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Prologue

“How can it be that mathematics, being after all a product of human thought inde-
pendent of experience, is so admirably adapted to the objects of reality?.” - Albert
Einstein (1879-1955)

Introduction

This book is written for an undergraduate course on the intro-
duction to differential equations typically taken by majors in mathematics,
the physical sciences, and engineering. In this course we will investigate an-
alytical, graphical, and approximate solutions of differential equations. We
will study the theory, methods of solution and applications of ordinary dif-
ferential equations. This will include common methods of finding solutions,
such as using Laplace transform and power series methods.

Students should also be prepared to review their calculus, especially if
they have been away from calculus for a while. Some of the key topics are
reviewed in the appendix. In particular, students should know how to dif-
ferentiate and integrate all elementary functions, including hyperbolic func-
tions. They should review the methods of integration as the need arises,
including methods of substitution and integration by parts. For the most
part, we will just need material from Calculus I and II. Other topics from
Calculus II that we will review are infinite series and introductory differen-
tial equations and applications.

Most students will have just come out of the calculus sequence knowing
all about differentiation and integration. We hope that they have also seen
plenty of applications. In this course, we will extend these applications to
those connected with differential equations. Differential equations are equa-
tions involving an unknown function and its derivatives. If the function is
a function of a single variable, then the equations are known as ordinary
differential equations, the subject of this book. If the unknown function is a
function of several independent variables, then the equation is a partial dif-
ferential equation, which we will not deal with in this course. Finally, there
may be several unknown functions satisfying several coupled differential
equations. These systems of differential equations will be treated later in
the course and are often the subject of a second course in differential equa-
tions.

In all cases we will be interested in specific solutions satisfying a set of
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initial conditions, or values, of the function and some of its derivatives at a
given point of its domain. These are known as initial value problems. When
such conditions are given at several points, then one is dealing with bound-
ary value problems. Boundary value problems would be the subject of a
second course in differential equations and in partial differential equations.

We will begin the study of differential equations with first order ordi-
nary differential equations. These equations involve only derivatives of first
order. Typical examples occur in population modeling and in free fall prob-
lems. There are a few standard forms which can be solved quite easily. In
the second chapter we move up to second order equations. As the order
increases, it becomes harder to solve differential equations analytically. So,
we either need to deal with simple equations or turn to other methods of
finding approximate solutions.

For second order differential equations there is a theory for linear second
order differential equations and the simplest equations are constant coeffi-
cient second order linear differential equations. We will spend some time
looking at these solutions. Even though constant coefficient equations are
relatively simple, there are plenty of applications and the simple harmonic
oscillator is one of these. The solutions make physical sense and adding
damping and forcing terms leads to interesting solutions and additional
methods of solving these equations.

Not all differential equations can be solved in terms of elementary func-
tions. So, we turn to the numerical solution of differential equations using
the solvable models as test beds for numerical schemes. This also allows for
the introduction of more realistic models. Using Computer Algebra Systems
(CAS) or other programming environments, we can explore these examples.

A couple hundred years ago there were no computers. So, mathemati-
cians of the day sought series solutions of differential equations. These
series solutions led to the discovery of now famous functions, such as Leg-
endre polynomials and Bessel functions. These functions are quite common
in applications and the use of power series solutions is a well known ap-
proach to finding approximate solutions by hand.

Another common technique for solving differential equation, both or-
dinary and partial, are transform methods. One of the simplest of these
is the Laplace transform. This integral transform is used to transform the
ordinary differentia equation to an algebraic equation. The solution of the
algebraic equation is then used to uncover the solution to the differential
equation. These techniques are often useful in systems theory or electrical
engineering.

In recent decades the inclusion of technology in the classroom has al-
lowed for the introduction of systems of differential equations into the typ-
ical course on differential equations. Solutions of linear systems of equa-
tions is an important tool in the study of nonlinear differential equations
and nonlinear differential equations have been the subject of many research
papers over the last several decades. We will look at systems of differential
equations at the end of the book and discuss the stability of solutions in
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dynamical systems.

Technology and Tables

As you progress through the course, you will often have to compute
integrals and derivatives by hand. However, many readers know that some
of the tedium can be alleviated by using computers, or even looking up
what you need in tables. In some cases you might even find applets online
that can quickly give you the answers you seek.

You also need to be comfortable in doing many computations by hand.
This is necessary, especially in your early studies, for several reasons. For
example, you should try to evaluate integrals by hand when asked to do
them. This reinforces the techniques, as outlined earlier. It exercises your
brain in much the same way that you might jog daily to exercise your body.
The more comfortable you are with derivations and evaluations, the easier
it is to follow future lectures without getting bogged down by the details,
wondering how your professor got from step A to step D. You can always
use a computer algebra system, or a Table of Integrals, to check on your
work.

Problems can arise when depending purely on the output of computers,
or other “black boxes.” Once you have a firm grasp on the techniques and
a feeling as to what answers should look like, then you can feel comfortable
with what the computer gives you. Sometimes, Computer Algebra Systems
(CAS) like Maple, can give you strange looking answers and sometimes
even wrong answers. Also, these programs cannot do every integral or
solve every differential equation that you ask them to do. Even some of the
simplest looking expressions can cause computer algebra systems problems.
Other times you might even provide wrong input, leading to erroneous
results.

Another source of indefinite integrals, derivatives, series expansions, etc,
is a Table of Mathematical Formulae. There are several good books that
have been printed. Even some of these have typos in them, so you need to
be careful. However, it may be worth the investment to have such a book in
your personal library. Go to the library, or the bookstore, and look at some
of these tables to see how useful they might be.

There are plenty of online resources as well. For example, there is the
Wolfram Integrator at http://integrals.wolfram.com/ as well as the recent
http://www.wolframalpha.com/. There is also a wealth of information at
the following sites: http://www.sosmath.com/,
http://www.math2.org/, http://mathworld.wolfram.com/, and
http://functions.wolfram.com/.

While these resources are useful for problems which have analytical so-
lutions, at some point you will need to realize that most problems in texts,
especially those from a few decades ago, are mostly aimed at solutions
which either have nice analytical solutions or have solutions that can be

http://integrals.wolfram.com/
http://www.wolframalpha.com/
http://www.sosmath.com/
http://www.math2.org/
http://mathworld.wolfram.com/
http://functions.wolfram.com/
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approximated using pencil and paper.
More and more you will see problems which need to be solved numer-

ically. While most of this book (97%) stresses the traditional methods used
for determining the exact or approximate behavior of systems based upon
solid mathematical methods, there are times that an basic understanding of
computational methods is useful. Therefore, we will occasionally discuss
some numerical methods related to the subject matter in the text. In par-
ticular, we will discuss some methods of computational physics such as the
numerical solution of differential equations and fitting data to curves. Ap-
plications will be discussed which can only be solved using these methods.

There are many programming languages and software packages which
can be used to determine numerical solutions to algebraic equations or dif-
ferential equations. For example, CAS (Computer Algebra Systems) such
as Maple and Mathematica are available. Open source packages such as
Maxima, which has been around for a while, Mathomatic, and the SAGE
Project, do exist as alternatives. One can use built in routines and do some
programming. The main features are that they can produce symbolic solu-
tions. Generally, they are slow in generating numerical solutions.

For serious programming, one can use standard programming languages
like FORTRAN, C and its derivatives. Recently, Python has become an al-
ternative and much accepted resource as an open source programming lan-
guage and is useful for doing scientific computing using the right packages.

Also, there is MATLAB. MATLAB was developed in the 1980’s as a Ma-
trix Laboratory and for a long time was the standard outside “normal” pro-
gramming languages to handle non-symbolic solutions in computational
science. Similar open source clones have appeared, such as Octave. Octave
can run most MATLAB files and some of its own. Other clones of MATLAB
are SciLab, Rlab, FreeMat, and PyLab.

In this text there are some snippets provided of Maple and MATLAB
routines. Most of the text does not rely on these; however, the MATLAB
snippets should be relatively readable to anyone with some knowledge of
computer packages, or easy to pass to the open source clones, such as Oc-
tave. Maple routines are not so simple, but may be translatable to other
packages with a little effort. However, the theory lying behind the use of
any of these routines is described in the text and the text can be read without
explicit understanding of the particular computer software.

Acknowledgments
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not only differential equations, but also in teaching numerous courses in
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Chapter 1

First Order Differential Equations

“The profound study of nature is the most fertile source of mathematical discover-
ies.” - Joseph Fourier (1768-1830)

1.1 Free Fall

In this chapter we will study some common differential equations that
appear in physics. We will begin with the simplest types of equations and
standard techniques for solving them We will end this part of the discussion
by returning to the problem of free fall with air resistance. We will then turn
to the study of oscillations, which are modeled by second order differential
equations.

Let us begin with a simple example from introductory physics. Recall Free fall example.

that free fall is the vertical motion of an object solely under the force of grav-
ity. It has been experimentally determined that an object near the surface
of the Earth falls at a constant acceleration in the absence of other forces,
such as air resistance. This constant acceleration is denoted by −g, where g
is called the acceleration due to gravity. The negative sign is an indication
that we have chosen a coordinate system in which up is positive.

We are interested in determining the position, y(t), of the falling body as
a function of time. From the definition of free fall, we have

ÿ(t) = −g. (1.1)

Note that we will occasionally use a dot to indicate time differentiation. Differentiation with respect to time is of-
ten denoted by dots instead of primes.This notation is standard in physics and we will begin to introduce you to

this notation, though at times we might use the more familiar prime notation
to indicate spatial differentiation, or general differentiation.

In Equation (1.1) we know g. It is a constant. Near the Earth’s surface it
is about 9.81 m/s2 or 32.2 ft/s2. What we do not know is y(t). This is our
first differential equation. In fact it is natural to see differential equations
appear in physics often through Newton’s Second Law, F = ma, as it plays
an important role in classical physics. We will return to this point later.

So, how does one solve the differential equation in (1.1)? We do so by
using what we know about calculus. It might be easier to see when we put
in a particular number instead of g. You might still be getting used to the
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fact that some letters are used to represent constants. We will come back to
the more general form after we see how to solve the differential equation.

Consider
ÿ(t) = 5. (1.2)

Recalling that the second derivative is just the derivative of a derivative, we
can rewrite this equation as

d
dt

(
dy
dt

)
= 5. (1.3)

This tells us that the derivative of dy/dt is 5. Can you think of a function
whose derivative is 5? (Do not forget that the independent variable is t.) Yes,
the derivative of 5t with respect to t is 5. Is this the only function whose
derivative is 5? No! You can also differentiate 5t + 1, 5t + π, 5t − 6, etc.
In general, the derivative of 5t + C is 5, where C is an arbitrary integration
constant.

So, Equation (1.2) can be reduced to

dy
dt

= 5t + C. (1.4)

Now we ask if you know a function whose derivative is 5t + C. Well, you
might be able to do this one in your head, but we just need to recall the
Fundamental Theorem of Calculus, which relates integrals and derivatives.
Thus, we have

y(t) =
5
2

t2 + Ct + D, (1.5)

where D is a second integration constant.
Equation (1.5) gives the solution to the original differential equation. That

means that when the solution is placed into the differential equation, both
sides of the differential equation give the same expression. You can always
check your answer to a differential equation by showing that your solution
satisfies the equation. In this case we have

ÿ(t) =
d2

dt2

(
5
2

t2 + Ct + D
)
=

d
dt
(5t + C) = 5.

Therefore, Equation (1.5) gives the general solution of the differential equa-
tion.

We also see that there are two arbitrary constants, C and D. Picking
any values for these gives a whole family of solutions. As we will see, the
equation ÿ(t) = 5 is a linear second order ordinary differential equation.
The general solution of such an equation always has two arbitrary constants.

Let’s return to the free fall problem. We solve it the same way. The only
difference is that we can replace the constant 5 with the constant −g. So, we
find that

dy
dt

= −gt + C, (1.6)

and
y(t) = −1

2
gt2 + Ct + D. (1.7)
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Once you get down the process, it only takes a line or two to solve.
There seems to be a problem. Imagine dropping a ball that then un-

dergoes free fall. We just determined that there are an infinite number of
solutions for the position of the ball at any time! Well, that is not possi-
ble. Experience tells us that if you drop a ball you expect it to behave the
same way every time. Or does it? Actually, you could drop the ball from
anywhere. You could also toss it up or throw it down. So, there are many
ways you can release the ball before it is in free fall producing many dif-
ferent paths, y(t). That is where the constants come in. They have physical
meanings.

If you set t = 0 in the equation, then you have that y(0) = D. Thus, D
gives the initial position of the ball. Typically, we denote initial values with
a subscript. So, we will write y(0) = y0. Thus, D = y0.

That leaves us to determine C. It appears at first in Equation (1.6). Recall
that dy

dt , the derivative of the position, is the vertical velocity, v(t). It is
positive when the ball moves upward. We will denote the initial velocity
v(0) = v0. Inserting t = 0 in Equation (1.6), we find that ẏ(0) = C. This
implies that C = v(0) = v0.

Putting this all together, we have the physical form of the solution for
free fall as

y(t) = −1
2

gt2 + v0t + y0. (1.8)

Doesn’t this equation look familiar? Now we see that the infinite family of
solutions consists of free fall resulting from initially dropping a ball at po-
sition y0 with initial velocity v0. The conditions y(0) = y0 and ẏ(0) = v0 are
called the initial conditions. A solution of a differential equation satisfying
a set of initial conditions is often called a particular solution. Specifying the
initial conditions results in a unique solution.

So, we have solved the free fall equation. Along the way we have be-
gun to see some of the features that will appear in the solutions of other
problems that are modeled with differential equation. Throughout the book
we will see several applications of differential equations. We will extend
our analysis to higher dimensions, in which we case will be faced with so-
called partial differential equations, which involve the partial derivatives of
functions of more that one variable.

But are we done with free fall? Not at all! We can relax some of the
conditions that we have imposed. We can add air resistance. We will visit
this problem later in this chapter after introducing some more techniques.
We can also provide a horizontal component of motion, leading to projectile
motion.

R

h(t)

M

m

Figure 1.1: Free fall far from the Earth
from a height h(t) from the surface.

Finally, we should also note that free fall at constant g only takes place
near the surface of the Earth. What if a tile falls off the shuttle far from the
surface of the Earth? It will also fall towards the Earth. Actually, the tile also
has a velocity component in the direction of the motion of the shuttle. So,
it would not necessarily take radial path downwards. For now, let’s ignore
that component.
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To look at this problem in more detail, we need to go to the origins of the
acceleration due to gravity. This comes out of Newton’s Law of Gravitation.
Consider a mass m at some distance h(t) from the surface of the (spheri-
cal) Earth. Letting M and R be the Earth’s mass and radius, respectively,
Newton’s Law of Gravitation states that

ma = F

m
d2h(t)

dt2 = −G
mM

(R + h(t))2 . (1.9)

Thus, we arrive at a differential equationHere G = 6.6730 × 10−11 m3kg−1s−2

is the Universal Gravitational Constant,
M = 5.9736× 1024 kg and R = 6371 km
are the Earth’s mass and mean radius,
respectively. For h << R, GM/R2 ≈ g.

d2h(t)
dt2 = − GM

(R + h(t))2 . (1.10)

This equation is not as easy to solve. We will leave it as a homework exercise
for the reader.

1.2 First Order Differential Equations

Before moving on, we first define an n-th order ordinary differential
equation. It is an equation for an unknown function y(x) that expresses an-th order ordinary differential equation

relationship between the unknown function and its first n derivatives. One
could write this generally as

F(y(n)(x), y(n−1)(x), . . . , y′(x), y(x), x) = 0. (1.11)

Here y(n)(x) represents the nth derivative of y(x).
An initial value problem consists of the differential equation plus theInitial value problem.

values of the first n− 1 derivatives at a particular value of the independent
variable, say x0:

y(n−1)(x0) = yn−1, y(n−2)(x0) = yn−2, . . . , y(x0) = y0. (1.12)

A linear nth order differential equation takes the formLinear nth order differential equation

an(x)y(n)(x) + an−1(x)y(n−1)(x) + . . . + a1(x)y′(x) + a0(x)y(x)) = f (x).
(1.13)

If f (x) ≡ 0, then the equation is said to be homogeneous, otherwise it is
called nonhomogeneous.Homogeneous and nonhomogeneous

equations. Typically, the first differential equations encountered are first order equa-
tions. A first order differential equation takes the formFirst order differential equation

F(y′, y, x) = 0. (1.14)

There are two common first order differential equations for which one can
formally obtain a solution. The first is the separable case and the second is
a first order equation. We indicate that we can formally obtain solutions, as
one can display the needed integration that leads to a solution. However,
the resulting integrals are not always reducible to elementary functions nor
does one obtain explicit solutions when the integrals are doable.



first order differential equations 5

1.2.1 Separable Equations

A first order equation is separable if it can be written the form

dy
dx

= f (x)g(y). (1.15)

Special cases result when either f (x) = 1 or g(y) = 1. In the first case the
equation is said to be autonomous.

The general solution to equation (1.15) is obtained in terms of two inte-
grals: Separable equations.

∫ dy
g(y)

=
∫

f (x) dx + C, (1.16)

where C is an integration constant. This yields a 1-parameter family of
solutions to the differential equation corresponding to different values of
C. If one can solve (1.16) for y(x), then one obtains an explicit solution.
Otherwise, one has a family of implicit solutions. If an initial condition is
given as well, then one might be able to find a member of the family that
satisfies this condition, which is often called a particular solution.

Figure 1.2: Plots of solutions from the 1-
parameter family of solutions of Exam-
ple 1.1 for several initial conditions.

Example 1.1. y′ = 2xy, y(0) = 2.
Applying (1.16), one has∫ dy

y
=
∫

2x dx + C.

Integrating yields
ln |y| = x2 + C.

Exponentiating, one obtains the general solution,

y(x) = ±ex2+C = Aex2
.

Here we have defined A = ±eC. Since C is an arbitrary constant, A is
an arbitrary constant. Several solutions in this 1-parameter family are
shown in Figure 1.2.

Next, one seeks a particular solution satisfying the initial condition.
For y(0) = 2, one finds that A = 2. So, the particular solution satisfy-
ing the initial condition is y(x) = 2ex2

.

Figure 1.3: Plots of solutions of Example
1.2 for several initial conditions.

Example 1.2. yy′ = −x. Following the same procedure as in the last
example, one obtains:∫

y dy = −
∫

x dx + C ⇒ y2 = −x2 + A, where A = 2C.

Thus, we obtain an implicit solution. Writing the solution as x2 + y2 =

A, we see that this is a family of circles for A > 0 and the origin for
A = 0. Plots of some solutions in this family are shown in Figure 1.3.



6 differential equations

1.2.2 Linear First Order Equations

The second type of first order equation encountered is the linear
first order differential equation in the standard form

y′(x) + p(x)y(x) = q(x). (1.17)

In this case one seeks an integrating factor, µ(x), which is a function that one
can multiply through the equation making the left side a perfect derivative.
Thus, obtaining,

d
dx

[µ(x)y(x)] = µ(x)q(x). (1.18)

The integrating factor that works is µ(x) = exp(
∫ x p(ξ) dξ). One can

derive µ(x) by expanding the derivative in Equation (1.18),

µ(x)y′(x) + µ′(x)y(x) = µ(x)q(x), (1.19)

and comparing this equation to the one obtained from multiplying (1.17) by
µ(x) :

µ(x)y′(x) + µ(x)p(x)y(x) = µ(x)q(x). (1.20)

Note that these last two equations would be the same if the second terms
were the same. Thus, we will require that

dµ(x)
dx

= µ(x)p(x).

This is a separable first order equation for µ(x) whose solution is the inte-
grating factor:Integrating factor.

µ(x) = exp
(∫ x

p(ξ) dξ

)
. (1.21)

Equation (1.18) is now easily integrated to obtain the general solution to
the linear first order differential equation:

y(x) =
1

µ(x)

[∫ x
µ(ξ)q(ξ) dξ + C

]
. (1.22)

Example 1.3. xy′ + y = x, x > 0, y(1) = 0.
One first notes that this is a linear first order differential equation.

Solving for y′, one can see that the equation is not separable. Further-
more, it is not in the standard form (1.17). So, we first rewrite the
equation as

dy
dx

+
1
x

y = 1. (1.23)

Noting that p(x) = 1
x , we determine the integrating factor

µ(x) = exp
[∫ x dξ

ξ

]
= eln x = x.
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Multiplying equation (1.23) by µ(x) = x, we actually get back the
original equation! In this case we have found that xy′ + y must have
been the derivative of something to start. In fact, (xy)′ = xy′ + x.
Therefore, the differential equation becomes

(xy)′ = x.

Integrating, one obtains

xy =
1
2

x2 + C,

or
y(x) =

1
2

x +
C
x

.

Inserting the initial condition into this solution, we have 0 = 1
2 + C.

Therefore, C = − 1
2 . Thus, the solution of the initial value problem is

y(x) =
1
2
(x− 1

x
).

We can verify that this is the solution. Since y′ = 1
2 + 1

2x2 , we have

xy′ + y =
1
2

x +
1

2x
+

1
2

(
x− 1

x

)
= x.

Also, y(1) = 1
2 (1− 1) = 0.

Example 1.4. (sin x)y′ + (cos x)y = x2.
Actually, this problem is easy if you realize that the left hand side

is a perfect derivative. Namely,

d
dx

((sin x)y) = (sin x)y′ + (cos x)y.

But, we will go through the process of finding the integrating factor
for practice.

First, we rewrite the original differential equation in standard form.
We divide the equation by sin x to obtain

y′ + (cot x)y = x2 csc x.

Then, we compute the integrating factor as

µ(x) = exp
(∫ x

cot ξ dξ

)
= eln(sin x) = sin x.

Using the integrating factor, the standard form equation becomes

d
dx

((sin x)y) = x2.

Integrating, we have

y sin x =
1
3

x3 + C.

So, the solution is

y(x) =
(

1
3

x3 + C
)

csc x.
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There are other first order equations that one can solve for closed form
solutions. However, many equations are not solvable, or one is simply inter-
ested in the behavior of solutions. In such cases one turns to direction fields
or numerical methods. We will return to a discussion of the qualitative be-
havior of differential equations later and numerical solutions of ordinary
differential equations later in the book.

1.2.3 Exact Differential Equations

Some first order differential equations can be solved easily if they are what
are called exact differential equations. These equations are typically written
using differentials. For example, the differential equation

N(x, y)
dy
dx

+ M(x, y) = 0 (1.24)

can be written in the form

M(x, y)dx + N(x, y)dy = 0.

This is seen by multiplying Equation (1.24) by dx and noting from calculus
that for a function y = y(x), the relation between the differentials dx and dy
is

dy =
dy
dx

dx.
Differential one-forms.

The expression M(x, y)dx + N(x, y)dy is called a differential one-form.
Such a one-form is called exact if there is a function u(x, y) such that

M(x, y)dx + N(x, y)dy = du.

However, from calculus we know that for any function u(x, y),Exact one-form.

du =
∂u
∂x

dx +
∂u
∂y

dy.

If du = M(x, y)dx + N(x, y)dy, then we have

∂u
∂x

= M(x, y)

∂u
∂y

= N(x, y). (1.25)

Since
∂2u

∂x∂y
=

∂2u
∂y∂x

when these second derivatives are continuous, by Clairaut’s Theorem, then
we have

∂M
∂y

=
∂N
∂x

must hold if M(x, y)dx + N(x, y)dy is to be an exact one-form.
In summary, we have found that
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The differential equation M(x, y)dx + N(x, y)dy = 0 is exact in the do-
main D of the xy-plane for M, N, My, and Nx continuous functions in D
if and only if

∂M
∂y

=
∂N
∂x

holds in the domain.

Condition for M(x, y)dx+ N(x, y)dy = 0
to be exact.

Furthermore, if du = M(x, y)dx + N(x, y)dy = 0, then u(x, y) = C, for C
an arbitrary constant. Thus, an implicit solution can be found as∫ x

x0

M(x, y) dx +
∫ y

y0

N(x, y) dy = C.

We show this in the following example.

Example 1.5. Show that (x3 + xy2) dx + (x2y + y3) dy = 0 is an exact
differential equation and obtain the corresponding implicit solution

We first note that

∂M
∂y

= 2xy,
∂N
∂x

= 2xy.

Since these partial derivatives are the same, the differential equation
is exact. So, we need to find the function u(x, y) such that du = (x3 +

xy2) dx + (x2y + y3) dy.

First, we note that x3 = d
(

x4

4

)
and y3 = d

(
y4

4

)
. The remaining

terms can be combined to find that

xy2 dx + x2y dy = xy(y dx + x dy)

= xy d(xy)

= d
(
(xy)2

2

)
. (1.26)

Combining these results, we have

u =
x4

4
+

x2y2

2
+

y4

4
= C.

What if the one-form is not exact?
So ,what if M(x, y)dx + N(x, y)dy is not exact? We can multiply the one-

form by an integrating factor, µ(x), and try to make he resulting form exact.
We let

du = µMdx + µNdy.

For the new form to be exact, we have to require that

∂

∂y
(µM) =

∂

∂x
(µN) .

Carrying out the differentiation, we have

N
∂µ

∂x
−M

∂µ

∂y
= µ

(
∂M
∂y
− ∂N

∂x

)
.
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Thus, the integrating factor satisfies a partial differential equation. If the
integrating factor is a function of only x or y, then this equation reduces to
ordinary differential equations for µ.

As an example, if µ = µ(x), then the integrating factor satisfies

N
dµ

dx
= µ

(
∂M
∂y
− ∂N

∂x

)
,

or

N
d ln µ

dx
=

∂M
∂y
− ∂N

∂x
.

If
µ

N

(
∂M
∂y
− ∂N

∂x

)
is only a function of x, then µ = µ(x).

If
µ

M

(
∂N
∂x
− ∂M

∂y

)
is only a function of y, then µ = µ(y).

Example 1.6. Find the general solution to the differential equation
(1 + y2) dx + xy dy = 0.

First, we note that this is not exact. We have M(x, y) = 1 + y2 and
N(x, y) = xy. Then,

∂M
∂y

= 2y,
∂N
∂x

= y.

Therefore, the differential equation is not exact.
Next, we seek the integrating factor. We let

du = µ(1 + y2) dx + µxy dy.

For the new form to be exact, we have to require that

xy
∂µ

∂x
− (1 + y2)

∂µ

∂y
= µ

(
∂(1 + y2)

∂y
− ∂xy

∂x

)
= µy.

If µ = µ(x), then

x
dµ

dx
= µ.

This is easily solved as a separable first order equation. We find that
µ(x) = x.

Multiplying the original equation by µ = x, we obtain

0 = x(1 + y2) dx + x2y dy = d
(

x2

2
+

x2y2

2

)
.

Thus,
x2

2
+

x2y2

2
= C

gives the solution.

1.3 Applications

In this section we will look at some simple applications which are
modeled with first order differential equations. We will begin with simple
exponential models of growth and decay.
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1.3.1 Growth and Decay

Some of the simplest models are those involving growth or decay.
For example, a population model can be obtained under simple assump-
tions. Let P(t) be the population at time t. We want to find an expression
for the rate of change of the population, dP

dt . Assuming that there is no mi-
gration of population, the only way the population can change is by adding
or subtracting individuals in the population. The equation would take the
form

dP
dt

= Rate In − Rate Out.

The Rate In could be due to the number of births per unit time and the Rate
Out by the number of deaths per unit time. The simplest forms for these
rates would be given by

Rate In = bP and the Rate Out = mP.

Here we have denoted the birth rate as b and the mortality rate as m. This
gives the total rate of change of population as

dP
dt

= bP−mP ≡ kP. (1.27)

Equation (1.27) is a separable equation. The separation follows as we
have seen earlier in the chapter. Rearranging the equation, its differential
form is

dP
P

= k dt.

Integrating, we have ∫ dP
P

=
∫

k dt

ln |P| = kt + C. (1.28)

Next, we solve for P(t) through exponentiation, Integrating, we have More generally, the initial value problem
dP/dt = kP, P(t0) = P0 has the solution

P(t) = P0ek(t−t0).|P(t)| = ekt+C

P(t) = ±ekt+C

= ±eCekt

= Aekt. (1.29)

Here we renamed the arbitrary constant, ±eC, as A.
If the population at t = 0 is P0, i.e., P(0) = P0, then the solution gives

P(0) = Ae0 = A = P0. So, the solution of the initial value problem is

P(t) = P0ekt.

Equation (1.27) the familiar exponential model of population growth: Malthusian population growth.

dP
dt

= kP.
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This is easily solved and one obtains exponential growth (k > 0) or de-
cay (k < 0). This Malthusian growth model has been named after Thomas
Robert Malthus (1766-1834), a clergyman who used this model to warn of
the impending doom of the human race if its reproductive practices contin-
ued.

Example 1.7. Consider a bacteria population of weight 20 g. If the
population doubles every 20 minutes, then what is the population
after 30 minutes? [Note: It is easier to weigh this population than to
count it.]

One looks at the given information before trying to answer the
question. First, we have the initial condition P0 = 20 g. Since the
population doubles every 20 minutes, then P(20) = 2P0 = 40. Here
we have take the time units as minutes. We are then asked to find
P(30).

We do not need to solve the differential equation. We will assume
a simple growth model. Using the general solution, P(t) = 20ekt, we
have

P(20) = 20e20k = 40,

or
e20k = 2.

We can solve this for k,

20k = ln 2, ⇒ k =
ln 2
20
≈ 0.035.

This gives an approximate solution, P(t) ≈ 20e.035t. Now we can
answer the original question. Namely, P(30) ≈ 57.

Of course, we could get an exact solution. With some simple ma-
nipulations, we have

P(t) = 20ekt

= 20e(
ln 2
20 )t

= 20
(

eln 2
) t

20

= 20
(

2
t

20

)
. (1.30)

This answer takes the general form for population doubling, P(t) =

P02
t
τ , where τ is the doubling rate.

Another standard growth-decay problem is radioactive decay. Certain
isotopes are unstable and the nucleus breaks apart, leading to nuclear decay.
The products of the decay may also be unstable and undergo further nuclear
decay. As an example, Uranium-238 (U-238) decays into Thorium-234 (Th-
234). Thorium-234 is unstable and decays into Protactinium (Pa-234). ThisRadioactive decay problems.

in turn decays in many steps until lead (Pb-206) is produced as shown in
Table 1.1. This lead isotope is stable and the decay process stops. While this
is one form of radioactive decay, there are other types. For example, Radon
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Isotope Half-life
U238 4.468x109 years
Th234

24.1 days
Pa234m

1.17 minutes
U234 2.47x105 years
Th230 8.0x104 years
Ra226

1602 years
Rn222

3.823 days
Po218

3.05 minutes
Pb214

26.8 minutes
Bi214

19.7 minutes
Po214

164 microsec
Pb210

21 years
Bi210

5.01 days
Po210

138.4 days
Pb206 Stable

Table 1.1: U-238 decay chain.

222 (Rn-222) gives up an alpha particle (helium nucleus) leaving Polonium
(Po-218).

Given a certain amount of radioactive material, it does not all decay at
one time. A measure of the tendency of a nucleus to decay is called the
half-life. This is the time it takes for half of the material to decay. This is
similar to the last example and can be understood using a simple example.

Example 1.8. If 150.0 g of Thorium-234 decays to 137.6 g of Thorium-
234 in three days, what is its half-life?

This is another simple decay process. If Q(t) represents the quantity
of unstable material, then Q(t) satisfies the rate equation

dQ
dt

= kQ

with k < 0. The solution of the initial value problem, as we have seen,
is Q(t) = Q0ekt.

Now, let the half-life be given by τ. Then, Q(τ) = 1
2 Q0. Inserting

this fact into the solution, we have

Q(τ) = Q0ekτ

1
2

Q0 = Q0ekτ

1
2

= ekτ . (1.31)

Noting that Q(t) = Q0

(
ek
)t

, we solve Equation (1.31) for

ek = 2−1/τ .

Then, the solution can be written in the general form

Q(t) = Q02−
t
τ .
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Note that the decay constant is k = − ln 2
τ < 0.

Returning to the problem, we are given

Q(3) = 1502−
3
τ = 137.6.

Solving to τ,

2−
3
τ =

136.7
150

−3 ln 2 = ln .9173τ

τ = − 3 ln 2
ln .9173

= 24.09. (1.32)

Therefore, the half-life is about 24.1 days.

1.3.2 Newton’s Law of Cooling

If you take your hot cup of tea, and let it sit in a cold room, the tea
will cool off and reach room temperature after a period of time. The law
of cooling is attributed to Isaac Newton (1642-1727) who was probably the
first to state results on how bodies cool.1 The main idea is that a body at1 Newton’s 1701 Law of Cooling is an ap-

proximation to how bodies cool for small
temperature differences (T − Ta � T)
and does not take into account all of the
cooling processes. One account is given
by C. T. O’Sullivan, Am. J. Phys (1990) p
956-960.

temperature T(t) is initially at temperature T(0) = T0. It is placed in an
environment at an ambient temperature of Ta. A simple model is given that
the rate of change of the temperature of the body is proportional to the
difference between the body temperature and its surroundings. Thus, we
have

dT
dt

∝ T − Ta.

The proportionality is removed by introducing a cooling constant,

dT
dt

= −k(T − Ta), (1.33)

where k > 0.
This differential equation can be solved by noting that the equation can

be written in the form

d
dt
(T − Ta) = −k(T − Ta).

This is now of the form of exponential decay of the function T(t)− Ta. The
solution is easily found as

T(t)− Ta = (T0 − Ta)e−kt,

or
T(t) = Ta + (T0 − Ta)e−kt.

Example 1.9. A cup of tea at 90oC cools to 85oC in ten minutes. If the
room temperature is 22oC, what is its temperature after 30 minutes?

Using the general solution with T0 = 90oC,

T(t) = 22 + (90− 22)e−k = 22 + 68e−kt,
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we then find k using the given information, T(10) = 85oC. We have

85 = T(10)

= 22 + 68e−10k

63 = 68e−10k

e−10k =
63
68
≈ 0.926

−10k = ln 0.926

k = − ln 0.926
10

= 0.00764. (1.34)

This gives the equation for this model as

T(t) = 22 + 68e−0.00764t.

Now we can answer the question. What is T(30)?

T(30) = 22 + 68e−0.00764(30) = 76oC.

1.3.3 Terminal Velocity

Now let’s return to free fall. What if there is air resistance? We first
need to model the air resistance. As an object falls faster and faster, the drag
force becomes greater. So, this resistive force is a function of the velocity.
There are a couple of standard models that people use to test this. The idea
is to write F = ma in the form

mÿ = −mg + f (v), (1.35)

where f (v) gives the resistive force and mg is the weight. Recall that this
applies to free fall near the Earth’s surface. Also, for it to be resistive, f (v)
should oppose the motion. If the body is falling, then f (v) should be pos-
itive. If it is rising, then f (v) would have to be negative to indicate the
opposition to the motion.

One common determination derives from the drag force on an object
moving through a fluid. This force is given by

f (v) =
1
2

CAρv2, (1.36)

where C is the drag coefficient, A is the cross sectional area and ρ is the
fluid density. For laminar flow the drag coefficient is constant.

Unless you are into aerodynamics, you do not need to get into the details
of the constants. So, it is best to absorb all of the constants into one to
simplify the computation. So, we will write f (v) = bv2. The differential
equation including drag can then be rewritten as

v̇ = kv2 − g, (1.37)

where k = b/m. Note that this is a first order equation for v(t). It is separa-
ble too!
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Formally, we can separate the variables and integrate over time to obtain

t + K =
∫ v dz

kz2 − g
. (1.38)

(Note: We used an integration constant of K since C is the drag coefficient
in this problem.) If we can do the integral, then we have a solution for
v. In fact, we can do this integral. You need to recall another common

This is the first use of Partial Fraction
Decomposition. We will explore this
method further in the section on Laplace
Transforms. method of integration, which we have not reviewed yet. Do you remember

Partial Fraction Decomposition? It involves factoring the denominator in the
integral. In the simplest case there are two linear factors in the denominator
and the integral is rewritten:∫ dx

(x− a)(x− b)
=

1
b− a

∫ [ 1
x− a

− 1
x− b

]
dx (1.39)

The new integral now has two terms which can be readily integrated.
In order to factor the denominator in the current problem, we first have

to rewrite the constants. We let α2 = g/k and write the integrand as

1
kz2 − g

=
1
k

1
z2 − α2 . (1.40)

Now we use a partial fraction decomposition to obtain

1
kz2 − g

=
1

2αk

[
1

z− α
− 1

z + α

]
. (1.41)

Now, the integrand can be easily integrated giving

t + K =
1

2αk
ln
∣∣∣∣v− α

v + α

∣∣∣∣ . (1.42)

Solving for v, we have

v(t) =
1− Be2αkt

1 + Be2αkt α, (1.43)

where B ≡ eK. B can be determined using the initial velocity.
There are other forms for the solution in terms of a tanh function, which

the reader can determine as an exercise. One important conclusion is that
for large times, the ratio in the solution approaches −1. Thus, v → −α =

−
√

g
k as t → ∞. This means that the falling object will reach a constant

terminal velocity.
As a simple computation, we can determine the terminal velocity. We

will take an 80 kg skydiver with a cross sectional area of about 0.093 m2.
(The skydiver is falling head first.) Assume that the air density is a constant
1.2 kg/m3 and the drag coefficient is C = 2.0. We first note that

vterminal = −
√

g
k
= −

√
2mg
CAρ

.

So,

vterminal = −

√
2(70)(9.8)

(2.0)(0.093)(1.2)
= −78m/s.
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This is about 175 mph, which is slightly higher than the actual terminal
velocity of a sky diver with arms and feet fully extended. One would need
a more accurate determination of C and A for a more realistic answer. Also,
the air density varies along the way.

1.3.4 Mixture Problems

Mixture problems often occur in a first course on differential
equations as examples of first order differential equations. In such prob-
lems we consider a tank of brine, water containing a specific amount of salt
with pure water entering and the mixture leaving, or the flow of a pollutant
into, or out of, a lake. The goal is to prdict the amount of salt, or pollutant,
at some later time.

In general one has a rate of flow of some concentration of mixture enter-
ing a region and a mixture leaving the region. The goal is to determine how
much stuff is in the region at a given time. This is governed by the equation

Rate of change of substance = Rate In − Rate Out.

The rates are not often given. One is generally given information about
the concentration and flow rates in and out of the system. If one pays
attention to the dimentsion and sketches the situation, then one can write
out this rate equation as a first order differential equation. We consider a
simple example.

Example 1.10. Single Tank Problem
A 50 gallon tank of pure water has a brine mixture with concentra-

tion of 2 pounds per gallon entering at the rate of 5 gallons per minute.
[See Figure 6.23.] At the same time the well-mixed contents drain out
at the rate of 5 gallons per minute. Find the amount of salt in the tank
at time t. In all such problems one assumes that the solution is well
mixed at each instant of time.

Figure 1.4: A typical mixing problem.

Let x(t) be the amount of salt at time t. Then the rate at which the
salt in the tank increases is due to the amount of salt entering the tank
less that leaving the tank. To figure out these rates, one notes that
dx/dt has units of pounds per minute. The amount of salt entering
per minute is given by the product of the entering concentration times
the rate at which the brine enters. This gives the correct units:(

2
pounds

gal

)(
5

gal
min

)
= 10

pounds
min

.

Similarly, one can determine the rate out as(
x pounds

50 gal

)(
5

gal
min

)
=

x
10

pounds
min

.

Thus, we have
dx
dt

= 10− x
10

.



18 differential equations

This equation is solved using the methods for linear first order
equations. The integrating factor is µ = ex/10, leading to the general
solution

x(t) = 100 + Ae−t/10.

Using the initial condition, one finds the particular solution

x(t) = 100
(

1− e−t/10
)

.

Often one is interested in the long time behavior of a system. In
this case we have that limt→∞ x(t) = 100 lb. This makes sense because
2 pounds per galloon enter during this time to eventually leave the
entire 50 gallons with this concentration. Thus,

50 gal× 2
lb

50 gal
= 100 lb.

1.3.5 Orthogonal Trajectories of Curves

There are many problems from geometry which have lead to the
study of differential equations. One such problem is the construction of
orthogonal trajectories. Give a a family of curves, y1(x; a), we seek another
family of curves y2(x; c) such that the second family of curves are perpen-
dicular the to given family. This means that the tangents of two intersecting
curves at the point of intersection are perpendicular to each other. The
slopes of the tangent lines are given by the derivatives y′1(x) and y′2(x). We
recall from elementary geometry that the slopes of two perpendicular lines
are related by

y′2(x) = − 1
y′1(x)

.

Example 1.11. Find a family of orthogonal trajectories to the family of
parabolae y1(x; a) = ax2.

We note that the new collection of curves has to satisfy the equation

y′2(x) = − 1
y′1(x)

= − 1
2ax

.

Before solving for y2(x), we need to eliminate the parameter a. From
the give function, we have that a = y

x2 . Inserting this into the equation
for y′2, we have

y′(x) = − 1
2ax

= − x
2y

.

Thus, to find y2(x), we have to solve the differential equation

2yy′ + x = 0.

Noting that (y2)′ = 2yy′ and ( 1
2 x2)′ = x,, this (exact) equation can be

written as
d

dx

(
y2 +

1
2

x2
)
= 0.
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Integrating, we find the family of solutions,

y2 +
1
2

x2 = k.

In Figure 1.5 we plot both families of orthogonal curves.

x

y

−5 5

−5

5
y2 + 1

2 x2 = k

y = ax2

Figure 1.5: Plot of orthogonal families of
curves, y = ax2 and y2 + 1

2 x2 = k.

1.3.6 Pursuit Curves*

Another application that is interesting is to find the path that a
body traces out as it moves towards a fixed point or another moving body.
Such curses are know as pursuit curves. These could model aircraft or
submarines following targets, or predators following prey. We demonstrate
this with an example.

Example 1.12. A hawk at point (x, y) sees a sparrow traveling at speed
v along a straight line. The hawk flies towards the sparrow at constant
speed w but always in a direction along line of sight between their
positions. If the hawk starts out at the point (a, 0) at t = 0, when the
sparrow is at (0, 0), then what is the path the hawk needs to follow?
Will the hawk catch the sparrow? The situation is shown in Figure 1.6.
We pick the path of the sparrow to be along the y−axis. Therefore, the
sparrow is at position (0, vt).

First we need the equation of the line of sight between the points
(x, y) and (0, vt). Considering that the slope of the line is the same as
the slope of the tangent to the path, y = y(x), we have

y′ =
y− vt

x
.

The hawk is moving at a constant speed, w. Since the speed is re-
lated to the time through the distance the hawk travels. we need to
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Figure 1.6: A hawk at point (x, y) sees
a sparrow at point (0, vt) and always
follows the straight line between these
points.

x

y

(0, vt)

(a, 0)

(x, y)

find the arclength of the path between (a, 0) and (x, y). This is given
by

L =
∫

ds =
∫ a

x

√
1 + [y′(x)]2 dx.

The distance is related to the speed, w, and the time, t, by L = wt.
Eliminating the time using y′ = y−vt

x , we have∫ a

x

√
1 + [y′(x)]2 dx =

w
v
(y− xy′).

Furthermore, we can differentiate this result with respect to x to get
rid of the integral, √

1 + [y′(x)]2 =
w
v

xy′′.

Even though this is a second order differential equation for y(x), it
is a first order separable equation in the speed function z(x) = y′(x).
Namely,

w
v

xz′ =
√

1 + z2.

Separating variables, we find

w
v

∫ dz√
1 + z2

=
∫ dx

x
.

The integrals can be computed using standard methods from calculus.
We can easily integrate the right hand side,∫ dx

x
= ln |x|+ c1.

The left hand side takes a little extra work, or looking the value up
in Tables or using a CAS package. Recall a trigonometric substitution
is in order. [See the Appendix.] We let z = tan θ. Then dz = sec2 θ dθ.
The methods proceeds as follows:∫ dz√

1 + z2
=

∫ sec2 θ√
1 + tan2 θ

dθ
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=
∫

sec θ dθ

= ln(tan θ + sec θ) + c2

= ln(z +
√

1 + z2) + c2. (1.44)

Putting these together, we have for x > 0,

ln(z +
√

1 + z2) =
v
w

ln x + C.

Using the initial condition z = y′ = 0 and x = a at t = 0,

0 =
v
w

ln a + C,

or C = − v
w ln a.

Using this value for c, we find

ln(z +
√

1 + z2) =
v
w

ln x− v
w

ln a

ln(z +
√

1 + z2) =
v
w

ln
x
a

ln(z +
√

1 + z2) = ln
( x

a

) v
w

z +
√

1 + z2 =
( x

a

) v
w . (1.45)

We can solve for z = y′, to find

y′ =
1
2

[( x
a

) v
w −

( x
a

)− v
w
]

Integrating,

y(x) =
a
2

[( x
a
)1+ v

w

1 + v
w
−
( x

a
)1− v

w

1− v
w

]
+ k.

The integration constant, k, can be found knowing y(a) = 0. This gives

0 =
a
2

[
1

1 + v
w
− 1

1− v
w

]
+ k

k =
a
2

[
1

1− v
w
− 1

1 + v
w

]
=

avw
w2 − v2 . (1.46)

The full solution for the path is given by

y(x) =
a
2

[( x
a
)1+ v

w

1 + v
w
−
( x

a
)1− v

w

1− v
w

]
+

avw
w2 − v2 .

Can the hawk catch the sparrow? This would happen if there is
a time when y(0) = vt. Inserting x = 0 into the solution, we have
y(0) = avw

w2−v2 = vt. This is possible if w > v.
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1.4 Other First Order Equations*

There are several nonlinear first order equations whose solution can be ob-
tained using special techniques. We conclude this chapter by looking at a
few of these equations named after famous mathematicians of the 17-18th
century inspired by various applications.

1.4.1 Bernoulli Equation*

We begin with the Bernoulli equation, named after Jacob Bernoulli (1655-
1705). The Bernoulli equation is of the form

dy
dx

+ p(x)y = q(x)yn, n 6= 0, 1.

Note that when n = 0, 1 the equation is linear and can be solved using an

The Bernoulli’s were a family of Swiss
mathematicians spanning three gener-
ations. It all started with Jacob
Bernoulli (1654-1705) and his brother
Johann Bernoulli (1667-1748). Jacob
had a son, Nicolaus Bernoulli (1687-
1759) and Johann (1667-1748) had three
sons, Nicolaus Bernoulli II (1695-1726),
Daniel Bernoulli (1700-1872), and Johann
Bernoulli II (1710-1790). The last gener-
ation consisted of Johann II’s sons, Jo-
hann Bernoulli III (1747-1807) and Jacob
Bernoulli II (1759-1789). Johann, Jacob
and Daniel Bernoulli were the most fa-
mous of the Bernoulli’s. Jacob studied
with Leibniz, Johann studied under his
older brother and later taught Leonhard
Euler (1707-1783) and Daniel Bernoulli,
who is known for his work in hydrody-
namics.

integrating factor. The key to solving this equation is using the transforma-
tion z(x) = 1

yn−1(x) to make the equation for z(x) linear. We demonstrate the
procedure using an example.

Example 1.13. Solve the Bernoulli equation xy′+ y = y2 ln x for x > 0.
In this example p(x) = 1, q(x) = ln x, and n = 2. Therefore, we let

z = 1
y . Then,

z′ = − 1
y2 y′ = z2y′.

Inserting z = y−1 and z′ = z2y′ into the differential equation, we
have

xy′ + y = y2 ln x

−x
z′

z2 +
1
z

=
ln x
z2

−xz′ + z = ln x

z′ − 1
x

z = − ln x
x

. (1.47)

Thus, the resulting equation is a linear first order differential equa-
tion. It can be solved using the integrating factor,

µ(x) = exp
(
−
∫ dx

x

)
=

1
x

.

Multiplying the differential equation by the integrating factor, we
have ( z

x

)′
=

ln x
x2 .

Integrating, we obtain

z
x

= −
∫ ln x

x2 + C

=
ln x

x
+
∫ dx

x2 + C

=
ln x

x
+

1
x
+ C. (1.48)
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Multiplying by x, we have z = ln x + 1 + Cx. Since z = y−1, the
general solution to the problem is

y =
1

ln x + 1 + Cx
.

1.4.2 Lagrange and Clairaut Equations*

Alexis Claude Clairaut (1713-1765) solved the differential equation

y = xy′ + g(y′).

This is a special case of the family of Lagrange equations,

y = x f (y′) + g(y′),

named after Joseph Louis Lagrange (1736-1813). These equations also have
solutions called singular solutions. Singular solution are solutions for which
there is a failure of uniqueness to the initial value problem at every point on
the curve. A singular solution is often one that is tangent to every solution
in a family of solutions.

First, we consider solving the more general Lagrange equation. Let p = y′

in the Lagrange equation, giving

y = x f (p) + g(p). (1.49)

Next, we differentiate with respect to x to find

y′ = p = f (p) + x f ′(p)p′ + g′(p)p′.

Here we used the Chain Rule. For example,

dg(p)
dx

=
dg
dp

dp
dx

.

Solving for p′, we have

dp
dx

=
p− f (p)

x f ′(p) + g′(p)
. (1.50)

Lagrange equations, y = x f (y′) + g(y′).

We have introduced p = p(x), viewed as a function of x. Let’s assume
that we can invert this function to find x = x(p). Then, from introductory
calculus, we know that the derivatives of a function and its inverse are re-
lated,

dx
dp

=
1
dp
dx

.

Applying this to Equation (1.50), we have

dx
dp

=
x f ′(p) + g′(p)

p− f (p)

x′ − f ′(p)
p− f (p)

x =
g′(p)

p− f (p)
, (1.51)
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assuming that p− f (p) 6= 0.
As can be seen, we have transformed the Lagrange equation into a first

order linear differential equation (1.51) for x(p). Using methods from earlier
in the chapter, we can in principle obtain a family of solutions

x = F(p, C),

where C is an arbitrary integration constant. Using Equation (1.49), one
might be able to eliminate p in Equation (1.51) to obtain a family of solutions
of the Lagrange equation in the form

ϕ(x, y, C) = 0.

If it is not possible to eliminate p from Equations (1.49) and (1.51), then
one could report the family of solutions as a parametric family of solutions
with p the parameter. So, the parametric solutions would take the form

x = F(p, C),

y = F(p, C) f (p) + g(p). (1.52)

We had also assumed the p − f (p) 6= 0. However, there might also be
solutions of Lagrange’s equation for which p− f (p) = 0. Such solutions are
called singular solutions.

Singular solutions are possible for La-
grange equations.

Example 1.14. Solve the Lagrange equation y = 2xy′ − y′2.
We will start with Equation (1.51). Noting that f (p) = 2p, g(p) =

−p2, we have

x′ − f ′(p)
p− f (p)

x =
g′(p)

p− f (p)

x′ − 2
p− 2p

x =
−2p

p− 2p

x′ +
2
p

x = 2. (1.53)
x

y

−4 4

−5

5

Figure 1.7: Family of solutions of the La-
grange equation y = 2xy′ − y′2.

This first order linear differential equation can be solved using an
integrating factor. Namely,

µ(p) = exp
(∫ 2

p
dp
)
= e2 ln p = p2.

Multiplying the differential equation by the integrating factor, we have

d
dp

(
xp2
)
= 2p2.

Integrating,

xp2 =
2
3

p3 + C.

This gives the general solution

x(p) =
2
3

p +
C
p2 .
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Replacing y′ = p in the original differential equation, we have
y = 2xp− p2. The family of solutions is then given by the parametric
equations

x =
2
3

p +
C
p2 ,

y = 2
(

2
3

p +
C
p2

)
p− p2

=
1
3

p2 +
2C
p

. (1.54)

The plots of these solutions is shown in Figure 1.7.

We also need to check for a singular solution. We solve the equation
p− f (p) = 0, or p = 0. This gives the solution y(x) = (2xp− p2)p=0 = 0.

The Clairaut differential equation is given by

y = xy′ + g(y′).

Letting p = y′, we have

y = xp + g(p).

This is the Lagrange equation with f (p) = p. Differentiating with respect to
x,

p = p + xp′ + g′(p)p′.

Rearranging, we find

x = −g′(p)

So, we have the parametric solution

Clairaut equations, y = xy′ + g(y′).

x = −g′(p),

y = −pg′(p) + g(p). (1.55)

For the case that y′ = C, it can be seen that y = Cx + g(C) is a general
solution solution. x

y

−5 5

−5

5

y = x2

4

y = Cx− C2

Figure 1.8: Plot of solutions to the
Clairaut equation y = xy′ − y′2. The
straight line solutions are a family of
curves whose limit is the parametric slu-
tion.

Example 1.15. Find the solutions of y = xy′ − y′2.
As noted, there is a family of straight line solutions y = Cx − C2,

since g(p) = −p2. There might also by a parametric solution not con-
tained n this family. It would be given by the set of equations

x = −g′(p) = 2p,

y = −pg′(p) + g(p) = 2p2 − p2 = p2. (1.56)

Eliminating p, we have the parabolic curve y = x2/4.
In Figure 1.8 we plot these solutions. The family of straight line

solutions are shown in blue. The limiting curve traced out, much like
string figures one might create, is the parametric curve.
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1.4.3 Riccati Equation*

Jacopo Francesco Riccati (1676-1754) studied curves with some
specified curvature. He proposed an equation of the form

y′ + a(x)y2 + b(x)y + c(x) = 0

around 1720. He communicated this to the Bernoulli’s. It was Daniel
Bernoulli who had actually solved this equation. As noted by Ranjan Roy
(2011), Riccati had published his equation in 1722 with a note that D. Bernoulli
giving the solution in terms of an anagram. Furthermore, when a ≡ 0, the
Riccati equation reduces to a Bernoulli equation.

In Section 7.2.1, we will show that the Ricatti equation can be transformed
into a second order linear differential equation. However, there are special
cases in which we can get our hands on the solutions. For example, if a, b,
and c are constants, then the differential equation can be integrated directly.
We have

dy
dx

= −(ay2 + by + c).

This equation is separable and we obtain

x− C = −
∫ dy

ay2 + by + c
.

When a differential equation is left in this form, it is said to be solved by
quadrature when the resulting integral in principle can be computed in
terms of elementary functions.2

2 By elementary functions we mean
well known functions like polynomials,
trigonometric, hyperbolic, and some not
so well know to undergraduates, such as
Jacobi or Weierstrass elliptic functions.

If a particular solution is known, then one can obtain a solution to the
Riccati equation. Let the known solution be y1(x) and assume that the
general solution takes the form y(x) = y1(x) + z(x) for some unknown
function z(x). Substituting this form into the differential equation, we can
show that v(x) = 1/z(x) satisfies a first order linear differential equation.

Inserting y = y1 + z into the general Riccati equation, we have

0 =
dy
dx

+ a(x)y2 + b(x)y + c

=
dz
dx

+ az2 + 2azy1 + bz +

+
dy1

dx
+ ay2

1 + by1 + c

=
dz
dx

+ a(x)[2y1z + z2] + b(x)z

−a(x)z2 =
dz
dx

+ [2a(x)y1 + b(x)]z. (1.57)

The last equation is a Bernoulli equation with n = 2. So, we can make it
a linear equation with the substitution z = 1

v , z′ = − z′
v2 . Then, we obtain a

differential equation for v(x). It is given by

v′ − (2a(x)y1(x) + b(x))v = a(x).
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Example 1.16. Find the general solution of the Riccati equation, y′ −
y2 + 2exy− e2x − ex = 0, using the particular solution y1(x) = ex.

We let the sought solution take the form y(x) = z(x) + ex. Then, the
equation for z(x) is found as

dz
dx

= z2.

This equation is simple enough to integrate directly to obtain z = 1
C−x .

Then, the solution to the problem becomes

y(x) =
1

C− x
+ ex.

Problems

1. Find all of the solutions of the first order differential equations. When
an initial condition is given, find the particular solution satisfying that con-
dition.

a.
dy
dx

=
ex

2y
.

b.
dy
dt

= y2(1 + t2), y(0) = 1.

c.
dy
dx

=

√
1− y2

x
.

d. xy′ = y(1− 2y), y(1) = 2.

e. y′ − (sin x)y = sin x.

f. xy′ − 2y = x2, y(1) = 1.

g.
ds
dt

+ 2s = st2, , s(0) = 1.

h. x′ − 2x = te2t.

i.
dy
dx

+ y = sin x, y(0) = 0.

j.
dy
dx
− 3

x
y = x3, y(1) = 4.

2. For the following determine if the differential equation is exact. If it
is not exact, find the integrating factor. Integrate the equations to obtain
solutions.

a. (3x2 + 6xy2) dx + (6x2y + 4y3) dy = 0.

b. (x + y2) dx− 2xy dy = 0.

c. (sin xy + xy cos xy) dx + x2 cos xy dy = 0.

d. (x2 + y) dx− x dy = 0.

e. (2xy2 − 3y3) dx + (7− 3xy2) dy = 0.

3. Consider the differential equation

dy
dx

=
x
y
− x

1 + y
.
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a. Find the 1-parameter family of solutions (general solution) of this
equation.

b. Find the solution of this equation satisfying the initial condition
y(0) = 1. Is this a member of the 1-parameter family?

4. A ball is thrown upward with an initial velocity of 49 m/s from 539 m
high. How high does the ball get and how long does in take before it hits
the ground? [Use results from the simple free fall problem, y′′ = −g.]

5. Consider the case of free fall with a damping force proportional to the
velocity, fD = ±kv with k = 0.1 kg/s.

a. Using the correct sign, consider a 50 kg mass falling from rest at a
height of 100m. Find the velocity as a function of time. Does the
mass reach terminal velocity?

b. Let the mass be thrown upward from the ground with an initial
speed of 50 m/s. Find the velocity as a function of time as it travels
upward and then falls to the ground. How high does the mass get?
What is its speed when it returns to the ground?

6. An piece of a satellite falls to the ground from a height of 10,000 m.
Ignoring air resistance, find the height as a function of time. [Hint: For free
fall from large distances,

ḧ = − GM
(R + h)2 .

Multiplying both sides by ḣ, show that

d
dt

(
1
2

ḣ2
)
=

d
dt

(
GM

R + h

)
.

Integrate and solve for ḣ. Further integrating gives h(t).]

7. The problem of growth and decay is stated as follows: The rate of change
of a quantity is proportional to the quantity. The differential equation for
such a problem is

dy
dt

= ±ky.

The solution of this growth and decay problem is y(t) = y0e±kt. Use this
solution to answer the following questions if forty percent of a radioactive
substance disappears in 100 years.

a. What is the half-life of the substance?

b. After how many years will 90% be gone?

8. Uranium 237 has a half-life of 6.78 days. If there are 10.0 grams of U-237

now, then how much will be left after two weeks?

9. The cells of a particular bacteria culture divide every three and a half
hours. If there are initially 250 cells, how many will there be after ten hours?
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10. The population of a city has doubled in 25 years. How many years will
it take for the population to triple?

11. Identify the type of differential equation. Find the general solution
and plot several particular solutions. Also, find the singular solution if one
exists.

a. y = xy′ + 1
y′ .

b. y = 2xy′ + ln y′.

c. y′ + 2xy = 2xy2.

d. y′ + 2xy = y2ex2
.

12. Find the general solution of the Riccati equation given the particular
solution.

a. xy′ − y2 + (2x + 1)y = x2 + 2x, y1(x) = x.

b. y′e−x + y2 − 2yex = 1− e2x, y1(x) = ex.
A function F(x, y) is said to be homoge-
neous of degree k if F(tx, ty) = tk F(x, y).13. The initial value problem

dy
dx

=
y2 + xy

x2 , y(1) = 1

does not fall into the class of problems considered in this chapter. The
function on the right-hand side is a homogeneous function of degree zero.
However, if one substitutes y(x) = xz(x) into the differential equation, one
obtains an equation for z(x) which can be solved. Use this substitution to
solve the initial value problem for y(x).

14. If M(x, y) and N(x, y) are homogeneous functions of the same degree,
then M/N can be written as a function of y/x. This suggests that a sub-
stitution of y(x) = xz(x) into M(x, y) dx + N(x, y) dy might simplify the
equation. For the following problems use this method to find the family of
solutions.

a. (x2 − xy + y2) dx− xy dy = 0.

b. xy dx− (x2 + y2) dy = 0.

c. (x2 + 2xy− 4y2) dx− (x2 − 8xy− 4y2) dy = 0.

15. Find the family of orthogonal curves to the given family of curves.

a. y = ax

b. y = ax2.

c. x2 + y2 = 2ax.

16. The temperature inside your house is 70
oF and it is 30

oF outside. At 1:00

A.M. the furnace breaks down. At 3:00 A.M. the temperature in the house
has dropped to 50

oF. Assuming the outside temperature is constant and that
Newton’s Law of Cooling applies, determine when the temperature inside
your house reaches 40

oF.
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17. A body is discovered during a murder investigation at 8:00 P.M. and
the temperature of the body is 70

oF. Two hours later the body temperature
has dropped to 60

oF in a room that is at 50
oF. Assuming that Newton’s Law

of Cooling applies and the body temperature of the person was 98.6oF at
the time of death, determine when the murder occurred.

18. Newton’s Law of Cooling states that the rate of heat loss of an object is
proportional to the temperature gradient, or

dQ
dt

= hA∆T,

where Q is the thermal energy, h is the heat transfer coefficient, A is the
surface area of the body, and ∆T = T − Ta. If Q = CT, where C is the heat
capacity, then we recover Equation (1.33) with k = hA/C.

However, there are modifications which include convection or radiation.
Solve the following models and compare the solution behaviors.

a. Newton T′ = −k(T − Ta)

b. Dulong-Petit T′ = −k(T − Ta)5/4

c. Newton-Stefan T′ = −k(T − Ta) − εσ(T4 − T4
a ) ≈ −k(T − Ta) −

b(T − Ta)2.

19. Initially a 200 gallon tank is filled with pure water. At time t = 0 a
salt concentration with 3 pounds of salt per gallon is added to the container
at the rate of 4 gallons per minute, and the well-stirred mixture is drained
from the container at the same rate.

a. Find the number of pounds of salt in the container as a function
of time.

b. How many minutes does it take for the concentration to reach 2

pounds per gallon?

c. What does the concentration in the container approach for large
values of time? Does this agree with your intuition?

d. Assuming that the tank holds much more than 200 gallons, and
everything is the same except that the mixture is drained at 3 gal-
lons per minute, what would the answers to parts a and b become?

20. You make two gallons of chili for a party. The recipe calls for two tea-
spoons of hot sauce per gallon, but you had accidentally put in two table-
spoons per gallon. You decide to feed your guests the chili anyway. Assume
that the guests take 1 cup/min of chili and you replace what was taken with
beans and tomatoes without any hot sauce. [1 gal = 16 cups and 1 Tb = 3

tsp.]

a. Write down the differential equation and initial condition for the
amount of hot sauce as a function of time in this mixture-type
problem.

b. Solve this initial value problem.

c. How long will it take to get the chili back to the recipe’s suggested
concentration?



Chapter 2

Second Order Differential Equations

“Either mathematics is too big for the human mind or the human mind is more than
a machine.” - Kurt Gödel (1906-1978)

2.1 Introduction

In the last section we saw how second order differential equations
naturally appear in the derivations for simple oscillating systems. In this
section we will look at more general second order linear differential equa-
tions.

Second order differential equations are typically harder than first order.
In most cases students are only exposed to second order linear differential
equations. A general form for a second order linear differential equation is given
by

a(x)y′′(x) + b(x)y′(x) + c(x)y(x) = f (x). (2.1)

One can rewrite this equation using operator terminology. Namely, one
first defines the differential operator L = a(x)D2 + b(x)D + c(x), where
D = d

dx . Then, Equation (2.1) becomes

Ly = f . (2.2)

The solutions of linear differential equations are found by making use of
the linearity of L. Namely, we consider the vector space1 consisting of real-

1 We assume that the reader has been in-
troduced to concepts in linear algebra.
Later in the text we will recall the def-
inition of a vector space and see that lin-
ear algebra is in the background of the
study of many concepts in the solution
of differential equations.

valued functions over some domain. Let f and g be vectors in this function
space. L is a linear operator if for two vectors f and g and scalar a, we have
that

a. L( f + g) = L f + Lg

b. L(a f ) = aL f .

One typically solves (2.1) by finding the general solution of the homoge-
neous problem,

Lyh = 0

and a particular solution of the nonhomogeneous problem,

Lyp = f .
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Then, the general solution of (2.1) is simply given as y = yh + yp. This is
true because of the linearity of L. Namely,

Ly = L(yh + yp)

= Lyh + Lyp

= 0 + f = f . (2.3)

There are methods for finding a particular solution of a nonhomogeneous
differential equation. These methods range from pure guessing, the Method
of Undetermined Coefficients, the Method of Variation of Parameters, or
Green’s functions. We will review these methods later in the chapter.

Determining solutions to the homogeneous problem, Lyh = 0, is not al-
ways easy. However, many now famous mathematicians and physicists have
studied a variety of second order linear equations and they have saved us
the trouble of finding solutions to the differential equations that often ap-
pear in applications. We will encounter many of these in the following
chapters. We will first begin with some simple homogeneous linear differ-
ential equations.

Linearity is also useful in producing the general solution of a homoge-
neous linear differential equation. If y1(x) and y2(x) are solutions of the
homogeneous equation, then the linear combination y(x) = c1y1(x) + c2y2(x)
is also a solution of the homogeneous equation. This is easily proven.

Let Ly1 = 0 and Ly12 = 0. We consider y = c1y1 + c2y2. Then, since L is
a linear operator,

Ly = L(c1y1 + c2y2)

= c1Ly1 + c2Ly2

= 0. (2.4)

Therefore, y is a solution.
In fact, if y1(x) and y2(x) are linearly independent, then y = c1y1 + c2y2

is the general solution of the homogeneous problem. A set of functions
{yi(x)}n

i=1 is a linearly independent set if and only if

c1y1(x) + . . . + cnyn(x) = 0

implies ci = 0, for i = 1, . . . , n. Otherwise, they are said to be linearly
dependent. Note that for n = 2, the general form is c1y1(x) + c2y2(x) = 0.
If y1 and y2 are linearly dependent, then the coefficients are not zero and
y2(x) = − c1

c2
y1(x) and is a multiple of y1(x). We see this in the next example.

Example 2.1. Show that y1(x) = x and y2(x) = 4x are linearly depen-
dent.

We set c1y1(x) + c2y2(x) = 0 and show that there are nonzero con-
stants, c1 and c2 satisfying this equation. Namely, let

c1x + c2(4x) = 0.

Then, for c1 = −4c2, this is true for any nonzero c2. Let c2 = 1 and we
have c1 = −4.
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Next we consider two functions that are not constant multiples of each
other.

Example 2.2. Show that y1(x) = x and y2(x) = x2 are linearly inde-
pendent.

We set c1y1(x) + c2y2(x) = 0 and show that it can only be true if
c1 = 0 and c2 = 0. Let

c1x + c2x2 = 0,

for all x. Differentiating, we have two sets of equations that must be
true for all x :

c1x + c2x2 = 0,

c1 + 2c2x = 0. (2.5)

Setting x = 0, we get c1 = 0. Setting x = 1, then c1 + c2 = 0. Thus,
c2 = 0.

Another approach would be to solve for the constants. Multiplying
the second equation by x and subtracting yields c2 = 0. Substituting
this result into the second equation, we find c1 = 0.

For second order differential equations we seek two linearly indepen-
dent functions, y1(x) and y2(x). As in the last example, we set c1y1(x) +
c2y2(x) = 0 and show that it can only be true if c1 = 0 and c2 = 0. Differen-
tiating, we have

c1y1(x) + c2y2(x) = 0,

c1y′1(x) + c2y′2(x) = 0. (2.6)

These must hold for all x in the domain of the solutions.
Now we solve for the constants. Multiplying the first equation by y′1(x)

and the second equation by y2(x), we have

c1y1(x)y′2(x) + c2y2(x)y′2(x) = 0,

c1y′1(x)y2(x) + c2y′2(x)y2(x) = 0. (2.7)

Subtracting gives [
y1(x)y′2(x)− y′1(x)y2(x)

]
c1 = 0.

Therefore, either c1 = 0 or y1(x)y′2(x)− y′1(x)y2(x) = 0. So, if the latter is
true, then c1 = 0 and therefore, c2 = 0. This gives a condition for which
y1(x) and y2(x) are linearly independent:

y1(x)y′2(x)− y′1(x)y2(x) = 0. (2.8)

We define this quantity as the Wronskian of y1(x) and y2(x). Linear independence of the solutions of
a differential equation can be established
by looking at the Wronskian of the so-
lutions. For a second order differential
equation the Wronskian is defined as

W(y1, y2) = y1(x)y′2(x)− y′1(x)y2(x).

The Wronskian can be written as a determinant:

W(y1, y2) =

∣∣∣∣∣ y1(x) y2(x)
y′1(x) y′2(x)

∣∣∣∣∣ = y1(x)y′2(x)− y′1(x)y2(x).

Thus, the definition of a Wronskian can be generalized to a set of n functions
{yi(x)}n

i=1 using an n× n determinant.
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Example 2.3. Determine if the set of functions {1, x, x2} are linearly
independent.

We compute the Wronskian.

W(y1, y2, y3) =

∣∣∣∣∣∣∣
y1(x) y2(x) y3(x)
y′1(x) y′2(x) y′3(x)
y′′1 (x) y′′2 (x) y′′3 (x)

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
1 x x2

0 1 2x
0 0 2

∣∣∣∣∣∣∣
= 2. (2.9)

Since, W(1, x, x2) = 2 6= 0, then the set {1, x, x2} is linearly indepen-
dent.

2.2 Constant Coefficient Equations

The simplest second order differential equations are those with
constant coefficients. The general form for a homogeneous constant coeffi-
cient second order linear differential equation is given as

ay′′(x) + by′(x) + cy(x) = 0, (2.10)

where a, b, and c are constants.
Solutions to (2.10) are obtained by making a guess of y(x) = erx. Inserting

this guess into (2.10) leads to the characteristic equation

ar2 + br + c = 0. (2.11)

Namely, we compute the derivatives of y(x) = erx, to get y(x) = rerx, andThe characteristic equation for
ay′′ + by′ + cy = 0 is ar2 + br + c = 0.
Solutions of this quadratic equation lead
to solutions of the differential equation.

y(x) = r2erx. Inserting into (2.10), we have

0 = ay′′(x) + by′(x) + cy(x) = (ar2 + br + c)erx.

Since the exponential is never zero, we find that ar2 + br + c = 0.Two real, distinct roots, r1 and r2, give
solutions of the form

y(x) = c1er1x + c2er2x .
The roots of this equation, r1, r2, in turn lead to three types of solutions

depending upon the nature of the roots. In general, we have two linearly in-
dependent solutions, y1(x) = er1x and y2(x) = er2x, and the general solution
is given by a linear combination of these solutions,

y(x) = c1er1x + c2er2x.

For two real distinct roots, we are done. However, when the roots are real,
but equal, or complex conjugate roots, we need to do a little more work to
obtain usable solutions.

Example 2.4. y′′ − y′ − 6y = 0 y(0) = 2, y′(0) = 0.
The characteristic equation for this problem is r2 − r − 6 = 0. The

roots of this equation are found as r = −2, 3. Therefore, the general
solution can be quickly written down:

y(x) = c1e−2x + c2e3x.
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Note that there are two arbitrary constants in the general solution.
Therefore, one needs two pieces of information to find a particular
solution. Of course, we have the needed information in the form of
the initial conditions.

One also needs to evaluate the first derivative

y′(x) = −2c1e−2x + 3c2e3x

in order to attempt to satisfy the initial conditions. Evaluating y and
y′ at x = 0 yields

2 = c1 + c2

0 = −2c1 + 3c2 (2.12)

These two equations in two unknowns can readily be solved to give
c1 = 6/5 and c2 = 4/5. Therefore, the solution of the initial value
problem is obtained as y(x) = 6

5 e−2x + 4
5 e3x.

Repeated roots, r1 = r2 = r, give solu-
tions of the form

y(x) = (c1 + c2x)erx .

In the case when there is a repeated real root, one has only one solution,
y1(x) = erx. The question is how does one obtain the second linearly in-
dependent solution? Since the solutions should be independent, we must
have that the ratio y2(x)/y1(x) is not a constant. So, we guess the form
y2(x) = v(x)y1(x) = v(x)erx. (This process is called the Method of Reduc-
tion of Order. See Section 2.2.1)

For constant coefficient second order equations, we can write the equa-
tion as

(D− r)2y = 0,

where D = d
dx . We now insert y2(x) = v(x)erx into this equation. First we For more on the Method of Reduction of

Order, see Section 2.2.1.compute
(D− r)verx = v′erx.

Then,
0 = (D− r)2verx = (D− r)v′erx = v′′erx.

So, if y2(x) is to be a solution to the differential equation, then v′′(x)erx = 0
for all x. So, v′′(x) = 0, which implies that

v(x) = ax + b.

So,
y2(x) = (ax + b)erx.

Without loss of generality, we can take b = 0 and a = 1 to obtain the second
linearly independent solution, y2(x) = xerx. The general solution is then

y(x) = c1erx + c2xerx.

Example 2.5. y′′ + 6y′ + 9y = 0.
In this example we have r2 + 6r + 9 = 0. There is only one root,

r = −3. From the above discussion, we easily find the solution y(x) =
(c1 + c2x)e−3x.
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When one has complex roots in the solution of constant coefficient equa-
tions, one needs to look at the solutions

y1,2(x) = e(α±iβ)x.

We make use of Euler’s formula2, which is treated in Section A.36.2 Euler’s Formula is found using
Maclaurin series expansion

ex = 1 + x +
1
2

x2 +
1
3!

x3 + · · · .

Let x = iθ and find

eiθ = 1 + iθ +
1
2
(iθ)2 +

1
3!
(iθ)3 + · · · .

= 1− 1
2

θ2 +
1
4!

θ4 + · · ·

i
[

θ − 1
3!

θ3 +
1
5!

θ5 + · · ·
]

.

= cos θ + i sin θ.

eiβx = cos βx + i sin βx. (2.13)

Then, the linear combination of y1(x) and y2(x) becomes

Ae(α+iβ)x + Be(α−iβ)x = eαx
[

Aeiβx + Be−iβx
]

= eαx [(A + B) cos βx + i(A− B) sin βx]

≡ eαx(c1 cos βx + c2 sin βx). (2.14)

Thus, we see that we have a linear combination of two real, linearly inde-
pendent solutions, eαx cos βx and eαx sin βx.Complex roots, r = α± iβ, give solutions

of the form

y(x) = eαx(c1 cos βx + c2 sin βx).
Example 2.6. y′′ + 4y = 0.

The characteristic equation in this case is r2 + 4 = 0. The roots
are pure imaginary roots, r = ±2i, and the general solution consists
purely of sinusoidal functions, y(x) = c1 cos(2x) + c2 sin(2x), since
α = 0 and β = 2.

Example 2.7. y′′ + 2y′ + 4y = 0.
The characteristic equation in this case is r2 + 2r + 4 = 0. The roots

are complex, r = −1±
√

3i and the general solution can be written as

y(x) =
[
c1 cos(

√
3x) + c2 sin(

√
3x)
]

e−x.

Example 2.8. y′′ + 4y = sin x.
This is an example of a nonhomogeneous problem. The homoge-

neous problem was actually solved in Example 2.6. According to the
theory, we need only seek a particular solution to the nonhomoge-
neous problem and add it to the solution of the last example to get the
general solution.

The particular solution can be obtained by purely guessing, making
an educated guess, or using the Method of Variation of Parameters.
We will not review all of these techniques at this time. Due to the
simple form of the driving term, we will make an intelligent guess
of yp(x) = A sin x and determine what A needs to be. Inserting this
guess into the differential equation gives (−A + 4A) sin x = sin x. So,
we see that A = 1/3 works. The general solution of the nonhomoge-
neous problem is therefore y(x) = c1 cos(2x) + c2 sin(2x) + 1

3 sin x.

The three cases for constant coefficient linear second order differential
equations are summarized below.
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Classification of Roots of the Characteristic Equation
for Second Order Constant Coefficient ODEs

1. Real, distinct roots r1, r2. In this case the solutions corresponding to
each root are linearly independent. Therefore, the general solution is
simply y(x) = c1er1x + c2er2x.

2. Real, equal roots r1 = r2 = r. In this case the solutions corresponding
to each root are linearly dependent. To find a second linearly inde-
pendent solution, one uses the Method of Reduction of Order. This gives
the second solution as xerx. Therefore, the general solution is found as
y(x) = (c1 + c2x)erx.

3. Complex conjugate roots r1, r2 = α ± iβ. In this case the solutions
corresponding to each root are linearly independent. Making use of
Euler’s identity, eiθ = cos(θ) + i sin(θ), these complex exponentials
can be rewritten in terms of trigonometric functions. Namely, one
has that eαx cos(βx) and eαx sin(βx) are two linearly independent solu-
tions. Therefore, the general solution becomes y(x) = eαx(c1 cos(βx) +
c2 sin(βx)).

As we will see, one of the most important applications of such equations
is in the study of oscillations. Typical systems are a mass on a spring, or a
simple pendulum. For a mass m on a spring with spring constant k > 0, one
has from Hooke’s law that the position as a function of time, x(t), satisfies
the equation

mẍ + kx = 0.

This constant coefficient equation has pure imaginary roots (α = 0) and the
solutions are simple sine and cosine functions, leading to simple harmonic
motion.

2.2.1 Reduction of Order

We have seen the the Method of Reduction of Order was useful
in obtaining a second solution of a second order differential equation with
constant coefficients when one solution was known. It can also be used to
solve other second order differential equations. First, we review the method
by example.

Example 2.9. Verify that y1(x) = xe2x is a solution of y′′− 4y′+ 4y = 0
and use the Method of Reduction of Order to find a second linearly
independent solution.

We note that

y′1(x) = (1 + 2x)e2x,

y′′1 (x) = [2 + 2(1 + 2x)]e2x = (4 + 4x)e2x,
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Substituting the y1(x) and its derivatives into the differential equa-
tion, we have

y′′1 − 4y′1 + 4y1 = (4 + 4x)e2x − 4(1 + 2x)e2x + 4xe2x

= 0. (2.15)

In order to find a second linearly independent solution, y2(x), we
need a solution that is not a constant multiple of y1(x). So, we guess
the form y2(x) = v(x)y1(x). For this example, the function and its
derivatives are given by

y2 = vy1.

y′2 = (vy1)
′,

= v′y1 + vy′1.

y′′2 = (v′y1 + vy′1)
′,

= v′′y1 + 2v′y′1 + vy′′1 .

Substituting y2 and its derivatives into the differential equation, we
have

0 = y′′2 − 4y′2 + 4y2

= (v′′y1 + 2v′y′1 + vy′′1 )− 4(v′y1 + vy′1) + 4vy1

= v′′y1 + 2v′y′1 − 4v′y1 + v[y′′1 − 4y′1 + 4y1]

= v′′y1 + 2v′y′1 − 4v′y1

= v′′xe2x + 2v′(1 + 2x)e2x − 4v′xe2x

= [v′′x + 2v′]e2x. (2.16)

Therefore, v(x) satisfies the equation

v′′x + 2v′ = 0.

This is a first order equation for v′(x), which can be seen by introduc-
ing z(x) = v′(x), leading to the separable first order equation

x
dz
dx

= −2z.

This is readily solved to find z(x) = A
x2 . This gives

z =
dv
dx

=
A
x2 .

Further integration leads to

v(x) = −A
x
+ C.

This gives

y2(x) =

(
−A

x
+ C

)
xe2x

= −Ae2x + Cxe2x.
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Note that the second term is the original y1(x), so we do not need
this term and can set C = 0. Since the second linearly independent
solution can be determined up to a multiplicative constant, we can set
A = −1 to obtain the answer y2(x) = e2x. Note that this argument for
obtaining the simple form is reason enough to ignore the integration
constants when employing the Method of Reduction of Order.

For an example without constant coefficients, consider the following ex-
ample.

Example 2.10. Verify that y1(x) = x is a solution of x2y′′− 4xy′+ 4y =

0 and use the Method of Reduction of Order to find a second linearly
independent solution.

Substituting the y1(x) = x and its derivatives into the differential
equation, we have

x2y′′1 − 4xy′1 + 4y1 = 0− 4x + 4x

= 0. (2.17)

In order to find a second linearly independent solution, y2(x), we
need a solution that is not a constant multiple of y1(x). So, we guess
the form y2(x) = v(x)y1(x). For this example, the function and its
derivatives are given by

y2 = xv.

y′2 = (xv)′,

= v + xv′.

y′′2 = (v + xv′)′,

= 2v′ + xv′′.

Substituting y2 = xv(x) and its derivatives into the differential
equation, we have

0 = x2y′′2 − 4xy′2 + 4y2

= x2(2v′ + xv′′)− 4x(v + xv′) + 4xv

= x3v′′ − 2x2v′. (2.18)

Note how the v-terms cancel, leaving

xv′′ = 2v′.

This equation is solved by introducing z(x) = v′(x). Then, the equa-
tion becomes

x
dz
dx

= 2z.

Using separation of variables, we have

z =
dv
dx

= Ax2.
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Integrating, we obtain

v =
1
3

Ax3 + B.

This leads to the second solution in the form

y2(x) = x
(

1
3

Ax3 + B
)
=

1
3

Ax4 + Bx.

Since the general solution is

y(x) = c1x + c2

(
1
3

Ax4 + Bx
)

,

we see that we can choose B = 0 and A = 3 to obtian the general
solution as

y(x) = c1x + c2x4.

Therefore, we typically do not need the arbitrary constants found in
using reduction of order and simply report that y2(x) = x4.

2.3 Simple Harmonic Oscillators

The next physical problem of interest is that of simple harmonic
motion. Such motion comes up in many places in physics and provides
a generic first approximation to models of oscillatory motion. This is the
beginning of a major thread running throughout this course. You have seen
simple harmonic motion in your introductory physics class. We will review
SHM (or SHO in some texts) by looking at springs, pendula (the plural of
pendulum), and simple circuits.

2.3.1 Mass-Spring Systems

x

k

m

Figure 2.1: Spring-Mass system.

We begin with the case of a single block on a spring as shown in Figure
2.1. The net force in this case is the restoring force of the spring given by
Hooke’s Law,

Fs = −kx,

where k > 0 is the spring constant. Here x is the elongation, or displace-
ment of the spring from equilibrium. When the displacement is positive, the
spring force is negative and when the displacement is negative the spring
force is positive. We have depicted a horizontal system sitting on a fric-
tionless surface. A similar model can be provided for vertically oriented
springs. However, you need to account for gravity to determine the loca-
tion of equilibrium. Otherwise, the oscillatory motion about equilibrium is
modeled the same.

From Newton’s Second Law, F = mẍ, we obtain the equation for the
motion of the mass on the spring:

mẍ + kx = 0. (2.19)
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Dividing by the mass, this equation can be written in the form

ẍ + ω2x = 0, (2.20)

where

ω =

√
k
m

.

This is the generic differential equation for simple harmonic motion.
We will later derive solutions of such equations in a methodical way. For

now we note that two solutions of this equation are given by

x(t) = A cos ωt,

x(t) = A sin ωt, (2.21)

where ω is the angular frequency, measured in rad/s, and A is called the
amplitude of the oscillation. .

The angular frequency is related to the frequency by

ω = 2π f ,

where f is measured in cycles per second, or Hertz. Furthermore, this is
related to the period of oscillation, the time it takes the mass to go through
one cycle:

T = 1/ f .

2.3.2 The Simple Pendulum

L

m

O

Figure 2.2: A simple pendulum consists
of a point mass m attached to a string of
length L. It is released from an angle θ0.

The simple pendulum consists of a point mass m hanging on a string of
length L from some support. [See Figure 2.2.] One pulls the mass back
to some starting angle, θ0, and releases it. The goal is to find the angular
position as a function of time.

There are a couple of possible derivations. We could either use New-
ton’s Second Law of Motion, F = ma, or its rotational analogue in terms of
torque, τ = Iα. We will use the former only to limit the amount of physics
background needed.

There are two forces acting on the point mass. The first is gravity. This
points downward and has a magnitude of mg, where g is the standard sym-
bol for the acceleration due to gravity. The other force is the tension in the
string. In Figure 2.3 these forces and their sum are shown. The magnitude
of the sum is easily found as F = mg sin θ using the addition of these two
vectors.

L

mg

O

mg sin 0

T

Figure 2.3: There are two forces act-
ing on the mass, the weight mg and the
tension T. The net force is found to be
F = mg sin θ.

Now, Newton’s Second Law of Motion tells us that the net force is the
mass times the acceleration. So, we can write

mẍ = −mg sin θ.

Next, we need to relate x and θ. x is the distance traveled, which is the
length of the arc traced out by the point mass. The arclength is related to



42 differential equations

the angle, provided the angle is measure in radians. Namely, x = rθ for
r = L. Thus, we can write

mLθ̈ = −mg sin θ.

Canceling the masses, this then gives us the nonlinear pendulum equationLinear and nonlinear pendulum equa-
tion.

Lθ̈ + g sin θ = 0. (2.22)
The equation for a compound pendu-
lum takes a similar form. We start
with the rotational form of Newton’s
second law τ = Iα. Noting that the
torque due to gravity acts at the center
of mass position `, the torque is given
by τ = −mg` sin θ. Since α = θ̈, we
have Iθ̈ = −mg` sin θ. Then, for small
angles θ̈ + ω2θ = 0, where ω = mg`

I . For
a simple pendulum, we let ` = L and
I = mL2, and obtain ω =

√
g/L.

We note that this equation is of the same form as the mass-spring system.
We define ω =

√
g/L and obtain the equation for simple harmonic motion,

θ̈ + ω2θ = 0.

There are several variations of Equation (2.22) which will be used in this
text. The first one is the linear pendulum. This is obtained by making a
small angle approximation. For small angles we know that sin θ ≈ θ. Under
this approximation (2.22) becomes

Lθ̈ + gθ = 0. (2.23)

2.3.3 LRC Circuits

+

−V(t)

L R
C

Figure 2.4: Series LRC Circuit.

Another typical problem often encountered in a first year physics
class is that of an LRC series circuit. This circuit is pictured in Figure 2.4.
The resistor is a circuit element satisfying Ohm’s Law. The capacitor is a
device that stores electrical energy and an inductor, or coil, store magnetic
energy.

The physics for this problem stems from Kirchoff’s Rules for circuits.
Namely, the sum of the drops in electric potential are set equal to the rises
in electric potential. The potential drops across each circuit element are
given by

1. Resistor: V = IR.

2. Capacitor: V = q
C .

3. Inductor: V = L dI
dt .

Furthermore, we need to define the current as I = dq
dt . where q is the

charge in the circuit. Adding these potential drops, we set them equal to
the voltage supplied by the voltage source, V(t). Thus, we obtain

IR +
q
C
+ L

dI
dt

= V(t).

Since both q and I are unknown, we can replace the current by its expression
in terms of the charge to obtain

Lq̈ + Rq̇ +
1
C

q = V(t).

This is a second order equation for q(t).
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More complicated circuits are possible by looking at parallel connections,
or other combinations, of resistors, capacitors and inductors. This will result
in several equations for each loop in the circuit, leading to larger systems
of differential equations. An example of another circuit setup is shown in
Figure 2.5. This is not a problem that can be covered in the first year physics
course. One can set up a system of second order equations and proceed to
solve them. We will see how to solve such problems in the next chapter.

+

−V(t)

R1 R2

LC

Figure 2.5: Parallel LRC Circuit.
In the following we will look at special cases that arise for the series LRC

circuit equation. These include RC circuits, solvable by first order methods
and LC circuits, leading to oscillatory behavior.

2.3.4 RC Circuits*

We first consider the case of an RC circuit in which there is no in-
ductor. Also, we will consider what happens when one charges a capacitor
with a DC battery (V(t) = V0) and when one discharges a charged capacitor
(V(t) = 0) as shown in Figures 2.6 and 2.9.

For charging a capacitor, we have the initial value problem Charging a capacitor.

R
dq
dt

+
q
C

= V0, q(0) = 0. (2.24)

This equation is an example of a linear first order equation for q(t). However,
we can also rewrite it and solve it as a separable equation, since V0 is a
constant. We will do the former only as another example of finding the
integrating factor.

V0

R

C

Figure 2.6: RC Circuit for charging.

We first write the equation in standard form:

dq
dt

+
q

RC
=

V0

R
. (2.25)

The integrating factor is then

µ(t) = e
∫ dt

RC = et/RC.

Thus,
d
dt

(
qet/RC

)
=

V0

R
et/RC. (2.26)

Integrating, we have

qet/RC =
V0

R

∫
et/RC dt = CV0et/RC + K. (2.27)

Note that we introduced the integration constant, K. Now divide out the
exponential to get the general solution:

q = CV0 + Ke−t/RC. (2.28)

(If we had forgotten the K, we would not have gotten a correct solution for
the differential equation.)
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Next, we use the initial condition to get the particular solution. Namely,
setting t = 0, we have that

0 = q(0) = CV0 + K.

So, K = −CV0. Inserting this into the solution, we have

q(t) = CV0(1− e−t/RC). (2.29)

Now we can study the behavior of this solution. For large times the
second term goes to zero. Thus, the capacitor charges up, asymptotically, to
the final value of q0 = CV0. This is what we expect, because the current is no
longer flowing over R and this just gives the relation between the potential
difference across the capacitor plates when a charge of q0 is established on
the plates.

Figure 2.7: The charge as a function of
time for a charging capacitor with R =
2.00 kΩ, C = 6.00 mF, and V0 = 12 V.

Let’s put in some values for the parameters. We let R = 2.00 kΩ, C = 6.00
mF, and V0 = 12 V. A plot of the solution is given in Figure 2.7. We see that
the charge builds up to the value of CV0 = 0.072 C. If we use a smaller
resistance, R = 200 Ω, we see in Figure 2.8 that the capacitor charges to the
same value, but much faster.

The rate at which a capacitor charges, or discharges, is governed by theTime constant, τ = RC.

time constant, τ = RC. This is the constant factor in the exponential. The
larger it is, the slower the exponential term decays. If we set t = τ, we find
that

q(τ) = CV0(1− e−1) = (1− 0.3678794412 . . .)q0 ≈ 0.63q0.

Thus, at time t = τ, the capacitor has almost charged to two thirds of its
final value. For the first set of parameters, τ = 12s. For the second set,
τ = 1.2s.

Now, let’s assume the capacitor is charged with charge ±q0 on its plates.Discharging a capacitor.

If we disconnect the battery and reconnect the wires to complete the circuit
as shown in Figure 2.9, the charge will then move off the plates, discharging
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Figure 2.8: The charge as a function of
time for a charging capacitor with R =
200 Ω, C = 6.00 mF, and V0 = 12 V.

the capacitor. The relevant form of the initial value problem becomes

R
dq
dt

+
q
C

= 0, q(0) = q0. (2.30)

R

C

q0-q0

Figure 2.9: RC Circuit for discharging.

This equation is simpler to solve. Rearranging, we have

dq
dt

= − q
RC

. (2.31)

This is a simple exponential decay problem, which one can solve using sepa-
ration of variables. However, by now you should know how to immediately
write down the solution to such problems of the form y′ = ky. The solution
is

q(t) = q0e−t/τ , τ = RC.

Figure 2.10: The charge as a function
of time for a discharging capacitor with
R = 2.00 kΩ (solid) or R = 200 Ω
(dashed), and C = 6.00 mF, and q0 =
0.072 C.

We see that the charge decays exponentially. In principle, the capacitor
never fully discharges. That is why you are often instructed to place a shunt
across a discharged capacitor to fully discharge it.
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In Figure 2.10 we show the discharging of the two previous RC circuits.
Once again, τ = RC determines the behavior. At t = τ we have

q(τ) = q0e−1 = (0.3678794412 . . .)q0 ≈ 0.37q0.

So, at this time the capacitor only has about a third of its original value.

2.3.5 LC Circuits*

Another simple result comes from studying LC circuits. We will nowLC Oscillators.

connect a charged capacitor to an inductor as shown in Figure 2.11. In this
case, we consider the initial value problem

Lq̈ +
1
C

q = 0, q(0) = q0, q̇(0) = I(0) = 0. (2.32)

Dividing out the inductance, we have

q̈ +
1

LC
q = 0. (2.33)

L

C

q0-q0

Figure 2.11: An LC circuit.

This equation is a second order, constant coefficient equation. It is of the
same form as the ones for simple harmonic motion of a mass on a spring or
the linear pendulum. So, we expect oscillatory behavior. The characteristic
equation is

r2 +
1

LC
= 0.

The solutions are

r1,2 = ± i√
LC

.

Thus, the solution of (2.33) is of the form

q(t) = c1 cos(ωt) + c2 sin(ωt), ω = (LC)−1/2. (2.34)

Inserting the initial conditions yields

q(t) = q0 cos(ωt). (2.35)

The oscillations that result are understandable. As the charge leaves the
plates, the changing current induces a changing magnetic field in the induc-
tor. The stored electrical energy in the capacitor changes to stored magnetic
energy in the inductor. However, the process continues until the plates are
charged with opposite polarity and then the process begins in reverse. The
charged capacitor then discharges and the capacitor eventually returns to
its original state and the whole system repeats this over and over.

The frequency of this simple harmonic motion is easily found. It is given
by

f =
ω

2π
=

1
2π

1√
LC

. (2.36)

This is called the tuning frequency because of its role in tuning circuits.
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Example 2.11. Find the resonant frequency for C = 10µF and L =

100mH.

f =
1

2π

1√
(10× 10−6)(100× 10−3)

= 160Hz.

Of course, this is an ideal situation. There is always resistance in the
circuit, even if only a small amount from the wires. So, we really need to
account for resistance, or even add a resistor. This leads to a slightly more
complicated system in which damping will be present.

2.3.6 Damped Oscillations

As we have indicated, simple harmonic motion is an ideal situation. In
real systems we often have to contend with some energy loss in the system.
This leads to the damping of the oscillations. A standard example is a
spring-mass-damper system as shown in Figure 2.12 A mass is attached to
a spring and a damper is added which can absorb some of the energy of
the oscillations. the damping is modeled with a term proportional to the
velocity.

Figure 2.12: A spring-mass-damper sys-
tem has a damper added which can ab-
sorb some of the energy of the oscilla-
tions and is modeled with a term pro-
portional to the velocity.

There are other models for oscillations in which energy loss could be
in the spring, in the way a pendulum is attached to its support, or in the
resistance to the flow of current in an LC circuit. The simplest models of
resistance are the addition of a term proportional to first derivative of the
dependent variable. Thus, our three main examples with damping added
look like:

mẍ + bẋ + kx = 0. (2.37)

Lθ̈ + bθ̇ + gθ = 0. (2.38)

Lq̈ + Rq̇ +
1
C

q = 0. (2.39)

These are all examples of the general constant coefficient equation

ay′′(x) + by′(x) + cy(x) = 0. (2.40)

We have seen that solutions are obtained by looking at the characteristic
equation ar2 + br + c = 0. This leads to three different behaviors depending
on the discriminant in the quadratic formula:

r =
−b±

√
b2 − 4ac

2a
. (2.41)

We will consider the example of the damped spring. Then we have

r =
−b±

√
b2 − 4mk

2m
. (2.42)

For b > 0, there are three types of damping. Damped oscillator cases: Overdamped,
critically damped, and underdamped.
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I. Overdamped, b2 > 4mk

In this case we obtain two real root. Since this is Case I for constant
coefficient equations, we have that

x(t) = c1er1t + c2er2t.

We note that b2 − 4mk < b2. Thus, the roots are both negative. So, both
terms in the solution exponentially decay. The damping is so strong that
there is no oscillation in the system.

II. Critically Damped, b2 = 4mk

In this case we obtain one real root. This is Case II for constant coefficient
equations and the solution is given by

x(t) = (c1 + c2t)ert,

where r = −b/2m. Once again, the solution decays exponentially. The
damping is just strong enough to hinder any oscillation. If it were any
weaker the discriminant would be negative and we would need the third
case.

III. Underdamped, b2 < 4mk

Figure 2.13: A plot of underdamped os-
cillation given by x(t) = 2e0.15t cos 3t.
The dashed lines are given by x(t) =
±2e0.15t, indicating the bounds on the
amplitude of the motion.

In this case we have complex conjugate roots. We can write α = −b/2m
and β =

√
4mk− b2/2m. Then the solution is

x(t) = eαt(c1 cos βt + c2 sin βt).

These solutions exhibit oscillations due to the trigonometric functions,
but we see that the amplitude may decay in time due the overall factor of
eαt when α < 0. Consider the case that the initial conditions give c1 = A
and c2 = 0. (When is this?) Then, the solution, x(t) = Aeαt cos βt, looks
like the plot in Figure 2.13.

2.4 Forced Systems

All of the systems presented at the beginning of the last section exhibit
the same general behavior when a damping term is present. An additional
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term can be added that might cause even more complicated behavior. In
the case of LRC circuits, we have seen that the voltage source makes the
system nonhomogeneous. It provides what is called a source term. Such
terms can also arise in the mass-spring and pendulum systems. One can
drive such systems by periodically pushing the mass, or having the entire
system moved, or impacted by an outside force. Such systems are called
forced, or driven.

Typical systems in physics can be modeled by nonhomogeneous second
order equations. Thus, we want to find solutions of equations of the form

Ly(x) = a(x)y′′(x) + b(x)y′(x) + c(x)y(x) = f (x). (2.43)

As noted in Section 2.1, one solves this equation by finding the general
solution of the homogeneous problem,

Lyh = 0

and a particular solution of the nonhomogeneous problem,

Lyp = f .

Then, the general solution of (2.1) is simply given as y = yh + yp.
So far, we only know how to solve constant coefficient, homogeneous

equations. So, by adding a nonhomogeneous term to such equations we
will need to find the particular solution to the nonhomogeneous equation.

We could guess a solution, but that is not usually possible without a little
bit of experience. So, we need some other methods. There are two main
methods. In the first case, the Method of Undetermined Coefficients, one
makes an intelligent guess based on the form of f (x). In the second method,
one can systematically developed the particular solution. We will come back
to the Method of Variation of Parameters and we will also introduce the
powerful machinery of Green’s functions later in this section.

2.4.1 Method of Undetermined Coefficients

Let’s solve a simple differential equation highlighting how we can
handle nonhomogeneous equations.

Example 2.12. Consider the equation

y′′ + 2y′ − 3y = 4. (2.44)

The first step is to determine the solution of the homogeneous equa-
tion. Thus, we solve

y′′h + 2y′h − 3yh = 0. (2.45)

The characteristic equation is r2 + 2r− 3 = 0. The roots are r = 1,−3.
So, we can immediately write the solution

yh(x) = c1ex + c2e−3x.
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The second step is to find a particular solution of (2.44). What
possible function can we insert into this equation such that only a 4

remains? If we try something proportional to x, then we are left with a
linear function after inserting x and its derivatives. Perhaps a constant
function you might think. y = 4 does not work. But, we could try an
arbitrary constant, y = A.

Let’s see. Inserting y = A into (2.44), we obtain

−3A = 4.

Ah ha! We see that we can choose A = − 4
3 and this works. So, we

have a particular solution, yp(x) = − 4
3 . This step is done.

Combining the two solutions, we have the general solution to the
original nonhomogeneous equation (2.44). Namely,

y(x) = yh(x) + yp(x) = c1ex + c2e−3x − 4
3

.

Insert this solution into the equation and verify that it is indeed a
solution. If we had been given initial conditions, we could now use
them to determine the arbitrary constants.

Example 2.13. What if we had a different source term? Consider the
equation

y′′ + 2y′ − 3y = 4x. (2.46)

The only thing that would change is the particular solution. So, we
need a guess.

We know a constant function does not work by the last example.
So, let’s try yp = Ax. Inserting this function into Equation (2.46), we
obtain

2A− 3Ax = 4x.

Picking A = −4/3 would get rid of the x terms, but will not cancel
everything. We still have a constant left. So, we need something more
general.

Let’s try a linear function, yp(x) = Ax + B. Then we get after sub-
stitution into (2.46)

2A− 3(Ax + B) = 4x.

Equating the coefficients of the different powers of x on both sides, we
find a system of equations for the undetermined coefficients:

2A− 3B = 0

−3A = 4. (2.47)

These are easily solved to obtain

A = −4
3

B =
2
3

A = −8
9

. (2.48)
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So, the particular solution is

yp(x) = −4
3

x− 8
9

.

This gives the general solution to the nonhomogeneous problem as

y(x) = yh(x) + yp(x) = c1ex + c2e−3x − 4
3

x− 8
9

.

There are general forms that you can guess based upon the form of the
driving term, f (x). Some examples are given in Table 2.1. More general ap-
plications are covered in a standard text on differential equations. However,
the procedure is simple. Given f (x) in a particular form, you make an ap-
propriate guess up to some unknown parameters, or coefficients. Inserting
the guess leads to a system of equations for the unknown coefficients. Solve
the system and you have the solution. This solution is then added to the
general solution of the homogeneous differential equation.

f (x) Guess
anxn + an−1xn−1 + · · ·+ a1x + a0 Anxn + An−1xn−1 + · · ·+ A1x + A0

aebx Aebx

a cos ωx + b sin ωx A cos ωx + B sin ωx

Table 2.1: Forms used in the Method of
Undetermined Coefficients.

Example 2.14. Solve

y′′ + 2y′ − 3y = 2e−3x. (2.49)

According to the above, we would guess a solution of the form
yp = Ae−3x. Inserting our guess, we find

0 = 2e−3x.

Oops! The coefficient, A, disappeared! We cannot solve for it. What
went wrong?

The answer lies in the general solution of the homogeneous prob-
lem. Note that ex and e−3x are solutions to the homogeneous problem.
So, a multiple of e−3x will not get us anywhere. It turns out that there
is one further modification of the method. If the driving term contains
terms that are solutions of the homogeneous problem, then we need
to make a guess consisting of the smallest possible power of x times
the function which is no longer a solution of the homogeneous prob-
lem. Namely, we guess yp(x) = Axe−3x and differentiate this guess to
obtain the derivatives y′p = A(1− 3x)e−3x and y′′p = A(9x− 6)e−3x.

Inserting these derivatives into the differential equation, we obtain

[(9x− 6) + 2(1− 3x)− 3x]Ae−3x = 2e−3x.

Comparing coefficients, we have

−4A = 2.
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So, A = −1/2 and yp(x) = − 1
2 xe−3x. Thus, the solution to the prob-

lem is

y(x) =
(

2− 1
2

x
)

e−3x.

Modified Method of Undetermined Coefficients

In general, if any term in the guess yp(x) is a solution of the homogeneous
equation, then multiply the guess by xk, where k is the smallest positive
integer such that no term in xkyp(x) is a solution of the homogeneous
problem.

2.4.2 Periodically Forced Oscillations

A special type of forcing is periodic forcing. Realistic oscillations will
dampen and eventually stop if left unattended. For example, mechanical
clocks are driven by compound or torsional pendula and electric oscilla-
tors are often designed with the need to continue for long periods of time.
However, they are not perpetual motion machines and will need a peri-
odic injection of energy. This can be done systematically by adding periodic
forcing. Another simple example is the motion of a child on a swing in the
park. This simple damped pendulum system will naturally slow down to
equilibrium (stopped) if left alone. However, if the child pumps energy into
the swing at the right time, or if an adult pushes the child at the right time,
then the amplitude of the swing can be increased.

There are other systems, such as airplane wings and long bridge spans,
in which external driving forces might cause damage to the system. A well
know example is the wind induced collapse of the Tacoma Narrows Bridge
due to strong winds. Of course, if one is not careful, the child in theThe Tacoma Narrows Bridge opened in

Washington State (U.S.) in mid 1940.
However, in November of the same year
the winds excited a transverse mode of
vibration, which eventually (in a few
hours) lead to large amplitude oscilla-
tions and then collapse.

last example might get too much energy pumped into the system causing a
similar failure of the desired motion.

While there are many types of forced systems, and some fairly compli-
cated, we can easily get to the basic characteristics of forced oscillations by
modifying the mass-spring system by adding an external, time-dependent,
driving force. Such as system satisfies the equation

mẍ + b(̇x) + kx = F(t), (2.50)

where m is the mass, b is the damping constant, k is the spring constant,
and F(t) is the driving force. If F(t) is of simple form, then we can employ
the Method of Undetermined Coefficients. Since the systems we have con-
sidered so far are similar, one could easily apply the following to pendula
or circuits.

k m

b

F cos w t
0

Figure 2.14: An external driving force
is added to the spring-mass-damper sys-
tem.

As the damping term only complicates the solution, we will consider the
simpler case of undamped motion and assume that b = 0. Furthermore,
we will introduce a sinusoidal driving force, F(t) = F0 cos ωt in order to
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study periodic forcing. This leads to the simple periodically driven mass on
a spring system

mẍ + kx = F0 cos ωt. (2.51)

In order to find the general solution, we first obtain the solution to the
homogeneous problem,

xh = c1 cos ω0t + c2 sin ω0t,

where ω0 =
√

k
m . Next, we seek a particular solution to the nonhomoge-

neous problem. We will apply the Method of Undetermined Coefficients.
A natural guess for the particular solution would be to use xp = A cos ωt+

B sinωt. However, recall that the guess should not be a solution of the ho-
mogeneous problem. Comparing xp with xh, this would hold if ω 6= ω0.
Otherwise, one would need to use the Modified Method of Undetermined
Coefficients as described in the last section. So, we have two cases to con-
sider. Dividing through by the mass, we solve

the simple driven system,

ẍ + ω2
0 x =

F0

m
cos ωt.

Example 2.15. Solve ẍ + ω2
0x = F0

m cos ωt, for ω 6= ω0.
In this case we continue with the guess xp = A cos ωt + B sinωt.

Since there is no damping term, one quickly finds that B = 0. Inserting
xp = A cos ωt into the differential equation, we find that(

−ω2 + ω2
0

)
A cos ωt =

F0

m
cos ωt.

Solving for A, we obtain

A =
F0

m(ω2
0 −ω2)

.

The general solution for this case is thus,

x(t) = c1 cos ω0t + c2 sin ω0t +
F0

m(ω2
0 −ω2)

cos ωt. (2.52)

Example 2.16. Solve ẍ + ω2
0x = F0

m cos ω0t.
In this case, we need to employ the Modified Method of Undeter-

mined Coefficients. So, we make the guess xp = t (A cos ω0t + B sinω0t) .
Since there is no damping term, one finds that A = 0. Inserting the
guess in to the differential equation, we find that

B =
F0

2mω0
,

or the general solution is

x(t) = c1 cos ω0t + c2 sin ω0t +
F0

2mω
t sin ωt. (2.53)

The general solution to the problem is thus

x(t) = c1 cos ω0t + c2 sin ω0t +

{ F0
m(ω2

0−ω2)
cos ωt, ω 6= ω0,

F0
2mω0

t sin ω0t, ω = ω0.
(2.54)
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Special cases of these solutions provide interesting physics, which can
be explored by the reader in the homework. In the case that ω = ω0, we
see that the solution tends to grow as t gets large. This is what is called a
resonance. Essentially, one is driving the system at its natural frequency. As
the system is moving to the left, one pushes it to the left. If it is moving to
the right, one is adding energy in that direction. This forces the amplitude
of oscillation to continue to grow until the system breaks. An example of
such an oscillation is shown in Figure 2.15.

Figure 2.15: Plot of

x(t) = 5 cos 2t +
1
2

t sin 2t,

a solution of ẍ + 4x = 2 cos 2t showing
resonance.

In the case that ω 6= ω0, one can rewrite the solution in a simple form.
Let’s choose the initial conditions that c1 = −F0/(m(ω2

0−ω2)), c2 = 0. Then
one has (see Problem 13)

x(t) =
2F0

m(ω2
0 −ω2)

sin
(ω0 −ω)t

2
sin

(ω0 + ω)t
2

. (2.55)

For values of ω near ω0, one finds the solution consists of a rapid os-
cillation, due to the sin (ω0+ω)t

2 factor, with a slowly varying amplitude,
2F0

m(ω2
0−ω2)

sin (ω0−ω)t
2 . The reader can investigate this solution.

This slow variation is called a beat and the beat frequency is given by f =
|ω0−ω|

4π . In Figure 2.16 we see the high frequency oscillations are contained
by the lower beat frequency, f = 0.15

4π s. This corresponds to a period of
T = 1/ f ≈ 83.7 Hz, which looks about right from the figure.

Figure 2.16: Plot of

x(t) =
1

249

(
2045 cos 2t− 800 cos

43
20

t
)

,

a solution of ẍ + 4x = 2 cos 2.15t, show-
ing beats.

Example 2.17. Solve ẍ + x = 2 cos ωt, x(0) = 0, ẋ(0) = 0, for ω =

1, 1.15. For each case, we need the solution of the homogeneous prob-
lem,

xh(t) = c1 cos t + c2 sin t.

The particular solution depends on the value of ω.
For ω = 1, the driving term, 2 cos ωt, is a solution of the homoge-

neous problem. Thus, we assume

xp(t) = At cos t + Bt sin t.

Inserting this into the differential equation, we find A = 0 and B = 1.
So, the general solution is

x(t) = c1 cos t + c2 sin t + t sin t.

Imposing the initial conditions, we find

x(t) = t sin t.

This solution is shown in Figure 2.17.

Figure 2.17: Plot of

x(t) = t sin 2t,

a solution of ẍ + x = 2 cos t.

For ω = 1.15, the driving term, 2 cos ω1.15t, is not a solution of the
homogeneous problem. Thus, we assume

xp(t) = A cos 1.15t + B sin 1.15t.

Inserting this into the differential equation, we find A = − 800
129 and

B = 0. So, the general solution is

x(t) = c1 cos t + c2 sin t− 800
129

cos t.
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Imposing the initial conditions, we find

x(t) =
800
129

(cos t− cos 1.15t) .

This solution is shown in Figure 2.18. The beat frequency in this case
is the same as with Figure 2.16.

Figure 2.18: Plot of

x(t) =
800
129

(
cos t− cos

23
20

t
)

,

a solution of ẍ + x = 2 cos 1.15t.

2.4.3 Reduction of Order for Nonhomogeneous Equations

The Method of Reduction of Order is also useful for solving nonhomoge-
neous problems. In this case if we know one solution of the homogeneous
problem, then we can use it to obtain a particular solution of the nonhomo-
geneous problem. For example, consider the nonhomogeneous differential
equation

a(x)y′′(x) + b(x)y′(x) + c(x)y(x) = f (x). (2.56)

Let’s assume that y1(x) satisfies the homogeneous differential equation

a(x)y′′1 (x) + b(x)y′1(x) + c(x)y1(x) = 0. (2.57)

Then, we seek a particular solution, yp(x) = v(x)y1(x). Its derivatives are
given by

y′p = (vy1)
′,

= v′y1 + vy′1.

y′′p = (v′y1 + vy′1)
′,

= v′′y1 + 2v′y′1 + vy′′1 .

Substituting yp and its derivatives into the differential equation, we have

f = ay′′p + by′p + cyp

= a(v′′y1 + 2v′y′1 + vy′′1 ) + b(v′y1 + vy′1) + cvy1

= av′′y1 + 2av′y′1 + bv′y1 + v[ay′′1 + by′1 + cy1]

= av′′y1 + 2av′y′1 + bv′y1

Therefore, v(x) satisfies the second order equation

a(x)y(x)v
′′(x) + [2a(x)y′1(x) + b(x)y1(x)]v′(x) = f (x).

Letting z = v′, we see that we have the linear first order equation for
z(x) :

a(x)y(x)z
′(x) + [2a(x)y′1(x) + b(x)y1(x)]z(x) = f (x).

Example 2.18. Use the Method of Reduction of Order to solve y′′ +
y = sec x.

Solutions of the homogeneous equation, y′′ + y = 0 are sin x and
cos x. We can choose either to begin using the Method of Reduction of
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Order. Let’s take yp = v cos x. Its derivatives are given by

y′p = (v cos x)′,

= v′ cos x− v sin x.

y′′p = (v′ cos x− v sin x)′,

= v′′ cos x− 2v′ sin x− v cos x.

Substituting into the nonhomogeneous equation, we have

sec x = y′′p + yp

= v′′ cos x− 2v′ sin x− v cos x + v cos x

= v′′ cos x− 2v′ sin x

Letting v′ = z, we have the linear first order differential equation

(cos x)z′ − (2 sin x)z = sec x.

Rewriting the equation as,

z′ − (2 tan x)z = sec2 x.

Multiplying by the integrating factor,

µ(x) = − exp
∫ x

2 tan ξ dξ

= − exp 2 ln | sec x|
= cos2 x,

we obtain
(z cos2 x)′ = 1.

Integrating,
v′ = z = x sec2 x.

This can be integrated using integration by parts (letting U = x and
V = tan x):

v =
∫

x sec2 x dx

= x tan x−
∫

tan x dx

= x tan x− ln | sec x|.

We now have enough to write out the solution. The particular solu-
tion is given by

yp = vy1

= (x tan x− ln | sec x|) cos x

= x sin x + cos x ln | cos x|.

The general solution is then

y(x) = c1 cos x + c2 sin x + x sin x + cos x ln | cos x|.
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2.4.4 Method of Variation of Parameters

A more systematic way to find particular solutions is through the use
of the Method of Variation of Parameters. The derivation is a little detailed
and the solution is sometimes messy, but the application of the method is
straight forward if you can do the required integrals. We will first derive
the needed equations and then do some examples.

We begin with the nonhomogeneous equation. Let’s assume it is of the
standard form

a(x)y′′(x) + b(x)y′(x) + c(x)y(x) = f (x). (2.58)

We know that the solution of the homogeneous equation can be written in
terms of two linearly independent solutions, which we will call y1(x) and
y2(x) :

yh(x) = c1y1(x) + c2y2(x).

Replacing the constants with functions, then we no longer have a solution
to the homogeneous equation. Is it possible that we could stumble across
the right functions with which to replace the constants and somehow end
up with f (x) when inserted into the left side of the differential equation? It
turns out that we can.

So, let’s assume that the constants are replaced with two unknown func-
tions, which we will call c1(x) and c2(x). This change of the parameters
is where the name of the method derives. Thus, we are assuming that a
particular solution takes the form We assume the nonhomogeneous equa-

tion has a particular solution of the form

yp(x) = c1(x)y1(x) + c2(x)y2(x).yp(x) = c1(x)y1(x) + c2(x)y2(x). (2.59)

If this is to be a solution, then insertion into the differential equation should
make the equation hold. To do this we will first need to compute some
derivatives.

The first derivative is given by

y′p(x) = c1(x)y′1(x) + c2(x)y′2(x) + c′1(x)y1(x) + c′2(x)y2(x). (2.60)

Next we will need the second derivative. But, this will yield eight terms.
So, we will first make a simplifying assumption. Let’s assume that the last
two terms add to zero:

c′1(x)y1(x) + c′2(x)y2(x) = 0. (2.61)

It turns out that we will get the same results in the end if we did not assume
this. The important thing is that it works!

Under the assumption the first derivative simplifies to

y′p(x) = c1(x)y′1(x) + c2(x)y′2(x). (2.62)

The second derivative now only has four terms:

y′p(x) = c1(x)y′′1 (x) + c2(x)y′′2 (x) + c′1(x)y′1(x) + c′2(x)y′2(x). (2.63)
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Now that we have the derivatives, we can insert the guess into the differ-
ential equation. Thus, we have

f (x) = a(x)
[
c1(x)y′′1 (x) + c2(x)y′′2 (x) + c′1(x)y′1(x) + c′2(x)y′2(x)

]
+b(x)

[
c1(x)y′1(x) + c2(x)y′2(x)

]
+c(x) [c1(x)y1(x) + c2(x)y2(x)] . (2.64)

Regrouping the terms, we obtain

f (x) = c1(x)
[
a(x)y′′1 (x) + b(x)y′1(x) + c(x)y1(x)

]
+c2(x)

[
a(x)y′′2 (x) + b(x)y′2(x) + c(x)y2(x)

]
+a(x)

[
c′1(x)y′1(x) + c′2(x)y′2(x)

]
. (2.65)

Note that the first two rows vanish since y1 and y2 are solutions of the
homogeneous problem. This leaves the equation

f (x) = a(x)
[
c′1(x)y′1(x) + c′2(x)y′2(x)

]
,

which can be rearranged as

c′1(x)y′1(x) + c′2(x)y′2(x) =
f (x)
a(x)

. (2.66)

In summary, we have assumed a particular solution of the form

yp(x) = c1(x)y1(x) + c2(x)y2(x).

This is only possible if the unknown functions c1(x) and c2(x) satisfy the
system of equations

In order to solve the differential equation
Ly = f , we assume

yp(x) = c1(x)y1(x) + c2(x)y2(x),

for Ly1,2 = 0. Then, one need only solve
a simple system of equations (2.67).

c′1(x)y1(x) + c′2(x)y2(x) = 0

c′1(x)y′1(x) + c′2(x)y′2(x) =
f (x)
a(x)

. (2.67)

System (2.67) can be solved as

c′1(x) = − f y2

aW(y1, y2)
,

c′1(x) =
f y1

aW(y1, y2)
,

where W(y1, y2) = y1y′2 − y′1y2 is the
Wronskian. We use this solution in the
next section.

It is standard to solve this system for the derivatives of the unknown
functions and then present the integrated forms. However, one could just
as easily start from this system and solve the system for each problem en-
countered.

Example 2.19. Find the general solution of the nonhomogeneous prob-
lem: y′′ − y = e2x.

The general solution to the homogeneous problem y′′h − yh = 0 is

yh(x) = c1ex + c2e−x.

In order to use the Method of Variation of Parameters, we seek a
solution of the form

yp(x) = c1(x)ex + c2(x)e−x.
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We find the unknown functions by solving the system in (2.67), which
in this case becomes

c′1(x)ex + c′2(x)e−x = 0

c′1(x)ex − c′2(x)e−x = e2x. (2.68)

Adding these equations we find that

2c′1ex = e2x → c′1 =
1
2

ex.

Solving for c1(x) we find

c1(x) =
1
2

∫
ex dx =

1
2

ex.

Subtracting the equations in the system yields

2c′2e−x = −e2x → c′2 = −1
2

e3x.

Thus,

c2(x) = −1
2

∫
e3x dx = −1

6
e3x.

The particular solution is found by inserting these results into yp:

yp(x) = c1(x)y1(x) + c2(x)y2(x)

= (
1
2

ex)ex + (−1
6

e3x)e−x

=
1
3

e2x. (2.69)

Thus, we have the general solution of the nonhomogeneous problem
as

y(x) = c1ex + c2e−x +
1
3

e2x.

Example 2.20. Now consider the problem: y′′ + 4y = sin x.
The solution to the homogeneous problem is

yh(x) = c1 cos 2x + c2 sin 2x. (2.70)

We now seek a particular solution of the form

yh(x) = c1(x) cos 2x + c2(x) sin 2x.

We let y1(x) = cos 2x and y2(x) = sin 2x, a(x) = 1, f (x) = sin x in
system (2.67):

c′1(x) cos 2x + c′2(x) sin 2x = 0

−2c′1(x) sin 2x + 2c′2(x) cos 2x = sin x. (2.71)

Now, use your favorite method for solving a system of two equa-
tions and two unknowns. In this case, we can multiply the first equa-
tion by 2 sin 2x and the second equation by cos 2x. Adding the result-
ing equations will eliminate the c′1 terms. Thus, we have

c′2(x) =
1
2

sin x cos 2x =
1
2
(2 cos2 x− 1) sin x.
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Inserting this into the first equation of the system, we have

c′1(x) = −c′2(x)
sin 2x
cos 2x

= −1
2

sin x sin 2x = − sin2 x cos x.

These can easily be solved:

c2(x) =
1
2

∫
(2 cos2 x− 1) sin x dx =

1
2
(cos x− 2

3
cos3 x).

c1(x) = −
∫

sinx cos x dx = −1
3

sin3 x.

The final step in getting the particular solution is to insert these
functions into yp(x). This gives

yp(x) = c1(x)y1(x) + c2(x)y2(x)

= (−1
3

sin3 x) cos 2x + (
1
2

cos x− 1
3

cos3 x) sin x

=
1
3

sin x. (2.72)

So, the general solution is

y(x) = c1 cos 2x + c2 sin 2x +
1
3

sin x. (2.73)

2.4.5 Initial Value Green’s Functions*

In this section we will investigate the solution of initial value prob-
lems involving nonhomogeneous differential equations using Green’s func-
tions. Our goal is to solve the nonhomogeneous differential equation

a(t)y′′(t) + b(t)y′(t) + c(t)y(t) = f (t), (2.74)

subject to the initial conditions

y(0) = y0 y′(0) = v0.

Since we are interested in initial value problems, we will denote the inde-
pendent variable as a time variable, t.

Equation (2.74) can be written compactly as

L[y] = f ,

where L is the differential operator

L = a(t)
d2

dt2 + b(t)
d
dt

+ c(t).

The solution is formally given by

y = L−1[ f ].
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The inverse of a differential operator is an integral operator, which we seek
to write in the form

y(t) =
∫

G(t, τ) f (τ) dτ.

The function G(t, τ) is referred to as the kernel of the integral operator and
is called the Green’s function.

The history of the Green’s function dates back to 1828, when George
Green published work in which he sought solutions of Poisson’s equation
∇2u = f for the electric potential u defined inside a bounded volume with
specified boundary conditions on the surface of the volume. He introduced
a function now identified as what Riemann later coined the “Green’s func-
tion”. In this section we will derive the initial value Green’s function for
ordinary differential equations. Later in the book we will return to bound-
ary value Green’s functions and Green’s functions for partial differential
equations.

George Green (1793-1841), a British
mathematical physicist who had little
formal education and worked as a miller
and a baker, published An Essay on
the Application of Mathematical Analysis
to the Theories of Electricity and Mag-
netism in which he not only introduced
what is now known as Green’s func-
tion, but he also introduced potential
theory and Green’s Theorem in his stud-
ies of electricity and magnetism. Re-
cently his paper was posted at arXiv.org,
arXiv:0807.0088.

In the last section we solved nonhomogeneous equations like (2.74) using
the Method of Variation of Parameters. Letting,

yp(t) = c1(t)y1(t) + c2(t)y2(t), (2.75)

we found that we have to solve the system of equations

c′1(t)y1(t) + c′2(t)y2(t) = 0.

c′1(t)y
′
1(t) + c′2(t)y

′
2(t) =

f (t)
q(t)

. (2.76)

This system is easily solved to give

c′1(t) = − f (t)y2(t)
a(t)

[
y1(t)y′2(t)− y′1(t)y2(t)

]
c′2(t) =

f (t)y1(t)
a(t)

[
y1(t)y′2(t)− y′1(t)y2(t)

] . (2.77)

We note that the denominator in these expressions involves the Wronskian
of the solutions to the homogeneous problem, which is given by the deter-
minant

W(y1, y2)(t) =

∣∣∣∣∣ y1(t) y2(t)
y′1(t) y′2(t)

∣∣∣∣∣ .

When y1(t) and y2(t) are linearly independent, then the Wronskian is not
zero and we are guaranteed a solution to the above system.

So, after an integration, we find the parameters as

c1(t) = −
∫ t

t0

f (τ)y2(τ)

a(τ)W(τ)
dτ

c2(t) =
∫ t

t1

f (τ)y1(τ)

a(τ)W(τ)
dτ, (2.78)

where t0 and t1 are arbitrary constants to be determined from the initial
conditions.
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Therefore, the particular solution of (2.74) can be written as

yp(t) = y2(t)
∫ t

t1

f (τ)y1(τ)

a(τ)W(τ)
dτ − y1(t)

∫ t

t0

f (τ)y2(τ)

a(τ)W(τ)
dτ. (2.79)

We begin with the particular solution (2.79) of the nonhomogeneous dif-
ferential equation (2.74). This can be combined with the general solution of
the homogeneous problem to give the general solution of the nonhomoge-
neous differential equation:

yp(t) = c1y1(t) + c2y2(t) + y2(t)
∫ t

t1

f (τ)y1(τ)

a(τ)W(τ)
dτ − y1(t)

∫ t

t0

f (τ)y2(τ)

a(τ)W(τ)
dτ.

(2.80)
However, an appropriate choice of t0 and t1 can be found so that we

need not explicitly write out the solution to the homogeneous problem,
c1y1(t) + c2y2(t). However, setting up the solution in this form will allow
us to use t0 and t1 to determine particular solutions which satisfies certain
homogeneous conditions. In particular, we will show that Equation (2.80)
can be written in the form

y(t) = c1y1(t) + c2y2(t) +
∫ t

0
G(t, τ) f (τ) dτ, (2.81)

where the function G(t, τ) will be identified as the Green’s function.
The goal is to develop the Green’s function technique to solve the initial

value problem

a(t)y′′(t) + b(t)y′(t) + c(t)y(t) = f (t), y(0) = y0, y′(0) = v0. (2.82)

We first note that we can solve this initial value problem by solving two
separate initial value problems. We assume that the solution of the homo-
geneous problem satisfies the original initial conditions:

a(t)y′′h (t) + b(t)y′h(t) + c(t)yh(t) = 0, yh(0) = y0, y′h(0) = v0. (2.83)

We then assume that the particular solution satisfies the problem

a(t)y′′p(t) + b(t)y′p(t) + c(t)yp(t) = f (t), yp(0) = 0, y′p(0) = 0. (2.84)

Since the differential equation is linear, then we know that

y(t) = yh(t) + yp(t)

is a solution of the nonhomogeneous equation. Also, this solution satisfies
the initial conditions:

y(0) = yh(0) + yp(0) = y0 + 0 = y0,

y′(0) = y′h(0) + y′p(0) = v0 + 0 = v0.

Therefore, we need only focus on finding a particular solution that satisfies
homogeneous initial conditions. This will be done by finding values for t0

and t1 in Equation (2.79) which satisfy the homogeneous initial conditions,
yp(0) = 0 and y′p(0) = 0.
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First, we consider yp(0) = 0. We have

yp(0) = y2(0)
∫ 0

t1

f (τ)y1(τ)

a(τ)W(τ)
dτ − y1(0)

∫ 0

t0

f (τ)y2(τ)

a(τ)W(τ)
dτ. (2.85)

Here, y1(t) and y2(t) are taken to be any solutions of the homogeneous
differential equation. Let’s assume that y1(0) = 0 and y2 6= (0) = 0. Then,
we have

yp(0) = y2(0)
∫ 0

t1

f (τ)y1(τ)

a(τ)W(τ)
dτ (2.86)

We can force yp(0) = 0 if we set t1 = 0.
Now, we consider y′p(0) = 0. First we differentiate the solution and find

that

y′p(t) = y′2(t)
∫ t

0

f (τ)y1(τ)

a(τ)W(τ)
dτ − y′1(t)

∫ t

t0

f (τ)y2(τ)

a(τ)W(τ)
dτ, (2.87)

since the contributions from differentiating the integrals will cancel. Evalu-
ating this result at t = 0, we have

y′p(0) = −y′1(0)
∫ 0

t0

f (τ)y2(τ)

a(τ)W(τ)
dτ. (2.88)

Assuming that y′1(0) 6= 0, we can set t0 = 0.
Thus, we have found that

yp(x) = y2(t)
∫ t

0

f (τ)y1(τ)

a(τ)W(τ)
dτ − y1(t)

∫ t

0

f (τ)y2(τ)

a(τ)W(τ)
dτ

=
∫ t

0

[
y1(τ)y2(t)− y1(t)y2(τ)

a(τ)W(τ)

]
f (τ) dτ. (2.89)

This result is in the correct form and we can identify the temporal, or
initial value, Green’s function. So, the particular solution is given as

yp(t) =
∫ t

0
G(t, τ) f (τ) dτ, (2.90)

where the initial value Green’s function is defined as

G(t, τ) =
y1(τ)y2(t)− y1(t)y2(τ)

a(τ)W(τ)
.

We summarize
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Solution of IVP Using the Green’s Function

The solution of the initial value problem,

a(t)y′′(t) + b(t)y′(t) + c(t)y(t) = f (t), y(0) = y0, y′(0) = v0,

takes the form

y(t) = yh(t) +
∫ t

0
G(t, τ) f (τ) dτ, (2.91)

where

G(t, τ) =
y1(τ)y2(t)− y1(t)y2(τ)

a(τ)W(τ)
(2.92)

is the Green’s function and y1, y2, yh are solutions of the homogeneous
equation satisfying

y1(0) = 0, y2(0) 6= 0, y′1(0) 6= 0, y′2(0) = 0, yh(0) = y0, y′h(0) = v0.

Example 2.21. Solve the forced oscillator problem

x′′ + x = 2 cos t, x(0) = 4, x′(0) = 0.

We first solve the homogeneous problem with nonhomogeneous
initial conditions:

x′′h + xh = 0, xh(0) = 4, x′h(0) = 0.

The solution is easily seen to be xh(t) = 4 cos t.
Next, we construct the Green’s function. We need two linearly

independent solutions, y1(x), y2(x), to the homogeneous differential
equation satisfying different homogeneous conditions, y1(0) = 0 and
y′2(0) = 0. The simplest solutions are y1(t) = sin t and y2(t) = cos t.
The Wronskian is found as

W(t) = y1(t)y′2(t)− y′1(t)y2(t) = − sin2 t− cos2 t = −1.

Since a(t) = 1 in this problem, we compute the Green’s function,

G(t, τ) =
y1(τ)y2(t)− y1(t)y2(τ)

a(τ)W(τ)

= sin t cos τ − sin τ cos t

= sin(t− τ). (2.93)

Note that the Green’s function depends on t− τ. While this is useful
in some contexts, we will use the expanded form when carrying out
the integration.

We can now determine the particular solution of the nonhomoge-
neous differential equation. We have

xp(t) =
∫ t

0
G(t, τ) f (τ) dτ

=
∫ t

0
(sin t cos τ − sin τ cos t) (2 cos τ) dτ
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= 2 sin t
∫ t

0
cos2 τdτ − 2 cos t

∫ t

0
sin τ cos τdτ

= 2 sin t
[

τ

2
+

1
2

sin 2τ

]t

0
− 2 cos t

[
1
2

sin2 τ

]t

0
= t sin t. (2.94)

Therefore, the solution of the nonhomogeneous problem is the sum
of the solution of the homogeneous problem and this particular solu-
tion: x(t) = 4 cos t + t sin t.

2.5 Cauchy-Euler Equations

Another class of solvable linear differential equations that is
of interest are the Cauchy-Euler type of equations, also referred to in some
books as Euler’s equation. These are given by

ax2y′′(x) + bxy′(x) + cy(x) = 0. (2.95)

Note that in such equations the power of x in each of the coefficients matches
the order of the derivative in that term. These equations are solved in a
manner similar to the constant coefficient equations.

One begins by making the guess y(x) = xr. Inserting this function and
its derivatives,

y′(x) = rxr−1, y′′(x) = r(r− 1)xr−2,

into Equation (2.95), we have

[ar(r− 1) + br + c] xr = 0.

Since this has to be true for all x in the problem domain, we obtain the
characteristic equation The solutions of Cauchy-Euler equations

can be found using the characteristic
equation ar(r− 1) + br + c = 0.ar(r− 1) + br + c = 0. (2.96)

Just like the constant coefficient differential equation, we have a quadratic
equation and the nature of the roots again leads to three classes of solutions.
If there are two real, distinct roots, then the general solution takes the form
y(x) = c1xr1 + c2xr2 . For two real, distinct roots, the general

solution takes the form

y(x) = c1xr1 + c2xr2 .
Example 2.22. Find the general solution: x2y′′ + 5xy′ + 12y = 0.

As with the constant coefficient equations, we begin by writing
down the characteristic equation. Doing a simple computation,

0 = r(r− 1) + 5r + 12

= r2 + 4r + 12

= (r + 2)2 + 8,

−8 = (r + 2)2, (2.97)

one determines the roots are r = −2± 2
√

2i. Therefore, the general

solution is y(x) =
[
c1 cos(2

√
2 ln |x|) + c2 sin(2

√
2 ln |x|)

]
x−2
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Deriving the solution for Case 2 for the Cauchy-Euler equations works in
the same way as the second for constant coefficient equations, but it is a bit
messier. First note that for the real root, r = r1, the characteristic equation
has to factor as (r− r1)

2 = 0. Expanding, we have

r2 − 2r1r + r2
1 = 0.

The general characteristic equation is

ar(r− 1) + br + c = 0.

Dividing this equation by a and rewriting, we have

r2 + (
b
a
− 1)r +

c
a
= 0.

Comparing equations, we find

b
a
= 1− 2r1,

c
a
= r2

1.

So, the Cauchy-Euler equation for this case can be written in the form

x2y′′ + (1− 2r1)xy′ + r2
1y = 0.

Now we seek the second linearly independent solution in the form y2(x) =
v(x)xr1 . We first list this function and its derivatives,

y2(x) = vxr1 ,

y′2(x) = (xv′ + r1v)xr1−1,

y′′2 (x) = (x2v′′ + 2r1xv′ + r1(r1 − 1)v)xr1−2. (2.98)

Inserting these forms into the differential equation, we have

0 = x2y′′ + (1− 2r1)xy′ + r2
1y

= (xv′′ + v′)xr1+1. (2.99)

Thus, we need to solve the equation

xv′′ + v′ = 0,

or
v′′

v′
= − 1

x
.

Integrating, we have
ln |v′| = − ln |x|+ C,

where A = ±eC absorbs C and the signs from the absolute values. Expo-
nentiating, we obtain one last differential equation to solve,

v′ =
A
x

.

Thus,
v(x) = A ln |x|+ k.
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So, we have found that the second linearly independent equation can be
written as

y2(x) = xr1 ln |x|.

Therefore, the general solution is found as y(x) = (c1 + c2 ln |x|)xr.

Example 2.23. Solve the initial value problem: t2y′′ + 3ty′ + y = 0,
with the initial conditions y(1) = 0, y′(1) = 1.

For one root, r1 = r2 = r, the general
solution is of the form

y(x) = (c1 + c2 ln |x|)xr .

For this example the characteristic equation takes the form

r(r− 1) + 3r + 1 = 0,

or

r2 + 2r + 1 = 0.

There is only one real root, r = −1. Therefore, the general solution is

y(t) = (c1 + c2 ln |t|)t−1.

However, this problem is an initial value problem. At t = 1 we
know the values of y and y′. Using the general solution, we first have
that

0 = y(1) = c1.

Thus, we have so far that y(t) = c2 ln |t|t−1. Now, using the second
condition and

y′(t) = c2(1− ln |t|)t−2,

we have

1 = y(1) = c2.

Therefore, the solution of the initial value problem is y(t) = ln |t|t−1.

We now turn to the case of complex conjugate roots, r = α± iβ. When
dealing with the Cauchy-Euler equations, we have solutions of the form
y(x) = xα+iβ. The key to obtaining real solutions is to first rewrite xy :

xy = eln xy
= ey ln x.

Thus, a power can be written as an exponential and the solution can be
written as For complex conjugate roots, r = α± iβ,

the general solution takes the form

y(x) = xα(c1 cos(β ln |x|)+ c2 sin(β ln |x|)).
y(x) = xα+iβ = xαeiβ ln x, x > 0.

Recalling that

eiβ ln x = cos(β ln |x|) + i sin(β ln |x|),

we can now find two real, linearly independent solutions, xα cos(β ln |x|)
and xα sin(β ln |x|) following the same steps as earlier for the constant coef-
ficient case. This gives the general solution as

y(x) = xα(c1 cos(β ln |x|) + c2 sin(β ln |x|)).
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Example 2.24. Solve: x2y′′ − xy′ + 5y = 0.
The characteristic equation takes the form

r(r− 1)− r + 5 = 0,

or
r2 − 2r + 5 = 0.

The roots of this equation are complex, r1,2 = 1± 2i. Therefore, the
general solution is y(x) = x(c1 cos(2 ln |x|) + c2 sin(2 ln |x|)).

The three cases are summarized in the table below.

Classification of Roots of the Characteristic Equation
for Cauchy-Euler Differential Equations

1. Real, distinct roots r1, r2. In this case the solutions corresponding to
each root are linearly independent. Therefore, the general solution is
simply y(x) = c1xr1 + c2xr2 .

2. Real, equal roots r1 = r2 = r. In this case the solutions corresponding
to each root are linearly dependent. To find a second linearly indepen-
dent solution, one uses the Method of Reduction of Order. This gives
the second solution as xr ln |x|. Therefore, the general solution is found
as y(x) = (c1 + c2 ln |x|)xr.

3. Complex conjugate roots r1, r2 = α ± iβ. In this case the solutions
corresponding to each root are linearly independent. These com-
plex exponentials can be rewritten in terms of trigonometric functions.
Namely, one has that xα cos(β ln |x|) and xα sin(β ln |x|) are two lin-
early independent solutions. Therefore, the general solution becomes
y(x) = xα(c1 cos(β ln |x|) + c2 sin(β ln |x|)).

Nonhomogeneous Cauchy-Euler Equations

We can also solve some nonhomogeneous Cauchy-Euler equations using
the Method of Undetermined Coefficients or the Method of Variation of
Parameters. We will demonstrate this with a couple of examples.

Example 2.25. Find the solution of x2y′′ − xy′ − 3y = 2x2.
First we find the solution of the homogeneous equation. The char-

acteristic equation is r2 − 2r − 3 = 0. So, the roots are r = −1, 3 and
the solution is yh(x) = c1x−1 + c2x3.

We next need a particular solution. Let’s guess yp(x) = Ax2. In-
serting the guess into the nonhomogeneous differential equation, we
have

2x2 = x2y′′ − xy′ − 3y = 2x2

= 2Ax2 − 2Ax2 − 3Ax2

= −3Ax2. (2.100)
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So, A = −2/3. Therefore, the general solution of the problem is

y(x) = c1x−1 + c2x3 − 2
3

x2.

Example 2.26. Find the solution of x2y′′ − xy′ − 3y = 2x3.
In this case the nonhomogeneous term is a solution of the homoge-

neous problem, which we solved in the last example. So, we will need
a modification of the method. We have a problem of the form

ax2y′′ + bxy′ + cy = dxr,

where r is a solution of ar(r − 1) + br + c = 0. Let’s guess a solution
of the form y = Axr ln x. Then one finds that the differential equation
reduces to Axr(2ar− a+ b) = dxr. [You should verify this for yourself.]

With this in mind, we can now solve the problem at hand. Let
yp = Ax3 ln x. Inserting into the equation, we obtain 4Ax3 = 2x3, or
A = 1/2. The general solution of the problem can now be written as

y(x) = c1x−1 + c2x3 +
1
2

x3 ln x.

Example 2.27. Find the solution of x2y′′ − xy′ − 3y = 2x3 using Varia-
tion of Parameters.

As noted in the previous examples, the solution of the homoge-
neous problem has two linearly independent solutions, y1(x) = x−1

and y2(x) = x3. Assuming a particular solution of the form yp(x) =

c1(x)y1(x) + c2(x)y2(x), we need to solve the system (2.67):

c′1(x)x−1 + c′2(x)x3 = 0

−c′1(x)x−2 + 3c′2(x)x2 =
2x3

x2 = 2x. (2.101)

From the first equation of the system we have c′1(x) = −x4c′2(x).
Substituting this into the second equation gives c′2(x) = 1

2x . So, c2(x) =
1
2 ln |x| and, therefore, c1(x) = 1

8 x4. The particular solution is

yp(x) = c1(x)y1(x) + c2(x)y2(x) =
1
8

x3 +
1
2

x3 ln |x|.

Adding this to the homogeneous solution, we obtain the same solution
as in the last example using the Method of Undetermined Coefficients.
However, since 1

8 x3 is a solution of the homogeneous problem, it can
be absorbed into the first terms, leaving

y(x) = c1x−1 + c2x3 +
1
2

x3 ln x.
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Problems

1. Find all of the solutions of the second order differential equations. When
an initial condition is given, find the particular solution satisfying that con-
dition.

a. y′′ − 9y′ + 20y = 0.

b. y′′ − 3y′ + 4y = 0, y(0) = 0, y′(0) = 1.

c. 8y′′ + 4y′ + y = 0, y(0) = 1, y′(0) = 0.

d. x′′ − x′ − 6x = 0 for x = x(t).

2. Verify that the given function is a solution and use Reduction of Order
to find a second linearly independent solution.

a. x2y′′ − 2xy′ − 4y = 0, y1(x) = x4.

b. xy′′ − y′ + 4x3y = 0, y1(x) = sin(x2).

c. (1− x2)y′′− 2xy′+ 2y = 0, y1(x) = x. [Note: This is one solution
of Legendre’s differential equation in Example 4.4.]

d. (x− 1)y′′ − xy′ + y = 0, y1(x) = ex.

3. Prove that y1(x) = sinh x and y2(x) = 3 sinh x − 2 cosh x are linearly
independent solutions of y′′ − y = 0. Write y3(x) = cosh x as a linear com-
bination of y1 and y2.

4. Consider the nonhomogeneous differential equation x′′− 3x′+ 2x = 6e3t.

a. Find the general solution of the homogenous equation.

b. Find a particular solution using the Method of Undetermined Co-
efficients by guessing xp(t) = Ae3t.

c. Use your answers in the previous parts to write down the general
solution for this problem.

5. Find the general solution of the given equation by the method given.

a. y′′ − 3y′ + 2y = 10, Undetermined Coefficients.

b. y′′ + 2y′ + y = 5 + 10 sin 2x, Undetermined Coefficients.

c. y′′ − 5y′ + 6y = 3ex, Reduction of Order.

d. y′′ + 5y′ − 6y = 3ex, Reduction of Order.

e. y′′ + y = sec3 x, Reduction of Order.

f. y′′ + y′ = 3x2, Variation of Parameters.

g. y′′ − y = ex + 1, Variation of Parameters.

6. Use the Method of Variation of Parameters to determine the general
solution for the following problems.

a. y′′ + y = tan x.

b. y′′ − 4y′ + 4y = 6xe2x.
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c. y′′ − 2y′ + y = e2x

(1+ex)2 .

d. y′′ − 3y′ + 2y = cos(ex).

7. Instead of assuming that c′1y1 + c′2y2 = 0 in the derivation of the solu-
tion using Variation of Parameters, assume that c′1y1 + c′2y2 = h(x) for an
arbitrary function h(x) and show that one gets the same particular solution.

8. Find all of the solutions of the second order differential equations for x >

0. When an initial condition is given, find the particular solution satisfying
that condition.

a. x2y′′ + 3xy′ + 2y = 0.

b. x2y′′ − 3xy′ + 3y = 0, y(1) = 1, y′(1) = 0.

c. x2y′′ + 5xy′ + 4y = 0.

d. x2y′′ − 2xy′ + 3y = 0, y(1) = 3, y′(1) = 0.

e. x2y′′ + 3xy′ − 3y = 0.

9. Another approach to solving Cauchy-Euler equations is by transforming
the equation to one with constant coefficients.

a. Consider the equation

ax2y′′(x) + bxy′(x) + cy(x) = 0.

Make the change of variables x = et and y(x) = v(t). Show that

dy
dx

=
1
x

dv
dt

and
d2y
dx2 =

1
x2

(
d2v
dt2 −

dv
dt

)
b. Use the above transformation to solve the following equations:

i. x2y′′ + 3xy′ − 3y = 0.

ii. 2x2y′′ + 5xy′ + y = 0.

iii. 4x2y′′ + y = 0.

iii. x3y′′′ + xy′ − y = 0.

10. Solve the following nonhomogenous Cauchy-Euler equations for x > 0.

a. x2y′′ + 3xy′ − 3y = 3x2.

b. 2x2y′′ + 5xy′ + y = x2 + x.

c. x2y′′ + 5xy′ + 4y = 2x3.

d. x2y′′ − 2xy′ + 3y = 5x2, y(1) = 3, y′(1) = 0.

11. A spring fixed at its upper end is stretched six inches by a 10-pound
weight attached at its lower end. The spring-mass system is suspended in
a viscous medium so that the system is subjected to a damping force of
5 dx

dt lbs. Describe the motion of the system if the weight is drawn down an
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additional 4 inches and released. What would happen if you changed the
coefficient “5” to “4”? [You may need to consult your introductory physics
text. For example, the weight and mass are related by W = mg, where the
mass is in slugs and g = 32 ft/s2.]

12. Consider an LRC circuit with L = 1.00 H, R = 1.00 × 102 Ω, C =

1.00 × 10−4 f, and V = 1.00 × 103 V. Suppose that no charge is present
and no current is flowing at time t = 0 when a battery of voltage V is
inserted. Find the current and the charge on the capacitor as functions of
time. Describe how the system behaves over time.

13. Consider the problem of forced oscillations as described in section 2.4.2.

b. Plot the solutions in Equation (2.77) for the following cases: Let
c1 = 0.5, c2 = 0, F0 = 1.0 N, and m = 1.0 kg for t ∈ [0, 100].

i. ω0 = 2.0 rad/s, ω = 0.1 rad/s.

ii. ω0 = 2.0 rad/s, ω = 0.5 rad/s.

iii. ω0 = 2.0 rad/s, ω = 1.5 rad/s.

iv. ω0 = 2.0 rad/s, ω = 2.2 rad/s.

v. ω0 = 1.0 rad/s, ω = 1.2 rad/s.

vi. ω0 = 1.5 rad/s, ω = 1.5 rad/s.

d. Confirm that the solution in Equation (2.78) is the same as the
solution in Equation (2.77) for F0 = 2.0 N, m = 10.0 kg, ω0 = 1.5
rad/s, and ω = 1.25 rad/s, by plotting both solutions for t ∈
[0, 100].

14. A certain model of the motion light plastic ball tossed into the air is
given by

mx′′ + cx′ + mg = 0, x(0) = 0, x′(0) = v0.

Here m is the mass of the ball, g=9.8 m/s2 is the acceleration due to gravity
and c is a measure of the damping. Since there is no x term, we can write
this as a first order equation for the velocity v(t) = x′(t) :

mv′ + cv + mg = 0.

a. Find the general solution for the velocity v(t) of the linear first
order differential equation above.

b. Use the solution of part a to find the general solution for the posi-
tion x(t).

c. Find an expression to determine how long it takes for the ball to
reach it’s maximum height?

d. Assume that c/m = 5 s−1. For v0 = 5, 10, 15, 20 m/s, plot the
solution, x(t) versus the time, using computer software.

e. From your plots and the expression in part c, determine the rise
time. Do these answers agree?

f. What can you say about the time it takes for the ball to fall as
compared to the rise time?
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15. Find the solution of each initial value problem using the appropriate
initial value Green’s function.

a. y′′ − 3y′ + 2y = 20e−2x, y(0) = 0, y′(0) = 6.

b. y′′ + y = 2 sin 3x, y(0) = 5, y′(0) = 0.

c. y′′ + y = 1 + 2 cos x, y(0) = 2, y′(0) = 0.

d. x2y′′ − 2xy′ + 2y = 3x2 − x, y(1) = π, y′(1) = 0.

16. Use the initial value Green’s function for x′′ + x = f (t), x(0) = 4,
x′(0) = 0, to solve the following problems.

a. x′′ + x = 5t2.

b. x′′ + x = 2 tan t.

17. For the problem y′′ − k2y = f (x), y(0) = 0, y′(0) = 1,

a. Find the initial value Green’s function.

b. Use the Green’s function to solve y′′ − y = e−x.

c. Use the Green’s function to solve y′′ − 4y = e2x.

18. Find and use the initial value Green’s function to solve

x2y′′ + 3xy′ − 15y = x4ex, y(1) = 1, y′(1) = 0.





Chapter 3

Numerical Solutions

“The laws of mathematics are not merely human inventions or creations. They
simply ’are;’ they exist quite independently of the human intellect.” - M. C. Escher
(1898-1972)

So far we have seen some of the standard methods for solving first
and second order differential equations. However, we have had to restrict
ourselves to special cases in order to get nice analytical solutions to initial
value problems. While these are not the only equations for which we can get
exact results, there are many cases in which exact solutions are not possible.
In such cases we have to rely on approximation techniques, including the
numerical solution of the equation at hand.

The use of numerical methods to obtain approximate solutions of differ-
ential equations and systems of differential equations has been known for
some time. However, with the advent of powerful computers and desktop
computers, we can now solve many of these problems with relative ease.
The simple ideas used to solve first order differential equations can be ex-
tended to the solutions of more complicated systems of partial differential
equations, such as the large scale problems of modeling ocean dynamics,
weather systems and even cosmological problems stemming from general
relativity.

3.1 Euler’s Method

In this section we will look at the simplest method for solving
first order equations, Euler’s Method. While it is not the most efficient
method, it does provide us with a picture of how one proceeds and can be
improved by introducing better techniques, which are typically covered in
a numerical analysis text.

Let’s consider the class of first order initial value problems of the form

dy
dx

= f (x, y), y(x0) = y0. (3.1)

We are interested in finding the solution y(x) of this equation which passes
through the initial point (x0, y0) in the xy-plane for values of x in the interval
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[a, b], where a = x0. We will seek approximations of the solution at N
points, labeled xn for n = 1, . . . , N. For equally spaced points we have
∆x = x1 − x0 = x2 − x1, etc. We can write these as

xn = x0 + n∆x.

In Figure 3.1 we show three such points on the x-axis.

Figure 3.1: The basics of Euler’s Method
are shown. An interval of the x axis is
broken into N subintervals. The approx-
imations to the solutions are found us-
ing the slope of the tangent to the solu-
tion, given by f (x, y). Knowing previous
approximations at (xn−1, yn−1), one can
determine the next approximation, yn.

y

x

(x0, y0)

(x1, y(x1))

(x2, y(x2))

y0

x0

y1

x1

y2

x2

The first step of Euler’s Method is to use the initial condition. We repre-
sent this as a point on the solution curve, (x0, y(x0)) = (x0, y0), as shown in
Figure 3.1. The next step is to develop a method for obtaining approxima-
tions to the solution for the other xn’s.

We first note that the differential equation gives the slope of the tangent
line at (x, y(x)) of the solution curve since the slope is the derivative, y′(x)′

From the differential equation the slope is f (x, y(x)). Referring to Figure
3.1, we see the tangent line drawn at (x0, y0). We look now at x = x1. The
vertical line x = x1 intersects both the solution curve and the tangent line
passing through (x0, y0). This is shown by a heavy dashed line.

While we do not know the solution at x = x1, we can determine the
tangent line and find the intersection point that it makes with the vertical.
As seen in the figure, this intersection point is in theory close to the point
on the solution curve. So, we will designate y1 as the approximation of the
solution y(x1). We just need to determine y1.

The idea is simple. We approximate the derivative in the differential
equation by its difference quotient:

dy
dx
≈ y1 − y0

x1 − x0
=

y1 − y0

∆x
. (3.2)

Since the slope of the tangent to the curve at (x0, y0) is y′(x0) = f (x0, y0),
we can write

y1 − y0

∆x
≈ f (x0, y0). (3.3)
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Solving this equation for y1, we obtain

y1 = y0 + ∆x f (x0, y0). (3.4)

This gives y1 in terms of quantities that we know.
We now proceed to approximate y(x2). Referring to Figure 3.1, we see

that this can be done by using the slope of the solution curve at (x1, y1).
The corresponding tangent line is shown passing though (x1, y1) and we
can then get the value of y2 from the intersection of the tangent line with a
vertical line, x = x2. Following the previous arguments, we find that

y2 = y1 + ∆x f (x1, y1). (3.5)

Continuing this procedure for all xn, n = 1, . . . N, we arrive at the fol-
lowing scheme for determining a numerical solution to the initial value
problem:

y0 = y(x0),

yn = yn−1 + ∆x f (xn−1, yn−1), n = 1, . . . , N. (3.6)

This is referred to as Euler’s Method.

Example 3.1. Use Euler’s Method to solve the initial value problem
dy
dx = x + y, y(0) = 1 and obtain an approximation for y(1).

First, we will do this by hand. We break up the interval [0, 1], since
we want the solution at x = 1 and the initial value is at x = 0. Let
∆x = 0.50. Then, x0 = 0, x1 = 0.5 and x2 = 1.0. Note that there are
N = b−a

∆x = 2 subintervals and thus three points.
We next carry out Euler’s Method systematically by setting up a

table for the needed values. Such a table is shown in Table 3.1. Note
how the table is set up. There is a column for each xn and yn. The first
row is the initial condition. We also made use of the function f (x, y) in
computing the yn’s from (3.6). This sometimes makes the computation
easier. As a result, we find that the desired approximation is given as
y2 = 2.5.

n xn yn = yn−1 + ∆x f (xn−1, yn−1) = 0.5xn−1 + 1.5yn−1

0 0 1

1 0.5 0.5(0) + 1.5(1.0) = 1.5
2 1.0 0.5(0.5) + 1.5(1.5) = 2.5

Table 3.1: Application of Euler’s Method
for y′ = x + y, y(0) = 1 and ∆x = 0.5.

Is this a good result? Well, we could make the spatial increments
smaller. Let’s repeat the procedure for ∆x = 0.2, or N = 5. The results
are in Table 3.2.

Now we see that the approximation is y1 = 2.97664. So, it looks
like the value is near 3, but we cannot say much more. Decreasing ∆x
more shows that we are beginning to converge to a solution. We see
this in Table 3.3.

Of course, these values were not done by hand. The last computation
would have taken 1000 lines in the table, or at least 40 pages! One could
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Table 3.2: Application of Euler’s Method
for y′ = x + y, y(0) = 1 and ∆x = 0.2.

n xn yn = 0.2xn−1 + 1.2yn−1

0 0 1

1 0.2 0.2(0) + 1.2(1.0) = 1.2
2 0.4 0.2(0.2) + 1.2(1.2) = 1.48
3 0.6 0.2(0.4) + 1.2(1.48) = 1.856
4 0.8 0.2(0.6) + 1.2(1.856) = 2.3472
5 1.0 0.2(0.8) + 1.2(2.3472) = 2.97664

Table 3.3: Results of Euler’s Method for
y′ = x + y, y(0) = 1 and varying ∆x

∆x yN ≈ y(1)
0.5 2.5
0.2 2.97664

0.1 3.187484920

0.01 3.409627659

0.001 3.433847864

0.0001 3.436291854

use a computer to do this. A simple code in Maple would look like the
following:

> restart:

> f:=(x,y)->y+x;

> a:=0: b:=1: N:=100: h:=(b-a)/N;

> x[0]:=0: y[0]:=1:

for i from 1 to N do

y[i]:=y[i-1]+h*f(x[i-1],y[i-1]):

x[i]:=x[0]+h*(i):

od:

evalf(y[N]);

In this case we could simply use the exact solution. The exact solution is
easily found as

y(x) = 2ex − x− 1.

(The reader can verify this.) So, the value we are seeking is

y(1) = 2e− 2 = 3.4365636 . . . .

Thus, even the last numerical solution was off by about 0.00027.

Figure 3.2: A comparison of the results
Euler’s Method to the exact solution for
y′ = x + y, y(0) = 1 and N = 10.

Adding a few extra lines for plotting, we can visually see how well the
approximations compare to the exact solution. The Maple code for doing
such a plot is given below.

> with(plots):

> Data:=[seq([x[i],y[i]],i=0..N)]:

> P1:=pointplot(Data,symbol=DIAMOND):

> Sol:=t->-t-1+2*exp(t);

> P2:=plot(Sol(t),t=a..b,Sol=0..Sol(b)):

> display({P1,P2});
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We show in Figures 3.2-3.3 the results for N = 10 and N = 100. In Figure
3.2 we can see how quickly the numerical solution diverges from the exact
solution. In Figure 3.3 we can see that visually the solutions agree, but we
note that from Table 3.3 that for ∆x = 0.01, the solution is still off in the
second decimal place with a relative error of about 0.8%.

Figure 3.3: A comparison of the results
Euler’s Method to the exact solution for
y′ = x + y, y(0) = 1 and N = 100.

Why would we use a numerical method when we have the exact solution?
Exact solutions can serve as test cases for our methods. We can make sure
our code works before applying them to problems whose solution is not
known.

There are many other methods for solving first order equations. One
commonly used method is the fourth order Runge-Kutta method. This
method has smaller errors at each step as compared to Euler’s Method.
It is well suited for programming and comes built-in in many packages like
Maple and MATLAB. Typically, it is set up to handle systems of first order
equations.

In fact, it is well known that nth order equations can be written as a sys-
tem of n first order equations. Consider the simple second order equation

y′′ = f (x, y).

This is a larger class of equations than the second order constant coefficient
equation. We can turn this into a system of two first order differential equa-
tions by letting u = y and v = y′ = u′. Then, v′ = y′′ = f (x, u). So, we have
the first order system

u′ = v,

v′ = f (x, u). (3.7)

We will not go further into higher order methods until later in the chap-
ter. We will discuss in depth higher order Taylor methods in Section 3.3 and
Runge-Kutta Methods in Section 3.4. This will be followed by applications
of numerical solutions of differential equations leading to interesting be-
haviors in Section 3.5. However, we will first discuss the numerical solution
using built-in routines.

3.2 Implementation of Numerical Packages

3.2.1 First Order ODEs in MATLAB

One can use MATLAB to obtain solutions and plots of solutions
of differential equations. This can be done either symbolically, using dsolve,
or numerically, using numerical solvers like ode45. In this section we will
provide examples of using these to solve first order differential equations.
We will end with the code for drawing direction fields, which are useful for
looking at the general behavior of solutions of first order equations without
explicitly finding the solutions.
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Symbolic Solutions

The function dsolve obtains the symbolic solution and ezplot is
used to quickly plot the symbolic solution. As an example, we apply dsolve
to solve the

x′ = 2 sin t− 4x, x(0) = 0 (3.8)

At the MATLAB prompt, type the following:

sol = dsolve(’Dx=2*sin(t)-4*x’,’x(0)=0’,’t’);

ezplot(sol,[0 10])

xlabel(’t’),ylabel(’x’), grid

The solution is given as

sol =

(2*exp(-4*t))/17 - (2*17^(1/2)*cos(t + atan(4)))/17

Figure 3.4 shows the solution plot.

Figure 3.4: The solution of Equation (3.8)
with x(0) = 0 found using MATLAB’s
dsolve command.
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(2 exp(-4 t))/17 - (2 171/2 cos(t + atan(4)))/17

ODE45 and Other Solvers.

There are several ODE solvers in MATLAB, implementing Runge-
Kutta and other numerical schemes. Examples of its use are in the differen-
tial equations textbook. For example, one can implement ode45 to solve the
initial value problem

dy
dt

= − yt√
2− y2

, y(0) = 1,

using the following code:

[t y]=ode45(’func’,[0 5],1);

plot(t,y)

xlabel(’t’),ylabel(’y’)

title(’y(t) vs t’)
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One can define the function func in a file func.m such as

function f=func(t,y)

f=-t*y/sqrt(2-y.^2);

Running the above code produces Figure 3.5.

t
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
y(t) vs t Figure 3.5: A plot of the solution of

dy
dt = − yt√

2−y2
, y(0) = 1, found using

MATLAB’s ode45 command.

One can also use ode45 to solve higher order differential equations. Second
order differential equations are discussed in Section 3.2.2. See MATLAB
help for other examples and other ODE solvers.

Direction Fields

One can produce direction fields in MATLAB. For the differential
equation

dy
dx

= f (x, y),

we note that f (x, y) is the slope of the solution curve passing through the
point in the xy=plane. Thus, the direction field is a collection of tangent
vectors at points (x, y) indication the slope, f (x, y), at that point.

A sample code for drawing direction fields in MATLAB is given by

[x,y]=meshgrid(0:.1:2,0:.1:1.5);

dy=1-y;

dx=ones(size(dy));

quiver(x,y,dx,dy)

axis([0,2,0,1.5])

xlabel(’x’)

ylabel(’y’)

The mesh command sets up the xy-grid. In this case x is in [0, 2] and y is
in [0, 1.5]. In each case the grid spacing is 0.1.

We let dy = 1-y and dx =1. Thus,

dy
dx

=
1− y

1
= 1− y.
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The quiver command produces a vector (dx,dy) at (x,y). The slope of
each vector isdy/dx. The other commands label the axes and provides a
window with xmin=0, xmax=2, ymin=0, ymax=1.5. The result of using the
above code is shown in Figure 3.6.

Figure 3.6: A direction field produced
using MATLAB’s quiver function for
y′ = 1− y.
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One can add solution, or integral, curves to the direction field for differ-
ent initial conditions to further aid in seeing the connection between direc-
tion fields and integral curves. One needs to add to the direction field code
the following lines:

hold on

[t,y] = ode45(@(t,y) 1-y, [0 2], .5);

plot(t,y,’k’,’LineWidth’,2)

[t,y] = ode45(@(t,y) 1-y, [0 2], 1.5);

plot(t,y,’k’,’LineWidth’,2)

hold off

Here the function f (t, y) = 1− y is entered this time using MATLAB’s
anonymous function, @(t,y) 1-y. Before plotting, the hold command is in-
voked to allow plotting several plots on the same figure. The result is shown
in Figure 3.7

Figure 3.7: A direction field produced
using MATLAB’s quiver function for
y′ = 1− y with solution curves added.
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3.2.2 Second Order ODEs in MATLAB

We can also use ode45 to solve second and higher order differential
equations. The key is to rewrite the single differential equation as a system
of first order equations. Consider the simple harmonic oscillator equation,
ẍ + ω2x = 0. Defining y1 = x and y2 = ẋ, and noting that

ẍ + ω2x = ẏ2 + ω2y1,

we have

ẏ1 = y2,

ẏ2 = −ω2y1.

Furthermore, we can view this system in the form ẏ = y. In particular,
we have

d
dt

[
y1

y2

]
=

[
y1

−ω2y2

]
Now, we can use ode45. We modify the code slightly from Chapter 1.

[t y]=ode45(’func’,[0 5],[1 0]);

Here [0 5] gives the time interval and [1 0] gives the initial conditions

y1(0) = x(0) = 1, y2(0) = ẋ(0) = 1.

The function func is a set of commands saved to the file func.m for com-
puting the righthand side of the system of differential equations. For the
simple harmonic oscillator, we enter the function as

function dy=func(t,y)

omega=1.0;

dy(1,1) = y(2);

dy(2,1) = -omega^2*y(1);

There are a variety of ways to introduce the parameter ω. Here we simply
defined it within the function. Furthermore, the output dy should be a
column vector.

After running the solver, we then need to display the solution. The output
should be a column vector with the position as the first element and the
velocity as the second element. So, in order to plot the solution as a function
of time, we can plot the first column of the solution, y(:,1), vs t:

plot(t,y(:,1))

xlabel(’t’),ylabel(’y’)

title(’y(t) vs t’)
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Figure 3.8: Solution plot for the simple
harmonic oscillator.
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The resulting solution is shown in Figure 3.8.
We can also do a phase plot of velocity vs position. In this case, one can

plot the second column, y(:,2), vs the first column, y(:,1):

plot(y(:,1),y(:,2))

xlabel(’y’),ylabel(’v’)

title(’v(t) vs y(t)’)

The resulting solution is shown in Figure 3.9.

Figure 3.9: Phase plot for the simple har-
monic oscillator.
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Finally, we can plot a direction field using a quiver plot and add solution
curves using ode45. The direction field is given for ω = 1 by dx=y and
dy=-x.

clear

[x,y]=meshgrid(-2:.2:2,-2:.2:2);

dx=y;

dy=-x;

quiver(x,y,dx,dy)

axis([-2,2,-2,2])

xlabel(’x’)

ylabel(’y’)



numerical solutions 85

hold on

[t y]=ode45(’func’,[0 6.28],[1 0]);

plot(y(:,1),y(:,2))

hold off

The resulting plot is given in Figure 3.10.
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Figure 3.10: Phase plot for the simple
harmonic oscillator.

3.2.3 GNU Octave

Much of MATLAB’s functionality can be used in GNU Octave.
However, a simple solution of a differential equation is not the same. Instead
GNU Octave uses the Fortan lsode routine. The main code below gives what
is needed to solve the system

d
dt

[
x
y

]
=

[
x
−cy

]
.

global c

c=1;

y=lsode("oscf",[1,0],(tau=linspace(0,5,100))’);

figure(1);

plot(tau,y(:,1));

xlabel(’t’)

ylabel(’x(t)’)

figure(2);

plot(y(:,1),y(:,2));

xlabel(’x(t)’)

ylabel(’y(t)’)
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The function called by the lsode routine, oscf, looks similar to MATLAB
code. However, one needs to take care in the syntax and ordering of the
input variables. The output from this code is shown in Figure 3.11.

function ydot=oscf(y,tau);

global c

ydot(1)=y(2);

ydot(2)=-c*y(1);

Figure 3.11: Numerical solution of the
simple harmonic oscillator using GNU
Octave’s lsode routine. In these plots are
the position and velocity vs times plots
and a phase plot.

3.2.4 Python Implementation

One can also solve ordinary differential equations using Python.
One can use the odeint routine from scipy.inegrate. This uses a variable
step routine based on the Fortan lsoda routine. The below code solves a
simple harmonic oscillator equation and produces the plot in Figure 3.12.

import numpy as np

import matplotlib.pyplot as plt

from scipy.integrate import odeint
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# Solve dv/dt = [y, - cx] for v = [x,y]

def odefn(v,t, c):

x, y = v

dvdt = [y, -c*x ]

return dvdt

v0 = [1.0, 0.0]

t = np.arange(0.0, 10.0, 0.1)

c = 5;

sol = odeint(odefn, v0, t,args=(c,))

plt.plot(t, sol[:,0],’b’)

plt.xlabel(’Time (sec)’)

plt.ylabel(’Position’)

plt.title(’Position vs Time’)

plt.show()

Figure 3.12: Numerical solution of
the simple harmonic oscillator using
Python’s odeint.

If one wants to use something similar to the Runga-Kutta scheme, then
the ode routine can be used with a specification of ode solver. The below
code solves a simple harmonic oscillator equation and produces the plot in
Figure 3.13.

from scipy import *
from scipy.integrate import ode

from pylab import *

# Solve dv/dt = [y, - cx] for v = [x,y]

def odefn(t,v, c):

x, y = v
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dvdt = [y, -c*x ]

return dvdt

v0 = [1.0, 0.0]

t0=0;

tf=10;

dt=0.1;

c = 5;

Y=[];

T=[];

r = ode(odefn).set_integrator(’dopri5’)

r.set_f_params(c).set_initial_value(v0,t0)

while r.successful() and r.t+dt < tf:

r.integrate(r.t+dt)

Y.append(r.y)

T.append(r.t)

Y = array(Y)

subplot(2,1,1)

plot(T,Y)

plt.xlabel(’Time (sec)’)

plt.ylabel(’Position’)

subplot(2,1,2)

plot(Y[:,0],Y[:,1])

xlabel(’Position’)

ylabel(’Velocity’)

show()

3.2.5 Maple Implementation

Maple also has built-in routines for solving differential equa-
tions. First, we consider the symbolic solutions of a differential equation.
An example of a symbolic solution of a first order differential equation,
y′ = 1− y with y(0)− 1.5, is given by

> restart: with(plots):

> EQ:=diff(y(x),x)=1-y(x):

> dsolve({EQ,y(0)=1.5});
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Figure 3.13: Numerical solution of
the simple harmonic oscillator using
Python’s ode routine. In these plots are
the position and velocity vs times plots
and a phase plot.

The resulting solution from Maple is

y(x) = 1 +
1
2

e−x.

One can also plot direction fields for first order equations. An example is
given below with the plot shown in Figure 3.14.

> restart: with(DEtools):

> ode := diff(y(t),t) = 1-y(t):

> DEplot(ode,y(t),t=0..2,y=0..1.5,color=black);
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Figure 3.14: Maple direction field plot
for first order differential equation.

In order to add solution curves, we specify initial conditions using the
following lines as seen in Figure 3.15.

> ics:=[y(0)=0.5,y(0)=1.5]:

> DEplot(ode,yt),t=0..2,y=0..1.5,ics,arrows=medium,linecolor=black,color=black);

These routines can be used to obtain solutions of a system of differential
equations.
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Figure 3.15: Maple direction field plot
for first order differential equation with
solution curves added.
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> EQ:=diff(x(t),t)=y(t),diff(y(t),t)=-x(t):

> ICs:=x(0)=1,y(0)=0;

> dsolve([EQ, ICs]);

> plot(rhs(%[1]),t=0..5);

A phaseportrait with a direction field, as seen in Figure 3.16, is found
using the lines

> with(DEtools):

> DEplot( [EQ], [x(t),y(t)], t=0..5, x=-2..2, y=-2..2, [[x(0)=1,y(0)=0]],

arrows=medium,linecolor=black,color=black,scaling=constrained);

Figure 3.16: Maple system plot.
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3.3 Higher Order Taylor Methods*

Euler’s Method for solving differential equations is easy to un-
derstand but is not efficient in the sense that it is what is called a first order
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method. The error at each step, the local truncation error, is of order ∆x,
for x the independent variable. The accumulation of the local truncation er-
rors results in what is called the global error. In order to generalize Euler’s
Method, we need to rederive it. Also, since these methods are typically used
for initial value problems, we will cast the problem to be solved as

dy
dt

= f (t, y), y(a) = y0, t ∈ [a, b]. (3.9)

The first step towards obtaining a numerical approximation to the solu-
tion of this problem is to divide the t-interval, [a, b], into N subintervals,

ti = a + ih, i = 0, 1, . . . , N, t0 = a, tN = b,

where
h =

b− a
N

.

We then seek the numerical solutions

ỹi ≈ y(ti), i = 1, 2, . . . , N,

with ỹ0 = y(t0) = y0. Figure 3.17 graphically shows how these quantities
are related.

y

t
t0 tNti

(ti , ỹi)

(ti , y(ti))

(a, y0)

Figure 3.17: The interval [a, b] is divided
into N equally spaced subintervals. The
exact solution y(ti) is shown with the
numerical solution, ỹi with ti = a + ih,
i = 0, 1, . . . , N.

Euler’s Method can be derived using the Taylor series expansion of of the
solution y(ti + h) about t = ti for i = 1, 2, . . . , N. This is given by

y(ti+1) = y(ti + h)

= y(ti) + y′(ti)h +
h2

2
y′′(ξi), ξi ∈ (ti, ti+1). (3.10)

Here the term h2

2 y′′(ξi) captures all of the higher order terms and represents
the error made using a linear approximation to y(ti + h).

Dropping the remainder term, noting that y′(t) = f (t, y), and defining
the resulting numerical approximations by ỹi ≈ y(ti), we have

ỹi+1 = ỹi + h f (ti, ỹi), i = 0, 1, . . . , N − 1,

ỹ0 = y(a) = y0. (3.11)

This is Euler’s Method.
Euler’s Method is not used in practice since the error is of order h. How-

ever, it is simple enough for understanding the idea of solving differential
equations numerically. Also, it is easy to study the numerical error, which
we will show next.

The error that results for a single step of the method is called the local
truncation error, which is defined by

τi+1(h) =
y(ti+1)− ỹi

h
− f (ti, yi).

A simple computation gives

τi+1(h) =
h
2

y′′(ξi), ξi ∈ (ti, ti+1).
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Since the local truncation error is of order h, this scheme is said to be of
order one. More generally, for a numerical scheme of the form

ỹi+1 = ỹi + hF(ti, ỹi), i = 0, 1, . . . , N − 1,

ỹ0 = y(a) = y0, (3.12)

the local truncation error is defined byThe local truncation error.

τi+1(h) =
y(ti+1)− ỹi

h
− F(ti, yi).

The accumulation of these errors leads to the global error. In fact, one
can show that if f is continuous, satisfies the Lipschitz condition,

| f (t, y2)− f (t, y1)| ≤ L|y2 − y1|

for a particular domain D ⊂ R2, and

|y′′(t)| ≤ M, t ∈ [a, b],

then

|y(ti)− ỹ| ≤
hM
2L

(
eL(ti−a) − 1

)
, i = 0, 1, . . . , N.

Furthermore, if one introduces round-off errors, bounded by δ, in both the
initial condition and at each step, the global error is modified as

|y(ti)− ỹ| ≤
1
L

(
hM

2
+

δ

h

)(
eL(ti−a) − 1

)
+ |δ0|eL(ti−a), i = 0, 1, . . . , N.

Then for small enough steps h, there is a point when the round-off error
will dominate the error. [See Burden and Faires, Numerical Analysis for the
details.]

Can we improve upon Euler’s Method? The natural next step towards
finding a better scheme would be to keep more terms in the Taylor series
expansion. This leads to Taylor series methods of order n.

Taylor series methods of order n take the form

ỹi+1 = ỹi + hT(n)(ti, ỹi), i = 0, 1, . . . , N − 1,

ỹ0 = y0, (3.13)

where we have defined

T(n)(t, y) = y′(t) +
h
2

y′′(t) + · · ·+ h(n−1)

n!
y(n)(t).

However, since y′(t) = f (t, y), we can write

T(n)(t, y) = f (t, y) +
h
2

f ′(t, y) + · · ·+ h(n−1)

n!
f (n−1)(t, y).

We note that for n = 1, we retrieve Euler’s Method as a special case. We
demonstrate a third order Taylor’s Method in the next example.
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Example 3.2. Apply the third order Taylor’s Method to

dy
dt

= t + y, y(0) = 1

and obtain an approximation for y(1) for h = 0.1.
The third order Taylor’s Method takes the form

ỹi+1 = ỹi + hT(3)(ti, ỹi), i = 0, 1, . . . , N − 1,

ỹ0 = y0, (3.14)

where

T(3)(t, y) = f (t, y) +
h
2

f ′(t, y) +
h2

3!
f ′′(t, y)

and f (t, y) = t + y(t).
In order to set up the scheme, we need the first and second deriva-

tive of f (t, y) :

f ′(t, y) =
d
dt
(t + y)

= 1 + y′

= 1 + t + y (3.15)

f ′′(t, y) =
d
dt
(1 + t + y)

= 1 + y′

= 1 + t + y (3.16)

Inserting these expressions into the scheme, we have

ỹi+1 = ỹi + h
[
(ti + yi) +

h
2
(1 + ti + yi) +

h2

3!
(1 + ti + yi)

]
,

= ỹi + h(ti + yi) + h2(
1
2
+

h
6
)(1 + ti + yi),

ỹ0 = y0, (3.17)

for i = 0, 1, . . . , N − 1.
In Figure 3.2 we show the results comparing Euler’s Method, the

3rd Order Taylor’s Method, and the exact solution for N = 10. In
Table 3.4 we provide are the numerical values. The relative error in
Euler’s method is about 7% and that of the 3rd Order Taylor’s Method
is about 0.006%. Thus, the 3rd Order Taylor’s Method is significantly
better than Euler’s Method.

In the last section we provided some Maple code for performing Euler’s
method. A similar code in MATLAB looks like the following:

a=0;

b=1;

N=10;

h=(b-a)/N;
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Table 3.4: Numerical values for Euler’s
Method, 3rd Order Taylor’s Method, and
exact solution for solving Example 3.2
with N = 10..

Euler Taylor Exact
1.0000 1.0000 1.0000

1.1000 1.1103 1.1103

1.2200 1.2428 1.2428

1.3620 1.3997 1.3997

1.5282 1.5836 1.5836

1.7210 1.7974 1.7974

1.9431 2.0442 2.0442

2.1974 2.3274 2.3275

2.4872 2.6509 2.6511

2.8159 3.0190 3.0192

3.1875 3.4364 3.4366

% Slope function

f = inline(’t+y’,’t’,’y’);

sol = inline(’2*exp(t)-t-1’,’t’);

% Initial Condition

t(1)=0;

y(1)=1;

% Euler’s Method

for i=2:N+1

y(i)=y(i-1)+h*f(t(i-1),y(i-1));

t(i)=t(i-1)+h;

end

y

t
0 .2 .4 .5 .8 1

1

2

3

4

Figure 3.18: Numerical results for Eu-
ler’s Method (filled circle) and 3rd Order
Taylor’s Method (open circle) for solving
Example 3.2 as compared to exact solu-
tion (solid line).

A simple modification can be made for the 3rd Order Taylor’s Method by
replacing the Euler’s method part of the preceding code by

% Taylor’s Method, Order 3

y(1)=1;

h3 = h^2*(1/2+h/6);

for i=2:N+1

y(i)=y(i-1)+h*f(t(i-1),y(i-1))+h3*(1+t(i-1)+y(i-1));

t(i)=t(i-1)+h;

end

While the accuracy in the last example seemed sufficient, we have to re-
member that we only stopped at one unit of time. How can we be confident
that the scheme would work as well if we carried out the computation for
much longer times. For example, if the time unit were only a second, then
one would need 86,400 times longer to predict a day forward. Of course,
the scale matters. But, often we need to carry out numerical schemes for
long times and we hope that the scheme not only converges to a solution,
but that it coverges to the solution to the given problem. Also, the previous
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example was relatively easy to program because we could provide a rela-
tively simple form for T(3)(t, y) with a quick computation of the derivatives
of f (t, y). This is not always the case and higher order Taylor methods in
this form are not typically used. Instead, one can approximate T(n)(t, y) by
evaluating the known function f (t, y) at selected values of t and y, leading
to Runge-Kutta methods.

3.4 Runge-Kutta Methods*

As we had seen in the last section, we can use higher order Taylor
methods to derive numerical schemes for solving

dy
dt

= f (t, y), y(a) = y0, t ∈ [a, b], (3.18)

using a scheme of the form

ỹi+1 = ỹi + hT(n)(ti, ỹi), i = 0, 1, . . . , N − 1,

ỹ0 = y0, (3.19)

where we have defined

T(n)(t, y) = y′(t) +
h
2

y′′(t) + · · ·+ h(n−1)

n!
y(n)(t).

In this section we will find approximations of T(n)(t, y) which avoid the
need for computing the derivatives.

For example, we could approximate

T(2)(t, y) = f (t, y) +
h
2

d f
dt

(t, y)

by
T(2)(t, y) ≈ a f (t + α, y + β)

for selected values of a, α, and β. This requires use of a generalization of
Taylor’s series to functions of two variables. In particular, for small α and β

we have

a f (t + α, y + β) = a
[

f (t, y) +
∂ f
∂t

(t, y)α +
∂ f
∂y

(t, y)β

+
1
2

(
∂2 f
∂t2 (t, y)α2 + 2

∂2 f
∂t∂y

(t, y)αβ +
∂2 f
∂y2 (t, y)β2

)]
+ higher order terms. (3.20)

Furthermore, we need d f
dt (t, y). Since y = y(t), this can be found using a

generalization of the Chain Rule from Calculus III:

d f
dt

(t, y) =
∂ f
∂t

+
∂ f
∂y

dy
dt

.

Thus,

T(2)(t, y) = f (t, y) +
h
2

[
∂ f
∂t

+
∂ f
∂y

dy
dt

]
.
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Comparing this expression to the linear (Taylor series) approximation of
a f (t + α, y + β), we have

T(2) ≈ a f (t + α, y + β)

f +
h
2

∂ f
∂t

+
h
2

f
∂ f
∂y

≈ a f + aα
∂ f
∂t

+ β
∂ f
∂y

. (3.21)

We see that we can choose

a = 1, α =
h
2

, β =
h
2

f .

This leads to the numerical scheme

ỹi+1 = ỹi + h f
(

ti +
h
2

, ỹi +
h
2

f (ti, ỹi)

)
, i = 0, 1, . . . , N − 1,

ỹ0 = y0, (3.22)

This Runge-Kutta scheme is called the Midpoint Method, or Second Order
Runge-Kutta Method, and it has order 2 if all second order derivatives of
f (t, y) are bounded.

The Midpoint or Second Order Runge-
Kutta Method.

Often, in implementing Runge-Kutta schemes, one computes the argu-
ments separately as shown in the following MATLAB code snippet. (This
code snippet could replace the Euler’s Method section in the code in the last
section.)

% Midpoint Method

y(1)=1;

for i=2:N+1

k1=h/2*f(t(i-1),y(i-1));

k2=h*f(t(i-1)+h/2,y(i-1)+k1);

y(i)=y(i-1)+k2;

t(i)=t(i-1)+h;

end

Example 3.3. Compare the Midpoint Method with the 2nd Order Tay-
lor’s Method for the problem

y′ = t2 + y, y(0) = 1, t ∈ [0, 1]. (3.23)

The solution to this problem is y(t) = 3et − 2− 2t− t2. In order to
implement the 2nd Order Taylor’s Method, we need

T(2) = f (t, y) +
h
2

f ′(t, y)

= t2 + y +
h
2
(2t + t2 + y). (3.24)

The results of the implementation are shown in Table 3.3.

There are other way to approximate higher order Taylor polynomials. For
example, we can approximate T(3)(t, y) using four parameters by

T(3)(t, y) ≈ a f (t, y) + b f (t + α, y + β f (t, y).



numerical solutions 97

Exact Taylor Error Midpoint Error
1.0000 1.0000 0.0000 1.0000 0.0000

1.1055 1.1050 0.0005 1.1053 0.0003

1.2242 1.2231 0.0011 1.2236 0.0006

1.3596 1.3577 0.0019 1.3585 0.0010

1.5155 1.5127 0.0028 1.5139 0.0016

1.6962 1.6923 0.0038 1.6939 0.0023

1.9064 1.9013 0.0051 1.9032 0.0031

2.1513 2.1447 0.0065 2.1471 0.0041

2.4366 2.4284 0.0083 2.4313 0.0053

2.7688 2.7585 0.0103 2.7620 0.0068

3.1548 3.1422 0.0126 3.1463 0.0085

Table 3.5: Numerical values for 2nd Or-
der Taylor’s Method, Midpoint Method,
exact solution, and errors for solving Ex-
ample 3.3 with N = 10..

Expanding this approximation and using

T(3)(t, y) ≈ f (t, y) +
h
2

d f
dt

(t, y) +
h2

6
d f
dt

(t, y),

we find that we cannot get rid of O(h2) terms. Thus, the best we can do is
derive second order schemes. In fact, following a procedure similar to the
derivation of the Midpoint Method, we find that

a + b = 1, , αb =
h
2

, β = α.

There are three equations and four unknowns. Therefore there are many
second order methods. Two classic methods are given by the modified Euler
method (a = b = 1

2 , α = β = h) and Huen’s method (a = 1
4 , b = 3

4 ,
α = β = 2

3 h). The Fourth Order Runge-Kutta.

The Fourth Order Runge-Kutta Method, which is most often used, is
given by the scheme

ỹ0 = y0,

k1 = h f (ti, ỹi),

k2 = h f (ti +
h
2

, ỹi +
1
2

k1),

k3 = h f (ti +
h
2

, ỹi +
1
2

k2),

k4 = h f (ti + h, ỹi + k3),

ỹi+1 = ỹi +
1
6
(k1 + 2k2 + 2k3 + k4), i = 0, 1, . . . , N − 1. (3.25)

Again, we can test this on Example 3.3 with N = 10. The MATLAB
implementation is given by

% Runge-Kutta 4th Order to solve dy/dt = f(t,y), y(a)=y0, on [a,b]

clear

a=0;

b=1;
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N=10;

h=(b-a)/N;

% Slope function

f = inline(’t^2+y’,’t’,’y’);

sol = inline(’-2-2*t-t^2+3*exp(t)’,’t’);

% Initial Condition

t(1)=0;

y(1)=1;

% RK4 Method

y1(1)=1;

for i=2:N+1

k1=h*f(t(i-1),y1(i-1));

k2=h*f(t(i-1)+h/2,y1(i-1)+k1/2);

k3=h*f(t(i-1)+h/2,y1(i-1)+k2/2);

k4=h*f(t(i-1)+h,y1(i-1)+k3);

y1(i)=y1(i-1)+(k1+2*k2+2*k3+k4)/6;

t(i)=t(i-1)+h;

end
MATLAB has built-in ODE solvers, as do
other software packages, like Maple and
Mathematica. You should also note that
there are currently open source pack-
ages, such as Python based NumPy and
Matplotlib, or Octave, of which some
packages are contained within the Sage
Project.

MATLAB has built-in ODE solvers, such as ode45 for a fourth order
Runge-Kutta method. Its implementation is given by

[t,y]=ode45(f,[0 1],1);

In this case f is given by an inline function like in the above RK4 code.
The time interval is enetered as [0, 1] and the 1 is the initial condition, y(0) =
1.

However, ode45 is not a straight forward RK4 implementation. It is a
hybrid method in which a combination of 4th and 5th order methods are
combined allowing for adaptive methods to handled subintervals of the in-
tegration region which need more care. In this case, it implements a fourth
order Runge-Kutta-Fehlberg method. Running this code for the above ex-
ample actually results in values for N = 41 and not N = 10. If we wanted
to have the routine output numerical solutions at specific times, then one
could use the following form

tspan=0:h:1;

[t,y]=ode45(f,tspan,1);

In Table 3.6 we show the solutions which results for Example 3.3 com-
paring the RK4 snippet above with ode45. As you can see RK4 is much
better than the previous implementation of the second order RK (Midpoint)
Method. However, the MATLAB routine is two orders of magnitude better
that RK4.
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Exact Taylor Error Midpoint Error
1.0000 1.0000 0.0000 1.0000 0.0000

1.1055 1.1055 4.5894e-08 1.1055 -2.5083e-10

1.2242 1.2242 1.2335e-07 1.2242 -6.0935e-10

1.3596 1.3596 2.3850e-07 1.3596 -1.0954e-09

1.5155 1.5155 3.9843e-07 1.5155 -1.7319e-09

1.6962 1.6962 6.1126e-07 1.6962 -2.5451e-09

1.9064 1.9064 8.8636e-07 1.9064 -3.5651e-09

2.1513 2.1513 1.2345e-06 2.1513 -4.8265e-09

2.4366 2.4366 1.6679e-06 2.4366 -6.3686e-09

2.7688 2.7688 2.2008e-06 2.7688 -8.2366e-09

3.1548 3.1548 2.8492e-06 3.1548 -1.0482e-08

Table 3.6: Numerical values for Fourth
Order Runge-Kutta Method, rk45, exact
solution, and errors for solving Example
3.3 with N = 10.

There are many ODE solvers in MATLAB. These are typically useful if
RK4 is having difficulty solving particular problems. For the most part, one
is fine using RK4, especially as a starting point. For example, there is ode23,
which is similar to ode45 but combining a second and third order scheme.
Applying the results to Example 3.3 we obtain the results in Table 3.6. We
compare these to the second order Runge-Kutta method. The code snippets
are shown below.

% Second Order RK Method

y1(1)=1;

for i=2:N+1

k1=h*f(t(i-1),y1(i-1));

k2=h*f(t(i-1)+h/2,y1(i-1)+k1/2);

y1(i)=y1(i-1)+k2;

t(i)=t(i-1)+h;

end

tspan=0:h:1;

[t,y]=ode23(f,tspan,1);

Exact Taylor Error Midpoint Error
1.0000 1.0000 0.0000 1.0000 0.0000

1.1055 1.1053 0.0003 1.1055 2.7409e-06

1.2242 1.2236 0.0006 1.2242 8.7114e-06

1.3596 1.3585 0.0010 1.3596 1.6792e-05

1.5155 1.5139 0.0016 1.5154 2.7361e-05

1.6962 1.6939 0.0023 1.6961 4.0853e-05

1.9064 1.9032 0.0031 1.9063 5.7764e-05

2.1513 2.1471 0.0041 2.1512 7.8665e-05

2.4366 2.4313 0.0053 2.4365 0.0001

2.7688 2.7620 0.0068 2.7687 0.0001

3.1548 3.1463 0.0085 3.1547 0.0002

Table 3.7: Numerical values for Second
Order Runge-Kutta Method, rk23, exact
solution, and errors for solving Example
3.3 with N = 10.
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We have seen several numerical schemes for solving initial value prob-
lems. There are other methods, or combinations of methods, which aim
to refine the numerical approximations efficiently as if the step size in the
current methods were taken to be much smaller. Some methods extrapolate
solutions to obtain information outside of the solution interval. Others use
one scheme to get a guess to the solution while refining, or correcting, this
to obtain better solutions as the iteration through time proceeds. Such meth-
ods are described in courses in numerical analysis and in the literature. At
this point we will apply these methods to several physics problems before
continuing with analytical solutions.

3.5 Numerical Applications

In this section we apply various numerical methods to several
physics problems after setting them up. We first describe how to work with
second order equations, such as the nonlinear pendulum problem. We will
see that there is a bit more to numerically solving differential equations than
to just running standard routines. As we explore these problems, we will
introduce other methods and provide some MATLAB code indicating how
one might set up the system.

Other problems covered in these applications are various free fall prob-
lems beginning with a falling body from a large distance from the Earth,
to flying soccer balls, and falling raindrops. We will also discuss the nu-
merical solution of the two body problem and the Friedmann equation as
nonterrestrial applications.

3.5.1 The Nonlinear Pendulum

Now we will investigate the use of numercial methods for solv-
ing the nonlinear pendulum problem.

Example 3.4. Nonlinear pendulum Solve

θ̈ = − g
L

sin θ, θ(0) = θ0, ω(0) = 0, t ∈ [0, 8],

using Euler’s Method. Use the parameter values of m = 0.005 kg,
L = 0.500 m, and g = 9.8 m/s2.

This is a second order differential equation. As describe later, we
can write this differential equation as a system of two first order dif-
ferential equations,

θ̇ = ω,

ω̇ = − g
L

sin θ. (3.26)

Defining the vector

Θ(t) =

(
θ(t)
ω(t)

)
,
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we can write the first order system as

dΘ
dt

= F(t, Θ), Θ(0) =

(
θ0

0

)
,

where

F(t, Θ) =

(
ω(t)

− g
L sin θ(t)

)
.

This allows us to use the the methods we have discussed on this first
order equation for Θ(t).

For example, Euler’s Method for this system becomes

Θi+1 = Θi+1 + hF(ti, Θi)

with Θ0 = Θ(0).
We can write this scheme in component form as(

θi+1

ωi+1

)
=

(
θi

ωi

)
+ h

(
ωi

− g
L sin θi

)
,

or

θi+1 = θi + hωi,

ωi+1 = ωi − h
g
L

sin θi, (3.27)

starting with θ0 = θ0 and ω0 = 0.
The MATLAB code that can be used to implement this scheme takes

the form

g=9.8;

L=0.5;

m=0.005;

a=0;

b=8;

N=500;

h=(b-a)/N;

% Initial Condition

t(1)=0;

theta(1)=pi/6;

omega(1)=0;

% Euler’s Method

for i=2:N+1

omega(i)=omega(i-1)-g/L*h*sin(theta(i-1));

theta(i)=theta(i-1)+h*omega(i-1);

t(i)=t(i-1)+h;

end
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Figure 3.19: Solution for the nonlin-
ear pendulum problem using Euler’s
Method on t ∈ [0, 8] with N = 500.
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In Figure 3.19 we plot the solution for a starting position of 30

o

with N = 500. Notice that the amplitude of oscillation is increasing,
contrary to our experience. So, we increase N and see if that helps. In
Figure 3.20 we show the results for N = 500, 1000, and 2000 points, or
h = 0.016, 0.008, and 0.004, respectively. We note that the amplitude is
not increasing as much.

The problem with the solution is that Euler’s Method is not an energy
conserving method. As conservation of energy is important in physics, we
would like to be able to seek problems which conserve energy. Such schemes
used to solve oscillatory problems in classical mechanics are called symplec-
tic integrators. A simple example is the Euler-Cromer, or semi-implicit Eu-
ler Method. We only need to make a small modification of Euler’s Method.
Namely, in the second equation of the method we use the updated value of
the dependent variable as computed in the first line.

Figure 3.20: Solution for the nonlin-
ear pendulum problem using Euler’s
Method on t ∈ [0, 8] with N =
500, 1000, 2000.
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N = 500
N = 1000
N = 2000

Let’s write the Euler scheme as

ωi+1 = ωi − h
g
L

sin θi,
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θi+1 = θi + hωi. (3.28)

Then, we replace ωi in the second line by ωi+1 to obtain the new scheme

ωi+1 = ωi − h
g
L

sin θi,

θi+1 = θi + hωi+1. (3.29)

The MATLAB code is easily changed as shown below.

g=9.8;

L=0.5;

m=0.005;

a=0;

b=8;

N=500;

h=(b-a)/N;

% Initial Condition

t(1)=0;

theta(1)=pi/6;

omega(1)=0;

% Euler-Cromer Method

for i=2:N+1

omega(i)=omega(i-1)-g/L*h*sin(theta(i-1));

theta(i)=theta(i-1)+h*omega(i);

t(i)=t(i-1)+h;

end

We then run the new scheme for N = 500 and compare this with what
we obtained before. The results are shown in Figure 3.21. We see that the
oscillation amplitude seems to be under control. However, the best test
would be to investigate if the energy is conserved.

Recall that the total mechanical energy for a pendulum consists of the
kinetic and gravitational potential energies,

E =
1
2

mv2 + mgh.

For the pendulum the tangential velocity is given by v = Lω and the height
of the pendulum mass from the lowest point of the swing is h = L(1− cos θ).
Therefore, in terms of the dynamical variables, we have

E =
1
2

mL2ω2 + mgL(1− cos θ).

We can compute the energy at each time step in the numerical simulation.
In MATLAB it is easy to do using

E = 1/2*m*L^2*omega.^2+m*g*L*(1-cos(theta));
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Figure 3.21: Solution for the nonlinear
pendulum problem comparing Euler’s
Method and the Euler-Cromer Method
on t ∈ [0, 8] with N = 500.
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after implementing the scheme. In other programming environments one
needs to loop through the times steps and compute the energy along the
way. In Figure 3.22 we shown the results for Euler’s Method for N =

500, 1000, 2000 and the Euler-Cromer Method for N = 500. It is clear that
the Euler-Cromer Method does a much better job at maintaining energy
conservation.

Figure 3.22: Total energy for the nonlin-
ear pendulum problem.
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3.5.2 Extreme Sky Diving*

On October 14, 2012 Felix Baumgartner jumped from a helium bal-
loon at an altitude of 39045 m (24.26 mi or 128100 ft). According preliminary
data from the Red Bull Stratos Mission1, as of November 6, 2012 Baumgart-1 The original estimated data was

found at the Red Bull Stratos site,
http://www.redbullstratos.com/. Some
of the data has since been updated. The
reader can redo the solution using the
updated data.

ner experienced free fall until he opened his parachute at 1585 m after 4

minutes and 20 seconds. Within the first minute he had broken the record
set by Joe Kittinger on August 16, 1960. Kittinger jumped from 102,800 feet
(31 km) and fell freely for 4 minutes and 36 seconds to an altitude of 18,000 ft
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(5,500 m). Both set records for their times. Kittinger reached 614 mph (Mach
0.9) and Baumgartner reached 833.9 mph (Mach 1.24). Another record that
was broken was that over 8 million watched the event on YouTube, breaking
current live stream viewing events.

This much attention also peaked interest in the physics of free fall. Free
fall at constant g through a height of h should take a time of

t =

√
2h
g

=

√
2(36, 529)

9.8
= 86 s.

Of course, g is not constant. In fact, at an altitude of 39 km, we have

g =
GM

R + h
=

6.67× 10−11 N m2kg2(5.97× 1024 kg)
6375 + 39 km

= 9.68 m/s2.

So, g is roughly constant.
Next, we need to consider the drag force as one free falls through the

atmosphere, FD = 1
2 CAρav2. One needs some values for the parameters in

this problem. Let’s take m = 90 kg, A = 1.0 m2, and ρ = 1.29 kg/m3,
C = 0.42. Then, a simple model would give

mv̇ = −mg +
1
2

CAρv2,

or
v̇ = −g + .0030v2.

This gives a terminal velocity of 57.2 m/s, or 128 mph. However, we again
have assumed that the drag coefficient and air density are constant. Since
the Reynolds number is high, we expect C is roughly constant. However,

The Reynolds number is used several
times in this chapter. It is defined as

Re =
2rv
ν

,

where ν is the kinematic viscosity. The
kinematic viscosity of air at 60

o F is
about 1.47× 10−5 m2/s.

the density of the atmosphere is a function of altitude and we need to take
this into account.

A simple model for ρ = ρ(h) can be found at the NASA site.2. Using
2 http://www.grc.nasa.gov/WWW/k-
12/rocket/atmos.html

their data, we have

ρ(h) =


101290(1.000− 0.2253× 10−4h)5.256

83007− 1.8696h
, h < 11000,

.3629e1.73−0.157×10−3h, h,< 25000
2488

(.6551 + 0.1380× 10−4h)11.388(40876 + .8614h)
, h > 25000.

(3.30)
In Figure 3.23 the atmospheric density is shown as a function of altitude.

In order to use the methods for solving first order equations, we write
the system of equations in the form

dh
dt

= v,

dv
dt

= − GM
(R + h)2 +

1
5

ρ(h)CAv2. (3.31)

This is now in the form of a system of first order differential equations.
Then, we define a function to be called and store in as gravf.m as shown

below.
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Figure 3.23: Atmospheric density as a
function of altitude.
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function dy=gravf(t,y);

G=6.67E-11;

M=5.97E24;

R=6375000;

m=90;

C=.42;

A=1;

dy(1,1)=y(2);

dy(2,1)=-G*M/(R+y(1)).^2+.5*density2(y(1))*C*A*y(2).^2/m;

Now we are ready to call the function in our favorite routine.

h0=1000;

tmax=20;

tmin=0;

[t,y]=ode45(’dgravf’,[tmin tmax],[h0;0]);% Const rho

plot(t,y(:,1),’k--’)

Here we are simulating free fall from an altitude of one kilometer. In
Figure 3.24 we compare different models of free fall with g taken as constant
or derived from Newton’s Law of Gravitation. We also consider constant
density or the density dependence on the altitude as given earlier. We chose
to keep the drag coefficient constant at C = 0.42.

We can see from these plots that the slight variation in the acceleration
due to gravity does not have as much an effect as the variation of density
with distance.

Now we can push the model to Baumgartner’s jump from 39 km. In
Figure 3.25 we compare the general model with that with no air resistance,
though both taking into account the variation in g. As a body falls through
the atmosphere we see the changing effects of the denser atmosphere on the
free fall. For the parameters chosen, we find that it takes 238.8s, or a little



numerical solutions 107

less than four minutes to reach the point where Baumgartner opened his
parachute. While not exactly the same as the real fall, it is amazingly close.
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Figure 3.24: Comparison of different
models of free fall from one kilometer
above the Earth.
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Figure 3.25: Free fall from 39 km at
constant g as compared to nonconstant
g and nonconstant atmospheric density
with drag coefficient C = .42.

3.5.3 The Flight of Sports Balls*

Another interesting problem is the projectile motion of a sports
ball. In an introductory physics course, one typically ignores air resistance
and the path of the ball is a nice parabolic curve. However, adding air
resistance complicates the problem significantly and cannot be solved an-
alytically. Examples in sports are flying soccer balls, golf balls, ping pong
balls, baseballs, and other spherical balls.

We will consider a ball moving in the xz-plane spinning about an axis
perpendicular to the plane of motion. Such an analysis was reported in
Goff and Carré, AJP 77(11) 1020. The typical trajectory of the ball is shown
in Figure 3.26. The forces acting on the ball are the drag force, FD, the lift
force, FL, and the gravitational force, FW . These are indicated in Figure 3.27.
The equation of motion takes the form

ma = FW + FD + FL.
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Writing out the components, we have

max = −FD cos θ − FL sin θ (3.32)

maz = −mg− FD sin θ + FL cos θ. (3.33)

Figure 3.26: Sketch of the path for pro-
jectile motion problems.

z

x

θ

v0

v

FD

FL

FW

θ

Figure 3.27: Forces acting on ball.

As we had seen before, the magnitude of the damping (drag) force is
given by

FD =
1
2

CDρAv2.

For the case of soccer ball dynamics, Goff and Carré noted that the Reynolds
number, Re = 2rv

ν , is between 70000 and 490000 by using a kinematic viscos-
ity of ν = 1.54× 10−5 m2/s and typical speeds of v = 4.5− 31 m/s. Their
analysis gives CD ≈ 0.2. The parameters used for the ball were m = 0.424
kg and cross sectional area A = 0.035 m2 and the density of air was taken
as 1.2 kg/m3.

The lift force takes a similar form,

FL =
1
2

CLρAv2.

The sign of CL indicates if the ball has top spin (CL < 0) or bottom spin
*CL > 0). The lift force is just one component of a more general Magnus
force, which is the force on a spinning object in a fluid and is perpendicular
to the motion. In this example we assume that the spin axis is perpendicular
to the plane of motion. Allowing for spinning balls to veer from this plane
would mean that we would also need a component of the Magnus force
perpendicular to the plane of motion. This would lead to an additional side-
ways component (in the k direction) leading to a third acceleration equation.
We will leave that case for the reader.

The lift coefficient can be related to the
spin as

CL =
1

2 + v
vspin

,

where vspin = rω is the peripheral speed
of the ball. Here R is the ball radius and
ω is the angular speed in rad/s. If v =
20 m/s, ω = 200 rad/s, and r = 20 mm,
then CL = 0.45.

So far, the problem has been reduced to

dvx

dt
= −ρA

2m
(CD cos θ + CL sin θ)v2, (3.34)

dvz

dt
= −g− ρA

2m
(CD sin θ − CL cos θ)v2, (3.35)

for vx and vz the components of the velocity. Also, v2 = v2
x + v2

z . Further-
more, from Figure 3.27, we can write

cos θ =
vx

v
, sin θ =

vz

v
.
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So, the equations can be written entirely as a system of differential equations
for the velocity components,

dvx

dt
= −α(CDvx + CLvz)(v2

x + v2
z)

1/2, (3.36)

dvz

dt
= −g− α(CDvz − CLvx)(v2

x + v2
z)

1/2, (3.37)

where α = ρA/2m = 0.0530 m−1.
Such systems of equations can be solved numerically by thinking of this

as a vector differential equation,

dv
dt

= F(t, v),

and applying one of the numerical methods for solving first order equations.
Since we are interested in the trajectory, z = z(x), we would like to de-

termine the parametric form of the path, (x(t), z(t)). So, instead of solving
two first order equations for the velocity components, we can rewrite the
two second order differential equations for x(t) and z(t) as four first order
differential equations of the form

dy
dt

= F(t, y).

We first define

y =


y1(t)
y2(t)
y3(t)
y4(t)

 =


x(t)
z(t)

vx(t)
vz(t)


Then, the systems of first order differential equations becomes

dy1

dt
= y3,

dy2

dt
= y4,

dy3

dt
= −α(CDvx + CLvz)(v2

x + v2
z)

1/2,

dy4

dt
= −g− α(CDvz − CLvx)(v2

x + v2
z)

1/2. (3.38)

The system can be placed into a function file which can be called by an
ODE solver, such as the MATLAB m-file below.

function dy = ballf(t,y)

global g CD CL alpha

dy = zeros(4,1); % a column vector

v = sqrt(y(3).^2+y(4).^2); % speed v

dy(1) = y(3);

dy(2) = y(4);

dy(3) = -alpha*v.*(CD*y(3)+CL*y(4));

dy(4) = alpha*v.*(-CD*y(4)+CL*y(3))-g;



110 differential equations

Then, the solver can be called using

[T,Y] = ode45(’ballf’,[0 2.5],[x0,z0,v0x,v0z]);

Figure 3.28: Example of soccer ball un-
der the influence of drag.
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In Figures 3.28 and 3.29 we indicate what typical solutions would look
like for different values of drag and lift coefficients. In the case of nonzero
lift coefficients, we indicate positive and negative values leading to flight
with top spin, CL < 0, or bottom spin, CL > 0.
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Figure 3.29: Example of soccer ball un-
der the influence of lift with CL > 0 and
CL < 0

3.5.4 Falling Raindrops*

A simple problem that appears in mechanics is that of a falling rain-
drop through a mist. The raindrop not only undergoes free fall, but the
mass of the drop grows as it interacts with the mist. There have been sev-
eral papers written on this problem and it is a nice example to explore using
numerical methods. In this section we look at models of a falling raindrop
with and without air drag.

First we consider the case in which there is no air drag. A simple model
of free fall from Newton’s Second Law of Motion is

d(mv)
dt

= mg.

In this discussion we will take downward as positive. Since the mass is not
constant. we have

m
dv
dt

= mg− v
dm
dt

.
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In order to proceed, we need to specify the rate at which the mass is
changing. There are several models one can adapt.We will borrow some of
the ideas and in some cases the numerical values from Sokal(2010)3 and Ed- 3 A. D. Sokal, The falling raindrop, revis-

ited, Am. J. Phys. 78, 643-645, (2010).wards, Wilder, and Scime (2001).4 These papers also quote other interesting
4 B. F. Edwards, J. W. Wilder, and E. E.
Scime, Dynamics of Falling Raindrops, Eur.
J. Phys. 22, 113-118, (2001).

work on the topic.
While v and m are functions of time, one can look for a way to eliminate

time by assuming the rate of change of mass is an explicit function of m and
v alone. For example, Sokal (2010) assumes the form

dm
dt

= λmσvβ, λ > 0.

This contains two commonly assumed models of accretion:

1. σ = 2/3, β = 0. This corresponds to growth of the raindrop propor-
tional to the surface area. Since m ∝ r3 and A ∝ r2, then ṁ ∝ A implies
that ṁ ∝ m2/3.

2. σ = 2/3, β = 1. In this case the growth of the raindrop is proportional
to the volume swept out along the path. Thus, ∆m ∝ A(v∆t), where
A is the cross sectional area and v∆t is the distance traveled in time
∆t.

In both cases, the limiting value of the acceleration is a constant. It is g/4 in
the first case and g/7 in the second case.

Another approach might be to use the effective radius of the drop, assum-
ing that the raindrop remains close to spherical during the fall. According
to Edwards, Wilder, and Scime (2001), raindrops with Reynolds number
greater than 1000 and with radii larger than 1 mm will flatten. Even larger
raindrops will break up when the drag force exceeds the surface tension.
Therefore, they take 0.1 mm < r < 1 mm and 10 < Re < 1000. We will
return to a discussion of the drag later.

It might seem more natural to make the radius the dynamic variable,
than the mass. In this case, we can assume the accretion rate takes the form

dr
dt

= γrαvβ, γ > 0.

Since, m = 4
3 πρdr3,

dm
dt
∼ r2 dr

dt
∼ m2/3 dr

dt
.

Therefore, the two special cases become

1. α = 0, β = 0. This corresponds to a growth of the raindrop propor-
tional to the surface area.

2. α = 0, β = 1. In this case the growth of the raindrop is proportional
to the volume swept out along the path.

Here ρd is the density of the raindrop.
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We will also need

v
m

dm
dt

=
4πρdr2

4
3 πρdr3

v
dr
dt

= 3
v
r

dr
dt

= 3γrα−1vβ+1. (3.39)

Putting this all together, we have a systems of two equations for v(t) and
r(t) :

dv
dt

= g− 3γrα−1vβ+1,

dr
dt

= γrαvβ. (3.40)

Example 3.5. Determine v = v(r) for the case α = 0, β = 0 and the
initial conditions r(0) = 0.1 mm and v(0) = 0 m/s.

In this case Equations (3.40) become

dv
dt

= g− 3γr−1v,

dr
dt

= γ. (3.41)

Noting that
dv
dt

=
dv
dr

dr
dt

= γ
dv
dr

,

we can convert the problem to one of finding the solution v(r) subject
to the equation

dv
dr

=
g
γ
− 3

v
r

with the initial condition v(r0) = 0 m/s for r0 = 0.0001 m.
Rearranging the differential equation, we find that it is a linear first

order differential equation,

dv
dr

+
3
r

v =
g
γ

.

This equation can be solved using an integrating factor, µ = r3, ob-
taining

d
dr

(r3v) =
g
γ

r3.

Integrating, we obtain the solution

v(r) =
g

4γ
r
(

1−
( r0

r

)4
)

.

Note that for large r, v ∼ g
4γ r. Therefore, dv

dt ∼
g
4 .

While this case was easily solved in terms of elementary operations, it is
not always easy to generate solutions to Equations (3.40) analytically. Sokal
(2010) derived a general solution in terms of incomplete Beta functions,
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though this does not help visualize the solution. Also, as we will see, adding
air drag will lead to a nonintegrable system. So, we turn to numerical
solutions.

In MATLAB, we can use the function in raindropf.m to capture the sys-
tem (3.40). Here we put the velocity in y(1) and the radius in y(2).

function dy=raindropf(t,y);

global alpha beta gamma g

dy=[g-3*gamma*y(2)^(alpha-1)*y(1)^(beta+1); ...

gamma*y(2)^alpha*y(1)^beta];

We then use the Runge-Kutta solver, ode45, to solve the system. An
implementation is shown below which calls the function containing the sys-
tem. The value γ = 2.5 × 10−7 is based on empirical results quoted by
Edwards, Wilder, and Scime (2001).
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Figure 3.30: The plots of position and ve-
locity as a function of time for α = β = 0.

clear

global alpha beta gamma g

alpha=0;

beta=0;

gamma=2.5e-07;

g=9.81;

r0=0.0001;

v0=0;

y0=[v0;r0];

tspan=[0 1000];
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[t,y]=ode45(@raindropf,tspan,y0);

plot(1000*y(:,2),y(:,1),’k’)

The resulting plots are shown in Figures 3.30-3.31. The plot of velocity
as a function of position agrees with the exact solution, which we derived
in the last example. We note that these drops do not grow much, but they
seem to attain large speeds.
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Figure 3.31: The plot the velocity as a
function of position for α = β = 0.

For the second case, α = 0, β = 1, one can also obtain an exact solution.
The result is

v(r) =
[

2g
7γ

r
(

1−
( r0

r

)7
)] 1

2
.

For large r one can show that dv
dt ∼

g
7 . In Figures 3.33-3.32 we see again

large velocities, though about a third as fast over the same time interval.
However, we also see that the raindrop has significantly grown well past
the point it would break up.

In this simple model of a falling raindrop we have not considered air
drag. Earlier in the chapter we discussed the free fall of a body with air
resistance and this lead to a terminal velocity. Recall that the drag force
given by

fD(v) = −
1
2

CD Aρav2, (3.42)

where CD is the drag coefficient, A is the cross sectional area and ρa is the air
density. Also, we assume that the body is falling downward and downward
is positive, so that fD(v) < 0 so as to oppose the motion.
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Figure 3.32: The plot the velocity as a
function of position for α = 0, β = 1.

We would like to incorporate this force into our model (3.40). The first
equation came from the force law, which now becomes

m
dv
dt

= mg− v
dm
dt
− 1

2
CD Aρav2,

or
dv
dt

= g− v
m

dm
dt
− 1

2m
CD Aρav2.

The next step is to eliminate the dependence on the mass, m, in favor of
the radius, r. The drag force term can be written as

fD
m

=
1

2m
CD Aρav2

=
1
2

CD
πr2

4
3 πρdr3

ρav2

=
3
8

ρa

ρd
CD

v2

r
. (3.43)

We had already done this for the second term; however, Edwards, Wilder,
and Scime (2001) point to experimental data and propose that

dm
dt

= πρmr2v,

where ρm is the mist density. So, the second terms leads to

v
m

dm
dt

=
3
4

ρm

ρd

v2

r
.
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Figure 3.33: The plots of position and ve-
locity as a function of time for α = 0, β =
1.

But, since m = 4
3 πρdr3,

dm
dt

= 4πρdr2 dr
dt

.

So,
dr
dt

=
ρm

4ρd
v.

This suggests that their model corresponds to α = 0, β = 1, and γ = ρm
4ρd

.
Now we can write down the modified system

dv
dt

= g− 3γrα−1vβ+1 − 3
8

ρa

ρd
CD

v2

r
,

dr
dt

= γrαvβ. (3.44)

Edwards, Wilder, and Scime (2001) assume that the densities are constant
with values ρa = .856 kg/m3, ρd = 1.000 kg/m3, and ρm = 1.00 × 10−3

kg/m3. However, the drag coefficient is not constant. As described later in
Section 3.5.7, there are various models indicating the dependence of CD on
the Reynolds number,

Re =
2rv
ν

,

where ν is the kinematic viscosity, which Edwards, Wilder, and Scime (2001)
set to ν = 2.06× 10−5 m2/s. For raindrops of the range r = 0.1 mm to 1
mm, the Reynolds number is below 1000. Edwards, Wilder, and Scime
(2001) modeled CD = 12Re−1/2. In the plots in Section 3.5.7 we include this
model and see that this is a good approximation for these raindrops. In
Chapter 10 we discuss least squares curve fitting and using these methods,
one can use the models of Putnam (1961) and Schiller-Naumann (1933) to
obtain a power law fit similar to that used here.
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So, introducing

CD = 12Re−1/2 = 12
(

2rv
ν

)−1/2

and defining

δ =
9

23/2
ρa

ρd
ν1/2,

we can write the system of equations (3.44) as

dv
dt

= g− 3γ
v2

r
− δ

(v
r

) 3
2 ,

dr
dt

= γv. (3.45)

Now, we can modify the MATLAB code for the raindrop by adding the
extra term to the first equation, setting α = 0, β = 1, and using δ = 0.0124
and γ = 2.5× 10−7 from Edwards, Wilder, and Scime (2001).

Figure 3.34: The plots of position and ve-
locity as a function of time with air drag
included.
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Figure 3.35: The plot the velocity as a
function of position with air drag in-
cluded.

In Figures 3.34-3.35 we see different behaviors as compared to the previ-
ous models. It appears that the velocity quickly reaches a terminal velocity
and the radius continues to grow linearly in time, though at a slow rate.

We might be able to understand this behavior. Terminal, or constant v,
would occur when

g− 3γ
v2

r
− δ

(v
r

) 3
2
= 0.

Looking at these terms, one finds that the second term is significantly smaller
than the other terms and thus

δ
(v

r

) 3
2 ≈ g,

or
v
r
≈
( g

δ

)2/3
≈ 85.54 s−1.

This agrees with the numerical data which gives the slope of the v vs r plot
as 85.5236 s−1.
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3.5.5 The Two-body Problem*

A standard problem in classical dynamics is the study of the mo-
tion of several bodies under the influence of Newton’s Law of Gravitation.
The so-called n-body problem is not solvable. However, the two body prob-
lem is. Such problems can model the motion of a planet around the sun,
the moon around the Earth, or a satellite around the Earth. Further inter-
esting, and more realistic problems, would involve perturbations of these
orbits due to additional bodies. For example, one can study problems such
as the influence of large planets on the asteroid belt. Since there are no
analytic solutions to these problems, we have to resort to finding numerical
solutions. We will look at the two body problem since we can compare the
numerical methods to the exact solutions.

m1

m2

O

r2

r1

r2 − r1

Figure 3.36: Two masses interact under
Newton’s Law of Gravitation.

We consider two masses, m1 and m2, located at positions, r1 and r2, re-
spectively, as shown in Figure 3.36. Newton’s Law of Gravitation for the
force between two masses separated by position vector r is given by

F = −Gm1m2

r2
r
r

.

Each mass experiences this force due to the other mass. This gives the
system of equations

m1 r̈1 = − Gm1m2

|r2 − r1|3
(r1 − r2) (3.46)

m2 r̈2 = − Gm1m2

|r2 − r1|3
(r2 − r1). (3.47)

Now we seek to set up this system so that we can find numerical so-
lutions for the positions of the masses. From the conservation of angular
momentum, we know that the motion takes place in a plane. [Note: The so-
lution of the Kepler Problem is discussed in Chapter 9.] We will choose the
orbital plane to be the xy-plane. We define r12 = |r2 − r1|, and (xi, yi) = ri,
i = 1, 2. Furthermore, we write the two second order equations as four first
order equations. So, defining the velocity components as (ui, vi) = vi, the
system of equations can be written in the form

d
dt



x1

y1

x2

y2

u1

v1

u2

v2


=



u1

v1

u2

v2

−αm2(x1 − x2)

−αm2(y1 − y2)

−αm1(x2 − x1)

−αm1(y2 − y1).


, (3.48)

where α = G
r3

12
.

This system can be encoded in MATLAB as indicated in the function
twobody:
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function dz = twobody(t,z)

dz = zeros(8,1);

G = 1;

m1 = .1;

m2 = 2;

r=((z(1) - z(3)).^2 + (z(2) - z(4)).^2).^(3/2);

alpha=G/r;

dz(1) = z(5);

dz(2) = z(6);

dz(3) = z(7);

dz(4) = z(8);

dz(5) = alpha*m2*(z(3) - z(1));

dz(6) = alpha*m2*(z(4) - z(2));

dz(7) = alpha*m1*(z(1) - z(3));

dz(8) = alpha*m1*(z(2) - z(4));
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Figure 3.37: Simulation of two bodies
under gravitational attraction.

In the above code we picked some seemingly nonphysical numbers for G
and the masses. Calling ode45 with a set of initial conditions,

[t,z] = ode45(’twobody’,[0 20], [-1 0 0 0 0 -1 0 0]);

plot(z(:,1),z(:,2),’k’,z(:,3),z(:,4),’k’);

we obtain the plot shown in Figure 3.37. We see each mass moves along
what looks like elliptical helices with the smaller body tracing out a larger
orbit.

In the case of a very large body, most of the motion will be due to the
smaller body. So, it might be better to plot the relative motion of the small
body with respect to the larger body. Actually, an analysis of the two body
problem shows that the center of mass

R =
m1r1 + m2r2

m1 + m2

satisfies R̈ = 0. Therefore, the system moves with a constant velocity.
The relative position of the masses is defined through the variable r =

r1 − r2. Dividing the masses from the left hand side of Equations (3.47) and
subtracting, we have the motion of m1 about m2

r̈ = −G(m1 + m2)
r
r3 ,

where r = |r| = |r1 − r2|. Note that r× r̈ = 0. Integrating, this gives r× ṙ =
constant. This is just a statement of the conservation of angular momentum.

The orbiting body will remain in a plane and, therefore, we can take the
z-axis perpendicular to r× ṙ, the position as r = (x(t), y(t)), and the velocity
as ṙ = (u(t), v(t)). Then, the equations of motion can be written as four first
order equations:

ẋ = u

ẏ = v



numerical solutions 119

u̇ = −µ
x
r3

v̇ = −µ
y
r3 , (3.49)

where µ = G(m1 + m2) and r =
√

x2 + y2.
While we have established a system of equations which can be integrated,

we should note a few results from the study of the Kepler problem in clas-
sical dynamics which we review in Chapter 9. Kepler’s Laws of Planetary
Motion state:

1. All planets travel in ellipses.
The polar equation for the path is given by

r =
a(1− e2)

1 + e cos φ
,

where e is the eccentricity and a is the length of the semimajor axis.
For 0 ≤ e < 1, the orbit is an ellipse.

2. A planet sweeps out equal areas in equal times.

3. The square of the period of the orbit is proportional to the cube of the
semimajor axis. In particular, one can show that

T2 =
4π2

µ
a3.

By an appropriate choice of units, we can make µ = G(m1 + m2) a
reasonable number. For the Earth-Sun system,

µ = 6.67× 10−11m3kg−1s−2(1.99× 1030 + 5.97× 1024)kg

= 1.33× 1020m3s−1.

That is a large number and can cause problems in the numerics. How-
ever, if one uses astronomical scales, such as putting lengths in astro-
nomical units, 1 AU = 1.50× 108 km, and time in years, then

µ =
4π2

T2 a3 = 4π2

in units of AU3/yr2.

Setting φ = 0, the location of the perigee is given by

r =
a(1− e2)

1 + e
= a(1− e),

or
r = (a(1− e), 0).

At this point the velocity is given by

ṙ =

(
0,

√
µ

a
1 + e
1− e

)
.

Knowing the position and velocity at φ = 0,, we can set the initial conditions
for a bound orbit. The MATLAB code based on the above analysis is given
below and the solution can be seen in Figure 3.38.
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e=0.9;

tspan=[0 100];

z0=[1-e;0;0;sqrt((1+e)/(1-e))];

[t,z] = ode45(’twobodyf’,tspan, z0);

plot(z(:,1),z(:,2),’k’);

axis equal

function dz = twobodyf(t,z)

dz = zeros(4,1);

GM = 1;

r=(z(1).^2 + z(2).^2).^(3/2);

alpha=GM/r;

dz(1) = z(3);

dz(2) = z(4);

dz(3) = -alpha*z(1);

dz(4) = -alpha*z(2);
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Figure 3.38: Simulation of one body or-
biting a larger body under gravitational
attraction.

While it is clear that the mass is following an elliptical orbit, we see
that it will only do so for a finite period of time partly because the Runge-
Kutta code does not conserve energy and it does not conserve the angular
momentum. The conservation of energy is found (up to a factor of m1) as

1
2
(ẋ2 + ẏ2)− µ

t
= − µ

2a
.

Similarly, the conservation of (specific) angular momentum is given by

r× v = (xẏ− yẋ)k =
√

µa(1− e2)k.

As was the case with the nonlinear pendulum example, we saw that an
implicit Euler method, or Cromer’s method, was better at conserving en-
ergy. So, we compare the Euler’s Method version with the Implicit-Euler
Method. In general, we seek to solve the system

ṙ = F(r, v),

v̇ = G(r, v). (3.50)

As we had seen earlier, Euler’s Method is given by

vn = vn−1 + ∆t ∗G(tn−1, xn−1),

rn = rn−1 + ∆t ∗ F(tn−1, vn−1). (3.51)

For the two body problem, we can write out the Euler Method steps using
v = (u, v), r = (x, y), F = (u, v), and G = − µ

r3 (x, y). The MATLAB code
would use the loopEuler’s Method for the two body prob-

lem
for i=2:N+1

alpha=mu/(x(i-1).^2 + y(i-1).^2).^(3/2);

u(i)=u(i-1)-h*alpha*x(i-1);
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v(i)=v(i-1)-h*alpha*y(i-1);

x(i)=x(i-1)+h*u(i-1);

y(i)=y(i-1)+h*v(i-1);

t(i)=t(i-1)+h;

end

Note that more compact forms can be used, but they are not readily adapt-
able to other packages or programming languages.
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Table 3.8: Results for using Euler
method for N = 4000000 and t ∈ [0, 100].
The parameters are µ = 1, e = 0, 9, and
a = 1.

In Figure 3.8 we show the results along with the energy and angular
momentum plots for N = 4000000 and t ∈ [0, 100] for the case of µ = 1,
e = 0, 9, and a = 1. The orbit based on the exact solution is in the center
of the figure on the left. The energy and angular momentum as a function
of time are shown along with the similar plots obtained using ode45. In
neither case are these two quantities conserved.

for i=2:N+1

alpha=mu/(x(i-1).^2 + y(i-1).^2).^(3/2);

u(i)=u(i-1)-h*alpha*x(i-1);

v(i)=v(i-1)-h*alpha*y(i-1);

x(i)=x(i-1)+h*u(i);

y(i)=y(i-1)+h*v(i);

t(i)=t(i-1)+h;

end
Implicit-Euler Method for the two body
problemThe Implicit-Euler Method is a slight modification to the Euler Method

and has a better chance at handing the conserved quantities as the Implicit-
Euler Method is one of many symplectic integrators. The modification uses
the new value of the velocities in the updating of the position. Thus, we
have

vn = vn−1 + ∆t ∗G(tn−1, xn−1),

rn = rn−1 + ∆t ∗ F(tn−1, vn). (3.52)

It is a simple matter to update the MATLAB code. In Figure 3.9 we show
the results along with the energy and angular momentum plots for N =
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200000 and t ∈ [0, 100] for the case of µ = 1, e = 0, 9, and a = 1. The orbit
based on the exact solution coincides with the orbit as seen in the left figure.
The energy and angular momentum as functions of time are appear to be
conserved. The energy fluctuates about −0.5 and the angular momentum
remains constant. Again, the ode45 results are shown in comparison. The
number of time steps has been decreased from the Euler Method by a factor
of 20.

-1.5 -1 -0.5 0

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 20 40 60 80 100 120
-0.53

-0.52

-0.51

-0.5

-0.49

-0.48

-0.47

-0.46

-0.45

-0.44

Time

E
ne

rg
y

0 20 40 60 80 100 120
0.434

0.436

0.438

0.44

0.442

0.444

0.446

0.448

0.45

Time

A
ng

ul
ar

 M
om

en
tu

m

Table 3.9: Results for using the Implicit-
Euler method for N = 200000 and t ∈
[0, 100]. The parameters are µ = 1, e =
0, 9, and a = 1. The Euler and Implicit Euler are first order methods. We can attempt a

faster and more accurate process which is also a symplectic method. As a
final example, we introduce the velocity Verlet method for solving

r̈ = a(r(t)).

The derivation is based on a simple Taylor expansion:

r(t + ∆t) = r(t) + v(t)∆t +
1
2

a(t)∆t2 + · · · .

Replace ∆t with −∆t to obtain

r(t− ∆t) = r(t)− v(t)∆t +
1
2

a(t)∆t2 − · · · .

Now, adding these expressions leads to some cancellations,

r(t + ∆t) = 2r(t)− r(t− ∆t) + a(t)∆t2 + O(∆t4).

Writing this in a more useful form, we have

rn+1 = 2rn − rn−1 + a(rn)∆t2.

Thus, we can find rn+1 from the previous two values without knowing the
velocity. This method is called the Verlet, or Störmer-Verlet Method.Loup Verlet (1931-) is a physicist who

works on molecular dynamics and
Fredrik Carl Mülertz Störmer (1874-
1957) was a mathematician and physi-
cist who modeled the motion of charged
particles in his studies of the aurora bo-
realis.

It is useful to know the velocity so that we can check energy conservation
and angular momentum conservation. The Verlet Method can be rewritten
in an equivalent form know as the velocity Verlet method. We use

r(t)− r(t− ∆t) ≈ v(t)∆t− 1
2

a∆t2
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in the Stömer-Verlet Method and write

rn = rn−1 + vn−1u +
h2

2
a(rn−1),

vn−1/2 = vn−1 +
h
2

a(rn−1),

an = a(rn),

vn = vn−1/2 +
h
2

an, (3.53)

where h = ∆t. For the current problem, a(rn) = − µ

r2
n

rn.
The MATLAB snippet is given as Störmer-Verlet Method for the two body

problem.
for i=2:N+1

alpha=mu/(x(i-1).^2 + y(i-1).^2).^(3/2);

x(i)=x(i-1)+h*u(i-1)-h^2/2*alpha*x(i-1);

y(i)=y(i-1)+h*v(i-1)-h^2/2*alpha*y(i-1);

u(i)=u(i-1)-h/2*alpha*x(i-1);

v(i)=v(i-1)-h/2*alpha*y(i-1);

alpha=mu/(x(i).^2 + y(i).^2).^(3/2);

u(i)=u(i)-h/2*alpha*x(i);

v(i)=v(i)-h/2*alpha*y(i);

t(i)=t(i-1)+h;

end

The results using the velocity Verlet method are shown in Figure 3.10.
For only 50, 000 steps we have much better results for the conservation laws
and the orbit appears stable.
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Table 3.10: Results for using velocity
Verlet method for N = 50000 and t ∈
[0, 100]. The parameters are µ = 1,
e = 0, 9, and a = 1.3.5.6 The Expanding Universe*

One of the remarkable stories of the twentieth century is the devel-
opment of both the theory and the experimental data leading to our current
understanding of the large scale structure of the universe. In 1916 Albert
Einstein (1879-1955) published his general theory of relativity. It is a ge-
ometric theory of gravitation which relates the curvature of spacetime to
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its energy and momentum content. This relationship is embodied in the
Einstein field equations, which are written compactly as

Gµν + Λgµν =
8πG

c4 Tµν.

The left side contains the curvature of spacetime as determined by the
metric gµν. The Einstein tensor, Gµν = Rµν − 1

2 Rgµν, is determined from
the curvature tensor Rµν and the scalar curvature, R. These in turn are ob-
tained from the metric tensor. Λ is the famous cosmological constant, which
Einstein originally introduced to maintain a static universe, which has since
taken on a different role. The right-hand side of Einstein’s equation involves
the familiar gravitational constant, the speed of light, and the stress-energy
tensor, Tµν.Georges Lemaître (1894-1966) had actu-

ally predicted the expansion of the uni-
verse in 1927 and proposed what later
became known as the big bang theory.

In 1917 Einstein applied general relativity to cosmology. However, it
was Alexander Alexandrovich Friedmann (1888-1925) who was the first to
provide solutions to Einstein’s equation based on the assumptions of homo-
geneity and isotropy and leading to the expansion of the universe. Unfor-
tunately, Friedmann died in 1925 of typhoid.

In 1929 Edwin Hubble (1889-1953) showed that the radial velocities of
galaxies are proportional to their distance, resulting in what is now called
Hubble’s Law. Hubble’s Law takes the form

v = H0r,

where H0 is the Hubble constant and indicates that the universe is expand-
ing. The current values of the Hubble constant are (70± 7) km s−1 Mpc
−1 and some recent WMAP results indicate it could be (71.0± 2.5) km s−1

Mpc −1.55 These strange units are in common us-
age. Mpc stands for 1 megaparsec =
3.086 × 1022 m and 1 km s−1 Mpc −1

= 3.24 × 10−20 s−1. The recent value
was reported at the NASA website on
March 25, 2013 http://map.gsfc.nasa.

gov/universe/bb_tests_exp.html

In this section we are interested in Friedmann’s Equation, which is the
simple differential equation(

ȧ
a

)2
=

8πG
3c2 ε(t)− κc2

R2
0
+

Λ
3

.

Here, a(t) is the scale factor of the universe, which is taken to be one at
present time; ε(t) is the energy density; R0 is the radius of curvature; and, κ

is the curvature constant, (κ = +1 for positively curved space, κ = 0 for flat
space, κ = −1 for negatively curved space.) The cosmological constant,Λ,
is now added to account for dark energy. The idea is that if we know
the right side of Friedmann’s equation, then we can say something about
the future size of the unverse. This is a simple differential equation which
comes from applying Einstein’s equation to an isotropic, homogenous, and
curved spacetime. Einstein’s equation actually gives us a little more than
this equation, but we will only focus on the (first) Friedmann equation. The
reader can read more in books on cosmology, such as B. Ryden’s Introduction
to Cosmology.

Friedmann’s equation can be written in a simpler form by taking into
account the different contributions to the energy density. For Λ = 0 and

http://map.gsfc.nasa.gov/universe/bb_tests_exp.html
http://map.gsfc.nasa.gov/universe/bb_tests_exp.html
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zero curvature, one has (
ȧ
a

)2
=

8πG
3c2 ε(t).

We define the Hubble parameter as H(t) = ȧ/a. At the current time, t0,
H(t0) = H0, Hubble’s constant, and we take a(t0) = 1. The energy density
in this case is called the critical density,

εc(t) =
3c2

8πG
H(t)2.

It is typical to introduce the density parameter, Ω =

varepsilon/εc. Then, the Friedmann equation can be written as

1−Ω = − κc2

R2
0a(t)2H(t)2

.

Evaluating this expression at the current time, then

1−Ω0 = − κc2

R2
0H2

0
;

and, therefore,

1−Ω = −
H2

0(1−Ω0)

a2H2 .

Solving for H2, we have the differential equation(
ȧ
a

)2
= H2

0

[
Ω(t) +

1−Ω0

a2

]
,

where Ω takes into account the contributions to the energy density of the
universe. These contributions are due to nonrelativistic matter density, con-
tributions due to photons and neutrinos, and the cosmological constant,
which might represent dark energy. This is discussed in Ryden (2003). In
particular, Ω is a function of a(t) for certain models. So, we write

Ω =
Ωr,0

a4 +
Ωm,0

a3 + ΩΛ,0,

where current estimates (Ryden (2003)) are Ωr,0 = 8.4× 10−5, Ωm,0 = 0.3,
ΩΛ,0 ≈ 0.7. In general, We require

Ωr,0 + Ωm,0 + ΩΛ,0 = Ω0.

So, in later examples, we will take this relationship into account. The compact form of Friedmann’s equa-
tion.Therefore, the Friedmann equation can be written as(

ȧ
a

)2
= H2

0

[
Ωr,0

a4 +
Ωm,0

a3 + ΩΛ,0 +
1−Ω0

a2

]
. (3.54)

Taking the square root of this expression, we obtain a first order equation
for the scale factor,

ȧ = ±H0

√
Ωr,0

a2 +
Ωm,0

a
+ ΩΛ,0a2 + 1−Ω0.
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The appropriate sign will be used when the scale factor is increasing or
decreasing.

For special universes, by restricting the contributions to Ω, one can get
analytic solutions. But, in general one has to solve this equation numerically.
We will leave most of these cases to the reader or for homework problems
and will consider some simple examples.

Example 3.6. Determine a(t) for a flat universe with nonrelativistic
matter only. (This is called an Einstein-de Sitter universe.)

In this case, we have Ωr,0 = 0, ΩΛ,0 = 0, and Ω0 = 1. Since Ωr,0 +

Ωm,0 + ΩΛ,0 = Ω0, Ωm,0 = 1 and the Friedman equation takes the
form

ȧ = H0

√
1
a

.

This is a simple separable first order equation. Thus,

H0 dt =
√

ada.

Integrating, we have

H0t =
2
3

a3/2 + C.

Taking a(0) = 0, we have

a(t) =

(
t

2
3 H0

)2/3

.

Since a(t0) = 1, we find

t0 =
2

3H0
.

This would give the age of the universe in this model as roughly t0 =

9.3 Gyr.

Example 3.7. Determine a(t) for a curved universe with nonrelativis-
tic matter only.

We will consider Ω0 > 1. In this case, the Friedman equation takes
the form

ȧ = ±H0

√
Ω0

a
+ (1−Ω0).

Note that there is an extremum amax which occurs for ȧ = 0. This
occurs for

a = amax ≡
Ω0

Ω0 − 1
.

Analytic solutions are possible for this problem in parametric form.
Note that we can write the differential equation in the form

ȧ = ±H0

√
Ω0

a
+ (1−Ω0)

= ±H0

√
Ω0

a

√
1 +

a(1−Ω0)

Ω0

= ±H0

√
Ω0

a

√
1− a

amax
. (3.55)
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A separation of variables gives

H0
√

Ω0 dt = ±
√

a√
1− a

amax

da.

This form suggests a trigonometric substitution,
a

amax
= sin2 θ

with da = 2amax sin θ cos θ dθ. Thus, the integration becomes

H0
√

Ω0t = ±
∫ √

amax sin2 θ√
cos2 θ

2amax sin θ cos θ dθ.

In proceeding, we should be careful. Recall that for real numbers√
x2 = |x|. In order to remove the roots of squares we need to consider

the quadrant θ is in. Since a = 0 at t = 0, and it will vanish again for
θ = π, we will assume 0 ≤ θ ≤ π. For this range, sin θ ≥ 0. However,
cos θ is not of one sign for this domain. In fact, a reaches it maximum
at θ = π/2. So, ȧ > 0. This corresponds to the upper sign in front
of the integral. For θ > π/2, ȧ < 0 and thus we need the lower sign
and
√

cos2 θ = − cos θ for that part of the domain. Thus, it is safe to
simplify the square roots and we obtain

H0
√

Ω0t = 2a3/2
max

∫
sin2 θ, dθ.

= a3/2
max

∫
(1− cos 2θ) , dθ.

= a3/2
max

(
θ − 1

2
sin 2θ

)
(3.56)

for t = 0 at θ = 0.
We have arrived at a parametric solution to the example,

a = = amax sin2 θ,

t =
a3/2

max

H0
√

Ω0

(
θ − 1

2
sin 2θ

)
, (3.57)

for 0 ≤ θ ≤ π. Letting, φ = 2θ, this solution can be written as

a =
1
2

amax(1− cos φ),

t =
a3/2

max

2H0
√

Ω0
(φ− sin φ) , (3.58)

for 0 ≤ φ ≤ 2π. As we will see in Chapter 10, the curve described by
these equations is a cycloid.

A similar computation can be performed for Ω0 < 1. This will be
left as a homework exercise. The answer takes the form

a =
Ω0

2(1−Ω0)
(cosh η − 1),

t =
Ω0

2H0(1−Ω)3/2 (sinh η − η) , (3.59)

for η ≥ 0.



128 differential equations

Example 3.8. Determine the numerical solution of Friedmann’s equa-
tion for a curved universe with nonrelativistic matter only.

Since Friedmann’s equation is a differential equation, we can use
our favorite solver to obtain a solution. Not all universe types are
amenable to obtaining an analytic solution as the last example. We
can create a function in MATLAB for use in ode45:

function da=cosmosf(t,a)

global Omega

f=Omega./a+1-Omega;

da=sqrt(f);

end

Figure 3.39: Numerical solution (cir-
cles) of the Friedmann equation super-
imposed on the analytic solutions for a
matter plus curvature (Ω0 6= 1) or no
curvature (Ω0 = 1) universe.
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We can then solve the Friedmann equation and compare the so-
lutions to the analytic forms in the last two examples. The code for
doing this is given below:

clear

global Omega

for Omega=0.8:.1:1.2;

if Omega<1

amax=50;

tmax=100;

elseif Omega==1

amax=50;

tmax=100;

else

amax=Omega/(Omega-1);

tmax=Omega/(Omega-1)^1.5/2*pi;

end

tspan=0:4:tmax;
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a0=.1;

[t,a]=ode45(@cosmosf,tspan,a0);

plot(t,a,’ok’)

hold on

if Omega<1

eta=0:.1:4;

a3 = Omega/(1-Omega)/2*(cosh(eta)-1);

t3 = Omega/(1-Omega)^1.5/2*(sinh(eta)-eta);

plot(t3,a3,’k’)

axis([0,max(t3),0,max(a3)])

xlabel(’t’)

ylabel(’a’)

elseif Omega==1

t3=0:.1:1.5*tmax;

a3=(3*t3/2).^(2/3);

plot(t3,a3,’k’)

else

phi=0:.1:2*pi;

a3 = Omega/(Omega-1)/2*(1-cos(phi));

t3 = Omega/(Omega-1)^1.5/2*(phi-sin(phi));

plot(t3,a3,’k’)

end

end

hold off

axis([0,150,0,50])

xlabel(’t’)

ylabel(’a’)

In Figure 3.39 we show the results. For Ω0 > 1 the solutions lie on
the first half of the cycloid solution. The other solutions indicate that
the universe continues to expand, leading to what is called the Big
Chill. The analytic solutions to the Ω0 > 1 cases eventually collapse
to a = 0 in finite time. These final states are what Stephen Hawking
calls the Big Crunch.

The numerical solutions for Ω0 > 1 run into difficulty because the
radicand in the square root is negative. But, this corresponds to when
ȧ < 0. So, we have to modify the code by estimating the maximum
on the curve and run the numerical algorithm with new initial condi-
tions and using the fact that ȧ < 0 in the function cosmosf by setting
da=-sqrt(f). The modified code is below and the resulting numerical
solutions are shown in Figure 3.40.

tspan=0:4:tmax;

a0=.1;

[t,a]=ode45(@cosmosf,tspan,a0);

plot(t,a,’ok’,’MarkerSize’,2)
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hold on

if Omega>1

tspan=tmax+.0001:4:2*tmax;

a0=amax-.0001;

[t2,a2]=ode45(@cosmosf2,tspan,a0);

plot(t2,a2,’ok’,’MarkerSize’,2)

end

Figure 3.40: Modified numerical solu-
tion (circles) of the Friedmann equation
superimposed on the analytic solutions
for a matter plus curvature (Ω0 6= 1) or
no curvature (Ω0 = 1) universe with the
extension past the maximum value of a
when Ω0 > 1..
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3.5.7 The Coefficient of Drag*

We have seen that air drag can play a role in interesting physics prob-
lems in differential equations. This also is an important concept in fluid
flow and fluid mechanics when looking at flows around obstacles, or when
the obstacle is moving with respect to the background fluid. The simplest
such object is a sphere, such as a baseball, soccer ball, golf ball, or ideal
spherical raindrop. The resistive force is characterized by the dimensionless
drag coefficient

CD =
FD

1
2 ρU2L2

,

where L and U are the characteristic length and speed of the object moving
through the fluid.

There has been much attention focussed on relating the drag coefficient
to the Reynolds number. The Reynolds number is given byThe Reynolds number, Re, is named af-

ter Osborne Reynolds (1842-1912) who
first determined it in 1883.

Re =
ρLU

η
=

LV
ν

,

where η is the viscosity and ν = η
ρ is the kinematic viscosity. It is a mea-

sure of the size of the kinematic to viscous forces in the problem at hand.
There are different ranges of fluid behavior depending on the order of the
Reynolds number. These range from laminar flow (Re < 1000) to turbulent
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flow (Re > 2.5× 105). There are a range of other types of flows such as
creeping flow (Re << 1) and transitional flows, which are a mix of laminar
and turbulent flow.

For low Reynolds number, the inertial forces are small compared to the
viscous forces, leading to the Stokes drag force, CD = 24Re−1. This result
can be determined analytically. Similarly, for large Reynolds number the
drag coefficient is a constant. This is the Newtonian regime. Somewhere in
between the form of the drag coefficient is found through empirical studies.
There have been many empirical expressions developed and all are within a
few percent of the data in the range of applicability. Some of the commonly
used expressions are given below.

Models that are useful for Re < 103 :

C2 =
24
Re

+
4

Re1/3 , Putnam (1961), (3.60)

C3 =
24
Re

(
1 + 0.15Re0.687

)
, Schiller-Naumann (1933), (3.61)

C4 = 12Re−.5; Edwards et al. (2000), (3.62)

(3.63)

Models that are useful for Re < 2× 105 are the White (1991) and Clift-
Gavin (1970), respectively,

C1 =
24
Re

+
6.

1 +
√

Re
+ 0.4, (3.64)

C5 =
24
Re

(
1 + 0.15Re0.687

)
+

.42
1 + 42500/Re1.16 . (3.65)

A more recent model was proposed by Morrison (2010) for Re < 106 :

C6 =
24
Re

+
2.6
(

Re
5.0

)
1 +

(
Re
5.0

)1.52 +
.411

(
Re

263000

)−7.94

1 +
(

Re
263000

)−8.00 +
Re0.80

461000
. (3.66)

Plots for these models are shown in Figures 3.41-3.42. In Figure 3.41 we
see that the models differ significantly for large Reynolds numbers.

Figure 3.42 shows a log-log plot of the drag coefficient as a function of
Reynolds number. In Figure 3.43 we show a power law fit for Reynolds
number less than 1000 confirming the model used by Edwards, Wilder, and
Scime (2001) as described in the raindrop problem.
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Figure 3.41: Drag coefficient as a func-
tion of Reynolds number for spheres.
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Figure 3.42: Log-log plot of the drag co-
efficient as a function of Reynolds num-
ber for spheres.
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Figure 3.43: A power law fit for the drag
coefficient as a function of Reynolds
number using linearization and linear
regression.
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Problems

1. Use Euler’s Method to determine the given value of y for the following
problems. When possible compare the numerical approximations with the
exact solutions.

a.
dy
dx

= 2y, y(0) = 2. Find y(1) with h = 0.1.

b.
dy
dx

= x− y, y(0) = 1. Find y(2) with h = 0.2.

c.
dy
dx

= x
√

1− y2, y(1) = 0. Find y(2) with h = 0.2.

d.
dy
dt

= 1 +
y
t

, y(1) = 2 with h = 0.25.

e.
dy
dt

= −3y + te2t, y(0) = 0 with h = 0.25.

2. Use the Midpoint Method to solve the initial value problems in Problem
1.

3. Numerically solve the nonlinear pendulum problem using the Euler-
Cromer code for a pendulum with length L = 0.5 m using initial angles
of θ0 = 10o, and θ0 = 70o. In each case run the routines long enough and
with an appropriate h such that you can determine the period in each case.
Compare your results with the linear pendulum period.

4. For the Baumgartner sky dive we had obtained the results for his position
as a function of time. There are other questions which could be asked.

a. Find the velocity as a function of time for the model developed in
the text.

b. Find the velocity as a function of altitude for the model developed
in the text.

c. What maximum velocity is obtained in the model? At what time
and position?

d. Does the model indicate that terminal velocity was reached?

e. What speed is predicted for the point at which the parachute
opened?

f. How do these numbers compare with reported data?

5. Consider the flight of a golf ball with mass 46 g and a diameter of 42.7
mm. Assume it is projected at 30

o with a speed of 36 m/s and no spin.

a. Ignoring air resistance, analytically find the path of the ball and
determine the range, maximum height, and time of flight for it to
land at the height that the ball had started.

b. Now consider a drag force fD = 1
2 CDρπr2v2, with CD = 0.42 and

ρ = 1.21 kg/m3. Determine the range, maximum height, and time
of flight for the ball to land at the height that it had started.
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c. Plot the Reynolds number as a function of time. [Take the kine-
matic viscosity of air, ν = 1.47× 10−5.

d. Based on the plot in part c, create a model to incorporate the
change in Reynolds number and repeat part b. Compare the re-
sults from parts a, b and d.

6. Consider the flight of a tennis ball with mass 57 g and a diameter of 66.0
mm. Assume the ball is served 6.40 meters from the net at a speed of 50.0
m/s down the center line from a height of 2.8 m. It needs to just clear the
net (0.914 m).

a. Ignoring air resistance and spin, analytically find the path of the
ball assuming it just clears the net. Determine the angle to clear
the net and the time of flight.

b. Find the angle to clear the net assuming the tennis ball is given a
topspin with ω = 50 rad/s.

c. Repeat part b assuming the tennis ball is given a bottom spin with
ω = 50 rad/s.

d. Repeat parts a, b, and c with a drag force, taking CD = 0.55.

7. In Example 3.7 a(t) was determined for a curved universe with nonrela-
tivistic matter for Ω0 > 1. Derive the parametric equations for Ω0 < 1,

a =
Ω0

2(1−Ω0)
(cosh η − 1),

t =
Ω0

2H0(1−Ω)3/2 (sinh η − η) , (3.67)

for η ≥ 0.

8. Find numerical solutions for other models of the universe.

a. A flat universe with nonrelativistic matter only with Ωm,0 = 1.

b. A curved universe with radiation only with curvature of different
types.

c. A flat universe with nonrelativistic matter and radiation with sev-
eral values of Ωm,0 and Ωr,0 + Ωm,0 = 1.

d. Look up the current values of Ωr,0, Ωm,0, ΩΛ,0, and κ. Use these
values to predict future values of a(t).

e. Investigate other types of universes of your choice, but different
from the previous problems and examples.
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Series Solutions

“In most sciences one generation tears down what another has built and what one
has established another undoes. In mathematics alone each generation adds a new
story to the old structure.” - Hermann Hankel (1839-1873)

4.1 Introduction to Power Series

As noted a few times, not all differential equations have exact solutions.
So, we need to resort to seeking approximate solutions, or solutions i the
neighborhood of the initial value. Before describing these methods, we need
to recall power series. A power series expansion about x = a with coefficient
sequence cn is given by ∑∞

n=0 cn(x− a)n. For now we will consider all con-
stants to be real numbers with x in some subset of the set of real numbers.
We review power series in the appendix.

The two types of series encountered in calculus are Taylor and Maclaurin
series. A Taylor series expansion of f (x) about x = a is the series Taylor series expansion.

f (x) ∼
∞

∑
n=0

cn(x− a)n, (4.1)

where

cn =
f (n)(a)

n!
. (4.2)

Note that we use ∼ to indicate that we have yet to determine when the
series may converge to the given function.

A Maclaurin series expansion of f (x) is a Taylor series expansion of Maclaurin series expansion.

f (x) about x = 0, or

f (x) ∼
∞

∑
n=0

cnxn, (4.3)

where

cn =
f (n)(0)

n!
. (4.4)

We note that Maclaurin series are a special case of Taylor series for which
the expansion is about x = 0. Typical Maclaurin series, which you should
know, are given in Table 4.1.

A simple example of developing a series solution for a differential equa-
tion is given in the next example.
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Table 4.1: Common Mclaurin Series Ex-
pansions

Series Expansions You Should Know

ex = 1 + x +
x2

2
+

x3

3!
+

x4

4!
+ . . . =

∞

∑
n=0

xn

n!

cos x = 1− x2

2
+

x4

4!
− . . . =

∞

∑
n=0

(−1)n x2n

(2n)!

sin x = x− x3

3!
+

x5

5!
− . . . =

∞

∑
n=0

(−1)n x2n+1

(2n + 1)!

cosh x = 1 +
x2

2
+

x4

4!
+ . . . =

∞

∑
n=0

x2n

(2n)!

sinh x = x +
x3

3!
+

x5

5!
+ . . . =

∞

∑
n=0

x2n+1

(2n + 1)!
1

1− x
= 1 + x + x2 + x3 + . . . =

∞

∑
n=0

xn

1
1 + x

= 1− x + x2 − x3 + . . . =
∞

∑
n=0

(−x)n

tan−1 x = x− x3

3
+

x5

5
− x7

7
+ . . . =

∞

∑
n=0

(−1)n x2n+1

2n + 1

ln(1 + x) = x− x2

2
+

x3

3
− . . . =

∞

∑
n=1

(−1)n+1 xn

n

Example 4.1. y′(x) = x + y(x), y(0) = 1.
We are interested in seeking solutions of this initial value problem.

We note that this was already solved in Example 3.1.
Let’s assume that we can write the solution as the Maclaurin series

y(x) =
∞

∑
n=0

y(n)(x)
n!

xn

= y(0) + y′(0)x +
1
2

y′′(0)x2 +
1
6

y′′′(0)x3 + . . . . (4.5)

We already know that y(0) = 1. So, we know the first term in the
series expansion. We can find the value of y′(0) from the differential
equation:

y′(0) = 0 + y(0) = 1.

In order to obtain values of the higher order derivatives at x = 0,
we differentiate the differential equation several times:

y′′(x) = 1 + y′(x).

y′′(0) = 1 + y′(0) = 2.

y′′′(x) = y′′(x) = 2. (4.6)

All other values of the derivatives are the same. Therefore, we have

y(x) = 1 + x + 2
(

1
2

x2 +
1
3!

x3 + . . .
)

.

This solution can be summed as

y(x) = 2
(

1 + x +
1
2

x2 +
1
3!

x3 + . . .
)
− 1− x = 2ex − x− 1.

This is the same result we had obtained before.
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4.2 Power Series Method

In the last example we were able to use the initial condition to pro-
duce a series solution to the given differential equation. Even if we specified
more general initial conditions, are there other ways to obtain series solu-
tions? Can we find a general solution in the form of power series? We will
address these questions in the remaining sections. However, we will first be-
gin with an example to demonstrate how we can find the general solution
to a first order differential equation.

Example 4.2. Find a general Maclaurin series solution to the ODE:
y′ − 2xy = 0.

Let’s assume that the solution takes the form

y(x) =
∞

∑
n=0

cnxn.

The goal is to find the expansion coefficients, cn, n = 0, 1, . . . .
Differentiating, we have

y′(x) =
∞

∑
n=1

ncnxn−1.

Note that the index starts at n = 1, since there is no n = 0 term
remaining.

Inserting the series for y(x) and y′(x) into the differential equation,
we have

0 =
∞

∑
n=1

ncnxn−1 − 2x
∞

∑
n=0

cnxn

= (c1 + 2c2x + 3c3x2 + 4x3 + . . .)

−2x(c0 + c1x + c2x2 + c3x3 + . . .)

= c1 + (2c2 − c0)x + (3c3 − 2c1)x2 + (4c4 − 2c2)x3 + . . . . (4.7)

Equating like powers of x on both sides of this result, we have

0 = c1,

0 = 2c2 − c0,

0 = 3c3 − c1,

0 = 4c4 − 2c2, .... (4.8)

We can solve these sequentially for the coefficient of largest index:

c1 = 0, c2 = c0, c3 =
2
3

c1 = 0, c3 =
1
2

c2 =
1
2

c0, . . . .

We note that the odd terms vanish and the even terms survive:

y(x) = c0 + c1x + c2x2 + c3x3 + . . .

= c0 + c0x2 +
1
2

c0x4 + . . . . (4.9)
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Thus, we have found a series solution, or at least the first several terms,
up to a multiplicative constant.

Of course, it would be nice to obtain a few more terms and guess
at the general form of the series solution. This could be done if we
carried out the streps in a more general way. This is accomplished by
keeping the summation notation and trying to combine all terms with
like powers of x. We begin by inserting the series expansion into the
differential equation and identifying the powers of x :

0 =
∞

∑
n=1

ncnxn−1 − 2x
∞

∑
n=0

cnxn

=
∞

∑
n=1

ncnxn−1 −
∞

∑
n=0

2cnxn+1. (4.10)

We note that the powers of x in these two sums differ by 2. We can
re-index the sums separately so that the powers are the same, sayRe-indexing a series.

k. After all, when we had expanded these series earlier, the index, n,
disappeared. Such an index is known as a dummy index since we
could call the index anything, like n− 1, `− 1, or even k = n− 1 in
the first series. So, we can let k = n− 1, or n = k + 1, to write

∞

∑
n=1

ncnxn−1 =
∞

∑
k=0

(k + 1)ck+1xk

= c1 + 2c2x + 3c3x2 + 4x3 + . . . . (4.11)

Note, that re-indexing has not changed the terms in the series.
Similarly, we can let k = n + 1, or n = k− 1, in the second series to

find
∞

∑
n=0

2cnxn+1 =
∞

∑
k=1

2ck−1xk

= 2c0 + 2c1x + 2c2x2 + 2c3x3 + . . . . (4.12)

Combining both series, we have

0 =
∞

∑
n=1

ncnxn−1 −
∞

∑
n=0

2cnxn+1

=
∞

∑
k=0

(k + 1)ck+1xk −
∞

∑
k=1

2ck−1xk

= c1 +
∞

∑
k=1

[(k + 1)ck+1 − 2ck−1]xk. (4.13)

Here, we have combined the two series for k = 1, 2, . . . . . The k = 0
term in the first series gives the constant term as shown.

We can now set the coefficients of powers of x equal to zero since
there are no terms on the left hand side of the equation. This gives
c1 = 0 and

(k + 1)ck+1 − 2ck−1, k = 1, 2, . . . .
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This last equation is called a recurrence relation. It can be used to find
successive coefficients in terms of previous values. In particular, we
have

ck+1 =
2

k + 1
ck−1, k = 1, 2, . . . .

Inserting different values of k, we have

k = 1 : c2 =
2
2

c0 = c0.

k = 2 : c3 =
2
3

c1 = 0.

k = 3 : c4 =
2
4

c2 =
1
2

c0.

k = 4 : c5 =
2
5

c3 = 0.

k = 5 : c6 =
2
6

c4 =
1

3(2)
c0.

(4.14)

Continuing, we can see a pattern. Namely,

ck =

{
0, k = 2`+ 1,
1
`! , k = 2`.

Thus,

y(x) =
∞

∑
k=0

ckxk

= c0 + c1x + c2x2 + c3x3 + . . .

= c0 + c0x2 +
1
2!

c0x4 +
1
3!

c0x6 + . . .

= c0

(
1 + x2 +

1
2!

x4 +
1
3!

x6 + . . .
)

= c0

∞

∑
`=0

1
`!

x2`

= c0ex2
. (4.15)

This example demonstrated how we can solve a simple differential equa-
tion by first guessing that the solution was in the form of a power series. We
would like to explore the use of power series for more general higher order
equations. We will begin second order differential equations in the form

P(x)y′′(x) + Q(x)y′(x) + R(x)y(x) = 0,

where P(x), Q(x), and R(x) are polynomials in x. The point x0 is called an
ordinary point if P(x0) 6= 0. Otherwise, x0 is called a singular point. Ordinary and singular points.

When x0 is an ordinary point, then we can seek solutions of the form

y(x) =
∞

∑
n=0

cn(x− x0)
n.
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For most of the examples, we will let x0 = 0, in which case we seek solutions
of the form

y(x) =
∞

∑
n=0

cnxn.

Example 4.3. Find the general Maclaurin series solution to the ODE:

y′′ − xy′ − y = 0.

We will look for a solution of the form

y(x) =
∞

∑
n=0

cnxn.

The first and second derivatives of the series are given by

y′(x) =
∞

∑
n=1

cnnxn−1

y′′(x) =
∞

∑
n=2

cnn(n− 1)xn−2.

Inserting these derivatives into the differential equation gives

0 =
∞

∑
n=2

cnn(n− 1)xn−2 −
∞

∑
n=1

cnnxn −
∞

∑
n=0

cnxn.

We want to combine the three sums into one sum and identify the
coefficients of each power of x. The last two sums have similar powers
of x. So, we need only re-index the first sum. We let k = n − 2, or
n = k + 2. This gives

∞

∑
n=2

cnn(n− 1)xn−2 =
∞

∑
k=0

ck+2(k + 2)(k + 1)xk.

Inserting this sum, and setting n = k in the other two sums, we
have

0 =
∞

∑
n=2

cnn(n− 1)xn−2 −
∞

∑
n=1

cnnxn −
∞

∑
n=0

cnxn

=
∞

∑
k=0

ck+2(k + 2)(k + 1)xk −
∞

∑
k=1

ckkxk −
∞

∑
k=0

ckxk

=
∞

∑
k=1

[ck+2(k + 2)(k + 1)− ckk− ck] xk + c2(2)(1)− c0

=
∞

∑
k=1

(k + 1) [(k + 2)ck+2 − ck] xk + 2c2 − c0. (4.16)

Noting that the coefficients of powers xk have to vanish, we have
2c2 − c0 = 0 and

(k + 1) [(k + 2)ck+2 − ck] = 0, k = 1, 2, 3, . . . ,
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or

c2 =
1
2

c0,

ck+2 =
1

k + 2
ck, k = 1, 2, 3, . . . . (4.17)

Using this result, we can successively determine the coefficients to
as many terms as we need.

k = 1 : c3 =
1
3

c1.

k = 2 : c4 =
1
4

c2 =
1
8

c0.

k = 3 : c5 =
1
5

c3 =
1
15

c1.

k = 4 : c6 =
1
6

c4 =
1
48

c0.

k = 5 : c7 =
1
7

c5 =
1

105
c1. (4.18)

This gives the series solution as

y(x) =
∞

∑
n=0

cnxn

= c0 + c1x + c2x2 + c3x3 + . . .

= c0 + c1x +
1
2

c0x2 +
1
3

c1x3 +
1
8

c0x4 +
1
15

c1x5 +
1

48
c0x6 + . . .

= c0

(
1 +

1
2

x2 +
1
8

x4 + . . .
)
+ c1

(
x +

1
3

x3 +
1
15

x5 + . . .
)

. (4.19)

We note that the general solution to this second order differential
equation has two arbitrary constants. The general solution is a linear
combination of two linearly independent solutions obtained by setting
one of the constants equal to one and the other equal to zero.

Sometimes one can sum the series solution obtained. In this case
we note that the series multiplying c0 can be rewritten as

y1(x) = 1 +
1
2

x2 +
1
8

x4 + . . . = 1 +
x2

2
+

1
2

(
x2

2

)2

++
1
3!

(
x2

2

)3

+ . . . .

This gives the exact solution y1(x) = ex2/2.
The second linearly independent solution is not so easy. Since we

know one solution, we can use the Method of Reduction of Order to
obtain the second solution. One can verify that the second solution is
given by

y2(x) = ex2/2
∫ x/

√
2

0
e−t2

dt = ex2/2erf
(

x√
2

)
,

where erf(x) is the error function. See Problem 3.
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Example 4.4. Consider the Legendre equation

(1− x2)y′′ − 2xy′ + `(`+ 1)y = 0

for ` an integer.
We first note that there are singular points for 1− x2 = 0, or x = ±1.

Therefore, x = 0 is an ordinary point and we can proceed to obtain
solutions in the form of Maclaurin series expansions. Insert the series
expansions

Legendre’s differential equation.

y(x) =
∞

∑
n=0

cnxn,

y′(x) =
∞

∑
n=1

ncnxn−1,

y′′(x) =
∞

∑
n=2

n(n− 1)cnxn−2, (4.20)

into the differential equation to obtain

0 = (1− x2)y′′ − 2xy′ + `(`+ 1)y

= (1− x2)
∞

∑
n=2

n(n− 1)cnxn−2 − 2x
∞

∑
n=1

ncnxn−1 + `(`+ 1)
∞

∑
n=0

cnxn

=
∞

∑
n=2

n(n− 1)cnxn−2 −
∞

∑
n=2

n(n− 1)cnxn −
∞

∑
n=1

2ncnxn +
∞

∑
n=0

`(`+ 1)cnxn

=
∞

∑
n=2

n(n− 1)cnxn−2 +
∞

∑
n=0

[`(`+ 1)− n(n + 1)]cnxn. (4.21)

Re-indexing the first sum with k = n− 2, we have

0 =
∞

∑
n=2

n(n− 1)cnxn−2 +
∞

∑
n=0

[`(`+ 1)− n(n + 1)]cnxn

=
∞

∑
k=0

(k + 2)(k + 1)ck+2xk +
∞

∑
k=0

[`(`+ 1)− k(k + 1)]ckxk

= 2c2 + 6c3x + `(`+ 1)c0 + `(`+ 1)c1x− 2c1x

+
∞

∑
k=2

((k + 2)(k + 1)ck+2 + [`(`+ 1)− k(k + 1)]ck) xk. (4.22)

Matching terms, we have

k = 0 : 2c2 = −`(`+ 1)c0.

k = 1 : 6c3 = [2− `(`+ 1)]c1.

k ≥ 2 : (k + 2)(k + 1)ck+2 = [k(k + 1)− `(`+ 1)]ck. (4.23)

For ` = 0, the first equation gives c2 = 0 and the third equation
gives c2m = 0 for m = 1, 2, 3, . . . . This leads to y1(x) = c0 is a solution
for ` = 0.

Similarly, for ` = 1, the second equation gives c3 = 0 and the third
equation gives c2m+1 = 0 for m = 1, 2, 3, . . . . Thus, y1(x) = c1x is a
solution for ` = 1.



series solutions 143

In fact, for ` any nonnegative integer the series truncates. For ex-
ample, if ` = 2, then these equations reduce to

k = 0 : 2c2 = −6c0.

k = 1 : 6c3 = −4c1.

k ≥ 2 : (k + 2)(k + 1)ck+2 = [k(k + 1)− 2(3)]ck. (4.24)

For k = 2, we have 12c4 = 0. So, c6 = c8 = . . . = 0. Also, we have
c2 = −3c0. This gives

y(x) = c0(1− 3x2) + (c1x + c3x3 + c5x5 + c7x7 + . . .).

Therefore, there is a polynomial solution of degree 2. The remaining
coefficients are proportional to c1, yielding the second linearly inde-
pendent solution, which is not a polynomial.

For other nonnegative integer values of ` > 2, we have

ck+2 =
k(k + 1)− `(`+ 1)

(k + 2)(k + 1)
ck, k ≥ 2.

When k = `, the right side of the equation vanishes, making the re-
maining coefficients vanish. Thus, we will be left with a polynomial
of degree `. These are the Legendre polynomials, P`(x).

4.3 Singular Points

The power series method does not alway give us the full general so-
lution to a differential equation. Problems can arise when the differential
equation has singular points. The simplest equations having singular points
are Cauchy-Euler equations,

ax2y′′ + bxy′ + cy = 0.

A few examples are sufficient to demonstrate the types of problems that can
occur.

Example 4.5. Find the series solutions for the Cauchy-Euler equation,

ax2y′′ + bxy′ + cy = 0,

for the cases i. a = 1, b = −4, c = 6, ii. a = 1, b = 2, c = −6, and
iii. a = 1, b = 1, c = 6.

As before, we insert

y(x) =
∞

∑
n=0

dnxn, y′(x) =
∞

∑
n=1

ndnxn−1, y′′(x) =
∞

∑
n=2

n(n− 1)dnxn−2,

into the differential equation to obtain

0 = ax2y′′ + bxy′ + cy
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= ax2
∞

∑
n=2

n(n− 1)dnxn−2 + bx
∞

∑
n=1

ndnxn−1 + c
∞

∑
n=0

dnxn

= a
∞

∑
n=0

n(n− 1)dnxn + b
∞

∑
n=0

ndnxn + c
∞

∑
n=0

dnxn

=
∞

∑
n=0

[an(n− 1) + bn + c] dnxn. (4.25)

Here we changed the lower limits on the first sums as n(n− 1) van-
ishes for n = 0, 1 and the added terms all are zero.

Setting all coefficients to zero, we have[
an2 + (b− a)n + c

]
dn = 0, n = 0, 1, . . . .

Therefore, all of the coefficients vanish, dn = 0, except at the roots of
an2 + (b− a)n + c = 0.

In the first case, a = 1, b = −4, and c = 6, we have

0 = n2 + (−4− 1)n + 6 = n2 − 5n + 6 = (n− 2)(n− 3).

Thus, dn = 0, n 6= 2, 3. This leaves two terms in the series, reducing to
the polynomial y(x) = d2x2 + d3x3.

In the second case, a = 1, b = 2, and c = −6, we have

0 = n2 + (2− 1)n− 6 = n2 + n− 6 = (n− 2)(n + 3).

Thus, dn = 0, n 6= 2,−3. Since the n’s are nonnegative, this leaves one
term in the solution, y(x) = d2x2. So, we do not have the most general
solution since we are missing a second linearly independent solution.
We can use the Method of Reduction of Order from Section 2.2.1, or
we could use what we know about Cauchy-Euler equations, to show
that the general solution is

y(x) = c1x2 + c2x−3.

Finally, the third case has a = 1, b = 1, and c = 6, we have

0 = n2 + (1− 1)n + 6 = n2 + 6.

Since there are no real solutions to this equation, dn = 0 for all n.
Again, we could use what we know about Cauchy-Euler equations, to
show that the general solution is

y(x) = c1 cos(
√

6 ln x) + c2 sin(
√

6 ln x).

In the last example, we have seen that the power series method does not
always work. The key is to write the differential equation in the form

y′′(x) + p(x)y′(x) + q(x)y(x) = 0.

We already know that x = 0 is a singular point of the Cauchy-Euler equa-
tion. Putting the equation in the latter form, we have

y′′ +
a
x

y′ +
b
x2 y = 0.
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We see that p(x) = a/x and q(x) = b/x2 are not defined at x = 0. So, we
do not expect a convergent power series solution in the neightborhood of
x = 0.

Theorem 4.1. The initial value problem

y′′(x) + p(x)y′(x) + q(x)y(x) = 0, y(x0) = α, y′(x0) = β

has a unique Taylor series solution converging in the interval |x − x0| < R if
both p(x) and q(x) can be represented by convergent Taylor series converging for
|x − x0| < R. (Then, p(x) and q(x) are said to be analytic at x = x0.) As noted
earlier, x0 is then called an ordinary point. Otherwise, if either, or both, p(x) and
q(x) are not analytic at x0, then x0 is called a singular point.

Example 4.6. Determine if a power series solution exits for
xy′′ + 2y′ + xy = 0 near x = 0.

Putting this equation in the form

y′′ +
2
x

y′ + 2y = 0,

we see that a(x) is not defined at x = 0, so x = 0 is a singular point.
Let’s see how far we can get towards obtaining a series solution.

We let

y(x) =
∞

∑
n=0

cnxn, y′(x) =
∞

∑
n=1

ncnxn−1, y′′(x) =
∞

∑
n=2

n(n− 1)cnxn−2,

into the differential equation to obtain

0 = xy′′ + 2y′ + xy

= x
∞

∑
n=2

n(n− 1)cnxn−2 + 2
∞

∑
n=1

ncnxn−1 + x
∞

∑
n=0

cnxn

=
∞

∑
n=2

n(n− 1)cnxn−1 +
∞

∑
n=1

2ncnxn−1 +
∞

∑
n=0

cnxn+1

= 2c1 +
∞

∑
n=2

[n(n− 1) + 2n]cnxn−1 +
∞

∑
n=0

cnxn+1. (4.26)

Here we combined the first two series and pulled out the first term of
the second series.

We can re-index the series. In the first series we let k = n− 1 and
in the second series we let k = n + 1. This gives

0 = 2c1 +
∞

∑
n=2

n(n + 1)cnxn−1 +
∞

∑
n=0

cnxn+1

= 2c1 +
∞

∑
k=1

(k + 1)(k + 2)ck+1xk +
∞

∑
k=1

ck−1xk

= 2c1 +
∞

∑
k=1

[(k + 1)(k + 2)ck+1 + ck−1]xk. (4.27)
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Setting coefficients to zero, we have c1 = 0 and

ck+1 = − 1
(k + 12)(k + 1)

ck−1, k = 1, 2, . . . .

Therefore, we have cn = 0 for n = 1, 3, 5, . . . . For the even indices, we
have

k = 1 : c2 = − 1
3(2)

c0 = − c0

3!
.

k = 3 : c4 = − 1
5(4)

c2 =
c0

5!
.

k = 5 : c6 = − 1
7(6)

c4 = − c0

7!
.

k = 7 : c8 = − 1
9(8)

c6 =
c0

9!
. (4.28)

We can see the pattern and write the solution in closed form.

y(x) =
∞

∑
n=0

cnxn

= c0 + c1x + c2x2 + c3x3 + . . .

= c0

(
1− x2

3!
+

x4

5!
− x6

7!
+

x8

9!
. . .
)

= c0
1
x

(
x− x3

3!
+

x5

5!
− x7

7!
+

x9

9!
. . .
)

= c0
sin x

x
. (4.29)

We have another case where the power series method does not yield
a general solution.

In the last example we did not find the general solution. However, we did
find one solution, y1(x) = sin x

x . So, we could use the Method of Reduction
of Order to obtain the second linearly independent solution. This is carriedUse of the Method of Reduction of Order

to obtain a second linearly independent
solution. See Section 2.2.1

out in the next example.

Example 4.7. Let y1(x) = sin x
x be one solution of xy′′ + 2y′ + xy = 0.

Find a second linearly independent solution.
Let y(x) = v(x)y1(x). Inserting this into the differential equation,

we have

0 = xy′′ + 2y′ + xy

= x(vy1)
′′ + 2(vy1)

′ + xvy1

= x(v′y1 + vy′1)
′ + 2(v′y1 + vy′1) + xvy1

= x(v′′y1 + 2v′y′1 + vy′′1 ) + 2(v′y1 + vy′1) + xvy1

= x(v′′y1 + 2v′y′1) + 2v′y1 + v(xy′′1 + 2y′1 + xy1)

= x
[

sin x
x

v′′ + 2
(

cos(x)
x
− sin(x)

x2

)
v′
]
+ 2

sin x
x

v′

= sin xv′′ + 2 cos xv′. (4.30)
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This is a first order separable differential equation for z = v′. Thus,

sin x
dz
dx

= −2z cos x,

or
dz
z

= −2 cot x dx.

Integrating, we have

ln |z| = 2 ln | csc x|+ C.

Setting C = 0, we have v′ = z = csc2 x, or v = − cot x. This gives the
second solution as

y(x) = v(x)y1(x) = − cot x
sin x

x
= −cos x

x
.

4.4 The Frobenius Method

4.4.1 Introduction

It might be possible to use power series to obtain solutions to dif-
ferential equations in terms of series involving noninteger powers. For ex-
ample, we found in Example 4.6 that y1(x) = sin x

x and y2(x) = cos x
x are

solutions of the differential equation xy′′ + 2y′ + xy = 0. Series expansions
about x = 0 are given by

sin x
x

=
1
x

(
x− x3

3!
+

x5

5!
− x7

7!
+ . . .

)
= 1− x2

3!
+

x4

5!
− x6

7!
+ . . . . (4.31)

cos x
x

=
1
x

(
1− x2

2!
+

x4

4!
− x6

6!
+ . . .

)
=

1
x
− x

2!
+

x3

4!
− x5

6!
+ . . . . (4.32)

While the first series is a Taylor series, the second one is not due to the
presence of the first term, x−1. We would like to be able to capture such
expansions. So, we seek solutions of the form

y(x) = xr
∞

∑
n=0

cnxn =
∞

∑
n=0

cnxn+r

for some real number r. This is the basis of the Frobenius Method.
Consider the differential equation,

y′′(x) + a(x)y′(x) + b(x)y(x) = 0.

If xa(x) and x2b(x) are real analytic, i.e., have convergent Taylor series ex-
pansions about x = 0, then we can find a solution of the form

y(x) =
∞

∑
n=0

cnxn+r, (4.33)
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for some constant r. Furthermore, r is determined from the solution of an
indicial equation.

Example 4.8. Show that x = 0 is a regular singular point of the equa-
tion

x2y′′ + x(3 + x)y′ + (1 + x)y = 0

and then find a solution in the form y(x) = ∑∞
n=0 cnxn+r.If x = 0 is a regular singular point, then

we can apply the Frobenius Method. Rewriting the equation as

y′ +
3 + x

x
y′′ +

(1 + x)
x2 y = 0,

we identify

a(x) =
3 + x

x

b(x) =
(1 + x)

x2 .

So, xa(x) = 3 + x and x2b(x) = 1 + x are polynomials in x and are
therefore real analytic. Thus, x = 0 is a regular singular point.

Example 4.9. Solve

x2y′′ + x(3 + x)y′ + (1 + x)y = 0

using the Frobenius Method.
In order to find a solution to the differential equation using the

Frobenius Method, we assume y(x) and its derivatives are of the form

y(x) =
∞

∑
n=0

cnxn+r,

y′(x) =
∞

∑
n=0

cn(n + r)xn+r−1,

y′′(x) =
∞

∑
n=0

cn(n + r)(n + r− 1)xn+r−2. (4.34)

Inserting these series into the differential equation, we have

0 = x2y′′ + x(3 + x)y′ + (1 + x)y = 0

= x2
∞

∑
n=0

cn(n + r)(n + r− 1)xn+r−2 + x(3 + x)
∞

∑
n=0

cn(n + r)xn+r−1

+(1 + x)
∞

∑
n=0

cnxn+r

=
∞

∑
n=0

cn(n + r)(n + r− 1)xn+r + 3
∞

∑
n=0

cn(n + r)xn+r

+
∞

∑
n=0

cn(n + r)xn+r+1 +
∞

∑
n=0

cnxn+r +
∞

∑
n=0

cnxn+r+1

=
∞

∑
n=0

cn[(n + r)(n + r− 1) + 3(n + r) + 1]xn+r +
∞

∑
n=0

cn[n + r + 1]xn+r+1

=
∞

∑
n=0

cn[(n + r)(n + r + 2) + 1]xn+r +
∞

∑
n=0

cn(n + r + 1)xn+r+1.
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Next, we re-index the last sum using k = n + 1 so that both sums
involve the powers xk+r. Therefore, we have

∞

∑
k=0

ck[(k + r)(k + r + 2) + 1]xk+r +
∞

∑
k=1

ck−1(k + r)xk+r = 0. (4.35)

We can combine both sums for k = 1, 2, . . . if we set the coefficients in
the k = 0 term to zero. Namely,

c0[r(r + 2) + 1] = 0.

If we assume that c0 6= 0, then

r(r + 2) + 1 = 0.

This is the indicial equation. Expanding, we have

0 = r2 + 2r + 1 = (r + 1)2.

So, this gives r = −1. We find the indicial equation from the
terms with lowest powers of x. Setting
n = 0 at the bottom of the previous page,
the lowest powers are xr and the coeffi-
cient yields c0[r(r + 2) + 1] = 0. The in-
dicial equation is then r2 + 2r + 1 = 0.

Inserting r = −1 into Equation (4.35) and combining the remaining
sums, we have

∞

∑
k=1

[
k2ck + (k− 1)ck−1

]
xk−1 = 0.

Setting the coefficients equal to zero, we have found that

ck =
1− k

k2 ck−1, k = 1, 2, 3, . . . .

So, each coefficient is a multiple of the previous one. In fact, for k = 1,
we have that

c1 = (0)c0 = 0.

Therefore, all of the coefficients are zero except for c0. This gives a
solution as

y0(x) =
c0

x
.

We had assumed that c0 6= 0. What if c0 = 0? Then, Equation (4.35)
becomes

∞

∑
k=1

[((k + r)(k + r + 2) + 1)ck + (k + r)ck−1]xk+r = 0.

Setting the coefficients equal to zero, we have

((k + r)(k + r + 2) + 1)ck = −(k + r)ck−1, k = 1, 2, 3, . . . .

When k = 1, (the lowest power of x)

((1 + r)(r + 3) + 1)c1 = −(1 + r)c0 = 0.

So, c1 = 0, or 0 = (1 + r)(r + 3) + 1 = r2 + 4r + 4 = (r + 2)2. If c1 6= 0,
this gives r = −2 and

ck = −
(k− 2)
(k− 1)2 ck−1, k = 2, 3, 4, . . . .
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Then, we have c2 = 0 and all other coefficient vanish, leaving the
solution as

y(x) = c1x1−2 =
c1

x
.

We only found one solution. We need a second linearly indepen-
dent solution in order to find the general solution to the differen-
tial equation. This can be found using the Method of Reduction of
Order from Section 2.2.1 For completeness we will seek a solutionMethod of Reduction of Order.

y2(x) = v(x)y1(x), where y1(x) = x−1. Then,

0 = x2y′′2 + x(3 + x)y′2 + (1 + x)y2

= x2(vy1)
′′ + x(3 + x)(vy1)

′ + (1 + x)vy1

= [x2y′′1 + x(3 + x)y′1 + (1 + x)y1]v

+[x2v′′ + x(3 + x)v′]y1 + 2x2v′y′1
= [x2v′′ + x(3 + x)v′]y1 + 2x2v′y′1
= [x2v′′ + x(3 + x)v′]x−1 − 2x2v′x−2′

= xv′′ + (3 + x)v′ − 2v′

= xv′′ + (1 + x)v′. (4.36)

Letting z = v′, the last equation can be written as

x
dz
dx

+ (1 + x)z = 0.

This is a separable first order equation. Separating variables and inte-
grating, we have ∫ dz

z
= −

∫ 1 + x
x

dx,

or
ln |z| = − ln |x| − x + C.

Exponentiating,

z =
dv
dx

= A
e−x

x
.

Further integration yields

v(x) = A
∫ e−x

x
dx + B.

Thus,

y2(x) =
1
x

∫ e−x

x
dx.

Note that the integral does not have a simple antiderivative and de-
fines the exponential function

E1(x) =
∫ ∞

x

e−t

t
dt = −γ− ln x−

∞

∑
n=1

(−1)2xn

n!n
,

where γ = 0.5772... is the Euler-Mascheroni constant.
Thus, we have found the general solution

y(x) =
c1

x
+

c2

x
E1(x).
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Another example is that of Bessel’s equation. This is a famous equation
which occurs in the solution of problems involving cylindrical symmetry.
We discuss the solutions more generally in Section 4.6. Here we apply the
Frobenius method to obtain the series solution.

Example 4.10. Solve Bessel’s equation using the Frobenius method,

x2y′′ + xy′ + (x2 − ν2)y = 0.

We first note that x = 0 is a regular singular point. We assume y(x)
and its derivatives are of the form Bessel’s equation.

y(x) =
∞

∑
n=0

cnxn+r,

y′(x) =
∞

∑
n=0

cn(n + r)xn+r−1,

y′′(x) =
∞

∑
n=0

cn(n + r)(n + r− 1)xn+r−2. (4.37)

Inserting these series into the differential equation, we have

0 = x2y′ + xy′ + (x2 − ν2)y

= x2
∞

∑
n=0

cn(n + r)(n + r− 1)xn+r−2 + x
∞

∑
n=0

cn(n + r)xn+r−1

+(x2 − ν2)
∞

∑
n=0

cnxn+r

=
∞

∑
n=0

cn(n + r)(n + r− 1)xn+r +
∞

∑
n=0

cn(n + r)xn+r

∞

∑
n=0

cnxn+r+2 −
∞

∑
n=0

ν2cnxn+r

=
∞

∑
n=0

[(n + r)(n + r− 1) + (n + r)− ν2]cnxn+r +
∞

∑
n=0

cnxn+r+2

=
∞

∑
n=0

[(n + r)2 − ν2]cnxn+r +
∞

∑
n=0

cnxn+r+2. (4.38)

We re-index the last sum with k = n + 2, or n = k− 2, to obtain

0 =
∞

∑
n=2

(
[(k + r)2 − ν2]ck + ck−2

)
xk+r

+(r2 − ν2)c0xr + [(1 + r)2 − ν2]c1xr+1. (4.39)

We again obtain the indicial equation from the k = 0 terms,
r2 − ν2 = 0. The solutions are r = ±ν.

We consider the case r = ν. The k = 1 terms give

0 = [(1 + r)2 − ν2]c1

= [(1 + ν)2 − ν2]c1

= [1 + 2ν]c1
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For 1 + 2ν 6= 0, c1 = 0. [In the next section we consider the case
ν = − 1

2 .]
For k = 2, 3, . . . , we have

[(k + ν)2 − ν2]ck + ck−2 = 0,

or
ck = −

ck−2
k(k + 2ν)

.

Noting that ck = 0, k = 1, 3, 5, . . . , we evaluate a few of the nonzero
coefficients:

k = 2 : c2 = − 1
2(2 + 2ν)

c0 = − 1
4(ν + 1)

c0.

k = 4 : c4 = − 1
4(4 + 2ν)

c2 = − 1
8(ν + 2)

c2 =
1

24(2)(ν + 2)(ν + 1)
c0.

k = 6 : c6 = − 1
6(6 + 2ν)

c4 = − 1
12(ν + 3)

c4

= − 1
26(6)(ν + 3))(ν + 2)(ν + 1)

c0.

Continuing long enough, we see a pattern emerge,

c2n =
(−1)n

22nn!(ν + 1)(ν + 2) · · · (ν + n)
, n = 1, 2, . . . .

The solution is given by

y(x) = c0

∞

∑
n=0

(−1)n

22nn!(ν + 1)(ν + 2) · · · (ν + n)
x2n+ν.

As we will see later, picking the right value of c0, this gives the Bessel
function of the first kind of order ν provided ν is not a negative integer.

The case r = −ν is similar. The k = 1 terms give

0 = [(1 + r)2 − ν2]c1

= [(1− ν)2 − ν2]c1

= [1− 2ν]c1

For 1− 2ν 6= 0, c1 = 0. [In the next section we consider the case ν = 1
2 .]

For k = 2, 3, . . . , we have

[(k− ν)2 − ν2]ck + ck−2 = 0,

or
ck =

ck−2
k(2ν− k)

.

Noting that ck = 0, k = 1, 3, 5, . . . , we evaluate a few of the nonzero
coefficients:

k = 2 : c2 =
1

2(2ν− 2)
c0 =

1
4(ν− 1)

c0.
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k = 4 : c4 =
1

4(2ν− 4)
c2 =

1
8(ν− 2)

c2 =
1

24(2)(ν− 2)(ν− 1)
c0.

k = 6 : c6 =
1

6(2ν− 6)
c4 =

1
12(ν− 3)

c4

=
1

26(6)(ν− 3))(ν− 2)(ν− 1)
c0.

Continuing long enough, we see a pattern emerge,

c2n =
1

22nn!(ν− 1)(ν− 2) · · · (ν− n)
, n = 1, 2, . . . .

The solution is given by

y(x) = c0

∞

∑
n=0

1
22nn!(ν− 1)(ν− 2) · · · (ν− n)

x2n+ν

provided ν is not a positive integer. The example ν = 1 is investigated
in the next section.

4.4.2 Roots of the Indicial Equation

In this section we will consider the types of solutions one can obtain
of the differential equation,

y′′(x) + a(x)y′(x) + b(x)y(x) = 0,

when x = 0 is a regular singular point. In this case, we assume that xa(x)
and x2b(x) have the convergent Maclaurin series expansions

xa(x) = a0 + a1x + a2x2 + . . .

x2b(x) = b0 + b1x + b2x2 + . . . . (4.40)

Using the Frobenius Method, we assume y(x) and its derivatives are of
the form

y(x) =
∞

∑
n=0

cnxn+r,

y′(x) =
∞

∑
n=0

cn(n + r)xn+r−1,

y′′(x) =
∞

∑
n=0

cn(n + r)(n + r− 1)xn+r−2. (4.41)

Inserting these series into the differential equation, we obtain

∞

∑
n=0

cn

[
(n + r)(n + r− 1) + (n + r)xa(x) + x2b(x)

]
xn+r−2 = 0.

Using the expansions for xa(x) and x2b(x), we note that the lowest power
of x is n + r− 2 when n = 0. The coefficient for the n = 0 term must vanish:

c0 [r(r− 1) + a0r + b0] = 0.
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Assuming that c0 6= 0, we have the indicial equation

r(r− 1) + a0r + b0 = 0.

The roots of the indicial equation determine the type of behavior of the
solution. This amounts to considering three different cases. Let the roots of
the equation be r1 and r2. Then,

i. Distinct roots with r1 − r2 6= integer.

In this case we have two linearly independent solutions,

y1(x) = |x|r1
∞

∑
n=0

cnxn, c0 = 1,

y2(x) = |x|r2
∞

∑
n=0

dnxn, d0 = 1.

ii. Equal roots: r1 = r2 = r.

The form for y1(x) is the same, but one needs to use the Method of
Reduction of Order to seek the second linearly independent solution.

y1(x) = |x|r
∞

∑
n=0

cnxn, c0 = 1,

y2(x) = |x|r
∞

∑
n=0

dnxn + y1(x) ln |x|, d0 = 1.

iii. Distinct roots with r1 − r2 = positive integer.

Just as in the last case, one needs to find a second linearly independent
solution.

y1(x) = |x|r1
∞

∑
n=0

cnxn, c0 = 1,

y2(x) = |x|r2
∞

∑
n=0

dnxn + αy1(x) ln |x|, d0 = 1.

The constant α can be subsequently determined and in some cases might
vanish.

For solutions near regular singular points, x = x0, one has a similar set
of cases but for expansions of the form y1(x) = |x− x0|r1 ∑∞

n=0 cn(x− x0)
n.

Example 4.11. x2y′′ + xy′ +
(

x2 − 1
4

)
y = 0.

In this example x = 0 is a singular point. We have a(x) = 1/x and
b(x) = (x2 − 1/4)/x2. Thus,

xa(x) = 1,

x2b(x) = x2 − 1
4

.

So, a0 = 1 and b0 = − 1
4 . The indicial equation becomes

r(r− 1) + r− 1
4
= 0.
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Simplifying, we have 0 = r2 − 1
4 , or r = ± 1

2 .
For r = + 1

2 , we insert the series y(x) =
√

x ∑∞
n=0 cnxn into the

differential equation, collect like terms by re-indexing, and find

0 =
∞

∑
n=0

cn

[
(n +

1
2
)(n− 1

2
) + (n +

1
2
) + x2 − 1

4

]
xn− 3

2

=
∞

∑
n=0

cn

[
n2 + n + x2

]
xn− 3

2

=

[
∞

∑
n=0

n(n + 1)cnxn +
∞

∑
n=0

cnxn+2

]
x−

3
2

=

[
∞

∑
k=0

k(k + 1)ckxk +
∞

∑
n=2

ck−2xk

]
x−

3
2

= 2c1x +
∞

∑
n=2

[k(k + 1)ck + ck−2] xk− 3
2 (4.42)

This gives c1 = 0 and

ck = −
1

k(k + 1)
ck−2, k ≥ 2.

Iterating, we have ck = 0 for k odd and

k = 2 : c2 = − 1
3!

c0.

k = 4 : c4 = − 1
20

c2 =
1
5!

c0.

k = 6 : c6 = − 1
42

c4 =
1
7!

c0.

This gives

y1(x) =
√

x
∞

∑
n=0

cnxn

=
√

x
(

c0 −
1
3!

c0x2 +
1
5!

c0x4 − . . .
)

=
c0√

x

(
x− 1

3!
x3 +

1
5!

x5 − . . .
)
=

c0√
x

sin x.

Similarly, for for r = − 1
2 , one obtains the second solution, y2(x) =

d0√
x cos x. Setting c + 0 = 1 and d0 = 1, give the two linearly inde-

pendent solutions. This differential equation is the Bessel equation of
order one half and the solutions are Bessel functions of order one half:

J 1
2
(x) =

√
2

πx
sin x, x > 0,

J− 1
2
(x) =

√
2

πx
cos x, x > 0.

Example 4.12. x2y′′ + 3xy′ + (1− 2x)y = 0, x > 0.



156 differential equations

For this problem xa(x) = 3 and x2b(x) = 1− 2x. Thus, the indicial
equation is

0 = r(r− 1) + 3r + 1 = (r + 1)2.

This is a case with two equal roots, r = −1. A solution of the form

y(x) =
∞

∑
n=0

cnxn+r

will only result in one solution. We will use this solution form to arrive
at a second linearly independent solution.

We will not insert r = −1 into the solution form yet. Writing the
differential equation in operator form, L[y] = 0, we have

L[y] = x2y′′ + 3xy′ + (1− 2x)y

= x2
∞

∑
n=0

cn(n + r)(n + r− 1)xn+r−2 + 3x
∞

∑
n=0

cn(n + r)xn+r−1

+(1− 2x)
∞

∑
n=0

cnxn+r

=
∞

∑
n=0

[(n + r)(n + r− 1) + 2(n + r) + 1]cnxn+r −
∞

∑
n=0

2cnxn+r+1

=
∞

∑
n=0

(n + r + 1)2cnxn+r −
∞

∑
n=1

2cn−1xn+r.

Setting the coefficients of like terms equal to zero for n ≥ 1, we have

cn =
2

(n + r + 1)2 an−1, n ≥ 1.

Iterating, we find

cn =
2n

[(r + 2)(r + 3) · · · (r + n + 1)]2
c0, n ≥ 1.

Setting c0 = 1, we have the expression

y(x, r) = xr +
∞

∑
n=1

2n

[(r + 2)(r + 3) · · · (r + n + 1)]2
xn+r.

This is not a solution of the differential equation because we did not
use the root r = −1. Instead, we have

L[y(x, c)] = (r + 1)2xr (4.43)

from the n = 0 term. If r = −1, then y(x,−1) is one solution of the
differential equation. Namely,

y1(x) = x−1 +
∞

∑
n=1

cn(−1)xn−1.

Now consider what happens if we differentiate Equation (4.43) with
respect to r:

∂

∂r
L[y(x, r)] =

[
∂y(x, r)

∂r

]
= 2(r + 1)xr + (r + 1)2xr ln x, x > 0.
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Therefore, ∂y(x,r)
∂r is also a solution to the differential equation when

r = −1.
Since

y(x, r) = xr +
∞

∑
n=1

cn(r)xn+r,

we have

∂y(x, r)
∂r

= xr ln x +
∞

∑
n=1

cn(r)xn+r ln x +
∞

∑
n=1

c′n(r)xn+r

= y(x, r) ln x +
∞

∑
n=1

c′n(r)xn+r. (4.44)

Therefore, the second solution is given by

y2(x) =
∂y(x, r)

∂r

∣∣∣
r=−1

= y(x,−1) ln x +
∞

∑
n=1

c′n(−1)xn−1.

In order to determine the solutions, we need to evaluate cn(−1) and
c′n(−1). Recall that (setting c0 = 1)

cn(r) =
2n

[(r + 2)(r + 3) · · · (r + n + 1)]2
, n ≥ 1.

Therefore,

cn(−1) =
2n

[(1)(2) · · · (n)]2 , n ≥ 1,

=
2n

(n!)2 . (4.45)

Next we compute c′n(−1). This can be done using logarithmic dif-
ferentiation. We consider

ln cn(r) = ln
(

2n

[(r + 2)(r + 3) · · · (r + n + 1)]2

)
= ln 2n − 2 ln(r + 2)− 2 ln(r + 3) · · · − 2 ln(r + n + 1).

Differentiating with respect to r and evaluating at r = −1, we have

c′n(r)
cn(r)

= −2
(

1
r + 2

+
1

r + 2
+ · · ·+ 1

r + 3

)
c′n(r) = −2cn(r)

(
1

r + 2
+

1
r + 3

+ · · ·+ 1
r + n + 1

)
.

c′n(−1) = −2cn(−1)
(

1
1
+

1
2
+ · · ·+ 1

n

)
= − 2n+1

(n!)2 Hn, (4.46)

where we have defined

Hn =
1
1
+

1
2
+ · · ·+ 1

n
=

n

∑
k=1

1
k

.



158 differential equations

This gives the second solution as

y2(x) = y1(x) ln x−
∞

∑
n=1

2n+1

(n!)2 Hnxn−1.

Example 4.13. x2y′′ + xy′ + (x2 − 1)y = 0.
This equation is similar to the last example, but it is the Bessel

equation of order one. The indicial equation is given by

0 = r(r− 1) + r− 1 = r2 − 1.

The roots are r1 = 1, r2 = −1. In this case the roots differ by an integer,
r1 − r2 = 2.

The first solution can be obtained using

y(x) =
∞

∑
n=0

cnxn+1,

y′(x) =
∞

∑
n=0

cn(n + 1)xn,

y′′(x) =
∞

∑
n=0

cn(n + 1)(n)xn−1. (4.47)

Inserting these series into the differential equation, we have

0 = x2y′′ + xy′ + (x2 − 1)y

= x2
∞

∑
n=0

cnn(n + 1)xn−1 + x
∞

∑
n=0

cn(n + 1)xn

+(x2 − 1)
∞

∑
n=0

cnxn+1

=
∞

∑
n=0

cnn(n + 1)xn+1 +
∞

∑
n=0

cn(n + 1)xn+1

∞

∑
n=0

cnxn+3 −
∞

∑
n=0

cnxn+1

=
∞

∑
n=0

[n(n + 1) + (n + 1)− 1]cnxn+1 +
∞

∑
n=0

cnxn+3

=
∞

∑
n=0

[(n + 1)2 − 1]cnxn+1 +
∞

∑
n=0

cnxn+3. (4.48)

We re-index the last sum with k = n + 2, or n = k− 2, to obtain
∞

∑
n=2

(
[(k + 1)2 − 1]ck + ck−2

)
xk+1 + 3c1x2 = 0.

Thus, c1 = 0 and

ck = −
1

(k + 1)2 − 1
ck−2 = − 1

k(k + 2)
ck−2, k ≥ 2.

Since c1 = 0, all ck’s vanish for odd k. For k = 2n, we have

c2n = − 1
2n(2n + 2)

c2n−2 = − 1
4n(n + 1)

c2(n−1), n ≥ 1.
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n = 1 : c2 = − 1
4(1)(2)

c0.

n = 2 : c4 = − 1
4(2)(3)

c2 =
1

422!3!
c0.

n = 3 : c6 = − 1
4(3)(4)

c4 =
1

433!4!
c0.

Continuing, this gives

c2n =
(−1)n

4nn!(n + 1)!
c0

and the first solution is

y1(x) = c0

∞

∑
n=0

(−1)n

4nn!(n + 1)!
x2n+1.

Now we look for a second linearly independent solution of the form

y2(x) =
∞

∑
n=0

dnxn−1 + αy1(x) ln x, x > 0.

The function and its derivatives are given by

y2(x) =
∞

∑
n=0

dnxn−1 + αy1(x) ln x,

y′2(x) =
∞

∑
n=0

(n− 1)dnxn−2 + α[y′1(x) ln x + y1(x)x−1],

y′′2 (x) =
∞

∑
n=0

(n− 1)dn(n− 2)xn−3

+α[y′′1 (x) ln x + 2y′1(x)x−1 − y1(x)x−2].

Inserting these series into the differential equation, we have

0 = x2y′′2 + xy′2 + (x2 − 1)y2

= x2
∞

∑
n=0

(n− 1)(n− 2)dnxn−3

+αx2[y′′1 (x) ln x + 2y′1(x)x−1 − y1(x)x−2]

+x
∞

∑
n=0

(n− 1)dnxn−2 + αx[y′1(x) ln x + y1(x)x−1]

+(x2 − 1)

[
∞

∑
n=0

dnxn−1 + αy1(x) ln x

]

=
∞

∑
n=0

[(n− 1)(n− 2) + (n− 1)− 1]dnxn−1 +
∞

∑
n=0

dnxn+1

+α[x2y′′1 (x) + xy′1(x) + (x2 − 1)y1(x)] ln x

+α[2xy′1(x)− y1(x)] + αy1(x)

=
∞

∑
n=0

n(n− 2)dnxn−1 +
∞

∑
n=0

dnxn+1 + 2αxy′1(x).

=
∞

∑
n=0

n(n− 2)dnxn−1 +
∞

∑
n=0

dnxn+1 + 2α
∞

∑
n=0

(−1)n(2n + 1)
4n(n + 1)!n!

x2n+1.
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We now try to combine like powers of x. First, we combine the
terms involving dn’s,

−d1 + d0x +
∞

∑
k=3

[k(k− 2)dk + dk−2]xk−1 = −2α
∞

∑
n=0

(−1)n(2n + 1)
4nn!(n + 1)!

x2n+1.

Since there are no even powers on the right-hand side of the equation,
we find d1 = 0, and k(k− 2)dk + dk−2 = 0, k ≥ 3 and k odd. Therefore,
all odd dk’s vanish.

Next, we set k− 1 = 2n + 1, or k = 2n + 2, in the remaining terms,
obtaining

d0x+
∞

∑
n=1

[(2n+ 2)(2n)d2n+2 + d2n]x2n+1 = −2αx− 2α
∞

∑
n=1

(−1)n(2n + 1)
4n(n + 1)!n!

x2n+1.

Thus, d0 = −2α. We choose α = − 1
2 , making d0 = 1. The remaining

terms satisfy the relation

(2n + 2)(2n)d2n+2 + d2n =
(−1)n(2n + 1)
4nn!(n + 1)!

, n ≥ 1

or

d2n+2 =
d2n

4(n + 1)(n)
+

(−1)n(2n + 1)
(n + 1)(n)4n+1(n + 1)!n!

, n ≥ 1.

d4 = − 1
4(2)(1)

d2 −
3

(2)(1)422!1!

= − 1
422!1!

(
4d2 +

3
2

)
.

d6 = − 1
4(3)(2)

d4 +
5

(3)(2)433!2!

= − 1
4(3)(2)

(
− 1

422!1!

(
4d2 +

3
2

))
+

5
(3)(2)433!2!

=
1

433!2!

(
4d2 +

3
2
+

5
6

)
.

d8 = − 1
4(4)(3)

d6 −
7

(4)(3)444!3!

= − 1
444!3!

(
4d2 +

3
2
+

5
6

)
− 7

(4)(3)444!3!

= − 1
444!3!

(
4d2 +

3
2
+

5
6
+

7
12

)
. (4.49)

Choosing 4d2 = 1, the coefficients take an interesting form. Namely,

1 +
3
2

= 1 +
1
2
+ 1

1 +
3
2
+

5
6

= 1 +
1
2

1
3
+ 1 +

1
2

1 +
3
2
+

5
6
+

7
12

= 1 +
1
2

1
3
+

1
4
+ 1 +

1
2
+

1
3

. (4.50)
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Defining the partial sums of the harmonic series,

Hn =
n

∑
k=1

1
k

, H0 = 0,

these coefficients become Hn + Hn−1 and the coefficients in the expan-
sion are

d2n =
(−1)n−1(Hn + Hn−1)

4nn!(n− 1)!
, n = 1, 2, . . . .

We can verify this by computing d10:

d10 = − 1
4(4)(3)

d8 +
9

(5)(4)455!4!

=
1

455!4!

(
4d2 +

3
2
+

5
6
+

7
12

)
+

9
(5)(4)455!4!

=
1

455!4!

(
4d2 +

3
2
+

5
6
+

7
12

+
9

20

)
=

1
455!4!

(
1 +

1
2
+

1
3
+

1
4
+

1
5
+ 1 +

1
2
+

1
3
+

1
4

)
=

1
455!4!

(H5 + H4) .

This gives the second solution as

y2(x) =
∞

∑
n=1

(−1)n−1(Hn + Hn−1)

4nn!(n− 1)!
x2n−1 − 1

2
y1(x) ln x + x−1.

4.5 Legendre Polynomials

The Legendre
1

polynomials are one of a set of classical orthogonal poly- 1 Adrien-Marie Legendre (1752-1833)
was a French mathematician who
made many contributions to analysis
and algebra.

nomials . These polynomials satisfy a second-order linear differential equa-
tion. This differential equation occurs naturally in the solution of initial-
boundary value problems in three dimensions which possess some spher-
ical symmetry. Legendre polynomials, or Legendre functions of the first
kind, are solutions of the differential equation

(1− x2)y′′ − 2xy′ + n(n + 1)y = 0.

A generalization of the Legendre equa-
tion is given by (1 − x2)y′′ − 2xy′ +[

n(n + 1)− m2

1−x2

]
y = 0. Solutions to

this equation, Pm
n (x) and Qm

n (x), are
called the associated Legendre functions
of the first and second kind.

In Example 4.4 we found that for n an integer, there are polynomial
solutions. The first of these are given by P0(x) = c0, P1(x) = c1x, and
P2(x) = c2(1− 3x2). As the Legendre equation is a linear second-order dif-
ferential equation, we expect two linearly independent solutions. The sec-
ond solution, called the Legendre function of the second kind, is given by
Qn(x) and is not well behaved at x = ±1. For example,

Q0(x) =
1
2

ln
1 + x
1− x

.

We will mostly focus on the Legendre polynomials and some of their prop-
erties in this section.
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4.5.1 Properties of Legendre Polynomials

Legendre polynomials belong to the class of classical orthogonal
polynomials. Members of this class satisfy similar properties. First, we have
the Rodrigues Formula for Legendre polynomials:

Pn(x) =
1

2nn!
dn

dxn (x2 − 1)n, n ∈ N0. (4.51)

The Rodrigues Formula.
From the Rodrigues formula, one can show that Pn(x) is an nth degree

polynomial. Also, for n odd, the polynomial is an odd function and for n
even, the polynomial is an even function.

Example 4.14. Determine P2(x) from the Rodrigues Formula:

P2(x) =
1

222!
d2

dx2 (x2 − 1)2

=
1
8

d2

dx2 (x4 − 2x2 + 1)

=
1
8

d
dx

(4x3 − 4x)

=
1
8
(12x2 − 4)

=
1
2
(3x2 − 1). (4.52)

Note that we get the same result as we found in the last section using
orthogonalization.

Table 4.2: Tabular computation of the
Legendre polynomials using the Ro-
drigues Formula.

n (x2 − 1)n dn

dxn (x2 − 1)n 1
2nn! Pn(x)

0 1 1 1 1

1 x2 − 1 2x 1
2 x

2 x4 − 2x2 + 1 12x2 − 4 1
8

1
2 (3x2 − 1)

3 x6 − 3x4 + 3x2 − 1 120x3 − 72x 1
48

1
2 (5x3 − 3x)

The first several Legendre polynomials are given in Table 4.2. In Figure
4.1 we show plots of these Legendre polynomials.The Three-Term Recursion Formula.

The classical orthogonal polynomials also satisfy a three-term recursion
formula (or, recurrence relation or formula). In the case of the Legendre
polynomials, we have

(n + 1)Pn+1(x) = (2n + 1)xPn(x)− nPn−1(x), n = 1, 2, . . . . (4.53)

This can also be rewritten by replacing n with n− 1 as

(2n− 1)xPn−1(x) = nPn(x) + (n− 1)Pn−2(x), n = 1, 2, . . . . (4.54)

Example 4.15. Use the recursion formula to find P2(x) and P3(x),
given that P0(x) = 1 and P1(x) = x.

We first begin by inserting n = 1 into Equation (4.53):

2P2(x) = 3xP1(x)− P0(x) = 3x2 − 1.
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Figure 4.1: Plots of the Legendre poly-
nomials P2(x), P3(x), P4(x), and P5(x).

So, P2(x) = 1
2 (3x2 − 1).

For n = 2, we have

3P3(x) = 5xP2(x)− 2P1(x)

=
5
2

x(3x2 − 1)− 2x

=
1
2
(15x3 − 9x). (4.55)

This gives P3(x) = 1
2 (5x3 − 3x). These expressions agree with the ear-

lier results.

4.5.2 The Generating Function for Legendre Polynomials

A proof of the three-term recursion formula can be obtained from
the generating function of the Legendre polynomials. Many special func-
tions have such generating functions. In this case, it is given by

g(x, t) =
1√

1− 2xt + t2
=

∞

∑
n=0

Pn(x)tn, |x| ≤ 1, |t| < 1. (4.56)

This generating function occurs often in applications. In particular, it
arises in potential theory, such as electromagnetic or gravitational potentials.
These potential functions are 1

r type functions.

r
2

r
1

r
1

r  -
2

Figure 4.2: The position vectors used to
describe the tidal force on the Earth due
to the moon.

For example, the gravitational potential between the Earth and the moon
is proportional to the reciprocal of the magnitude of the difference between
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their positions relative to some coordinate system. An even better example
would be to place the origin at the center of the Earth and consider the
forces on the non-pointlike Earth due to the moon. Consider a piece of the
Earth at position r1 and the moon at position r2 as shown in Figure 4.2. The
tidal potential Φ is proportional to

Φ ∝
1

|r2 − r1|
=

1√
(r2 − r1) · (r2 − r1)

=
1√

r2
1 − 2r1r2 cos θ + r2

2

,

where θ is the angle between r1 and r2.
Typically, one of the position vectors is much larger than the other. Let’s

assume that r1 � r2. Then, one can write

Φ ∝
1√

r2
1 − 2r1r2 cos θ + r2

2

=
1
r2

1√
1− 2 r1

r2
cos θ +

(
r1
r2

)2
.

Now, define x = cos θ and t = r1
r2

. We then have that the tidal potential is
proportional to the generating function for the Legendre polynomials! So,
we can write the tidal potential as

Φ ∝
1
r2

∞

∑
n=0

Pn(cos θ)

(
r1

r2

)n
.

The first term in the expansion, 1
r2

, is the gravitational potential that gives
the usual force between the Earth and the moon. [Recall that the gravita-
tional potential for mass m at distance r from M is given by Φ = −GMm

r and

that the force is the gradient of the potential, F = −∇Φ ∝ ∇
(

1
r

)
.] The next

terms will give expressions for the tidal effects.
Now that we have some idea as to where this generating function might

have originated, we can proceed to use it. First of all, the generating function
can be used to obtain special values of the Legendre polynomials.

Example 4.16. Evaluate Pn(0) using the generating function. Pn(0) is
found by considering g(0, t). Setting x = 0 in Equation (4.56), we have

g(0, t) =
1√

1 + t2

=
∞

∑
n=0

Pn(0)tn

= P0(0) + P1(0)t + P2(0)t2 + P3(0)t3 + . . . . (4.57)

We can use the binomial expansion to find the final answer. Namely,
we have

1√
1 + t2

= 1− 1
2

t2 +
3
8

t4 + . . . .

Comparing these expansions, we have the Pn(0) = 0 for n odd and for
even integers one can show that2

2 This example can be finished by first
proving that

(2n)!! = 2nn!

and

(2n− 1)!! =
(2n)!
(2n)!!

=
(2n)!
2nn!

.

P2n(0) = (−1)n (2n− 1)!!
(2n)!!

, (4.58)
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where n!! is the double factorial,

n!! =


n(n− 2) . . . (3)1, n > 0, odd,
n(n− 2) . . . (4)2, n > 0, even,
1, n = 0,−1.

.

Example 4.17. Evaluate Pn(−1). This is a simpler problem. In this case
we have

g(−1, t) =
1√

1 + 2t + t2
=

1
1 + t

= 1− t + t2 − t3 + . . . .

Therefore, Pn(−1) = (−1)n.
Proof of the three-term recursion for-
mula using the generating function.Example 4.18. Prove the three-term recursion formula,

(k + 1)Pk+1(x)− (2k + 1)xPk(x) + kPk−1(x) = 0, k = 1, 2, . . . ,

using the generating function.
We can also use the generating function to find recurrence relations.

To prove the three term recursion (4.53) that we introduced above, then
we need only differentiate the generating function with respect to t in
Equation (4.56) and rearrange the result. First note that

∂g
∂t

=
x− t

(1− 2xt + t2)3/2 =
x− t

1− 2xt + t2 g(x, t).

Combining this with

∂g
∂t

=
∞

∑
n=0

nPn(x)tn−1,

we have

(x− t)g(x, t) = (1− 2xt + t2)
∞

∑
n=0

nPn(x)tn−1.

Inserting the series expression for g(x, t) and distributing the sum on
the right side, we obtain

(x− t)
∞

∑
n=0

Pn(x)tn =
∞

∑
n=0

nPn(x)tn−1 −
∞

∑
n=0

2nxPn(x)tn +
∞

∑
n=0

nPn(x)tn+1.

Multiplying out the x− t factor and rearranging, leads to three sepa-
rate sums:

∞

∑
n=0

nPn(x)tn−1 −
∞

∑
n=0

(2n + 1)xPn(x)tn +
∞

∑
n=0

(n + 1)Pn(x)tn+1 = 0. (4.59)

Each term contains powers of t that we would like to combine into
a single sum. This is done by re-indexing. For the first sum, we could
use the new index k = n− 1. Then, the first sum can be written

∞

∑
n=0

nPn(x)tn−1 =
∞

∑
k=−1

(k + 1)Pk+1(x)tk.
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Using different indices is just another way of writing out the terms.
Note that

∞

∑
n=0

nPn(x)tn−1 = 0 + P1(x) + 2P2(x)t + 3P3(x)t2 + . . .

and

∞

∑
k=−1

(k + 1)Pk+1(x)tk = 0 + P1(x) + 2P2(x)t + 3P3(x)t2 + . . .

actually give the same sum. The indices are sometimes referred to as
dummy indices because they do not show up in the expanded expres-
sion and can be replaced with another letter.

If we want to do so, we could now replace all the k’s with n’s. How-
ever, we will leave the k’s in the first term and now re-index the next
sums in Equation (4.59). The second sum just needs the replacement
n = k and the last sum we re-index using k = n + 1. Therefore, Equa-
tion (4.59) becomes

∞

∑
k=−1

(k + 1)Pk+1(x)tk −
∞

∑
k=0

(2k + 1)xPk(x)tk +
∞

∑
k=1

kPk−1(x)tk = 0. (4.60)

We can now combine all the terms, noting the k = −1 term is auto-
matically zero and the k = 0 terms give

P1(x)− xP0(x) = 0. (4.61)

Of course, we know this already. So, that leaves the k > 0 terms:

∞

∑
k=1

[(k + 1)Pk+1(x)− (2k + 1)xPk(x) + kPk−1(x)] tk = 0. (4.62)

Since this is true for all t, the coefficients of the tk’s are zero, or

(k + 1)Pk+1(x)− (2k + 1)xPk(x) + kPk−1(x) = 0, k = 1, 2, . . . .

While this is the standard form for the three-term recurrence relation,
the earlier form is obtained by setting k = n− 1.

There are other recursion relations that we list in the box below. Equation
(4.63) was derived using the generating function. Differentiating it with re-
spect to x, we find Equation (4.64). Equation (4.65) can be proven using the
generating function by differentiating g(x, t) with respect to x and rearrang-
ing the resulting infinite series just as in this last manipulation. This will be
left as Problem 9. Combining this result with Equation (4.63), we can derive
Equations (4.66) and (4.67). Adding and subtracting these equations yields
Equations (4.68) and (4.69).
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Recursion Formulae for Legendre Polynomials for n = 1, 2, . . . .

(n + 1)Pn+1(x) = (2n + 1)xPn(x)− nPn−1(x) (4.63)

(n + 1)P′n+1(x) = (2n + 1)[Pn(x) + xP′n(x)]− nP′n−1(x)

(4.64)

Pn(x) = P′n+1(x)− 2xP′n(x) + P′n−1(x) (4.65)

P′n−1(x) = xP′n(x)− nPn(x) (4.66)

P′n+1(x) = xP′n(x) + (n + 1)Pn(x) (4.67)

P′n+1(x) + P′n−1(x) = 2xP′n(x) + Pn(x). (4.68)

P′n+1(x)− P′n−1(x) = (2n + 1)Pn(x). (4.69)

(x2 − 1)P′n(x) = nxPn(x)− nPn−1(x) (4.70)

Finally, Equation (4.70) can be obtained using Equations (4.66) and (4.67).
Just multiply Equation (4.66) by x,

x2P′n(x)− nxPn(x) = xP′n−1(x).

Now use Equation (4.67), but first replace n with n − 1 to eliminate the
xP′n−1(x) term:

x2P′n(x)− nxPn(x) = P′n(x)− nPn−1(x).

Rearranging gives the Equation (4.70).

Example 4.19. Use the generating function to prove

‖Pn‖2 =
∫ 1

−1
P2

n(x) dx =
2

2n + 1
.

Another use of the generating function is to obtain the normaliza-
tion constant. This can be done by first squaring the generating func-
tion in order to get the products Pn(x)Pm(x), and then integrating over
x. The normalization constant.

Squaring the generating function must be done with care, as we
need to make proper use of the dummy summation index. So, we first
write

1
1− 2xt + t2 =

[
∞

∑
n=0

Pn(x)tn

]2

=
∞

∑
n=0

∞

∑
m=0

Pn(x)Pm(x)tn+m. (4.71)

Integrating from x = −1 to x = 1 and using the orthogonality of the
Legendre polynomials, we have∫ 1

−1

dx
1− 2xt + t2 =

∞

∑
n=0

∞

∑
m=0

tn+m
∫ 1

−1
Pn(x)Pm(x) dx

=
∞

∑
n=0

t2n
∫ 1

−1
P2

n(x) dx. (4.72)
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The integral on the left can be evaluated by first noting∫ dx
a + bx

=
1
b

ln(a + bx) + C.

Then, we have ∫ 1

−1

dx
1− 2xt + t2 =

1
t

ln
(

1 + t
1− t

)
.

Expanding this expression about t = 0, we obtain33 You will need the series expansion

ln(1 + x) =
∞

∑
n=1

(−1)n+1 xn

n

= x− x2

2
+

x3

3
− · · · .

1
t

ln
(

1 + t
1− t

)
=

∞

∑
n=0

2
2n + 1

t2n.

Comparing this result with Equation (4.72), we find that

‖Pn‖2 =
∫ 1

−1
P2

n(x) dx =
2

2n + 1
. (4.73)

Finally, we can use the properties of the Legendre polynomials to obtain
the Legendre differential equation. We begin by differentiating Equation
(4.70) and using Equation (4.66) to simplify:

d
dx

(
(x2 − 1)P′n(x)

)
= nPn(x) + nxP′n(x)− nP′n−1(x)

= nPn(x) + n2Pn(x)

= n(n + 1)Pn(x). (4.74)

4.6 Bessel Functions

Bessel functions arise in many problems in physics possessing cylin-
drical symmetry, such as the vibrations of circular drumheads and the radial
modes in optical fibers. They also provide us with another orthogonal set
of basis functions.

The first occurrence of Bessel functions (zeroth order) was in the workBessel functions have a long history
and were named after Friedrich Wilhelm
Bessel (1784-1846).

of Daniel Bernoulli on heavy chains (1738). More general Bessel functions
were studied by Leonhard Euler in 1781 and in his study of the vibrating
membrane in 1764. Joseph Fourier found them in the study of heat conduc-
tion in solid cylinders and Siméon Poisson (1781-1840) in heat conduction
of spheres (1823).

The history of Bessel functions, did not just originate in the study of the
wave and heat equations. These solutions originally came up in the study
of the Kepler problem, describing planetary motion. According to G. N.
Watson in his Treatise on Bessel Functions, the formulation and solution of
Kepler’s Problem was discovered by Joseph-Louis Lagrange (1736-1813), in
1770. Namely, the problem was to express the radial coordinate and what
is called the eccentric anomaly, E, as functions of time. Lagrange found
expressions for the coefficients in the expansions of r and E in trigonometric
functions of time. However, he only computed the first few coefficients. In
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1816, Friedrich Wilhelm Bessel (1784-1846) had shown that the coefficients
in the expansion for r could be given an integral representation. In 1824, he
presented a thorough study of these functions, which are now called Bessel
functions.

You might have seen Bessel functions in a course on differential equations
as solutions of the differential equation

x2y′′ + xy′ + (x2 − p2)y = 0. (4.75)

Solutions to this equation are obtained in the form of series expansions.
Namely, one seeks solutions of the form

y(x) =
∞

∑
j=0

ajxj+n

by determining the form the coefficients must take. We will leave this for a
homework exercise and simply report the results.

One solution of the differential equation is the Bessel function of the first
kind of order p, given as

y(x) = Jp(x) =
∞

∑
n=0

(−1)n

Γ(n + 1)Γ(n + p + 1)

( x
2

)2n+p
. (4.76)

Here Γ(x) s the Gamma function, satisfying Γ(x + 1) = xΓ(x). It is a gener-
alization of the factorial and is discussed in the next section.
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Figure 4.3: Plots of the Bessel functions
J0(x), J1(x), J2(x), and J3(x).

In Figure 4.3, we display the first few Bessel functions of the first kind
of integer order. Note that these functions can be described as decaying
oscillatory functions.

A second linearly independent solution is obtained for p not an integer as
J−p(x). However, for p an integer, the Γ(n+ p+ 1) factor leads to evaluations
of the Gamma function at zero, or negative integers, when p is negative.
Thus, the above series is not defined in these cases.



170 differential equations

Another method for obtaining a second linearly independent solution is
through a linear combination of Jp(x) and J−p(x) as

Np(x) = Yp(x) =
cos πpJp(x)− J−p(x)

sin πp
. (4.77)

These functions are called the Neumann functions, or Bessel functions of
the second kind of order p.

Figure 4.4: Plots of the Neumann func-
tions N0(x), N1(x), N2(x), and N3(x).
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In Figure 4.4, we display the first few Bessel functions of the second kind
of integer order. Note that these functions are also decaying oscillatory
functions. However, they are singular at x = 0.

In many applications, one desires bounded solutions at x = 0. These
functions do not satisfy this boundary condition. For example, one stan-
dard problem is to describe the oscillations of a circular drumhead. For
this problem one solves the two dimensional wave equation using separa-
tion of variables in cylindrical coordinates. The radial equation leads to a
Bessel equation. The Bessel function solutions describe the radial part of
the solution and one does not expect a singular solution at the center of
the drum. The amplitude of the oscillation must remain finite. Thus, only
Bessel functions of the first kind can be used.

Bessel functions satisfy a variety of properties, which we will only list
at this time for Bessel functions of the first kind. The reader will have the
opportunity to prove these for homework.

Derivative Identities These identities follow directly from the manipula-
tion of the series solution.

d
dx
[
xp Jp(x)

]
= xp Jp−1(x). (4.78)

d
dx
[
x−p Jp(x)

]
= −x−p Jp+1(x). (4.79)
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Recursion Formulae The next identities follow from adding, or subtract-
ing, the derivative identities.

Jp−1(x) + Jp+1(x) =
2p
x

Jp(x). (4.80)

Jp−1(x)− Jp+1(x) = 2J′p(x). (4.81)

Orthogonality One can recast the Bessel equation into an eigenvalue
problem whose solutions form an orthogonal basis of functions on L2

x(0, a).
Using Sturm-Liouville Theory, one can show that

∫ a

0
xJp(jpn

x
a
)Jp(jpm

x
a
) dx =

a2

2
[

Jp+1(jpn)
]2

δn,m, (4.82)

where jpn is the nth root of Jp(x), Jp(jpn) = 0, n = 1, 2, . . . . A list of some
of these roots is provided in Table 4.3.

n m = 0 m = 1 m = 2 m = 3 m = 4 m = 5
1 2.405 3.832 5.136 6.380 7.588 8.771

2 5.520 7.016 8.417 9.761 11.065 12.339

3 8.654 10.173 11.620 13.015 14.373 15.700

4 11.792 13.324 14.796 16.223 17.616 18.980

5 14.931 16.471 17.960 19.409 20.827 22.218

6 18.071 19.616 21.117 22.583 24.019 25.430

7 21.212 22.760 24.270 25.748 27.199 28.627

8 24.352 25.904 27.421 28.908 30.371 31.812

9 27.493 29.047 30.569 32.065 33.537 34.989

Table 4.3: The zeros of Bessel Functions,
Jm(jmn) = 0.

Generating Function

ex(t− 1
t )/2 =

∞

∑
n=−∞

Jn(x)tn, x > 0, t 6= 0. (4.83)

Integral Representation

Jn(x) =
1
π

∫ π

0
cos(x sin θ − nθ) dθ, x > 0, n ∈ Z. (4.84)

4.7 Gamma Function

A function that often occurs in the study of special functions

is the Gamma function. We will need the Gamma function in the next
section on Fourier-Bessel series.

The name and symbol for the Gamma
function were first given by Legendre in
1811. However, the search for a gener-
alization of the factorial extends back to
the 1720’s when Euler provided the first
representation of the factorial as an infi-
nite product, later to be modified by oth-
ers like Gauß, Weierstraß, and Legendre.

For x > 0 we define the Gamma function as

Γ(x) =
∫ ∞

0
tx−1e−t dt, x > 0. (4.85)
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The Gamma function is a generalization of the factorial function and a plot
is shown in Figure 4.5. In fact, we have

Γ(1) = 1

and
Γ(x + 1) = xΓ(x).

The reader can prove this identity by simply performing an integration by
parts. (See Problem 13.) In particular, for integers n ∈ Z+, we then have

Γ(n + 1) = nΓ(n) = n(n− 1)Γ(n− 2) = n(n− 1) · · · 2Γ(1) = n!.

–6

–4

–2

2

4

1 2 3 4–1–2–3–4–6

x

Figure 4.5: Plot of the Gamma function.

We can also define the Gamma function for negative, non-integer values
of x. We first note that by iteration on n ∈ Z+, we have

Γ(x + n) = (x + n− 1) · · · (x + 1)xΓ(x), x + n > 0.

Solving for Γ(x), we then find

Γ(x) =
Γ(x + n)

(x + n− 1) · · · (x + 1)x
, −n < x < 0.

Note that the Gamma function is undefined at zero and the negative inte-
gers.

Example 4.20. We now prove that

Γ
(

1
2

)
=
√

π.

This is done by direct computation of the integral:

Γ
(

1
2

)
=
∫ ∞

0
t−

1
2 e−t dt.

Letting t = z2, we have

Γ
(

1
2

)
= 2

∫ ∞

0
e−z2

dz.

Due to the symmetry of the integrand, we obtain the classic inte-
gral44 Using a substitution x2 = βy2, we can

show the more general result:∫ ∞

−∞
e−βy2

dy =

√
π

β
.

Γ
(

1
2

)
=
∫ ∞

−∞
e−z2

dz,

which can be performed using a standard trick. Consider the integral

I =
∫ ∞

−∞
e−x2

dx.

Then,

I2 =
∫ ∞

−∞
e−x2

dx
∫ ∞

−∞
e−y2

dy.

Note that we changed the integration variable. This will allow us to
write this product of integrals as a double integral:

I2 =
∫ ∞

−∞

∫ ∞

−∞
e−(x2+y2) dxdy.
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This is an integral over the entire xy-plane. We can transform this
Cartesian integration to an integration over polar coordinates. The
integral becomes

I2 =
∫ 2π

0

∫ ∞

0
e−r2

rdrdθ.

This is simple to integrate and we have I2 = π. So, the final result is
found by taking the square root of both sides:

Γ
(

1
2

)
= I =

√
π.

In Problem 15, the reader will prove the more general identity

Γ(n +
1
2
) =

(2n− 1)!!
2n

√
π.

Another useful relation, which we only state, is

Γ(x)Γ(1− x) =
π

sin πx
.

The are many other important relations, including infinite products, which
we will not need at this point. The reader is encouraged to read about
these elsewhere. In the meantime, we move on to the discussion of another
important special function in physics and mathematics.

4.8 Hypergeometric Functions

Hypergeometric functions are probably the most useful, but least under-
stood, class of functions. They typically do not make it into the under-
graduate curriculum and seldom in graduate curriculum. Most functions
that you know can be expressed using hypergeometric functions. There are
many approaches to these functions and the literature can fill books. 5 5 See for example Special Functions by G.

E. Andrews, R. Askey, and R. Roy, 1999,
Cambridge University Press.

In 1812 Gauss published a study of the hypergeometric series

y(x) = 1 +
αβ

γ
x +

α(1 + α)β(1 + β)

2!γ(1 + γ)
x2

+
α(1 + α)(2 + α)β(1 + β)(2 + β)

3!γ(1 + γ)(2 + γ)
x3 + . . . . (4.86)

Here α, β, γ, and x are real numbers. If one sets α = 1 and β = γ, this series
reduces to the familiar geometric series

y(x) = 1 + x + x2 + x3 + . . . .

The hypergeometric series is actually a solution of the differential equa-
tion

x(1− x)y′′ + [γ− (α + β + 1)x] y′ − αβy = 0. (4.87)

This equation was first introduced by Euler and latter studied extensively
by Gauss, Kummer and Riemann. It is sometimes called Gauss’ equation.
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Note that there is a symmetry in that α and β may be interchanged without
changing the equation. The points x = 0 and x = 1 are regular singular
points. Series solutions may be sought using the Frobenius method. It can
be confirmed that the above hypergeometric series results.

A more compact form for the hypergeometric series may be obtained by
introducing new notation. One typically introduces the Pochhammer symbol,
(α)n, satisfying

i. (α)0 = 1 if α 6= 0.

ii (α)k = α(1 + α) . . . (k− 1 + α), for k = 1, 2, . . ..

This symbol was introduced by Leo August Pochhammer (1841-1920).
Consider (1)n. For n = 0, (1)0 = 1. For n > 0,

(1)n = 1(1 + 1)(2 + 1) . . . [(n− 1) + 1].

This reduces to (1)n = n!. In fact, one can show that

(k)n =
(n + k− 1)!
(k− 1)!

for k and n positive integers. In fact, one can extend this result to noninteger
values for k by introducing the gamma function:

(α)n =
Γ(α + n)

Γ(α)
.

We can now write the hypergeometric series in standard notation as

2F1(α, β; γ; x) =
∞

∑
n=0

(α)n(β)n

n!(γ)n
xn.

For γ > β > 0, one can express the hypergeometric function as an integral:

2F1(α, β; γ; x) =
Γ(γ)

Γ(β)Γ(γ− β)

∫ 1

0
tβ−1(1− t)γ−β−1(1− tx)−α dt.

Using this notation, one can show that the general solution of Gauss’
equation is

y(x) = A 2F1(α, β; γ; x) + Bx1−γ
2F1(1− γ + α, 1− γ + β; 2− γ; x).

By carefully letting β approach ∞, one obtains what is called the confluent
hypergeometric function. This in effect changes the nature of the differential
equation. Gauss’ equation has three regular singular points at x = 0, 1, ∞.
One can transform Gauss’ equation by letting x = u/β. This changes the
regular singular points to u = 0, β, ∞. Letting β → ∞, two of the singular
points merge.

The new confluent hypergeometric function is then given as

1F1(α; γ; u) = lim
β→∞

2F1

(
α, β; γ;

u
β

)
.
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This function satisfies the differential equation

xy′′ + (γ− x)y′ − αy = 0.

The purpose of this section is only to introduce the hypergeometric func-
tion. Many other special functions are related to the hypergeometric func-
tion after making some variable transformations. For example, the Legendre
polynomials are given by

Pn(x) =2 F1(−n, n + 1; 1;
1− x

2
).

In fact, one can also show that

sin−1 x = x2F1

(
1
2

,
1
2

;
3
2

; x2
)

.

The Bessel function Jp(x) can be written in terms of confluent geometric
functions as

Jp(x) =
1

Γ(p + 1)

( z
2

)p
e−iz

1F1

(
1
2
+ p, 1 + 2p; 2iz

)
.

These are just a few connections of the powerful hypergeometric functions
to some of the elementary functions that you know.
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Problems

1. Find the first four terms in the Taylor series expansion of the solution to

a. y′(x) = y(x)− x, y(0) = 2.

b. y′(x) = 2xy(x)− x3, y(0) = 1.

c. (1 + x)y′(x) = py(x), y(0) = 1.

d. y′(x) =
√

x2 + y2(x), y(0) = 1.

e. y′′(x)− 2xy′(x) + 2y(x) = 0, y(0) = 1, y′(0) = 0.

2. Use the power series method to obtain power series solutions about the
given point.

a. y′ = y− x, y(0) = 2, x0 = 0.

b. (1 + x)y′(x) = py(x), x0 = 0.

c. y′′ + 9y = 0, y(0) = 1, y′(0) = 0, x0 = 0.

d. y′′ + 2x2y′ + xy = 0, x0 = 0.

e. y′′ − xy′ + 3y = 0, y(0) = 2, x0 = 0.

f. xy′′ − xy′ + y = ex, y(0) = 1, y′(0) = 2, x0 = 0.

g. x2y′′ − xy′ + y = 0, x0 = 1.

3. In Example 4.3 we found the general Maclaurin series solution to

y′′ − xy′ − y = 0.

a. Show that one solution of this problem is y1(x) = ex2/2.

b. Find the first five nonzero terms of the Maclaurin series expansion
for y1(x) and

c. According to Maple, a second solution is erf
(

x√
2

)
ex2/2. Use the

Method of Reduction of Order to find this second linearly inde-
pendent solution. Note: The error function is defined as

erf(x) =
2√
π

∫ x

0
e−t2

dt.

d. Verify that this second solution is consistent with the solution
found in Example 4.3.

4. Find at least one solution about the singular point x = 0 using the
power series method. Determine the second solution using the method of
reduction of order.

a. x2y′′ + 2xy′ − 2y = 0.

b. xy′′ + (1− x)y′ − y = 0.

c. x2y′′ − x(1− x)y′ + y = 0.



series solutions 177

5. List the singular points in the finite plane of the following:

a. (1− x2)y′′ +
3

x + 2
y′ +

(1− x)2

x + 3
y = 0.

b.
1
x

y′′ +
3(x− 4)

x + 6
y′ +

x2(x− 2)
x− 1

y = 0.

c. y′′ + xy = 0.

d. x2(x− 2)y′′ + 4(x− 2)y′ + 3y = 0.

6. Sometimes one is interested in solutions for large x. This leads to the
concept of the point at infinity.

a. Let z = 1
x and y(x) = v(z). Using the Chain Rule, show that

dy
dx

= −z2 dv
dz

,

d2y
dx2 = z4 d2v

dz2 + 2z2 dv
dz

.

b. Use the transformation in part (a) to transform the differential
equation x2y′′ + y = 0 into an equation for w(z) and classify the
point at infinity by determining if w = 0 is an ordinary point, a
regular singular point, or an irregular singular point.

c. Classify the point at infinity for the following equations:

i. y′′ + xy = 0.

ii. x2(x− 2)y′′ + 4(x− 2)y′ + 3y = 0.

7. Find the general solution of the following equations using the Method
of Frobenius at x = 0.

a. 4xy′′ + 2y′ + y = 0.

b. y′′ +
1

4x2 y = 0.

c. xy′′ + 2y′ + xy = 0.

d. y′′ +
1

2x
y′ − x + 1

2x2 y = 0.

d. 4x2y′′ + 4xy′ + (4x2 − 1)y = 0.

e. 2x(x + 1)y′′ + 3(x + 1)y′ − y = 0.

f. x2y′′ − x(1 + x)y′ + y = 0.

g. xy′′ − (4 + x)y′ + 2y = 0.

8. Find P4(x) using

a. The Rodrigues Formula in Equation (4.51).

b. The three-term recursion formula in Equation (4.53).



178 differential equations

9. In Equations (4.63) through (4.70) we provide several identities for Leg-
endre polynomials. Derive the results in Equations (4.64) through (4.70) as
described in the text. Namely,

a. Differentiating Equation (4.63) with respect to x, derive Equation
(4.64).

b. Derive Equation (4.65) by differentiating g(x, t) with respect to x
and rearranging the resulting infinite series.

c. Combining the previous result with Equation (4.63), derive Equa-
tions (4.66) and (4.67).

d. Adding and subtracting Equations (4.66) and (4.67), obtain Equa-
tions (4.68) and (4.69).

e. Derive Equation (4.70) using some of the other identities.

10. Use the recursion relation (4.53) to evaluate
∫ 1
−1 xPn(x)Pm(x) dx, n ≤ m.

11. Consider the Hermite equation

y′′ − 2xy′ + 2ny = 0.

Determine the recursion formula for the coefficients in a series solution,
y(x) = ∑∞

k=0 ckxk. Show that if n is an integer, then one of the linearly
independent solutions is a polynomial.

12. Using the power series method to find the general solution of Airy’s
equation,

y′′ − xy = 0.

13. Use integration by parts to show Γ(x + 1) = xΓ(x).

14. Prove the double factorial identities:

(2n)!! = 2nn!

and

(2n− 1)!! =
(2n)!
2nn!

.

15. Using the property Γ(x + 1) = xΓ(x), x > 0, and Γ
(

1
2

)
=
√

π, prove
that

Γ(n +
1
2
) =

(2n− 1)!!
2n

√
π.

16. Express the following as Gamma functions. Namely, noting the form
Γ(x + 1) =

∫ ∞
0 txe−t dt and using an appropriate substitution, each expres-

sion can be written in terms of a Gamma function.

a.
∫ ∞

0
x2/3e−x dx.

b.
∫ ∞

0
x5e−x2

dx.

c.
∫ 1

0

[
ln
(

1
x

)]n
dx.
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17. A solution of Bessel’s equation, x2y′′ + xy′ + (x2 − n2)y = 0, , can
be found using the guess y(x) = ∑∞

j=0 ajxj+n. One obtains the recurrence
relation aj = −1

j(2n+j) aj−2. Show that for a0 = (n!2n)−1, we get the Bessel
function of the first kind of order n from the even values j = 2k:

Jn(x) =
∞

∑
k=0

(−1)k

k!(n + k)!

( x
2

)n+2k
.

18. Use the infinite series in Problem 17 to derive the derivative identities
(4.78) and (4.79):

a. d
dx [x

n Jn(x)] = xn Jn−1(x).

b. d
dx [x

−n Jn(x)] = −x−n Jn+1(x).

19. Prove the following identities based on those in Problem 18.

a. Jp−1(x) + Jp+1(x) = 2p
x Jp(x).

b. Jp−1(x)− Jp+1(x) = 2J′p(x).

20. Use the derivative identities of Bessel functions, (4.78) and (4.79), and
integration by parts to show that∫

x3 J0(x) dx = x3 J1(x)− 2x2 J2(x) + C.

21. We can rewrite the series solution for Bessel functions,

Jn(x) =
∞

∑
k=0

(−1)k

k!(n + k)!

( x
2

)n+2k
,

in a form which will allow the order to be non-integer, n = ν, by using the
Gamma function. You will need

Γ
(

k +
1
2

)
=

(2k− 1)!!
2k

√
π

.

a. Extend the series definition of the Bessel function of the first kind
of order ν, Jν(x), for ν ≥ 0 by writing the series solution for y(x)
in Problem 17 using the Gamma function.

b. Extend the series to J−ν(x), for ν ≥ 0. Discuss the resulting series
and what happens when ν is a positive integer.

c. Use these results to obtain the closed form expressions

J1/2(x) =

√
2

πx
sin x,

J−1/2(x) =

√
2

πx
cos x.

d. Use the results in part c with the recursion formula for Bessel
functions,

Jν−1(x) + Jν+1(x) =
2ν

x
Jν(x),

to obtain a closed form for J3/2(x).
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22. Show that setting α = 1 and β = γ in 2F1(α, β; γ; x) leads to the geo-
metric series.

23. Prove the following:

a. (a)n = (a)n−1(a + n− 1), n = 1, 2, . . . , a 6= 0.

b. (a)n = a(a + 1)n−1, n = 1, 2, . . . , a 6= 0.

24. Verify the following relations by transforming the hypergeometric equa-
tion into the equation satisfied by each function.

a. Pn(x) =2 F1(−n, n + 1; 1; 1−x
2 ).

b. sin−1 x = x2F1

(
1
2 , 1

2 ; 3
2 ; x2

)
.

c. Jp(x) =
1

Γ(p + 1)

( z
2

)p
e−iz

1F1

(
1
2
+ p, 1 + 2p; 2iz

)
.



Chapter 5

Laplace Transforms

“We could, of course, use any notation we want; do not laugh at notations; invent
them, they are powerful. In fact, mathematics is, to a large extent, invention of
better notations.” - Richard P. Feynman (1918-1988)

5.1 The Laplace Transform
The Laplace transform is named after
Pierre-Simon de Laplace (1749 - 1827).
Laplace made major contributions, espe-
cially to celestial mechanics, tidal analy-
sis, and probability.

Up to this point we have only explored Fourier exponential trans-
forms as one type of integral transform. The Fourier transform is useful
on infinite domains. However, students are often introduced to another
integral transform, called the Laplace transform, in their introductory dif-
ferential equations class. These transforms are defined over semi-infinite
domains and are useful for solving initial value problems for ordinary dif-
ferential equations. Integral transform on [a, b] with respect

to the integral kernel, K(x, k).The Fourier and Laplace transforms are examples of a broader class of
transforms known as integral transforms. For a function f (x) defined on an
interval (a, b), we define the integral transform

F(k) =
∫ b

a
K(x, k) f (x) dx,

where K(x, k) is a specified kernel of the transform. Looking at the Fourier
transform, we see that the interval is stretched over the entire real axis and
the kernel is of the form, K(x, k) = eikx. In Table 5.1 we show several types
of integral transforms.

Laplace Transform F(s) =
∫ ∞

0 e−sx f (x) dx
Fourier Transform F(k) =

∫ ∞
−∞ eikx f (x) dx

Fourier Cosine Transform F(k) =
∫ ∞

0 cos(kx) f (x) dx
Fourier Sine Transform F(k) =

∫ ∞
0 sin(kx) f (x) dx

Mellin Transform F(k) =
∫ ∞

0 xk−1 f (x) dx
Hankel Transform F(k) =

∫ ∞
0 xJn(kx) f (x) dx

Table 5.1: A Table of Common Integral
Transforms.

It should be noted that these integral transforms inherit the linearity of
integration. Namely, let h(x) = α f (x) + βg(x), where α and β are constants.
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Then,

H(k) =
∫ b

a
K(x, k)h(x) dx,

=
∫ b

a
K(x, k)(α f (x) + βg(x)) dx,

= α
∫ b

a
K(x, k) f (x) dx + β

∫ b

a
K(x, k)g(x) dx,

= αF(x) + βG(x). (5.1)

Therefore, we have shown linearity of the integral transforms. We have seen
the linearity property used for Fourier transforms and we will use linearity
in the study of Laplace transforms.The Laplace transform of f , F = L[ f ].

We now turn to Laplace transforms. The Laplace transform of a function
f (t) is defined as

F(s) = L[ f ](s) =
∫ ∞

0
f (t)e−st dt, s > 0. (5.2)

This is an improper integral and one needs

lim
t→∞

f (t)e−st = 0

to guarantee convergence.
Laplace transforms also have proven useful in engineering for solving

circuit problems and doing systems analysis. In Figure 5.1 it is shown that
a signal x(t) is provided as input to a linear system, indicated by h(t). One
is interested in the system output, y(t), which is given by a convolution
of the input and system functions. By considering the transforms of x(t)
and h(t), the transform of the output is given as a product of the Laplace
transforms in the s-domain. In order to obtain the output, one needs to
compute a convolution product for Laplace transforms similar to the convo-
lution operation we had seen for Fourier transforms earlier in the chapter.
Of course, for us to do this in practice, we have to know how to compute
Laplace transforms.

Figure 5.1: A schematic depicting the
use of Laplace transforms in systems
theory.

x(t)

Laplace
Transform

X(s)

h(t)

H(s)

y(t) = h(t) ∗ x(t)

Inverse Laplace
Transform

Y(s) = H(s)X(s)

5.2 Properties and Examples of Laplace Transforms

It is typical that one makes use of Laplace transforms by referring to
a Table of transform pairs. A sample of such pairs is given in Table 5.2.
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Combining some of these simple Laplace transforms with the properties of
the Laplace transform, as shown in Table 5.3, we can deal with many ap-
plications of the Laplace transform. We will first prove a few of the given
Laplace transforms and show how they can be used to obtain new trans-
form pairs. In the next section we will show how these transforms can be
used to sum infinite series and to solve initial value problems for ordinary
differential equations.

f (t) F(s) f (t) F(s)

c
c
s

eat 1
s− a

, s > a

tn n!
sn+1 , s > 0 tneat n!

(s− a)n+1

sin ωt
ω

s2 + ω2 eat sin ωt ω
(s−a)2+ω2

cos ωt
s

s2 + ω2 eat cos ωt
s− a

(s− a)2 + ω2

t sin ωt
2ωs

(s2 + ω2)2 t cos ωt
s2 −ω2

(s2 + ω2)2

sinh at
a

s2 − a2 cosh at
s

s2 − a2

H(t− a)
e−as

s
, s > 0 δ(t− a) e−as, a ≥ 0, s > 0

Table 5.2: Table of Selected Laplace
Transform Pairs.

We begin with some simple transforms. These are found by simply using
the definition of the Laplace transform.

Example 5.1. Show that L[1] = 1
s .

For this example, we insert f (t) = 1 into the definition of the
Laplace transform:

L[1] =
∫ ∞

0
e−st dt.

This is an improper integral and the computation is understood by
introducing an upper limit of a and then letting a → ∞. We will not
always write this limit, but it will be understood that this is how one
computes such improper integrals. Proceeding with the computation,
we have

L[1] =
∫ ∞

0
e−st dt

= lim
a→∞

∫ a

0
e−st dt

= lim
a→∞

(
−1

s
e−st

)a

0

= lim
a→∞

(
−1

s
e−sa +

1
s

)
=

1
s

. (5.3)

Thus, we have found that the Laplace transform of 1 is 1
s . This result

can be extended to any constant c, using the linearity of the transform,
L[c] = cL[1]. Therefore,

L[c] = c
s

.



184 differential equations

Example 5.2. Show that L[eat] = 1
s−a , for s > a.

For this example, we can easily compute the transform. Again, we
only need to compute the integral of an exponential function.

L[eat] =
∫ ∞

0
eate−st dt

=
∫ ∞

0
e(a−s)t dt

=

(
1

a− s
e(a−s)t

)∞

0

= lim
t→∞

1
a− s

e(a−s)t − 1
a− s

=
1

s− a
. (5.4)

Note that the last limit was computed as limt→∞ e(a−s)t = 0. This
is only true if a− s < 0, or s > a. [Actually, a could be complex. In
this case we would only need s to be greater than the real part of a,
s > Re(a).]

Example 5.3. Show that L[cos at] = s
s2+a2 and L[sin at] = a

s2+a2 .
For these examples, we could again insert the trigonometric func-

tions directly into the transform and integrate. For example,

L[cos at] =
∫ ∞

0
e−st cos at dt.

Recall how one evaluates integrals involving the product of a trigono-
metric function and the exponential function. One integrates by parts
two times and then obtains an integral of the original unknown in-
tegral. Rearranging the resulting integral expressions, one arrives at
the desired result. However, there is a much simpler way to compute
these transforms.

Recall that eiat = cos at + i sin at. Making use of the linearity of the
Laplace transform, we have

L[eiat] = L[cos at] + iL[sin at].

Thus, transforming this complex exponential will simultaneously pro-
vide the Laplace transforms for the sine and cosine functions!

The transform is simply computed as

L[eiat] =
∫ ∞

0
eiate−st dt =

∫ ∞

0
e−(s−ia)t dt =

1
s− ia

.

Note that we could easily have used the result for the transform of an
exponential, which was already proven. In this case, s > Re(ia) = 0.

We now extract the real and imaginary parts of the result using the
complex conjugate of the denominator:

1
s− ia

=
1

s− ia
s + ia
s + ia

=
s + ia

s2 + a2 .
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Reading off the real and imaginary parts, we find the sought-after
transforms,

L[cos at] =
s

s2 + a2 ,

L[sin at] =
a

s2 + a2 . (5.5)

Example 5.4. Show that L[t] = 1
s2 .

For this example we evaluate

L[t] =
∫ ∞

0
te−st dt.

This integral can be evaluated using the method of integration by
parts: ∫ ∞

0
te−st dt = −t

1
s

e−st
∣∣∣∞
0
+

1
s

∫ ∞

0
e−st dt

=
1
s2 . (5.6)

Example 5.5. Show that L[tn] = n!
sn+1 for nonnegative integer n.

We have seen the n = 0 and n = 1 cases: L[1] = 1
s and L[t] = 1

s2 .
We now generalize these results to nonnegative integer powers, n > 1,
of t. We consider the integral

L[tn] =
∫ ∞

0
tne−st dt.

Following the previous example, we again integrate by parts:1 1 This integral can just as easily be done
using differentiation. We note that(
− d

ds

)n ∫ ∞

0
e−st dt =

∫ ∞

0
tne−st dt.

Since ∫ ∞

0
e−st dt =

1
s

,∫ ∞

0
tne−st dt =

(
− d

ds

)n 1
s
=

n!
sn+1 .

∫ ∞

0
tne−st dt = −tn 1

s
e−st

∣∣∣∞
0
+

n
s

∫ ∞

0
t−ne−st dt

=
n
s

∫ ∞

0
t−ne−st dt. (5.7)

We could continue to integrate by parts until the final integral is
computed. However, look at the integral that resulted after one inte-
gration by parts. It is just the Laplace transform of tn−1. So, we can
write the result as

L[tn] =
n
s
L[tn−1].

We compute
∫ ∞

0 tne−st dt by turning it
into an initial value problem for a first-
order difference equation and finding
the solution using an iterative method.

This is an example of a recursive definition of a sequence. In this
case, we have a sequence of integrals. Denoting

In = L[tn] =
∫ ∞

0
tne−st dt

and noting that I0 = L[1] = 1
s , we have the following:

In =
n
s

In−1, I0 =
1
s

. (5.8)

This is also what is called a difference equation. It is a first-order
difference equation with an “initial condition,” I0. The next step is to
solve this difference equation.
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Finding the solution of this first-order difference equation is easy to
do using simple iteration. Note that replacing n with n− 1, we have

In−1 =
n− 1

s
In−2.

Repeating the process, we find

In =
n
s

In−1

=
n
s

(
n− 1

s
In−2

)
=

n(n− 1)
s2 In−2

=
n(n− 1)(n− 2)

s3 In−3. (5.9)

We can repeat this process until we get to I0, which we know. We
have to carefully count the number of iterations. We do this by iterat-
ing k times and then figuring out how many steps will get us to the
known initial value. A list of iterates is easily written out:

In =
n
s

In−1

=
n(n− 1)

s2 In−2

=
n(n− 1)(n− 2)

s3 In−3

= . . .

=
n(n− 1)(n− 2) . . . (n− k + 1)

sk In−k. (5.10)

Since we know I0 = 1
s , we choose to stop at k = n obtaining

In =
n(n− 1)(n− 2) . . . (2)(1)

sn I0 =
n!

sn+1 .

Therefore, we have shown that L[tn] = n!
sn+1 .

Such iterative techniques are useful in obtaining a variety of inte-
grals, such as In =

∫ ∞
−∞ x2ne−x2

dx.

As a final note, one can extend this result to cases when n is not an
integer. To do this, we use the Gamma function, which was discussed in
Section 4.7. Recall that the Gamma function is the generalization of the
factorial function and is defined as

Γ(x) =
∫ ∞

0
tx−1e−t dt. (5.11)

Note the similarity to the Laplace transform of tx−1 :

L[tx−1] =
∫ ∞

0
tx−1e−st dt.

For x− 1 an integer and s = 1, we have that

Γ(x) = (x− 1)!.
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Thus, the Gamma function can be viewed as a generalization of the factorial
and we have shown that

L[tp] =
Γ(p + 1)

sp+1

for p > −1.
Now we are ready to introduce additional properties of the Laplace trans-

form in Table 5.3. We have already discussed the first property, which is a
consequence of the linearity of integral transforms. We will prove the other
properties in this and the following sections.

Laplace Transform Properties
L[a f (t) + bg(t)] = aF(s) + bG(s)

L[t f (t)] = − d
ds

F(s)

L
[

d f
dt

]
= sF(s)− f (0)

L
[

d2 f
dt2

]
= s2F(s)− s f (0)− f ′(0)

L[eat f (t)] = F(s− a)
L[H(t− a) f (t− a)] = e−asF(s)

L[( f ∗ g)(t)] = L[
∫ t

0
f (t− u)g(u) du] = F(s)G(s)

Table 5.3: Table of selected Laplace
transform properties.

Example 5.6. Show that L
[

d f
dt

]
= sF(s)− f (0).

We have to compute

L
[

d f
dt

]
=
∫ ∞

0

d f
dt

e−st dt.

We can move the derivative off f by integrating by parts. This is sim-
ilar to what we had done when finding the Fourier transform of the
derivative of a function. Letting u = e−st and v = f (t), we have

L
[

d f
dt

]
=

∫ ∞

0

d f
dt

e−st dt

= f (t)e−st
∣∣∣∞
0
+ s

∫ ∞

0
f (t)e−st dt

= − f (0) + sF(s). (5.12)

Here we have assumed that f (t)e−st vanishes for large t.
The final result is that

L
[

d f
dt

]
= sF(s)− f (0).

Example 6: Show that L
[

d2 f
dt2

]
= s2F(s)− s f (0)− f ′(0).

We can compute this Laplace transform using two integrations by
parts, or we could make use of the last result. Letting g(t) = d f (t)

dt , we
have

L
[

d2 f
dt2

]
= L

[
dg
dt

]
= sG(s)− g(0) = sG(s)− f ′(0).
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But,

G(s) = L
[

d f
dt

]
= sF(s)− f (0).

So,

L
[

d2 f
dt2

]
= sG(s)− f ′(0)

= s [sF(s)− f (0)]− f ′(0)

= s2F(s)− s f (0)− f ′(0). (5.13)

We will return to the other properties in Table 5.3 after looking at a few
applications.

5.3 Solution of ODEs Using Laplace Transforms

One of the typical applications of Laplace transforms is the so-
lution of nonhomogeneous linear constant coefficient differential equations.
In the following examples we will show how this works.

The general idea is that one transforms the equation for an unknown
function y(t) into an algebraic equation for its transform, Y(t). Typically,
the algebraic equation is easy to solve for Y(s) as a function of s. Then,
one transforms back into t-space using Laplace transform tables and the
properties of Laplace transforms. The scheme is shown in Figure 5.2.

Figure 5.2: The scheme for solving
an ordinary differential equation using
Laplace transforms. One transforms the
initial value problem for y(t) and obtains
an algebraic equation for Y(s). Solve for
Y(s) and the inverse transform gives the
solution to the initial value problem.

L[y] = g

y(t)

F(Y) = G

Y(s)

Laplace Transform

Inverse Laplace Transform

ODE
for y(t)

Algebraic

Equation

Y(s)

Example 5.7. Solve the initial value problem y′ + 3y = e2t, y(0) = 1.
The first step is to perform a Laplace transform of the initial value

problem. The transform of the left side of the equation is

L[y′ + 3y] = sY− y(0) + 3Y = (s + 3)Y− 1.

Transforming the right-hand side, we have

L[e2t] =
1

s− 2
.

Combining these two results, we obtain

(s + 3)Y− 1 =
1

s− 2
.
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The next step is to solve for Y(s) :

Y(s) =
1

s + 3
+

1
(s− 2)(s + 3)

.

Now we need to find the inverse Laplace transform. Namely, we
need to figure out what function has a Laplace transform of the above
form. We will use the tables of Laplace transform pairs. Later we
will show that there are other methods for carrying out the Laplace
transform inversion.

The inverse transform of the first term is e−3t. However, we have not
seen anything that looks like the second form in the table of transforms
that we have compiled, but we can rewrite the second term using a
partial fraction decomposition. Let’s recall how to do this.

The goal is to find constants A and B such that

1
(s− 2)(s + 3)

=
A

s− 2
+

B
s + 3

. (5.14)

We picked this form because we know that recombining the two terms This is an example of carrying out a par-
tial fraction decomposition.into one term will have the same denominator. We just need to make

sure the numerators agree afterward. So, adding the two terms, we
have

1
(s− 2)(s + 3)

=
A(s + 3) + B(s− 2)

(s− 2)(s + 3)
.

Equating numerators,

1 = A(s + 3) + B(s− 2).

There are several ways to proceed at this point.

a. Method 1.

We can rewrite the equation by gathering terms with common powers
of s, we have

(A + B)s + 3A− 2B = 1.

The only way that this can be true for all s is that the coefficients of the
different powers of s agree on both sides. This leads to two equations
for A and B:

A + B = 0,

3A− 2B = 1. (5.15)

The first equation gives A = −B, so the second equation becomes
−5B = 1. The solution is then A = −B = 1

5 .

b. Method 2.

Since the equation 1
(s−2)(s+3) =

A
s−2 + B

s+3 is true for all s, we can pick

specific values. For s = 2, we find 1 = 5A, or A = 1
5 . For s = −3, we

find 1 = −5B, or B = − 1
5 . Thus, we obtain the same result as Method

1, but much quicker.
1 2

2

4

6

8

t

y(t)

Figure 5.3: A plot of the solution to Ex-
ample 5.7.
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c. Method 3.

We could just inspect the original partial fraction problem. Since the
numerator has no s terms, we might guess the form

1
(s− 2)(s + 3)

=
1

s− 2
− 1

s + 3
.

But, recombining the terms on the right-hand side, we see that

1
s− 2

− 1
s + 3

=
5

(s− 2)(s + 3)
.

Since we were off by 5, we divide the partial fractions by 5 to obtain

1
(s− 2)(s + 3)

=
1
5

[
1

s− 2
− 1

s + 3

]
,

which once again gives the desired form.

Returning to the problem, we have found that

Y(s) =
1

s + 3
+

1
5

(
1

s− 2
− 1

s + 3

)
.

We can now see that the function with this Laplace transform is given
by

y(t) = L−1
[

1
s + 3

+
1
5

(
1

s− 2
− 1

s + 3

)]
= e−3t +

1
5

(
e2t − e−3t

)
works. Simplifying, we have the solution of the initial value problem

y(t) =
1
5

e2t +
4
5

e−3t.

We can verify that we have solved the initial value problem.

y′ + 3y =
2
5

e2t − 12
5

e−3t + 3(
1
5

e2t +
4
5

e−3t) = e2t

and y(0) = 1
5 + 4

5 = 1.

Example 5.8. Solve the initial value problem y′′ + 4y = 0, y(0) = 1,
y′(0) = 3.

We can probably solve this without Laplace transforms, but it is a
simple exercise. Transforming the equation, we have

0 = s2Y− sy(0)− y′(0) + 4Y

= (s2 + 4)Y− s− 3. (5.16)

Solving for Y, we have

Y(s) =
s + 3
s2 + 4

.

We now ask if we recognize the transform pair needed. The denom-
inator looks like the type needed for the transform of a sine or cosine.
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We just need to play with the numerator. Splitting the expression into
two terms, we have

Y(s) =
s

s2 + 4
+

3
s2 + 4

.

The first term is now recognizable as the transform of cos 2t. The
second term is not the transform of sin 2t. It would be if the numerator
were a 2. This can be corrected by multiplying and dividing by 2:

3
s2 + 4

=
3
2

(
2

s2 + 4

)
.

The solution is then found as

y(t) = L−1
[

s
s2 + 4

+
3
2

(
2

s2 + 4

)]
= cos 2t +

3
2

sin 2t.

The reader can verify that this is the solution of the initial value prob-
lem and is shown in Figure 5.4. 2 4 6 8

−2

2

t

y(t)

Figure 5.4: A plot of the solution to Ex-
ample 5.8.

5.4 Step and Impulse Functions

5.4.1 Heaviside Step Function

Often, the initial value problems that one faces in differential
equations courses can be solved using either the Method of Undetermined
Coefficients or the Method of Variation of Parameters. However, using the
latter can be messy and involves some skill with integration. Many circuit
designs can be modeled with systems of differential equations using Kir-
choff’s Rules. Such systems can get fairly complicated. However, Laplace
transforms can be used to solve such systems, and electrical engineers have
long used such methods in circuit analysis.

In this section we add a couple more transform pairs and transform prop-
erties that are useful in accounting for things like turning on a driving force,
using periodic functions like a square wave, or introducing impulse forces.

We first recall the Heaviside step function, given by

H(t) =

{
0, t < 0,
1, t > 0.

(5.17)

t

H(t− a)

1

a

Figure 5.5: A shifted Heaviside function,
H(t− a).

A more general version of the step function is the horizontally shifted
step function, H(t− a). This function is shown in Figure 5.5. The Laplace
transform of this function is found for a > 0 as

L[H(t− a)] =
∫ ∞

0
H(t− a)e−st dt

=
∫ ∞

a
e−st dt

=
e−st

s

∣∣∣∞
a
=

e−as

s
. (5.18)
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The Laplace transform has two Shift Theorems involving the multiplica-
tion of the function, f (t), or its transform, F(s), by exponentials. The First
and Second Shift Properties/Theorems are given by

L[eat f (t)] = F(s− a), (5.19)

L[ f (t− a)H(t− a)] = e−asF(s). (5.20)

The Shift Theorems.
We prove the First Shift Theorem and leave the other proof as an exercise

for the reader. Namely,

L[eat f (t)] =
∫ ∞

0
eat f (t)e−st dt

=
∫ ∞

0
f (t)e−(s−a)t dt = F(s− a). (5.21)

Example 5.9. Compute the Laplace transform of e−at sin ωt.
This function arises as the solution of the underdamped harmonic

oscillator. We first note that the exponential multiplies a sine function.
The First Shift Theorem tells us that we first need the transform of the
sine function. So, for f (t) = sin ωt, we have

F(s) =
ω

s2 + ω2 .

Using this transform, we can obtain the solution to this problem as

L[e−at sin ωt] = F(s + a) =
ω

(s + a)2 + ω2 .

More interesting examples can be found using piecewise defined func-
tions. First we consider the function H(t)− H(t− a). For t < 0, both terms
are zero. In the interval [0, a], the function H(t) = 1 and H(t− a) = 0. There-
fore, H(t)− H(t− a) = 1 for t ∈ [0, a]. Finally, for t > a, both functions are
one and therefore the difference is zero. The graph of H(t) − H(t − a) is
shown in Figure 5.6.t

1

0 a

Figure 5.6: The box function, H(t) −
H(t− a).

We now consider the piecewise defined function:

g(t) =

{
f (t), 0 ≤ t ≤ a,
0, t < 0, t > a.

This function can be rewritten in terms of step functions. We only need to
multiply f (t) by the above box function,

g(t) = f (t)[H(t)− H(t− a)].

We depict this in Figure 5.7.t

1

0 a

Figure 5.7: Formation of a piecewise
function, f (t)[H(t)− H(t− a)].

Even more complicated functions can be written in terms of step func-
tions. We only need to look at sums of functions of the form f (t)[H(t −
a) − H(t − b)] for b > a. This is similar to a box function. It is nonzero
between a and b and has height f (t).
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We show as an example the square wave function in Figure 5.8. It can be
represented as a sum of an infinite number of boxes,

f (t) =
∞

∑
n=−∞

[H(t− 2na)− H(t− (2n + 1)a)],

for a > 0.

Example 5.10. Find the Laplace Transform of a square wave “turned
on” at t = 0.

t
-2a 0 a 2a 4a 6a

Figure 5.8: A square wave, f (t) =

∑∞
n=−∞[H(t− 2na)− H(t− (2n + 1)a)].

We let

f (t) =
∞

∑
n=0

[H(t− 2na)− H(t− (2n + 1)a)], a > 0.

Using the properties of the Heaviside function, we have

L[ f (t)] =
∞

∑
n=0

[L[H(t− 2na)]−L[H(t− (2n + 1)a)]]

=
∞

∑
n=0

[
e−2nas

s
− e−(2n+1)as

s

]

=
1− e−as

s

∞

∑
n=0

(
e−2as

)n

=
1− e−as

s

(
1

1− e−2as

)
=

1− e−as

s(1− e−2as)

=
1

s(1 + e−as)
. (5.22)

Note that the third line in the derivation is a geometric series. We
summed this series to get the answer in a compact form since e−2as <

1.

5.4.2 Periodic Functions*

The previous example provides us with a causal function ( f (t) = 0 for
t < 0.) which is periodic with period a. Such periodic functions can be
teated in a simpler fashion. We will now show that Laplace transform of periodic functions.

Theorem 5.1. If f (t) is periodic with period T and piecewise continuous on [0, T],
then

F(s) =
1

1− e−sT

∫ T

0
f (t)e−st dt.
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Proof.

F(s) =
∫ ∞

0
f (t)e−st dt

=
∫ T

0
f (t)e−st dt +

∫ ∞

T
f (t)e−st dt

=
∫ T

0
f (t)e−st dt +

∫ ∞

T
f (t− T)e−st dt

=
∫ T

0
f (t)e−st dt + e−sT

∫ ∞

0
f (τ)e−sτ dτ

=
∫ T

0
f (t)e−st dt + e−sT F(s). (5.23)

Solving for F(s), one obtains the desired result.

Example 5.11. Use the periodicity of

f (t) =
∞

∑
n=0

[H(t− 2na)− H(t− (2n + 1)a)], a > 0

to obtain the Laplace transform.
We note that f (t) has period T = 2a. By Theorem 5.1, we have

F(s) =
∫ ∞

0
f (t)e−st dt

=
1

1− e−2as

∫ 2a

0
[H(t)− H(t− a)]e−st dt

=
1

1− e−2as

[∫ 2a

0
e−st dt−

∫ 2a

a
e−st dt

]
=

1
1− e−2as

[
e−st

−s

∣∣∣2a

0
− e−st

−s

∣∣∣2a

a

]
=

1
s(1− e−2as)

[
1− e−2as + e−2as − e−as

]
=

1− e−as

s(1− e−2as)

=
1

s(1 + e−as)
. (5.24)

This is the same result that was obtained in the previous example.

5.4.3 Dirac Delta Function

Another useful concept is the impulse function. If we want to
apply an impulse function, we can use the Dirac delta function δ(x). This

P. A. M. Dirac (1902-1984) introduced
the δ function in his book, The Princi-
ples of Quantum Mechanics, 4th Ed., Ox-
ford University Press, 1958, originally
published in 1930, as part of his orthog-
onality statement for a basis of func-
tions in a Hilbert space, < ξ ′|ξ ′′ >=
cδ(ξ ′ − ξ ′′) in the same way we intro-
duced discrete orthogonality using the
Kronecker delta. Historically, a number
of mathematicians sought to understand
the Diract delta function, culminating in
Laurent Schwartz’s (1915-2002) theory of
distributions in 1945.

is an example of what is known as a generalized function, or a distribution.
Dirac had introduced this function in the 1930s in his study of quantum

mechanics as a useful tool. It was later studied in a general theory of dis-
tributions and found to be more than a simple tool used by physicists. The
Dirac delta function, as any distribution, only makes sense under an in-
tegral. Here will will introduce the Dirac delta function through its main
properties.
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The delta function satisfies two main properties:

1. δ(x) = 0 for x 6= 0.

2.
∫ ∞
−∞ δ(x) dx = 1.

Integration over more general intervals gives

∫ b

a
δ(x) dx =

{
1, 0 ∈ [a, b],
0, 0 6∈ [a, b].

(5.25)

Another important property is the sifting property:∫ ∞

−∞
δ(x− a) f (x) dx = f (a).

This can be seen by noting that the delta function is zero everywhere except
at x = a. Therefore, the integrand is zero everywhere and the only contribu-
tion from f (x) will be from x = a. So, we can replace f (x) with f (a) under
the integral. Since f (a) is a constant, we have that∫ ∞

−∞
δ(x− a) f (x) dx =

∫ ∞

−∞
δ(x− a) f (a) dx

= f (a)
∫ ∞

−∞
δ(x− a) dx = f (a). (5.26)

Example 5.12. Evaluate:
∫ ∞
−∞ δ(x + 3)x3 dx.

This is a simple use of the sifting property:∫ ∞

−∞
δ(x + 3)x3 dx = (−3)3 = −27.

Properties of the Dirac delta function:∫ ∞

−∞
δ(x− a) f (x) dx = f (a).

∫ ∞

−∞
δ(ax) dx =

1
|a|

∫ ∞

−∞
δ(y) dy.

Another property results from using a scaled argument, ax. In this case,
we show that

δ(ax) = |a|−1δ(x). (5.27)

As usual, this only has meaning under an integral sign. So, we place δ(ax)
inside an integral and make a substitution y = ax:

∫ ∞

−∞
δ(ax) dx = lim

L→∞

∫ L

−L
δ(ax) dx

= lim
L→∞

1
a

∫ aL

−aL
δ(y) dy. (5.28)

If a > 0 then ∫ ∞

−∞
δ(ax) dx =

1
a

∫ ∞

−∞
δ(y) dy.

However, if a < 0 then∫ ∞

−∞
δ(ax) dx =

1
a

∫ −∞

∞
δ(y) dy = −1

a

∫ ∞

−∞
δ(y) dy.

The overall difference in a multiplicative minus sign can be absorbed into
one expression by changing the factor 1/a to 1/|a|. Thus,
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∫ ∞

−∞
δ(ax) dx =

1
|a|

∫ ∞

−∞
δ(y) dy. (5.29)

Example 5.13. Evaluate
∫ ∞
−∞(5x + 1)δ(4(x− 2)) dx.

This is a straightforward integration:∫ ∞

−∞
(5x + 1)δ(4(x− 2)) dx =

1
4

∫ ∞

−∞
(5x + 1)δ(x− 2) dx =

11
4

.

The first step is to write δ(4(x − 2)) = 1
4 δ(x − 2). Then, the final

evaluation is given by

1
4

∫ ∞

−∞
(5x + 1)δ(x− 2) dx =

1
4
(5(2) + 1) =

11
4

.

The Dirac delta function can be used to represent a unit impulse. Sum-
ming over a number of impulses, or point sources, we can describe a general
function as shown in Figure 5.9. The sum of impulses located at points ai,
i = 1, . . . , n, with strengths f (ai) would be given by

f (x) =
n

∑
i=1

f (ai)δ(x− ai).

A continuous sum could be written as

f (x) =
∫ ∞

−∞
f (ξ)δ(x− ξ) dξ.

This is simply an application of the sifting property of the delta function.

f (x)

x
a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

Figure 5.9: Plot representing im-
pulse forces of height f (ai). The sum
∑n

i=1 f (ai)δ(x − ai) describes a general
impulse function.

We will investigate a case when one would use a single impulse. While
a mass on a spring is undergoing simple harmonic motion, we hit it for
an instant at time t = a. In such a case, we could represent the force as a
multiple of δ(t− a).L[δ(t− a)] = e−as.

One would then need the Laplace transform of the delta function to solve
the associated initial value problem. Inserting the delta function into the
Laplace transform, we find that for a > 0,

L[δ(t− a)] =
∫ ∞

0
δ(t− a)e−st dt

=
∫ ∞

−∞
δ(t− a)e−st dt

= e−as. (5.30)

Example 5.14. Solve the initial value problem y′′ + 4π2y = δ(t − 2),
y(0) = y′(0) = 0.

This initial value problem models a spring oscillation with an im-
pulse force. Without the forcing term, given by the delta function, this
spring is initially at rest and not stretched. The delta function models
a unit impulse at t = 2. Of course, we anticipate that at this time the
spring will begin to oscillate. We will solve this problem using Laplace
transforms.
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First, we transform the differential equation:

s2Y− sy(0)− y′(0) + 4π2Y = e−2s.

Inserting the initial conditions, we have

(s2 + 4π2)Y = e−2s.

Solving for Y(s), we obtain

Y(s) =
e−2s

s2 + 4π2 .

We now seek the function for which this is the Laplace transform.
The form of this function is an exponential times some Laplace trans-
form, F(s). Thus, we need the Second Shift Theorem since the solution
is of the form Y(s) = e−2sF(s) for

F(s) =
1

s2 + 4π2 .

We need to find the corresponding f (t) of the Laplace transform
pair. The denominator in F(s) suggests a sine or cosine. Since the
numerator is constant, we pick sine. From the tables of transforms, we
have

L[sin 2πt] =
2π

s2 + 4π2 .

So, we write

F(s) =
1

2π

2π

s2 + 4π2 .

This gives f (t) = (2π)−1 sin 2πt.
We now apply the Second Shift Theorem, L[ f (t − a)H(t − a)] =

e−asF(s), or

y(t) = L−1
[
e−2sF(s)

]
= H(t− 2) f (t− 2)

=
1

2π
H(t− 2) sin 2π(t− 2). (5.31)

5 10 15 20

−0.2

0.2

t

y(t)

Figure 5.10: A plot of the solution to Ex-
ample 5.14 in which a spring at rest ex-
periences an impulse force at t = 2.

This solution tells us that the mass is at rest until t = 2 and then
begins to oscillate at its natural frequency. A plot of this solution is
shown in Figure 5.10

Example 5.15. Solve the initial value problem

y′′ + y = f (t), y(0) = 0, y′(0) = 0,

where

f (t) =

{
cos πt, 0 ≤ t ≤ 2,

0, otherwise.

We need the Laplace transform of f (t). This function can be writ-
ten in terms of a Heaviside function, f (t) = cos πtH(t − 2). In or-
der to apply the Second Shift Theorem, we need a shifted version
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of the cosine function. We find the shifted version by noting that
cos π(t− 2) = cos πt. Thus, we have

f (t) = cos πt [H(t)− H(t− 2)]

= cos πt− cos π(t− 2)H(t− 2), t ≥ 0. (5.32)

The Laplace transform of this driving term is

F(s) = (1− e−2s)L[cos πt] = (1− e−2s)
s

s2 + π2 .

Now we can proceed to solve the initial value problem. The Laplace
transform of the initial value problem yields

(s2 + 1)Y(s) = (1− e−2s)
s

s2 + π2 .

Therefore,

Y(s) = (1− e−2s)
s

(s2 + π2)(s2 + 1)
.

We can retrieve the solution to the initial value problem using the
Second Shift Theorem. The solution is of the form Y(s) = (1 −
e−2s)G(s) for

G(s) =
s

(s2 + π2)(s2 + 1)
.

Then, the final solution takes the form

y(t) = g(t)− g(t− 2)H(t− 2).

We only need to find g(t) in order to finish the problem. This is
easily done using the partial fraction decomposition

G(s) =
s

(s2 + π2)(s2 + 1)
=

1
π2 − 1

[
s

s2 + 1
− s

s2 + π2

]
.

Then,

g(t) = L−1
[

s
(s2 + π2)(s2 + 1)

]
=

1
π2 − 1

(cos t− cos πt) .

The final solution is then given by

y(t) =
1

π2 − 1
[cos t− cos πt− H(t− 2)(cos(t− 2)− cos πt)] .

A plot of this solution is shown in Figure 5.11.

5 10

−0.4

−0.2

0.2

0.4

t

y(t)

Figure 5.11: A plot of the solution to Ex-
ample 5.15 in which a spring at rest ex-
periences an piecewise defined force.

5.5 The Convolution Theorem

Finally, we consider the convolution of two functions. Often, we are
faced with having the product of two Laplace transforms that we know and
we seek the inverse transform of the product. For example, let’s say we have
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obtained Y(s) = 1
(s−1)(s−2) while trying to solve an initial value problem. In

this case, we could find a partial fraction decomposition. But, there are
other ways to find the inverse transform, especially if we cannot perform
a partial fraction decomposition. We could use the Convolution Theorem
for Laplace transforms or we could compute the inverse transform directly.
We will look into these methods in the next two sections. We begin with
defining the convolution.

We define the convolution of two functions defined on [0, ∞) much the
same way as we had done for the Fourier transform. The convolution f ∗ g
is defined as

( f ∗ g)(t) =
∫ t

0
f (u)g(t− u) du. (5.33)

Note that the convolution integral has finite limits as opposed to the Fourier
transform case.

The convolution operation has two important properties:
The convolution is commutative.

1. The convolution is commutative: f ∗ g = g ∗ f

Proof. The key is to make a substitution y = t− u in the integral. This
makes f a simple function of the integration variable.

(g ∗ f )(t) =
∫ t

0
g(u) f (t− u) du

= −
∫ 0

t
g(t− y) f (y) dy

=
∫ t

0
f (y)g(t− y) dy

= ( f ∗ g)(t). (5.34)

2. The Convolution Theorem: The Laplace transform of a convolution is
the product of the Laplace transforms of the individual functions:

L[ f ∗ g] = F(s)G(s).
The Convolution Theorem for Laplace
transforms.

Proof. Proving this theorem takes a bit more work. We will make
some assumptions that will work in many cases. First, we assume
that the functions are causal, f (t) = 0 and g(t) = 0 for t < 0. Second,
we will assume that we can interchange integrals, which needs more
rigorous attention than will be provided here. The first assumption
will allow us to write the finite integral as an infinite integral. Then
a change of variables will allow us to split the integral into the prod-
uct of two integrals that are recognized as a product of two Laplace
transforms.

Carrying out the computation, we have

L[ f ∗ g] =
∫ ∞

0

(∫ t

0
f (u)g(t− u) du

)
e−st dt
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=
∫ ∞

0

(∫ ∞

0
f (u)g(t− u) du

)
e−st dt

=
∫ ∞

0
f (u)

(∫ ∞

0
g(t− u)e−st dt

)
du (5.35)

Now, make the substitution τ = t− u. We note that

int∞
0 f (u)

(∫ ∞

0
g(t− u)e−st dt

)
du =

∫ ∞

0
f (u)

(∫ ∞

−u
g(τ)e−s(τ+u) dτ

)
du

However, since g(τ) is a causal function, we have that it vanishes for
τ < 0 and we can change the integration interval to [0, ∞). So, after a
little rearranging, we can proceed to the result.

L[ f ∗ g] =
∫ ∞

0
f (u)

(∫ ∞

0
g(τ)e−s(τ+u) dτ

)
du

=
∫ ∞

0
f (u)e−su

(∫ ∞

0
g(τ)e−sτ dτ

)
du

=

(∫ ∞

0
f (u)e−su du

)(∫ ∞

0
g(τ)e−sτ dτ

)
= F(s)G(s). (5.36)

We make use of the Convolution Theorem to do the following examples.

Example 5.16. Find y(t) = L−1
[

1
(s−1)(s−2)

]
.

We note that this is a product of two functions:

Y(s) =
1

(s− 1)(s− 2)
=

1
s− 1

1
s− 2

= F(s)G(s).

We know the inverse transforms of the factors:

f (t) = et and g(t) = e2t.

Using the Convolution Theorem, we find y(t) = ( f ∗ g)(t). We com-
pute the convolution:

y(t) =
∫ t

0
f (u)g(t− u) du

=
∫ t

0
eue2(t−u) du

= e2t
∫ t

0
e−u du

= e2t[−et + 1] = e2t − et. (5.37)

One can also confirm this by carrying out a partial fraction decompo-
sition.

Example 5.17. Consider the initial value problem, y′′ + 9y = 2 sin 3t,
y(0) = 1, y′(0) = 0.
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The Laplace transform of this problem is given by

(s2 + 9)Y− s =
6

s2 + 9
.

Solving for Y(s), we obtain

Y(s) =
6

(s2 + 9)2 +
s

s2 + 9
.

The inverse Laplace transform of the second term is easily found as
cos(3t); however, the first term is more complicated.

We can use the Convolution Theorem to find the Laplace transform
of the first term. We note that

6
(s2 + 9)2 =

2
3

3
(s2 + 9)

3
(s2 + 9)

is a product of two Laplace transforms (up to the constant factor).
Thus,

L−1
[

6
(s2 + 9)2

]
=

2
3
( f ∗ g)(t),

where f (t) = g(t) = sin3t. Evaluating this convolution product, we
have

L−1
[

6
(s2 + 9)2

]
=

2
3
( f ∗ g)(t)

=
2
3

∫ t

0
sin 3u sin 3(t− u) du

=
1
3

∫ t

0
[cos 3(2u− t)− cos 3t] du

=
1
3

[
1
6

sin(6u− 3t)− u cos 3t
]t

0

=
1
9

sin 3t− 1
3

t cos 3t. (5.38)

Combining this with the inverse transform of the second term of
Y(s), the solution to the initial value problem is

y(t) = −1
3

t cos 3t +
1
9

sin 3t + cos 3t.

Note that the amplitude of the solution will grow in time from the first
term. You can see this in Figure 5.12. This is known as a resonance. 2 4 6 8

−2

2

t

y(t)

Figure 5.12: Plot of the solution to Exam-
ple 5.17 showing a resonance.

Example 5.18. Find L−1[ 6
(s2+9)2 ] using partial fraction decomposition.

If we look at Table 5.2, we see that the Laplace transform pairs with
the denominator (s2 + ω2)2 are

L[t sin ωt] =
2ωs

(s2 + ω2)2 ,

and

L[t cos ωt] =
s2 −ω2

(s2 + ω2)2 .
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So, we might consider rewriting a partial fraction decomposition as

6
(s2 + 9)2 =

A6s
(s2 + 9)2 +

B(s2 − 9)
(s2 + 9)2 +

Cs + D
s2 + 9

.

Combining the terms on the right over a common denominator, we
find

6 = 6As + B(s2 − 9) + (Cs + D)(s2 + 9).

Collecting like powers of s, we have

Cs3 + (D + B)s2 + 6As + (D− B) = 6.

Therefore, C = 0, A = 0, D + B = 0, and D− B = 2
3 . Solving the last

two equations, we find D = −B = 1
3 .

Using these results, we find

6
(s2 + 9)2 = −1

3
(s2 − 9)
(s2 + 9)2 +

1
3

1
s2 + 9

.

This is the result we had obtained in the last example using the Con-
volution Theorem.

5.6 Systems of ODEs*

Lapace transforms are also useful for solving systems of differential
equations. We will study linear systems of differential equation in Chapter
6. For now, we will just look at simple examples of the application of Laplace
transforms.

An example of a system of two differential equations for two unknown
functions, x(t) and y(t), is given by the pair of coupled differential equations

x′ = 3x + 4y,

y′ = 2x + y. (5.39)

Neither equation can be solved on its own without knowledge of the other
unknown function. This is why they are called couple. We will also need
initial values for the system. We will choose x(0) = 1 and y(0) = 0.

Now, what would happen if we were to take the Laplace transform of
each equation? We can apply the rules as before. Letting the Laplace trans-
forms of x(t) and y(t) be X(t) and Y(t), respectively, we have

sX− 1 = 3X + 4Y,

sY = 2X + Y. (5.40)

We have obtained a system of algebraic equations for X and Y. Using
standard methods, like Cramer’s Method, we can solve this system of two
equations and two unknowns. First, we rewrite the equations as

(s− 3)X− 4Y = 1,

−2X + (s− 1)Y = 0. (5.41)



laplace transforms 203

Using Cramer’s (determinant) Rule for solving such systems, we have

X =

∣∣∣∣∣ 1 −4
0 s− 1

∣∣∣∣∣∣∣∣∣∣ s− 3 −4
−2 s− 1

∣∣∣∣∣
, Y =

∣∣∣∣∣ s− 3 1
−2 0

∣∣∣∣∣∣∣∣∣∣ s− 3 −4
−2 s− 1

∣∣∣∣∣
. (5.42)

Note that the denominator in each solution is a 2× 2 determinant consisting
of the coefficients of X and Y in the appropriate order. The numerators are
the same determinant but with the right-hand side of the equation replacing
the respective columns.

Computing the determinants, using∣∣∣∣∣ a b
c d

∣∣∣∣∣ = ad− bc,

we have

X =
1

(s− 3)(s− 1)− 8
, Y =

2
(s− 3)(s− 1)− 8

,

or

X =
s− 1

s2 − 4s− 5
, Y =

2
s2 − 4s− 5

.

We now know the Laplace transforms of the solutions, so a simple inverse
Laplace transform is in order. The denominators are the same,

s2 − 4s− 5 = (s− 5)(s + 1).

We can apply a partial fraction decomposition to each function to obtain

X =
s− 1

(s− 5)(s + 1)

=
s− 5 + 4

(s− 5)(s + 1)

=
1

s + 1
+

4
(s− 5)(s + 1)

=
1

s + 1
+

2
3

[
1

s− 5
− 1

s + 1

]
=

2
3

1
s− 5

+
1
3

1
s + 1

.

Y =
2

(s− 5)(s + 1)

=
1
3

[
1

s− 5
− 1

s + 1

]
.

So, the solutions to the system of differential equations is given by

x(t) =
2
3

e5t +
1
3

e−t.

y(t) =
1
3
(e5t − e−t).
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We can verify that x(0) = 1 and y(0) = 0.

x′ =
10
3

e5t − 1
3

e−t

3x + 4y = (2e5t + e−t) +
4
3
(e5t − e−t)

=
10
3

e5t − 1
3

e−t.

y′ =
5
3

e5t +
1
3

e−t

2x + y = (
4
3

e5t +
2
3

e−t) +
1
3
(e5t − e−t)

=
5
3

e5t +
1
3

e−t.

(5.43)

Example 5.19. Determine the current in Figure 5.13 for the following
values: i1(0) = i2(0) = i3(0) = 0 and

v(t) =

{
v0, 0 ≤ t ≤ 3.0
0, otherwise.

+

−v(t)

L1

L2

R2

A

R1

B

i1 i3

i2

1 2

Figure 5.13: A circuit with two loops
containing two resistors and two induc-
tors in parallel.

The problem can be modeled by a system of differential equations.
In Figure 5.13 there are three currents indicated. Kirchoff’s Point
(Junction) Rule indicates that i1 = i2 + i3.

In order to apply Kirchoff’s Loop Rule , we need to tally the po-
tential drops and rises. For resistors, these come from Ohm’s Law,
v = iR, and for inductors, this comes from Faraday’s Law, v = L di

dt .
For the left loop (2), we have

L2i′3 = R1i2,

where the prime denotes the time derivative. For the right loop (1),
we have

L1i′1 + R1i2 + R2i1 = v(t).

We can use the Point Rule to eliminate one of the currents, i2 = i1− i3,
leaving the model as two first order differential equations,

L2i′3 − R1(i1 − i3) = 0

L1i′1 + R1(i1 − i3) + R2i1 = v(t),

or

L2i′3 − R1i1 + R1i3 = 0

L1i′1 + (R1 + R2)i1 − R1i3 = v0(1− H(t− 3)),

where H(t) is the Heaviside function.
Taking the Laplace transform, assuming that i1(0) = i2(0) = 0, we

obtain the algebraic system of equations

−R1 I1 + (sL2 + R1)I3 = 0

(sL1 + R1 + R2)I1 − R1 I3 =
v0

s

(
1− e−3s

)
.
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Here I1(s) and I3(s) are the Laplace transforms of i1(t) and i3(t), re-
spectively.

As before, we use Cramer’s Rule to find the solutions.

I1 =

∣∣∣∣∣ 0 sL2 + R1
v0
s
(
1− e−3s) −R1

∣∣∣∣∣∣∣∣∣∣ −R1 sL2 + R1

sL1 + R1 + R2 −R1

∣∣∣∣∣
,

=
−v0(sL2 + R1)

(
1− e−3s)

s[R2
1 − (sL2 + R1)(sL1 + R1 + R2)]

=
v0(sL2 + R1)

(
1− e−3s)

s[(L1L2)s2 + (R1L1 + L2(R1 + R2))s + R1R2]
.

I3 =

∣∣∣∣∣ −R1 0
sL1 + R1 + R2

v0
s
(
1− e−3s)

∣∣∣∣∣∣∣∣∣∣ −R1 sL2 + R1

sL1 + R1 + R2 −R1

∣∣∣∣∣
=

v0R1
(
1− e−3s)

s[R2
1 − (sL2 + R1)(sL1 + R1 + R2)]

=
−v0R1

(
1− e−3s)

s[(L1L2)s2 + (R1L1 + L2(R1 + R2))s + R1R2]
. (5.44)

The denominator in these expressions cannot be factored. So, to
make any further progress, one needs specific values for the constants.
Let R1 = 2.00Ω, R2 = 18.0Ω, L1 = 48.0 H, L2 = 6.00 H. and v0 = 18
V. Then,

I1 =
3s + 1

s(2s + 1)(4s + 1)

(
1− e−3s

)
I3 = − 1

s(2s + 1)(4s + 1)

(
1− e−3s

)
Using partial fractions on the coefficient of

(
1− e−3s) , we find that

3s + 1
s(2s + 1)(4s + 1)

=
1
s
− 2

4s + 1
− 1

2s + 1
,

1
s(2s + 1)(4s + 1)

=
1
s
− 8

4s + 1
+

2
2s + 1

.

This gives

I1 =

(
1
s
− 1

2
1

s + 1
4
− 1

2
1

s + 1
2

)
(1− e−3s)

I3 =

(
−1

s
+

2
s + 1

4
− 1

s + 1
2

)
(1− e−3s)

Taking the inverse Laplace transform, we find the solutions

i1 = 1− 1
2

e−
t
4 − 1

2
e−

t
2 +

(
−1 +

1
2

e−
t−3

4 +
1
2

e−
t−3

2

)
H(t− 3)
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=

{
1− 1

2 e−
t
4 − 1

2 e−
t
2 , t ≤ 3,

− 1
2 (1− e

3
4 )e−

t
4 − 1

2 (1− e
3
2 )e−

t
2 , t ≥ 3.

i3 = −1 + 2e−
t
4 − e−

t
2 +

(
1− 2e−

t−3
4 + e−

t−3
2

)
H(t− 3).

=

{
−1 + 2e−

t
4 − e−

t
2 , t ≤ 3,

2(1− e
3
4 )e−

t
4 − (1− e

3
2 )e−

t
2 , t ≥ 3.

In Figure 5.14 we plot the currents vs time. The taller curve repre-
sents i1 and the other curve is −i3. We note that the derived current,
i3, is negative, indicating a flow in reverse of the direction shown in
Figure 5.13. Not the sudden change in i[1] at t = 3, the time that the
voltage is turned on.Figure 5.14: A plot of the currents vs

time for Example 5.19 with the voltage
v(t) = v0(1− H(t− 3)). The taller curve
represents i1 and the other curve is −i3.

One can easily change the time that the voltage is applied. Namely,
if

v(t) =

{
v0, 0 ≤ t ≤ t0

0, otherwise,

then the solutions are given by

i1 = 1− 1
2

e−
t
4 − 1

2
e−

t
2 +

(
−1 +

1
2

e−
t−t0

4 +
1
2

e−
t−t0

2

)
H(t− t0)

i3 = −1 + 2e−
t
4 − e−

t
2 +

(
1− 2e−

t−t0
4 + e−

t−t0
2

)
H(t− t0).

A plot of the currents for t0 = 10 are shown in Figure 5.15.Figure 5.15: A plot of the currents vs
time for Example 5.19 for the voltage
given by v(t) = v0(1− H(t− 10)). The
taller curve represents i1 and the other
curve is −i3.

Problems

1. Find the Laplace transform of the following functions:

a. f (t) = 9t2 − 7.

b. f (t) = e5t−3.

c. f (t) = cos 7t.

d. f (t) = e4t sin 2t.

e. f (t) = e2t(t + cosh t).

f. f (t) = t2H(t− 1).

g. f (t) =

{
sin t, t < 4π,

sin t + cos t, t > 4π.

h. f (t) =
∫ t

0 (t− u)2 sin u du.

i. f (t) =
∫ t

0
cosh u du.

j. f (t) = (t + 5)2 + te2t cos 3t and write the answer in the simplest
form.

2. Find the inverse Laplace transform of the following functions using the
properties of Laplace transforms and the table of Laplace transform pairs.

a. F(s) =
18
s3 +

7
s

.
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b. F(s) =
1

s− 5
− 2

s2 + 4
.

c. F(s) =
s + 1
s2 + 1

.

d. F(s) =
3

s2 + 2s + 2
.

e. F(s) =
1

(s− 1)2 .

f. F(s) =
e−3s

s2 − 1
.

g. F(s) =
1

s2 + 4s− 5
.

h. F(s) =
s + 3

s2 + 8s + 17
.

3. Use Laplace transforms to solve the following initial value problems.
Where possible, describe the solution behavior in terms of oscillation and
decay.

a. y′′ − 5y′ + 6y = 0, y(0) = 2, y′(0) = 0.

c. y′′ + 2y′ + 5y = 0, y(0) = 1, y′(0) = 0.

b. y′′ − y = te2t, y(0) = 0, y′(0) = 1.

c. y′′ − 3y′ − 4y = t2, y(0) = 2, y′(0) = 1.

d. y′′′ − 3y′ − 2y = et, y(0) = 1, y′(0) = 0.

4. Use Laplace transforms to solve the following initial value problems.
Where possible, describe the solution behavior in terms of oscillation and
decay.

a. y′′ + 4y = δ(t− 1), y(0) = 3, y′(0) = 0.

b. y′′ − 4y′ + 13y = δ(t− 1), y(0) = 0, y′(0) = 2.

c. y′′ + 6y′ + 18y = 2H(π − t), y(0) = 0, y′(0) = 0.

d. y′′+ 4y = f (t), y(0) = 1, y′(0) = 0, where f (t) =

{
1, 0 < t < 1,
0, t > 1.

5. For the following problems, draw the given function and find the Laplace
transform in closed form.

a. f (t) = 1 +
∞

∑
n=1

(−1)n H(t− n).

b. f (t) =
∞

∑
n=0

[H(t− 2n + 1)− H(t− 2n)].

c.

f (t) =
∞

∑
n=0

(t− 2n)[H(t− 2n)− H(t− 2n− 1)]

+
∞

∑
n=0

(2n + 2− t)[H(t− 2n− 1)− H(t− 2n− 2)].
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6. The period, T, and the function defined on its first period are given.
Sketch several periods of these periodic functions. Make use of the period-
icity to find the Laplace transform of each function.

a. f (t) = sin t, T = 2π.

b. f (t) = t, T = 1.

c. f (t) =

{
t, 0 ≤ t ≤ 1,

2− t, 1 ≤ t ≤ 2,
T = 2.

d. f (t) = t[H(t)− H(t− 1)], T = 2.

e. f (t) = sin t[H(t)− H(t− π)], T = π.

7. Compute the convolution ( f ∗ g)(t) (in the Laplace transform sense) and
its corresponding Laplace transform L[ f ∗ g] for the following functions:

a. f (t) = t2, g(t) = t3.

b. f (t) = t2, g(t) = cos 2t.

c. f (t) = 3t2 − 2t + 1, g(t) = e−3t.

d. f (t) = δ
(
t− π

4
)

, g(t) = sin 5t.

8. Use the Convolution Theorem to compute the inverse transform of the
following:

a. F(s) =
2

s2(s2 + 1)
.

b. F(s) =
e−3s

s2 .

c. F(s) =
1

s(s2 + 2s + 5)
.

9. Find the inverse Laplace transform in two different ways: (i) Use tables.
(ii) Use the Convolution Theorem.

a. F(s) =
1

s3(s + 4)2 .

b. F(s) =
1

s2 − 4s− 5
.

c. F(s) =
s + 3

s2 + 8s + 17
.

d. F(s) =
s + 1

(s− 2)2(s + 4)
.

e. F(s) =
s2 + 8s− 3

(s2 + 2s + 1)(s2 + 1)
.

10. A linear Volterra integral equation, introduced by Vito Volterra (1860-
1940), is of the form

y(t) = f (t) +
∫ t

0
K(t− τ)y(τ) dτ,

where y(t) is an unknown function and f (t) and the “kernel,” K(t), are
given functions. The integral is in the form of a convolution integral and
such equations can be solved using Laplace transforms. Solve the following
Volterra integral equations.
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a. y(t) = e−t +
∫ t

0 cos(t− τ)y(τ) dτ.

b. y(t) = t−
∫ t

0 (t− τ)y(τ) dτ.

c. y(t) = t + 2
∫ t

0 et−τy(τ) dτ.

d. sin t =
∫ t

0 et−τy(τ) dτ. Note: This is a Volterra integral equation of
the first kind.

11. Use Laplace transforms to convert the following system of differential
equations into an algebraic system and find the solution of the differential
equations.

x′′ = 3x− 6y, x(0) = 1, x′(0) = 0,

y′′ = x + y, y(0) = 0, y′(0) = 0.

12. Use Laplace transforms to convert the following nonhomogeneous sys-
tems of differential equations into an algebraic system and find the solutions
of the differential equations.

a.

x′ = 2x + 3y + 2 sin 2t, x(0) = 1,

y′ = −3x + 2y, y(0) = 0.

b.

x′ = −4x− y + e−t, x(0) = 2,

y′ = x− 2y + 2e−3t, y(0) = −1.

c.

x′ = x− y + 2 cos t, x(0) = 3,

y′ = x + y− 3 sin t, y(0) = 2.

13. Redo Example 5.19 using the values R1 = 1.00Ω, R2 = 1.40Ω, L1 = 0.80
H, L2 = 1.00 H. and v0 = 100 V in v(t) = v0(1−H(t− t0)). Plot the currents
as a function of time for several values of t0.





Chapter 6

Linear Systems of Differential
Equations

“Do not worry too much about your difficulties in mathematics, I can assure you
that mine are still greater.” - Albert Einstein (1879-1955)

6.1 Linear Systems

6.1.1 Coupled Oscillators

In Section 3.5 we saw that the numerical solution of second order equa-
tions, or higher, can be cast into systems of first order equations. Such sys-
tems are typically coupled in the sense that the solution of at least one of
the equations in the system depends on knowing one of the other solutions
in the system. In many physical systems this coupling takes place naturally.
We will introduce a simple model in this section to illustrate the coupling
of simple oscillators.

x

k

m

Figure 6.1: Spring-Mass system.

There are many problems in physics that result in systems of equations.
This is because the most basic law of physics is given by Newton’s Second
Law, which states that if a body experiences a net force, it will accelerate.
Thus,

∑ F = ma.

Since a = ẍ we have a system of second order differential equations in
general for three dimensional problems, or one second order differential
equation for one dimensional problems for a single mass.

We have already seen the simple problem of a mass on a spring as shown
in Figure 2.1. Recall that the net force in this case is the restoring force of
the spring given by Hooke’s Law,

Fs = −kx,

where k > 0 is the spring constant and x is the elongation of the spring.
When the spring constant is positive, the spring force is negative and when
the spring constant is negative the spring force is positive. The equation for
simple harmonic motion for the mass-spring system was found to be given
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by
mẍ + kx = 0.

This second order equation can be written as a system of two first order
equations in terms of the unknown position and velocity. We first set y = ẋ.
Noting that ẍ = ẏ, we rewrite the second order equation in terms of x and
ẏ. Thus, we have

ẋ = y

ẏ = − k
m

x. (6.1)

One can look at more complicated spring-mass systems. Consider two
blocks attached with two springs as in Figure 6.2. In this case we apply
Newton’s second law for each block. We will designate the elongations of
each spring from equilibrium as x1 and x2. These are shown in Figure 6.2.

For mass m1, the forces acting on it are due to each spring. The first
spring with spring constant k1 provides a force on m1 of −k1x1. The second
spring is stretched, or compressed, based upon the relative locations of the
two masses. So, the second spring will exert a force on m1 of k2(x2 − x1).

Figure 6.2: System of two masses and
two springs.

x

k

m

x

m

k1

1

1 2

2

2

Similarly, the only force acting directly on mass m2 is provided by the
restoring force from spring 2. So, that force is given by −k2(x2 − x1). The
reader should think about the signs in each case.

Putting this all together, we apply Newton’s Second Law to both masses.
We obtain the two equations

m1 ẍ1 = −k1x1 + k2(x2 − x1)

m2 ẍ2 = −k2(x2 − x1). (6.2)

Thus, we see that we have a coupled system of two second order differential
equations. Each equation depends on the unknowns x1 and x2.

One can rewrite this system of two second order equations as a system
of four first order equations by letting x3 = ẋ1 and x4 = ẋ2. This leads to
the system

ẋ1 = x3
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ẋ2 = x4

ẋ3 = − k1

m1
x1 +

k2

m1
(x2 − x1)

ẋ4 = − k2

m2
(x2 − x1). (6.3)

As we will see in the next chapter, this system can be written more com-
pactly in matrix form:

d
dt


x1

x2

x3

x4

 =


0 0 1 0
0 0 0 1

− k1+k2
m1

k2
m1

0 0
k2
m2

− k2
m2

0 0




x1

x2

x3

x4

 (6.4)

We can solve this system of first order equations using matrix methods.
However, we will first need to recall a few things from linear algebra. This
will be done in the next chapter. For now, we will return to simpler systems
and explore the behavior of typical solutions in planar systems.

6.1.2 Planar Systems

We now consider examples of solving a coupled system of first order
differential equations in the plane. We will focus on the theory of linear sys-
tems with constant coefficients. Understanding these simple systems will
help in the study of nonlinear systems, which contain much more interest-
ing behaviors, such as the onset of chaos. In the next chapter we will return
to these systems and describe a matrix approach to obtaining the solutions.

A general form for first order systems in the plane is given by a system
of two equations for unknowns x(t) and y(t) :

x′(t) = P(x, y, t)

y′(t) = Q(x, y, t). (6.5)

An autonomous system is one in which there is no explicit time dependence:
Autonomous systems.

x′(t) = P(x, y)

y′(t) = Q(x, y). (6.6)

Otherwise the system is called nonautonomous.
A linear system takes the form

x′ = a(t)x + b(t)y + e(t)

y′ = c(t)x + d(t)y + f (t). (6.7)

A homogeneous linear system results when e(t) = 0 and f (t) = 0.
A linear, constant coefficient system of first order differential equations is

given by

x′ = ax + by + e

y′ = cx + dy + f . (6.8)
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We will focus on linear, homogeneous systems of constant coefficient first
order differential equations:A linear, homogeneous system of con-

stant coefficient first order differential
equations in the plane.

x′ = ax + by

y′ = cx + dy. (6.9)

As we will see later, such systems can result by a simple translation of the
unknown functions. These equations are said to be coupled if either b 6= 0
or c 6= 0.

We begin by noting that the system (6.9) can be rewritten as a second or-
der constant coefficient linear differential equation, which we already know
how to solve. We differentiate the first equation in system (6.9) and system-
atically replace occurrences of y and y′, since we also know from the first
equation that y = 1

b (x′ − ax). Thus, we have

x′′ = ax′ + by′

= ax′ + b(cx + dy)

= ax′ + bcx + d(x′ − ax). (6.10)

Rewriting the last line, we have

x′′ − (a + d)x′ + (ad− bc)x = 0. (6.11)

This is a linear, homogeneous, constant coefficient ordinary differential
equation. We know that we can solve this by first looking at the roots of the
characteristic equation

r2 − (a + d)r + ad− bc = 0 (6.12)

and writing down the appropriate general solution for x(t). Then we can
find y(t) using Equation (6.9):

y =
1
b
(x′ − ax).

We now demonstrate this for a specific example.

Example 6.1. Consider the system of differential equations

x′ = −x + 6y

y′ = x− 2y. (6.13)

Carrying out the above outlined steps, we have that x′′ + 3x′ − 4x = 0.
This can be shown as follows:

x′′ = −x′ + 6y′

= −x′ + 6(x− 2y)

= −x′ + 6x− 12
(

x′ + x
6

)
= −3x′ + 4x (6.14)
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The resulting differential equation has a characteristic equation of
r2 + 3r − 4 = 0. The roots of this equation are r = 1,−4. Therefore,
x(t) = c1et + c2e−4t. But, we still need y(t). From the first equation of
the system we have

y(t) =
1
6
(x′ + x) =

1
6
(2c1et − 3c2e−4t).

Thus, the solution to the system is

x(t) = c1et + c2e−4t,

y(t) = 1
3 c1et − 1

2 c2e−4t. (6.15)

Sometimes one needs initial conditions. For these systems we would
specify conditions like x(0) = x0 and y(0) = y0. These would allow the
determination of the arbitrary constants as before. Solving systems with initial conditions.

Example 6.2. Solve

x′ = −x + 6y

y′ = x− 2y. (6.16)

given x(0) = 2, y(0) = 0.
We already have the general solution of this system in (6.15). In-

serting the initial conditions, we have

2 = c1 + c2,

0 = 1
3 c1 − 1

2 c2. (6.17)

Solving for c1 and c2 gives c1 = 6/5 and c2 = 4/5. Therefore, the
solution of the initial value problem is

x(t) = 2
5
(
3et + 2e−4t) ,

y(t) = 2
5
(
et − e−4t) . (6.18)

6.1.3 Equilibrium Solutions and Nearby Behaviors

In studying systems of differential equations, it is often useful to
study the behavior of solutions without obtaining an algebraic form for
the solution. This is done by exploring equilibrium solutions and solutions
nearby equilibrium solutions. Such techniques will be seen to be useful later
in studying nonlinear systems.

We begin this section by studying equilibrium solutions of system (6.8).
For equilibrium solutions the system does not change in time. Therefore,
equilibrium solutions satisfy the equations x′ = 0 and y′ = 0. Of course,
this can only happen for constant solutions. Let x0 and y0 be the (constant)
equilibrium solutions. Then, x0 and y0 must satisfy the system Equilibrium solutions.

0 = ax0 + by0 + e,

0 = cx0 + dy0 + f . (6.19)
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This is a linear system of nonhomogeneous algebraic equations. One only
has a unique solution when the determinant of the system is not zero, i.e.,
ad− bc 6= 0. Using Cramer’s (determinant) Rule for solving such systems,
we have

x0 = −

∣∣∣∣∣ e b
f d

∣∣∣∣∣∣∣∣∣∣ a b
c d

∣∣∣∣∣
, y0 = −

∣∣∣∣∣ a e
c f

∣∣∣∣∣∣∣∣∣∣ a b
c d

∣∣∣∣∣
. (6.20)

If the system is homogeneous, e = f = 0, then we have that the origin is
the equilibrium solution; i.e., (x0, y0) = (0, 0). Often we will have this case
since one can always make a change of coordinates from (x, y) to (u, v) by
u = x− x0 and v = y− y0. Then, u0 = v0 = 0.

Next we are interested in the behavior of solutions near the equilibrium
solutions. Later this behavior will be useful in analyzing more complicated
nonlinear systems. We will look at some simple systems that are readily
solved.

Example 6.3. Stable Node (sink)
Consider the system

x′ = −2x

y′ = −y. (6.21)

This is a simple uncoupled system. Each equation is simply solved to
give

x(t) = c1e−2t and y(t) = c2e−t.

In this case we see that all solutions tend towards the equilibrium
point, (0, 0). This will be called a stable node, or a sink.

Before looking at other types of solutions, we will explore the stable node
in the above example. There are several methods of looking at the behavior
of solutions. We can look at solution plots of the dependent versus the
independent variables, or we can look in the xy-plane at the parametric
curves (x(t), y(t)).

Solution Plots: One can plot each solution as a function of t given a set
of initial conditions. Examples are shown in Figure 6.3 for several initial
conditions. Note that the solutions decay for large t. Special cases result for
various initial conditions. Note that for t = 0, x(0) = c1 and y(0) = c2. (Of
course, one can provide initial conditions at any t = t0. It is generally easier
to pick t = 0 in our general explanations.) If we pick an initial condition
with c1=0, then x(t) = 0 for all t. One obtains similar results when setting
y(0) = 0.

Figure 6.3: Plots of solutions of Example
6.3 for several initial conditions.

Phase Portrait: There are other types of plots which can provide addi-
tional information about the solutions even if we cannot find the exact so-
lutions as we can for these simple examples. In particular, one can consider
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the solutions x(t) and y(t) as the coordinates along a parameterized path,
or curve, in the plane: r = (x(t), y(t)) Such curves are called trajectories or
orbits. The xy-plane is called the phase plane and a collection of such orbits
gives a phase portrait for the family of solutions of the given system.

One method for determining the equations of the orbits in the phase
plane is to eliminate the parameter t between the known solutions to get
a relationship between x and y. Since the solutions are known for the last
example, we can do this, since the solutions are known. In particular, we
have

x = c1e−2t = c1

(
y
c2

)2
≡ Ay2.

Another way to obtain information about the orbits comes from noting
that the slopes of the orbits in the xy-plane are given by dy/dx. For au-
tonomous systems, we can write this slope just in terms of x and y. This
leads to a first order differential equation, which possibly could be solved
analytically or numerically.

First we will obtain the orbits for Example 6.3 by solving the correspond-
ing slope equation. Recall that for trajectories defined parametrically by
x = x(t) and y = y(t), we have from the Chain Rule for y = y(x(t)) that

dy
dt

=
dy
dx

dx
dt

.

Therefore, The Slope of a parametric curve.

dy
dx

=
dy
dt
dx
dt

. (6.22)

Figure 6.4: Orbits for Example 6.3.

For the system in (6.21) we use Equation (6.22) to obtain the equation for
the slope at a point on the orbit:

dy
dx

=
y

2x
.

The general solution of this first order differential equation is found using
separation of variables as x = Ay2 for A an arbitrary constant. Plots of these
solutions in the phase plane are given in Figure 6.4. [Note that this is the
same form for the orbits that we had obtained above by eliminating t from
the solution of the system.]

Once one has solutions to differential equations, we often are interested in
the long time behavior of the solutions. Given a particular initial condition
(x0, y0), how does the solution behave as time increases? For orbits near
an equilibrium solution, do the solutions tend towards, or away from, the
equilibrium point? The answer is obvious when one has the exact solutions
x(t) and y(t). However, this is not always the case.

Let’s consider the above example for initial conditions in the first quad-
rant of the phase plane. For a point in the first quadrant we have that

dx/dt = −2x < 0,
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meaning that as t→ ∞, x(t) get more negative. Similarly,

dy/dt = −y < 0,

indicating that y(t) is also getting smaller for this problem. Thus, these
orbits tend towards the origin as t → ∞. This qualitative information was
obtained without relying on the known solutions to the problem.

x

y

(1, 2)(−1, 2)

(−1,−2) (1,−2)

(1, 1)(−1, 1)

(−1,−1) (1,−1)

Figure 6.5: Sketch of tangent vectors us-
ing Example 6.3.

Direction Fields: Another way to determine the behavior of the solutions
of the system of differential equations is to draw the direction field. A
direction field is a vector field in which one plots arrows in the direction of
tangents to the orbits at selected points in the plane. This is done because
the slopes of the tangent lines are given by dy/dx. For the general system
(6.9), the slope is

dy
dx

=
cx + dy
ax + by

.

This is a first order differential equation which can be solved as we show in
the following examples.

Example 6.4. Draw the direction field for Example 6.3.

Figure 6.6: Direction field for Example
6.3.

We can use software to draw direction fields. However, one can
sketch these fields by hand. We have that the slope of the tangent at
this point is given by

dy
dx

=
−y
−2x

=
y

2x
.

For each point in the plane one draws a piece of tangent line with this
slope. In Figure 6.5 we show a few of these. For (x, y) = (1, 1) the
slope is dy/dx = 1/2. So, we draw an arrow with slope 1/2 at this
point. From system (6.21), we have that x′ and y′ are both negative at
this point. Therefore, the vector points down and to the left.

We can do this for several points, as shown in Figure 6.5. Sometimes
one can quickly sketch vectors with the same slope. For this example,
when y = 0, the slope is zero and when x = 0 the slope is infinite. So,
several vectors can be provided. Such vectors are tangent to curves
known as isoclines in which dy

dx =constant.

Figure 6.7: Phase portrait for Example
6.3. This is a stable node, or sink

It is often difficult to provide an accurate sketch of a direction field. Com-
puter software can be used to provide a better rendition. For Example 6.3
the direction field is shown in Figure 6.6. Looking at this direction field, one
can begin to “see” the orbits by following the tangent vectors.

Of course, one can superimpose the orbits on the direction field. This is
shown in Figure 6.7. Are these the patterns you saw in Figure 6.6?

In this example we see all orbits “flow” towards the origin, or equilibrium
point. Again, this is an example of what is called a stable node or a sink.
(Imagine what happens to the water in a sink when the drain is unplugged.)

This is another uncoupled system. The solutions are again simply gotten
by integration. We have that x(t) = c1e−t and y(t) = c2et. Here we have that
x decays as t gets large and y increases as t gets large. In particular, if one
picks initial conditions with c2 = 0, then orbits follow the x-axis towards
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the origin. For initial points with c1 = 0, orbits originating on the y-axis
will flow away from the origin. Of course, in these cases the origin is an
equilibrium point and once at equilibrium, one remains there.

In fact, there is only one line on which to pick initial conditions such
that the orbit leads towards the equilibrium point. No matter how small c2

is, sooner, or later, the exponential growth term will dominate the solution.
One can see this behavior in Figure 6.8.

Figure 6.8: Plots of solutions of Example
6.5 for several initial conditions.

Example 6.5. Saddle Consider the system

x′ = −x

y′ = y. (6.23)

Similar to the first example, we can look at plots of solutions orbits
in the phase plane. These are given by Figures 6.8-6.9. The orbits can
be obtained from the system as

dy
dx

=
dy/dt
dx/dt

= − y
x

.

The solution is y = A
x . For different values of A 6= 0 we obtain a

family of hyperbolae. These are the same curves one might obtain for
the level curves of a surface known as a saddle surface, z = xy. Thus,
this type of equilibrium point is classified as a saddle point. From
the phase portrait we can verify that there are many orbits that lead
away from the origin (equilibrium point), but there is one line of initial
conditions that leads to the origin and that is the x-axis. In this case,
the line of initial conditions is given by the x-axis.

Figure 6.9: Phase portrait for Example
6.5. This is a saddle.

Example 6.6. Unstable Node (source)

x′ = 2x

y′ = y. (6.24)

This example is similar to Example 6.3. The solutions are obtained
by replacing t with −t. The solutions, orbits, and direction fields can
be seen in Figures 6.10-6.11. This is once again a node, but all orbits
lead away from the equilibrium point. It is called an unstable node or a
source.

Figure 6.10: Plots of solutions of Exam-
ple 6.6 for several initial conditions.

Example 6.7. Center

x′ = y

y′ = −x. (6.25)

This system is a simple, coupled system. Neither equation can be
solved without some information about the other unknown function.
However, we can differentiate the first equation and use the second
equation to obtain

x′′ + x = 0.
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We recognize this equation as one that appears in the study of simple
harmonic motion. The solutions are pure sinusoidal oscillations:

x(t) = c1 cos t + c2 sin t, y(t) = −c1 sin t + c2 cos t.

In the phase plane the trajectories can be determined either by look-
ing at the direction field, or solving the first order equation

dy
dx

= − x
y

.

Performing a separation of variables and integrating, we find that

x2 + y2 = C.

Thus, we have a family of circles for C > 0. (Can you prove this using
the general solution?) Looking at the results graphically in Figures
6.12-6.13 confirms this result. This type of point is called a center.

Figure 6.11: Phase portrait for Example
6.6, an unstable node or source.

Figure 6.12: Plots of solutions of Exam-
ple 6.7 for several initial conditions.

Example 6.8. Focus (spiral)

x′ = αx + y

y′ = −x. (6.26)

In this example, we will see an additional set of behaviors of equi-
librium points in planar systems. We have added one term, αx, to
the system in Example 6.7. We will consider the effects for two spe-
cific values of the parameter: α = 0.1,−0.2. The resulting behaviors
are shown in the Figures 6.15-6.18. We see orbits that look like spi-
rals. These orbits are stable and unstable spirals (or foci, the plural of
focus.)

We can understand these behaviors by once again relating the sys-
tem of first order differential equations to a second order differential
equation. Using the usual method for obtaining a second order equa-
tion form a system, we find that x(t) satisfies the differential equation

x′′ − αx′ + x = 0.

We recall from our first course that this is a form of damped simple
harmonic motion. The characteristic equation is r2 − αr + 1 = 0. The
solution of this quadratic equation is

r =
α±
√

α2 − 4
2

.

Figure 6.13: Phase portrait for Example
6.7, a center.

There are five special cases to consider as shown in the below clas-
sification.
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Classification of Solutions of x′′ − αx′ + x = 0

1. α = −2. There is one real solution. This case is called critical damping
since the solution r = −1 leads to exponential decay. The solution is
x(t) = (c1 + c2t)e−t.

2. α < −2. There are two real, negative solutions, r = −µ,−ν, µ, ν > 0.
The solution is x(t) = c1e−µt + c2e−νt. In this case we have what is
called overdamped motion. There are no oscillations

3. −2 < α < 0. There are two complex conjugate solutions r = α/2± iβ
with real part less than zero and β =

√
4−α2

2 . The solution is x(t) =

(c1 cos βt + c2 sin βt)eαt/2. Since α < 0, this consists of a decaying expo-
nential times oscillations. This is often called an underdamped oscillation.

4. α = 0. This leads to simple harmonic motion.

5. 0 < α < 2. This is similar to the underdamped case, except α > 0. The
solutions are growing oscillations.

6. α = 2. There is one real solution. The solution is x(t) = (c1 + c2t)et. It
leads to unbounded growth in time.

7. For α > 2. There are two real, positive solutions r = µ, ν > 0. The
solution is x(t) = c1eµt + c2eνt, which grows in time.

Figure 6.14: Plots of solutions of Ex-
ample 6.8 for several initial conditions,
α = −0.2.

Figure 6.15: Plots of solutions of Ex-
ample 6.8 for several initial conditions,
α = 0.1.

For α < 0 the solutions are losing energy, so the solutions can oscil-
late with a diminishing amplitude. (See Figure 6.14.) For α > 0, there
is a growth in the amplitude, which is not typical. (See Figure 6.15.)
Of course, there can be overdamped motion if the magnitude of α is
too large.

Figure 6.16: Phase portrait for 6.9. This
is a degenerate node.

Example 6.9. Degenerate Node For this example, we will write out
the solutions. It is a coupled system for which only the second equa-
tion is coupled.

x′ = −x

y′ = −2x− y. (6.27)

There are two possible approaches:
a. We could solve the first equation to find x(t) = c1e−t. Inserting

this solution into the second equation, we have

y′ + y = −2c1e−t.

This is a relatively simple linear first order equation for y = y(t). The
integrating factor is µ = et. The solution is found as y(t) = (c2 −
2c1t)e−t.

b. Another method would be to proceed to rewrite this as a second
order equation. Computing x′′ does not get us very far. So, we look at

y′′ = −2x′ − y′
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= 2x− y′

= −2y′ − y. (6.28)

Therefore, y satisfies

y′′ + 2y′ + y = 0.

The characteristic equation has one real root, r = −1. So, we write

y(t) = (k1 + k2t)e−t.

This is a stable degenerate node. Combining this with the solution
x(t) = c1e−t, we can show that y(t) = (c2 − 2c1t)e−t as before.

Figure 6.17: Phase portrait for Example
6.8 with α = −0.2. This is a stable focus,
or spiral.

In Figure 6.16 we see several orbits in this system. It differs from
the stable node show in Figure 6.4 in that there is only one direction
along which the orbits approach the origin instead of two. If one picks
c1 = 0, then x(t) = 0 and y(t) = c2e−t. This leads to orbits running
along the y-axis as seen in the figure.

Figure 6.18: Phase portrait for Example
6.9. This is a degenerate node.

Example 6.10. A Line of Equilibria, Zero Root

x′ = 2x− y

y′ = −2x + y. (6.29)

Figure 6.19: Plots of direction field of Ex-
ample 6.10.

In this last example, we have a coupled set of equations. We rewrite
it as a second order differential equation:

x′′ = 2x′ − y′

= 2x′ − (−2x + y)

= 2x′ + 2x + (x′ − 2x) = 3x′. (6.30)

So, the second order equation is

x′′ − 3x′ = 0

and the characteristic equation is 0 = r(r − 3). This gives the general
solution as

x(t) = c1 + c2e3t

and thus

y = 2x− x′ = 2(c1 + c2e3t)− (3c2e3t) = 2c1 − c2e3t.

In Figure 6.19 we show the direction field. The constant slope field
seen in this example is confirmed by a simple computation:

dy
dx

=
−2x + y
2x− y

= −1.

Furthermore, looking at initial conditions with y = 2x, we have at
t = 0,

2c1 − c2 = 2(c1 + c2) ⇒ c2 = 0.

Therefore, points on this line remain on this line forever, (x, y) =

(c1, 2c1). This line of fixed points is called a line of equilibria.
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6.1.4 Polar Representation of Spirals*

In the examples with a center or a spiral, one might be able to
write the solutions in polar coordinates. Recall that a point in the plane can
be described by either Cartesian (x, y) or polar (r, θ) coordinates. Given the
polar form, one can find the Cartesian components using

x = r cos θ and y = r sin θ.

Given the Cartesian coordinates, one can find the polar coordinates using

r2 = x2 + y2 and tan θ =
y
x

. (6.31)

Since x and y are functions of t, then naturally we can think of r and θ as
functions of t. Converting a system of equations in the plane for x′ and y′

to polar form requires knowing r′ and θ′. So, we first find expressions for r′

and θ′ in terms of x′ and y′.
Differentiating the first equation in (6.31) gives

rr′ = xx′ + yy′.

Inserting the expressions for x′ and y′ from system 6.9, we have

rr′ = x(ax + by) + y(cx + dy).

In some cases this may be written entirely in terms of r’s. Similarly, we have
that

θ′ =
xy′ − yx′

r2 ,

which the reader can prove for homework.
In summary, when converting first order equations from rectangular to

polar form, one needs the relations below.

Derivatives of Polar Variables

r′ =
xx′ + yy′

r
,

θ′ =
xy′ − yx′

r2 . (6.32)

Example 6.11. Rewrite the following system in polar form and solve
the resulting system.

x′ = ax + by

y′ = −bx + ay. (6.33)

We first compute r′ and θ′:

rr′ = xx′ + yy′ = x(ax + by) + y(−bx + ay) = ar2.
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r2θ′ = xy′ − yx′ = x(−bx + ay)− y(ax + by) = −br2.

This leads to simpler system

r′ = ar

θ′ = −b. (6.34)

This system is uncoupled. The second equation in this system in-
dicates that we traverse the orbit at a constant rate in the clockwise
direction. Solving these equations, we have that r(t) = r0eat, θ(t) =
θ0− bt. Eliminating t between these solutions, we finally find the polar
equation of the orbits:

r = r0e−a(θ−θ0)t/b.

If you graph this for a 6= 0, you will get stable or unstable spirals.

Example 6.12. Consider the specific system

x′ = −y + x

y′ = x + y. (6.35)

In order to convert this system into polar form, we compute

rr′ = xx′ + yy′ = x(−y + x) + y(x + y) = r2.

r2θ′ = −xy′ − yx′ = x(x + y)− y(−y + x) = r2.

This leads to simpler system

r′ = r

θ′ = 1. (6.36)

Solving these equations yields

r(t) = r0et, θ(t) = t + θ0.

Eliminating t from this solution gives the orbits in the phase plane,
r(θ) = r0eθ−θ0 .

A more complicated example arises for a nonlinear system of differential
equations. Consider the following example.

Example 6.13.

x′ = −y + x(1− x2 − y2)

y′ = x + y(1− x2 − y2). (6.37)

Transforming to polar coordinates, one can show that in order to convert
this system into polar form, we compute

r′ = r(1− r2), θ′ = 1.

This uncoupled system can be solved and this is left to the reader.
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6.2 Applications

In this section we will describe some simple applications leading
to systems of differential equations which can be solved using the methods
in this chapter. These systems are left for homework problems and the as
the start of further explorations for student projects.

6.2.1 Mass-Spring Systems

The first examples that we had seen involved masses on springs. Re-
call that for a simple mass on a spring we studied simple harmonic motion,
which is governed by the equation

mẍ + kx = 0.

This second order equation can be written as two first order equations

ẋ = y

ẏ = − k
m

x, (6.38)

or

ẋ = y

ẏ = −ω2x, (6.39)

where ω2 = k
m . The coefficient matrix for this system is

A =

(
0 1
−ω2 0

)
.

x

k

m

x

m

k1

1

1 2

2

2 Figure 6.20: System of two masses and
two springs.

We also looked at the system of two masses and two springs as shown in
Figure 6.20. The equations governing the motion of the masses is

m1 ẍ1 = −k1x1 + k2(x2 − x1)

m2 ẍ2 = −k2(x2 − x1). (6.40)
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We can rewrite this system as four first order equations

ẋ1 = x3

ẋ2 = x4

ẋ3 = − k1

m1
x1 +

k2

m1
(x2 − x1)

ẋ4 = − k2

m2
(x2 − x1). (6.41)

The coefficient matrix for this system is

A =


0 0 1 0
0 0 0 1

− k1+k2
m1

k2
m1

0 0
k2
m2

− k2
m2

0 0

 .

We can study this system for specific values of the constants using the meth-
ods covered in the last sections.Writing the spring-block system as a sec-

ond order vector system. Actually, one can also put the system (6.40) in the matrix form(
m1 0
0 m2

)(
ẍ1

ẍ2

)
=

(
−(k1 + k2) k2

k2 −k2

)(
x1

x2

)
. (6.42)

This system can then be written compactly as

Mẍ = −Kx, (6.43)

where

M =

(
m1 0
0 m2

)
, K =

(
k1 + k2 −k2

−k2 k2

)
.

This system can be solved by guessing a form for the solution. We could
guess

x = aeiωt

or

x =

(
a1 cos(ωt− δ1)

a2 cos(ωt− δ2)

)
,

where δi are phase shifts determined from initial conditions.
Inserting x = aeiωt into the system gives

(K−ω2M)a = 0.

This is a homogeneous system. It is a generalized eigenvalue problem for
eigenvalues ω2 and eigenvectors a. We solve this in a similar way to the
standard matrix eigenvalue problems. The eigenvalue equation is found as

det (K−ω2M) = 0.

Once the eigenvalues are found, then one determines the eigenvectors and
constructs the solution.
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Example 6.14. Let m1 = m2 = m and k1 = k2 = k. Then, we have to
solve the system

ω2

(
m 0
0 m

)(
a1

a2

)
=

(
2k −k
−k k

)(
a1

a2

)
.

The eigenvalue equation is given by

0 =

∣∣∣∣∣ 2k−mω2 −k
−k k−mω2

∣∣∣∣∣
= (2k−mω2)(k−mω2)− k2

= m2ω4 − 3kmω2 + k2. (6.44)

Solving this quadratic equation for ω2, we have

ω2 =
3± 1

2
k
m

.

For positive values of ω, one can show that

ω =
1
2

(
±1 +

√
5
)√ k

m
.

The eigenvectors can be found for each eigenvalue by solving the
homogeneous system(

2k−mω2 −k
−k k−mω2

)(
a1

a2

)
= 0.

The eigenvectors are given by

a1 =

(
−
√

5+1
2

1

)
, a2 =

( √
5−1
2
1

)
.

We are now ready to construct the real solutions to the problem.
Similar to solving two first order systems with complex roots, we take
the real and imaginary parts and take a linear combination of the so-
lutions. In this problem there are four terms, giving the solution in
the form

x(t) = c1a1cosω1t + c2a1sinω1t + c3a2cosω2t + c4a2sinω2t,

where the ω’s are the eigenvalues and the a’s are the corresponding
eigenvectors. The constants are determined from the initial conditions,
x(0) = x0 and ẋ(0) = v0.

6.2.2 Circuits*

In the last chapter we investigated simple series LRC circuits.
More complicated circuits are possible by looking at parallel connections,
or other combinations, of resistors, capacitors and inductors. This results
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in several equations for each loop in the circuit, leading to larger systems
of differential equations. An example of another circuit setup is shown in
Figure 6.21. This is not a problem that can be covered in the first year
physics course.

There are two loops, indicated in Figure 6.22 as traversed clockwise. For
each loop we need to apply Kirchoff’s Loop Rule. There are three oriented
currents, labeled Ii, i = 1, 2, 3. Corresponding to each current is a changing
charge, qi such that

Ii =
dqi
dt

, i = 1, 2, 3.

We have for loop one

I1R1 +
q2

C
= V(t) (6.45)

and for loop two

I3R2 + L
dI3

dt
=

q2

C
. (6.46)

+

−V(t)

R1 R2

LC

Figure 6.21: A circuit with two loops
containing several different circuit ele-
ments.

There are three unknown functions for the charge. Once we know the
charge functions, differentiation will yield the three currents. However, we
only have two equations. We need a third equation. This equation is found
from Kirchoff’s Point (Junction) Rule.

+

−V(t)

R1 R2

L

A

C

B

I1 I3

I2

1 2

Figure 6.22: The previous parallel circuit
with the directions indicated for travers-
ing the loops in Kirchoff’s Laws.

Consider the points A and B in Figure 6.22. Any charge (current) entering
these junctions must be the same as the total charge (current) leaving the
junctions. For point A we have

I1 = I2 + I3, (6.47)

or
q̇1 = q̇2 + q̇3. (6.48)

Equations (6.45), (6.46), and (6.48) form a coupled system of differential
equations for this problem. There are both first and second order derivatives
involved. We can write the whole system in terms of charges as

R1q̇1 +
q2

C
= V(t)

R2q̇3 + Lq̈3 =
q2

C
q̇1 = q̇2 + q̇3. (6.49)

The question is whether, or not, we can write this as a system of first order
differential equations. Since there is only one second order derivative, we
can introduce the new variable q4 = q̇3. The first equation can be solved for
q̇1. The third equation can be solved for q̇2 with appropriate substitutions
for the other terms. q̇3 is gotten from the definition of q4 and the second
equation can be solved for q̈3 and substitutions made to obtain the system

q̇1 =
V
R1
− q2

R1C

q̇2 =
V
R1
− q2

R1C
− q4

q̇3 = q4

q̇4 =
q2

LC
− R2

L
q4.
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So, we have a nonhomogeneous first order system of differential equa-
tions.

6.2.3 Mixture Problems

There are many types of mixture problems. Such problems are standard in
a first course on differential equations as examples of first order differential
equations. Typically these examples consist of a tank of brine, water con-
taining a specific amount of salt with pure water entering and the mixture
leaving, or the flow of a pollutant into, or out of, a lake. We first saw such
problems in Chapter 1.

In general one has a rate of flow of some concentration of mixture enter-
ing a region and a mixture leaving the region. The goal is to determine how
much stuff is in the region at a given time. This is governed by the equation

Rate of change of substance = Rate In − Rate Out.

This can be generalized to the case of two interconnected tanks. We will pro-
vide an example, but first we review the single tank problem from Chapter
1.

Example 6.15. Single Tank Problem
A 50 gallon tank of pure water has a brine mixture with concentra-

tion of 2 pounds per gallon entering at the rate of 5 gallons per minute.
[See Figure 6.23.] At the same time the well-mixed contents drain out
at the rate of 5 gallons per minute. Find the amount of salt in the tank
at time t. In all such problems one assumes that the solution is well
mixed at each instant of time.

Figure 6.23: A typical mixing problem.

Let x(t) be the amount of salt at time t. Then the rate at which the
salt in the tank increases is due to the amount of salt entering the tank
less that leaving the tank. To figure out these rates, one notes that
dx/dt has units of pounds per minute. The amount of salt entering
per minute is given by the product of the entering concentration times
the rate at which the brine enters. This gives the correct units:(

2
pounds

gal

)(
5

gal
min

)
= 10

pounds
min

.

Similarly, one can determine the rate out as(
x pounds

50 gal

)(
5

gal
min

)
=

x
10

pounds
min

.

Thus, we have
dx
dt

= 10− x
10

.

This equation is easily solved using the methods for first order
equations.
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Figure 6.24: The two tank problem.

Example 6.16. Double Tank Problem
One has two tanks connected together, labeled tank X and tank Y,

as shown in Figure 6.24.
Let tank X initially have 100 gallons of brine made with 100 pounds

of salt. Tank Y initially has 100 gallons of pure water. Pure water
is pumped into tank X at a rate of 2.0 gallons per minute. Some of
the mixture of brine and pure water flows into tank Y at 3 gallons
per minute. To keep the tank levels the same, one gallon of the Y
mixture flows back into tank X at a rate of one gallon per minute and
2.0 gallons per minute drains out. Find the amount of salt at any given
time in the tanks. What happens over a long period of time?

In this problem we set up two equations. Let x(t) be the amount
of salt in tank X and y(t) the amount of salt in tank Y. Again, we
carefully look at the rates into and out of each tank in order to set up
the system of differential equations. We obtain the system

dx
dt

=
y

100
− 3x

100
dy
dt

=
3x
100
− 3y

100
. (6.50)

This is a linear, homogenous constant coefficient system of two first
order equations, which we know how to solve. The matrix form of the
system is given by

ẋ =

(
− 3

100
1

100
3

100 − 3
100

)
x, x(0) =

(
100
0

)
.

The eigenvalues for the problem are given by λ = −3±
√

3 and the
eigenvectors are (

1
±
√

3

)
.

Since the eigenvalues are real and distinct, the general solution is
easily written down:

x(t) = c1

(
1√
3

)
e(−3+

√
3)t + c2

(
1
−
√

3

)
e(−3−

√
3)t.
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Finally, we need to satisfy the initial conditions. So,

x(0) = c1

(
1√
3

)
+ c2

(
1
−
√

3

)
=

(
100

0

)
,

or
c1 + c2 = 100, (c1 − c2)

√
3 = 0.

So, c2 = c1 = 50. The final solution is

x(t) = 50

((
1√
3

)
e(−3+

√
3)t +

(
1
−
√

3

)
e(−3−

√
3)t

)
,

or

x(t) = 50
(

e(−3+
√

3)t + e(−3−
√

3)t
)

y(t) = 50
√

3
(

e(−3+
√

3)t − e(−3−
√

3)t
)

. (6.51)

6.2.4 Chemical Kinetics*

There are many problems in the chemistry of chemical reactions
which lead to systems of differential equations. The simplest reaction is
when a chemical A turns into chemical B. This happens at a certain rate,
k > 0. This reaction can be represented by the chemical formula

A
k
// B.

In this case we have that the rates of change of the concentrations of A, [A],
and B, [B], are given by The chemical reactions used in these ex-

amples are first order reactions. Second
order reactions have rates proportional
to the square of the concentration.

d[A]

dt
= −k[A]

d[B]
dt

= k[A] (6.52)

Think about this as it is a key to understanding the next reactions.
A more complicated reaction is given by

A
k1

// B
k2

// C.

Here there are three concentrations and two rates of change. The system of
equations governing the reaction is

d[A]

dt
= −k1[A],

d[B]
dt

= k1[A]− k2[B],

d[C]
dt

= k2[B]. (6.53)
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The more complication rate of change is when [B] increases from [A] chang-
ing to [B] and decrease when [B] changes to [C]. Thus, there are two terms
in the rate of change equation for concentration [B].

One can further consider reactions in which a reverse reaction is possible.
Thus, a further generalization occurs for the reaction

A
k1

// B
k3oo

k2

// C.

The reverse reaction rates contribute to the reaction equations for [A] and
[B]. The resulting system of equations is

d[A]

dt
= −k1[A] + k3[B],

d[B]
dt

= k1[A]− k2[B]− k3[B],

d[C]
dt

= k2[B]. (6.54)

Nonlinear chemical reactions will be discussed in the next chapter.

6.2.5 Predator Prey Models*

Another common population model is that describing the coexistence
of species. For example, we could consider a population of rabbits and
foxes. Left to themselves, rabbits would tend to multiply, thus

dR
dt

= aR,

with a > 0. In such a model the rabbit population would grow exponentially.
Similarly, a population of foxes would decay without the rabbits to feed on.
So, we have that

dF
dt

= −bF

for b > 0.
Now, if we put these populations together on a deserted island, they

would interact. The more foxes, the rabbit population would decrease.
However, the more rabbits, the foxes would have plenty to eat and the pop-
ulation would thrive. Thus, we could model the competing populations
as

dR
dt

= aR− cF,

dF
dt

= −bF + dR, (6.55)

where all of the constants are positive numbers. Studying this coupled
system would lead to a study of the dynamics of these populations. The
nonlinear version of this system, the Lotka-Volterra model, will be discussed
in the next chapter.
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6.2.6 Love Affairs*

The next application is one that was introduced in 1988 by Stro-
gatz as a cute system involving relationships.1 One considers what happens 1 Steven H. Strogatz introduced this

problem as an interesting example of
systems of differential equations in
Mathematics Magazine, Vol. 61, No. 1

(Feb. 1988) p 35. He also describes it
in his book Nonlinear Dynamics and Chaos
(1994).

to the affections that two people have for each other over time. Let R de-
note the affection that Romeo has for Juliet and J be the affection that Juliet
has for Romeo. Positive values indicate love and negative values indicate
dislike.

One possible model is given by

dR
dt

= bJ

dJ
dt

= cR (6.56)

with b > 0 and c < 0. In this case Romeo loves Juliet the more she likes him.
But Juliet backs away when she finds his love for her increasing.

A typical system relating the combined changes in affection can be mod-
eled as

dR
dt

= aR + bJ

dJ
dt

= cR + dJ. (6.57)

Several scenarios are possible for various choices of the constants. For ex-
ample, if a > 0 and b > 0, Romeo gets more and more excited by Juliet’s love
for him. If c > 0 and d < 0, Juliet is being cautious about her relationship
with Romeo. For specific values of the parameters and initial conditions,
one can explore this match of an overly zealous lover with a cautious lover.

6.2.7 Epidemics*

Another interesting area of application of differential equation is
in predicting the spread of disease. Typically, one has a population of sus-
ceptible people or animals. Several infected individuals are introduced into
the population and one is interested in how the infection spreads and if the
number of infected people drastically increases or dies off. Such models are
typically nonlinear and we will look at what is called the SIR model in the
next chapter. In this section we will model a simple linear model.

Let us break the population into three classes. First, we let S(t) represent
the healthy people, who are susceptible to infection. Let I(t) be the number
of infected people. Of these infected people, some will die from the infection
and others could recover. We will consider the case that initially there is one
infected person and the rest, say N, are healthy. Can we predict how many
deaths have occurred by time t?

We model this problem using the compartmental analysis we had seen
for mixing problems. The total rate of change of any population would be
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due to those entering the group less those leaving the group. For example,
the number of healthy people decreases due infection and can increase when
some of the infected group recovers. Let’s assume that a) the rate of infection
is proportional to the number of healthy people, aS, and b) the number who
recover is proportional to the number of infected people, rI. Thus, the rate
of change of healthy people is found as

dS
dt

= −aS + rI.

Let the number of deaths be D(t). Then, the death rate could be taken to
be proportional to the number of infected people. So,

dD
dt

= dI

Finally, the rate of change of infected people is due to healthy people
getting infected and the infected people who either recover or die. Using
the corresponding terms in the other equations, we can write the rate of
change of infected people as

dI
dt

= aS− rI − dI.

This linear system of differential equations can be written in matrix form.

d
dt

 S
I
D

 =

 −a r 0
a −d− r 0
0 d 0


 S

I
D

 . (6.58)

The reader can find the solutions of this system and determine if this is a
realistic model.

6.3 Matrix Formulation

We have investigated several linear systems in the plane and in
the next chapter we will use some of these ideas to investigate nonlinear
systems. We need a deeper insight into the solutions of planar systems. So,
in this section we will recast the first order linear systems into matrix form.
This will lead to a better understanding of first order systems and allow
for extensions to higher dimensions and the solution of nonhomogeneous
equations later in this chapter.

We start with the usual homogeneous system in Equation (6.9). Let the
unknowns be represented by the vector

x(t) =

(
x(t)
y(t)

)
.

Then we have that

x′ =

(
x′

y′

)
=

(
ax + by
cx + dy

)
=

(
a b
c d

)(
x
y

)
≡ Ax.
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Here we have introduced the coefficient matrix A. This is a first order vector
differential equation,

x′ = Ax.

Formerly, we can write the solution as

x = x0eAt.

You can verify that this is a solution by simply differentiating,

dx
dt

= x0
d
dt

(
eAt
)
= Ax0eAt = Ax.

However, there remains the question, “What does it mean to exponentiate
a matrix?” The exponential of a matrix is defined using the Maclaurin series
expansion

ex =
∞

∑
k=0

= 1 + x +
x2

2!
+

x3

3!
+ · · · .

We define The exponential of a matrix is defined us-
ing the Maclaurin series expansion

ex =
∞

∑
k=0

xn

n!
= 1 + x +

x2

2!
+

x3

3!
+ · · · .

So, we define

eA = I + A +
A2

2!
+

A3

3!
+ · · · . (6.59)

In general, it is difficult computing eA

unless A is diagonal.

eA =
∞

∑
k=0

1
n!

An = I + A +
A2

2!
+

A3

3!
+ · · · . (6.60)

In general it is difficult to sum this series, but it is doable for some simple
examples.

Example 6.17. Evaluate etA for A =

(
1 0
0 2

)
.

etA = I + tA +
t2

2!
A2 +

t3

3!
A3 + · · · .

=

(
1 0
0 1

)
+ t

(
1 0
0 2

)
+

t2

2!

(
1 0
0 2

)2

+
t3

3!

(
1 0
0 2

)3

+ · · ·

=

(
1 0
0 1

)
+ t

(
1 0
0 2

)
+

t2

2!

(
1 0
0 4

)
+

t3

3!

(
1 0
0 8

)
+ · · ·

=

(
1 + t + t2

2! +
t3

3! · · · 0
0 1 + 2t + 2t2

2! + 8t3

3! · · ·

)

=

(
et 0
0 e2t

)
(6.61)

Example 6.18. Evaluate etA for A =

(
0 1
1 0

)
.

We first note that

A2 =

(
0 1
1 0

)(
0 1
1 0

)
=

(
1 0
0 1

)
= I.

Therefore,

An =

{
A, n odd,
I, n even.
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Then, we have

etA = I + tA +
t2

2!
A2 +

t3

3!
A3 + · · · .

= I + tA +
t2

2!
I +

t3

3!
A + · · · .

=

(
1 + t2

2! +
t4

4! · · · t + t3

3! +
t5

5! · · ·
t + t3

3! +
t5

5! · · · 1 + t2

2! +
t4

4! · · ·

)

=

(
cosh sinh t
sinh t cosh t

)
. (6.62)

Since summing these infinite series might be difficult, we will now inves-
tigate the solutions of planar systems to see if we can find other approaches
for solving linear systems using matrix methods. We begin by recalling the
solution to the problem in Example (6.16). We obtained the solution to this
system as

x(t) = c1et + c2e−4t,

y(t) =
1
3

c1et − 1
2

c2e−4t. (6.63)

This can be rewritten using matrix operations. Namely, we first write the
solution in vector form.

x =

(
x(t)
y(t)

)

=

(
c1et + c2e−4t

1
3 c1et − 1

2 c2e−4t

)

=

(
c1et

1
3 c1et

)
+

(
c2e−4t

− 1
2 c2e−4t

)

= c1

(
1
1
3

)
et + c2

(
1
− 1

2

)
e−4t. (6.64)

We see that our solution is in the form of a linear combination of vectors
of the form

x = veλt

with v a constant vector and λ a constant number. This is similar to how we
began to find solutions to second order constant coefficient equations. So,
for the general problem (6.3) we insert this guess. Thus,

x′ = Ax⇒
λveλt = Aveλt. (6.65)

For this to be true for all t, we have that

Av = λv. (6.66)

This is an eigenvalue problem. A is a 2× 2 matrix for our problem, but
could easily be generalized to a system of n first order differential equa-
tions. We will confine our remarks for now to planar systems. However, we
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need to recall how to solve eigenvalue problems and then see how solutions
of eigenvalue problems can be used to obtain solutions to our systems of
differential equations..

6.4 Eigenvalue Problems

We seek nontrivial solutions to the eigenvalue problem

Av = λv. (6.67)

We note that v = 0 is an obvious solution. Furthermore, it does not lead
to anything useful. So, it is called a trivial solution. Typically, we are given
the matrix A and have to determine the eigenvalues, λ, and the associated
eigenvectors, v, satisfying the above eigenvalue problem. Later in the course
we will explore other types of eigenvalue problems.

For now we begin to solve the eigenvalue problem for v =

(
v1

v2

)
.

Inserting this into Equation (6.67), we obtain the homogeneous algebraic
system

(a− λ)v1 + bv2 = 0,

cv1 + (d− λ)v2 = 0. (6.68)

The solution of such a system would be unique if the determinant of the
system is not zero. However, this would give the trivial solution v1 = 0,
v2 = 0. To get a nontrivial solution, we need to force the determinant to be
zero. This yields the eigenvalue equation

0 =

∣∣∣∣∣ a− λ b
c d− λ

∣∣∣∣∣ = (a− λ)(d− λ)− bc.

This is a quadratic equation for the eigenvalues that would lead to nontrivial
solutions. If we expand the right side of the equation, we find that

λ2 − (a + d)λ + ad− bc = 0.

This is the same equation as the characteristic equation (6.12) for the gen-
eral constant coefficient differential equation considered in the first chapter.
Thus, the eigenvalues correspond to the solutions of the characteristic poly-
nomial for the system.

Once we find the eigenvalues, then there are possibly an infinite number
solutions to the algebraic system. We will see this in the examples.

So, the process is to

a) Write the coefficient matrix;

b) Find the eigenvalues from the equation det(A− λI) = 0; and,

c) Find the eigenvectors by solving the linear system (A − λI)v = 0 for
each λ.
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6.5 Solving Constant Coefficient Systems in 2D

Before proceeding to examples, we first indicate the types of solutions that
could result from the solution of a homogeneous, constant coefficient system
of first order differential equations.

We begin with the linear system of differential equations in matrix form.

dx
dt

=

(
a b
c d

)
x = Ax. (6.69)

The type of behavior depends upon the eigenvalues of matrix A. The pro-
cedure is to determine the eigenvalues and eigenvectors and use them to
construct the general solution.

If we have an initial condition, x(t0) = x0, we can determine the two
arbitrary constants in the general solution in order to obtain the particular
solution. Thus, if x1(t) and x2(t) are two linearly independent solutions2,2 Recall that linear independence means

c1x1(t) + c2x2(t) = 0 if and only if
c1, c2 = 0. The reader should derive the
condition on the xi for linear indepen-
dence.

then the general solution is given as

x(t) = c1x1(t) + c2x2(t).

Then, setting t = 0, we get two linear equations for c1 and c2:

c1x1(0) + c2x2(0) = x0.

The major work is in finding the linearly independent solutions. This de-
pends upon the different types of eigenvalues that one obtains from solving
the eigenvalue equation, det(A− λI) = 0. The nature of these roots indicate
the form of the general solution. In Table 6.1 we summarize the classifica-
tion of solutions in terms of the eigenvalues of the coefficient matrix. We
first make some general remarks about the plausibility of these solutions
and then provide examples in the following section to clarify the matrix
methods for our two dimensional systems.

The construction of the general solution in Case I is straight forward.
However, the other two cases need a little explanation.

Let’s consider Case III. Note that since the original system of equations
does not have any i’s, then we would expect real solutions. So, we look
at the real and imaginary parts of the complex solution. We have that the
complex solution satisfies the equation

d
dt

[Re(y(t)) + iIm(y(t))] = A[Re(y(t)) + iIm(y(t))].

Differentiating the sum and splitting the real and imaginary parts of the
equation, gives

d
dt

Re(y(t)) + i
d
dt

Im(y(t)) = A[Re(y(t))] + iA[Im(y(t))].

Setting the real and imaginary parts equal, we have

d
dt

Re(y(t)) = A[Re(y(t))],
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and
d
dt

Im(y(t)) = A[Im(y(t))].

Therefore, the real and imaginary parts each are linearly independent so-
lutions of the system and the general solution can be written as a linear
combination of these expressions.

Classification of the Solutions for Two
Linear First Order Differential Equations

1. Case I: Two real, distinct roots.

Solve the eigenvalue problem Av = λv for each eigenvalue obtaining
two eigenvectors v1, v2. Then write the general solution as a linear
combination x(t) = c1eλ1tv1 + c2eλ2tv2

2. Case II: One Repeated Root

Solve the eigenvalue problem Av = λv for one eigenvalue λ, obtaining
the first eigenvector v1. One then needs a second linearly independent
solution. This is obtained by solving the nonhomogeneous problem
Av2 − λv2 = v1 for v2.

The general solution is then given by x(t) = c1eλtv1 + c2eλt(v2 + tv1).

3. Case III: Two complex conjugate roots.

Solve the eigenvalue problem Ax = λx for one eigenvalue, λ = α + iβ,
obtaining one eigenvector v. Note that this eigenvector may have
complex entries. Thus, one can write the vector y(t) = eλtv =

eαt(cos βt + i sin βt)v. Now, construct two linearly independent solu-
tions to the problem using the real and imaginary parts of y(t) :
y1(t) = Re(y(t)) and y2(t) = Im(y(t)). Then the general solution
can be written as x(t) = c1y1(t) + c2y2(t).

Table 6.1: Solutions Types for Planar Sys-
tems with Constant Coefficients

We now turn to Case II. Writing the system of first order equations as a
second order equation for x(t) with the sole solution of the characteristic
equation, λ = 1

2 (a + d), we have that the general solution takes the form

x(t) = (c1 + c2t)eλt.

This suggests that the second linearly independent solution involves a term
of the form vteλt. It turns out that the guess that works is

x = teλtv1 + eλtv2.

Inserting this guess into the system x′ = Ax yields

(teλtv1 + eλtv2)
′ = A

[
teλtv1 + eλtv2

]
.

eλtv1 + λteλtv1 + λeλtv2 = λteλtv1 + eλt Av2.

eλt (v1 + λv2) = eλt Av2. (6.70)
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Noting this is true for all t, we find that

v1 + λv2 = Av2. (6.71)

Therefore,
(A− λI)v2 = v1.

We know everything except for v2. So, we just solve for it and obtain the
second linearly independent solution.

6.6 Examples of the Matrix Method

Here we will give some examples for typical systems for the three cases
mentioned in the last section.

Example 6.19. A =

(
4 2
3 3

)
.

Eigenvalues: We first determine the eigenvalues.

0 =

∣∣∣∣∣ 4− λ 2
3 3− λ

∣∣∣∣∣ (6.72)

Therefore,

0 = (4− λ)(3− λ)− 6

0 = λ2 − 7λ + 6

0 = (λ− 1)(λ− 6) (6.73)

The eigenvalues are then λ = 1, 6. This is an example of Case I.
Eigenvectors: Next we determine the eigenvectors associated with

each of these eigenvalues. We have to solve the system Av = λv in
each case.

Case λ = 1. (
4 2
3 3

)(
v1

v2

)
=

(
v1

v2

)
(6.74)(

3 2
3 2

)(
v1

v2

)
=

(
0
0

)
(6.75)

This gives 3v1 + 2v2 = 0. One possible solution yields an eigenvector of(
v1

v2

)
=

(
2
−3

)
.

Case λ = 6.

(
4 2
3 3

)(
v1

v2

)
= 6

(
v1

v2

)
(6.76)(

−2 2
3 −3

)(
v1

v2

)
=

(
0
0

)
(6.77)
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For this case we need to solve −2v1 + 2v2 = 0. This yields(
v1

v2

)
=

(
1
1

)
.

General Solution: We can now construct the general solution.

x(t) = c1eλ1tv1 + c2eλ2tv2

= c1et

(
2
−3

)
+ c2e6t

(
1
1

)

=

(
2c1et + c2e6t

−3c1et + c2e6t

)
. (6.78)

Example 6.20. A =

(
3 −5
1 −1

)
.

Eigenvalues: Again, one solves the eigenvalue equation.

0 =

∣∣∣∣∣ 3− λ −5
1 −1− λ

∣∣∣∣∣ (6.79)

Therefore,

0 = (3− λ)(−1− λ) + 5

0 = λ2 − 2λ + 2

λ =
−(−2)±

√
4− 4(1)(2)

2
= 1± i. (6.80)

The eigenvalues are then λ = 1+ i, 1− i. This is an example of Case
III.

Eigenvectors: In order to find the general solution, we need only
find the eigenvector associated with 1 + i.(

3 −5
1 −1

)(
v1

v2

)
= (1 + i)

(
v1

v2

)
(

2− i −5
1 −2− i

)(
v1

v2

)
=

(
0
0

)
. (6.81)

We need to solve (2− i)v1 − 5v2 = 0. Thus,(
v1

v2

)
=

(
2 + i

1

)
. (6.82)

Complex Solution: In order to get the two real linearly indepen-
dent solutions, we need to compute the real and imaginary parts of
veλt.

eλt

(
2 + i

1

)
= e(1+i)t

(
2 + i

1

)
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= et(cos t + i sin t)

(
2 + i

1

)

= et

(
(2 + i)(cos t + i sin t)

cos t + i sin t

)

= et

(
(2 cos t− sin t) + i(cos t + 2 sin t)

cos t + i sin t

)

= et

(
2 cos t− sin t

cos t

)
+ iet

(
cos t + 2 sin t

sin t

)
.

General Solution: Now we can construct the general solution.

x(t) = c1et

(
2 cos t− sin t
cos t

)
+ c2et

(
cos t + 2 sin t

sin t

)

= et

(
c1(2 cos t− sin t) + c2(cos t + 2 sin t)

c1 cos t + c2 sin t

)
. (6.83)

Note: This can be rewritten as

x(t) = et cos t

(
2c1 + c2

c1

)
+ et sin t

(
2c2 − c1

c2

)
.

Example 6.21. A =

(
7 −1
9 1

)
.

Eigenvalues:

0 =

∣∣∣∣∣ 7− λ −1
9 1− λ

∣∣∣∣∣ (6.84)

Therefore,

0 = (7− λ)(1− λ) + 9

0 = λ2 − 8λ + 16

0 = (λ− 4)2. (6.85)

There is only one real eigenvalue, λ = 4. This is an example of Case
II.

Eigenvectors: In this case we first solve for v1 and then get the
second linearly independent vector.(

7 −1
9 1

)(
v1

v2

)
= 4

(
v1

v2

)
(

3 −1
9 −3

)(
v1

v2

)
=

(
0
0

)
. (6.86)

Therefore, we have

3v1 − v2 = 0, ⇒
(

v1

v2

)
=

(
1
3

)
.
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Second Linearly Independent Solution:
Now we need to solve Av2 − λv2 = v1.

(
7 −1
9 1

)(
u1

u2

)
− 4

(
u1

u2

)
=

(
1
3

)
(

3 −1
9 −3

)(
u1

u2

)
=

(
1
3

)
. (6.87)

Expanding the matrix product, we obtain the system of equations

3u1 − u2 = 1

9u1 − 3u2 = 3. (6.88)

The solution of this system is

(
u1

u2

)
=

(
1
2

)
.

General Solution: We construct the general solution as

y(t) = c1eλtv1 + c2eλt(v2 + tv1).

= c1e4t

(
1
3

)
+ c2e4t

[(
1
2

)
+ t

(
1
3

)]

= e4t

(
c1 + c2(1 + t)

3c1 + c2(2 + 3t)

)
. (6.89)

6.6.1 Planar Systems - Summary

The reader should have noted by now that there is a connection between
the behavior of the solutions obtained in Section 6.1.3 and the eigenvalues
found from the coefficient matrices in the previous examples. In Table 6.2
we summarize some of these cases.

Type Eigenvalues Stability
Node Real λ, same signs λ < 0, stable

λ > 0, unstable
Saddle Real λ opposite signs Mostly Unstable
Center λ pure imaginary —

Focus/Spiral Complex λ, Re(λ) 6= 0 Re(λ) < 0, stable
Re(λ) > 0, unstable

Degenerate Node Repeated roots, λ > 0, stable
Lines of Equilibria One zero eigenvalue λ < 0, stable

Table 6.2: List of typical behaviors in pla-
nar systems.

The connection, as we have seen, is that the characteristic equation for
the associated second order differential equation is the same as the eigen-
value equation of the coefficient matrix for the linear system. However, one
should be a little careful in cases in which the coefficient matrix in not diag-
onalizable. In Table 6.3 are three examples of systems with repeated roots.
The reader should look at these systems and look at the commonalities and



244 differential equations

differences in these systems and their solutions. In these cases one has un-
stable nodes, though they are degenerate in that there is only one accessible
eigenvector.

Table 6.3: Three examples of systems
with a repeated root of λ = 2.

System 1 System 2 System 3

x
K3 K2 K1 0 1 2 3

y

K3

K2

K1

1

2

3
a = 2, b = 0, c = 0, d = 2

x
K3 K2 K1 0 1 2 3

y

K3

K2

K1

1

2

3
a = 0, b = 1, c = -4, d = 4

x
K3 K2 K1 0 1 2 3

y

K3

K2

K1

1

2

3
a = 2, b = 1, c = 0, d = 2

x′ =

(
2 0
0 2

)
x x′ =

(
0 1
−4 4

)
x x′ =

(
2 1
0 2

)
x

Another way to look at the classification of these solution is to use the
determinant and trace of the coefficient matrix. Recall that the determinant

and trace of A =

(
a b
c d

)
are given by detA = ad− bc and trA = a + d.

We note that the general eigenvalue equation,

λ2 − (a + d)λ + ad− bc = 0,

can be written as
λ2 − (trA)λ + detA = 0. (6.90)

Therefore, the eigenvalues are found from the quadratic formula as

λ1,2 =
trA±

√
(trA)2 − 4detA

2
. (6.91)

The solution behavior then depends on the sign of discriminant,

(trA)2 − 4detA.

If we consider a plot of where the discriminant vanishes, then we could plot

(trA)2 = 4detA

in the detAtrA)-plane. This is a parabolic cure as shown by the dashed line
in Figure 6.25. The region inside the parabola have a negative discriminant,
leading to complex roots. In these cases we have oscillatory solutions. If
trA = 0, then one has centers. If trA < 0, the solutions are stable spirals;
otherwise, they are unstable spirals. If the discriminant is positive, then the
roots are real, leading to nodes or saddles in the regions indicated.

6.7 Theory of Homogeneous Constant Coefficient Systems

There is a general theory for solving homogeneous, constant coefficient sys-
tems of first order differential equations. We begin by once again recalling
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detA

trA
tr2 A=4detA

Saddles Centers

Unstable Spirals

Stable Spirals

Unstable Nodes

Stable Nodes

Figure 6.25: Solution Classification for
Planar Systems.

the specific problem (6.16). We obtained the solution to this system as

x(t) = c1et + c2e−4t,

y(t) =
1
3

c1et − 1
2

c2e−4t. (6.92)

This time we rewrite the solution as

x =

(
c1et + c2e−4t

1
3 c1et − 1

2 c2e−4t

)

=

(
et e−4t

1
3 et − 1

2 e−4t

)(
c1

c2

)
≡ Φ(t)C. (6.93)

Thus, we can write the general solution as a 2× 2 matrix Φ times an arbi-
trary constant vector. The matrix Φ consists of two columns that are linearly
independent solutions of the original system. This matrix is an example of
what we will define as the Fundamental Matrix of solutions of the system.
So, determining the Fundamental Matrix will allow us to find the general
solution of the system upon multiplication by a constant matrix. In fact, we
will see that it will also lead to a simple representation of the solution of the
initial value problem for our system. We will outline the general theory.

Consider the homogeneous, constant coefficient system of first order dif-
ferential equations

dx1

dt
= a11x1 + a12x2 + . . . + a1nxn,

dx2

dt
= a21x1 + a22x2 + . . . + a2nxn,
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...
dxn

dt
= an1x1 + an2x2 + . . . + annxn. (6.94)

As we have seen, this can be written in the matrix form x′ = Ax, where

x =


x1

x2
...

xn


and

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

 .

Now, consider m vector solutions of this system: φ1(t), φ2(t), . . . φm(t).
These solutions are said to be linearly independent on some domain if

c1φ1(t) + c2φ2(t) + . . . + cmφm(t) = 0

for all t in the domain implies that c1 = c2 = . . . = cm = 0.
Let φ1(t), φ2(t), . . . φn(t) be a set of n linearly independent set of solutions

of our system, called a fundamental set of solutions. We construct a matrix
from these solutions using these solutions as the column of that matrix. We
define this matrix to be the fundamental matrix solution. This matrix takes the
form

Φ =
(

φ1 . . . φn

)
=


φ11 φ12 · · · φ1n

φ21 φ22 · · · φ2n
...

...
. . .

...
φn1 φn2 · · · φnn

 .

What do we mean by a “matrix” solution? We have assumed that each
φk is a solution of our system. Therefore, we have that φ′k = Aφk, for k =

1, . . . , n. We say that Φ is a matrix solution because we can show that Φ also
satisfies the matrix formulation of the system of differential equations. We
can show this using the properties of matrices.

d
dt

Φ =
(

φ′1 . . . φ′n

)
=

(
Aφ1 . . . Aφn

)
= A

(
φ1 . . . φn

)
= AΦ. (6.95)

Given a set of vector solutions of the system, when are they linearly
independent? We consider a matrix solution Ω(t) of the system in which
we have n vector solutions. Then, we define the Wronskian of Ω(t) to be

W = det Ω(t).
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If W(t) 6= 0, then Ω(t) is a fundamental matrix solution.
Before continuing, we list the fundamental matrix solutions for the set of

examples in the last section. (Refer to the solutions from those examples.)
Furthermore, note that the fundamental matrix solutions are not unique
as one can multiply any column by a nonzero constant and still have a
fundamental matrix solution.

Example 6.19 A =

(
4 2
3 3

)
.

Φ(t) =

(
2et e6t

−3et e6t

)
.

We should note in this case that the Wronskian is found as

W = det Φ(t)

=

∣∣∣∣∣ 2et e6t

−3et e6t

∣∣∣∣∣
= 5e7t 6= 0. (6.96)

Example 6.20 A =

(
3 −5
1 −1

)
.

Φ(t) =

(
et(2 cos t− sin t) et(cos t + 2 sin t)

et cos t et sin t

)
.

Example 6.21 A =

(
7 −1
9 1

)
.

Φ(t) =

(
e4t e4t(1 + t)

3e4t e4t(2 + 3t)

)
.

So far we have only determined the general solution. This is done by the
following steps:

Procedure for Determining the General Solution

1. Solve the eigenvalue problem (A− λI)v = 0.

2. Construct vector solutions from veλt. The method depends if one has
real or complex conjugate eigenvalues.

3. Form the fundamental solution matrix Φ(t) from the vector solution.

4. The general solution is given by x(t) = Φ(t)C for C an arbitrary con-
stant vector.

We are now ready to solve the initial value problem:

x′ = Ax, x(t0) = x0.
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Starting with the general solution, we have that

x0 = x(t0) = Φ(t0)C.

As usual, we need to solve for the ck’s. Using matrix methods, this is now
easy. Since the Wronskian is not zero, then we can invert Φ at any value of
t. So, we have

C = Φ−1(t0)x0.

Putting C back into the general solution, we obtain the solution to the initial
value problem:

x(t) = Φ(t)Φ−1(t0)x0.

You can easily verify that this is a solution of the system and satisfies the
initial condition at t = t0.

The matrix combination Φ(t)Φ−1(t0) is useful. So, we will define the
resulting product to be the principal matrix solution, denoting it by

Ψ(t) = Φ(t)Φ−1(t0).

Thus, the solution of the initial value problem is x(t) = Ψ(t)x0. Further-
more, we note that Ψ(t) is a solution to the matrix initial value problem

x′ = Ax, x(t0) = I,

where I is the n× n identity matrix.

Matrix Solution of the Homogeneous Problem

In summary, the matrix solution of

dx
dt

= Ax, x(t0) = x0

is given by
x(t) = Ψ(t)x0 = Φ(t)Φ−1(t0)x0,

where Φ(t) is the fundamental matrix solution and Ψ(t) is the principal
matrix solution.

Example 6.22. Let’s consider the matrix initial value problem

x′ = 5x + 3y

y′ = −6x− 4y, (6.97)

satisfying x(0) = 1, y(0) = 2. Find the solution of this problem.
We first note that the coefficient matrix is

A =

(
5 3
−6 −4

)
.
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The eigenvalue equation is easily found from

0 = −(5− λ)(4 + λ) + 18

= λ2 − λ− 2

= (λ− 2)(λ + 1). (6.98)

So, the eigenvalues are λ = −1, 2. The corresponding eigenvectors are
found to be

v1 =

(
1
−2

)
, v2 =

(
1
−1

)
.

Now we construct the fundamental matrix solution. The columns
are obtained using the eigenvectors and the exponentials, eλt :

φ1(t) =

(
1
−2

)
e−t, φ1(t) =

(
1
−1

)
e2t.

So, the fundamental matrix solution is

Φ(t) =

(
e−t e2t

−2e−t −e2t

)
.

The general solution to our problem is then

x(t) =

(
e−t e2t

−2e−t −e2t

)
C

for C is an arbitrary constant vector.
In order to find the particular solution of the initial value problem,

we need the principal matrix solution. We first evaluate Φ(0), then we
invert it:

Φ(0) =

(
1 1
−2 −1

)
⇒ Φ−1(0) =

(
−1 −1
2 1

)
.

The particular solution is then

x(t) =

(
e−t e2t

−2e−t −e2t

)(
−1 −1
2 1

)(
1
2

)

=

(
e−t e2t

−2e−t −e2t

)(
−3
4

)

=

(
−3e−t + 4e2t

6e−t − 4e2t

)
(6.99)

Thus, x(t) = −3e−t + 4e2t and y(t) = 6e−t − 4e2t.

6.8 Nonhomogeneous Systems

Before leaving the theory of systems of linear, constant coefficient systems,
we will discuss nonhomogeneous systems. We would like to solve systems
of the form

x′ = A(t)x + f(t). (6.100)
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We will assume that we have found the fundamental matrix solution of the
homogeneous equation. Furthermore, we will assume that A(t) and f(t) are
continuous on some common domain.

As with second order equations, we can look for solutions that are a sum
of the general solution to the homogeneous problem plus a particular so-
lution of the nonhomogeneous problem. Namely, we can write the general
solution as

x(t) = Φ(t)C + xp(t),

where C is an arbitrary constant vector, Φ(t) is the fundamental matrix
solution of x′ = A(t)x, and

x′p = A(t)xp + f(t).

Such a representation is easily verified.
We need to find the particular solution, xp(t). We can do this by applying

The Method of Variation of Parameters for Systems. We consider a solution
in the form of the solution of the homogeneous problem, but replace the
constant vector by unknown parameter functions. Namely, we assume that

xp(t) = Φ(t)c(t).

Differentiating, we have that

x′p = Φ′c + Φc′ = AΦc + Φc′,

or
x′p − Axp = Φc′.

But the left side is f. So, we have that,

Φc′ = f,

or, since Φ is invertible (why?),

c′ = Φ−1f.

In principle, this can be integrated to give c. Therefore, the particular solu-
tion can be written as

xp(t) = Φ(t)
∫ t

Φ−1(s)f(s) ds. (6.101)

This is the variation of parameters formula.
The general solution of Equation (6.100) has been found as

x(t) = Φ(t)C + Φ(t)
∫ t

Φ−1(s)f(s) ds. (6.102)

We can use the general solution to find the particular solution of an ini-
tial value problem consisting of Equation (6.100) and the initial condition
x(t0) = x0. This condition is satisfied for a solution of the form

x(t) = Φ(t)C + Φ(t)
∫ t

t0

Φ−1(s)f(s) ds (6.103)
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provided
x0 = x(t0) = Φ(t0)C.

This can be solved for C as in the last section. Inserting the solution back
into the general solution (6.103), we have

x(t) = Φ(t)Φ−1(t0)x0 + Φ(t)
∫ t

t0

Φ−1(s)f(s) ds (6.104)

This solution can be written a little neater in terms of the principal matrix
solution, Ψ(t) = Φ(t)Φ−1(t0) :

x(t) = Ψ(t)x0 + Ψ(t)
∫ t

t0

Ψ−1(s)f(s) ds (6.105)

Finally, one further simplification occurs when A is a constant matrix,
which are the only types of problems we have solved in this chapter. In this
case, we have that Ψ−1(t) = Ψ(−t). So, computing Ψ−1(t) is relatively easy.

Example 6.23. x′′ + x = 2 cos t, x(0) = 4, x′(0) = 0. This example can
be solved using the Method of Undetermined Coefficients. However,
we will use the matrix method described in this section.

First, we write the problem in matrix form. The system can be
written as

x′ = y
y′ = −x + 2 cos t.

(6.106)

Thus, we have a nonhomogeneous system of the form

x′ = Ax + f =

(
0 1
−1 0

)(
x
y

)
+

(
0

2 cos t

)
.

Next we need the fundamental matrix of solutions of the homoge-
neous problem. We have that

A =

(
0 1
−1 0

)
.

The eigenvalues of this matrix are λ = ±i. An eigenvector associated

with λ = i is easily found as

(
1
i

)
. This leads to a complex solution

(
1
i

)
eit =

(
cos t + i sin t
i cos t− sin t

)
.

From this solution we can construct the fundamental solution matrix

Φ(t) =

(
cos t sin t
− sin t cos t

)
.
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So, the general solution to the homogeneous problem is

xh = Φ(t)C =

(
c1 cos t + c2 sin t
−c1 sin t + c2 cos t

)
.

Next we seek a particular solution to the nonhomogeneous prob-
lem. From Equation (6.103) we see that we need Φ−1(s)f(s). Thus, we
have

Φ−1(s)f(s) =

(
cos s − sin s
sin s cos s

)(
0

2 cos s

)

=

(
−2 sin s cos s

2 cos2 s

)
. (6.107)

We now compute

Φ(t)
∫ t

t0

Φ−1(s)f(s) ds =

(
cos t sin t
− sin t cos t

) ∫ t

t0

(
−2 sin s cos s

2 cos2 s

)
ds

=

(
cos t sin t
− sin t cos t

)(
− sin2 t

t + 1
2 sin(2t)

)

=

(
t sin t

sin t + t cos t

)
. (6.108)

therefore, the general solution is

x =

(
c1 cos t + c2 sin t
−c1 sin t + c2 cos t

)
+

(
t sin t

sin t + t cos t

)
.

The solution to the initial value problem is

x =

(
cos t sin t
− sin t cos t

)(
4
0

)
+

(
t sin t

sin t + t cos t

)
,

or

x =

(
4 cos t + t sin t
−3 sin t + t cos t

)
.
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Problems

1. Consider the system

x′ = −4x− y

y′ = x− 2y.

a. Determine the second order differential equation satisfied by x(t).

b. Solve the differential equation for x(t).

c. Using this solution, find y(t).

d. Verify your solutions for x(t) and y(t).

e. Find a particular solution to the system given the initial conditions
x(0) = 1 and y(0) = 0.

2. Consider the following systems. Determine the families of orbits for
each system and sketch several orbits in the phase plane and classify them
by their type (stable node, etc.)

a.

x′ = 3x

y′ = −2y.

b.

x′ = −y

y′ = −5x.

c.

x′ = 2y

y′ = −3x.

d.

x′ = x− y

y′ = y.

e.

x′ = 2x + 3y

y′ = −3x + 2y.

3. Use the transformations relating polar and Cartesian coordinates to
prove that

dθ

dt
=

1
r2

[
x

dy
dt
− y

dx
dt

]
.
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4. Consider the system of equations in Example 6.13.

a. Derive the polar form of the system.

b. Solve the radial equation, r′ = r(1 − r2), for the initial values
r(0) = 0, 0.5, 1.0, 2.0.

c. Based upon these solutions, plot and describe the behavior of all
solutions to the original system in Cartesian coordinates.

5. Consider the following systems. For each system determine the coeffi-
cient matrix. When possible, solve the eigenvalue problem for each matrix
and use the eigenvalues and eigenfunctions to provide solutions to the given
systems. Finally, in the common cases which you investigated in Problem
2, make comparisons with your previous answers, such as what type of
eigenvalues correspond to stable nodes.

a.

x′ = 3x− y

y′ = 2x− 2y.

b.

x′ = −y

y′ = −5x.

c.

x′ = x− y

y′ = y.

d.

x′ = 2x + 3y

y′ = −3x + 2y.

e.

x′ = −4x− y

y′ = x− 2y.

f.

x′ = x− y

y′ = x + y.



linear systems of differential equations 255

6. For the given matrix, evaluate etA, using the definition

etA =
∞

∑
n=0

tn

n!
An = I + tA +

t2

2
A2 +

t3

3!
A3 + . . . ,

and simplifying.

a. A =

(
1 0
0 2

)
.

b. A =

(
1 0
−2 2

)
.

c. A =

(
0 −1
0 1

)
.

d. A =

(
0 1
1 0

)
.

e. A =

(
0 −i
i 0

)
. item[f.] A =

 0 1 0
0 0 1
0 0 0

 .

7. Find the fundamental matrix solution for the system x′ = Ax where
matrix A is given. If an initial condition is provided, find the solution of the
initial value problem using the principal matrix.

a. A =

(
1 0
−2 2

)
.

b. A =

(
12 −15
4 −4

)
, x(0) =

(
1
0

)

c. A =

(
2 −1
5 −2

)
.

d. A =

(
4 −13
2 −6

)
, x(0) =

(
2
0

)

e. A =

(
4 2
3 3

)
.

f. A =

(
3 5
−1 1

)
.

g. A =

(
8 −5

16 8

)
, x(0) =

(
1
−1

)
.

h. A =

(
1 −2
2 −3

)
.

i. A =

 5 4 2
4 5 2
2 2 2

 .
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8. Solve the following initial value problems using Equation (6.105), the
solution of a nonhomogeneous system using the principal matrix solution.

a. x′ =

(
2 −1
3 −2

)
x +

(
et

t

)
, x(0) =

(
1
2

)

b. x′ =

(
5 3
−6 −4

)
x +

(
1
et

)
, x(0) =

(
1
0

)

c. x′ =

(
2 −1
5 −2

)
x +

(
cos t
sin t

)
, x(0) =

(
0
1

)
9. Add a third spring connected to mass two in the coupled system shown

in Figure 6.2 to a wall on the far right. Assume that the masses are the same
and the springs are the same.

a. Model this system with a set of first order differential equations.

b. If the masses are all 2.0 kg and the spring constants are all 10.0
N/m, then find the general solution for the system.

c. Move mass one to the left (of equilibrium) 10.0 cm and mass two
to the right 5.0 cm. Let them go. find the solution and plot it as a
function of time. Where is each mass at 5.0 seconds?

d. Model this initial value problem with a set of two second order
differential equations. Set up the system in the form Mẍ = −Kx
and solve using the values in part b.

10. In Example 6.14 we investigated a couple mass-spring system as a pair
of second order differential equations.

a. In that problem we used
√

3±
√

5
2 =

√
5±1
2 . Prove this result.

b. Rewrite the system as a system of four first order equations.

c. Find the eigenvalues and eigenfunctions for the system of equa-
tions in part b to arrive at the solution found in Example 6.14.

d. Let k = 5.00 N/m and m = 0.250 kg. Assume that the masses
are initially at rest and plot the positions as a function of time if
initially i) x1(0) = x2(0) = 10.0 cm and i) x1(0) = −x2(0) = 10.0
cm. Describe the resulting motion.

11. Consider the series circuit in Figure 2.4 with L = 1.00 H, R = 1.00× 102

Ω, C = 1.00× 10−4 F, and V0 = 1.00× 103 V.

a. Set up the problem as a system of two first order differential equa-
tions for the charge and the current.

b. Suppose that no charge is present and no current is flowing at time
t = 0 when V0 is applied. Find the current and the charge on the
capacitor as functions of time.

c. Plot your solutions and describe how the system behaves over
time.
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12. Consider the series circuit in Figure 6.21 with L = 1.00 H, R1 = R2 =

1.00× 102 Ω, C = 1.00× 10−4 F, and V0 = 1.00× 103 V.

a. Set up the problem as a system of first order differential equations
for the charges and the currents in each loop.

b. Suppose that no charge is present and no current is flowing at time
t = 0 when V0 is applied. Find the current and the charge on the
capacitor as functions of time.

c. Plot your solutions and describe how the system behaves over
time.

13. Initially a 100 gallon tank is filled with pure water. At time t = 0 water
with a half a pound of salt per two gallons is added to the container at the
rate of 3 gallons per minute, and the well-stirred mixture is drained from
the container at the same rate.

a. Find the number of pounds of salt in the container as a function
of time.

b. How many minutes does it take for the concentration to reach 2

pounds per gallon?

c. What does the concentration in the container approach for large
values of time? Does this agree with your intuition?

14. You make two quarts of salsa for a party. The recipe calls for five
teaspoons of lime juice per quart, but you had accidentally put in five table-
spoons per quart. You decide to feed your guests the salsa anyway. Assume
that the guests take a quarter cup of salsa per minute and that you replace
what was taken with chopped tomatoes and onions without any lime juice.
[1 quart = 4 cups and 1 Tb = 3 tsp.]

a. Write down the differential equation and initial condition for the
amount of lime juice as a function of time in this mixture-type
problem.

b. Solve this initial value problem.

c. How long will it take to get the salsa back to the recipe’s suggested
concentration?

15. Consider the chemical reaction leading to the system in (6.54). Let the
rate constants be k1 = 0.20 ms−1, k2 = 0.05 ms−1, and k3 = 0.10 ms−1.
What do the eigenvalues of the coefficient matrix say about the behavior of
the system? Find the solution of the system assuming [A](0) = A0 = 1.0
µmol, [B](0) = 0, and [C](0) = 0. Plot the solutions for t = 0.0 to 50.0 ms
and describe what is happening over this time.

16. Find and classify any equilibrium points in the Romeo and Juliet prob-
lem for the following cases. Solve the systems and describe their affections
as a function of time.

a. a = 0, b = 2, c = −1, d = 0, R(0) = 1, J(0) = 1.
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b. a = 0, b = 2, c = 1, d = 0, R(0) = 1, J(0) = 1.

c. a = −1, b = 2, c = −1, d = 0, R(0) = 1, J(0) = 1.

Figure 6.26: Figure for Problem 17.

A
500L

B
1000L

10L/min

10L/min

5L/min

15L/min

17. Two tanks contain a mixture of water and alcohol with tank A contain-
ing 500 L and tank B 1000L. Initially, the concentration of alcohol in Tank
A is 0% and that of tank B is 80%. Solution leaves tank A into B at a rate
of 15 liter/min and the solution in tank B returns to A at a rate of 5 L/min
while well mixed solution also leaves the system at 10 liter/min through
an outlet. A mixture of water and alcohol enters tank A at the rate of 10

liter/min with the concentration of 10% through an inlet. What will be the
concentration of the alcohol of the solution in each tank after 10 mins?

18. Consider the tank system in Problem 17. Add a third tank (C) to tank B
with a volume of 300 L. Connect C with 8 L/min from tank B and 2 L/min
flow back. Let 10 L/min flow out of the system. If the initial concentration
is 10% in each tank and a mixture of water and alcohol enters tank A at the
rate of 10 liter/min with the concentration of 20% through an inlet, what
will be the concentration of the alcohol in each of the tanks after an hour?

19. Consider the epidemic model leading to the system in (6.58). Choose
the constants as a = 2.0 days−1, d = 3.0 days−1, and r = 1.0 days−1. What
are the eigenvalues of the coefficient matrix? Find the solution of the system
assuming an initial population of 1, 000 and one infected individual. Plot
the solutions for t = 0.0 to 5.0 days and describe what is happening over
this time. Is this model realistic?



Chapter 7

Nonlinear Systems

“The scientist does not study nature because it is useful; he studies it because he
delights in it, and he delights in it because it is beautiful.” - Jules Henri Poincaré
(1854-1912)

7.1 Introduction

Some of the most interesting phenomena in the world are modeled
by nonlinear systems. These systems can be modeled by differential equa-
tions when time is considered as a continuous variable or difference equa-
tions when time is treated in discrete steps. Applications involving differ-
ential equations can be found in many physical systems such as planetary
systems, weather prediction, electrical circuits, and kinetics. Even in some
simple dynamical systems a combination of damping and a driving force
can lead to chaotic behavior. Namely, small changes in initial conditions
could lead to very different outcomes. In this chapter we will explore a few
different nonlinear systems and introduce some of the tools needed to in-
vestigate them. These tools are based on some of the material in Chapters 2

and 3 for linear systems of differential equations.
Nonlinear differential equations are either integrable, but difficult to solve,

or they are not integrable and can only be solved numerically. We will see
that we can sometimes approximate the solutions of nonlinear systems with
linear systems in small regions of phase space and determine the qualitative
behavior of the system without knowledge of the exact solution.

Nonlinear problems occur naturally. We will see problems from many
of the same fields we explored in Section 6.2. We will concentrate mainly
on continuous dynamical systems. We will begin with a simple population
model and look at the behavior of equilibrium solutions of first order au-
tonomous differential equations. We will then look at nonlinear systems in
the plane, such as the nonlinear pendulum and other nonlinear oscillations.
We will conclude by discussing a few other interesting physical examples
stressing some of the key ideas of nonlinear dynamics.
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7.2 The Logistic Equation

In this section we will explore a simple nonlinear population model.
Typically, we want to model the growth of a given population, y(t), and the
differential equation governing the growth behavior of this population is
developed in a manner similar to that used previously for mixing problems.
Namely, we note that the rate of change of the population is given by an
equation of the form

dy
dt

= Rate In − Rate Out.

The Rate In could be due to the number of births per unit time and the Rate
Out by the number of deaths per unit time. While there are other potential
contributions to these rates we will consider the birth and death rates in the
simplest examples.

A simple population model can be obtained if one assumes that these
rates are linear in the population. Thus, we assume that the

Rate In = by and the Rate Out = my.

Here we have denoted the birth rate as b and the mortality rate as m. This
gives the rate of change of population as

dy
dt

= by−my. (7.1)

Generally, these rates could depend on the time. In the case that they
are both constant rates, we can define k = b − m and obtain the familiar
exponential model of population growth:Malthusian population growth.

dy
dt

= ky.

This is easily solved and one obtains exponential growth (k > 0) or de-
cay (k < 0). This Malthusian growth model has been named after Thomas
Robert Malthus (1766-1834), a clergyman who used this model to warn of
the impending doom of the human race if its reproductive practices contin-
ued.

When populations get large enough, there is competition for resources,
such as space and food, which can lead to a higher mortality rate. Thus,
the mortality rate may be a function of the population size, m = m(y).
The simplest model would be a linear dependence, m = m̃ + cy. Then, the
previous exponential model takes the form

dy
dt

= ky− cy2, (7.2)

where k = b− m̃. This is known as the logistic model of population growth.

The logistic model was first published in
1838 by Pierre François Verhulst (1804-
1849) in the form

dN
dt

= rN
(

1− N
K

)
,

where N is the population at time t, r is
the growth rate, and K is what is called
the carrying capacity. Note that in our
model r = k = Kc.

Typically, c is small and the added nonlinear term does not really kick in
until the population gets large enough.
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Example 7.1. Show that Equation (7.2) can be written in the form

z′ = kz(1− z)

which has only one parameter.
We carry this out be rescaling the population, y(t) = αz(t), where

α is to be determined. Inserting this transformation, we have

y′ = ky− cy2

αz′ = αkz− cα2z2,

or
z′ = kz

(
1− α

c
k

z
)

.

Thus, we obtain the result, z′ = kz(1− z), if we pick α = k
c .

Before we obtain the exact solution, it is instructive to study the quali-
tative behavior of the solutions without actually writing down any explicit
solutions. Such methods are useful for more difficult nonlinear equations
as we will see later in this chapter.

We will demonstrate this analysis with a simple logistic equation exam-
ple. We will first look for constant solutions, called equilibrium solutions,
satisfying y′(t) = 0. Then, we will look at the behavior of solutions near
the equilibrium solutions, or fixed points, and determine the stability of the
equilibrium solutions. In the next section we will extend these ideas to other
first order differential equations.

Example 7.2. Find and classify the equilibrium solutions of the logistic
equation,

dy
dt

= y− y2. (7.3)

First, we determine the equilibrium, or constant, solutions given by
y′ = 0. For this case, we have y− y2 = 0. So, the equilibrium solutions
are y = 0 and y = 1.

These solutions divide the ty-plane into three regions, y < 0, 0 <

y < 1, and y > 1. Solutions that originate in one of these regions at
t = t0 will remain in that region for all t > t0 since solutions of this
differential equation cannot intersect.

Note: If two solutions of the differential
equation intersect then they have com-
mon values y1 at time t1. Using this
information, we could set up an initial
value problem for which the initial con-
dition is y(t1) = y1. Since the two differ-
ent solutions intersect at this point in the
phase plane, we would have an initial
value problem with two different solu-
tions. This would violate the uniqueness
theorem for initial value problems.

Next, we determine the behavior of solutions in the three regions.
Noting that y′(t) gives the slope of any solution in the plane, then
we find that the solutions are monotonic in each region. Namely, in
regions where y′(t) > 0, we have monotonically increasing functions
and in regions where y′(t) < 0, we have monotonically decreasing
functions. We determine the sign of y′(t) from the right-hand side of
the differential equation. t

y

y = 1

y = 0

Figure 7.1: Representative solution be-
havior for y′ = y− y2.

For example, in this problem y− y2 > 0 only for the middle region
and y− y2 < 0 for the other two regions. Thus, the slope is positive
in the middle region, giving a rising solution as shown in Figure 7.1.
Note that this solution does not cross the equilibrium solutions. Simi-
lar statements can be made about the solutions in the other regions. Stable and unstable equilibria.
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We further note that the solutions on either side of the equilibrium
solution y = 1 tend to approach this equilibrium solution for large
values of t. In fact, no matter how far these solutions are from y =

1, as long as y(t) > 0, the solutions will eventually approach this
equilibrium solution as t → ∞. We then say that the equilibrium
solution, y = 1, is a stable equilibrium.

Similarly, we note that the solutions on either side of the equilib-
rium solution y = 0 tend away from y = 0 for large values of t. No
matter how close a solution is to y = 0 at some given time, eventually
these solutions will diverge as t → ∞. We say that such equilibrium
solutions are unstable equilibria.

Figure 7.2: Representative solution be-
havior and the phase line for y′ = y− y2.

t

y

y = 1

y = 0

Phase lines.
If we are only interested in the behavior of the equilibrium solu-

tions, we could just display a phase line. In Figure 7.2 we place a
vertical line to the right of the ty-plane plot. On this line we first
place dots at the corresponding equilibrium solutions and label the
solutions. These points divide the phase line into three intervals.

In each interval we then place arrows pointing upward or down-
ward indicating solutions with positive or negative slopes, respec-
tively. For example, for the interval y > 1 there is a downward point-
ing arrow indicating that the slope is negative in that region.

y = 1

y = 0

Figure 7.3: Phase line for y′ = y− y2.

Looking at the resulting phase line we can determine if a given
equilibrium is stable (arrows pointing towards the point) or unstable
(arrows pointing away from the point). In Figure 7.3 we draw the final
phase line by itself. We see that y = 1 is a stable equilibrium point and
y = 0 is an unstable equilibrium point.

7.2.1 The Riccati Equation*

We have seen that one does not need an explicit solution of the logis-
tic equation (7.2) in order to study the behavior of its solutions. However,
the logistic equation is an example of a nonlinear first order equation that
is solvable. It is also an example of a general Riccati equation, a first order
differential equation quadratic in the unknown function.

The general form of the Riccati equation is

The Riccati equation is named after the
Italian mathematician Jacopo Francesco
Riccati (1676-1754). When a(t) = 0, the
equation becomes a Bernoulli equation.

dy
dt

= a(t) + b(t)y + c(t)y2. (7.4)
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As long as c(t) 6= 0, this equation can be reduced to a second order linear
differential equation through the transformation

y(t) = − 1
c(t)

x′(t)
x(t)

.

We will demonstrate the use of this transformation in obtaining the solution
of the logistic equation.

Example 7.3. Solve the logistic equation

dy
dt

= ky− cy2 (7.5)

using the transformation

y =
1
c

x′

x
.

differentiating this transformation with respect to t, we obtain

dy
dt

=
1
c

[
x′′

x
−
(

x′

x

)2
]

=
1
c

[
x′′

x
− (cy)2

]
=

1
c

x′′

x
− cy2. (7.6)

Inserting this result into the logistic equation (7.5), we have

1
c

x′′

x
− cy2 = k

1
c

(
x′

x

)
− cy2.

Simplifying, we see that the logistic equation has been reduced to a
second order linear, differential equation,

x′′ = kx′.

This equation is readily solved. One integration gives

x′(t) = Bekt.

A second integration gives

x(t) = A + Bekt,

where A and B are two arbitrary constants.
Inserting this result into the Riccati transformation, we obtain

y(t) =
1
c

x′

x
=

kBekt

c(A + Bekt)
.

It appears that we have two arbitrary constants. However, we started
out with a first order differential equation and so we expect only one
arbitrary constant. We can resolve this dilemma by dividing1 the nu- 1 This general solution holds for B 6= 0. If

B = 0, then we have x(t) = A and, thus,
y(t) is the constant equilibrium solution.

merator and denominator by Bekt and defining C = A
B . Then, we have

the solution
y(t) =

k/c
1 + Ce−kt , (7.7)

showing that there really is only one arbitrary constant in the solution.
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Plots of the solution (7.7) of the logistic equation for different initial con-
ditions gives the solutions seen in the last section. In particular, setting all
of the constants to unity, we have the sigmoid function,

y(t) =
1

1 + e−t .

This is the signature S-shaped curve of the logistic model as shown in Fig-
ure 7.4. We should note that this is not the only way to obtain the solution
to the logistic equation, though this approach has provided us with an in-
troduction to Riccati equations. A more direct approach would be to use
separation of variables on the logistic equation, which is Problem 1.

x

y

−5 −3 −1 1 3 5

0.5

1

Figure 7.4: Plot of the sigmoid function.

7.3 Autonomous First Order Equations

In this section we will study the stability of nonlinear first order
autonomous equations. We will then extend this study in the next section
to looking at families of first order equations which are connected through
a parameter.

Recall that a first order autonomous equation is given in the form

dy
dt

= f (y). (7.8)

We will assume that f and ∂ f
∂y are continuous functions of y, so that we know

that solutions of initial value problems exist and are unique.
A solution y(t) of Equation (7.8) is called an equilibrium solution, or a fixed

point solution, if it is a constant solution satisfying y′(t) = 0. Such solutions
are the roots of the right-hand side of the differential equation, f (y) = 0.

Example 7.4. Find the equilibrium solutions of y′ = 1− y2.
The equilibrium solutions are the roots of f (y) = 1− y2 = 0. The

equilibria are found to be y = ±1.

Once we have determined the equilibrium solutions, we would like to
classify them. Are they stable or unstable? As we had seen previously, we
are interested in the behavior of solutions near the equilibria. This classifica-
tion can be determined using a linearization of the given equation. This will
provide an analytic criteria to establish the stability of equilibrium solutions
without geometrically drawing the phase lines as we had done previously.Linearization of first order equations.

Let y∗ be an equilibrium solution of Equation (7.8). Then, any solution
can be written in the form

y(t) = y∗ + ξ(t),

where ξ(t) measures how far the solution is from the equilibrium at any
given time.

Inserting this form into Equation (7.8), we have

dξ

dt
= f (y∗ + ξ).
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We now consider small ξ(t) in order to study solutions near the equilibrium
solution. For such solutions, we can expand f (y) about the equilibrium
solution,

f (y∗ + ξ) = f (y∗) + f ′(y∗)ξ +
1
2!

f ′′(y∗)ξ2 + · · · .

Since y∗ is an equilibrium solution, f (y∗) = 0, the first term in the Taylor
series vanishes. If the first derivative does not vanish, then for solutions
close to equilibrium, we can neglect higher order terms in the expansion.
Then, ξ(t) approximately satisfies the differential equation

dξ

dt
= f ′(y∗)ξ. (7.9)

This is called a linearization of the original nonlinear equation about the
equilibrium point. This equation has exponential solutions for f ′(y∗) 6= 0,

ξ(t) = ξ0e f ′(y∗)t.

Now we see how the stability criteria arise. If f ′(y∗) > 0, ξ(t) grows
in time. Therefore, nearby solutions stray from the equilibrium solution for
large times. On the other hand, if f ′(y∗) < 0, ξ(t) decays in time and nearby
solutions approach the equilibrium solution for large t. Thus, we have the
results: The stability criteria for equilibrium so-

lutions of a first order differential equa-
tion.

f ′(y∗) < 0, y∗ is stable.
f ′(y∗) > 0, y∗ is unstable.

(7.10)

Example 7.5. Determine the stability of the equilibrium solutions of
y′ = 1− y2.

In the last example we found the equilibrium solutions, y∗ = ±1.
The stability criteria require computing

f ′(y∗) = −2y∗.

For this problem we have f ′(±1) = ∓2. Therefore, y∗ = 1 is a stable
equilibrium and y∗ = −1 is an unstable equilibrium.

Example 7.6. Find and classify the equilibria for the logistic equation
y′ = y− y2.

We had already investigated this problem using phase lines. There
are two equilibria, y = 0 and y = 1.

We next apply the stability criteria. Noting that f ′(y) = 1− 2y, the
first equilibrium solution gives f ′(0) = 1. So, y = 0 is an unstable
equilibrium. Since f ′(1) = −1 < 0, we see that y = 1 is a stable
equilibrium. These results are the same as we hade determined earlier
using phase lines.
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7.4 Bifurcations for First Order Equations

We now consider families of first order autonomous differential equa-
tions of the form

dy
dt

= f (y; µ).

Here µ is a parameter that we can change and then observe the resulting
behaviors of the solutions of the differential equation. When a small change
in the parameter leads to changes in the behavior of the solution, then the
system is said to undergo a bifurcation. The value of the parameter, µ, atBifurcations and bifurcation points.

which the bifurcation occurs is called a bifurcation point.
We will consider several generic examples, leading to special classes of

bifurcations of first order autonomous differential equations. We will study
the stability of equilibrium solutions using both phase lines and the stability
criteria developed in the last section

µ

y

y =
√

µ

y = −√µ

y = 0

Figure 7.5: Phase lines for y′ = y2 − µ.
On the right µ > 0 and on the left µ < 0.

Example 7.7. y′ = y2 − µ.
First note that equilibrium solutions occur for y2 = µ. In this prob-

lem, there are three cases to consider.

1. µ > 0.

In this case there are two real solutions of y2 = µ, y = ±√µ. Note that
y2− µ < 0 for |y| < √µ. So, we have the right phase line in Figure 7.5.

2. µ = 0.

There is only one equilibrium point at y = 0. The equation becomes
y′ = y2. It is obvious that the right side of this equation is never
negative. So, the phase line, which is shown as the middle line in
Figure 7.5, has upward pointing arrows.

3. µ < 0.

In this case there are no equilibrium solutions. Since y2 − µ > 0, the
slopes for all solutions are positive as indicated by the last phase line
in Figure 7.5.

We can also confirm the behaviors of the equilibrium points by not-
ing that f ′(y) = 2y. Then, f ′(±√µ) = ±2

√
µ for µ ≥ 0. Therefore, the

equilibria y = +
√

µ are unstable equilibria for µ > 0. Similarly, the
equilibria y = −√µ are stable equilibria for µ > 0.

We can combine these results for the phase lines into one diagram
known as a bifurcation diagram. We will plot the equilibrium solu-
tions and their phase lines y = ±√µ in the µy-plane. We begin by
lining up the phase lines for various µ’s. These are shown on the left
side of Figure 7.6. Note the pattern of equilibrium points lies on the
parabolic curve y2 = µ. The upper branch of this curve is a collection
of unstable equilibria and the bottom is a stable branch. So, we can
dispose of the phase lines and just keep the equilibria. However, we
will draw the unstable branch as a dashed line and the stable branch
as a solid line.
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µ

y

(a) (b)

Figure 7.6: (a) The typical phase lines
for y′ = y2 − µ. (b) Bifurcation diagram
for y′ = y2 − µ. This is an example of a
saddle-node bifurcation.

The bifurcation diagram is displayed on the right side of Figure
7.6. This type of bifurcation is called a saddle-node bifurcation. The
point µ = 0 at which the behavior changes is the bifurcation point. As
µ changes from negative to positive values, the system goes from having no
equilibria to having one stable and one unstable equilibrium point.

Example 7.8. y′ = y2 − µy.
Writing this equation in factored form, y′ = y(y− µ), we see that

there are two equilibrium points, y = 0 and y = µ. The behavior of the
solutions depends upon the sign of y′ = y(y− µ). This leads to four
cases with the indicated signs of the derivative. The regions indicating
the signs of y′ are shown in Figure 7.7. µ

y
y = µ

1

y′ > 0

2

y′ < 0

3

y′ < 0

4

y′ > 0

Figure 7.7: The regions indicating the
different signs of the derivative for y′ =
y2 − µy.

1. y > 0, y− µ > 0⇒ y′ > 0.

2. y < 0, y− µ > 0⇒ y′ < 0.

3. y > 0, y− µ < 0⇒ y′ < 0.

4. y < 0, y− µ < 0⇒ y′ > 0.

The corresponding phase lines and superimposed bifurcation dia-
gram are shown in figure 7.8. The bifurcation diagram is on the right
side of Figure 7.8 and this type of bifurcation is called a transcritical
bifurcation.

Again, the stability can be determined from the derivative f ′(y) =
2y− µ evaluated at y = 0, µ. From f ′(0) = −µ, we see that y = 0 is
stable for µ > 0 and unstable for µ < 0. Similarly, f ′(µ) = µ implies
that y = µ is unstable for µ > 0 and stable for µ < 0. These results are
consistent with the phase line plots.

Example 7.9. y′ = y3 − µy.
For this last example, we find from y3 − µy = y(y2 − µ) = 0 that

there are two cases.

1. µ < 0. In this case there is only one equilibrium point at y = 0. For
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Figure 7.8: (a) Collection of phase lines
for y′ = y2 − µy. (b) Bifurcation diagram
for y′ = y2 − µy. This is an example of a
transcritical bifurcation.

µ

y

y = 0

(a) (b)

positive values of y we have that y′ > 0 and for negative values of y
we have that y′ < 0. Therefore, this is an unstable equilibrium point.

2. µ > 0. Here we have three equilibria, y = 0,±√µ. A careful investiga-
tion shows that y = 0 is a stable equilibrium point and that the other
two equilibria are unstable.

Figure 7.9: (a) The phase lines for y′ =
y3 − µy. The left one corresponds to µ <
0 and the right phase line is for µ > 0.
(b)Bifurcation diagram for y′ = y3 − µy.
This is an example of a pitchfork bifur-
cation.

µ

y

y = 0

y =
√

µ

y = −√µ

(a) (b)

In Figure 7.9 we show the phase lines for these two cases. The
corresponding bifurcation diagram is then sketched on the right side
of Figure 7.9. For obvious reasons this has been labeled a pitchfork
bifurcation.When two of the prongs of the pitchfork

are unstable branches, the bifurcation is
called a subcritical pitchfork bifurcation.
When two prongs are stable branches,
the bifurcation is a supercritical pitch-
fork bifurcation.

Since f ′(y) = 3y2 − µ, the stability analysis gives that f ′(0) = −µ.
So, y = 0 is stable for µ > 0 and unstable for µ < 0. For µ > 0, we have
that f ′(±√µ) = 2µ. Therefore, y = ±√µ, µ > 0, is unstable. Thus, we
have a subcritical pitchfork bifurcation.
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7.5 The Stability of Fixed Points in Nonlinear Systems

We next investigate the stability of the equilibrium solutions

of the nonlinear pendulum which we first encountered in Section 2.3.2.
Along the way we will develop some basic methods for studying the sta-
bility of equilibria in nonlinear systems in general.

Recall that the derivation of the pendulum equation was based upon a
simple point mass m hanging on a string of length L from some support as
shown in Figure 7.10. One pulls the mass back to some starting angle, θ0,
and releases it. The goal is to find the angular position as a function of time,
θ(t).

L

m

O

Figure 7.10: A simple pendulum consists
of a point mass m attached to a string of
length L. It is released from an angle θ0.

In Chapter 2 we derived the nonlinear pendulum equation,

Lθ̈ + g sin θ = 0. (7.11)

There are several variations of Equation (7.11) which we have used in this
text. The first one is the linear pendulum, which was obtained using a small
angle approximation,

Lθ̈ + gθ = 0. (7.12)

We also made the system more realistic by adding damping and forcing. A
variety of these oscillation problems are summarized in the table below.

Equations for Pendulum Motion

1. Nonlinear Pendulum: Lθ̈ + g sin θ = 0.

2. Damped Nonlinear Pendulum: Lθ̈ + bθ̇ + g sin θ = 0.

3. Linear Pendulum: Lθ̈ + gθ = 0.

4. Damped Linear Pendulum: Lθ̈ + bθ̇ + gθ = 0.

5. Forced Damped Nonlinear Pendulum: Lθ̈ + bθ̇ + g sin θ = F cos ωt.

6. Forced Damped Linear Pendulum: Lθ̈ + bθ̇ + gθ = F cos ωt.

There are two simple systems that we will consider, the damped linear
pendulum, in the form

x′′ + bx′ + ω2x = 0

and the the damped nonlinear pendulum, in the form

x′′ + bx′ + ω2 sin x = 0.

These are second order differential equations and can be cast as a system of
two first order differential equations using the methods of Chapter 6.

The linear equation can be written as

x′ = y,

y′ = −by−ω2x. (7.13)
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This system has only one equilibrium solution, x = 0, y = 0.
The damped nonlinear pendulum takes the form

x′ = y,

y′ = −by−ω2 sin x. (7.14)

This system also has the equilibrium solution x = 0, y = 0. However, there
are actually an infinite number of solutions. The equilibria are determined
from

y = 0 and − by−ω2 sin x = 0. (7.15)

These equations imply that y = 0 and sin x = 0. There are an infinite number
of solutions to the latter equation: x = nπ, n = 0,±1,±2, . . . . So, this system
has an infinite number of equilibria, (nπ, 0), n = 0,±1,±2, . . . .

The next step is to determine the stability of the equilibrium solutions
these systems. This can be accomplished just as we had done for first order
equations. To do this we need a more general theory for nonlinear systems.
So, we will develop the needed machinery.

We begin with the n−dimensional system

x′ = f(x), x ∈ Rn. (7.16)

Here f : Rn → Rn is a mapping from Rn to Rn. We define the equilibrium
solutions, or fixed points, of this system as the points x∗ satisfying f(x∗) = 0.Linear stability analysis of systems.

The stability in the neighborhood of equilibria will now be determined.
We are interested in what happens to solutions of the system with initial
conditions starting near a fixed point. We will represent a general point in
the plane, which is near the fixed point, in the form x = x∗+ ξ. We note that
the length of ξ gives an indication of how close we are to the fixed point.
So, we consider that initially, |ξ| � 1.

x

y

x∗

x = x∗ + ξ

ξ

Figure 7.11: A general point in the plane,
which is near the fixed point, in the form
x = x∗ + ξ,

As the system evolves, ξ will change. The change of ξ in time is in turn
governed by a system of equations. We can approximate this evolution as
follows. First, we note that

x′ = ξ′.

Next, we have that
f(x) = f(x∗ + ξ).

We can expand the right side about the fixed point using a multidimensional
version of Taylor’s Theorem. Thus, we have that

f(x∗ + ξ) = f(x∗) + Df(x∗)ξ + O(|ξ|2).

Here Df(x) is the Jacobian matrix, defined asThe Jacobian matrix.

Df(x∗) ≡



∂ f1
∂x1

∂ f1
∂x2

· · · ∂ f1
∂xn

∂ f2
∂x1

. . . . . .
...

...
. . . . . .

...
∂ fn
∂x1

· · · · · · ∂ fn
∂xn

 .
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Noting that f(x∗) = 0, we then have that system (7.16) becomes

ξ ′ ≈ Df(x∗)ξ. (7.17)

It is this equation which describes the behavior of the system near the fixed
point. As with first order equations, we say that system (7.16) has been
linearized or that Equation (7.17) is the linearization of system (7.16). Linearization of the system x′ = f(x).

The stability of the equilibrium point of the nonlinear system is now re-
duced to analyzing the behavior of the linearized system given by Equation
(7.17). We can use the methods from the last two chapters to investigate the
eigenvalues of the Jacobian matrix evaluated at each equilibrium point. We
will demonstrate this procedure with several examples.

Example 7.10. Determine the equilibrium points and their stability for
the system

x′ = −2x− 3xy,

y′ = 3y− y2. (7.18)

We first determine the fixed points. Setting the right-hand side
equal to zero and factoring, we have

−x(2 + 3y) = 0,

y(3− y) = 0. (7.19)

From the second equation, we see that either y = 0 or y = 3. The
first equation then gives x = 0 in either case. So, there are two fixed
points: (0, 0) and (0, 3).

Next, we linearize the system of differential equations about each
fixed point. First, we note that the Jacobian matrix is given by

Df(x, y) =

(
−2− 3y −3x

0 3− 2y

)
. (7.20)

1. Case I Equilibrium point (0, 0).

In this case we find that

Df(0, 0) =

(
−2 0
0 3

)
. (7.21)

Therefore, the linearized equation becomes

ξ ′ =

(
−2 0
0 3

)
ξ. (7.22)

This is equivalently written out as the system

ξ ′1 = −2ξ1,

ξ ′2 = 3ξ2. (7.23)

This is the linearized system about the origin. Note the similarity with
the original system.
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We should emphasize that the linearized equations are constant co-
efficient equations and we can use matrix methods to determine the
nature of the equilibrium point. The eigenvalues of this system are
obviously λ = −2, 3. Therefore, we have that the origin is a saddle
point.

2. Case II Equilibrium point (0, 3).

Again we evaluate the Jacobian matrix at the equilibrium point and
look at its eigenvalues to determine the type of fixed point. The Jaco-
bian matrix for this case becomes

Df(0, 3) =

(
−11 0

0 −3

)
. (7.24)

The eigenvalues are λ = −11,−3. So, this fixed point is a stable node.

Figure 7.12: Phase plane for the system
x′ = −2x− 3xy, y′ = 3y− y2.

This analysis has given us a saddle and a stable node. We know
what the behavior is like near each fixed point, but we have to resort to
other means to say anything about the behavior far from these points.
The phase portrait for this system is given in Figure 7.12. You should
be able to locate the saddle point and the node in the figure. Notice
how solutions behave in regions far from these points.

We can expect to be able to perform a linearization under general condi-
tions. These are given in the Hartman-Großman Theorem:

Theorem 7.1. A continuous map exists between the linear and nonlinear systems
when Df(x∗) does not have any eigenvalues with zero real part.

Generally, there are several types of behavior that one can see in non-
linear systems. One can see sinks or sources, hyperbolic (saddle) points,
elliptic points (centers) or foci. We have defined some of these for planar
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systems. In general, if at least two eigenvalues have real parts with opposite
signs, then the fixed point is a hyperbolic point. If the real part of a nonzero
eigenvalue is zero, then we have a center, or elliptic point.

For linear systems in the plane, this classification was done in Chapter 6.
The Jacobian matrix evaluated at the equilibrium points is simply the 2× 2
coefficient matrix we had called A.

J =

(
a b
c d

)
. (7.25)

Here we are using J = Df(x∗).
The eigenvalue equation is given by

λ2 − (a + d)λ + (ad− bc) = 0.

However, a + d is the trace, tr(J) and det(J) = ad − bc. Therefore, we can
write the eigenvalue equation as

λ2 − tr(J)λ + det(J) = 0.

The solution of this equation is found using the quadratic formula,

λ =
1
2

[
−tr(J)±

√
tr2(J)− 4det(J)

]
.

We had seen in previous chapter that equilibrium points in planar sys-
tems can be classified as nodes, saddles, centers, or spirals (foci). The type
of behavior can be determined from solutions of the eigenvalue equation.
Since the nature of the eigenvalues depends on the trace and determinant
of the Jacobian matrix at the equilibrium point, we can relate the types of
equilibria to points in the det-tr plane. This is shown in Figure 7.13, which
is similar to Figure 6.25.

In Figure 7.13 the parabola tr2(J) = 4det(J) divides the det-tr plane.
Points on this curve give a vanishing discriminant in the computation of the
eigenvalues. In these cases one finds repeated roots, or eigenvalues. Along
this curve one can find stable and unstable degenerate nodes. Also along
this line are stable and unstable proper nodes, called star nodes. These arise
from systems of the form x′ = ax, y′ = ay.

In the case that det(J) < 0, we have that the discriminant

∆ ≡ tr2(J)− 4det(J)

is positive. Not only that, ∆ > tr2(J). Thus, we obtain two real and distinct
eigenvalues with opposite signs. These lead to saddle points.

In the case that det(J) > 0, we can have either ∆ > 0 or ∆ < 0. The
discriminant is negative for points inside the parabolic curve. It is in this
region that one finds centers and spirals, corresponding to complex eigen-
values. When tr(J) > 0, there are unstable spirals. There are stable spirals
when tr(J) < 0. For the case that tr(J) = 0, the eigenvalues are pure imagi-
nary, giving centers.

There are several other types of behavior depicted in the figure, but we
will now turn to studying a few of examples.
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Figure 7.13: Diagram indicating the be-
havior of equilibrium points in the det−
tr plane. The parabolic curve

tr2(J) = 4det(J)

indicates where the discriminant van-
ishes.

det(J)

tr(J)

tr2(J) = 4det(J)
unstable nodes

stable nodes

saddles

centers

unstable spirals

stable spirals

unstable lines

stable lines

degenerate nodes

degenerate nodes

Example 7.11. Find and classify all of the equilibrium solutions of the
nonlinear system

x′ = 2x− y + 2xy + 3(x2 − y2),

y′ = x− 3y + xy− 3(x2 − y2). (7.26)

In Figure 7.14 we show the direction field for this system. Try to
locate and classify the equilibrium points visually. After the stability
analysis, you should return to this figure and determine if you identi-
fied the equilibrium points correctly.

We will first determine the equilibrium points. Setting the right-
hand side of each differential equation to zero, we have

2x− y + 2xy + 3(x2 − y2) = 0,

x− 3y + xy− 3(x2 − y2) = 0. (7.27)

This system of algebraic equations can be solved exactly. Adding the
equations, we have

3x− 4y + 3xy = 0.
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Figure 7.14: Phase plane for the system

x′ = 2x− y + 2xy + 3(x2 − y2),

y′ = x− 3y + xy− 3(x2 − y2).

Solving for x,

x =
4y

3(1 + y)
,

and substituting the result for x into the first algebraic equation, we
find an equation for y :

y(1− y)(9y2 + 22y + 5)
3(1 + y)2 = 0.

The solutions to this equation are

y = 0, 1,−11
9
± 2

9

√
19.

The corresponding values for x are

x = 0,
2
3

, 1∓
√

19
3

.

Now that we have located the equilibria, we can classify them. The
Jacobian matrix is given by

Df(x, y) =

(
6x + 2y + 2 2x− 6y− 1
−6x + y + 1 x + 6y− 3

)
. (7.28)

Now, we evaluate the Jacobian at each equilibrium point and find the
eigenvalues.

1. Case I. Equilibrium point (0, 0).

In this case we find that

Df(0, 0) =

(
−2 −1
1 −3

)
. (7.29)

The eigenvalues of this matrix are λ = − 1
2 ±

√
21
2 . Therefore, the origin

is a saddle point.
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2. Case II. Equilibrium point ( 2
3 , 1).

Again we evaluate the Jacobian matrix at the equilibrium point and
look at its eigenvalues to determine the type of fixed point. The Jaco-
bian matrix for this case becomes

Df
(

2
3

, 1
)
=

(
8 − 17

3
−2 11

3

)
. (7.30)

The eigenvalues are λ = 35
6 ±

√
577
6 ≈ 9.84, 1.83. This fixed point is an

unstable node.

3. Case III. Equilibrium point (1∓
√

19
3 ,− 11

9 ±
2
9

√
19).

The Jacobian matrix for this case becomes

Df

(
1∓
√

19
3

,−11
9
± 2

9

√
19

)
=

(
50
9 ∓

14
9

√
19 25

3 ∓ 2
√

19
− 56

9 ±
20
9

√
19 − 28

3 ±
√

19

)
.

(7.31)
There are two equilibrium points under this case. The first is given by

(1−
√

19
3

,−11
9

+
2
9

√
19) ≈ (0.453,−0.254).

The eigenvalues for this point are

λ = −17
9
− 5

18

√
19± 1

18

√
3868
√

19− 16153.

These are approximately −4.58 and −1.62 So, this equilibrium point
is a stable node.

The other equilibrium is (1 +
√

19
3 ,− 11

9 −
2
9

√
19) ≈ (2.45,−2.19). The

corresponding eigenvalues are complex with negative real parts,

λ = −17
9

+
5

18

√
19± i

18

√
16153 + 3868

√
19,

or λ ≈ −0.678± 10.1i. This point is a stable spiral.

Plots of the phase plane are given in Figures 7.12 and 7.14. The
reader can look at the direction field and verify these results for the
behavior of equilibrium solutions. A zoomed in view is shown in
Figure 7.15 with several orbits indicated.

Example 7.12. Damped Nonlinear Pendulum Equilibria
We are now ready to establish the behavior of the fixed points of

the damped nonlinear pendulum system in Equation (7.14). Recall
that the system for the damped nonlinear pendulum was given by

x′ = y,

y′ = −by−ω2 sin x. (7.32)

For a damped system, we will need b > 0. We had found that there are
an infinite number of equilibrium points at (nπ, 0), n = 0,±1,±2, . . . .
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Figure 7.15: A closer look at the phase
plane for the system

x′ = 2x− y + 2xy + 3(x2 − y2),

y′ = x− 3y + xy− 3(x2 − y2)

with a few trajectories shown.

The Jacobian matrix for this systems is

Df(x, y) =

(
0 1

−ω2 cos x −b

)
. (7.33)

Evaluating this matrix at the fixed points, we find that

Df(nπ, 0) =

(
0 1

−ω2 cos nπ −b

)
=

(
0 1

(−1)n+1ω2 −b

)
. (7.34)

The eigenvalue equation is given by

λ2 + bλ + (−1)nω2 = 0.

There are two cases to consider: n even and n odd. For the first
case, we find the eigenvalues

λ =
−b±

√
b2 − 4ω2

2
.

For b2 < 4ω2, we have two complex conjugate roots with a negative
real part. Thus, we have stable foci for even n values. If there is no
damping, then we obtain centers (λ = ±iω).

In the second case, n odd, we find

λ =
−b±

√
b2 + 4ω2

2
.

Since b2 + 4ω2 > b2, these roots will be real with opposite signs. Thus,
we have hyperbolic points, or saddles. If there is no damping, the
eigenvalues reduce to λ = ±ω.

In Figure (7.16) we show the phase plane for the undamped nonlin-
ear pendulum with ω = 1.25. We see that we have a mixture of centers
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Figure 7.16: Phase plane for the un-
damped nonlinear pendulum. Solution
curves are shown for initial conditions
(x0, y0) = (0, 3), (0, 2), (0, 1), (5, 1).

and saddles. There are orbits for which there is periodic motion. In
the case that θ = π we have an inverted pendulum. This is an un-
stable position and this is reflected in the presence of saddle points,
especially if the pendulum is constructed using a massless rod.

There are also unbounded orbits, going through all possible angles.
These correspond to the mass spinning around the pivot in one direc-
tion forever due to initially having large enough energies.

We have indicated in the figure solution curves with the initial
conditions (x0, y0) = (0, 3), (0, 2), (0, 1), (5, 1). These show the various
types of motions that we have described.

Figure 7.17: Phase plane for the
damped nonlinear pendulum. Solution
curves are shown for initial conditions
(x0, y0) = (0, 3), (0, 2), (0, 1), (5, 1).

When there is damping, we see that we can have a variety of other be-
haviors as seen in Figure (7.17). In this example we have set b = 0.08 and
ω = 1.25. We see that energy loss results in the mass settling around one of
the stable fixed points. This leads to an understanding as to why there are
an infinite number of equilibria, even though physically the mass traces out
a bound set of Cartesian points. We have indicated in the Figure (7.17) so-
lution curves with the initial conditions (x0, y0) = (0, 3), (0, 2), (0, 1), (5, 1).

In Figure 7.18 we show a region of the phase plane which corresponds to
oscillations about x = 0. For small angles the pendulum oscillates following
somewhat elliptical orbits. As the angles get larger, due to greater initial
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Figure 7.18: Several orbits in the phase
plane for the undamped nonlinear pen-
dulum with ω = 5.0. The orbits sur-
round a center at (0, 0). At the edges
there are saddle points, (±π, 0).

energies, these orbits begin to change from ellipses to other periodic orbits.
There is a limiting orbit, beyond which one has unbounded motion. The
limiting orbit connects the saddle points on either side of the center. The
curve is called a separatrix and being that these trajectories connect two
saddles, they are often referred to as heteroclinic orbits. Heteroclinc orbits and separatrices.

In Figures 7.19-7.19 we show more orbits, including both bound and un-
bound motion beyond the interval x ∈ [−π, π]. For both plots we have
chosen ω = 5 and the same set of initial conditions, x(0) = πk/10, k =

−20, . . . , 20. for y(0) = 0,±10. The time interval is taken for t ∈ [−3, 3]. The
only difference is that in the damped case we have b = 0.5. In these plots
one can see what happens to the heteroclinic orbits and nearby unbounded
orbits under damping.

Figure 7.19: Several orbits in the phase
plane for the undamped nonlinear pen-
dulum with ω = 5.0.

Before leaving this problem, we should note that the orbits in the phase
plane for the undamped nonlinear pendulum can be obtained graphically.
Recall from Equation (7.70), the total mechanical energy for the nonlinear
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Figure 7.20: Several orbits in the phase
plane for the damped nonlinear pendu-
lum with ω = 5.0 and b = 0.5.

pendulum is

E =
1
2

mL2θ̇2 + mgL(1− cos θ).

From this equation we obtained Equation (7.71),

1
2

θ̇2 −ω2 cos θ = −ω2 cos θ0.

Letting y = θ̇, x = θ, and defining z = −ω2 cos θ0, this equation can be
written as

1
2

y2 −ω2 cos x = z. (7.35)

For each energy (z), this gives a constant energy curve. Plotting the family
of energy curves we obtain the phase portrait shown in Figure 7.21.

Figure 7.21: A family of energy curves in
the phase plane for 1

2 θ̇2 − ω2 cos θ = z.
Here we took ω = 1.0 and z ∈ [−5, 15].

7.6 Nonlinear Population Models

We have already encountered several models of population dy-
namics in this and previous chapters. Of course, one could dream up sev-
eral other examples. While such models might seem far from applications
in physics, it turns out that these models lead to systems od differential
equations which also appear in physical systems such as the coupling of
waves in lasers, in plasma physics, and in chemical reactions.
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Two well-known nonlinear population models are the predator-prey and
competing species models. In the predator-prey model, one typically has
one species, the predator, feeding on the other, the prey. We will look at
the standard Lotka-Volterra model in this section. The competing species The Lotka-Volterra model is named after

Alfred James Lotka (1880-1949) and Vito
Volterra (1860-1940).

model looks similar, except there are a few sign changes, since one species
is not feeding on the other. Also, we can build in logistic terms into our
model. We will save this latter type of model for the homework.

The Lotka-Volterra model takes the form The Lotka-Volterra model of population
dynamics.

ẋ = ax− bxy,

ẏ = −dy + cxy, (7.36)

where a, b, c, and d are positive constants. In this model, we can think of x as
the population of rabbits (prey) and y is the population of foxes (predators).
Choosing all constants to be positive, we can describe the terms.

• ax: When left alone, the rabbit population will grow. Thus a is the
natural growth rate without predators.

• −dy: When there are no rabbits, the fox population should decay.
Thus, the coefficient needs to be negative.

• −bxy: We add a nonlinear term corresponding to the depletion of the
rabbits when the foxes are around.

• cxy: The more rabbits there are, the more food for the foxes. So, we
add a nonlinear term giving rise to an increase in fox population.

Example 7.13. Determine the equilibrium points and their stability for
the Lotka-Volterra system.

The analysis of the Lotka-Volterra model begins with determining
the fixed points. So, we have from Equation (7.36)

x(a− by) = 0,

y(−d + cx) = 0. (7.37)

Therefore, the origin, (0, 0), and ( d
c , a

b ) are the fixed points.
Next, we determine their stability, by linearization about the fixed

points. We can use the Jacobian matrix, or we could just expand the
right-hand side of each equation in (7.36) about the equilibrium points
as shown in he next example. The Jacobian matrix for this system is

D f (x, y) =

(
a− by −bx

cy −d + cx

)
.

Evaluating at each fixed point, we have

D f (0, 0) =

(
a 0
0 −d

)
, (7.38)

D f
(

d
c

,
a
b

)
=

(
0 − bd

c
ac
b 0

)
. (7.39)
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The eigenvalues of (7.38) are λ = a,−d. So, the origin is a saddle
point.

The eigenvalues of (7.39) satisfy λ2 + ad = 0. So, the other point
is a center. In Figure 7.22 we show a sample direction field for the
Lotka-Volterra system.

Figure 7.22: Phase plane for the Lotka-
Volterra system given by ẋ = x − 0.2xy,
ẏ = −y + 0.2xy. Solution curves are
shown for initial conditions (x0, y0) =
(8, 3), (1, 5).

Another way to carry out the linearization of the system of differential
equations is to expand the equations about the fixed points. For fixed points
(x∗, y∗), we let

(x, y) = (x∗ + u, y∗ + v).

Inserting this translation of the origin into the equations of the system, and
dropping nonlinear terms in u and v, results in the linearized system. This
method is equivalent to analyzing the Jacobian matrix for each fixed point.

Direct linearization of a system is car-
ried out by introducing x = x∗ + ξ, or
(x, y) = (x∗ + u, y∗ + v) into the system
and dropping nonlinear terms in u and
v. Example 7.14. Expand the Lotka-Volterra system about the equilib-

rium points.
For the origin (0, 0) the linearization about the origin amounts to

simply dropping the nonlinear terms. In this case we have

u̇ = au,

v̇ = −dv. (7.40)

The coefficient matrix for this system is the same as D f (0, 0).
For the second fixed point, we let

(x, y) =
(

d
c
+ u,

a
b
+ v
)

.

Inserting this transformation into the system gives

u̇ = a
(

d
c
+ u

)
− b

(
d
c
+ u

)( a
b
+ v
)

,

v̇ = −d
( a

b
+ v
)
+ c

(
d
c
+ u

)( a
b
+ v
)

. (7.41)
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Expanding, we obtain

u̇ =
ad
c
+ au− b

(
ad
bc

+
d
c

v +
a
b

u + uv
)

,

v̇ = − ad
b
− dv + c

(
ad
bc

+
d
c

v +
a
b

u + uv
)

. (7.42)

In both equations the constant terms cancel and linearization is sim-
ply getting rid of the uv terms. This leaves the linearized system

u̇ = au− b
(

d
c

v +
a
b

u
)

,

v̇ = −dv + c
(
+

d
c

v +
a
b

u
)

, (7.43)

or

u̇ = − bd
c

v,

v̇ =
ac
b

u. (7.44)

The coefficient matrix for this linearized system is the same as

D f
(

d
c , a

b

)
. In fact, for nearby orbits, they are almost circular orbits.

From this linearized system, we have ü + adu = 0.
We can take u = A cos(

√
adt + φ), where A and φ can be deter-

mined from the initial conditions. Then,

v = − c
bd

u̇

=
c

bd
A
√

ad sin(
√

adt + φ)

=
c
b

√
a
d

A sin(
√

adt + φ). (7.45)

Therefore, the solutions near the center are given by

(x, y) =
(

d
c
+ A cos(

√
adt + φ),

a
b
+

c
b

√
a
d

A sin(
√

adt + φ)

)
.

For a = d = 1, b = c = 0.2, and initial values of (x0, y0) = (5.5, 5), these
solutions become

x(t) = 5.0 + 0.5 cos t, y(t) = 5.0 + 0.5 sin t.

Plots of these solutions are shown in Figure (7.23).
It is also possible to find a first integral of the Lotka-Volterra system

whose level curves give the phase portrait of the system. As we had done
in Chapter 2, we can write

dy
dx

=
ẏ
ẋ

=
−dy + cxy
ax− bxy

=
y(−d + cx)
x(a− by)

. (7.46)
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Figure 7.23: The linearized solutions of
Lotka-Volterra system ẋ = x − 0.2xy,
ẏ = −y + 0.2xy for the initial conditions
(x0, y0) = (5.5, 5).

This is an equation of the form seen in Problem 2.13. This equation is now
a separable differential equation. The solution this differential equation is
given in implicit form as

a ln y + d ln x− cx− by = C,

where C is an arbitrary constant. This expression is known as the first
integral of the Lotka-Volterra system. These level curves are shown in FigureThe first integral of the Lotka-Volterra

system.
7.24.

Figure 7.24: Phase plane for the Lotka-
Volterra system given by ẋ = x − 0.2xy,
ẏ = −y + 0.2xy based upon the first in-
tegral of the system.

7.7 Limit Cycles*

So far we have just been concerned with equilibrium solutions and
their behavior. However, asymptotically stable fixed points are not the only
attractors. There are other types of solutions, known as limit cycles, towards
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which a solution may tend. In this section we will look at some examples of
these periodic solutions.

Such solutions are common in nature. Rayleigh investigated the problem

x′′ + c
(

1
3
(x′)2 − 1

)
x′ + x = 0 (7.47)

in the study of the vibrations of a violin string. Balthasar van der Pol
(1889-1959) studied an electrical circuit, modeling this behavior. Others have
looked into biological systems, such as neural systems, chemical reactions,
such as Michaelis-Menten kinetics, and other chemical systems leading to
chemical oscillations. One of the most important models in the historical
study of dynamical systems is that of planetary motion and investigating
the stability of planetary orbits. As is well known, these orbits are periodic.

Limit cycles are isolated periodic solutions towards which neighboring
states might tend when stable. A key example exhibiting a limit cycle is
given in the next example.

Example 7.15. Find the limit cycle in the system

x′ = µx− y− x(x2 + y2)

y′ = x + µy− y(x2 + y2). (7.48)

It is clear that the origin is a fixed point. The Jacobian matrix is
given as

D f (0, 0) =

(
µ −1
1 µ

)
. (7.49)

The eigenvalues are found to be λ = µ± i. For µ = 0 we have a center.
For µ < 0 we have a stable spiral and for µ > 0 we have an unstable
spiral. However, this spiral does not wander off to infinity. We see in
Figure 7.25 that the equilibrium point is a spiral. However, in Figure
7.26 it is clear that the solution does not spiral out to infinity. It is
bounded by a circle.

Figure 7.25: Phase plane for system
(7.48) with µ = 0.4.

One can actually find the radius of this circle. This requires rewrit-
ing the system in polar form. Recall from Chapter 2 that we can
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Figure 7.26: Phase plane for system
(7.48) with µ = 0.4 showing that the in-
ner spiral is bounded by a limit cycle.

change derivatives of Cartesian coordinates to derivatives of polar co-
ordinates by using the relations

rr′ = xx′ + yy′, (7.50)

r2θ′ = xy′ − yx′. (7.51)

Inserting the system (7.48) into these expressions, we have

rr′ = µr2 − r4, r2θ′ = r2.

This leads to the system

r′ = µr− r3,

θ′ = 1. (7.52)

Of course, for a circle the radius is constant, r = const. Therefore,
in order to find the limit cycle, we need to look at the equilibrium
solutions of Equation (7.52). This amounts to finding the constant
solutions of µr − r3 = 0. The equilibrium solutions are r = 0,±√µ.
The limit cycle corresponds to the positive radius solution, r =

√
µ.

In Figures 7.25-7.26 we take µ = 0.4. In this case we expect a circle
with r =

√
0.4 ≈ 0.63. From the θ equation, we have that θ′ > 0. This

means that we follow the limit cycle in a counterclockwise direction as
time increases.

Limit cycles are not always circles. In Figures 7.27-7.28 we show the
behavior of the Rayleigh system (7.47) for c = 0.4 and c = 2.0. In this case
we see that solutions tend towards a noncircular limit cycle in a clockwise
direction.

A slight change of the Rayleigh system leads to the van der Pol equation:

x′′ + c(x2 − 1)x′ + x = 0 (7.53)

The limit cycle for c = 2.0 is shown in Figure 7.29.The van der Pol system.

Can one determine ahead of time if a given nonlinear system will have
a limit cycle? In order to answer this question, we will introduce some
definitions.
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Figure 7.27: Phase plane for the Rayleigh
system (7.47) with c = 0.4.

Figure 7.28: Phase plane for the van der
Pol system (7.53) with c = 2.0.

Figure 7.29: Phase plane for the van der
Pol system (7.53) with c = 0.4.
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φ(x, 0)

φ(x, t1)

φ(φ(x, t1), t2)

t1

t2

Figure 7.30: A sketch depicting the idea
of trajectory, or orbit, passing through x.Flows.

We first describe different trajectories and families of trajectories. A flow
on R2 is a function φ that satisfies the following

1. φ(x, t) is continuous in both arguments.

2. φ(x, 0) = x for all x ∈ R2.

3. φ(φ(x, t1), t2) = φ(x, t1 + t2).

The orbit, or trajectory, through x is defined as γ = {φ(x, t)|t ∈ I}. In FigureOrbits and trajectories.

7.30 we demonstrate these properties. For t = 0, φ(x, 0) = x. Increasing t,
one follows the trajectory until one reaches the point φ(x, t1). Continuing t2

further, one is then at φ(φ(x, t1), t2). By the third property, this is the same
as going from x to φ(x, t1 + t2) for t = t1 + t2.

Having defined the orbits, we need to define the asymptotic behavior of
the orbit for both positive and negative large times. We define the positive
semiorbit through x as γ+ = {φ(x, t)|t > 0}. The negative semiorbit through x
is defined as γ− = {φ(x, t)|t < 0}. Thus, we have γ = γ+ ∪ γ−.Limit sets and limit points.

The positive limit set, or ω-limit set, of point x is defined as

Λ+ = {y| there exists a sequence of tn → ∞ such that φ(x, tn)→ y}.

The y’s are referred to as ω-limit points. This is shown in Figure 7.31.
Λ+

Figure 7.31: A sketch depicting an ω-
limit set. Note that the orbits tend to-
wards the set as t increases.

Similarly, we define the negative limit set, or the alpha-limit set, of point x
is defined as

Λ− = {y| there exists a sequences of tn → −∞ such that φ(x, tn)→ y}

and the corresponding y’s are α-limit points. This is shown in Figure 7.32.

Cycles and periodic orbits.
There are several types of orbits that a system might possess. A cycle

or periodic orbit is any closed orbit which is not an equilibrium point. A
periodic orbit is stable if for every neighborhood of the orbit such that all
nearby orbits stay inside the neighborhood. Otherwise, it is unstable. The
orbit is asymptotically stable if all nearby orbits converge to the periodic
orbit.

A limit cycle is a cycle which is the α or ω-limit set of some trajectory
other than the limit cycle. A limit cycle Γ is stable if Λ+ = Γ for all x in
some neighborhood of Γ. A limit cycle Γ is unstable if Λ− = Γ for all x in
some neighborhood of Γ. Finally, a limit cycle is semistable if it is attracting
on one side and repelling on the other side. In the previous examples, we
saw limit cycles that were stable. Figures 7.31 and 7.32 depict stable and
unstable limit cycles, respectively.

Λ−

Figure 7.32: A sketch depicting an α-
limit set. Note that the orbits tend away
from the set as t increases.

We now state a theorem which describes the type of orbits we might find
in our system.
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Theorem 7.2. Poincaré-Bendixon Theorem Let γ+ be contained in a
bounded region in which there are finitely many critical points. Then Λ+ is
either

1. a single critical point;

2. a single closed orbit;

3. a set of critical points joined by heteroclinic orbits.
[Compare Figures 7.33 and 7.34.]

Figure 7.33: A heteroclinic orbit connect-
ing two critical points.

Figure 7.34: A homoclinic orbit return-
ing to the point it left.

We are interested in determining when limit cycles may, or may not, exist.
A consequence of the Poincaré-Bendixon Theorem is given by the following
corollary.

Corollary Let D be a bounded closed set containing no critical points and
suppose that γ+ ⊂ D. Then there exists a limit cycle contained in D.

More specific criteria allow us to determine if there is a limit cycle in a
given region. These are given by Dulac’s Criteria and Bendixon’s Criteria.

Dulac’s Criteria Consider the autonomous planar system

x′ = f (x, y), y′ = g(x, y)

and a continuously differentiable function ψ defined on an annular region
D contained in some open set. If

∂

∂x
(ψ f ) +

∂

∂y
(ψg)

does not change sign in D, then there is at most one limit cycle contained
entirely in D.

Bendixon’s Criteria Consider the autonomous planar system

x′ = f (x, y), y′ = g(x, y)

defined on a simply connected domain D such that

∂

∂x
(ψ f ) +

∂

∂y
(ψg) 6= 0

in D. Then, there are no limit cycles entirely in D.

Proof. These are easily proved using Green’s Theorem in the Plane. (See
your calculus text.) We prove Bendixon’s Criteria. Let f = ( f , g). Assume
that Γ is a closed orbit lying in D. Let S be the interior of Γ. Then∫

S
∇ · f dxdy =

∮
Γ
( f dy− g dx)

=
∫ T

0
( f ẏ− gẋ)dt

=
∫ T

0
( f g− g f )dt = 0. (7.54)
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So, if ∇ · f is not identically zero and does not change sign in S, then from
the continuity of∇ · f in S we have that the right side above is either positive
or negative. Thus, we have a contradiction and there is no closed orbit lying
in D

Example 7.16. Consider the earlier example in (7.48) with µ = 1.

x′ = x− y− x(x2 + y2)

y′ = x + y− y(x2 + y2). (7.55)

We already know that a limit cycle exists at x2 + y2 = 1. A simple
computation gives that

∇ · f = 2− 4x2 − 4y2.

For an arbitrary annulus a < x2 + y2 < b, we have

2− 4b < ∇ · f < 2− 4a.

For a = 3/4 and b = 5/4, −3 < ∇ · f < −1. Thus, ∇ · f < 0 in the
annulus 3/4 < x2 + y2 < 5/4. Therefore, by Dulac’s Criteria there is
at most one limit cycle in this annulus.

Example 7.17. Consider the system

x′ = y

y′ = −ax− by + cx2 + dy2. (7.56)

Let ψ(x, y) = e−2dx. Then,

∂

∂x
(ψy) +

∂

∂y
(ψ(−ax− by + cx2 + dy2)) = −be−2dx 6= 0.

We conclude by Bendixon’s Criteria that there are no limit cycles for
this system.

7.8 Nonautonomous Nonlinear Systems*

In this section we discuss nonautonomous systems. Recall that an
autonomous system is one in which there is no explicit time dependence. A
simple example is the forced nonlinear pendulum given by the nonhomo-
geneous equation

ẍ + ω2 sin x = f (t). (7.57)

We can set this up as a system of two first order equations:

ẋ = y

ẏ = −ω2 sin x + f (t). (7.58)
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This system is not in a form for which we could use the earlier methods.
Namely, it is a nonautonomous system. However, we introduce a new vari-
able z(t) = t and turn it into an autonomous system in one more dimension.
The new system takes the form

ẋ = y

ẏ = −ω2 sin x + f (z).

ż = 1. (7.59)

The system is now a three dimensional autonomous, possibly nonlinear,
system and can be explored using methods from Chapters 2 and 3.

xMagnet Magnet

Beam

Support

Γ cos(ωt + φ)

Figure 7.35: One model of the Duffing
equation describes a periodically forced
beam which interacts with two magnets.

A more interesting model is provided by the Duffing Equation. This
equation, named after Georg Wilhelm Christian Caspar Duffing (1861-1944),
models hard spring and soft spring oscillations. It also models a periodically
forced beam as shown in Figure 7.35. It is of interest because it is a simple
system which exhibits chaotic dynamics and will motivate us towards using
new visualization methods for nonautonomous systems.

The most general form of Duffing’s equation is given by the damped,
forced system

ẍ + kẋ + (βx3 ±ω2
0x) = Γ cos(ωt + φ). (7.60)

This equation models hard spring, (β > 0), and soft spring, (β < 0), oscil-
lations. However, we will use the simpler version of the Duffing equation:

ẍ + kẋ + x3 − x = Γ cos ωt. (7.61)

An equation of this form can be obtained by setting φ = 0 and rescaling x
and t in the original equation. We will explore the behavior of the system
as we vary the remaining parameters. In Figures 7.36-7.39 we show some
typical solution plots superimposed on the direction field. The undamped, unforced Duffing equa-

tion.We start with the undamped (k = 0) and unforced (Γ = 0) Duffing equa-
tion,

ẍ + x3 − x = 0.

We can write this second order equation as the autonomous system

ẋ = y

ẏ = x(1− x2). (7.62)

We see that there are three equilibrium points at (0, 0) and (±1, 0). In Figure
7.36 we plot several orbits for k = 0, and Γ = 0. We see that the three
equilibrium points consist of two centers and a saddle. The unforced Duffing equation.

We now turn on the damping. The system becomes

ẋ = y

ẏ = −ky + x(1− x2). (7.63)

In Figures 7.37 and 7.38 we show what happens when k = 0.1. These plots
are reminiscent of the plots for the nonlinear pendulum; however, there are
fewer equilibria. Note that the centers become stable spirals for k > 0.
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Figure 7.36: Phase plane for the un-
damped, unforced Duffing equation
(k = 0, Γ = 0).

Figure 7.37: Phase plane for the unforced
Duffing equation with k = 0.1 and Γ = 0.

Next we turn on the forcing to obtain a damped, forced Duffing equation.
The system is now nonautonomous.

ẋ = y

ẏ = x(1− x2) + Γ cos ωt. (7.64)

In Figure 7.39 we only show one orbit with k = 0.1, Γ = 0.5, and ω = 1.25.The damped, forced Duffing equation.

The solution intersects itself and look a bit messy. We can imagine what
we would get if we added any more orbits. For completeness, we show in
Figure 7.40 an example with four different orbits.

In cases for which one has periodic orbits such as the Duffing equation,
Poincaré introduced the notion of surfaces of section. One embeds the orbit
in a higher dimensional space so that there are no self intersections, like we
saw in Figures 7.39 and 7.40. In Figure 7.42 we show an example where a
simple orbit is shown as it periodically pierces a given surface.

In order to simplify the resulting pictures, one only plots the points at
which the orbit pierces the surface as sketched in Figure 7.41. In practice,
there is a natural frequency, such as ω in the forced Duffing equation. Then,
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Figure 7.38: Display of two orbits for the
unforced Duffing equation with k = 0.1
and Γ = 0.

Figure 7.39: Phase plane for the Duff-
ing equation with k = 0.1, Γ = 0.5, and
ω = 1.25. In this case we show only one
orbit which was generated from the ini-
tial condition (x0 = 1.0, y0 = 0.5).

one plots points at times that are multiples of the period, T = 2π
ω . In Figure

7.43 we show what the plot for one orbit would look like for the damped,
unforced Duffing equation.
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Figure 7.40: Phase plane for the Duffing
equation with k = 0.1, Γ = 0.5, and ω =
1.25. In this case four initial conditions
were used to generate four orbits.

Figure 7.41: As an orbit pierces the sur-
face of section, one plots the point of in-
tersection in that plane to produce the
surface of section plot.

The more interesting case, is when there is forcing and damping. In this
case the surface of section plot is given in Figure 7.44. While this is not as
busy as the solution plot in Figure 7.39, it still provides some interesting
behavior. What one finds is what is called a strange attractor. Plotting many
orbits, we find that after a long time, all of the orbits are attracted to a small
region in the plane, much like a stable node attracts nearby orbits. However,
this set consists of more than one point. Also, the flow on the attractor is
chaotic in nature. Thus, points wander in an irregular way throughout the
attractor. This is one of the interesting topics in chaos theory and this whole
theory of dynamical systems has only been touched in this text leaving the
reader to wander of into further depth into this fascinating field.

Figure 7.42: Poincaré’s surface of sec-
tion. One notes each time the orbit
pierces the surface.

The surface of section plots at the end of the last section were obtained
using code from S. Lynch’s book Dynamical Systems with Applications Using
Maple. For reference, the plots in Figures 7.36 and 7.37 were generated in
Maple using the following commands:

> with(DEtools):

> Gamma:=0.5:omega:=1.25:k:=0.1:

> DEplot([diff(x(t),t)=y(t), diff(y(t),t)=x(t)-k*y(t)-(x(t))^3
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Figure 7.43: Poincaré’s surface of section
plot for the damped, unforced Duffing
equation.
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Figure 7.44: Poincaré’s surface of sec-
tion plot for the damped, forced Duffing
equation. This leads to what is known as
a strange attractor.
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+ Gamma*cos(omega*t)], [x(t),y(t)],t=0..500,[[x(0)=1,y(0)=0.5],

[x(0)=-1,y(0)=0.5], [x(0)=1,y(0)=0.75], [x(0)=-1,y(0)=1.5]],

x=-2..2,y=-2..2, stepsize=0.1, linecolor=blue, thickness=1,

color=black);

7.9 The Period of the Nonlinear Pendulum*

Recall that the period of the simple pendulum is given by

T =
2π

ω
= 2π

√
L
g

(7.65)

for

ω ≡
√

g
L

. (7.66)

This was based upon the solving the linear pendulum equation (7.12). This
equation was derived assuming a small angle approximation. How good is
this approximation? What is meant by a small angle?

We recall that the Taylor series approximation of sin θ about θ = 0 :

sin θ = θ − θ3

3!
+

θ5

5!
+ . . . . (7.67)

One can obtain a bound on the error when truncating this series to one
term after taking a numerical analysis course. But we can just simply plot
the relative error, which is defined as

Relative Error =

∣∣∣∣ sin θ − θ

sin θ

∣∣∣∣ .

A plot of the relative error is given in Figure 7.45. Thus for θ ≈ 0.4 radians
(or, 23

o) we have that the relative error is about 2.6%.Relative error in sin θ approximation.

We would like to do better than this. So, we now turn to the nonlinear
pendulum equation (7.11) in the simpler form

θ̈ + ω2 sin θ = 0. (7.68)

Figure 7.45: The relative error in percent
when approximating sin θ by θ.

Solution of nonlinear pendulum equa-
tion. We next employ a technique that is useful for equations of the form

θ̈ + F(θ) = 0
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when it is easy to integrate the function F(θ). Namely, we note that

d
dt

[
1
2

θ̇2 +
∫ θ(t)

F(φ) dφ

]
= (θ̈ + F(θ))θ̇.

For the nonlinear pendulum problem, we multiply Equation (7.68) by θ̇,

θ̈θ̇ + ω2 sin θθ̇ = 0

and note that the left side of this equation is a perfect derivative. Thus,

d
dt

[
1
2

θ̇2 −ω2 cos θ

]
= 0.

Therefore, the quantity in the brackets is a constant. So, we can write

1
2

θ̇2 −ω2 cos θ = c. (7.69)

Solving for θ̇, we obtain

dθ

dt
=
√

2(c + ω2 cos θ).

This equation is a separable first order equation and we can rearrange
and integrate the terms to find that

t =
∫

dt =
∫ dθ√

2(c + ω2 cos θ)
.

Of course, we need to be able to do the integral. When one finds a so-
lution in this implicit form, one says that the problem has been solved by
quadratures. Namely, the solution is given in terms of some integral.

In fact, the above integral can be transformed into what is known as an
elliptic integral of the first kind. We will rewrite this result and then use
it to obtain an approximation to the period of oscillation of the nonlinear
pendulum, leading to corrections to the linear result found earlier.

We will first rewrite the constant found in (7.69). This requires a little
physics. The swinging of a mass on a string, assuming no energy loss at the
pivot point, is a conservative process. Namely, the total mechanical energy is
conserved. Thus, the total of the kinetic and gravitational potential energies
is a constant. The kinetic energy of the mass on the string is given as

T =
1
2

mv2 =
1
2

mL2θ̇2.

The potential energy is the gravitational potential energy. If we set the
potential energy to zero at the bottom of the swing, then the potential energy
is U = mgh, where h is the height that the mass is from the bottom of the
swing. A little trigonometry gives that h = L(1− cos θ). So,

U = mgL(1− cos θ).
Total mechanical energy for the nonlin-
ear pendulum.
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So, the total mechanical energy is

E =
1
2

mL2θ̇2 + mgL(1− cos θ). (7.70)

We note that a little rearranging shows that we can relate this result to
Equation (7.69). Dividing by m and L2 and using the definition of ω2 = g/L,
we have

1
2

θ̇2 −ω2 cos θ =
1

mL2 E−ω2.

Therefore, we have determined the integration constant in terms of the total
mechanical energy,

c =
1

mL2 E−ω2.

We can use Equation (7.70) to get a value for the total energy. At the top
of the swing the mass is not moving, if only for a moment. Thus, the kinetic
energy is zero and the total mechanical energy is pure potential energy.
Letting θ0 denote the angle at the highest angular position, we have that

E = mgL(1− cos θ0) = mL2ω2(1− cos θ0).

Therefore, we have found that

1
2

θ̇2 −ω2 cos θ = −ω2 cos θ0. (7.71)

We can solve for θ̇ and integrate the differential equation to obtain

t =
∫

dt =
∫ dθ

ω
√

2(cos θ − cos θ0)
.

Using the half angle formula,

sin2 θ

2
=

1
2
(1− cos θ),

we can rewrite the argument in the radical as

cos θ − cos θ0 = 2
[

sin2 θ0

2
− sin2 θ

2

]
.

Noting that a motion from θ = 0 to θ = θ0 is a quarter of a cycle, we have
that

T =
2
ω

∫ θ0

0

dθ√
sin2 θ0

2 − sin2 θ
2

. (7.72)

This result can now be transformed into an elliptic integral.2 We define

2 Elliptic integrals were first studied by
Leonhard Euler and Giulio Carlo de’
Toschi di Fagnano (1682-1766) , who
studied the lengths of curves such as the
ellipse and the lemniscate,

(x2 + y2)2 = x2 − y2. z =
sin θ

2

sin θ0
2

and
k = sin

θ0

2
.
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Then, Equation (7.72) becomes

T =
4
ω

∫ 1

0

dz√
(1− z2)(1− k2z2)

. (7.73)

This is done by noting that dz = 1
2k cos θ

2 dθ = 1
2k (1− k2z2)1/2 dθ and that

sin2 θ0
2 − sin2 θ

2 = k2(1− z2). The integral in this result is called the complete
elliptic integral of the first kind.

We note that the incomplete elliptic integral of the first kind is defined as

F(φ, k) ≡
∫ φ

0

dθ√
1− k2 sin2 θ

=
∫ sin φ

0

dz√
(1− z2)(1− k2z2)

.

Then, the complete elliptic integral of the first kind is given by K(k) = The complete and incomplete elliptic in-
tegrals of the first kind.F(π

2 , k), or

K(k) =
∫ π/2

0

dθ√
1− k2 sin2 θ

=
∫ 1

0

dz√
(1− z2)(1− k2z2)

.

Therefore, the period of the nonlinear pendulum is given by

T =
4
ω

K
(

sin
θ0

2

)
. (7.74)

There are table of values for elliptic integrals. However, one can use a
computer algebra system to compute values of such integrals. We will look
for small angle approximations.

For small angles (θ0 � π
2 ), we have that k is small. So, we can develop a

series expansion for the period, T, for small k. This is simply done by using
the binomial expansion,

(1− k2z2)−1/2 = 1 +
1
2

k2z2 +
3
8

k2z4 + O((kz)6)

Inserting this expansion into the integrand for the complete elliptic integral
and integrating term by term, we find that

T = 2π

√
L
g

[
1 +

1
4

k2 +
9

64
k4 + . . .

]
. (7.75)

The first term of the expansion gives the well known period of the simple
pendulum for small angles. The next terms in the expression give further
corrections to the linear result which are useful for larger amplitudes of os-
cillation. In Figure 7.46 we show the relative errors incurred when keeping
the k2 (quadratic) and k4 (quartic) terms as compared to the exact value of
the period.

7.10 Exact Solutions Using Elliptic Functions*

The solution in Equation (7.73) of the nonlinear pendulum equa-
tion led to the introduction of elliptic integrals. The incomplete elliptic
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Figure 7.46: The relative error in percent
when approximating the exact period of
a nonlinear pendulum with one (solid),
two (dashed), or three (dotted) terms in
Equation (7.75).

integral of the first kind is defined as

F(φ, k) ≡
∫ φ

0

dθ√
1− k2 sin2 θ

=
∫ sin φ

0

dz√
(1− z2)(1− k2z2)

. (7.76)

The complete integral of the first kind is given by K(k) = F(π
2 , k), or

K(k) =
∫ π/2

0

dθ√
1− k2 sin2 θ

=
∫ 1

0

dz√
(1− z2)(1− k2z2)

.

Elliptic integrals of the second kind are defined as

E(φ, k) =
∫ φ

0

√
1− k2 sin2 θ dθ =

∫ sin φ

0

√
1− k2t2
√

1− t2
dt (7.77)

E(k) =
∫ π/2

0

√
1− k2 sin2 θ dθ =

∫ 1

0

√
1− k2t2
√

1− t2
dt (7.78)

Recall, a first integration of the nonlinear pendulum equation from Equa-
tion (7.70), (

dθ

dt

)2
−ω2 cos θ = −ω2 cos θ0.

or (
dθ

dt

)2
= 2ω2

[
sin2 θ

2
− sin2 θ0

2

]
.

Letting

kz = sin
θ

2
and k = sin

θ0

2
,

the differential equation becomes

dz
dτ

= ±ω
√

1− z2
√

1− k2z2.

Applying separation of variables, we find

±ω(t− t0) =
1
ω

∫ z

1

dz√
1− z2

√
1− k2z2

(7.79)

=
∫ 1

0

dz√
1− z2

√
1− k2z2

−
∫ z

0

dz√
1− z2

√
1− k2z2

(7.80)

= K(k)− F(sin−1(k−1 sin θ), k). (7.81)
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The solution, θ(t), is then found by solving for z and using kz = sin θ
2 to

solve for θ. This requires that we know how to invert the elliptic integral,
F(z, k).

Elliptic functions result from the inversion of elliptic integrals. Consider

u(sin φ, k) = F(φ, k) =
∫ φ

0

dθ√
1− k2 sin2 θ

. (7.82)

=
∫ sin φ

0

dt√
(1− t2)(1− k2t2)

. (7.83)

Note:F(φ, 0) = φ and F(φ, 1) = ln(sec φ + tan φ). In these cases F is obvi-
ously monotone increasing and thus there must be an inverse.

The inverse of Equation (7.76) is defined as φ = F−1(u, k) = am(u, k),
where u = sin φ. The function am(u, k) is called the Jacobi amplitude func-
tion and k is the elliptic modulus. [In some references and software like
MATLAB packages, m = k2 is used as the parameter.] Three of the Jacobi
elliptic functions, shown in Figure 7.47, can be defined in terms of the am-
plitude function by

sn(u, k) = sin am(u, k) = sin φ,

cn(u, k) = cos am(u, k) = cos φ,

and the delta amplitude Jacobi elliptic functions.

dn(u, k) =
√

1− k2 sin2 φ.

They are related through the identities

cn2(u, k) + sn2(u, k) = 1, (7.84)

dn2(u, k) + k2 sn2(u, k) = 1. (7.85)

0 1 2 3 4 5 6 7
-1

-0.5

0

0.5

1

 

 

sn
cn
dn

Figure 7.47: Plots of the Jacobi elliptic
functions sn(u, k), cn(u, k), and dn(u, k)
for m = k2 = 0.5. Here K(k) = 1.8541.

Also, we see that these functions are periodic. The period is given in
terms of the complete elliptic integral of the first kind, K(k). Consider

The elliptic functions can be extended to
the complex plane. In this case the func-
tions are doubly periodic. However, we
will not need to consider this in the cur-
rent text.
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F(φ + 2π, k) =
∫ φ+2π

0

dθ√
1− k2 sin2 θ

.

=
∫ φ

0

dθ√
1− k2 sin2 θ

+
∫ φ+2π

φ

dθ√
1− k2 sin2 θ

= F(φ, k) +
∫ 2π

0

dθ√
1− k2 sin2 θ

= F(φ, k) + 4K(k). (7.86)

Since F(φ + 2π, k) = u + 4K, we have

sn(u + 4K) = sin(am(u + 4K)) = sin(am(u) + 2π) = sin am(u) = sn u.

In general, we have

sn(u + 2K, k) = − sn(u, k) (7.87)

cn(u + 2K, k) = − cn(u, k) (7.88)

dn(u + 2K, k) = dn(u, k). (7.89)

The plots of sn(u), cn(u), and dn(u), are shown in Figures 7.48-7.50.

Figure 7.48: Plots of sn(u, k) for m =
0, 0.25, 0.50, 0.75, 1.00.
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Figure 7.49: Plots of cn(u, k) for m =
0, 0.25, 0.50, 0.75, 1.00.

u

-10 -8 -6 -4 -2 0 2 4 6 8 10

c
n
(u

)

-1.5

-1

-0.5

0

0.5

1

1.5

m=0 m=0.25 m=0.5 m=0.75 m=1

Namely,

sn(u + K, k) =
cn u
dn u

, sn(u + 2K, k) = − sn u,

cn(u + K, k) = −
√

1− k2 sn u
dn u

, dn(u + 2K, k) = − cn u,



nonlinear systems 303

u

-10 -8 -6 -4 -2 0 2 4 6 8 10

d
n
(u

)

-0.5

0

0.5

1

1.5

m=0 m=0.25 m=0.5 m=0.75 m=1

Figure 7.50: Plots of dn(u, k) for m =
0, 0.25, 0.50, 0.75, 1.00.

dn(u + K, k) =

√
1− k2

dn u
, dn(u + 2K, k) = dn u.

Therefore, dn and cn have a period of 4K and dn has a period of 2K.
Special values found in Figure 7.47 are seen as

sn(K, k) = 1,

cn(K, k) = 0,

dn(K, k) =
√

1− k2 = k′,

where k′ is called the complementary modulus.
Important to this section are the derivatives of these elliptic functions,

∂

∂u
sn(u, k) = cn(u, k)dn(u, k),

∂

∂u
cn(u, k) = − sn(u, k)dn(u, k),

∂

∂u
dn(u, k) = −k2 sn(u, k) cn(u, k),

and the amplitude function

∂

∂u
am(u, k) = dn(u, k).

Sometimes the Jacobi elliptic functions are displayed without reference
to the elliptic modulus, such as sn(u) = sn(u, k). When k is understood, we
can do the same.

Example 7.18. Show that sn(u) satisfies the differential equation

y′′ + (1 + k2)y = 2k2y3.

From the above derivatives, we have that

d2

du2 sn(u) =
d

du
(cn(u)dn(u))

= − sn(u)dn2(u)− k2 sn(u) cn2(u). (7.90)

Letting y(u) = sn(u) and using the identities (7.84)-(7.85), we have
that

y′′ = −y(1− k2y2)− k2y(1− y2) = −(1 + k2)y + 2k2y3.

This is the desired result.
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Example 7.19. Show that θ(t) = 2 sin−1(k sn t) is a solution of the
equation θ̈ + sin θ = 0.

Differentiating θ(t) = 2 sin−1(k sn t), we have

d2

dt2

(
2 sin−1(k sn t)

)
=

d
dt

(
2

k cn t dn t√
1− k2 sn2 t

)
=

d
dt

(2k cn t)

= −2k sn t dn t. (7.91)

However, we can evaluate sin θ for a range of θ. Thus, we have

sin θ = sin(2 sin−1(k sn t))

= 2 sin(sin−1(k sn t)) cos(sin−1(k sn t))

= 2k sn t
√

1− k2 sn2 t

= 2k sn t dn t. (7.92)

Comparing these results, we have shown that θ̈ + sin θ = 0.

The solution to the last example can be used to obtain the exact solution
to the nonlinear pendulum problem, θ̈ + ω2 sin θ = 0, θ(0) = θ0, θ̇(0) = 0.
The general solution is given by θ(t) = 2 sin−1(k sn(ωt + φ)) where φ has
to be determined from the initial conditions. We note that

d sn(u + K)
du

= cn(u + K)dn(u + K)

=
(
−
√

1− k2 sn u
dn u

)(√1− k2

dn u

)
= −(1− k2)

sn u
dn2 u

. (7.93)

Evaluating at u = 0, we have sn′(K) = 0.
Therefore, if we pick φ = K, then θ̇(0) = 0 and the solution is

θ(t) = 2 sin−1(k sn(ωt + K)).

Furthermore, the other initial value is found to be

θ(0) = 2 sin−1(k sn K) = 2 sin−1 k.

Thus, k = sin θ0
2 , as we had seen in the earlier derivation of the elliptic

integral solution. The solution is given as

θ(t) = 2 sin−1(sin
θ0

2
sn(ωt + K)).

In Figures 7.51-7.52 we show comparisons of the exact solutions of the
linear and nonlinear pendulum problems for L = 1.0 m and initial angles
θ0 = 10o and θ0 = 50o.
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Figure 7.51: Comparison of exact solu-
tions of the linear and nonlinear pen-
dulum problems for L = 1.0 m and
θ0 = 10o .
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Figure 7.52: Comparison of the exact so-
lutions of the linear and nonlinear pen-
dulum problems for L = 1.0 m and
θ0 = 50o .

Problems

1. Solve the general logistic problem,

dy
dt

= ky− cy2, y(0) = y0 (7.94)

using separation of variables.

2. Find the equilibrium solutions and determine their stability for the fol-
lowing systems. For each case draw representative solutions and phase
lines.

a. y′ = y2 − 6y− 16.

b. y′ = cos y.

c. y′ = y(y− 2)(y + 3).

d. y′ = y2(y + 1)(y− 4).

3. For y′ = y− y2, find the general solution corresponding to y(0) = y0.
Provide specific solutions for the following initial conditions and sketch
them: a. y(0) = 0.25, b. y(0) = 1.5, and c. y(0) = −0.5.

4. For each problem determine equilibrium points, bifurcation points and
construct a bifurcation diagram. Discuss the different behaviors in each
system.



306 differential equations

a. y′ = y− µy2

b. y′ = y(µ− y)(µ− 2y)

c. x′ = µ− x3

d. x′ = x− µx
1+x2

5. Consider the family of differential equations x′ = x3 + δx2 − µx.

a. Sketch a bifurcation diagram in the xµ-plane for δ = 0.

b. Sketch a bifurcation diagram in the xµ-plane for δ > 0.

Hint: Pick a few values of δ and µ in order to get a feel for how this system
behaves.

6. System 7.52 can be solved exactly. Integrate the r-equation using sepa-
ration of variables. For initial conditions a) r(0) = 0.25, θ(0) = 0, and b)
r(0) = 1.5, θ(0) = 0, and µ = 1.0, find and plot the solutions in the xy-plane
showing the approach to a limit cycle.

7. Consider the system

x′ = −y + x
[
µ− x2 − y2

]
,

y′ = x + y
[
µ− x2 − y2

]
.

Rewrite this system in polar form. Look at the behavior of the r equation
and construct a bifurcation diagram in µr space. What might this diagram
look like in the three dimensional µxy space? (Think about the symmetry
in this problem.) This leads to what is called a Hopf bifurcation.

8. Find the fixed points of the following systems. Linearize the system
about each fixed point and determine the nature and stability in the neigh-
borhood of each fixed point, when possible. Verify your findings by plotting
phase portraits using a computer.

a.

x′ = x(100− x− 2y),

y′ = y(150− x− 6y).

b.

x′ = x + x3,

y′ = y + y3.

c.

x′ = x− x2 + xy,

y′ = 2y− xy− 6y2.
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d.

x′ = −2xy,

y′ = −x + y + xy− y3.

9. Plot phase portraits for the Lienard system

x′ = y− µ(x3 − x)

y′ = −x.

for a small and a not so small value of µ. Describe what happens as one
varies µ.

10. Consider the period of a nonlinear pendulum. Let the length be L = 1.0
m and g = 9.8 m/s2. Sketch T vs the initial angle θ0 and compare the linear
and nonlinear values for the period. For what angles can you use the linear
approximation confidently?

11. Another population model is one in which species compete for re-
sources, such as a limited food supply. Such a model is given by

x′ = ax− bx2 − cxy,

y′ = dy− ey2 − f xy.

In this case, assume that all constants are positive.

a Describe the effects/purpose of each terms.

b Find the fixed points of the model.

c Linearize the system about each fixed point and determine the sta-
bility.

d From the above, describe the types of solution behavior you might
expect, in terms of the model.

12. Consider a model of a food chain of three species. Assume that each
population on its own can be modeled by logistic growth. Let the species
be labeled by x(t), y(t), and z(t). Assume that population x is at the bottom
of the chain. That population will be depleted by population y. Population
y is sustained by x’s, but eaten by z’s. A simple, but scaled, model for this
system can be given by the system

x′ = x(1− x)− xy

y′ = y(1− y) + xy− yz

z′ = z(1− z) + yz.

a. Find the equilibrium points of the system.

b. Find the Jacobian matrix for the system and evaluate it at the equi-
librium points.

c. Find the eigenvalues and eigenvectors.
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d. Describe the solution behavior near each equilibrium point.

e. Which of these equilibria are important in the study of the pop-
ulation model and describe the interactions of the species in the
neighborhood of these point(s).

13. Derive the first integral of the Lotka-Volterra system, a ln y + d ln x −
cx− by = C.

14. Show that the system x′ = x − y − x3, y′ = x + y − y3, has a unique
limit cycle by picking an appropriate ψ(x, y) in Dulac’s Criteria.

15. The Lorenz model is a simple model for atmospheric convection devel-
oped by Edward Lorenz in 1963. The system is given by the three equations

dx
dt

= σ(y− x)

dy
dt

= x(ρ− z)− y

dz
dt

= xy− βz.

a. Find the equilibrium points of the system.

b. Find the Jacobian matrix for the system and evaluate it at the equi-
librium points.

c. Determine any bifurcation points and describe what happens near
the bifurcation point(s). Consider σ = 10, β = 8/3, and vary ρ.

d. This system is know to exhibit chaotic behavior. Lorenz found a
so-called strange attractor for parameter values σ = 10, β = 8/3,
and ρ = 28. Using a computer, locate this strange attractor.

16. The Michaelis-Menten kinetics reaction is given by

E + S
k1

// ES
k3oo

k2

// E + P.

The resulting system of equations for the chemical concentrations is

d[S]
dt

= −k1[E][S] + k3[ES],

d[E]
dt

= −k1[E][S] + (k2 + k2)[ES],

d[ES]
dt

= k1[E][S]− (k2 + k2)[ES],

d[P]
dt

= k3[ES]. (7.95)

In chemical kinetics one seeks to determine the rate of product formation
(v = d[P]/dt = k3[ES]). Assuming that [ES] is a constant, find v as a
function of [S] and the total enzyme concentration [ET ] = [E] + [ES]. As a
nonlinear dynamical system, what are the equilibrium points?
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17. In Equation (6.58) we saw a linear version of an epidemic model. The
commonly used nonlinear SIR model is given by

dS
dt

= −βSI

dI
dt

= βSI − γI

dR
dt

= γI, (7.96)

where S is the number of susceptible individuals, I is the number of infected
individuals, and R are the number who have been removed from the the
other groups, either by recovering or dying.

a. Let N = S + I + R be the total population. Prove that N = con-
stant. Thus, one need only solve the first two equations and find
R = N − S− I afterwards.

b. Find and classify the equilibria. Describe the equilibria in terms of
the population behavior.

c. Let β = 0.05 and γ = 0.2. Assume that in a population of 100 there
is one infected person. Numerically solve the system of equations
for S(t) and I(t) and describe the solution being careful to deter-
mine the units of population and the constants.

d. The equations can be modified by adding constant birth and death
rates. Assuming these are te same, one would have a new system.

dS
dt

= −βSI + µ(N − S)

dI
dt

= βSI − γI − µI

dR
dt

= γI − µR. (7.97)

How does this affect any equilibrium solutions?

e. Again, let β = 0.05 and γ = 0.2. Let µ = 0.1 For a population
of 100 with one infected person numerically solve the system of
equations for S(t) and I(t) and describe the solution being careful
to determine the units of population and the constants.

18. An undamped, unforced Duffing equation, ẍ + ω2x + εx3 = 0, can be
solved exactly in terms of elliptic functions. Using the results of Exercise
7.18, determine the solution of this equation and determine if there are any
restrictions on the parameters.

19. Determine the circumference of an ellipse in terms of an elliptic integral.

20. Evaluate the following in terms of elliptic integrals and compute the
values to four decimal places.

a.
∫ π/4

0
dθ√

1− 1
2 sin2 θ

.
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b.
∫ π/2

0
dθ√

1− 1
4 sin2 θ

.

c.
∫ 2

0
dx√

(9−x2)(4−x2)
.

d.
∫ π/2

0
dθ√
cos θ

.

e.
∫ ∞

1
dx√
x4−1

.



Appendix A

Calculus Review

“Ordinary language is totally unsuited for expressing what physics really asserts,
since the words of everyday life are not sufficiently abstract. Only mathematics and
mathematical logic can say as little as the physicist means to say.” Bertrand Russell
(1872-1970)

Before you begin our study of differential equations perhaps you
should review some things from calculus. You definitely need to know
something before taking this class. It is assumed that you have taken Calcu-
lus and are comfortable with differentiation and integration. Of course, you
are not expected to know every detail from these courses. However, there
are some topics and methods that will come up and it would be useful to
have a handy reference to what it is you should know.

Most importantly, you should still have your calculus text to which you
can refer throughout the course. Looking back on that old material, you
will find that it appears easier than when you first encountered the mate-
rial. That is the nature of learning mathematics and other subjects. Your
understanding is continually evolving as you explore topics more in depth.
It does not always sink in the first time you see it. In this chapter we will
give a quick review of these topics. We will also mention a few new methods
that might be interesting.

A.1 What Do I Need To Know From Calculus?

A.1.1 Introduction

There are two main topics in calculus: derivatives and integrals.
You learned that derivatives are useful in providing rates of change in either
time or space. Integrals provide areas under curves, but also are useful
in providing other types of sums over continuous bodies, such as lengths,
areas, volumes, moments of inertia, or flux integrals. In physics, one can
look at graphs of position versus time and the slope (derivative) of such a
function gives the velocity. (See Figure A.1.) By plotting velocity versus time
you can either look at the derivative to obtain acceleration, or you could look
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at the area under the curve and get the displacement:

x =
∫ t

t0

v dt. (A.1)

This is shown in Figure A.2.

t

x(t)

v

Figure A.1: Plot of position vs time.

t0 t

v(t)

x

Figure A.2: Plot of velocity vs time.

Of course, you need to know how to differentiate and integrate given
functions. Even before getting into differentiation and integration, you need
to have a bag of functions useful in physics. Common functions are the
polynomial and rational functions. You should be fairly familiar with these.
Polynomial functions take the general form

f (x) = anxn + an−1xn−1 + · · ·+ a1x + a0, (A.2)

where an 6= 0. This is the form of a polynomial of degree n. Rational func-
tions, f (x) = g(x)

h(x) , consist of ratios of polynomials. Their graphs can exhibit
vertical and horizontal asymptotes.

Next are the exponential and logarithmic functions. The most common
are the natural exponential and the natural logarithm. The natural exponen-
tial is given by f (x) = ex, where e ≈ 2.718281828 . . . . The natural logarithm
is the inverse to the exponential, denoted by ln x. (One needs to be care-
ful, because some mathematics and physics books use log to mean natural
exponential, whereas many of us were first trained to use this notation to
mean the common logarithm, which is the ‘log base 10’. Here we will use
ln x for the natural logarithm.)

The properties of the exponential function follow from the basic proper-
ties for exponents. Namely, we have:Exponential properties.

e0 = 1, (A.3)

e−a =
1
ea (A.4)

eaeb = ea+b, (A.5)

(ea)b = eab. (A.6)

The relation between the natural logarithm and natural exponential is
given by

y = ex ⇔ x = ln y. (A.7)

Some common logarithmic properties areLogarithmic properties.

ln 1 = 0, (A.8)

ln
1
a

= − ln a, (A.9)

ln(ab) = ln a + ln b, (A.10)

ln
a
b

= ln a− ln b, (A.11)

ln
1
b

= − ln b. (A.12)
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We will see applications of these relations as we progress through the
course.

A.1.2 Trigonometric Functions

Another set of useful functions are the trigonometric functions. These
functions have probably plagued you since high school. They have their
origins as far back as the building of the pyramids. Typical applications in
your introductory math classes probably have included finding the heights
of trees, flag poles, or buildings. It was recognized a long time ago that sim-
ilar right triangles have fixed ratios of any pair of sides of the two similar
triangles. These ratios only change when the non-right angles change.

Thus, the ratio of two sides of a right triangle only depends upon the
angle. Since there are six possible ratios (think about it!), then there are six
possible functions. These are designated as sine, cosine, tangent and their
reciprocals (cosecant, secant and cotangent). In your introductory physics
class, you really only needed the first three. You also learned that they
are represented as the ratios of the opposite to hypotenuse, adjacent to hy-
potenuse, etc. Hopefully, you have this down by now.

You should also know the exact values of these basic trigonometric func-
tions for the special angles θ = 0, π

6 , π
3 , π

4 , π
2 , and their corresponding angles

in the second, third and fourth quadrants. This becomes internalized after
much use, but we provide these values in Table A.1 just in case you need a
reminder.

θ cos θ sin θ tan θ

0 1 0 0

π
6

√
3

2
1
2

√
3

3
π
3

1
2

√
3

2

√
3

π
4

√
2

2

√
2

2 1

π
2 0 1 undefined

Table A.1: Table of Trigonometric Values

The problems students often have using trigonometric functions in later
courses stem from using, or recalling, identities. We will have many an
occasion to do so in this class as well. What is an identity? It is a relation
that holds true all of the time. For example, the most common identity for
trigonometric functions is the Pythagorean identity

sin2 θ + cos2 θ = 1. (A.13)

This holds true for every angle θ! An even simpler identity is

tan θ =
sin θ

cos θ
. (A.14)

Other simple identities can be derived from the Pythagorean identity.
Dividing the identity by cos2 θ, or sin2 θ, yields
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tan2 θ + 1 = sec2 θ, (A.15)

1 + cot2 θ = csc2 θ. (A.16)

Several other useful identities stem from the use of the sine and cosine of
the sum and difference of two angles. Namely, we have thatSum and difference identities.

sin(A± B) = sin A cos B± sin B cos A, (A.17)

cos(A± B) = cos A cos B∓ sin A sin B. (A.18)

Note that the upper (lower) signs are taken together.

Example A.1. Evaluate sin π
12 .

sin
π

12
= sin

(π

3
− π

4

)
= sin

π

3
cos

π

4
− sin

π

4
cos

π

3

=

√
3

2

√
2

2
−
√

2
2

1
2

=

√
2

4

(√
3− 1

)
. (A.19)

The double angle formulae are found by setting A = B :Double angle formulae.

sin(2A) = 2 sin A cos B, (A.20)

cos(2A) = cos2 A− sin2 A. (A.21)

Using Equation (A.13), we can rewrite (A.21) as

cos(2A) = 2 cos2 A− 1, (A.22)

= 1− 2 sin2 A. (A.23)

These, in turn, lead to the half angle formulae. Solving for cos2 A and sin2 A,
we find thatHalf angle formulae.

sin2 A =
1− cos 2A

2
, (A.24)

cos2 A =
1 + cos 2A

2
. (A.25)

Example A.2. Evaluate cos π
12 . In the last example, we used the sum/difference

identities to evaluate a similar expression. We could have also used a
half angle identity. In this example, we have
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cos2 π

12
=

1
2

(
1 + cos

π

6

)
=

1
2

(
1 +

√
3

2

)

=
1
4

(
2 +
√

3
)

(A.26)

So, cos π
12 = 1

2

√
2 +
√

3. This is not the simplest form and is called
a nested radical. In fact, if we proceeded using the difference identity
for cosines, then we would obtain

cos
π

12
=

√
2

4
(1 +

√
3).

So, how does one show that these answers are the same? It is useful at times to know when one
can reduce square roots of such radi-
cals, called denesting. More generally,
one seeks to write

√
a + b

√
q = c + d

√
q.

Following the procedure in this example,
one has d = b

2c and

c2 =
1
2

(
a±

√
a2 − qb2

)
.

As long as a2 − qb2 is a perfect square,
there is a chance to reduce the expres-
sion to a simpler form.

Let’s focus on the factor
√

2 +
√

3. We seek to write this in the form
c + d

√
3. Equating the two expressions and squaring, we have

2 +
√

3 = (c + d
√

3)2

= c2 + 3d2 + 2cd
√

3. (A.27)

In order to solve for c and d, it would seem natural to equate the
coefficients of

√
3 and the remaining terms. We obtain a system of

two nonlinear algebraic equations,

c2 + 3d2 = 2 (A.28)

2cd = 1. (A.29)

Solving the second equation for d = 1/2c, and substituting the
result into the first equation, we find

4c4 − 8c2 + 3 = 0.

This fourth order equation has four solutions,

c = ±
√

2
2

,±
√

6
2

and

b = ±
√

2
2

,±
√

6
6

.

Thus,

cos
π

12
=

1
2

√
2 +
√

3

= ±1
2

(√
2

2
+

√
2

2

√
3

)

= ±
√

2
4

(1 +
√

3) (A.30)
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and

cos
π

12
=

1
2

√
2 +
√

3

= ±1
2

(√
6

2
+

√
6

6

√
3

)

= ±
√

6
12

(3 +
√

3). (A.31)

Of the four solutions, two are negative and we know the value of the
cosine for this angle has to be positive. The remaining two solutions
are actually equal! A quick computation will verify this:

√
6

12
(3 +

√
3) =

√
3
√

2
12

(3 +
√

3)

=

√
2

12
(3
√

3 + 3)

=

√
2

4
(
√

3 + 1). (A.32)

We could have bypassed this situation be requiring that the solutions
for b and c were not simply proportional to

√
3 like they are in the

second case.

Finally, another useful set of identities are the product identities. ForProduct Identities

example, if we add the identities for sin(A + B) and sin(A− B), the second
terms cancel and we have

sin(A + B) + sin(A− B) = 2 sin A cos B.

Thus, we have that

sin A cos B =
1
2
(sin(A + B) + sin(A− B)). (A.33)

Similarly, we have

cos A cos B =
1
2
(cos(A + B) + cos(A− B)). (A.34)

and

sin A sin B =
1
2
(cos(A− B)− cos(A + B)). (A.35)

Know the above boxed identities!
These boxed equations are the most common trigonometric identities.

They appear often and should just roll off of your tongue.
We will also need to understand the behaviors of trigonometric func-

tions. In particular, we know that the sine and cosine functions are periodic.
They are not the only periodic functions, as we shall see. [Just visualize the
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teeth on a carpenter’s saw.] However, they are the most common periodic
functions.

A periodic function f (x) satisfies the relationPeriodic functions.

f (x + p) = f (x), for all x

for some constant p. If p is the smallest such number, then p is called the
period. Both the sine and cosine functions have period 2π. This means that
the graph repeats its form every 2π units. Similarly, sin bx and cos bx have
the common period p = 2π

b . We will make use of this fact in later chapters.
Related to these are the inverse trigonometric functions. For example,

f (x) = sin−1 x, or f (x) = arcsin x. Inverse functions give back angles, so

In Feynman’s Surely You’re Joking Mr.
Feynman!, Richard Feynman (1918-1988)
talks about his invention of his own no-
tation for both trigonometric and inverse
trigonometric functions as the standard
notation did not make sense to him.

you should think
θ = sin−1 x ⇔ x = sin θ. (A.36)

Also, you should recall that y = sin−1 x = arcsin x is only a function if−π
2 ≤

x ≤ π
2 . Similar relations exist for y = cos−1 x = arccos x and tan−1 x =

arctan x.
Once you think about these functions as providing angles, then you can

make sense out of more complicated looking expressions, like tan(sin−1 x).
Such expressions often pop up in evaluations of integrals. We can untangle
this in order to produce a simpler form by referring to expression (A.36).
θ = sin−1 x is simple an angle whose sine is x. Knowing the sine is the
opposite side of a right triangle divided by its hypotenuse, then one just
draws a triangle in this proportion as shown in Figure A.3. Namely, the
side opposite the angle has length x and the hypotenuse has length 1. Using
the Pythagorean Theorem, the missing side (adjacent to the angle) is sim-
ply
√

1− x2. Having obtained the lengths for all three sides, we can now
produce the tangent of the angle as

tan(sin−1 x) =
x√

1− x2
.

θ

1

x

√
1− x2

Figure A.3: θ = sin−1 x ⇒ tan θ =
x√

1−x2

A.1.3 Hyperbolic Functions

Solitons are special solutions to some
generic nonlinear wave equations. They
typically experience elastic collisions
and play special roles in a variety of
fields in physics, such as hydrodynam-
ics and optics. A simple soliton solution
is of the form

u(x, t) = 2η2 sech2 η(x− 4η2t).

So, are there any other functions that are useful in physics? Actu-
ally, there are many more. However, you have probably not see many of
them to date. We will see by the end of the semester that there are many
important functions that arise as solutions of some fairly generic, but im-
portant, physics problems. In your calculus classes you have also seen that
some relations are represented in parametric form. However, there is at
least one other set of elementary functions, which you should already know
about. These are the hyperbolic functions. Such functions are useful in
representing hanging cables, unbounded orbits, and special traveling waves
called solitons. They also play a role in special and general relativity. Hyperbolic functions.

We recall a few definitions and identities of hyperbolic functions: the
hyperbolic sine and hyperbolic cosine (shown in Figure A.4):
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sinh x =
ex − e−x

2
, (A.37)

cosh x =
ex + e−x

2
. (A.38)

−3 −2 −1 1 2 3

−2

2

cosh x

sinh x

Figure A.4: Plots of cosh x and sinh x.
Note that sinh 0 = 0, cosh 0 = 1, and
cosh x ≥ 1.

Hyperbolic functions are related to the trigonometric functions. We can
see this from the relations

sin θ =
eiθ − e−iθ

2i
, (A.39)

cos θ =
eiθ + e−iθ

2
. (A.40)

. Letting θ = ix we have sin ix = i sinh x and cos ix = cosh x..
There are four other hyperbolic functions. These are defined in terms

of the above functions similar to the relations between the trigonometric
functions. Namely, just as all of the trigonometric functions can be built
from the sine and the cosine, the hyperbolic functions can be defined in
terms of the hyperbolic sine and hyperbolic cosine. We have

tanh x =
sinh x
cosh x

=
ex − e−x

ex + e−x , (A.41)

sech x =
1

cosh x
=

2
ex + e−x , (A.42)

csch x =
1

sinh x
=

2
ex − e−x , (A.43)

coth x =
1

tanh x
=

ex + e−x

ex − e−x . (A.44)

There are also a whole set of identities, similar to those for the trigono-
metric functions. For example, the Pythagorean identity for trigonometric
functions, sin2 θ + cos2 θ = 1, is replaced by the identity

cosh2 x− sinh2 x = 1.

This is easily shown by simply using the definitions of these functions. This
identity is also useful for providing a parametric set of equations describing
hyperbolae. Letting x = a cosh t and y = b sinh t, one has

x2

a2 −
y2

b2 = cosh2 t− sinh2 t = 1.

A list of commonly needed hyperbolic function identities are given byHyperbolic identities.

the following:
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cosh2 x− sinh2 x = 1, (A.45)

tanh2 x + sech2 x = 1, (A.46)

cosh(A± B) = cosh A cosh B± sinh A sinh B, (A.47)

sinh(A± B) = sinh A cosh B± sinh B cosh A, (A.48)

cosh 2x = cosh2 x + sinh2 x, (A.49)

sinh 2x = 2 sinh x cosh x, (A.50)

cosh2 x =
1
2
(1 + cosh 2x) , (A.51)

sinh2 x =
1
2
(cosh 2x− 1) . (A.52)

Note the similarity with the trigonometric identities. Other identities can be
derived from these.

There also exist inverse hyperbolic functions and these can be written in
terms of logarithms. As with the inverse trigonometric functions, we begin
with the definition

y = sinh−1 x ⇔ x = sinh y. (A.53)

The aim is to write y in terms of x without using the inverse function. First,
we note that

x =
1
2
(
ey − e−y) . (A.54)

Next we solve for ey. This is done by noting that e−y = 1
ey and rewriting the

previous equation as

0 = (ey)2 − 2xey − 1. (A.55)

This equation is in quadratic form which we can solve using the quadratic
formula as

ey = x +
√

1 + x2.

(There is only one root as we expect the exponential to be positive.)

The inverse hyperbolic functions care
given by

sinh−1 x = ln
(

x +
√

1 + x2
)

,

cosh−1 x = ln
(

x +
√

x2 − 1
)

,

tanh−1 x =
1
2

ln
1 + x
1− x

.

The final step is to solve for y,

y = ln
(

x +
√

1 + x2
)

. (A.56)

A.1.4 Derivatives

Now that we know some elementary functions, we seek their deriva-
tives. We will not spend time exploring the appropriate limits in any rigor-
ous way. We are only interested in the results. We provide these in Table
A.2. We expect that you know the meaning of the derivative and all of the
usual rules, such as the product and quotient rules.

Also, you should be familiar with the Chain Rule. Recall that this rule
tells us that if we have a composition of functions, such as the elementary
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Table A.2: Table of Common Derivatives
(a is a constant).

Function Derivative
a 0

xn nxn−1

eax aeax

ln ax 1
x

sin ax a cos ax
cos ax −a sin ax
tan ax a sec2 ax
csc ax −a csc ax cot ax
sec ax a sec ax tan ax
cot ax −a csc2 ax

sinh ax a cosh ax
cosh ax a sinh ax
tanh ax a sech2 ax
csch ax −a csch ax coth ax
sech ax −a sech ax tanh ax
coth ax −a csch2 ax

functions above, then we can compute the derivative of the composite func-
tion. Namely, if h(x) = f (g(x)), then

dh
dx

=
d

dx
( f (g(x))) =

d f
dg

∣∣∣
g(x)

dg
dx

= f ′(g(x))g′(x). (A.57)

Example A.3. Differentiate H(x) = 5 cos
(
π tanh 2x2) .

This is a composition of three functions, H(x) = f (g(h(x))), where
f (x) = 5 cos x, g(x) = π tanh x, and h(x) = 2x2. Then the derivative
becomes

H′(x) = 5
(
− sin

(
π tanh 2x2

)) d
dx

((
π tanh 2x2

))
= −5π sin

(
π tanh 2x2

)
sech2 2x2 d

dx

(
2x2
)

= −20πx sin
(

π tanh 2x2
)

sech2 2x2. (A.58)

A.1.5 Integrals

Integration is typically a bit harder. Imagine being given the last
result in (A.58) and having to figure out what was differentiated in order to
get the given function. As you may recall from the Fundamental Theorem
of Calculus, the integral is the inverse operation to differentiation:∫ d f

dx
dx = f (x) + C. (A.59)

It is not always easy to evaluate a given integral. In fact some integrals
are not even doable! However, you learned in calculus that there are some
methods that could yield an answer. While you might be happier using a
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computer algebra system, such as Maple or WolframAlpha.com, or a fancy
calculator, you should know a few basic integrals and know how to use
tables for some of the more complicated ones. In fact, it can be exhilarating
when you can do a given integral without reference to a computer or a
Table of Integrals. However, you should be prepared to do some integrals
using what you have been taught in calculus. We will review a few of these
methods and some of the standard integrals in this section.

First of all, there are some integrals you are expected to know without
doing any work. These integrals appear often and are just an application of
the Fundamental Theorem of Calculus to the previous Table A.2. The basic
integrals that students should know off the top of their heads are given in
Table A.3.

These are not the only integrals you should be able to do. We can expand
the list by recalling a few of the techniques that you learned in calculus,
the Method of Substitution, Integration by Parts, integration using partial
fraction decomposition, and trigonometric integrals, and trigonometric sub-
stitution. There are also a few other techniques that you had not seen before.
We will look at several examples.

Example A.4. Evaluate
∫ x√

x2+1
dx.

When confronted with an integral, you should first ask if a simple
substitution would reduce the integral to one you know how to do.

The ugly part of this integral is the x2 + 1 under the square root.
So, we let u = x2 + 1.

Noting that when u = f (x), we have du = f ′(x) dx. For our exam-
ple, du = 2x dx.

Looking at the integral, part of the integrand can be written as
x dx = 1

2 u du. Then, the integral becomes∫ x√
x2 + 1

dx =
1
2

∫ du√
u

.

The substitution has converted our integral into an integral over u.
Also, this integral is doable! It is one of the integrals we should know.
Namely, we can write it as

1
2

∫ du√
u
=

1
2

∫
u−1/2 du.

This is now easily finished after integrating and using the substitution
variable to give∫ x√

x2 + 1
dx =

1
2

u1/2

1
2

+ C =
√

x2 + 1 + C.

Note that we have added the required integration constant and that
the derivative of the result easily gives the original integrand (after
employing the Chain Rule).

Often we are faced with definite integrals, in which we integrate between
two limits. There are several ways to use these limits. However, students
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Table A.3: Table of Common Integrals. Function Indefinite Integral
a ax

xn xn+1

n+1
eax 1

a eax

1
x ln x

sin ax − 1
a cos ax

cos ax 1
a sin ax

sec2 ax 1
a tan ax

sinh ax 1
a cosh ax

cosh ax 1
a sinh ax

sech2 ax 1
a tanh ax

sec x ln | sec x + tan x|
1

a+bx
1
b ln(a + bx)

1
a2+x2

1
a tan−1 x

a
1√

a2−x2 sin−1 x
a

1
x
√

x2−a2
1
a sec−1 x

a
1√

x2−a2 cosh−1 x
a = ln |

√
x2 − a2 + x|

often forget that a change of variables generally means that the limits have
to change.

Example A.5. Evaluate
∫ 2

0
x√

x2+1
dx.

This is the last example but with integration limits added. We pro-
ceed as before. We let u = x2 + 1. As x goes from 0 to 2, u takes values
from 1 to 5. So, this substitution gives∫ 2

0

x√
x2 + 1

dx =
1
2

∫ 5

1

du√
u
=
√

u|51 =
√

5− 1.

When you becomes proficient at integration, you can bypass some of
these steps. In the next example we try to demonstrate the thought pro-
cess involved in using substitution without explicitly using the substitution
variable.

Example A.6. Evaluate
∫ 2

0
x√

9+4x2 dx

As with the previous example, one sees that the derivative of 9+ 4x2

is proportional to x, which is in the numerator of the integrand. Thus a
substitution would give an integrand of the form u−1/2. So, we expect
the answer to be proportional to

√
u =
√

9 + 4x2. The starting point is
therefore, ∫ x√

9 + 4x2
dx = A

√
9 + 4x2,

where A is a constant to be determined.
We can determine A through differentiation since the derivative of

the answer should be the integrand. Thus,

d
dx

A(9 + 4x2)
1
2 = A(9 + 4x2)−

1
2

(
1
2

)
(8x)

= 4xA(9 + 4x2)−
1
2 . (A.60)
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Comparing this result with the integrand, we see that the integrand is
obtained when A = 1

4 . Therefore,

∫ x√
9 + 4x2

dx =
1
4

√
9 + 4x2.

We now complete the integral,

∫ 2

0

x√
9 + 4x2

dx =
1
4
[5− 3] =

1
2

.

The function

gd(x) =
∫ x

0

dx
cosh x

= 2 tan−1 ex − π

2

is called the Gudermannian and con-
nects trigonometric and hyperbolic func-
tions. This function was named after
Christoph Gudermann (1798-1852), but
introduced by Johann Heinrich Lambert
(1728-1777), who was one of the first to
introduce hyperbolic functions.

Example A.7. Evaluate
∫ dx

cosh x .
This integral can be performed by first using the definition of cosh x

followed by a simple substitution.∫ dx
cosh x

=
∫ 2

ex + e−x dx

=
∫ 2ex

e2x + 1
dx. (A.61)

Now, we let u = ex and du = exdx. Then,∫ dx
cosh x

=
∫ 2

1 + u2 du

= 2 tan−1 u + C

= 2 tan−1 ex + C. (A.62)

Integration by Parts

When the Method of Substitution fails, there are other methods you can
try. One of the most used is the Method of Integration by Parts. Recall the
Integration by Parts Formula: Integration by Parts Formula.

∫
u dv = uv−

∫
v du. (A.63)

The idea is that you are given the integral on the left and you can relate it
to an integral on the right. Hopefully, the new integral is one you can do,
or at least it is an easier integral than the one you are trying to evaluate.

However, you are not usually given the functions u and v. You have to
determine them. The integral form that you really have is a function of
another variable, say x. Another form of the Integration by Parts Formula
can be written as∫

f (x)g′(x) dx = f (x)g(x)−
∫

g(x) f ′(x) dx. (A.64)

This form is a bit more complicated in appearance, though it is clearer than
the u-v form as to what is happening. The derivative has been moved from
one function to the other. Recall that this formula was derived by integrating
the product rule for differentiation. (See your calculus text.)

Note: Often in physics one needs to
move a derivative between functions in-
side an integrand. The key - use inte-
gration by parts to move the derivative
from one function to the other under an
integral.
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These two formulae can be related by using the differential relations

u = f (x) → du = f ′(x) dx,

v = g(x) → dv = g′(x) dx. (A.65)

This also gives a method for applying the Integration by Parts Formula.

Example A.8. Consider the integral
∫

x sin 2x dx. We choose u = x
and dv = sin 2x dx. This gives the correct left side of the Integration by
Parts Formula. We next determine v and du:

du =
du
dx

dx = dx,

v =
∫

dv =
∫

sin 2x dx = −1
2

cos 2x.

We note that one usually does not need the integration constant. In-
serting these expressions into the Integration by Parts Formula, we
have ∫

x sin 2x dx = −1
2

x cos 2x +
1
2

∫
cos 2x dx.

We see that the new integral is easier to do than the original integral.
Had we picked u = sin 2x and dv = x dx, then the formula still works,
but the resulting integral is not easier.

For completeness, we finish the integration. The result is∫
x sin 2x dx = −1

2
x cos 2x +

1
4

sin 2x + C.

As always, you can check your answer by differentiating the result,
a step students often forget to do. Namely,

d
dx

(
−1

2
x cos 2x +

1
4

sin 2x + C
)

= −1
2

cos 2x + x sin 2x +
1
4
(2 cos 2x)

= x sin 2x. (A.66)

So, we do get back the integrand in the original integral.

We can also perform integration by parts on definite integrals. The gen-
eral formula is written as

∫ b

a
f (x)g′(x) dx = f (x)g(x)

∣∣∣∣b
a
−
∫ b

a
g(x) f ′(x) dx. (A.67)

Integration by Parts for Definite Inte-
grals. Example A.9. Consider the integral∫ π

0
x2 cos x dx.

This will require two integrations by parts. First, we let u = x2 and
dv = cos x. Then,

du = 2x dx. v = sin x.
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Inserting into the Integration by Parts Formula, we have∫ π

0
x2 cos x dx = x2 sin x

∣∣∣π
0
− 2

∫ π

0
x sin x dx

= −2
∫ π

0
x sin x dx. (A.68)

We note that the resulting integral is easier that the given integral,
but we still cannot do the integral off the top of our head (unless we
look at Example 3!). So, we need to integrate by parts again. (Note: In
your calculus class you may recall that there is a tabular method for
carrying out multiple applications of the formula. We will show this
method in the next example.)

We apply integration by parts by letting U = x and dV = sin x dx.
This gives dU = dx and V = − cos x. Therefore, we have∫ π

0
x sin x dx = −x cos x

∣∣∣π
0
+
∫ π

0
cos x dx

= π + sin x
∣∣∣π
0

= π. (A.69)

The final result is ∫ π

0
x2 cos x dx = −2π.

There are other ways to compute integrals of this type. First of all, there
is the Tabular Method to perform integration by parts. A second method is
to use differentiation of parameters under the integral. We will demonstrate
this using examples.

Example A.10. Compute the integral
∫ π

0 x2 cos x dx using the Tabular
Method. Using the Tabular Method.

First we identify the two functions under the integral, x2 and cos x.
We then write the two functions and list the derivatives and integrals
of each, respectively. This is shown in Table A.4. Note that we stopped
when we reached zero in the left column.

Next, one draws diagonal arrows, as indicated, with alternating
signs attached, starting with +. The indefinite integral is then obtained
by summing the products of the functions at the ends of the arrows
along with the signs on each arrow:∫

x2 cos x dx = x2 sin x + 2x cos x− 2 sin x + C.

To find the definite integral, one evaluates the antiderivative at the
given limits.∫ π

0
x2 cos x dx =

[
x2 sin x + 2x cos x− 2 sin x

]π

0

= (π2 sin π + 2π cos π − 2 sin π)− 0

= −2π. (A.70)
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Actually, the Tabular Method works even if a zero does not appear in the
left column. One can go as far as possible, and if a zero does not appear,
then one needs only integrate, if possible, the product of the functions in
the last row, adding the next sign in the alternating sign progression. The
next example shows how this works.

Table A.4: Tabular Method D I

x2 cos x

2x sin x

2 − cos x

0 − sin x

+

−

+

Example A.11. Use the Tabular Method to compute
∫

e2x sin 3x dx.
As before, we first set up the table as shown in Table A.5.

Table A.5: Tabular Method, showing a
nonterminating example.

D I

sin 3x e2x

3 cos 3x 1
2 e2x

−9 sin 3x 1
4 e2x

+

−

Putting together the pieces, noting that the derivatives in the left
column will never vanish, we have∫
e2x sin 3x dx = (

1
2

sin 3x− 3
4

cos 3x)e2x +
∫

(−9 sin 3x)
(

1
4

e2x
)

dx.

The integral on the right is a multiple of the one on the left, so we can
combine them,

13
4

∫
e2x sin 3x dx = (

1
2

sin 3x− 3
4

cos 3x)e2x,

or ∫
e2x sin 3x dx = (

2
13

sin 3x− 3
13

cos 3x)e2x.

Differentiation Under the Integral
Differentiation Under the Integral Sign
and Feynman’s trick. Another method that one can use to evaluate this integral is to differen-

tiate under the integral sign. This is mentioned in the Richard Feynman’s
memoir Surely You’re Joking, Mr. Feynman!. In the book Feynman recounts
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using this “trick” to be able to do integrals that his MIT classmates could
not do. This is based on a theorem found in Advanced Calculus texts.
Reader’s unfamiliar with partial derivatives should be able to grasp their
use in the following example.

Theorem A.1. Let the functions f (x, t) and ∂ f (x,t)
∂x be continuous in both t, and

x, in the region of the (t, x) plane which includes a(x) ≤ t ≤ b(x), x0 ≤ x ≤ x1,
where the functions a(x) and b(x) are continuous and have continuous derivatives
for x0 ≤ x ≤ x1. Defining

F(x) ≡
∫ b(x)

a(x)
f (x, t) dt,

then

dF(x)
dx

=

(
∂F
∂b

)
db
dx

+

(
∂F
∂a

)
da
dx

+
∫ b(x)

a(x)

∂

∂x
f (x, t) dt

= f (x, b(x)) b′(x)− f (x, a(x)) a′(x) +
∫ b(x)

a(x)

∂

∂x
f (x, t) dt.

(A.71)

for x0 ≤ x ≤ x1. This is a generalized version of the Fundamental Theorem of
Calculus.

In the next examples we show how we can use this theorem to bypass
integration by parts.

Example A.12. Use differentiation under the integral sign to evaluate∫
xex dx. First, consider the integral

I(x, a) =
∫

eax dx =
eax

a
.

Then,
∂I(x, a)

∂a
=
∫

xeax dx.

So, ∫
xeax dx =

∂I(x, a)
∂a

=
∂

∂a

(∫
eax dx

)
=

∂

∂a

(
eax

a

)
=

(
x
a
− 1

a2

)
eax. (A.72)

Evaluating this result at a = 1, we have∫
xex dx = (x− 1)ex.

The reader can verify this result by employing the previous meth-
ods or by just differentiating the result.
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Example A.13. We will do the integral
∫ π

0 x2 cos x dx once more. First,
consider the integral

I(a) ≡
∫ π

0
cos ax dx

=
sin ax

a

∣∣∣π
0

=
sin aπ

a
. (A.73)

Differentiating the integral I(a) with respect to a twice gives

d2 I(a)
da2 = −

∫ π

0
x2 cos ax dx. (A.74)

Evaluation of this result at a = 1 leads to the desired result. Namely,

∫ π

0
x2 cos x dx = −d2 I(a)

da2

∣∣∣
a=1

= − d2

da2

(
sin aπ

a

) ∣∣∣
a=1

= − d
da

(
aπ cos aπ − sin aπ

a2

) ∣∣∣
a=1

= −
(

a2π2 sin aπ + 2aπ cos aπ − 2 sin aπ

a3

) ∣∣∣
a=1

= −2π. (A.75)

Trigonometric Integrals

Other types of integrals that you will see often are trigonometric inte-
grals. In particular, integrals involving powers of sines and cosines. For
odd powers, a simple substitution will turn the integrals into simple pow-
ers.

Example A.14. For example, consider∫
cos3 x dx.

This can be rewritten as∫
cos3 x dx =

∫
cos2 x cos x dx.

Let u = sin x. Then, du = cos x dx. Since cos2 x = 1− sin2 x, we haveIntegration of odd powers of sine and co-
sine. ∫

cos3 x dx =
∫

cos2 x cos x dx

=
∫
(1− u2) du

= u− 1
3

u3 + C

= sin x− 1
3

sin3 x + C. (A.76)



calculus review 329

A quick check confirms the answer:

d
dx

(
sin x− 1

3
sin3 x + C

)
= cos x− sin2 x cos x

= cos x(1− sin2 x)

= cos3 x. (A.77)

Even powers of sines and cosines are a little more complicated, but doable.
In these cases we need the half angle formulae (A.24)-(A.25). Integration of even powers of sine and

cosine.
Example A.15. As an example, we will compute∫ 2π

0
cos2 x dx.

Substituting the half angle formula for cos2 x, we have∫ 2π

0
cos2 x dx =

1
2

∫ 2π

0
(1 + cos 2x) dx

=
1
2

(
x− 1

2
sin 2x

)2π

0
= π. (A.78)

We note that this result appears often in physics. When looking at root
mean square averages of sinusoidal waves, one needs the average of the
square of sines and cosines. Recall that the average of a function on interval
[a, b] is given as

fave =
1

b− a

∫ b

a
f (x) dx. (A.79)

So, the average of cos2 x over one period is

1
2π

∫ 2π

0
cos2 x dx =

1
2

. (A.80)

The root mean square is then found by taking the square root, 1√
2
. Recall that RMS averages refer to the

root mean square average. This is com-
puted by first computing the average, or
mean, of the square of some quantity.
Then one takes the square root. Typi-
cal examples are RMS voltage, RMS cur-
rent, and the average energy in an elec-
tromagnetic wave. AC currents oscillate
so fast that the measured value is the
RMS voltage.

Trigonometric Function Substitution

Another class of integrals typically studied in calculus are those involv-
ing the forms

√
1− x2,

√
1 + x2, or

√
x2 − 1. These can be simplified through

the use of trigonometric substitutions. The idea is to combine the two terms
under the radical into one term using trigonometric identities. We will con-
sider some typical examples.

Example A.16. Evaluate
∫ √

1− x2 dx.
Since 1− sin2 θ = cos2 θ, we perform the sine substitution

x = sin θ, dx = cos θ dθ.

Then,

In any of these computations careful at-
tention has to be paid to simplifying the
radical. This is because

√
x2 = |x|.

For example,
√
(−5)2 =

√
25 = 5. For

x = sin θ, one typically specifies the do-
main −π/2 ≤ θ ≤ π/2. In this domain
we have | cos θ| = cos θ.

∫ √
1− x2 dx =

∫ √
1− sin2 θ cos θ dθ

=
∫

cos2 θ dθ. (A.81)
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Using the last example, we have∫ √
1− x2 dx =

1
2

(
θ − 1

2
sin 2θ

)
+ C.

However, we need to write the answer in terms of x. We do this by
first using the double angle formula for sin 2θ and cos θ =

√
1− x2 to

obtain ∫ √
1− x2 dx =

1
2

(
sin−1 x− x

√
1− x2

)
+ C.

Similar trigonometric substitutions result for integrands involving
√

1 + x2

and
√

x2 − 1. The substitutions are summarized in Table A.6. The simpli-
fication of the given form is then obtained using trigonometric identities.
This can also be accomplished by referring to the right triangles shown in
Figure A.5.

Table A.6: Standard trigonometric sub-
stitutions.

Form Substitution Differential√
a2 − x2 x = a sin θ dx = a cos θ dθ√
a2 + x2 x = a tan θ dx = a sec2 θ dθ√
x2 − a2 x = a sec θ dx = a sec θ tan θ dθ

Figure A.5: Geometric relations used in
trigonometric substitution.

θ

x = sin θ

1

x

√
1− x2

θ

x = tan θ

√
1 + x2

x

1
θ

x = sec θ

x

√
x2 − 1

1

Example A.17. Evaluate
∫ 2

0

√
x2 + 4 dx.

Let x = 2 tan θ. Then, dx = 2 sec2 θ dθ and√
x2 + 4 =

√
4 tan2 θ + 4 = 2 sec θ.

So, the integral becomes∫ 2

0

√
x2 + 4 dx = 4

∫ π/4

0
sec3 θ dθ.

One has to recall, or look up,∫
sec3 θ dθ =

1
2
(tan θ sec θ + ln | sec θ + tan θ|) + C.

This gives∫ 2

0

√
x2 + 4 dx = 2 [tan θ sec θ + ln | sec θ + tan θ|]π/4

0

= 2
(√

2 + ln |
√

2 + 1| − (0 + ln(1))
)

= 2(
√

2 + ln(
√

2 + 1)). (A.82)
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Example A.18. Evaluate
∫ dx√

x2−1
, x ≥ 1.

In this case one needs the secant substitution. This yields∫ dx√
x2 − 1

=
∫ sec θ tan θ dθ√

sec2 θ − 1

=
∫ sec θ tan θ dθ

tan θ

=
∫

sec θdθ

= ln(sec θ + tan θ) + C

= ln(x +
√

x2 − 1) + C. (A.83)

Example A.19. Evaluate
∫ dx

x
√

x2−1
, x ≥ 1.

Again we can use a secant substitution. This yields∫ dx
x
√

x2 − 1
=

∫ sec θ tan θ dθ

sec θ
√

sec2 θ − 1

=
∫ sec θ tan θ

sec θ tan θ
dθ

=
∫

dθ = θ + C = sec−1 x + C. (A.84)

Hyperbolic Function Substitution

Even though trigonometric substitution plays a role in the calculus pro-
gram, students often see hyperbolic function substitution used in physics
courses. The reason might be because hyperbolic function substitution is
sometimes simpler. The idea is the same as for trigonometric substitution.
We use an identity to simplify the radical.

Example A.20. Evaluate
∫ 2

0

√
x2 + 4 dx using the substitution x = 2 sinh u.

Since x = 2 sinh u, we have dx = 2 cosh u du. Also, we can use the
identity cosh2 u− sinh2 u = 1 to rewrite√

x2 + 4 =

√
4 sinh2 u + 4 = 2 cosh u.

The integral can be now be evaluated using these substitutions and
some hyperbolic function identities,∫ 2

0

√
x2 + 4 dx = 4

∫ sinh−1 1

0
cosh2 u du

= 2
∫ sinh−1 1

0
(1 + cosh 2u) du

= 2
[

u +
1
2

sinh 2u
]sinh−1 1

0

= 2 [u + sinh u cosh u]sinh−1 1
0

= 2
(

sinh−1 1 +
√

2
)

. (A.85)

In Example A.17 we used a trigonometric substitution and found∫ 2

0

√
x2 + 4 = 2(

√
2 + ln(

√
2 + 1)).
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This is the same result since sinh−1 1 = ln(1 +
√

2).

Example A.21. Evaluate
∫ dx√

x2−1
for x ≥ 1 using hyperbolic function

substitution.
This integral was evaluated in Example A.19 using the trigonomet-

ric substitution x = sec θ and the resulting integral of sec θ had to be
recalled. Here we will use the substitution

x = cosh u, dx = sinh u du,
√

x2 − 1 =

√
cosh2 u− 1 = sinh u.

Then,∫ dx√
x2 − 1

=
∫ sinh u du

sinh u

=
∫

du = u + C

= cosh−1 x + C

=
1
2

ln(x +
√

x2 − 1) + C, x ≥ 1. (A.86)

This is the same result as we had obtained previously, but this
derivation was a little cleaner.

Also, we can extend this result to values x ≤ −1 by letting x =

− cosh u. This gives∫ dx√
x2 − 1

=
1
2

ln(x +
√

x2 − 1) + C, x ≤ −1.

Combining these results, we have shown∫ dx√
x2 − 1

=
1
2

ln(|x|+
√

x2 − 1) + C, x2 ≥ 1.

We have seen in the last example that the use of hyperbolic function sub-
stitution allows us to bypass integrating the secant function in Example A.19

when using trigonometric substitutions. In fact, we can use hyperbolic sub-
stitutions to evaluate integrals of powers of secants. Comparing Examples
A.19 and A.21, we consider the transformation sec θ = cosh u. The relation
between differentials is found by differentiation, giving

sec θ tan θ dθ = sinh u du.

Since
tanh2 θ = sec2 θ − 1,

we have tan θ = sinh u, therefore

dθ =
du

cosh u
.

In the next example we show how useful this transformation is.Evaluation of
∫

sec θ dθ.

Example A.22. Evaluate
∫

sec θ dθ using hyperbolic function substitu-
tion.
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From the discussion in the last paragraph, we have∫
sec θ dθ =

∫
du

= u + C

= cosh−1(sec θ) + C (A.87)

We can express this result in the usual form by using the logarithmic
form of the inverse hyperbolic cosine,

cosh−1 x = ln(x +
√

x2 − 1).

The result is ∫
sec θ dθ = ln(sec θ + tan θ).

This example was fairly simple using the transformation sec θ = cosh u.
Another common integral that arises often is integrations of sec3 θ. In a
typical calculus class this integral is evaluated using integration by parts.
However. that leads to a tricky manipulation that is a bit scary the first time
it is encountered (and probably upon several more encounters.) In the next
example, we will show how hyperbolic function substitution is simpler. Evaluation of

∫
sec3 θ dθ.

Example A.23. Evaluate
∫

sec3 θ dθ using hyperbolic function substi-
tution.

First, we consider the transformation sec θ = cosh u with dθ =
du

cosh u . Then, ∫
sec3 θ dθ =

∫ du
cosh u

.

This integral was done in Example A.7, leading to∫
sec3 θ dθ = 2 tan−1 eu + C.

While correct, this is not the form usually encountered. Instead,
we make the slightly different transformation tan θ = sinh u. Since
sec2 θ = 1 + tan2 θ, we find sec θ = cosh u. As before, we find

dθ =
du

cosh u
.

Using this transformation and several identities, the integral becomes∫
sec3 θ dθ =

∫
cosh2 u du

=
1
2

∫
(1 + cosh 2u) du

=
1
2

(
u +

1
2

sinh 2u
)

=
1
2
(u + sinh u cosh u)

=
1
2

(
cosh−1(sec θ) + tan θ sec θ

)
=

1
2
(sec θ tan θ + ln(sec θ + tan θ)) . (A.88)
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There are many other integration methods, some of which we will visit
in other parts of the book, such as partial fraction decomposition and nu-
merical integration. Another topic which we will revisit is power series.

A.1.6 Geometric Series

Geometric series are fairly common and
will be used throughout the book. You
should learn to recognize them and
work with them.

Infinite series occur often in mathematics and physics. Two series
which occur often are the geometric series and the binomial series. we will
discuss these next.

A geometric series is of the form
∞

∑
n=0

arn = a + ar + ar2 + . . . + arn + . . . . (A.89)

Here a is the first term and r is called the ratio. It is called the ratio because
the ratio of two consecutive terms in the sum is r.

Example A.24. For example,

1 +
1
2
+

1
4
+

1
8
+ . . .

is an example of a geometric series. We can write this using summa-
tion notation,

1 +
1
2
+

1
4
+

1
8
+ . . . =

∞

∑
n=0

1
(

1
2

)n
.

Thus, a = 1 is the first term and r = 1
2 is the common ratio of succes-

sive terms. Next, we seek the sum of this infinite series, if it exists.

The sum of a geometric series, when it exists, can easily be determined.
We consider the nth partial sum:

sn = a + ar + . . . + arn−2 + arn−1. (A.90)

Now, multiply this equation by r.

rsn = ar + ar2 + . . . + arn−1 + arn. (A.91)

Subtracting these two equations, while noting the many cancelations, we
have

(1− r)sn = (a + ar + . . . + arn−2 + arn−1)

−(ar + ar2 + . . . + arn−1 + arn)

= a− arn

= a(1− rn). (A.92)

Thus, the nth partial sums can be written in the compact form

sn =
a(1− rn)

1− r
. (A.93)

The sum, if it exists, is given by S = limn→∞ sn. Letting n get large in the
partial sum (A.93), we need only evaluate limn→∞ rn. From the special limits
in the Appendix we know that this limit is zero for |r| < 1. Thus, we have
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Geometric Series

The sum of the geometric series exists for |r| < 1 and is given by

∞

∑
n=0

arn =
a

1− r
, |r| < 1. (A.94)

The reader should verify that the geometric series diverges for all other
values of r. Namely, consider what happens for the separate cases |r| > 1,
r = 1 and r = −1.

Next, we present a few typical examples of geometric series.

Example A.25. ∑∞
n=0

1
2n

In this case we have that a = 1 and r = 1
2 . Therefore, this infinite

series converges and the sum is

S =
1

1− 1
2
= 2.

Example A.26. ∑∞
k=2

4
3k

In this example we first note that the first term occurs for k = 2. It
sometimes helps to write out the terms of the series,

∞

∑
k=2

4
3k =

4
32 +

4
33 +

4
34 +

4
35 + . . . .

Looking at the series, we see that a = 4
9 and r = 1

3 . Since |r|<1, the
geometric series converges. So, the sum of the series is given by

S =
4
9

1− 1
3
=

2
3

.

Example A.27. ∑∞
n=1(

3
2n − 2

5n )

Finally, in this case we do not have a geometric series, but we do
have the difference of two geometric series. Of course, we need to be
careful whenever rearranging infinite series. In this case it is allowed
1. Thus, we have

1 A rearrangement of terms in an infinite
series is allowed when the series is abso-
lutely convergent. (See the Appendix.)

∞

∑
n=1

(
3
2n −

2
5n

)
=

∞

∑
n=1

3
2n −

∞

∑
n=1

2
5n .

Now we can add both geometric series to obtain

∞

∑
n=1

(
3
2n −

2
5n

)
=

3
2

1− 1
2
−

2
5

1− 1
5
= 3− 1

2
=

5
2

.

Geometric series are important because they are easily recognized and
summed. Other series which can be summed include special cases of Taylor
series and telescoping series. Next, we show an example of a telescoping
series.
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Example A.28. ∑∞
n=1

1
n(n+1) The first few terms of this series are

∞

∑
n=1

1
n(n + 1)

=
1
2
+

1
6
+

1
12

+
1

20
+ . . . .

It does not appear that we can sum this infinite series. However, if we
used the partial fraction expansion

1
n(n + 1)

=
1
n
− 1

n + 1
,

then we find the kth partial sum can be written as

sk =
k

∑
n=1

1
n(n + 1)

=
k

∑
n=1

(
1
n
− 1

n + 1

)
=

(
1
1
− 1

2

)
+

(
1
2
− 1

3

)
+ · · ·+

(
1
k
− 1

k + 1

)
. (A.95)

We see that there are many cancelations of neighboring terms, lead-
ing to the series collapsing (like a retractable telescope) to something
manageable:

sk = 1− 1
k + 1

.

Taking the limit as k→ ∞, we find ∑∞
n=1

1
n(n+1) = 1.

A.1.7 Power Series

Another example of an infinite series that the student has encoun-
tered in previous courses is the power series. Examples of such series are
provided by Taylor and Maclaurin series.

Actually, what are now known as Taylor
and Maclaurin series were known long
before they were named. James Gregory
(1638-1675) has been recognized for dis-
covering Taylor series, which were later
named after Brook Taylor (1685-1731) .
Similarly, Colin Maclaurin (1698-1746)
did not actually discover Maclaurin se-
ries, but the name was adopted because
of his particular use of series.

A power series expansion about x = a with coefficient sequence cn is
given by ∑∞

n=0 cn(x− a)n. For now we will consider all constants to be real
numbers with x in some subset of the set of real numbers.

Consider the following expansion about x = 0 :

∞

∑
n=0

xn = 1 + x + x2 + . . . . (A.96)

We would like to make sense of such expansions. For what values of x
will this infinite series converge? Until now we did not pay much attention
to which infinite series might converge. However, this particular series is
already familiar to us. It is a geometric series. Note that each term is gotten
from the previous one through multiplication by r = x. The first term is
a = 1. So, from Equation (A.94), we have that the sum of the series is given
by

∞

∑
n=0

xn =
1

1− x
, |x| < 1.
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f (x)

x
−0.2−0.1 0.1 0.2

0.80

0.90

1.00

1.10

1.20

(a)

f (x)

x
−0.2−0.1 0.1 0.2

0.80

0.90

1.00

1.10

1.20

(b)

Figure A.6: (a) Comparison of 1
1−x

(solid) to 1 + x (dashed) for x ∈
[−0.2, 0.2]. (b) Comparison of 1

1−x (solid)
to 1 + x + x2 (dashed) for x ∈ [−0.2, 0.2].

In this case we see that the sum, when it exists, is a simple function. In
fact, when x is small, we can use this infinite series to provide approxima-
tions to the function (1− x)−1. If x is small enough, we can write

(1− x)−1 ≈ 1 + x.

In Figure A.6a we see that for small values of x these functions do agree.

f (x)

x
−1.0 −.5 0 .5

1.0

2.0

3.0

Figure A.7: Comparison of 1
1−x (solid) to

1 + x + x2 (dashed) and 1 + x + x2 + x3

(dotted) for x ∈ [−1.0, 0.7].
Of course, if we want better agreement, we select more terms. In Fig-

ure A.6b we see what happens when we do so. The agreement is much
better. But extending the interval, we see in Figure A.7 that keeping only
quadratic terms may not be good enough. Keeping the cubic terms gives
better agreement over the interval.

Finally, in Figure A.8 we show the sum of the first 21 terms over the entire
interval [−1, 1]. Note that there are problems with approximations near the
endpoints of the interval, x = ±1.

f (x)

x
−1.0 −.5 0 .5 1.0

1.0

2.0

3.0

4.0

5.0

Figure A.8: Comparison of 1
1−x (solid) to

∑20
n=0 xn for x ∈ [−1, 1].

Such polynomial approximations are called Taylor polynomials. Thus,
T3(x) = 1 + x + x2 + x3 is the third order Taylor polynomial approximation
of f (x) = 1

1−x .
With this example we have seen how useful a series representation might

be for a given function. However, the series representation was a simple
geometric series, which we already knew how to sum. Is there a way to
begin with a function and then find its series representation? Once we have
such a representation, will the series converge to the function with which
we started? For what values of x will it converge? These questions can be
answered by recalling the definitions of Taylor and Maclaurin series.

A Taylor series expansion of f (x) about x = a is the series Taylor series expansion.

f (x) ∼
∞

∑
n=0

cn(x− a)n, (A.97)

where

cn =
f (n)(a)

n!
. (A.98)

Note that we use ∼ to indicate that we have yet to determine when the
series may converge to the given function. A special class of series are
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those Taylor series for which the expansion is about x = 0. These are called
Maclaurin series.

A Maclaurin series expansion of f (x) is a Taylor series expansion ofMaclaurin series expansion.

f (x) about x = 0, or

f (x) ∼
∞

∑
n=0

cnxn, (A.99)

where

cn =
f (n)(0)

n!
. (A.100)

Example A.29. Expand f (x) = ex about x = 0.
We begin by creating a table. In order to compute the expansion

coefficients, cn, we will need to perform repeated differentiations of
f (x). So, we provide a table for these derivatives. Then, we only need
to evaluate the second column at x = 0 and divide by n!.

n f (n)(x) f (n)(0) cn

0 ex e0 = 1 1
0! = 1

1 ex e0 = 1 1
1! = 1

2 ex e0 = 1 1
2!

3 ex e0 = 1 1
3!

Next, we look at the last column and try to determine a pattern so
that we can write down the general term of the series. If there is only a
need to get a polynomial approximation, then the first few terms may
be sufficient. In this case, the pattern is obvious: cn = 1

n! . So,

ex ∼
∞

∑
n=0

xn

n!
.

Example A.30. Expand f (x) = ex about x = 1.
Here we seek an expansion of the form ex ∼ ∑∞

n=0 cn(x − 1)n. We
could create a table like the last example. In fact, the last column
would have values of the form e

n! . (You should confirm this.) However,
we will make use of the Maclaurin series expansion for ex and get the
result quicker. Note that ex = ex−1+1 = eex−1. Now, apply the known
expansion for ex :

ex ∼ e
(

1 + (x− 1) +
(x− 1)2

2
+

(x− 1)3

3!
+ . . .

)
=

∞

∑
n=0

e(x− 1)n

n!
.

Example A.31. Expand f (x) = 1
1−x about x = 0.

This is the example with which we started our discussion. We can
set up a table in order to find the Maclaurin series coefficients. We see
from the last column of the table that we get back the geometric series
(A.96).
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n f (n)(x) f (n)(0) cn

0 1
1−x 1 1

0! = 1

1 1
(1−x)2 1 1

1! = 1

2 2(1)
(1−x)3 2(1) 2!

2! = 1

3 3(2)(1)
(1−x)4 3(2)(1) 3!

3! = 1

So, we have found

1
1− x

∼
∞

∑
n=0

xn.

We can replace ∼ by equality if we can determine the range of x-values
for which the resulting infinite series converges. We will investigate such
convergence shortly.

Series expansions for many elementary functions arise in a variety of
applications. Some common expansions are provided in Table A.7.

Series Expansions You Should Know

ex = 1 + x +
x2

2
+

x3

3!
+

x4

4!
+ . . . =

∞

∑
n=0

xn

n!

cos x = 1− x2

2
+

x4

4!
− . . . =

∞

∑
n=0

(−1)n x2n

(2n)!

sin x = x− x3

3!
+

x5

5!
− . . . =

∞

∑
n=0

(−1)n x2n+1

(2n + 1)!

cosh x = 1 +
x2

2
+

x4

4!
+ . . . =

∞

∑
n=0

x2n

(2n)!

sinh x = x +
x3

3!
+

x5

5!
+ . . . =

∞

∑
n=0

x2n+1

(2n + 1)!
1

1− x
= 1 + x + x2 + x3 + . . . =

∞

∑
n=0

xn

1
1 + x

= 1− x + x2 − x3 + . . . =
∞

∑
n=0

(−x)n

tan−1 x = x− x3

3
+

x5

5
− x7

7
+ . . . =

∞

∑
n=0

(−1)n x2n+1

2n + 1

ln(1 + x) = x− x2

2
+

x3

3
− . . . =

∞

∑
n=1

(−1)n+1 xn

n

Table A.7: Common Mclaurin Series Ex-
pansions

We still need to determine the values of x for which a given power series
converges. The first five of the above expansions converge for all reals, but
the others only converge for |x| < 1.

We consider the convergence of ∑∞
n=0 cn(x − a)n. For x = a the series

obviously converges. Will it converge for other points? One can prove
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Theorem A.2. If ∑∞
n=0 cn(b− a)n converges for b 6= a, then

∑∞
n=0 cn(x− a)n converges absolutely for all x satisfying |x− a| < |b− a|.

This leads to three possibilities

1. ∑∞
n=0 cn(x− a)n may only converge at x = a.

2. ∑∞
n=0 cn(x− a)n may converge for all real numbers.

3. ∑∞
n=0 cn(x − a)n converges for |x − a| < R and diverges for |x −

a| > R.

The number R is called the radius of convergence of the power seriesInterval and radius of convergence.

and (a− R, a + R) is called the interval of convergence. Convergence at the
endpoints of this interval has to be tested for each power series.

In order to determine the interval of convergence, one needs only note
that when a power series converges, it does so absolutely. So, we need only
test the convergence of ∑∞

n=0 |cn(x− a)n| = ∑∞
n=0 |cn||x− a|n. This is easily

done using either the ratio test or the nth root test. We first identify the non-
negative terms an = |cn||x− a|n, and then we apply one of the convergence
tests from the calculus curriculum.

For example, the nth Root Test gives the convergence condition for an =

|cn||x− a|n,

ρ = lim
n→∞

n
√

an = lim
n→∞

n
√
|cn||x− a| < 1.

Since |x− a| is independent of n,, we can factor it out of the limit and divide
the value of the limit to obtain

|x− a| <
(

lim
n→∞

n
√
|cn|
)−1

≡ R.

Thus, we have found the radius of convergence, R.
Similarly, we can apply the Ratio Test.

ρ = lim
n→∞

an+1

an
= lim

n→∞

|cn+1|
|cn|

|x− a| < 1.

Again, we rewrite this result to determine the radius of convergence:

|x− a| <
(

lim
n→∞

|cn+1|
|cn|

)−1

≡ R.

Example A.32. Find the radius of convergence of the series ex = ∑∞
n=0

xn

n! .
Since there is a factorial, we will use the Ratio Test.

ρ = lim
n→∞

|n!|
|(n + 1)!| |x| = lim

n→∞

1
n + 1

|x| = 0.

Since ρ = 0, it is independent of |x| and thus the series converges for
all x. We also can say that the radius of convergence is infinite.

Example A.33. Find the radius of convergence of the series 1
1−x =

∑∞
n=0 xn.
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In this example we will use the nth Root Test.

ρ = lim
n→∞

n√1|x| = |x| < 1.

Thus, we find that we have absolute convergence for |x| < 1. Setting
x = 1 or x = −1, we find that the resulting series do not converge.
So, the endpoints are not included in the complete interval of conver-
gence.

In this example we could have also used the Ratio Test. Thus,

ρ = lim
n→∞

1
1
|x| = |x| < 1.

We have obtained the same result as when we used the nth Root Test.

Example A.34. Find the radius of convergence of the series ∑∞
n=1

3n(x−2)n

n .
In this example, we have an expansion about x = 2. Using the nth

Root Test we find that

ρ = lim
n→∞

n

√
3n

n
|x− 2| = 3|x− 2| < 1.

Solving for |x − 2| in this inequality, we find |x − 2| < 1
3 . Thus,

the radius of convergence is R = 1
3 and the interval of convergence is(

2− 1
3 , 2 + 1

3

)
=
( 5

3 , 7
3
)

.

As for the endpoints, we first test the point x = 7
3 . The resulting

series is ∑∞
n=1

3n( 1
3 )

n

n = ∑∞
n=1

1
n . This is the harmonic series, and thus it

does not converge. Inserting x = 5
3 , we get the alternating harmonic

series. This series does converge. So, we have convergence on [ 5
3 , 7

3 ).
However, it is only conditionally convergent at the left endpoint, x =
5
3 .

Example A.35. Find an expansion of f (x) = 1
x+2 about x = 1.

Instead of explicitly computing the Taylor series expansion for this
function, we can make use of an already known function. We first
write f (x) as a function of x− 1, since we are expanding about x = 1;
i.e., we are seeking a series whose terms are powers of x− 1.

This expansion is easily done by noting that 1
x+2 = 1

(x−1)+3 . Fac-
toring out a 3, we can rewrite this expression as a sum of a geometric
series. Namely, we use the expansion for

g(z) =
1

1 + z
= 1− z + z2 − z3 + . . . . (A.101)

and then we rewrite f (x) as

f (x) =
1

x + 2

=
1

(x− 1) + 3

=
1

3[1 + 1
3 (x− 1)]
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=
1
3

1
1 + 1

3 (x− 1)
. (A.102)

Note that f (x) = 1
3 g( 1

3 (x − 1)) for g(z) = 1
1+z . So, the expansion

becomes

f (x) =
1
3

[
1− 1

3
(x− 1) +

(
1
3
(x− 1)

)2
−
(

1
3
(x− 1)

)3
+ . . .

]
.

This can further be simplified as

f (x) =
1
3
− 1

9
(x− 1) +

1
27

(x− 1)2 − . . . .

Convergence is easily established. The expansion for g(z) converges
for |z| < 1. So, the expansion for f (x) converges for | − 1

3 (x − 1)| <
1. This implies that |x − 1| < 3. Putting this inequality in interval
notation, we have that the power series converges absolutely for x ∈
(−2, 4). Inserting the endpoints, one can show that the series diverges
for both x = −2 and x = 4. You should verify this!

Example A.36. Prove Euler’s Formula: eiθ = cos θ + i sin θ.
Euler’s Formula, eiθ = cos θ + i sin θ,
is an important formula and is used
throughout the text.

As a final application, we can derive Euler’s Formula ,

eiθ = cos θ + i sin θ,

where i =
√
−1. We naively use the expansion for ex with x = iθ. This

leads us to

eiθ = 1 + iθ +
(iθ)2

2!
+

(iθ)3

3!
+

(iθ)4

4!
+ . . . .

Next we note that each term has a power of i. The sequence of
powers of i is given as {1, i,−1,−i, 1, i,−1,−i, 1, i,−1,−i, . . .}. See the
pattern? We conclude that

in = ir, where r = remainder after dividing n by 4.

This gives

eiθ =

(
1− θ2

2!
+

θ4

4!
− . . .

)
+ i
(

θ − θ3

3!
+

θ5

5!
− . . .

)
.

We recognize the expansions in the parentheses as those for the cosine
and sine functions. Thus, we end with Euler’s Formula.

We further derive relations from this result, which will be important for
our next studies. From Euler’s formula we have that for integer n:

einθ = cos(nθ) + i sin(nθ).

We also have
einθ =

(
eiθ
)n

= (cos θ + i sin θ)n .
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Equating these two expressions, we are led to de Moivre’s Formula, named
after Abraham de Moivre (1667-1754),

(cos θ + i sin θ)n = cos(nθ) + i sin(nθ). (A.103)

de Moivre’s Formula.

This formula is useful for deriving identities relating powers of sines or
cosines to simple functions. For example, if we take n = 2 in Equation
(A.103), we find

cos 2θ + i sin 2θ = (cos θ + i sin θ)2 = cos2 θ − sin2 θ + 2i sin θ cos θ.

Looking at the real and imaginary parts of this result leads to the well
known double angle identities

cos 2θ = cos2 θ − sin2 θ, sin 2θ = 2 sin θ cos θ.

Here we see elegant proofs of well
known trigonometric identities.

cos 2θ = cos2 θ − sin2 θ,(A.104)

sin 2θ = 2 sin θ cos θ,

cos2 θ =
1
2
(1 + cos 2θ),

sin2 θ =
1
2
(1− cos 2θ).

Replacing cos2 θ = 1− sin2 θ or sin2 θ = 1− cos2 θ leads to the half angle
formulae:

cos2 θ =
1
2
(1 + cos 2θ), sin2 θ =

1
2
(1− cos 2θ).

Trigonometric functions can be written
in terms of complex exponentials:

cos θ =
eiθ + e−iθ

2
,

sin θ =
eiθ − e−iθ

2i
.

We can also use Euler’s Formula to write sines and cosines in terms of
complex exponentials. We first note that due to the fact that the cosine is an
even function and the sine is an odd function, we have

e−iθ = cos θ − i sin θ.

Combining this with Euler’s Formula, we have that

cos θ =
eiθ + e−iθ

2
, sin θ =

eiθ − e−iθ

2i
.

Hyperbolic functions and trigonometric
functions are intimately related.

cos(ix) = cosh x,

sin(ix) = −i sinh x.

We finally note that there is a simple relationship between hyperbolic
functions and trigonometric functions. Recall that

cosh x =
ex + e−x

2
.

If we let x = iθ, then we have that cosh(iθ) = cos θ and cos(ix) = cosh x.
Similarly, we can show that sinh(iθ) = i sin θ and sin(ix) = −i sinh x.

A.1.8 The Binomial Expansion

Another series expansion which occurs often in examples and ap-
plications is the binomial expansion. This is simply the expansion of the
expression (a + b)p in powers of a and b. We will investigate this expan-
sion first for nonnegative integer powers p and then derive the expansion
for other values of p. While the binomial expansion can be obtained using
Taylor series, we will provide a more intuitive derivation to show that

The binomial expansion is a special se-
ries expansion used to approximate ex-
pressions of the form (a + b)p for b� a,
or (1 + x)p for |x| � 1.
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(a + b)n =
n

∑
r=0

Cn
r an−rbr, (A.105)

where the Cn
r are called the binomial coefficients.

Lets list some of the common expansions for nonnegative integer powers.

(a + b)0 = 1

(a + b)1 = a + b

(a + b)2 = a2 + 2ab + b2

(a + b)3 = a3 + 3a2b + 3ab2 + b3

(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4

· · · (A.106)

We now look at the patterns of the terms in the expansions. First, we
note that each term consists of a product of a power of a and a power of
b. The powers of a are decreasing from n to 0 in the expansion of (a + b)n.
Similarly, the powers of b increase from 0 to n. The sums of the exponents in
each term is n. So, we can write the (k+ 1)st term in the expansion as an−kbk.
For example, in the expansion of (a + b)51 the 6th term is a51−5b5 = a46b5.
However, we do not yet know the numerical coefficients in the expansion.

Let’s list the coefficients for the above expansions.

n = 0 : 1
n = 1 : 1 1
n = 2 : 1 2 1
n = 3 : 1 3 3 1
n = 4 : 1 4 6 4 1

(A.107)

This pattern is the famous Pascal’s triangle.2 There are many interesting

2 Pascal’s triangle is named after Blaise
Pascal (1623-1662). While such configu-
rations of numbers were known earlier
in history, Pascal published them and
applied them to probability theory.

Pascal’s triangle has many unusual
properties and a variety of uses:

• Horizontal rows add to powers of 2.

• The horizontal rows are powers of 11

(1, 11, 121, 1331, etc.).

• Adding any two successive numbers
in the diagonal 1-3-6-10-15-21-28...
results in a perfect square.

• When the first number to the right of
the 1 in any row is a prime number,
all numbers in that row are divisible
by that prime number. The reader
can readily check this for the n = 5
and n = 7 rows.

• Sums along certain diagonals leads
to the Fibonacci sequence. These
diagonals are parallel to the line con-
necting the first 1 for n = 3 row and
the 2 in the n = 2 row.

features of this triangle. But we will first ask how each row can be generated.
We see that each row begins and ends with a one. The second term and

next to last term have a coefficient of n. Next we note that consecutive pairs
in each row can be added to obtain entries in the next row. For example, we
have for rows n = 2 and n = 3 that 1 + 2 = 3 and 2 + 1 = 3 :

n = 2 : 1 2 1
↘ ↙ ↘ ↙

n = 3 : 1 3 3 1
(A.108)

With this in mind, we can generate the next several rows of our triangle.

n = 3 : 1 3 3 1
n = 4 : 1 4 6 4 1
n = 5 : 1 5 10 10 5 1
n = 6 : 1 6 15 20 15 6 1

(A.109)

So, we use the numbers in row n = 4 to generate entries in row n = 5 :
1 + 4 = 5, 4 + 6 = 10. We then use row n = 5 to get row n = 6, etc.
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Of course, it would take a while to compute each row up to the desired n.
Fortunately, there is a simple expression for computing a specific coefficient.
Consider the kth term in the expansion of (a + b)n. Let r = k − 1, for
k = 1, . . . , n + 1. Then this term is of the form Cn

r an−rbr. We have seen that
the coefficients satisfy

Cn
r = Cn−1

r + Cn−1
r−1 .

Actually, the binomial coefficients, Cn
r , have been found to take a simple

form,

Cn
r =

n!
(n− r)!r!

≡
(

n
r

)
.

This is nothing other than the combinatoric symbol for determining how to
choose n objects r at a time. In the binomial expansions this makes sense.
We have to count the number of ways that we can arrange r products of b
with n− r products of a. There are n slots to place the b’s. For example, the
r = 2 case for n = 4 involves the six products: aabb, abab, abba, baab, baba,
and bbaa. Thus, it is natural to use this notation. Andreas Freiherr von Ettingshausen

(1796-1878) was a German mathemati-
cian and physicist who in 1826 intro-

duced the notation
(

n
r

)
. However,

the binomial coefficients were known by
the Hindus centuries beforehand.

So, we have found that

(a + b)n =
n

∑
r=0

(
n
r

)
an−rbr. (A.110)

Now consider the geometric series 1 + x + x2 + . . . . We have seen that
such this geometric series converges for |x| < 1, giving

1 + x + x2 + . . . =
1

1− x
.

But, 1
1−x = (1− x)−1. This is a binomial to a power, but the power is not an

integer.
It turns out that the coefficients of such a binomial expansion can be

written similar to the form in Equation(A.110). This example suggests that
our sum may no longer be finite. So, for p a real number, a = 1 and b = x,
we generalize Equation(A.110) as

(1 + x)p =
∞

∑
r=0

(
p
r

)
xr (A.111)

and see if the resulting series makes sense. However, we quickly run into
problems with the coefficients in the series.

Consider the coefficient for r = 1 in an expansion of (1 + x)−1. This is
given by (

−1
1

)
=

(−1)!
(−1− 1)!1!

=
(−1)!
(−2)!1!

.

But what is (−1)!? By definition, it is

(−1)! = (−1)(−2)(−3) · · · .
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This product does not seem to exist! But with a little care, we note that

(−1)!
(−2)!

=
(−1)(−2)!

(−2)!
= −1.

So, we need to be careful not to interpret the combinatorial coefficient liter-
ally. There are better ways to write the general binomial expansion. We can
write the general coefficient as(

p
r

)
=

p!
(p− r)!r!

=
p(p− 1) · · · (p− r + 1)(p− r)!

(p− r)!r!

=
p(p− 1) · · · (p− r + 1)

r!
. (A.112)

With this in mind we now state the theorem:

General Binomial Expansion

The general binomial expansion for (1 + x)p is a simple gener-
alization of Equation (A.110). For p real, we have the following
binomial series:

(1 + x)p =
∞

∑
r=0

p(p− 1) · · · (p− r + 1)
r!

xr, |x| < 1. (A.113)

Often in physics we only need the first few terms for the case that x � 1 :

(1 + x)p = 1 + px +
p(p− 1)

2
x2 + O(x3). (A.114)

Example A.37. Approximate γ = 1√
1− v2

c2

for v� c.The factor γ =
(

1− v2

c2

)−1/2
is impor-

tant in special relativity. Namely, this
is the factor relating differences in time
and length measurements by observers
moving relative inertial frames. For ter-
restrial speeds, this gives an appropriate
approximation.

For v� c the first approximation is found inserting v/c = 0. Thus,
one obtains γ = 1. This is the Newtonian approximation and does not
provide enough of an approximation for terrestrial speeds. Thus, we
need to expand γ in powers of v/c.

First, we rewrite γ as

γ =
1√

1− v2

c2

=

[
1−

(v
c

)2
]−1/2

.

Using the binomial expansion for p = −1/2, we have

γ ≈ 1 +
(
−1

2

)(
−v2

c2

)
= 1 +

v2

2c2 .

Example A.38. Time Dilation Example
The average speed of a large commercial jet airliner is about 500

mph. If you flew for an hour (measured from the ground), then how



calculus review 347

much younger would you be than if you had not taken the flight,
assuming these reference frames obeyed the postulates of special rela-
tivity?

This is the problem of time dilation. Let ∆t be the elapsed time in a
stationary reference frame on the ground and ∆τ be that in the frame
of the moving plane. Then from the Theory of Special Relativity these
are related by

∆t = γ∆τ.

The time differences would then be

∆t− ∆τ = (1− γ−1)∆t

=

(
1−

√
1− v2

c2

)
∆t. (A.115)

The plane speed, 500 mph, is roughly 225 m/s and c = 3.00× 108

m/s. Since V � c, we would need to use the binomial approximation
to get a nonzero result.

∆t− ∆τ =

(
1−

√
1− v2

c2

)
∆t

=

(
1−

(
1− v2

2c2 + . . .
))

∆t

≈ v2

2c2 ∆t

=
(225)2

2(3.00× 108)2 (1 h) = 1.01 ns. (A.116)

Thus, you have aged one nanosecond less than if you did not take the
flight.

Example A.39. Small differences in large numbers: Compute f (R, h) =√
R2 + h2 − R for R = 6378.164 km and h = 1.0 m.
Inserting these values into a scientific calculator, one finds that

f (6378164, 1) =
√

63781642 + 1− 6378164 = 1× 10−7 m.

In some calculators one might obtain 0, in other calculators, or com-
puter algebra systems like Maple, one might obtain other answers.
What answer do you get and how accurate is your answer?

The problem with this computation is that R � h. Therefore, the
computation of f (R, h) depends on how many digits the computing
device can handle. The best way to get an answer is to use the binomial
approximation. Writing h = Rx, or x = h

R , we have

f (R, h) =
√

R2 + h2 − R

= R
√

1 + x2 − R

' R
[

1 +
1
2

x2
]
− R
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=
1
2

Rx2

=
1
2

h
R2 = 7.83926× 10−8 m. (A.117)

Of course, you should verify how many digits should be kept in re-
porting the result.

In the next examples, we generalize this example. Such general com-
putations appear in proofs involving general expansions without specific
numerical values given.

Example A.40. Obtain an approximation to (a + b)p when a is much
larger than b, denoted by a� b.

If we neglect b then (a + b)p ' ap. How good of an approximation
is this? This is where it would be nice to know the order of the next
term in the expansion. Namely, what is the power of b/a of the first
neglected term in this expansion?

In order to do this we first divide out a as

(a + b)p = ap
(

1 +
b
a

)p
.

Now we have a small parameter, b
a . According to what we have seen

earlier, we can use the binomial expansion to write(
1 +

b
a

)n
=

∞

∑
r=0

(
p
r

)(
b
a

)r
. (A.118)

Thus, we have a sum of terms involving powers of b
a . Since a � b,

most of these terms can be neglected. So, we can write(
1 +

b
a

)p
= 1 + p

b
a
+ O

((
b
a

)2
)

.

Here we used O(), big-Oh notation, to indicate the size of the first
neglected term.

Summarizing, we have

(a + b)p = ap
(

1 +
b
a

)p

= ap

(
1 + p

b
a
+ O

((
b
a

)2
))

= ap + pap b
a
+ apO

((
b
a

)2
)

. (A.119)

Therefore, we can approximate (a + b)p ' ap + pbap−1, with an error
on the order of b2ap−2. Note that the order of the error does not in-
clude the constant factor from the expansion. We could also use the
approximation that (a + b)p ' ap, but it is not typically good enough
in applications because the error in this case is of the order bap−1.
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Example A.41. Approximate f (x) = (a + x)p − ap for x � a.
In an earlier example we computed f (R, h) =

√
R2 + h2 − R for

R = 6378.164 km and h = 1.0 m. We can make use of the binomial
expansion to determine the behavior of similar functions in the form
f (x) = (a + x)p − ap. Inserting the binomial expression into f (x), we
have as x

a → 0 that

f (x) = (a + x)p − ap

= ap
[(

1 +
x
a

)p
− 1
]

= ap
[

px
a

+ O
(( x

a

)2
)]

= O
( x

a

)
as

x
a
→ 0. (A.120)

This result might not be the approximation that we desire. So, we
could back up one step in the derivation to write a better approxima-
tion as

(a + x)p − ap = ap−1 px + O
(( x

a

)2
)

as
x
a
→ 0.

We now use this approximation to compute f (R, h) =
√

R2 + h2−R
for R = 6378.164 km and h = 1.0 m in the earlier example. We let
a = R2, x = 1 and p = 1

2 . Then, the leading order approximation
would be of order

O
(( x

a

)2
)
= O

((
1

63781642

)2
)
∼ 2.4× 10−14.

Thus, we have√
63781642 + 1− 6378164 ≈ ap−1 px

where

ap−1 px = (63781642)−1/2(0.5)1 = 7.83926× 10−8.

This is the same result we had obtained before. However, we have
also an estimate of the size of the error and this might be useful in
indicating how many digits we should trust in the answer.
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Problems

1. Prove the following identities using only the definitions of the trigono-
metric functions, the Pythagorean identity, or the identities for sines and
cosines of sums of angles.

a. cos 2x = 2 cos2 x− 1.

b. sin 3x = A sin3 x + B sin x, for what values of A and B?

c. sec θ + tan θ = tan
(

θ

2
+

π

4

)
.

2. Determine the exact values of

a. sin
π

8
.

b. tan 15o.

c. cos 105o.

3. Denest the following if possible.

a.
√

3− 2
√

2.

b.
√

1 +
√

2.

c.
√

5 + 2
√

6.

d. 3
√√

5 + 2− 3
√√

5− 2.

e. Find the roots of x2 + 6x− 4
√

5 = 0 in simplified form.

4. Determine the exact values of

a. sin
(

cos−1 3
5

)
.

b. tan
(

sin−1 x
7

)
.

c. sin−1
(

sin
3π

2

)
.

5. Do the following.

a. Write (cosh x− sinh x)6 in terms of exponentials.

b. Prove cosh(x − y) = cosh x cosh y − sinh x sinh y using the expo-
nential forms of the hyperbolic functions.

c. Prove cosh 2x = cosh2 x + sinh2 x.

d. If cosh x =
13
12

and x < 0, find sinh x and tanh x.

e. Find the exact value of sinh(arccosh 3).

6. Prove that the inverse hyperbolic functions are the following logarithms:

a. cosh−1 x = ln
(

x +
√

x2 − 1
)

.

b. tanh−1 x =
1
2

ln
1 + x
1− x

.
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7. Write the following in terms of logarithms:

a. cosh−1 4
3 .

b. tanh−1 1
2 .

c. sinh−1 2.

8. Solve the following equations for x.

a. cosh(x + ln 3) = 3.

b. 2 tanh−1 x−2
x−1 = ln 2.

c. sinh2 x− 7 cosh x + 13 = 0.

9. Compute the following integrals.

a.
∫

xe2x2
dx.

b.
∫ 3

0
5x√

x2 + 16
dx.

c.
∫

x3 sin 3x dx. (Do this using integration by parts, the Tabular Method,
and differentiation under the integral sign.)

d.
∫

cos4 3x dx.

e.
∫ π/4

0 sec3 x dx.

f.
∫

ex sinh x dx.

g.
∫ √

9− x2 dx

h.
∫ dx
(4− x2)2 , using the substitution x = 2 tanh u.

i.
∫ 4

0
dx√

9 + x2
, using a hyperbolic function substitution.

j.
∫ dx

1− x2 , using the substitution x = tanh u.

k.
∫ dx
(x2 + 4)3/2 , using the substitutions x = 2 tan θ and x = 2 sinh u.

l.
∫ dx√

3x2 − 6x + 4
.

10. Find the sum for each of the series:

a. 5 + 25
7 + 125

49 + 625
343 + · · · .

b. ∑∞
n=0

(−1)n3
4n .

c. ∑∞
n=2

2
5n .

d. ∑∞
n=−1(−1)n+1

( e
π

)n
.

e. ∑∞
n=0

(
5
2n +

1
3n

)
.

f. ∑∞
n=1

3
n(n + 3)

.
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g. What is 0.569̄?

11. A superball is dropped from a 2.00 m height. After it rebounds, it
reaches a new height of 1.65 m. Assuming a constant coefficient of restitu-
tion, find the (ideal) total distance the ball will travel as it keeps bouncing.

12. Here are some telescoping series problems.

a. Verify that

∞

∑
n=1

1
(n + 2)(n + 1)

=
∞

∑
n=1

(
n + 1
n + 2

− n
n + 1

)
.

b. Find the nth partial sum of the series ∑∞
n=1

(
n + 1
n + 2

− n
n + 1

)
and

use it to determine the sum of the resulting telescoping series.

c. Sum the series ∑∞
n=1

[
tan−1 n− tan−1(n + 1)

]
by first writing the

Nth partial sum and then computing limN→∞ sN .

13. Determine the radius and interval of convergence of the following infi-
nite series:

a. ∑∞
n=1(−1)n (x− 1)n

n
.

b. ∑∞
n=1

xn

2nn!
.

c. ∑∞
n=1

1
n

( x
5

)n
.

d. ∑∞
n=1(−1)n xn

√
n

.

14. Find the Taylor series centered at x = a and its corresponding radius of
convergence for the given function. In most cases, you need not employ the
direct method of computation of the Taylor coefficients.

a. f (x) = sinh x, a = 0.

b. f (x) =
√

1 + x, a = 0.

c. f (x) = ln
1 + x
1− x

, a = 0.

d. f (x) = xex, a = 1.

e. f (x) =
1√
x

, a = 1.

f. f (x) = x4 + x− 2, a = 2.

g. f (x) =
x− 1
2 + x

, a = 1.
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15. Consider Gregory’s expansion

tan−1 x = x− x3

3
+

x5

5
− · · · =

∞

∑
k=0

(−1)k

2k + 1
x2k+1.

a. Derive Gregory’s expansion by using the definition

tan−1 x =
∫ x

0

dt
1 + t2 ,

expanding the integrand in a Maclaurin series, and integrating the
resulting series term by term.

b. From this result, derive Gregory’s series for π by inserting an ap-
propriate value for x in the series expansion for tan−1 x.

16. In the event that a series converges uniformly, one can consider the
derivative of the series to arrive at the summation of other infinite series.

a. Differentiate the series representation for f (x) = 1
1−x to sum the

series ∑∞
n=1 nxn, |x| < 1.

b. Use the result from part a to sum the series ∑∞
n=1

n
5n .

c. Sum the series ∑∞
n=2 n(n− 1)xn, |x| < 1.

d. Use the result from part c to sum the series ∑∞
n=2

n2 − n
5n .

e. Use the results from this problem to sum the series ∑∞
n=4

n2

5n .

17. Evaluate the integral
∫ π/6

0 sin2 x dx by doing the following:

a. Compute the integral exactly.

b. Integrate the first three terms of the Maclaurin series expansion of
the integrand and compare with the exact result.

18. Determine the next term in the time dilation example, A.38. That is,
find the v4

c2 term and determine a better approximation to the time difference
of 1 ns.

19. Evaluate the following expressions at the given point. Use your calcu-
lator or your computer (such as Maple). Then use series expansions to find
an approximation to the value of the expression to as many places as you
trust.

a.
1√

1 + x3
− cos x2 at x = 0.015.

b. ln
√

1 + x
1− x

− tan x at x = 0.0015.

c. f (x) =
1√

1 + 2x2
− 1 + x2 at x = 5.00× 10−3.

d. f (R, h) = R−
√

R2 + h2 for R = 1.374× 103 km and h = 1.00 m.

e. f (x) = 1− 1√
1− x

for x = 2.5× 10−13.
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