum as

N/2

∑
p=1

C̄pe−2πipn/N =
N/2

∑
p=1

C̄pe2πi(N−p)n/N =
N−1

∑
q=N/2

C̄N−qe2πiqn/N .
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Since q is a dummy index (it can be replaced by any letter without chang-
ing the value of the sum), we can replace it with a p and combine the terms
in both sums to obtain

yn =
N−1

∑
p=0

Ype2πipn/N , n = 0, 1, . . . , N − 1, (6.60)

where

Yp =


a0
2 , p = 0,
1
2 (ap − ibp), 0 < p < N/2,
aN/2, p = N/2,
1
2 (aN−p + ibN−p), N/2 < p < N.

(6.61)

Notice that the real and imaginary parts of the Fourier coefficients obey
certain symmetry properties over the full range of the indices since the real
and imaginary parts are related between p ∈ (0, N/2) and p ∈ (N/2, N).
Namely, since

YN−j =
1
2
(aj + ibj) = Y j, j = 1, . . . , N − 1,

Re(YN−j) = ReYj and Im(YN−j) = −ImYj for j = 1, . . . , N − 1.
We can now determine the coefficients in terms of the sampled data.

Cp =
1
2
(ap − ibp)

=
1
N

N

∑
n=1

yn

[
cos

(
2πpn

N

)
− i sin

(
2πpn

N

)]

=
1
N

N

∑
n=1

yne−2πipn/N . (6.62)

Thus,

Yp =
1
N

N

∑
n=1

yne−2πipn/N , 0 < p <
N
2

(6.63)

and

Yp = C̄N−p

=
1
N

N

∑
n=1

yne2πi(N−p)n/N ,
N
2

< p < N

=
1
N

N

∑
n=1

yne−2πipn/N . (6.64)

We have shown that for all Y’s but two, the form is

Yp =
1
N

N

∑
n=1

yne−2πipn/N . (6.65)

However, we can easily show that this is also true when p = 0 and p = N
2 .

YN/2 = aN/2
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=
1
N

N

∑
n=1

yn cos nπ

=
1
N

N

∑
n=1

yn [cos nπ − i sin nπ]

=
1
N

N

∑
n=1

yne−2πin(N/2)/N (6.66)

and

Y0 =
1
2

a0

=
1
N

N

∑
n=1

yn

=
1
N

N

∑
n=1

yne2πin(0)/N . (6.67)

Thus, all of the Yp’s are of the same form. This gives us the discrete
transform pair

yn =
N−1

∑
p=0

Ype2πipn/N , n = 1, . . . , N, (6.68)

Yp =
1
N

N

∑
n=1

yne−2πipn/N , p = 0, 1, . . . , N − 1. (6.69)

Note that this is similar to the definition of the FFT given in MATLAB.

6.6 FFT: The Fast Fourier Transform

The usual computation of the discrete Fourier transform (DFT) is done
using the Fast Fourier Transform (FFT). There are various implementations
of it, but a standard form is the Radix-2 FFT. We describe this FFT in the
current section. We begin by writing the DFT compactly using W = e−2πi/N .
Note that WN/2 = −1, WN = 1, and e2πijk/N = W jk. We can then write

Fk =
N−1

∑
j=0

W jk f j. (6.70)

The key to the FFT is that this sum can be written as two similar sums:

Fk =
N−1

∑
j=0

W jk f j

=
N/2−1

∑
j=0

W jk f j +
N−1

∑
j=N/2

W jk f j

=
N/2−1

∑
j=0

W jk f j +
N/2−1

∑
m=0

Wk(m+N/2) fm+N/2, for m = j− N
2
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=
N/2−1

∑
j=0

[
W jk f j + Wk(j+N/2) f j+N/2

]
=

N/2−1

∑
j=0

W jk
[

f j + (−1)k f j+N/2

]
(6.71)

since Wk(j+N/2) = Wkj(WN/2)k and WN/2 = −1.
Thus, the sum appears to be of the same form as the initial sum, but there

are half as many terms with a different coefficient for the W jk’s. In fact, we
can separate the terms involving the + or – sign by looking at the even and
odd values of k.

For even k = 2m, we have

F2m =
N/2−1

∑
j=0

(
W2m

)j [
f j + f j+N/2

]
, m = 0, . . .

N
2
− 1. (6.72)

For odd k = 2m + 1, we have

F2m+1 =
N/2−1

∑
j=0

(
W2m

)j
W j
[

f j − f j+N/2

]
, m = 0, . . .

N
2
− 1. (6.73)

Each of these equations gives the Fourier coefficients in terms of a similar

sum using fewer terms and with a different weight, W2 =
(

e−2πi/N
)2

=

e−2πi/(N/2). If N is a power of 2, then this process can be repeated over and
over until one ends up with a simple sum.

The process is easily seen when written out for a small number of sam-
ples. Let N = 8. Then a first pass at the above gives

F0 = f0 + f1 + f2 + f3 + f4 + f5 + f6 + f7.

F1 = f0 + W f1 + W2 f2 + W3 f3 + W4 f4 + W5 f5 + W6 f6 + W7 f7.

F2 = f0 + W2 f1 + W4 f2 + W6 f3 + f4 + W2 f5 + W4 f6 + W6 f7.

F3 = f0 + W3 f1 + W6 f2 + W f3 + W4 f4 + W7 f5 + W2 f6 + W5 f7.

F4 = f0 + W4 f1 + f2 + W4 f3 + f4 + W4 f5 + f6 + W4 f7.

F5 = f0 + W5 f1 + W2 f2 + W7 f3 + W4 f4 + W f5 + W6 f6 + W3 f7.

F6 = f0 + W6 f1 + W4 f2 + W2 f3 + f4 + W6 f5 + W4 f6 + W2 f7.

F7 = f0 + W7 f1 + W6 f2 + W5 f3 + W4 f4 + W3 f5 + W2 f6 + W f7.

(6.74)

The point is that the terms in these expressions can be regrouped with
W = e−πi/8 and noting W4 = −1:

F0 = ( f0 + f4) + ( f1 + f5) + ( f2 + f6) + ( f3 + f7)

≡ g0 + g1 + g2 + g3.

F1 = ( f0 − f4) + ( f1 − f5)W + ( f2 − f6)W2 + ( f3 − f7)W3

≡ g4 + g6 + g5 + g7.

F2 = ( f0 + f4) + ( f1 + f5)W2 − ( f2 + f6)− ( f3 + f7)W2
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= g0 − g2 + (g1 − g3)W2.

F3 = ( f0 − f4)− ( f2 − f6)W + ( f1 − f5)WW2 + ( f3 − f7)WW6

= g4 − g6 + g5W2 + g7W6.

F4 = ( f0 + f4) + ( f1 + f5)− ( f2 + f6)− ( f3 + f7)

= g0 + g2 − g1 − g3.

F5 = ( f0 − f4) + ( f2 − f6)W + ( f1 − f5)WW4 + ( f3 − f7)WW4

= g4 + g6 + g5W4 + g7W4.

F6 = ( f0 + f4) + ( f1 + f5)W6 − ( f2 + f6)− ( f3 + f7)W6

= g0 − g2 + (g1 − g3)W6.

F7 = ( f0 − f4)− ( f2 − f6)W + ( f1 − f5)WW6 + ( f3 − f7)WW2

= g4 − g6 + g5W6 + g7W2. (6.75)

However, each of the g−series can be rewritten as well, leading to

F0 = (g0 + g2) + (g1 + g3) ≡ h0 + h1.

F1 = (g4 + g6) + (g5 + g7) ≡ h4 + h5.

F2 = (g0 − g2) + (g1 − g3)W2 ≡ h2 + h3.

F3 = (g4 − g6) + (g5 − g7)W2 ≡ h6 + h7.

F4 = (g0 + g2)− (g1 + g3) = h0 − h1.

F5 = (g4 + g6)− (g5 + g7) = h4 − h5.

F6 = g0 − g2 − (g1 − g3)W2 = h2 − h3.

F7 = g4 − g6 + g5W6 + g7W2 = h6 − h7. (6.76)

Thus, the computation of the Fourier coefficients amounts to inputting
the f ’s and computing the g’s. This takes 8 additions and 4 multiplications.
Then one get the h’s, which is another 8 additions and 4 multiplications.
There are three stages, amounting to a total of 12 multiplications and 24

additions. Carrying out the process in general, one has log2 N steps with
N/2 multiplications and N additions per step. In the direct computation
one has (N − 1)2 multiplications and N(N − 1) additions. Thus, for N = 8,
that would be 49 multiplications and 56 additions.

The above process is typically shown schematically in a “butterfly dia-
gram.” The basic butterfly transformation is displayed in Figure 6.10. An 8

point FFT is shown in Figure 6.11.

f j

fN/2+j

f j + fN/2+j

( f j − fN/2+j)W j

Figure 6.10: This is the basic FFT butter-
fly.

In the actual implementation, one computes with the h’s in the following
order:

The binary representation of the index was also listed. Notice that the
output is in bit-reversed order as compared to the right side of the table
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Figure 6.11: This is an 8 point FFT but-
terfly diagram.

f0 + f4 = g0

f1 + f5 = g1

f2 + f6 = g2

f3 + f7 = g3

( f0 − f4)W0 = g4

( f1 − f5)W1 = g5

( f2 − f6)W2 = g6

( f3 − f7)W3 = g7

g0 + g2 = h0

g1 + g3 = h1

(g0 − g2)W0 = h1

(g1 − g3)W2 = h1

g4 + g6 = h4

g5 + g7 = h5

(g4 − g6)W0 = h1

(g5 − g7)W2 = h1

h0 + h1

h0 − h1

h2 + h3

h2 − h3

h4 + h5

h4 − h5

h6 + h7

h6 − h7

Table 6.1: Output, desired order and bi-
nary representation for the Fourier Coef-
ficients.

Output Desired Order
h0 + h1 = F0, 000
h0 − h1 = F4, 100
h2 + h3 = F2, 010
h2 − h3 = F6, 110
h4 + h5 = F1, 001
h4 − h5 = F5, 101
h6 + h7 = F3, 011
h6 − h7 = F7, 111

F0, 000
F1, 001
F2, 010
F3, 011
F4, 100
F5, 101
F6, 110
F7, 111
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which shows the coefficients in the correct order. [Just compare the columns
in each set of binary representations.] So, typically there is a bit reversal
routine needed to unscramble the order of the output coefficients in order
to use them.

6.7 Applications

In the last section we saw that given a set of data, yn, n = 0, 1, . . . , N−
1, that one can construct the corresponding discrete, finite Fourier series.
The series is given by

yn =
1
2

a0 +
N/2

∑
p=1

[
ap cos

(
2πpn

N

)
+ bp sin

(
2πpn

N

)]
, n = 0, . . . , N − 1.

(6.77)
and the Fourier coefficients were found as

ap = 2
N

N−1
∑

n=0
yn cos( 2πpn

N ), p = 1, . . . N/2− 1

bp = 2
N

N−1
∑

n=0
yn sin( 2πpn

N ), p = 1, 2, . . . N/2− 1

a0 = 1
N

N−1
∑

n=0
yn,

aN/2 = 1
N

N−1
∑

n=0
yn cos nπ,

b0 = bN/2 = 0

(6.78)

In this section we show how this is implemented using MATLAB.

Example 6.10. Analysis of monthly mean surface temperatures.
Consider the data2 of monthly mean surface temperatures at Amphitrite Point, 2 This example is from Data Analysis

Methods in Physical Oceanography, W. J.
Emery and R.E. Thomson, Elsevier, 1997.

Canada shown in Table 6.2. The temperature was recorded in oC and averaged for
each month over a two year period. We would like to look for the frequency content
of this time series.

Month 1 2 3 4 5 6 7 8 9 10 11 12

1982 7.6 7.4 8.2 9.2 10.2 11.5 12.4 13.4 13.7 11.8 10.1 9.0
1983 8.9 9.5 10.6 11.4 12.9 12.7 13.9 14.2 13.5 11.4 10.9 8.1

Table 6.2: Monthly mean surface temper-
atures (oC) at Amphitrite Point, Canada
for 1982-1983.

In Figure 6.12 we plot the above data as circles. We then use the data to compute
the Fourier coefficients. These coefficients are used in the discrete Fourier series an
plotted on top of the data in red. We see that the reconstruction fits the data.

The implementations of DFT are done using MATLAB. We provide the code at
the end of this section.

Example 6.11. Determine the frequency content of y(t) = sin(10πt).
Generally, we are interested in determining the frequency content of a signal.

For example, we consider a pure note,

y(t) = sin(10πt).
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Figure 6.12: Plot and reconstruction of
the monthly mean surface temperature
data.
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Sampling this signal with N = 128 points on the interval [0, 5], we find the discrete
Fourier coefficients as shown in Figure 6.13. Note the spike at the right place in the
B plot. The others spikes are actually very small if you look at the scale on the plot
of the A coefficients.

Figure 6.13: Computed discrete Fourier
coefficients for y(t) = sin(10πt), with
N = 128 points on the interval [0, 5].
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One can use these coefficients to reconstruct the signal. This is shown in Figure
6.14

Figure 6.14: Reconstruction of y(t) =
sin(10πt) from its Fourier coefficients.
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Example 6.12. Determine the frequency content of y(t) = sin(10πt)− 1
2 cos(6πt).

We can look at more interesting functions. For example, what if we add two pure
notes together, such as

y(t) = sin(10πt)− 1
2

cos(6πt).
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We see from Figure 6.15 that the implementation works. The Fourier coefficients
for a slightly more complicated signal,

y(t) = eαt sin(10πt)

for α = 0.1, is shown in Figure 6.16 and the corresponding reconstruction is shown
in Figure 6.17. We will look into more interesting features in discrete signals later
in the chapter.
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Figure 6.15: Computed discrete Fourier
coefficients for sin(10πt) − 1

2 cos(6πt)
with N = 128 points on the interval
[0, 5].
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Figure 6.16: Computed discrete Fourier
coefficients for y(t) = eαt sin(10πt) with
α = 0.1 and N = 128 points on the inter-
val [0, 5].
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Reconstructed Signal Figure 6.17: Reconstruction of y(t) =
eαt sin(10πt) with α = 0.1 from its
Fourier coefficients.
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6.8 MATLAB Implementation

Discrete Fourier Transforms and FFT are easily implemented in
computer applications. In this section we describe the MALAB routines
used in this course.

6.8.1 MATLAB for the Discrete Fourier Transform

In this section we provide implementations of the discrete trigonomet-
ric transform in MATLAB. The first implementation is a straightforward
one which can be done in most programming languages. The second im-
plementation makes use of matrix computations that can be performed in
MATLAB or similar programs like GNU Octave. Sums can be done with
matrix multiplication, as described in the next section. This eliminates the
loops in the first program below and speeds up the computation for large
data sets.

Direct Implementation
The following code was used to produce Figure 6.12. It shows a direct

implementation using loops to compute the trigonometric DFT as developed
in this chapter.

%

% DFT in a direct implementation

%

% Enter Data in y

y=[7.6 7.4 8.2 9.2 10.2 11.5 12.4 13.4 13.7 11.8 10.1 ...

9.0 8.9 9.5 10.6 11.4 12.9 12.7 13.9 14.2 13.5 11.4 10.9 8.1];

% Get length of data vector or number of samples

N=length(y);

% Compute Fourier Coefficients

for p=1:N/2+1

A(p)=0;

B(p)=0;

for n=1:N

A(p)=A(p)+2/N*y(n)*cos(2*pi*(p-1)*n/N)’;

B(p)=B(p)+2/N*y(n)*sin(2*pi*(p-1)*n/N)’;

end

end

A(N/2+1)=A(N/2+1)/2;

% Reconstruct Signal - pmax is number of frequencies used

% in increasing order

pmax=13; for n=1:N

ynew(n)=A(1)/2;

for p=2:pmax

ynew(n)=ynew(n)+A(p)*cos(2*pi*(p-1)*n/N)+B(p) ...
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*sin(2*pi*(p-1)*n/N);

end

end

% Plot Data

plot(y,’o’)

% Plot reconstruction over data

hold on

plot(ynew,’r’)

hold off

title(’Reconstruction of Monthly

Mean Surface Temperature’)

xlabel(’Month’)

ylabel(’Temperature’)

The next routine shows how we can determine the spectral content of a
signal, given in this case by a function and not a measured time series. The
output is the original data and reconstructed Fourier series in Figure 1, the
trigonometric DFT coefficients in Figure 2, and the the power spectrum in
Figure 3. This code will be referred to as ftex.m.

% ftex.m

% IMPLEMENTATION OF DFT USING TRIGONOMETRIC FORM

% N = Number of samples

% T = Record length in time

% y = Sampled signal

%

clear

N=128;

T=5;

dt=T/N;

t=(1:N)*dt;

f0=30;

y=sin(2*pi*f0*t);

% Compute arguments of trigonometric functions

for n=1:N

for p=0:N/2

Phi(p+1,n)=2*pi*p*n/N;

end

end

% Compute Fourier Coefficients

for p=1:N/2+1

A(p)=2/N*y*cos(Phi(p,:))’;

B(p)=2/N*y*sin(Phi(p,:))’;

end

A(1)=2/N*sum(y);
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A(N/2+1)=A(N/2+1)/2;

B(N/2+1)=0;

% Reconstruct Signal - pmax is number of frequencies

% used in increasing order

pmax=N/2;

for n=1:N

ynew(n)=A(1)/2;

for p=2:pmax

ynew(n)=ynew(n)+A(p)*cos(Phi(p,n))+B(p)*sin(Phi(p,n));

end

end

% Plot Data

figure(1)

plot(t,y,’o’)

% Plot reconstruction over data

hold on

plot(t,ynew,’r’)

xlabel(’Time’)

ylabel(’Signal Height’)

title(’Reconstructed Signal’)

hold off

% Compute Frequencies

n2=N/2;

f=(0:n2)/(n2*2*dt);

% Plot Fourier Coefficients

figure(2)

subplot(2,1,1)

stem(f,A)

xlabel(’Frequency’)

ylabel(’Amplitude’)

title(’A’)

subplot(2,1,2)

stem(f,B)

xlabel(’Frequency’)

ylabel(’Amplitude’)

title(’B’)

% Plot Fourier Spectrum

figure(3)

Power=sqrt(A.^2+B.^2);

stem(f,Power(1:n2+1))
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xlabel(’Frequency’)

ylabel(’Power’)

title(’Periodogram’)

% Show Figure 1

figure(1)

Compact Implementation
The next implementation uses matrix products to eliminate the for loops

in the previous code. The way this works is described in the next section.

%

% DFT in a compact implementation

%

% Enter Data in y

y=[7.6 7.4 8.2 9.2 10.2 11.5 12.4 13.4 13.7 11.8 ...

10.1 9.0 8.9 9.5 10.6 11.4 12.9 12.7 13.9 14.2 ...

13.5 11.4 10.9 8.1];

N=length(y);

% Compute the matrices of trigonometric functions

p=1:N/2+1;

n=1:N;

C=cos(2*pi*n’*(p-1)/N);

S=sin(2*pi*n’*(p-1)/N);

% Compute Fourier Coefficients

A=2/N*y*C;

B=2/N*y*S;

A(N/2+1)=A(N/2+1)/2;

% Reconstruct Signal - pmax is number of frequencies used

% in increasing order

pmax=13;

ynew=A(1)/2+C(:,2:pmax)*A(2:pmax)’+S(:,2:pmax)*B(2:pmax)’;

% Plot Data

plot(y,’o’)

% Plot reconstruction over data

hold on

plot(ynew,’r’)

hold off

title(’Reconstruction of Monthly

Mean Surface Temperature’)

xlabel(’Month’)

ylabel(’Temperature’)
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6.8.2 Matrix Operations for MATLAB

The beauty of using programs like MATLAB or GNU Octave is that
many operations can be performed using matrix operations and that one
can perform complex arithmetic. This eliminates many loops and make the
coding of computations quicker. However, one needs to be able to under-
stand the formalism. In this section we elaborate on these operations so that
one can see how the MATLAB implementation of the direct computation
of the DFT can be carried out in compact form as shown previously in the
MATLAB Implementation section. This is all based upon the structure of
MATLAB, which is essentially a MATrix LABoratory.

A key operation between matrices is matrix multiplication. An n × m
matrix is simply a collection of numbers arranged in n rows and m columns.

For example, the matrix

[
1 2 3
4 5 6

]
is a 2× 3 matrix. The entries (elements)

of a general matrix A can be represented as aij which represents the ith row
and jth column.

Given two matrices, A and B, we can define the multiplication of these
matrices when the number of columns of A equals the number of rows of
B. The product, which we represent as matrix C, is given by the ijth element
of C. In particular, we let A be a p×m matrix and B an m× q matrix. The
product, C, will be a p× q matrix with entries

Cij = ∑m
k=1 aikbkj, i = 1, . . . , p, j = 1, . . . , q,
= ai1b1j + ai2b2j + . . . aimbmj.

(6.79)

If we wanted to compute the sum
N
∑

n=1
anbn, then in a typical programming

language we could use a loop, such as

Sum = 0 Loop n from 1 to N

Sum = Sum + a(n)*b(n)

End Loop

In MATLAB we could do this with a loop as above, or we could resort
to matrix multiplication. We can let a and b be 1× n and n × 1 matrices,
respectively. Then, the product would be a 1× 1 matrix; namely, the sum
we are seeking. However, these matrices are not always of the suggested
size.

A 1× n matrix is called a row vector and a 1× n matrix is called a column
vector. Often we have that both are of the same type. One can convert a row
vector into a column vector, or vice versa, using the matrix operation called
a transpose. More generally, the transpose of a matrix is defined as follows:
AT has the elements satisfying

(
AT)

ij = aji. In MATLAB, the transpose if a
matrix A is A′.

Thus, if we want to perform the above sum, we have
N
∑

n=1
anbn =

N
∑

n=1
a1nbn1.

In particular, if both a and b are row vectors, the sum in MATLAB is given
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by ab′, and if they are both row vectors, the sum is a′b. This notation is
much easier to type.

In the computation of the DFT, we have many sums. For example, we
want to compute the coefficients of the sine functions,

bp =
2
N

N

∑
n=1

yn sin( 2πpn
N ), p = 0, . . . , N/2 (6.80)

The sum can be computed as a matrix product. The function y only
has values at times tn. This is the sampled data. We can represent it as
a vector. The sine functions take values at arguments (angles) depending
upon p and n. So, we can represent the sines as an N × (N/2 + 1) or
(N/2 + 1) × N matrix. Finding the Fourier coefficients becomes a simple
matrix multiplication, ignoring the prefactor 2

N . Thus, if we put the sampled
data in a 1× N vector Y and put the sines in an N × (N

2 + 1) vector S, the

Fourier coefficient will be the product, which has size 1×
(

N
2 + 1

)
. Thus,

in the code we see that these coefficients are computed as B=2/N*y*S for
the given y and B matrices. The A coefficients are computed in the same
manner. Comparing the two codes in that section, we see how much easier
it is to implement. However, the number of multiplications and additions
has not decreased. This is why the FFT is generally better. But, seeing
the direct implementation helps one to understand what is being computed
before seeking a more efficient implementation, such as the FFT.

6.8.3 MATLAB Implementation of FFT

In this section we provide implementations of the Fast Fourier Trans-
form in MATLAB. The MATLAB code provided in Section 6.8.1 can be sim-
plified by using the built-in fft function. Much of the MATLAB code described

here can be run directly in GNU Octave
or easily mapped to other programming
environments.% fanal.m

%

% Analysis Using FFT

%

clear

n=128;

T=5;

dt=T/n;

f0=6.2;

f1=10;

y=sin(2*pi*f0*(1:n)*dt)+2*sin(2*pi*f1*(1:n)*dt);

% y=exp(-0*(1:n)*dt).*sin(2*pi*f0*(1:n)*dt);

Y=fft(y,n);

n2=n/2;

Power=Y.*conj(Y)/n^2;

f=(0:n2)/(n2*2*dt);
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stem(f,2*Power(1:n2+1))

xlabel(’Frequency’)

ylabel(’Power’)

title(’Periodogram’)

figure(2)

subplot(2,1,1)

stem(f,real(Y(1:n2+1)))

xlabel(’Frequency’)

ylabel(’Amplitude’)

title(’A’)

subplot(2,1,2)

stem(f,imag(Y(1:n2+1)))

xlabel(’Frequency’)

ylabel(’Amplitude’)

title(’B’)

figure(1)

One can put this into a function which performs the FFT analysis. Below
is the function fanalf, which can make the main program more compact.

function z=fanalf(y,T)

%

% FFT Analysis Function

%

% Enter Data in y and record length T

% Example:

% n=128;

% T=5;

% dt=T/n;

% f0=6.2;

% f1=10;

% fanal(sin(2*pi*f0*(1:n)*dt)+2*sin(2*pi*f1*(1:n)*dt));

% or

% fanal(sin(2*pi*6.2*(1:128)/128*5),5);

n=length(y);

dt=T/n;

Y=fft(y,n);

n2=floor(n/2);

Power=Y.*conj(Y)/n^2;

f=(0:n2)/(n2*2*dt);

z=Power;

stem(f,2*Power(1:n2+1))

xlabel(’Frequency’)

ylabel(’Power’)

title(’Periodogram’)

Examples of the use for doing a spectral analysis of functions, data sets,
and sound files are provided below.



from analog to discrete signals 269

This code snippet can be used with fanalf to analyze a given function.

% fanal2.m

clear

n=128;

T=5;

dt=T/n;

f0=6.2;

f1=10;

t=(1:n)*dt;

y=sin(2*pi*f0*t)+2*sin(2*pi*f1*t);

fanalf(y,T);

This code snippet can be used with fanalf to analyze a data set inserted
in vector y.

y=[7.6 7.4 8.2 9.2 10.2 11.5 12.4 13.4 13.7 11.8 ...

10.1 9.0 8.9 9.5 10.6 11.4 12.9 12.7 13.9 14.2 ...

13.5 11.4 10.9 8.1];

n=length(y);

y=y-mean(y);

T=24;

dt=T/n;

fanalf(y,T);

One can also enter data stored in an ASCII file. This code show how this
is done.

[year,y]=textread(’sunspot.txt’,’%d %f’);

n=length(y);

t=year-year(1);

y=y-mean(y);

T=t(n);

dt=T/n;

fanalf(y’,T);

This code snippet can be used with fanalf to analyze a given sound stored
in a wav file.

[y,NS,NBITS]=wavread(’sound1.wav’);

n=length(y);

T=n/NS

dt=T/n;

figure(1)

plot(dt*(1:n),y)

figure(2)

fanalf(y,T);
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Problems

1. Find the imaginary part of the Fourier transform of the finite wave train
f (t) = cos ω0t, t ∈ [0, T] in Example . For ω0 = π, 5, f rm−eπ, 10, plot the
real, imaginary, and modulus of the Fourier transform.

2. Recall that X(ax) = 1
|a|comb 1

a
(x). Find a similar relation for combT(at)

in terms of the Shah function.

3. Write the following sums in the form acombb(t) for some constants a
and b.

a. combT(αt).

b. combT(t + k), k and integer.

4. Evaluate F−1[combΩ(ω)].

5. Evaluate the following sums:

a. ∑8
n=1 eπi(n/4)−2

b. ∑8
n=−7 sin

(πpn
8
)

sin
(πqn

8
)

6. Prove

N−1

∑
n=0

sin
(

2πpn
N

)
sin
(

2πqn
N

)
=

{
N/2, p = q 6= N/2
0, otherwise

.

7. Compute a table for the trigonometric discrete Fourier transform for the
following and sketch Ak, Bk and A2

k + B2
k .

a. yn = n2, n ∈ [0, 15].

b. yn = cos n, n ∈ [0, 15].

8. Here you will prove a shift theorem for the discrete exponential Fourier
transform: The transform of yk is given as Yj = 1

N ∑N
k=1 yke−2πijk/N , j =

0, 1, . . . N − 1. Show that for fixed n ∈ [0, N − 1] the discrete transform of
yk−n is Yje−2πijn/N , j ∈ [0, N − 1].

9. Consider the finite wave train

f (t) =

{
2 sin 4t, 0 ≤ t ≤ π

0, otherwise.

a. Plot this function.

b. Find the Fourier transform of f (t).

c. Find the Fourier coefficients in the series expansion

f (t) =
a0

2
+

∞

∑
n=1

an cos 2nt + bn sin 2nt.

10. A plot of f̂ (ω) from the last problem is shown in Figure 7.72.
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Figure 6.18: Fourier transform of the
wave train in Problems 9-10.

a. What do the main peaks tell you about f (t)?

b. Use this plot to explain how the Fourier coefficients are related to
the Fourier transform.

c. How would this plot appear if f (t) were nonzero on a larger time
interval?

11. Consider the sampled function in Figure 6.20. For each case compute
the discrete Fourier transform.

(b)
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3
Figure 6.19: Figure for Problem 12.

12. Consider the sampled function in Figure 6.20. For each case compute
the discrete Fourier transform.
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Figure 6.20: Figure for Problem 12.
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13. The goal of this problem is to use MATLAB to investigate the use of
the Discrete Fourier Transform (DFT) for the spectral analysis of time series.
Running the m-files is done by typing the filename without the extension
(.m) after the prompt (») in the Command Window, which is the middle
panel of the MATLAB program. Note, most of the code provided can be
run in GNU Octave.

1. Analysis of simple functions.

a. File ftex.m - See the MATLAB section for the code.
This file is a MATLAB program implementing the discrete Fourier
transform using trigonometric functions like that derived in the
text. The input is a function, sometimes with different frequen-
cies. The output is a plot of the data points and the function fit,
the Fourier coefficients and the periodogram giving the power
spectrum.

i. Save the file ftex.m in your working directory under MAT-
LAB.

ii. View the file by entering edit ftex. Note how the first func-
tion is defined by the variable y.

iii. Run the file by typing ftex in MATLAB’s Command win-
dow.

iv. Change the parameters in ftex.m, remembering the original
ones. In particular, change the number of points, N, (keeping
them even), the frequency, f0, and the record length, L. Note
the effects. If you get an error, enter clear and try again. Al-
ways save the m-file after making any changes before running
ftex.

v. Reset the parameters to the original values. What happens
for frequencies of f0 = 5, 5.5 and 5.6? Is this what you ex-
pected?

vi. Repeat the last set of frequencies for double the record length,
T. Is there a change?

vii. Reset the parameters. Put in frequencies of f0 = 20, 30, 40.
What frequencies are present in the periodogram? Is this
what you expected?

b. Look at sums of several trigonometric functions.

i. Reset the parameters.

ii. Change the function in y to y=sin(2*pi*f0*t)+sin(2*pi*f1*t);

and add a line defining f1. Start with f1 = 3; and look at sev-
eral other values for the two frequencies. Try different ampli-
tudes; for example, 3*sin(2*pi*f0*t) has an amplitude of 3.
Record your observations.

iii. Change one of the sines to a cosine. What is the effect?
What happens when the sine and cosine terms have the same
frequency?



from analog to discrete signals 273

c. Investigate non-sinusoidal functions.

i. Investigate the following functions:

1. y=t;

2. y=t.^2;

3. y=sin(2*pi*f0*(t-T/5))./(t-T/5); What is this function?

4. y(1,1:M)=ones(1,M); y(1,M+1:N)=zeros(1,N-M); Start with
M = N/2; What is this function? How are the last two
problems related? Do they relate to anything from earlier
class lectures? What effect results from changing M?

5. Try multiplying the function in 4 by a simple sinusoid;
for example, add the line y=sin(2*pi*f0*t).*y, for M =

N/2. How does this affect what you had gotten for the
sinusoid without multiplication?

2. Use the FFT function.

In MATLAB there is a built in set of functions, fft and ifft for the
computation of the Discrete Exponential Transform and its inverse
using the Fast Fourier Transform (FFT). The files needed to do this
are fanal.m or fanal2.m and fanalf.m. [See Section 6.8.3 for the
code.] Put these codes into the MATLAB editor and see what they
look like. Note that fanal.m was split into the two files fanal2.m
and fanalf.m. This will allow us to be confident when we later
create new data files and then using fanalf.m. Test this set of func-
tions for simple sine functions to see that you get results similar
to Part 1. First run fanal and then fanal2. Is there any difference
between these last two approaches?

3. Analysis of data sets.

One often does not have a function to analyze. Some measure-
ments are made over time of a certain quantity. This is called a
time series. It could be a set of data describing things like the
stock market fluctuations, sunspots activity, ocean wave heights,
etc. Large sets of data can be read into y and small sets can be in-
put as vectors. We will look at how this can be done. After the data
is entered, one can analyze the time series to look for any periodic
behavior, or its frequency content. In the two cases below, make
sure you look at the original time series using plot(y,âĂŹ+âĂŹ).

a. Ocean Waves
In this example the data consists of monthly mean sea surface
temperatures (oC) at one point over a 2 year period. The tem-
peratures are placed in y as a row vector. Note how the data
is continued to a second line through the use of ellipsis. Also,
one typically subtracts the average from the data. What affect
should this have on the spectrum? Copy the following code into
a new m-file called fdata.m and run fdata. Determine the dom-
inant periods in the monthly mean sea surface temperature.
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y=[7.6 7.4 8.2 9.2 10.2 11.5 12.4 13.4 13.7 11.8 ...

10.1 9.0 8.9 9.5 10.6 11.4 12.9 12.7 13.9 14.2 ...

13.5 11.4 10.9 8.1];

n=length(y);

y=y-mean(y);

T=24;

dt=T/n;

fanalf(y,T);

b. Sunspots
Sunspot data was exported to a text file. Download the file
sunspot.txt. You can open the data in Notepad and see the two
column format. The times are given as years (like 1850). This
example shows how a time series can be read and analyzed.
From your spectrum, determine the major period of sunspot
activity. Note that we first subtracted the average so as not to
have a spike at zero frequency. Copy and paste into the editor
and save as fanaltxt.m. Note: Copy and Paste of single quotes
often does not work correctly. Retype the single quotes after
copying.

[year,y]=textread(’sunspot.txt’,’%d %f’);

n=length(y);

t=year-year(1);

y=y-mean(y);

T=t(n);

dt=T/n;

fanalf(y’,T);

4. Analysis of sounds. Sounds can be input into MATLAB. You can
create your own sounds in MATLAB or sound editing programs
like Audacity or Goldwave to create audio files. These files can be
input into MATLAB for analysis.

Save the following sample code as fanalwav.m and save the first
sound file. This code shows how one can read in a WAV file. There
will be two plots, the first showing the wave profile and the second
giving the spectrum. Try some of the other wav files and report
your findings. Note: Copy and Paste of single quotes often does
not work correctly. Retype the single quotes after copying.

[y,NS,NBITS]=wavread(’sound1.wav’);

n=length(y);

T=n/NS

dt=T/n;

figure(1)

plot(dt*(1:n),y)

figure(2)

fanalf(y,T);
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Several wav files are be provided for you to analyze. If you are able
to hear the sounds, you can run them from MATLAB by typing
sound(y,NS). In fact, you can even create your own sounds based
upon simple functions and save them as wav files. For example,
try the following code: Note: Copy and Paste of single quotes often
does not work correctly. Retype the single quotes after copying.

smp=11025;

t=(1:2000)/smp;

y=0.75*sin(2*pi*440*t);

sound(y,smp,8);

wavwrite(y,smp,8, ’myfile.wav’);

Try some other functions, using several frequencies. If you get a
clipping error, then reduce the amplitudes you are using.





7
Signal Analysis

There’s no sense in being precise when you don’t even know what you’re talking
about. - John von Neumann (1903 - 1957)

7.1 Introduction

Figure 7.1: Cool Edit displaying a WAV
file and its properties.

It is now time to look back at the Introducton and see what it
was that we promised to do in this course. The goal was to develop enough
tools to begin to understand what happens to the spectral content of signals
when analog signals are discretized. We started with a study of Fourier
series and just ended with discrete Fourier transforms. We have seen how
Fourier transform pairs, f (t) and f̂ (ω), are affected by recording a signal
over a finite time T at a sampling rate of fs. This in turn lead to the need
for discrete Fourier transforms (DFTs). However, we have yet to see some of
the effects of this discretization on the information that we obtain from the
spectral analysis of signals in practice. In this chapter we will look at results
of applying DFTs to a variety of signals.

Figure 7.2: Cool Edit displaying the
spectrum of a WAV file.

The simplest application of this analysis is the analysis of sound. Music,
which is inherently an analog signal, is recorded over a finite time interval
and is sampled at a rate that yields pleasing sounds that can be listened to
on the computer, a CD, or in an MP3 player.

You can record and edit sounds yourself. There are many audio editing
packages that are available. We have successfully used these packages plus
some minimal applets and mathematics packages to introduce high school
students and others with a minimal mathematics background to the Fourier
analysis of sounds. As we have seen, we need only understand that signals
can be represented as sums of sinusoidal functions of different frequencies
and amplitudes.

Figure 7.3: Goldwave displaying a sim-
ple tone.

For example, we have had students working with musical instruments,
bird sounds, dolphin sounds, ECGs, EEGs, digital images, and other forms
of recorded signals or information. One just needs to find a way to deter-
mine the frequency content of the signal and then pick out the dominant
frequencies to reconstruct the signal.

There are many packages that can be used to display sound and time
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series. We will see how to use MATLAB, although one could use Maple or
Mathematica to import and analyze sounds. There are also stand alone ed-
itors like Cool Edit Pro (bought out by Adobe in 2003 and renamed Adobe
Audition), Audacity ( http://audacity.sourceforge.net/) an open source ed-
itor, or Goldwave (http://www.goldwave.com/), which allows one to input
a formula and “play” it.

A sample Cool Edit session is shown in Figure 7.1. In this figure is dis-
played the sound print of a parrot. It is obviously a complex signal, made
up of many harmonics. Highlighting a part of the signal, one can look at
the frequency content of this signal. Such a spectrum is shown in Figure 7.2.
Notice the spikes every couple of thousand Hertz.

Figure 7.4: Goldwave display of function
editor.

Not many fancy, but inexpensive, sound editors have a frequency anal-
ysis component like Cool Edit had. One has to go out on to the web and
search for features that do not just entail editing sounds for MP3 players.
Goldwave allows one to enter a formula and then listen to the correspond-
ing sounds. This is also a feature not found in most editors. However, it is
a useful tool that takes little “programming” to connect the mathematics to
the signal. Cool Edit and others have a feature to generate tones, but this
is more exact. The interface for Goldwave is shown in Figure 7.3 and the
function editor is in 7.4. However, there are plenty of other editors. In the
early 2000’s the HASA (Handheld Audio Spectrum Analyzer) application
shown in Figure 7.5 was a good tool for pocket PCs. Also, spectrum ana-
lyzers are available for mobile devices, such as the iPhone (e.g. Pocket RTA
- Spectrum Analyser).

7.2 Periodogram Examples

Figure 7.5: HASA for pocket PCs.

The next step in the analysis is to understand the output of the
discrete transform, or the Fast Fourier Transform (FFT), that is generated by
such programs. Often we see spectrograms or periodograms. We should
understand what it is that they produce. As an example, lets say we have
the sum of a sine and a cosine function with different frequencies and am-
plitudes. We could represent the discrete Fourier coefficients as an’s and
bn’s, like we have computed many times in the course, in simple plots of the
coefficients vs n (or the frequency) such as shown in Figure 7.6. In this case
there is a cosine contribution of amplitude two at frequency f4 and a sine
contribution of amplitude one at frequency f2. It takes two plots to show
both the an’s and bn’s. However, we are often only interested in the energy
content at each frequency. For this example, the last plot in Figure 7.7 shows
the spectral content in terms of the modulus of the signal.

For example, cos 5t and 3 sin 5t would have spikes in their respective plots
at the same frequency, f = 5

2π . As noted earlier in Equation (6.30), we can
write the sum cos 5t + 3 sin 5t as a single sine function with an amplitude
cn =

√
a2

n + b2
n. Thus, a plot of the “modulus” of the signal is used more

often. However, in the examples we will display both forms to bring home

http://audacity.sourceforge.net/
http://www.goldwave.com/
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Figure 7.6: This Figure shows the spec-
tral coefficients for a signal of the form
f (t) = 2 cos 4t + sin 2t.

the relationship between the trigonometric and exponential forms of the
Fourier spectrum of the signal.
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Figure 7.7: This Figure shows the spec-
trum for a signal of the form f (t) =
2 cos 4t + sin 2t.

Once one has determined the Fourier coefficients, then one can recon-
struct the signal. In the case that one has the exact components, then the
reconstruction should be perfect as shown for the previous example in Fig-
ure 7.6. The reconstruction in this case gave the plot in Figure 7.8. However,
for real signals one does not know ahead of time what the actual frequencies
are that made up the signal.

t

f (t)

1 2 3 4 5 6

−3
−2
−1

0
1
2
3

Figure 7.8: This Figure shows the origi-
nal signal of the form f (t) = 2 cos 4t +
sin 2t and a reconstruction based upon
the series expansion.

Figure 7.9: A piece of a typical bird
sound.

For example, one could analyze a bird sound like the one shown in Figure
7.9. We capture a part of the sound and look at its spectrum. An example is
shown in Figure 7.10. Notice that the spectrum is not very clean, although
a few peaks stand out. We had a group of high school students carry out
this procedure. The students picked out a few of the dominant frequen-
cies and the corresponding amplitudes. Using just a few frequencies, they
reconstructed the bird signals. In Figure 7.11 we show the original and re-
constructed signals, respectively. While these might not look exactly the
same, they do sound very similar.

There are different methods for displaying the Fourier spectrum of sig-
nals. Here we define some of these.

Definition 7.1. A spectrogram is a three-dimensional plot of the energy of
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Figure 7.10: A Fourier analysis of the
bird sound in Figure 7.9.

Figure 7.11: Analysis and reconstruction
of a bird sound.

the frequency content of a signal as it changes over time.

Figure 7.12: Example of spectrogram for
the bird sound.

An example of a spectrogram for the bird sound in Figure 7.9 is provided
in Figure 7.12. This figure was created using MATLAB’s built-in function
(in the Signal Processing Toolbox):

[y,NS,NBITS]=wavread(’firstbird.wav’);

spectrogram(y,128,120,128,NS);

title(’Spectrogram for Bird Signal’)

ylabel(’Time (s)’)

The spectrogram is created using what is called the short-time Fourier trans-
form, or STFT. This function divides a long signal into smaller blocks, or
windows, and then computes the Fourier transform on each block. This al-
lows one to track the changes in the spectrum content over time. In Figure
7.12 one can see three different blobs in the 3kHz-4kHz range at different
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times, indicating how the three chirps of the bird can be picked up. This
gives more information than a Fourier analysis over the entire record length.

Definition 7.2. The power spectrum is a plot of the portion of a signal’s power
(energy per unit time) falling within given frequency bins. We can either
plot the Fourier coefficients, or the modulus of the Fourier transform.

Definition 7.3. Plots of cn =
√

a2
n + b2

n or c2
n vs frequency are sometimes

called periodograms.

An example of a periodogram for the bird sound in Figure 7.9 is provided
in Figure 7.13. A periodogram can be created using MATLAB’s built-in
function (in the Signal Processing Toolbox):

[y,NS,NBITS]=wavread(’firstbird.wav’);

periodogram(y,[],’onesided’,1024,NS)
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the bird sound.

There are many other types of applications. We have had students study-
ing the oscillations of mass-spring systems and vibrating beams in differ-
ential equations. The setups are shown in Figure 7.14. On the left is a
mass-spring system situated above a motion probe. The data is collected
using an interface to a handheld computer. (More recently pocket PCs and
other mobile devices have been used.) On the left is a similar setup for a
clamped two-meter stick, which is clamped at different positions and the
motion of end of the stick is monitored.

Of course, a simple mass on a spring exhibits the typical almost pure
sinusoidal function as shown in Figure 7.15. The data is then exported to
another program for analysis.

Students would learn how to fit their data to sinusoidal functions and
then determine the period of oscillation as compared to the theoretical
value. They could either do the fits in Maple (Figure 7.16) or Excel (Fig-
ure 7.17).

Fitting data to damped oscillations, such as shown in Figure 7.18, is more
difficult. This is the type of data one gets when measuring the vertical
position of a vibrating beam using the setup shown in Figure 7.14.
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Figure 7.14: Setup for experiments for
oscillations of mass-spring systems and
vibrating beams. Data is recorded at a
50 Hz sampling rate using handheld de-
vices connected to distance probes.

Figure 7.15: Distance vs time plot for a
mass undergoing simple harmonic mo-
tion.

Figure 7.16: Example of fitting data in
Maple.

Figure 7.17: Example of fitting data in
Excel.

Figure 7.18: Distance vs time plot for a
vibrating beam clamped at one end. The
motion appears to be damped harmonic
motion.
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Typically, one has to try to guess several parameters in order to determine
the correct period, amplitude and damping. Of course, we know that it is
probably better to put such a function into a program like MATLAB and
then to perform a Fourier analysis on it to pick out the frequency. We did
this for the signal shown in Figure 7.19. The result of the spectral analysis
is shown in Figure 7.21. Do you see any predominant frequencies? Is this a
better method than trying to fit the data by hand?

Figure 7.19: Distance vs time plot in
MATLAB for a vibrating beam clamped
at one end.

7.3 Effects of Sampling

We are interested in how well the discrete Fourier transform

works with real signals. In the last section we saw a few examples of how
signal analysis might be used. We will look into other applications later.
For now, we want to examine the effects of discretization on signals so that
we can make sense out of the analysis we might do on real signals. We
need to begin with the simplest signals and then employ the DFT MATLAB
program in Appendix 6.8.1 to show the results of small changes to the data.
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Figure 7.20: Fourier coefficients for the
signal y(t) = sin(2π f0t) with f0 = 5.0
Hz, N = 128, on [0, 5].

Figure 7.21: Fourier spectrum for the sig-
nal shown in Figure 7.19.

We begin by inputting the signal. We consider the function y(t) =

sin(2π f0t). We sample this function with f0 = 5.0 Hz for N = 128 points on
the interval [0, 5]. The Fourier Trigonometric coefficients are given in Figure
7.20. Note that the An’s are negligible (on the order of 10−15). There is a
spike at the right frequency. We can also plot the periodogram as shown in
Figure 7.22. We obtain the expected result of a spike at f = 5.0 Hz. We can
reconstruct the signal as well. There appears to be agreement between the
function y(t) indicated by the line plot and the reconstruction indicated by
the circles in 7.23.

In the set of Figures 7.24 and 7.25 we show the Fourier coefficients and
periodogram for the function y(t) = 2 sin(2π f0t)− cos(2π f1t) for f0 = f1 =

6 Hz. We note that the heights in Figure 7.24 are the amplitudes of the sine
and cosine functions. The “peaks” are located at the correct frequencies of
6 Hz. However, in the periodogram there is no information regarding the
phase shift; i.e., there is no information as to whether the frequency content
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Figure 7.22: Fourier spectrum for the sig-
nal y(t) = sin(2π f0t) with f0 = 5.0 Hz,
N = 128, on [0, 5].
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Figure 7.23: The function y(t) is indi-
cated by the line plot and the reconstruc-
tion by circles.
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arises from a sine or a cosine function. We just know that all of the signal
energy is concentrated at one frequency.

Figure 7.24: Fourier coefficients for the
signal y(t) = 2 sin(2π f0t) − cos(2π f1t)
with f0 = f1 = 6.0 Hz, N = 128, on
[0, 5].
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In the set of Figures 7.26 and 7.27 we show the Fourier coefficients and
periodogram for the function y(t) = 2 sin(2π f0t)− cos(2π f1t) for f0 = 6 Hz
and f1 = 10 Hz. Once again we see that the amplitudes of the Fourier coef-
ficients are of the right height and in the right location. In the periodogram
we see that the energy of the signal is distributed between two frequencies.

In the last several examples we have computed the spectra in using a
sampled signal “recorded” over times in the interval [0, 5] and sampled with
N = 128 points. Sampling at N = 256 points leads to the periodogram in
Figure 7.28. We note that increasing the number of points leads to a longer
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Periodogram Figure 7.25: Fourier spectrum for the

signal y(t) = 2 sin(2π f0t) − cos(2π f1t)
with f0 = f1 = 6.0 Hz, N = 128, on
[0, 5].
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Figure 7.26: Fourier coefficients for the
signal y(t) = 2 sin(2π f0t) − cos(2π f1t)
with f0 = 6 Hz and f1 = 10 Hz, N =
128, on [0, 5].
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signal y(t) = 2 sin(2π f0t) − cos(2π f1t)
with f0 = 6 Hz and f1 = 10 Hz. The sig-
nal was sampled with N = 128 points
on an interval of [0, 5].
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interval in frequency space. In Figure 7.29 we doubled the record length to
T = 10 and kept the number of points sampled at N = 128. In this case the
frequency interval has become shorter. We not only lost the 10 Hz frequency,
but now we have picked up a 2.8 Hz frequency. We know that the simple
signal did not have a frequency term corresponding to 2.8 Hz. So, where
did this come from?

Figure 7.28: Fourier spectrum for the
signal y(t) = 2 sin(2π f0t) − cos(2π f1t)
with f0 = 6 Hz and f1 = 10 Hz. The sig-
nal was sampled with N = 256 points
on an interval of [0, 5].
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Figure 7.29: Fourier spectrum for the
signal y(t) = 2 sin(2π f0t) − cos(2π f1t)
with f0 = 6 Hz and f1 = 10 Hz. The sig-
nal was sampled with N = 128 points
on an interval of [0, 10].
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Also, we note that the interval between displayed frequencies has changed.
For the cases where T = 5 the frequency spacing is 0.2 Hz as seen in Figure
7.29. However, when we increased T to 10 s, we got a frequency spacing
of 0.1 Hz. Thus, it appears that ∆ f = 1

T . This makes sense, because at the
beginning of the last chapter we defined

ωp = 2π fp =
2π

T
p.

This gives fp = p
T , or fp = 0, 1

T , 2
T , 3

T , . . . . Thus, ∆ f = 1
T . So, for T = 5,

∆ f = 1/5 = 0.2 and for T = 10, ∆ f = 1/10 = 0.1.
So, changing the record length will change the frequency spacing. But

why does changing T introduce frequencies that are not there? What if we
reduced N? We saw that increasing N leads to longer frequency intervals.
Will reducing it lead to a problem similar to increasing T? In Figure 7.32 we
see the result of using only 64 points. Yes, again we see the occurrence of
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a 2.8 Hz spike. Also, the range of displayed frequencies is shorter. So, the
range of displayed frequencies depends upon both the numbers of points at
which the signal is sampled and the record length.
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Periodogram Figure 7.32: Fourier spectrum for the

signal y(t) = 2 sin(2π f0t) − cos(2π f1t)
with f0 = 6 Hz and f1 = 10 Hz. The
signal was sampled with N = 64 points
on an interval of [0, 5].

We will explain this masquerading of frequencies in terms of something
called aliasing. However, that is not the whole story. Notice that the fre-
quencies represented in the periodograms is discrete. Even in the case that
T = 5 and N = 128, we only displayed frequencies at intervals of 1

T = 0.2.
What would happen if the signal had a frequency in between these values?
For example, what if the 6 Hz frequency was 6.1 Hz? We see the result
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in Figure 7.33. Since we could not pinpoint the signal’s frequencies at one
of the allowed discrete frequencies, the periodogram displays a spread in
frequencies. This phenomenon is called ringing or spectral leakage.

Figure 7.33: Fourier spectrum for the sig-
nal y(t) = 2 sin(2π f0t) with f0 = 6.1 Hz.
The signal was sampled with N = 256
points on an interval of [0, 5].
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It is also interesting to see the effects on the individual Fourier coeffi-
cients. This is shown in Figure 7.34. While there is some apparent distri-
bution of energy amongst the An’s, it is still essentially zero. Most of the
effects indicate that the energy is distributed amongst sine contributions.

Figure 7.34: Fourier spectrum for the sig-
nal y(t) = 2 sin(2π f0t) with f0 = 6.1 Hz.
The signal was sampled with N = 256
points on an interval of [0, 5].

Frequency

0 5 10 15 20 25 30

A
m

p
li

tu
d
e

-2

0

2
A

Frequency

0 5 10 15 20 25 30

A
m

p
li

tu
d
e

×10-14

-1

0

1
B

What we have learned from these examples is that we need to be care-
ful in picking the record length and number of samples used in analyzing
analog signals. Sometimes we have control over these parameters, but other
times we are stuck with them depending upon the limitations of the record-
ing devices. Next we will investigate how the effects of ringing and aliasing
occur.

7.4 Effect of Finite Record Length

In the previous section we saw examples of the effects of finite record
length on the spectrum of sampled data. In order to understand these effects
for general signals, we will focus on a signal containing only one frequency,
such as y(t) = sin(2π f0t). We will record this signal over a finite time
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interval, t ∈ [0, T]. This leads us to studying a finite wave train. (Recall
that we has seen examples of finite wave trains earlier in the chapter on
Fourier Transforms and in the last chapter. However, in these cases we used
a cosine function. Also, in one of these cases we integrated over a symmetric
interval.)

We will consider sampling the finite sine wave train given by

y(t) =

{
sin 2π f0t, 0 ≤ t ≤ T

0, otherwise
. (7.1)

In order to understand the spectrum of this signal, we will first compute the
Fourier transform of this function. Afterwards, we will show how sampling
this finite wave train affects the Fourier transform.

Example 7.1. Compute the Fourier transform of the finite sine wave train.
We begin by computing the Fourier transform of the finite wave train and write

the transform in terms of its real and imaginary parts. The computation is straight-
forward and we obtain

ŷ( f ) =
∫ ∞

−∞
y(t)e2πi f t dt

=
∫ T

0
sin(2π f0t) cos(2π f t) dt + i

∫ T

0
sin(2π f0t) sin(2π f t) dt

=
1
2

∫ T

0
[sin(2π( f + f0)t)− sin(2π( f − f0)t)] dt

+
i
2

∫ T

0
[cos(2π( f − f0)t)− cos(2π( f + f0)t)] dt

=
1

4π

[
1

f + f0
− 1

f − f0

]
+

1
4π

[
cos 2π( f − f0)T

f − f0
− cos 2π( f + f0)T

f + f0

]
− i

4π

[
sin 2π( f − f0)T

f − f0
+

sin 2π( f + f0)T
f + f0

]
(7.2)

This, of course, is a complicated result. One might even desire to carry
out a further analysis to put this in a more revealing form. However, we
could just plot the real and imaginary parts of this result, or we could plot
the modulus, |ŷ( f )| to get the spectrum. We will consider both types of
plots for some special cases.

Let’s pick T = 5 and f = 2. The resulting finite wave train is shown in
Figure 7.35.

We now look at the spectral functions. In Figures 7.36 - 7.37 we plot
the real and the imaginary parts of the Fourier transform of this finite wave
train. In Figure 7.38 we show a plot of the modulus of the Fourier transform.
We note in these figures that there are peaks at both f = 2 and f = −2. Also,
there are other smaller peaks, decaying for the frequencies far from the main
peaks. It is the appearance of these minor peaks that will contribute to the
ringing we had mentioned in the last section. Ringing occurs when we do
not sample the data exactly at the frequencies contained in the signal.
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Figure 7.35: The finite sine wave train for
T = 5 and f0 = 2.

Figure 7.36: The real part of the Fourier
transform of the finite wave train for T =
5 and f0 = 2.

Figure 7.37: The imaginary part of the
Fourier transform of the finite wave train
for T = 5 and f0 = 2.

Figure 7.38: The modulus of the Fourier
transform, or the spectrum, of the finite
wave train for T = 5 and f0 = 2.
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We now consider what happens when we sample this signal. Let’s take
N = 40 sample points. In Figure 7.39 we show both the original signal and
the location of the samples on the signal. (Besides the obvious points at the
peaks and valleys, there are actually sampled points located along the time
axis.)

Figure 7.39: The finite wave train for
T = 5 and f0 = 2 sampled with N = 40
points, or ∆t = 0.125.

Using a finite record length and a discrete set of points leads to a sam-
pling of the Fourier transform with ∆ f = 1

T = 0.2 and an extent of (N −
1)∆ f = 7.8. The sampled Fourier transform superimposed on the original
modulus of the Fourier transform is shown in Figure 7.40. (Here we have
only shown part of the interval f ∈ [0, 7.8].) The main peak is captured with
the data values at the top of the peak. The other data pints lie at the zeros
of the Fourier transform. This is what we would expect for the sampled
transform.

Figure 7.40: The modulus of the Fourier
transform and its samples for the finite
wave train for T = 5 and f0 = 2 sampled
with N = 40 points and ∆ f = 0.2.

Now we ask what happens when we sample a signal with a different
frequency. Keeping everything else the same, we consider a finite wave train
with frequency f0 = 2.1. We sample this signal with forty points as before.
The sampled signal is shown in Figure 7.41 and its transform is displayed
in Figure 7.42. Notice that now the main peak of the Fourier transform is at
f0 = 2.1, but the sample frequencies do not match this frequency. Instead,
there are two nearby frequencies not quite hitting the main peak. In fact,
there are other nonzero frequencies in the Fourier transform leading to what
is called ringing. It is only a coincidence that the data values have found
their way to the peaks of the minor lobes in the transform. If the signal
frequency is f0 = 2.05, then we find that even the minor peaks differ from
the discrete frequency values as displayed in Figure 7.43.
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Figure 7.41: The finite wave train for T =
5 and f0 = 2.1 sampled with N = 40
points, or ∆t = 0.125. Note that the finite
wave train does not contain an integer
multiple of cycles.

Figure 7.42: The modulus of the Fourier
transform and its samples for the finite
wave train for T = 5 and f0 = 2.1 sam-
pled with N = 40 points and ∆ f = 0.2.

7.5 Aliasing

In the last section we observed that ringing can be described by
studying the finite wave train which is due to an improper selection of the
record length, T. In this section we will investigate the concept of aliasing,
which is due to poor discretization. Aliasing is the masquerading of some
frequencies as other ones. Aliasing is a result of a mismatch in sampling
rate to the desired frequency analysis. It is due to an inherent ambiguity in
the trigonometric functions owing to their periodicity.

Let y(t) = sin 2π f0t. We will sample the signal at the rate fs =
1

∆t . Often
we have no choice in the sample rate. This is the rate at which we can collect
data and may be due to the limitations in the response time of the devices
we use. This could be the result of the responses of the recording devices,
the data storage devices, or any post processing that is done on the data.

Sampling leads to samples at times t = nts for ts =
1
fs
= ∆t. The sampled

signal is then

yn = sin(2π f0nts).

Through a little manipulation, we can rewrite this form. Making use of the
fact that we can insert any integer multiple of 2π into the argument of the

Figure 7.43: The modulus of the Fourier
transform and its samples for the finite
wave train for T = 5 and f0 = 2.05 sam-
pled with N = 40 points and ∆ f = 0.2.
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sine function, we have for integer m that

yn = sin(2π f0nts)

= sin(2π f0nts + 2πm)

= sin(2π( f0 +
m

nts
)nts)

= sin(2π( f0 +
k
ts
)nts), m = kn,

= sin(2π( f0 + k fs)nts). (7.3)

So, sin(2π f0nts) = sin(2π( f0 + k fs)nts). This means that one cannot
distinguish signals of frequency f0 from signals of frequency f0 + k fs for
k an integer. Thus, if f0 does not fall into the interval of frequencies,
[0, (N − 1)∆ f ], then f = f0 + k fs might be in this frequency interval for
the right value of k. This is why the 2.8 Hz signal showed up in the Figures
7.29 and 7.32 earlier in the chapter. For a signal recorded on [0, T] at N

points, we have

∆t
T
N

, ∆ f =
1
T

,

fs =
1

∆t
=

N
T

fmax =
1
2

fs.

How do we determine the frequency interval for the allowed discrete
frequencies that will show up in the transform? We know that the smallest
frequency value that we can resolve is fmin = ∆ f = 1

T . The largest value
of the frequency would be fmax = N

2 ∆ f = N
2T = 1

2∆t . Thus, to capture a
desired frequency, f0, we would need the condition that

fmin ≤ f0 ≤ fmax.

However, we need to be a bit more careful. Recall that negative frequencies
might also contribute. So, we also have that

− fmin ≥ f0 ≥ − fmax.

This leads to the general conclusion that

if | f0| ≥ fmax, then the frequency will not be resolved in the
analysis; i.e., it will not be captured and there might be an integer
k such that

fmin ≤ | f0 + k fs| ≤ fmax, (7.4)

in which case we will observe aliasing.

Thus, to capture all frequencies up to f0, we need to sample at a rate fs

such that f0 ≤ fmax = 1
2 fs. This is what is called the Nyquist criterion.

Nyquist criterion: One needs to sample at a rate at least twice the
largest expected frequency.

Example 7.2. Determine the occurrence of the 2.8 Hz spike in Figure 7.29
In the earlier sample plots (like Figure 7.29) displaying the results of a DFT

analysis of simple sine functions we saw that for certain choices of N and T a 10
Hz signal produced a 2.8 Hz spike. Let’s see if we can predict this.

We began by sampling N = 128 points on an interval of [0, 5]. Thus, the
frequency increments were

∆ f =
1
T

= 0.2
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Hz. The sampling rate was

fs =
1

∆t
=

N
T

= 25.6 Hz.

Therefore,

fmin = 0.2Hz and fmax =
1
2

fs = 12.8 Hz.

So, we can sample signals with frequencies up to 12.8 Hz without seeing any
aliasing. The frequencies we can resolve without ringing would be of the form
fn = 0.2n ≤ 12.8.

However, if we change either T or N we may get a smaller interval and the 10
Hz frequency will not be picked up correctly. By picking N = 64 and T = 5, we
have

fmin = 0.2 Hz, fs = 12.8 Hz, and fmax =
1
2

fs = 6.4 Hz.

The 10 Hz frequency is larger than fmax. Where will the aliased frequency appear?
We just need to determine an integer k in Equation (7.4) such that

0.2 ≤ |10 + 12.8k| ≤ 6.4. (7.5)

The set of values of 10 + 12.8k are {. . . ,−15.6,−2.8, 10, 22.8, . . .}. We see that
for k = −1, 0.2 ≤ 2.8 ≤ 6.4. Thus, the 10 Hz signal will masquerade as a 2.8 Hz
signal. This is what we had seen. Similarly, if N = 128 and T = 10, we get the
same sampling rate fs = 12.8 Hz, but fmin = 0.1. The inequality for 10 Hz takes
the form

0.1 ≤ |10 + 12.8k| ≤ 6.4. (7.6)

Thus, we once again get a 2.8 Hz frequency.

Example 7.3. Plotting aliased signals.
We consider a simple 1.0 Hz signal of the form y(t) = sin 2πt sampled with

15 points on [0, 5]. This signal and its samples are shown in figure 7.44. However,
we have seen that signals of frequency f0 + k fs will also pass through the sampled
points. In this example the data points were sampled with fs =

N
T = 15

5 = 3.0 Hz.
For f0 = 1.0 and k = 1, we have f0 + k fs = 4.0 Hz. In Figure 7.45 we plot this
signal and the sampled data points of y(t) = sin 2π f t. Notice that the new signal
passes through all of the sampled points.

We can see this better in Figure 7.46. Here we plot both signals with the sampled
points.

Figure 7.44: A 1.0 Hz signal of the form
y(t) = sin 2πt sampled with 15 points
on [0, 5].
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Figure 7.45: A signal of the form y(t) =
sin 8πt is plotted with the samples of
y(t) = sin 2πt sampled with 15 points
on [0, 5].

Figure 7.46: Signal y(t) = sin 8πt and
y(t) = sin 2πt are plotted with the sam-
ples of y(t) = sin 2πt sampled with 15

points on [0, 5].

7.6 The Shannon Sampling Theorem

The problem of reconstructing a function by interpolating at equidis-
tant samples of the function, using a Cardinal series was presented by
Shannon in his well known papers of 1948. He had used the sampling
theorem to show that a continuous signal can be completely reconstructed
from the proper samples. This well-known sampling theorem, known as the
Whittaker-Shannon-Kotel’nikov (WSK) Theorem, can be stated as:

Theorem 7.1. Let

y(t) =
1

2π

∫ Ω

−Ω
ŷ(ω)eiωt dω, (7.7)

where ŷ(ω) ∈ L2[−Ω, Ω]. Then

y(t) =
∞

∑
n=−∞

y
(nπ

Ω

) sin(Ωt− nπ)

Ωt− nπ
. (7.8)

This famous theorem is easily understood in terms of what we have stud-
ied in this text. It essentially says that if a signal y(t) is a piecewise smooth,
bandlimited (|ŷ(ω)| ≤ Ω) function, then it can be reconstructed exactly from
its samples at tn = nπ

Ω . The maximum frequency of the bandlimited signal
is fmax = Ω

2π . The sampling rate necessary to make this theorem hold is
fs =

1
∆t =

Ω
π . Thus,

fs = 2 fmax.

This is just the Nyquist sampling condition, which we saw previously, so
that there is no aliasing of the signal. This sampling rate is called the
Nyquist rate. Namely, we need to sample at twice the largest frequency
contained in the signal.
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Proof. We consider a band-limited function, yΩ(t), where ŷΩ(ω) = 0 for
|ω| > Ω. This function could have been prepared by multiplying the Fourier
transform of an analog signal ŷ(ω) by the gate function1,1 The gate function is also known as a

box function or a rectangular function.

GΩ(ω) =

{
1, |ω| < Ω,
0, |ω| > Ω.

Therefore, we consider the band-limited function, show in Figure 7.47

ŷΩ(ω) = GΩ(ω)ŷ(ω).

We further note that in the language of systems theory, GΩ(ω) is called a
low pass filter with a passband of |ω| < Ω since only frequencies in this
range are allowed through the filter. GΩ(ω) is also referred to as the transfer
function of the filter.

ω

ŷΩ(ω)

-Ω Ω

Figure 7.47: Plot of Fourier transform of
a bandlimited function, ŷΩ(ω).

We recall that the inverse Fourier transform of the gate function can be
easily computed as

gΩ(t) =
1

2π

∫ ∞

−∞
GΩ(ω)e−iωt dω

=
1

2π

∫ Ω

−Ω
e−iωt dω

=
sin Ωt

πt

=
Ω
π

sinc Ωt. (7.9)

The band-limited function, yΩ(t), can then be written as

yΩ(t) =
1

2π

∫ Ω

−Ω
ŷΩ(ω)e−iωt dω =

1
2π

∫ ∞

−∞
GΩ(ω)ŷ(ω)e−iωt dω.

ω

F [yΩ ∗ combΩ]

-Ω Ω-2Ω 2Ω-3Ω 3Ω

Figure 7.48: The Fourier transform of the
product of a bandlimited function and a
comb function gives a periodic version
of ŷΩ(ω).

We now use the Convolution Theorem, since the Fourier transform of
yΩ(t) is a product of transforms, ŷΩ(ω) = GΩ(ω)ŷ(ω). Therefore,

yΩ(t) = F−1[GΩ(ω)ŷ(ω)]

= (y ∗ gΩ)(t)

=
∫ ∞

−∞
y(τ)

sin Ω(τ − t)
π(τ − t)

dτ. (7.10)

ω

F [yΩ ∗ combΩ]

-Ω Ω-2Ω 2Ω-3Ω 3Ω

Figure 7.49: The Fourier transform of the
the product of a bandlimited function
and a comb function gives overlapped
translations of ŷΩ(ω) leading to aliasing.

This result is true if we know y(t) for a continuous range of times. What if
we were to sample y(t)? We will consider sampling a signal in time intervals
of ∆t. The sampled signal can be written as

ys(t) = y(t)∆tcomb∆t(t) =
∞

∑
n=−∞

y(n∆t)∆tδ(t− n∆t),

where each pulse is weighted by the sampling time, ∆t. This weight is
needed in order to get the correct Fourier transform. Namely,

F [y(t)comb∆t(t)] =
1

2π

(
ŷΩ ∗

2π

∆t
comb 2π

∆t

)
(ω) =

∞

∑
n=−∞

ŷω

(
ω− 2πn

∆t

)
.
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This gives a sum of translations of ŷΩ(ω) as depicted in Figures 7.48 and
7.49.

Inserting the expression for the sampled signal, ys(t), into Equation (7.10),
we have the approximation

ȳΩ(t) =
∫ ∞

−∞
ys(τ)

sin Ω(τ − t)
π(τ − t)

dτ

=
∫ ∞

−∞

∞

∑
n=−∞

y(n∆t)δ(τ − n∆t)∆t
sin Ω(τ − t)

π(τ − t)
dτ

=
∞

∑
n=−∞

y(n∆t)∆t
sin Ω(t− n∆t)

π(t− n∆t)

=
∞

∑
n=−∞

y(n∆t)∆t
Ω
π

sinc Ω(t− n∆t). (7.11)

If ∆t > π
Ω , then the copies of ŷΩ(ω) will be translated by multiples of

2π

∆t
< 2Ω,

which is the bandwidth of the bandlimited function. Therefore, the transla-
tions will overlap as in Figure 7.49.

However, if one samples at the Nyquist rate, fs = Ω/π, then the Fourier
transform will have no overlap as shown in Figure 7.48. Setting ∆t = 1

fs
=

π
Ω , we find

ȳΩ(t) =
∞

∑
n=−∞

y(n∆t)∆t
Ω
π

sinc (Ωt− nπ)

=
∞

∑
n=−∞

y
(nπ

Ω

) sin Ω
(
t− nπ

Ω
)

Ω
(
t− nπ

Ω
)

=
∞

∑
n=−∞

y
(nπ

Ω

) sin(Ωt− nπ)

Ωt− nπ
. (7.12)

Example 7.4. Multichannel Telephone Conversations
Consider the amount of information transmitted in telephone channels. Older

telephone signals propagated at 56 kbps (kilobytes per second). If each sample is
stored as 7 bytes, then we can attain 56 kbps/ 7 bytes = 8000 samples per second
= 8 samples per millisecond. Assuming that conversations are transmitted at fre-
quencies of less than 1.0 kHz, then, the Nyquist theorem suggests that we sample
conversations at 2 kHz, or every half a millisecond. This means that we can sample
up to four conversations simultaneously.

t

0 1 2 3 4 5

y

-1

-0.5

0

0.5

1

Figure 7.50: Set of data points to be in-
terpolated.

t

0 1 2 3 4 5

y

-1

-0.5

0

0.5

1
Linear Interpolation

Figure 7.51: Set of data points with lin-
ear interpolation.

One of the uses of the Shannon Sampling Theorem is in interpolation
theory. Given a set of data points as in Figure 7.50, can one find a function,
or set of piecewise functions, to approximate the function at points in be-
tween the given data points and which pass through the data points? The
simplest interpolation is to connect the points with lines, yielding a linear
interpolation as shown in Figure 7.51. However, this might not be a close
enough match to the actual function as seen in Figure 7.52.
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There are other types of interpolation involving higher order polynomial
interpolating functions or special functions, such as splines. Such a spline
fit is shown in Figure 7.53. This higher order fits have more oscillations. If
the data consists of samples of some polynomial, then eventually one can
obtain a good fit.

The idea of the sampling series as an interpolating function is a way
to introduce high enough oscillations into the picture, but not exceeding
a cutoff frequency. If the function is bandlimited, then the series should
return exactly the function using the given data points as we have seen.

t

0 1 2 3 4 5

y

-1

-0.5

0

0.5

1
Linear Interpolation and y(t)

Figure 7.52: Set of data points with lin-
ear interpolation and original function,
y(t).

t
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Spline Interpolation

Figure 7.53: Set of data points with
spline interpolation.

Example 7.5. Use the Dirac comb function to derive the Shannon Sampling The-
orem.

Another approach to the proof of the Sampling Theorem is to use the Dirac comb
function. As shown in Figure 7.54, the Fourier transform ŷ(ω) is multiplied by
the gate function, GΩ(ω) to produce the bandlimited function ŷΩ(ω). One then
computes the inverse Fourier transform of this function to obtain yΩ(t). Sampling
of this function, using the Dirac comb function, gives (yΩ ∗ combΩ)(t). The Fourier
transform of this function, F [yΩ ∗ combΩ](ω), is then computed. This results in a
periodic function as shown in the last plot of Figure 7.54. One then gets back the
transform of the bandlimited function by multiplying by the gate function.

Figure 7.54: The Fourier transform
ŷ(ω) is multiplied by the gate func-
tion, GΩ(ω) to produce the bandlimited
function ŷΩ(ω). One then computes the
inverse Fourier transform of this func-
tion to obtain yΩ(t). Sampling of this
function using the comb function gives
(yΩ ∗ combΩ)(t). The Fourier transform,
F [yΩ ∗ combΩ](ω), is then the periodic
function shown in the last plot.

ω

ŷ(ω)

-π π-2π 2π-3π 3π-4π 4π

GΩ(ω)

ω

ŷΩ(ω)

-π π-2π 2π-3π 3π-4π 4π

ŷΩ(ω) = GΩ(ω)ŷ(ω)

ω

F [yΩ ∗ combΩ]

-π π-2π 2π-3π 3π-4π 4π

This can be captured by the expression

F [yΩ] = GΩ(ω)(ŷΩ ∗ combΩ)(ω),

or
yΩ(t) = F−1 [GΩ(ω)(ŷΩ ∗ combΩ)(ω)] .

The right hand side is a Fourier transform of a product. The Convolution Theo-
rem gives

yΩ(t) = gΩ ∗ (yΩF [combΩ])

= Ω sinc Ωt ∗
(

yΩ
1
Ω

comb 1
Ω

)
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= Ω sinc Ωt ∗
(

1
Ω

∞

∑
k=−∞

y
(

k
Ω

)
δ

(
t− k

Ω

))

=
∞

∑
k=−∞

y
(

k
Ω

)
sinc Ω

(
t− k

Ω

)
. (7.13)

This is the Shannon Sampling Theorem.

Example 7.6. Evaluate the Fourier transform of the sampling series, F [yΩ(t)].
We seek to find

F [yΩ(t)] = F
[

∞

∑
k=−∞

f
(

k
Ω

)
sinc Ω

(
t− k

Ω

)]

=
∞

∑
k=−∞

f
(

k
Ω

)
F
[

sinc Ω
(

t− k
Ω

)]
(7.14)

We need the Fourier transform of the sinc function.

F [sinc t] =

{
π, |ω| < 1,
0, |ω| > 1.

= πG1(ω). (7.15)

Letting τ = Ω(t− k∆t), then we have

F
[

sinc Ω
(

t− k
Ω

)]
=

∫ ∞

−∞
sinc Ω

(
t− k

Ω

)
eiωt dt

=
1
Ω

∫ ∞

−∞
sinc τeiωτ/Ω+k∆t dτ

=
eiωk∆t

Ω

∫ ∞

−∞
sinc τeiωτ/Ω dτ

=
eiωk∆t

Ω
F [sinc]

(ω

Ω

)
=

eiωk∆t

Ω
πG1

(ω

Ω

)
=

πeiωk∆t

Ω
GΩ (ω) . (7.16)

Therefore, we have obtained

F [yΩ(t)] =
∞

∑
k=−∞

f
(

k
Ω

)
eiωk∆t

Ω
GΩ (ω)

Noting that
F [yΩ] = GΩ(ω)(ŷΩ ∗ combΩ)(ω),

we see that

(ŷΩ ∗ combΩ)(ω) =
∞

∑
k=−∞

f
(

k
Ω

)
eiωk∆t

Ω
.

Since

(ŷΩ ∗ combΩ)(ω) =
∞

∑
k=−∞

ŷΩ (ω− kΩ) ,
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we have derived the expression

∞

∑
k=−∞

ŷΩ (ω− kΩ) =
1
Ω

∞

∑
k=−∞

f
(

k
Ω

)
eiωk∆t.

This is one form of the Poisson Summation Formula. Taking the Fourier transform,
we can show thatThe Poisson Summation Formula.

∞

∑
k=−∞

y(x + na) =
1
a

∞

∑
k=−∞

ŷ
(

k∆t
2π

)
eikt/∆t.

Example 7.7. Consider the function

ŷΩ(ω) =

{
1− |ω|, |ω| ≤ 1,

0, |ω| > 1.

Sketch the function GΩ(ω)F [yΩ ∗ ∆t comb 2π
∆t
] for sampling time ∆t = 4π

3 .
Correct sampling would be done with ∆t = π. So, we expect overlapping copies

in the Fourier transform of the sampled signal. In Figure 7.55 we show the process.

Figure 7.55: Sampling a bandlimited
function, yΩ(t), where Ω = 1 and ∆t =
4π
3 . (a) ŷΩ(ω) is a triangular function

with bandwidth 2Ω = 2. (b) A picture of
F [yΩ ∗ ∆t comb 2π

∆t
] with the gate func-

tion. (c) The spectrum of the sampled
signal, GΩ(ω)F [yΩ ∗ ∆t comb 2π

∆t
]. ω

ŷΩ(ω)

−5 −4 −3 −2 −1 0 1 2 3 4 5

(a)

ω

F [yΩ ∗ ∆t comb 2π
∆t
]

−5 −4 −3 −2 −1 0 1 2 3 4 5

(b)
GΩ(ω)

ω

GΩ(ω)F [yΩ ∗ ∆t comb 2π
∆t
]

−2 −1 0 1 2

(c)

In Figure 7.55(a) we show the sketch of the triangular function, ŷΩ(ω). The
bandwith is 2Ω = 2.

Next, in Figure 7.55(b) we draw the translations of ŷΩ(ω) in multiples of
2π/∆t = 1.5. Superimposed on the translations are the sum, represented by
F [yΩ ∗ ∆t comb 2π

∆t
].
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The Fourier transform of the sampled signal is then obtained by multiplying
the sum of the translations in Figure 7.55(b) by GΩ(ω) to obtain the final result,
GΩ(ω)F [yΩ ∗ ∆t comb 2π

∆t
]. This is shown in Figure 7.55(c).

7.7 Nonstationary Signals

7.7.1 Simple examples

A major assumption made in using Fourier transforms is that the fre-
quency content of a signal does not change in time. Such signals are called
stationary. Consider the following example.

0 0.2 0.4 0.6 0.8 1
−2

−1

0

1

2

y(
t)

t (s)

Figure 7.56: A plot of the function f (t)
vs t.

Example 7.8. Let

f (t) =


1 sin(2π f0t), 0 ≤ t < 0.25,<
2 sin(2π f1t), 0.25 < t < 0.75,

1.5 sin(2π f2t), 0.75 < t ≤ 1,

where f0 = 20 Hz, f1 = 14 Hz and f3 = 7 Hz.
A plot of f (t) is shown in Figure 7.56. There are three frequencies present,

but occur at during different time intervals. The spectrum of this signal using the
discrete Fourier transform over the entire time interval using N = 256 gives the
plot in Figure 7.56. It indicates many more frequencies are present than just the
three we know about. In Figure 7.59 we show a blow-up of the region containing the
largest values. While it looked like there might have been ringing, there are peaks at
the main frequencies, but somehow we could not capture the fact that the signal is
nonstationary. 0 50 100 150
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Figure 7.57: The application of the DFT
algorithm to f (t).
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Figure 7.58: A plot of the function f (t)
vs t split into four windows.
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Figure 7.59: A magnified view of the
DFT of f (t).

We can capture the time dependence of the frequency content by splitting the
time series into four blocks of width 0.25. This is shown in Figure 7.58. Now we
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apply the DFT to each block as shown in Figure 7.60. Zooming in further in Figure
7.61, we see that each periodogram displays different frequency content. However,
since each block of f (t) is not a perfect sine function, there still is a little inaccuracy
in picking out the exact frequency in each block.

Figure 7.60: The application of the DFT
algorithm to each of the four blocks of
f (t).
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Figure 7.61: A magnified view of the
DFT of the four blocks of f (t).
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Example 7.9. Consider changing the time interval to [0, 4π] in the previous ex-
ample. Let

g(t) =


sin(2π f0t), 0 ≤ t < π,

2 sin(2π f1t), π ≤ t < 3π,
1.5 sin(2π f2t), 3π ≤ t ≤ 4π,

where f0 = 20 Hz, f1 = 14 Hz and f3 = 7 Hz. The four blocks are shown in
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Figure 7.62. The DFT for these blocks with N = 512 is shown in Figure 7.63. We
see that the frequencies are more defined and correct for the most part.
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Figure 7.62: The four blocks of g(t).
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Figure 7.63: A magnified view of the
DFT of the four blocks of g(t).

Another example is the “chirp” function. A chirp is a sinusoidal function
with a time varying frequency. When turned into a sound of the right length
and frequency range, a chirp sounds like the chirp of a bird. a linear chirp
is one in which the frequency changes linearly. The next example gives an
example of a chirp.

Example 7.10. Consider the linear chirp signal y(t) = sin(2π
(

f0 + ( f1 − f0)
t
T )t
)

,
t ∈ [0, 1], for f0 = 1.0 Hz and f1 = 10.0 Hz.
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Figure 7.64: A chirp signal.

The function takes the form y(t) = sin 2π f t, where the frequency is time-
dependent, f (t) = f0 + ( f1 − f0)

t
T . In Figure 7.64 we show this linear chirp.
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The frequency varies from f0 = 1.0 Hz to f1 = 10.0 Hz. When one computes the
DTF of this signal, the periodogram in Figure 7.65 results. As one can see, a variety
of frequencies appear and there is no indication that the frequency is time varying.
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Figure 7.65: DFT of the chirp signal.

7.7.2 The Spectrogram

The examples in the last section point to the need for a modifi-
cation of the Fourier transform for analog signals and the DFT for discrete
signals. In Example 7.9, we saw that computing the DFT over subintervals
of the signal, we can attempt to find the time dependence of the frequency
spectrum. This idea can be generalized for both continuous and discrete
Fourier transforms. In MATLAB the function spectrogram produces a plot
of the time-dependent frequency of a signal by using similar blocks, but by
sliding blocks of a given width in time across the signal and doing a Fourier
analysis for each block. The output is a spectrogram.

Example 7.11. Let

g(t) =


sin(2π f0t), 0 ≤ t < π,

2 sin(2π f1t), π ≤ t < 3π,
1.5 sin(2π f2t), 3π ≤ t ≤ 4π,

where f0 = 20 Hz, f1 = 14 Hz and f3 = 7 Hz.

Figure 7.66: The spectrogram plot of
g(t).

2 4 6 8 10 12
0

5

10

15

20

Time

F
re

qu
en

cy
 (

H
z)

We sample this signal at 512 points and using the MATLAB command spectrogram,
in the form

spectrogram(g,rectwin(20),15,n,1/dt,’yaxis’)

to generate the spectrogram in Figure 7.66, where y is the signal sampled at n = 512
points and dt = 4π/n. The blocks are 20 pts wide with an overlap of 15 points.
Note that the dominant three frequencies appear roughly at the correct locations.

Example 7.12. Let y(t) = sin(2π
(

f0 + ( f1 − f0)
t
T )t
)

, t ∈ [0, 1], for f0 = 1.0
Hz and f1 = 10.0 Hz.

The the spectrogram in Figure 7.67 was produced by sampling this signal at 512
points and using the MATLAB command
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spectrogram(y,rectwin(20),15,n,1/dt,’yaxis’)

In the lower part of the figure we see a fuzzy linear region indicating the linear
dependence of the frequency on time roughly going from f = 1 Hz to f = 10.
Hz. The resolution of this frequency content depends partly on the width of the
rectangular block used and the overlap of the blocks. In this case the command takes
the form spectrogram(y,rectwin(w),o), where w is the width and o is the size of
the overlap.
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Figure 7.67: The spectrogram plot of the
chirp y(t) = sin(2π

(
f0 + ( f1 − f0)

t
T )t
)

,
t ∈ [0, 1], for f0 = 1.0 Hz and f1 = 10.0
Hz.

Let’s see how to formalize the process described in the last examples. We
begin with a sampled signal, yn, n = 0, . . . , N− 1, and a rectangular window
(or, block), wn = w(tn) of width M < N. Then, we compute the transform
of the product,

Yk,` = DFT {[y`w0, . . . , y`+nwn, . . . , y`+N−1wN−1]}

This gives the spectrum which we can associate with a time associated
with a time over which the block is nonzero. Next, the window is translated
by a time t`. The shifted window is given by wn−` = w(tn − t`).

Example 7.13. A simple example of using overlapping blocks.
We consider the signal

y(t) =

{
2 sin 2πt, 0 ≤ t ≤ 5,

1.5 sin 3πt, 5 ≤ t ≤ 10.

This is shown in Figure 7.68(a).
The signal is then sampled with ∆t = 0.05 as shown in Figure 7.68(b).
Figure 7.68(c) shows the blocks that can be used. Each block is of width 1.0 and

translated y 0.75, leaving an overlap of 0.25 between consecutive blocks.

We can change the values of the width of the rectangular block used
and the overlap of the blocks to see the effects on the output. Examples
are provided in Figures 7.69-7.70 for Examples 7.9 and 7.10. Each row is a
spectrogram of fixed with with a 20%, 40% 60% or 80% blockwidth overlap
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Figure 7.68: (a) Plot of y(t). (b) Sampled
signal yn. (c) Translated windows show-
ing overlapping.
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as the blocks are translated across the signal. The block widths down the
figure are 10 pts, 20 pts, 30 pts, and 40 pts, respectively.

In Figures 7.69-7.70 we see that there is better frequency resolution for
wider blocks, but the time resolution is blurrier. However, increasing the
overlap with aid in resolving the time as well. The better frequency resolu-
tion is due to using more points in the DFT for that block.

7.7.3 Short-Time Fourier Transform

The key to studying nonstationary signals is the Short-Time Fourier
Transform (STFT). The continuous version of the discrete Short-Time Fourier
Transform is obtained by multiplying the signal by a sliding window func-
tion, w(t), which is translated translated along the time axis, and taking the
Fourier transform. The idea of Short-Time Fourier Transform is often cred-
ited to Dennis Gabor’s work in 1946. He used a Gaussian window function.

Formally, we define the window function, w(t), and multiply a shifted
window, w(t− τ), by the signal, y(t), and compute

STFT[y](τ, ω) ≡= Y(τ, ω) =
∫ ∞

−∞
y(t)w(t− τ)e−iωt dt. (7.17)

Note that the sign in the exponential is negative, which differs from our
earlier convention.

For the purpose of computation we can discretize the time and frequency
variables giving the discrete-time Short-Time Fourier Transform and the
discrete Short-Time Fourier Transform. The discrete-time Short-Time Fourier
Transform is given by

Y(n, ω) =
∞

∑
m=−∞

x[m]w[m− n]e−iωn. (7.18)

The discrete-time Short-Time Fourier Transform is found by restricting ω to
a discrete set of frequencies, ω = 2πk

N . It is given by

Y[n, k] =
N−1

∑
m=0

x[m]w[m− n]e−2πikn/N . (7.19)

There are a variety of windowing functions used. Different functions
aid in time or frequency resolution as compared to the rectangular window
used in the earlier sections. Note that the STFT is the Fourier transform of
a product of two functions. So, if we fix τ, say τ = 0, then we have

Y(0, ω) =
∫ ∞

−∞
y(t)w(t)e−iωt dt. (7.20)

By the Convolution Theorem, the Fourier transform is the convolution of
two Fourier transforms:

Y(0, ω) = (Y ∗W)(ω),

Thus, an understanding of the Fourier transform of the window helps in
understanding the effects of the window on the STFT.
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Figure 7.69: The spectrogram plot of g(t)
in Example 7.9.
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Figure 7.70: The spectrogram plot of the
chirp signal, f (t), in Example 7.10.
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7.8 Harmonic Analysis

Even though spectral analysis, which is based upon the dis-
crete Fourier transform, is a readily used technique for analyzing the
spectral content of a signal, one might only be interested in the spectral
content for particular frequencies that are not included in the discrete set
of frequencies provided by the Fourier transform. This can happen when
the number of samples is large and the number of frequencies of interest
is much smaller. In this section we address the approximation of a given
signal, or time series, to a sum over a small set of frequency components.
The frequencies of interest are known but the associated amplitude is not
known. This will be accomplished using the method of least squares. This
is approach is studied in more detail in Emery and Thompson 2.2 W. J. Emery and R. E. Thomson. Data

Analysis Methods in Physical Oceanogra-
phy. Elsevier, Amsterdam, The Nether-
lands, second edition, 1991

We begin by reviewing the method of least squares for determining the
best fit of a line. The equation of a line only has two unknown parameters,
the slope and the intercept. An understanding of the derivation for this
simpler approximation should make that for the harmonic analysis more
transparent.

We begin with a set of data, presented in the usual pairs (xi, yi) for i =
1, . . . , N. We are interested in finding the best approximation, in some sense,
of this data by some function. In the case of linear regression, we seek a
linear relationship of the form y = ax + b. Though this line is not expected
to agree with the data, it is expected to be as “close as possible”.

What does one mean by “as close as possible”? We could mean that the
total distance between the known data points and the line is as small as
possible. Though there are many ways we could quantify this, the most
natural would be to sum over the standard distance between the points for
all data points. Thus, we would look at an expression like

F =
N

∑
n=1

√
(xi − xi)

2 + (yi − (axi + b))2.

However, since the first term under the square root vanishes and the square
root only returns a positive number, we could instead just consider the ex-
pression

E =
N

∑
n=1

[yi − (axi + b)]2 .

Making the later as small as possible only gives the same result as for the
first expression, but is easier to compute. It gives the sum of the vertical
distances between the data points and the line y = ax + b. This is called a
“least squares” regression.

We are interested in minimizing E, which could be thought of as a vari-
ance about the straight line mean. We minimize this “error” by varying
a and b. Thus, we have a two variable minimization problem. In order
to minimize a function of one variable, we differentiate the function with
respect to the variable and set it equal to zero to determine that value of
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the independent variable that yields a minimum. In this case, we need to
simultaneously set the derivatives with respect to a and b to zero and find
the values of a and b that solve the resulting equations.

Differentiating E with respect to a and b separately, gives

0 = 2
N

∑
n=1

[yi − (axi + b)](−xi)

0 = 2
N

∑
n=1

[yi − (axi + b)](−1). (7.21)

Regrouping, we find that these are simultaneous equations for the un-
knowns:

a
N

∑
n=1

x2
i + b

N

∑
n=1

xi =
N

∑
n=1

xiyi

a
N

∑
n=1

xi + bN =
N

∑
n=1

yi. (7.22)

Solving this system of equations gives expressions for a and b in terms
of various sums over expressions the involving the data. This is the basis of
the so called “best fit line” that is used in many programs, such as those in
calculators and in MS Excel. A more detailed discussion is given in 3. 3 R. L. Herman. A Course in Mathematical

Methods for Physicists. CRC Press, Taylor
& Francis Group, Boca Raton, FL, 2014

However, we are interested in fitting data to a more complicated expres-
sion than that of a straight line. In particular, we want to fit the data to a
sum over sines and cosines of arguments involving particular frequencies.

We will consider a set of data consisting of N values at equally spaced
times, tn = n∆t, n = 1, . . . , N. We are interested in finding the best approxi-
mation to a function consisting of M particular frequencies, fk, k = 1, . . . , M.
Namely, we wish to match the data to the function

f (t) = A0 +
M

∑
k=1

[Ak cos(2π fkt) + Bk sin(2π fkt)]. (7.23)

The unknown parameters in this case are the Ak’s and Bk’s. We will not
determine a function that exactly fits the data, as in the DFT case, but only
seek the best fit curve to the data. [Note: for simplicity, we have redefined
the constant term A0 and have not used the typical form, a0/2.]

We will consider the squared error,

E =
N

∑
n=1

[y(tn)− f (tn)]
2,

summed over times tn = n∆t = nT
N . More specifically, we will determine

the unknowns, by minimizing the expression

E =
N

∑
n=1

[y(tn)− (A0 +
M

∑
k=1

[Ak cos(2π fktn) + Bk sin(2π fktn)])]
2. (7.24)
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We differentiate E with respect to all of the parameters and require these
derivative to vanish. Namely, for a particular q, we have for q = 1, 2, . . . , M,

0 =
∂E

∂Aq

= 2
N

∑
n=1

Yn
(
− cos(2π fqtn)

)
0 =

∂E
∂Bq

= 2
N

∑
n=1

Yn
(
− sin(2π fqtn)

)
, (7.25)

where

Yn ≡
[

y(tn)−
(

A0 +
M

∑
k=1

[Ak cos(2π fktn) + Bk sin(2π fktn)]

)]
.

As with the example of determining a best fit line, we have obtained a
system of linear equations for the unknowns, Ak, Bk, k = 1, 2, . . . , M. We can
rewrite this system in a more apparent form and then make use of matrix
theory to solve for the unknown coefficients.

N

∑
n=1

y(tn) cos(2π fqtn)

= A0

N

∑
n=1

cos(2π fqtn)

+
M

∑
k=1

[
Ak

N

∑
n=1

cos(2π fktn) cos(2π fqtn) + Bk

N

∑
n=1

sin(2π fktn) cos(2π fqtn)

]
N

∑
n=1

y(tn) sin(2π fqtn)

= A0

N

∑
n=1

sin(2π fqtn)

+
M

∑
k=1

[
Ak

N

∑
n=1

cos(2π fktn) sin(2π fqtn) + Bk

N

∑
n=1

sin(2π fktn) sin(2π fqtn)

]
(7.26)

for q = 1, . . . , M.
We need to consider the equation for q = 0 separately. In this case we

have one equation,

0 =
∂E

∂A0

= 2
N

∑
n=1

[
y(tn)−

(
A0 +

M

∑
k=1

[Ak cos(2π fktn) + Bk sin(2π fktn)]

)]
(−1)),

(7.27)
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which reduces to

N

∑
n=1

[(
A0 +

M

∑
k=1

[Ak cos(2π fktn) + Bk sin(2π fktn)]

)]
=

N

∑
n=1

y(tn). (7.28)

We now note that we can write this system of 2M + 1 equations (Equa-
tions 7.26 and (7.28)) in matrix form. We first define the M× N matrices C
and S with elements

Cqn = cos(2π fktn), Sqn = sin(2π fktn),

where q = 1, . . . , M, and n = 1, . . . , N.
The sums over n in Equations 7.26 and (7.28) can be written as M × M

matrix products, CCT , CST , and SST .4 The qk-th entries (qth row and kth 4 CT is the transpose of C, satisfying
CT

ij = Cji and (AB)T = BT AT .column) of these matrices are given by

(
CCT

)
qk

=
N

∑
n=1

cos(2π fktn) cos(2π fqtn)

(
CST

)
qk

=
N

∑
n=1

sin(2π fktn) cos(2π fqtn)

(
SST

)
qk

=
N

∑
n=1

sin(2π fktn) sin(2π fqtn). (7.29)

Inserting these expressions into the system of equations, Equations 7.26

and (7.28), we obtain for q = 1, . . . , M,

A0

N

∑
n=1

Cqn +
M

∑
k=1

[(
CCT

)
qk

Ak +
(

SCT
)

qk
Bk

]
=

N

∑
n=1

Cqny(tn),

A0

N

∑
n=1

Sqn +
M

∑
k=1

[(
SCT

)
qk

Ak +
(

SST
)

qk
Bk

]
=

N

∑
n=1

Sqny(tn), (7.30)

and

A0N +
M

∑
k=1

Akck + Bksk =
N

∑
n=1

y(tn). (7.31)

Finally, these equations can be put into the matrix form DZ = Y, where

Y =

 ȳ
Cy
Sy

 , Z =

(
A
B

)
,

for y = [y(t1), dots, y(tN)]
T and

D =

 N cT sT

c CC CS
s CS SS

 ,

where

cq =
N

∑
n=1

Cqn, sq =
N

∑
n=1

Sqn.
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Note that Y and Z are 2M + 1 dimensional column vectors, c and s are
M dimensional column vectors and D is a (2M + 1) × (2M + 1) matrix.
The system of equations in matrix form, DZ = Y, can be solved for the
unknowns in the column vector Z = D−1Y.

An implementation of this procedure in MATLAB is given below.

%

% Harmonic Analysis

%

% Enter Data in y

y=[7.6 7.4 8.2 9.2 10.2 11.5 12.4 13.4 13.7 11.8 10.1 ...

9.0 8.9 9.5 10.6 11.4 12.9 12.7 13.9 14.2 13.5 11.4 10.9 8.1];

N=length(y);

% Number of Harmonics Desired and frequency dt

M=2;

f=1/12*(1:M);

T=24;

alpha=f*T;

% Compute the matrices of trigonometric functions

n=1:N;

C=cos(2*pi*alpha’*n/N);

S=sin(2*pi*alpha’*n/N);

c_row=ones(1,N)*C’;

s_row=ones(1,N)*S’;

D(1,1)=N;

D(1,2:M+1)=c_row;

D(1,M+2:2*M+1)=s_row;

D(2:M+1,1)=c_row’;

D(M+2:2*M+1,1)=s_row’;

D(2:M+1,2:M+1)=C*C’;

D(M+2:2*M+1,2:M+1)=S*C’;

D(2:M+1,M+2:2*M+1)=C*S’;

D(M+2:2*M+1,M+2:2*M+1)=S*S’;

yy(1,1)=sum(y);

yy(2:M+1)=y*C’;

yy(M+2:2*M+1)=y*S’;

z=D^(-1)*yy’;

Problems

1. Consider the spectra below. In each case the data was sampled at 100

points for 12 seconds.

a. What is the sampling rate?

b. What is ∆ f ?
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c. What is the maximum frequency in the plots?

d. Determine the frequencies of the three spikes.

e. In each case write down a possible function, f (t), which would
give rise to these spikes.

f. In Figure 7.72 there are two frequencies. The tall spike is an aliased
frequency. The data should have been sampled with 150 points.
What is the correct frequency that would be displayed using 150

points?

Figure 7.71: Spectrum 1 for Problem 1.

Figure 7.72: Spectrum 2 for Problem 1.

2. Consider the signal f (t) = 1.5e−t sin 4t.

a. Find analytical form for the modulus of the Fourier transform of
f (t).

b. Plot f̂ (ω) from part a and f (t).

c. For each of the following, use MATLAB to plot the DFT amplitudes
for the given values of T and N.
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a. T = 0.2 and N = 32.

b. T = 0.1 and N = 32.

c. T = 0.1 and N = 64.

d. Compare these results with f̂ (ω) and note which are good ap-
proximations, which might exhibit aliasing, etc.

3. Consider the signal whose Fourier transform is given by

F(ω) =

{
1−

∣∣ω
π

∣∣ , |ω| < π

0 |ω| < π.

Let the signal be sampled at intervals of ∆t s.

a. Sketch the discrete Fourier transform that you would expect if
∆t = 0.5 s.

b. Sketch the discrete Fourier transform that you would expect if
∆t = 1.0 s.

c. Sketch the discrete Fourier transform that you would expect if
∆t = 2.0 s.

4. Find the Fourier transform of the sinc function.

F [sinc t] =

{
π, |ω| < 1,
0, |ω| > 1.

= πG1(ω).

5. Consider the function

ŷΩ(ω) =

{
4π2 −ω2, |ω| ≤ 4π,

0, |ω| > 2π.

a. Sketch ŷΩ(ω).

b. Determine the Nyquist sampling frequency.

c. Sketch the function GΩ(ω)F [yΩ ∗ ∆t comb 2π
∆t
] for sampling times

∆t = 1, 2, 3.

6. Derive the Poisson Summation Formula,

∞

∑
k=−∞

y(x + ka) =
1
a

∞

∑
k=−∞

ŷ
(

k∆t
2π

)
eikt/∆t,

by

a. Starting with ŷa(ω) = F [ga(t)y(t)]; and

b. By using the form

∞

∑
k=−∞

ŷΩ (ω− kΩ) =
1
Ω

∞

∑
k=−∞

f
(

k
Ω

)
eiωk∆t.
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aliasing, 287, 292

analog, 277

analog function, ix
analog signal, 193, 235

analytic function, 138

angular frequency, 179

Argand diagram, 118

associated Legendre functions, 94

audio apps, 278

average of a function, 42

Bernoulli numbers, 205

Bernoulli, Daniel, vii, 98, 118

Bernoulli, Jacob, 118

Bernoulli, Jacob II, 118

Bernoulli, Johann, 118

Bernoulli, Johann II, 118

Bernoulli, Johann III, 118

Bernoulli, Nicolaus I, 118

Bernoulli, Nicolaus II, 118

Bessel functions, 98

first kind, 99

Fourier-Bessel series, 101

generating function, 101

identities, 100

orthogonality, 101

recursion formula, 101

second kind, 100

Bessel’s inequality, 105, 107

Bessel, Friedrich Wilhelm, 99

big-Oh, 30, 31

binomial coefficients, 26

binomial expansion, 26

Bose-Einstein integrals, 205

boundary conditions, viii
box function, 182

branch cut, 124

branch point, 160

Bromwich integral, 218

Bromwich, Thomas John I’Anson, 218

Cardano, Girolamo, 118

Cauchy Integral Formula, 140

Cauchy principal value integral, 154

Cauchy’s Theorem, 134, 135

Cauchy, Augustin-Louis, 129

Cauchy-Riemann Equations, 129

chirp, 303

circle of convergence, 139

classical orthogonal polynomials, 83, 85

comb function, 239

Fourier transform, 241

complete basis, 105

complex differentiation, 127

complex exponential, 117

complex functions, 121

multivalued, 124

natual logarithm, 124

real and imaginary parts, 122

complex numbers, 118

addition, 119

Cartesian form, 118

complex conjugate, 119

imaginary part, 118

modulus, 118

multiplication, 119

nth root, 120

nth roots of unity, 121

polar form, 119

quotient, 119

real part, 118

complex plane, 118

connected set, 131

contour deformation, 135

contour integral, 154

convergence
absolute, 11

conditional, 11

pointwise, 12, 106

real sequences, 2

uniform, 14, 15, 106

convergence in the mean, 105
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convergence of Fourier series, 106

convergence tests, 8

Comparison test, 8

Integral test, 9

Limit comparison test, 9

M-test, 16

nth term divergence test, 8

Ratio test, 10

Root test, 11

convolution
Fourier transform, 186

Laplace transform, 214

convolution theorem
Fourier transform, 186

Laplace transform, 214

Cooley, James, 252

cosine series, 54

double, 66

cube roots of unity, 121

cutoff frequency, 193

d’Alembert, Jean le Rond, vii
de Moivre’s Formula, 25

de Moivre, Abraham, 25, 118

DFT, 248, 277

coefficients, 248

exponential transform, 252

representation, 247

difference equation, 201

differential equations, 206

series, 99

Dirac delta function, 106, 110, 175

Laplace transform, 211

sifting property, 176

Dirac, Paul Adrien Maurice, 76, 176

Dirichlet kernel, 61, 106

discrete Fourier transform
exponential, 252

trigonometric, 245, 248

discrete orthogonality, 248

discrete Short-Time Fourier Transform,
307

discrete signal, 235

discrete-time Short-Time Fourier Trans-
form, 307

distribution, 111, 176

domain, 131

domain coloring, 124

double factorial, 91

entire function, 138

essential singularity, 145

integrand, 151

residue, 149

Euler’s Formula, 24

Euler, Leonhard, vii, 98, 118

even functions, 48

exponential order., 217

fanal.m, 267

fanal2.m, 269

fanalf.m, 268

fast Fourier transform, 252, 255

Feynman, Richard, 203

FFT, 252, 255

MATLAB, 267

Fibonacci sequence, 26

Fibonacci, Leonardo Pisano, 2

field, 74

filter, 296

filtering, 193

finite wave train, 185, 194, 237, 289

for all, ∀, 13

Fourier analysis, 40

Fourier coefficients, 41

Fourier series, 40

complex exponential, 172

double, 66

Maple code, 56

representation on [0, 2π], 41

Fourier sine transform, 226

Fourier Transform, 169

Fourier transform, 173

convolution, 181

differential equations, 220

properties, 179

shifitng properties, 180

short-time, 280

Fourier transforms, ix
Fourier, Joseph, viii, 37, 98

Fourier-Bessel series, 98

Fourier-Legendre series, 86, 95

frequency, 179

ftex.m, 263

function spaces, 80

Gamma function, 97, 202

gate function, 182, 193

Gauß, Carl Friedrich, 252

Gauss, Carl Friedrich, 5

Gaussian function, 181, 192

Gaussian integral, 182

Gegenbauer polynomials, 86

generalized function, 111, 176

geometric progression, 248

geometric series, 5, 17, 139, 142
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Gibbs phenomenon, 57, 59

Gibbs, Josiah Willard, 59

Gram-Schmidt Orthogonalization, 83

gravitational potential, 90

Green’s formula, 107

Green’s functions
heat equation, 225, 228

Laplace’s equation, 224

Green’s Theorem in the Plane, 134

Green, George, 135

Gregory, James, 19

harmonic analysis, 310

harmonic conjugate, 130

harmonic functions, 129

harmonics, viii
heat equation, 37, 70

Green’s function, 225

Laplace transform, 225

nonhomogeneous, 226

transform, 221

heat kernel, 222

Heaviside function, 95, 209

Heaviside, Oliver, 95

Heisenberg, Werner, 184

Hermite polynomials, 86, 114

Hilbert, David, vii
Holmes, Sherlock, 1

holomorphic function, 129, 138

impulse function, 194

unit impulse, 212

impulse response, 194

impulse train, 239

infinite dimensional, 80

initial value problem, 206

inner product, 80

inner product spaces, 80

integral transforms, 169, 196

integration by parts, 49

integration by recursion, 200

interval of convergence, 18, 22

inverse Fourier transform, 173

inverse Laplace transform, 207, 217

Jacobi polynomials, 86

Jordan’s lemma, 163

Julia set, 125

Kepler, Johannes, vii, 99

kernel, 169

Kronecker delta, 76, 81

Kronecker, Leopold, 76

L’Hopital’s Rule, 4

Lagrange, Joseph-Louis, 99

Laguerre polynomials, 86

Laplace transform, 196

convolution, 214

differential equations, 206

inverse, 217

properties, 202

series summation, 203

transform pairs, 198

Laplace’s equation
Green’s function, 224

half plane, 222

transform, 223

Laplace, Pierre-Simon, 196

Laurent series, 143

singular part, 145

Laurent, Pierre Alphonse, 143

leakage, 288

least squares
approximation, 103

Legendre polynomials, 86

generating function, 90

leading coefficient, 88

normalization, 93

recurrence relation, 87

recursion formula, 87

Rodrigues Formula, 87

Legendre, Adrien-Marie, 85, 97

Leibniz’s Theorem, 11

Leibniz, Gottfried Wilhelm, 11

limit theorems, 3

linear regression, 310

linearity, 179

Lobatchevsky, Nikolai, 169

logarithm
multi-valued, 124

principal value, 124

low pass filter, 296

Maclaurin series, 17, 20

Maclaurin, Colin, 19

Mandelbrot set, 125

mass-spring systems, 281

MATLAB, 259, 266

FFT, 267

implementation, 262

matrix computation, 266

sound, 269

MATLAB code, 125

matrix
multiplication, 266

transpose, 266
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vectors, 266

mean square deviation, 103

meromorphic function, 138

method of least squares, 310

Method of Separation of Variables, 64

Morera’s Theorem, 138

Morera, Giacinto , 138

multivalued functions, 120, 159

integration, 161

Nash, John Forbes, 235

Neumann function, 100

Newton, Isaac, 11

nonstationary signals, 301

norm of functions, 82

normal, 134

normalization, 43, 82

Nyquist rate, 293, 295

ocean waves, viii
odd functions, 49

open set, 131

orthogonal functions, 43

orthonormal, 43

p-test, 10

parametrization, 131

Parseval’s equality, 105, 195

Parseval’s identity, 67

Parseval, Marc-Antoine, 195

partial differential equation
transforms, 220

partial fraction decomposition, 143, 207

partial sum, 5

Pascal’s triangle, 26

Pascal, Blaise, 26

passband, 296

path independence, 133

path integral, 131

Penrose, Roger, 73

period, 39

periodic, 106

periodic extension, 41, 50, 106

periodic function, 39

periodic signal, 236

periodogram, 281

periodograms, 278

examples, 283

phase, 40

phase shift, 40, 246

Plancherel’s formula, 195

Plancherel, Michel, 195

Poisson summation formula. , 300

Poisson, Siméon, 98

poles, 145

power spectrum, 281

radius of convergence, 18, 22, 139

record length, 236, 288

rectangular membrane, 64

residue, 147

Residue Theorem, 150

Riemann surface, 124, 159

Riemann zeta function, 204

Riemann, Georg Friedrich Bernhard, 129

Riemann-Lebesgue Lemma, 106

Riemann-Lebesgue lemma, 107

ringing, 288, 291

Shah function, 239

sampling, 283

frequency, 243

period, 243

sampling function, 239

sampling theorem, 295

scalar product, 44

scheme
finite transform, 226

Fourier, 220

Laplace transform, 197

sequence
Fibonacci, 2, 26

functions, 12

real numbers, 2

recursive, 2

series
alternating series, 11

binomial series, 18, 28

Fourier series, 40

functions, 15

geometric series, 5

harmonic series, 9

Laurent series, 142

Maclaurin series, 17, 20

p-series, 10

power series, 17, 19

re-indexed, 142

real numbers, 4

summation by transforms, 203

Taylor series, 17, 20, 139

telescoping, 7, 35

Shannon, Claude, 295

Short-Time Fourier Transform
discrete, 307

discrete-time, 307

Short-time Fourier Transform, 280

signal analysis, 277
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signals
analog, 235

discrete, 235

periodic, 236

simple closed contour, 133

simple harmonic motion, 211

sinc function, 183

sine series, 54

double, 64

singularity, 145

double pole, 146

essential, 145

poles, 145

removable, 145

simple pole, 146

sound editors, 278

space of square integrable functions, 105

special limits, 3

Special Relativity, 29

spectral leakage, 288

spectrogram, 279, 304

square wave, 210, 211, 220

stationary signals, 301

step function, 209

Stone-Weierstraß Theorem, 83

Sturm-Liouville, 101

Sturm-Liouville problem, 101, 115, 116

sum of an infinite series, 5

Taylor polynomials, 20

Taylor series, 17, 20, 139

Taylor, Brook, vii, 19

Tchebychef polynomials, 86

Thoreau, Henry David, 117

time dilation, 29

tones, 38

transfer function, 296

transforms
exponential Fourier, 172

finite Fourier sine, 226

Fourier, 173

Fourier sine, 226

inverse Laplace, 217

Laplace, 196

trigonometric identities, 42

Tukey, John, 252

Uncertainty Principle, 184

vector spaces, 73

finite dimensional, 73

function spaces, 80

inner product space, 80

vectors, 73

components, 75

length, 75

linearly independent, 75

orthogonal basis, 76

orthonormal basis, 76

projection, 84

scalar product, 76

standard basis, 75

vibrating beams, 281

vibrating membrane, 64
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von Neumann, John, 277

Wallis, John, vii
Watson, G.N., 99

wave equation, vii, 37, 70

rectangular, 64

wavenumber, 179

Weierstraß, Karl Theodor Wilhelm, 16

Weierstraß M-Test, 16
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