
Chapter 3

Numerical Solutions

“The laws of mathematics are not merely human inventions or creations. They
simply ’are;’ they exist quite independently of the human intellect.” - M. C. Escher
(1898-1972)

So far we have seen some of the standard methods for solving first
and second order differential equations. However, we have had to restrict
ourselves to special cases in order to get nice analytical solutions to initial
value problems. While these are not the only equations for which we can get
exact results, there are many cases in which exact solutions are not possible.
In such cases we have to rely on approximation techniques, including the
numerical solution of the equation at hand.

The use of numerical methods to obtain approximate solutions of differ-
ential equations and systems of differential equations has been known for
some time. However, with the advent of powerful computers and desktop
computers, we can now solve many of these problems with relative ease.
The simple ideas used to solve first order differential equations can be ex-
tended to the solutions of more complicated systems of partial differential
equations, such as the large scale problems of modeling ocean dynamics,
weather systems and even cosmological problems stemming from general
relativity.

3.1 Euler’s Method

In this section we will look at the simplest method for solving
first order equations, Euler’s Method. While it is not the most efficient
method, it does provide us with a picture of how one proceeds and can be
improved by introducing better techniques, which are typically covered in
a numerical analysis text.

Let’s consider the class of first order initial value problems of the form

dy
dx

= f (x, y), y(x0) = y0. (3.1)

We are interested in finding the solution y(x) of this equation which passes
through the initial point (x0, y0) in the xy-plane for values of x in the interval
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[a, b], where a = x0. We will seek approximations of the solution at N
points, labeled xn for n = 1, . . . , N. For equally spaced points we have
∆x = x1 − x0 = x2 − x1, etc. We can write these as

xn = x0 + n∆x.

In Figure 3.1 we show three such points on the x-axis.

Figure 3.1: The basics of Euler’s Method
are shown. An interval of the x axis is
broken into N subintervals. The approx-
imations to the solutions are found us-
ing the slope of the tangent to the solu-
tion, given by f (x, y). Knowing previous
approximations at (xn−1, yn−1), one can
determine the next approximation, yn.
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The first step of Euler’s Method is to use the initial condition. We repre-
sent this as a point on the solution curve, (x0, y(x0)) = (x0, y0), as shown in
Figure 3.1. The next step is to develop a method for obtaining approxima-
tions to the solution for the other xn’s.

We first note that the differential equation gives the slope of the tangent
line at (x, y(x)) of the solution curve since the slope is the derivative, y′(x)′

From the differential equation the slope is f (x, y(x)). Referring to Figure
3.1, we see the tangent line drawn at (x0, y0). We look now at x = x1. The
vertical line x = x1 intersects both the solution curve and the tangent line
passing through (x0, y0). This is shown by a heavy dashed line.

While we do not know the solution at x = x1, we can determine the
tangent line and find the intersection point that it makes with the vertical.
As seen in the figure, this intersection point is in theory close to the point
on the solution curve. So, we will designate y1 as the approximation of the
solution y(x1). We just need to determine y1.

The idea is simple. We approximate the derivative in the differential
equation by its difference quotient:

dy
dx
≈ y1 − y0

x1 − x0
=

y1 − y0

∆x
. (3.2)

Since the slope of the tangent to the curve at (x0, y0) is y′(x0) = f (x0, y0),
we can write

y1 − y0

∆x
≈ f (x0, y0). (3.3)
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Solving this equation for y1, we obtain

y1 = y0 + ∆x f (x0, y0). (3.4)

This gives y1 in terms of quantities that we know.
We now proceed to approximate y(x2). Referring to Figure 3.1, we see

that this can be done by using the slope of the solution curve at (x1, y1).
The corresponding tangent line is shown passing though (x1, y1) and we
can then get the value of y2 from the intersection of the tangent line with a
vertical line, x = x2. Following the previous arguments, we find that

y2 = y1 + ∆x f (x1, y1). (3.5)

Continuing this procedure for all xn, n = 1, . . . N, we arrive at the fol-
lowing scheme for determining a numerical solution to the initial value
problem:

y0 = y(x0),

yn = yn−1 + ∆x f (xn−1, yn−1), n = 1, . . . , N. (3.6)

This is referred to as Euler’s Method.

Example 3.1. Use Euler’s Method to solve the initial value problem
dy
dx = x + y, y(0) = 1 and obtain an approximation for y(1).

First, we will do this by hand. We break up the interval [0, 1], since
we want the solution at x = 1 and the initial value is at x = 0. Let
∆x = 0.50. Then, x0 = 0, x1 = 0.5 and x2 = 1.0. Note that there are
N = b−a

∆x = 2 subintervals and thus three points.
We next carry out Euler’s Method systematically by setting up a

table for the needed values. Such a table is shown in Table 3.1. Note
how the table is set up. There is a column for each xn and yn. The first
row is the initial condition. We also made use of the function f (x, y) in
computing the yn’s from (3.6). This sometimes makes the computation
easier. As a result, we find that the desired approximation is given as
y2 = 2.5.

n xn yn = yn−1 + ∆x f (xn−1, yn−1) = 0.5xn−1 + 1.5yn−1

0 0 1

1 0.5 0.5(0) + 1.5(1.0) = 1.5
2 1.0 0.5(0.5) + 1.5(1.5) = 2.5

Table 3.1: Application of Euler’s Method
for y′ = x + y, y(0) = 1 and ∆x = 0.5.

Is this a good result? Well, we could make the spatial increments
smaller. Let’s repeat the procedure for ∆x = 0.2, or N = 5. The results
are in Table 3.2.

Now we see that the approximation is y1 = 2.97664. So, it looks
like the value is near 3, but we cannot say much more. Decreasing ∆x
more shows that we are beginning to converge to a solution. We see
this in Table 3.3.

Of course, these values were not done by hand. The last computation
would have taken 1000 lines in the table, or at least 40 pages! One could
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Table 3.2: Application of Euler’s Method
for y′ = x + y, y(0) = 1 and ∆x = 0.2.

n xn yn = 0.2xn−1 + 1.2yn−1

0 0 1

1 0.2 0.2(0) + 1.2(1.0) = 1.2
2 0.4 0.2(0.2) + 1.2(1.2) = 1.48
3 0.6 0.2(0.4) + 1.2(1.48) = 1.856
4 0.8 0.2(0.6) + 1.2(1.856) = 2.3472
5 1.0 0.2(0.8) + 1.2(2.3472) = 2.97664

Table 3.3: Results of Euler’s Method for
y′ = x + y, y(0) = 1 and varying ∆x

∆x yN ≈ y(1)
0.5 2.5
0.2 2.97664

0.1 3.187484920

0.01 3.409627659

0.001 3.433847864

0.0001 3.436291854

use a computer to do this. A simple code in Maple would look like the
following:

> restart:

> f:=(x,y)->y+x;

> a:=0: b:=1: N:=100: h:=(b-a)/N;

> x[0]:=0: y[0]:=1:

for i from 1 to N do

y[i]:=y[i-1]+h*f(x[i-1],y[i-1]):

x[i]:=x[0]+h*(i):

od:

evalf(y[N]);

In this case we could simply use the exact solution. The exact solution is
easily found as

y(x) = 2ex − x− 1.

(The reader can verify this.) So, the value we are seeking is

y(1) = 2e− 2 = 3.4365636 . . . .

Thus, even the last numerical solution was off by about 0.00027.

Figure 3.2: A comparison of the results
Euler’s Method to the exact solution for
y′ = x + y, y(0) = 1 and N = 10.

Adding a few extra lines for plotting, we can visually see how well the
approximations compare to the exact solution. The Maple code for doing
such a plot is given below.

> with(plots):

> Data:=[seq([x[i],y[i]],i=0..N)]:

> P1:=pointplot(Data,symbol=DIAMOND):

> Sol:=t->-t-1+2*exp(t);

> P2:=plot(Sol(t),t=a..b,Sol=0..Sol(b)):

> display({P1,P2});
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We show in Figures 3.2-3.3 the results for N = 10 and N = 100. In Figure
3.2 we can see how quickly the numerical solution diverges from the exact
solution. In Figure 3.3 we can see that visually the solutions agree, but we
note that from Table 3.3 that for ∆x = 0.01, the solution is still off in the
second decimal place with a relative error of about 0.8%.

Figure 3.3: A comparison of the results
Euler’s Method to the exact solution for
y′ = x + y, y(0) = 1 and N = 100.

Why would we use a numerical method when we have the exact solution?
Exact solutions can serve as test cases for our methods. We can make sure
our code works before applying them to problems whose solution is not
known.

There are many other methods for solving first order equations. One
commonly used method is the fourth order Runge-Kutta method. This
method has smaller errors at each step as compared to Euler’s Method.
It is well suited for programming and comes built-in in many packages like
Maple and MATLAB. Typically, it is set up to handle systems of first order
equations.

In fact, it is well known that nth order equations can be written as a sys-
tem of n first order equations. Consider the simple second order equation

y′′ = f (x, y).

This is a larger class of equations than the second order constant coefficient
equation. We can turn this into a system of two first order differential equa-
tions by letting u = y and v = y′ = u′. Then, v′ = y′′ = f (x, u). So, we have
the first order system

u′ = v,

v′ = f (x, u). (3.7)

We will not go further into higher order methods until later in the chap-
ter. We will discuss in depth higher order Taylor methods in Section 3.3 and
Runge-Kutta Methods in Section 3.4. This will be followed by applications
of numerical solutions of differential equations leading to interesting be-
haviors in Section 3.5. However, we will first discuss the numerical solution
using built-in routines.

3.2 Implementation of Numerical Packages

3.2.1 First Order ODEs in MATLAB

One can use MATLAB to obtain solutions and plots of solutions
of differential equations. This can be done either symbolically, using dsolve,
or numerically, using numerical solvers like ode45. In this section we will
provide examples of using these to solve first order differential equations.
We will end with the code for drawing direction fields, which are useful for
looking at the general behavior of solutions of first order equations without
explicitly finding the solutions.
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Symbolic Solutions

The function dsolve obtains the symbolic solution and ezplot is
used to quickly plot the symbolic solution. As an example, we apply dsolve
to solve the

x′ = 2 sin t− 4x, x(0) = 0 (3.8)

At the MATLAB prompt, type the following:

sol = dsolve(’Dx=2*sin(t)-4*x’,’x(0)=0’,’t’);

ezplot(sol,[0 10])

xlabel(’t’),ylabel(’x’), grid

The solution is given as

sol =

(2*exp(-4*t))/17 - (2*17^(1/2)*cos(t + atan(4)))/17

Figure 3.4 shows the solution plot.

Figure 3.4: The solution of Equation (3.8)
with x(0) = 0 found using MATLAB’s
dsolve command.
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ODE45 and Other Solvers.

There are several ODE solvers in MATLAB, implementing Runge-
Kutta and other numerical schemes. Examples of its use are in the differen-
tial equations textbook. For example, one can implement ode45 to solve the
initial value problem

dy
dt

= − yt√
2− y2

, y(0) = 1,

using the following code:

[t y]=ode45(’func’,[0 5],1);

plot(t,y)

xlabel(’t’),ylabel(’y’)

title(’y(t) vs t’)



numerical solutions 81

One can define the function func in a file func.m such as

function f=func(t,y)

f=-t*y/sqrt(2-y.^2);

Running the above code produces Figure 3.5.
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y(t) vs t Figure 3.5: A plot of the solution of

dy
dt = − yt√

2−y2
, y(0) = 1, found using

MATLAB’s ode45 command.

One can also use ode45 to solve higher order differential equations. Second
order differential equations are discussed in Section 3.2.2. See MATLAB
help for other examples and other ODE solvers.

Direction Fields

One can produce direction fields in MATLAB. For the differential
equation

dy
dx

= f (x, y),

we note that f (x, y) is the slope of the solution curve passing through the
point in the xy=plane. Thus, the direction field is a collection of tangent
vectors at points (x, y) indication the slope, f (x, y), at that point.

A sample code for drawing direction fields in MATLAB is given by

[x,y]=meshgrid(0:.1:2,0:.1:1.5);

dy=1-y;

dx=ones(size(dy));

quiver(x,y,dx,dy)

axis([0,2,0,1.5])

xlabel(’x’)

ylabel(’y’)

The mesh command sets up the xy-grid. In this case x is in [0, 2] and y is
in [0, 1.5]. In each case the grid spacing is 0.1.

We let dy = 1-y and dx =1. Thus,

dy
dx

=
1− y

1
= 1− y.
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The quiver command produces a vector (dx,dy) at (x,y). The slope of
each vector isdy/dx. The other commands label the axes and provides a
window with xmin=0, xmax=2, ymin=0, ymax=1.5. The result of using the
above code is shown in Figure 3.6.

Figure 3.6: A direction field produced
using MATLAB’s quiver function for
y′ = 1− y.
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One can add solution, or integral, curves to the direction field for differ-
ent initial conditions to further aid in seeing the connection between direc-
tion fields and integral curves. One needs to add to the direction field code
the following lines:

hold on

[t,y] = ode45(@(t,y) 1-y, [0 2], .5);

plot(t,y,’k’,’LineWidth’,2)

[t,y] = ode45(@(t,y) 1-y, [0 2], 1.5);

plot(t,y,’k’,’LineWidth’,2)

hold off

Here the function f (t, y) = 1− y is entered this time using MATLAB’s
anonymous function, @(t,y) 1-y. Before plotting, the hold command is in-
voked to allow plotting several plots on the same figure. The result is shown
in Figure 3.7

Figure 3.7: A direction field produced
using MATLAB’s quiver function for
y′ = 1− y with solution curves added.
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3.2.2 Second Order ODEs in MATLAB

We can also use ode45 to solve second and higher order differential
equations. The key is to rewrite the single differential equation as a system
of first order equations. Consider the simple harmonic oscillator equation,
ẍ + ω2x = 0. Defining y1 = x and y2 = ẋ, and noting that

ẍ + ω2x = ẏ2 + ω2y1,

we have

ẏ1 = y2,

ẏ2 = −ω2y1.

Furthermore, we can view this system in the form ẏ = y. In particular,
we have

d
dt

[
y1

y2

]
=

[
y1

−ω2y2

]
Now, we can use ode45. We modify the code slightly from Chapter 1.

[t y]=ode45(’func’,[0 5],[1 0]);

Here [0 5] gives the time interval and [1 0] gives the initial conditions

y1(0) = x(0) = 1, y2(0) = ẋ(0) = 1.

The function func is a set of commands saved to the file func.m for com-
puting the righthand side of the system of differential equations. For the
simple harmonic oscillator, we enter the function as

function dy=func(t,y)

omega=1.0;

dy(1,1) = y(2);

dy(2,1) = -omega^2*y(1);

There are a variety of ways to introduce the parameter ω. Here we simply
defined it within the function. Furthermore, the output dy should be a
column vector.

After running the solver, we then need to display the solution. The output
should be a column vector with the position as the first element and the
velocity as the second element. So, in order to plot the solution as a function
of time, we can plot the first column of the solution, y(:,1), vs t:

plot(t,y(:,1))

xlabel(’t’),ylabel(’y’)

title(’y(t) vs t’)
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Figure 3.8: Solution plot for the simple
harmonic oscillator.
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The resulting solution is shown in Figure 3.8.
We can also do a phase plot of velocity vs position. In this case, one can

plot the second column, y(:,2), vs the first column, y(:,1):

plot(y(:,1),y(:,2))

xlabel(’y’),ylabel(’v’)

title(’v(t) vs y(t)’)

The resulting solution is shown in Figure 3.9.

Figure 3.9: Phase plot for the simple har-
monic oscillator.
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Finally, we can plot a direction field using a quiver plot and add solution
curves using ode45. The direction field is given for ω = 1 by dx=y and
dy=-x.

clear

[x,y]=meshgrid(-2:.2:2,-2:.2:2);

dx=y;

dy=-x;

quiver(x,y,dx,dy)

axis([-2,2,-2,2])

xlabel(’x’)

ylabel(’y’)
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hold on

[t y]=ode45(’func’,[0 6.28],[1 0]);

plot(y(:,1),y(:,2))

hold off

The resulting plot is given in Figure 3.10.
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Figure 3.10: Phase plot for the simple
harmonic oscillator.

3.2.3 GNU Octave

Much of MATLAB’s functionality can be used in GNU Octave.
However, a simple solution of a differential equation is not the same. Instead
GNU Octave uses the Fortan lsode routine. The main code below gives what
is needed to solve the system

d
dt

[
x
y

]
=

[
x
−cy

]
.

global c

c=1;

y=lsode("oscf",[1,0],(tau=linspace(0,5,100))’);

figure(1);

plot(tau,y(:,1));

xlabel(’t’)

ylabel(’x(t)’)

figure(2);

plot(y(:,1),y(:,2));

xlabel(’x(t)’)

ylabel(’y(t)’)
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The function called by the lsode routine, oscf, looks similar to MATLAB
code. However, one needs to take care in the syntax and ordering of the
input variables. The output from this code is shown in Figure 3.11.

function ydot=oscf(y,tau);

global c

ydot(1)=y(2);

ydot(2)=-c*y(1);

Figure 3.11: Numerical solution of the
simple harmonic oscillator using GNU
Octave’s lsode routine. In these plots are
the position and velocity vs times plots
and a phase plot.

3.2.4 Python Implementation

One can also solve ordinary differential equations using Python.
One can use the odeint routine from scipy.inegrate. This uses a variable
step routine based on the Fortan lsoda routine. The below code solves a
simple harmonic oscillator equation and produces the plot in Figure 3.12.

import numpy as np

import matplotlib.pyplot as plt

from scipy.integrate import odeint
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# Solve dv/dt = [y, - cx] for v = [x,y]

def odefn(v,t, c):

x, y = v

dvdt = [y, -c*x ]

return dvdt

v0 = [1.0, 0.0]

t = np.arange(0.0, 10.0, 0.1)

c = 5;

sol = odeint(odefn, v0, t,args=(c,))

plt.plot(t, sol[:,0],’b’)

plt.xlabel(’Time (sec)’)

plt.ylabel(’Position’)

plt.title(’Position vs Time’)

plt.show()

Figure 3.12: Numerical solution of
the simple harmonic oscillator using
Python’s odeint.

If one wants to use something similar to the Runga-Kutta scheme, then
the ode routine can be used with a specification of ode solver. The below
code solves a simple harmonic oscillator equation and produces the plot in
Figure 3.13.

from scipy import *
from scipy.integrate import ode

from pylab import *

# Solve dv/dt = [y, - cx] for v = [x,y]

def odefn(t,v, c):

x, y = v
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dvdt = [y, -c*x ]

return dvdt

v0 = [1.0, 0.0]

t0=0;

tf=10;

dt=0.1;

c = 5;

Y=[];

T=[];

r = ode(odefn).set_integrator(’dopri5’)

r.set_f_params(c).set_initial_value(v0,t0)

while r.successful() and r.t+dt < tf:

r.integrate(r.t+dt)

Y.append(r.y)

T.append(r.t)

Y = array(Y)

subplot(2,1,1)

plot(T,Y)

plt.xlabel(’Time (sec)’)

plt.ylabel(’Position’)

subplot(2,1,2)

plot(Y[:,0],Y[:,1])

xlabel(’Position’)

ylabel(’Velocity’)

show()

3.2.5 Maple Implementation

Maple also has built-in routines for solving differential equa-
tions. First, we consider the symbolic solutions of a differential equation.
An example of a symbolic solution of a first order differential equation,
y′ = 1− y with y(0)− 1.5, is given by

> restart: with(plots):

> EQ:=diff(y(x),x)=1-y(x):

> dsolve({EQ,y(0)=1.5});
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Figure 3.13: Numerical solution of
the simple harmonic oscillator using
Python’s ode routine. In these plots are
the position and velocity vs times plots
and a phase plot.

The resulting solution from Maple is

y(x) = 1 +
1
2

e−x.

One can also plot direction fields for first order equations. An example is
given below with the plot shown in Figure 3.14.

> restart: with(DEtools):

> ode := diff(y(t),t) = 1-y(t):

> DEplot(ode,y(t),t=0..2,y=0..1.5,color=black);
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Figure 3.14: Maple direction field plot
for first order differential equation.

In order to add solution curves, we specify initial conditions using the
following lines as seen in Figure 3.15.

> ics:=[y(0)=0.5,y(0)=1.5]:

> DEplot(ode,yt),t=0..2,y=0..1.5,ics,arrows=medium,linecolor=black,color=black);

These routines can be used to obtain solutions of a system of differential
equations.
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Figure 3.15: Maple direction field plot
for first order differential equation with
solution curves added.
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> EQ:=diff(x(t),t)=y(t),diff(y(t),t)=-x(t):

> ICs:=x(0)=1,y(0)=0;

> dsolve([EQ, ICs]);

> plot(rhs(%[1]),t=0..5);

A phaseportrait with a direction field, as seen in Figure 3.16, is found
using the lines

> with(DEtools):

> DEplot( [EQ], [x(t),y(t)], t=0..5, x=-2..2, y=-2..2, [[x(0)=1,y(0)=0]],

arrows=medium,linecolor=black,color=black,scaling=constrained);

Figure 3.16: Maple system plot.
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3.3 Higher Order Taylor Methods*

Euler’s Method for solving differential equations is easy to un-
derstand but is not efficient in the sense that it is what is called a first order
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method. The error at each step, the local truncation error, is of order ∆x,
for x the independent variable. The accumulation of the local truncation er-
rors results in what is called the global error. In order to generalize Euler’s
Method, we need to rederive it. Also, since these methods are typically used
for initial value problems, we will cast the problem to be solved as

dy
dt

= f (t, y), y(a) = y0, t ∈ [a, b]. (3.9)

The first step towards obtaining a numerical approximation to the solu-
tion of this problem is to divide the t-interval, [a, b], into N subintervals,

ti = a + ih, i = 0, 1, . . . , N, t0 = a, tN = b,

where
h =

b− a
N

.

We then seek the numerical solutions

ỹi ≈ y(ti), i = 1, 2, . . . , N,

with ỹ0 = y(t0) = y0. Figure 3.17 graphically shows how these quantities
are related.

y

t
t0 tNti

(ti , ỹi)

(ti , y(ti))

(a, y0)

Figure 3.17: The interval [a, b] is divided
into N equally spaced subintervals. The
exact solution y(ti) is shown with the
numerical solution, ỹi with ti = a + ih,
i = 0, 1, . . . , N.

Euler’s Method can be derived using the Taylor series expansion of of the
solution y(ti + h) about t = ti for i = 1, 2, . . . , N. This is given by

y(ti+1) = y(ti + h)

= y(ti) + y′(ti)h +
h2

2
y′′(ξi), ξi ∈ (ti, ti+1). (3.10)

Here the term h2

2 y′′(ξi) captures all of the higher order terms and represents
the error made using a linear approximation to y(ti + h).

Dropping the remainder term, noting that y′(t) = f (t, y), and defining
the resulting numerical approximations by ỹi ≈ y(ti), we have

ỹi+1 = ỹi + h f (ti, ỹi), i = 0, 1, . . . , N − 1,

ỹ0 = y(a) = y0. (3.11)

This is Euler’s Method.
Euler’s Method is not used in practice since the error is of order h. How-

ever, it is simple enough for understanding the idea of solving differential
equations numerically. Also, it is easy to study the numerical error, which
we will show next.

The error that results for a single step of the method is called the local
truncation error, which is defined by

τi+1(h) =
y(ti+1)− ỹi

h
− f (ti, yi).

A simple computation gives

τi+1(h) =
h
2

y′′(ξi), ξi ∈ (ti, ti+1).
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Since the local truncation error is of order h, this scheme is said to be of
order one. More generally, for a numerical scheme of the form

ỹi+1 = ỹi + hF(ti, ỹi), i = 0, 1, . . . , N − 1,

ỹ0 = y(a) = y0, (3.12)

the local truncation error is defined byThe local truncation error.

τi+1(h) =
y(ti+1)− ỹi

h
− F(ti, yi).

The accumulation of these errors leads to the global error. In fact, one
can show that if f is continuous, satisfies the Lipschitz condition,

| f (t, y2)− f (t, y1)| ≤ L|y2 − y1|

for a particular domain D ⊂ R2, and

|y′′(t)| ≤ M, t ∈ [a, b],

then

|y(ti)− ỹ| ≤
hM
2L

(
eL(ti−a) − 1

)
, i = 0, 1, . . . , N.

Furthermore, if one introduces round-off errors, bounded by δ, in both the
initial condition and at each step, the global error is modified as

|y(ti)− ỹ| ≤
1
L

(
hM

2
+

δ

h

)(
eL(ti−a) − 1

)
+ |δ0|eL(ti−a), i = 0, 1, . . . , N.

Then for small enough steps h, there is a point when the round-off error
will dominate the error. [See Burden and Faires, Numerical Analysis for the
details.]

Can we improve upon Euler’s Method? The natural next step towards
finding a better scheme would be to keep more terms in the Taylor series
expansion. This leads to Taylor series methods of order n.

Taylor series methods of order n take the form

ỹi+1 = ỹi + hT(n)(ti, ỹi), i = 0, 1, . . . , N − 1,

ỹ0 = y0, (3.13)

where we have defined

T(n)(t, y) = y′(t) +
h
2

y′′(t) + · · ·+ h(n−1)

n!
y(n)(t).

However, since y′(t) = f (t, y), we can write

T(n)(t, y) = f (t, y) +
h
2

f ′(t, y) + · · ·+ h(n−1)

n!
f (n−1)(t, y).

We note that for n = 1, we retrieve Euler’s Method as a special case. We
demonstrate a third order Taylor’s Method in the next example.
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Example 3.2. Apply the third order Taylor’s Method to

dy
dt

= t + y, y(0) = 1

and obtain an approximation for y(1) for h = 0.1.
The third order Taylor’s Method takes the form

ỹi+1 = ỹi + hT(3)(ti, ỹi), i = 0, 1, . . . , N − 1,

ỹ0 = y0, (3.14)

where

T(3)(t, y) = f (t, y) +
h
2

f ′(t, y) +
h2

3!
f ′′(t, y)

and f (t, y) = t + y(t).
In order to set up the scheme, we need the first and second deriva-

tive of f (t, y) :

f ′(t, y) =
d
dt
(t + y)

= 1 + y′

= 1 + t + y (3.15)

f ′′(t, y) =
d
dt
(1 + t + y)

= 1 + y′

= 1 + t + y (3.16)

Inserting these expressions into the scheme, we have

ỹi+1 = ỹi + h
[
(ti + yi) +

h
2
(1 + ti + yi) +

h2

3!
(1 + ti + yi)

]
,

= ỹi + h(ti + yi) + h2(
1
2
+

h
6
)(1 + ti + yi),

ỹ0 = y0, (3.17)

for i = 0, 1, . . . , N − 1.
In Figure 3.2 we show the results comparing Euler’s Method, the

3rd Order Taylor’s Method, and the exact solution for N = 10. In
Table 3.4 we provide are the numerical values. The relative error in
Euler’s method is about 7% and that of the 3rd Order Taylor’s Method
is about 0.006%. Thus, the 3rd Order Taylor’s Method is significantly
better than Euler’s Method.

In the last section we provided some Maple code for performing Euler’s
method. A similar code in MATLAB looks like the following:

a=0;

b=1;

N=10;

h=(b-a)/N;
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Table 3.4: Numerical values for Euler’s
Method, 3rd Order Taylor’s Method, and
exact solution for solving Example 3.2
with N = 10..

Euler Taylor Exact
1.0000 1.0000 1.0000

1.1000 1.1103 1.1103

1.2200 1.2428 1.2428

1.3620 1.3997 1.3997

1.5282 1.5836 1.5836

1.7210 1.7974 1.7974

1.9431 2.0442 2.0442

2.1974 2.3274 2.3275

2.4872 2.6509 2.6511

2.8159 3.0190 3.0192

3.1875 3.4364 3.4366

% Slope function

f = inline(’t+y’,’t’,’y’);

sol = inline(’2*exp(t)-t-1’,’t’);

% Initial Condition

t(1)=0;

y(1)=1;

% Euler’s Method

for i=2:N+1

y(i)=y(i-1)+h*f(t(i-1),y(i-1));

t(i)=t(i-1)+h;

end

y

t
0 .2 .4 .5 .8 1

1

2

3

4

Figure 3.18: Numerical results for Eu-
ler’s Method (filled circle) and 3rd Order
Taylor’s Method (open circle) for solving
Example 3.2 as compared to exact solu-
tion (solid line).

A simple modification can be made for the 3rd Order Taylor’s Method by
replacing the Euler’s method part of the preceding code by

% Taylor’s Method, Order 3

y(1)=1;

h3 = h^2*(1/2+h/6);

for i=2:N+1

y(i)=y(i-1)+h*f(t(i-1),y(i-1))+h3*(1+t(i-1)+y(i-1));

t(i)=t(i-1)+h;

end

While the accuracy in the last example seemed sufficient, we have to re-
member that we only stopped at one unit of time. How can we be confident
that the scheme would work as well if we carried out the computation for
much longer times. For example, if the time unit were only a second, then
one would need 86,400 times longer to predict a day forward. Of course,
the scale matters. But, often we need to carry out numerical schemes for
long times and we hope that the scheme not only converges to a solution,
but that it coverges to the solution to the given problem. Also, the previous
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example was relatively easy to program because we could provide a rela-
tively simple form for T(3)(t, y) with a quick computation of the derivatives
of f (t, y). This is not always the case and higher order Taylor methods in
this form are not typically used. Instead, one can approximate T(n)(t, y) by
evaluating the known function f (t, y) at selected values of t and y, leading
to Runge-Kutta methods.

3.4 Runge-Kutta Methods*

As we had seen in the last section, we can use higher order Taylor
methods to derive numerical schemes for solving

dy
dt

= f (t, y), y(a) = y0, t ∈ [a, b], (3.18)

using a scheme of the form

ỹi+1 = ỹi + hT(n)(ti, ỹi), i = 0, 1, . . . , N − 1,

ỹ0 = y0, (3.19)

where we have defined

T(n)(t, y) = y′(t) +
h
2

y′′(t) + · · ·+ h(n−1)

n!
y(n)(t).

In this section we will find approximations of T(n)(t, y) which avoid the
need for computing the derivatives.

For example, we could approximate

T(2)(t, y) = f (t, y) +
h
2

d f
dt

(t, y)

by
T(2)(t, y) ≈ a f (t + α, y + β)

for selected values of a, α, and β. This requires use of a generalization of
Taylor’s series to functions of two variables. In particular, for small α and β

we have

a f (t + α, y + β) = a
[

f (t, y) +
∂ f
∂t

(t, y)α +
∂ f
∂y

(t, y)β

+
1
2

(
∂2 f
∂t2 (t, y)α2 + 2

∂2 f
∂t∂y

(t, y)αβ +
∂2 f
∂y2 (t, y)β2

)]
+ higher order terms. (3.20)

Furthermore, we need d f
dt (t, y). Since y = y(t), this can be found using a

generalization of the Chain Rule from Calculus III:

d f
dt

(t, y) =
∂ f
∂t

+
∂ f
∂y

dy
dt

.

Thus,

T(2)(t, y) = f (t, y) +
h
2

[
∂ f
∂t

+
∂ f
∂y

dy
dt

]
.



96 differential equations

Comparing this expression to the linear (Taylor series) approximation of
a f (t + α, y + β), we have

T(2) ≈ a f (t + α, y + β)

f +
h
2

∂ f
∂t

+
h
2

f
∂ f
∂y

≈ a f + aα
∂ f
∂t

+ β
∂ f
∂y

. (3.21)

We see that we can choose

a = 1, α =
h
2

, β =
h
2

f .

This leads to the numerical scheme

ỹi+1 = ỹi + h f
(

ti +
h
2

, ỹi +
h
2

f (ti, ỹi)

)
, i = 0, 1, . . . , N − 1,

ỹ0 = y0, (3.22)

This Runge-Kutta scheme is called the Midpoint Method, or Second Order
Runge-Kutta Method, and it has order 2 if all second order derivatives of
f (t, y) are bounded.

The Midpoint or Second Order Runge-
Kutta Method.

Often, in implementing Runge-Kutta schemes, one computes the argu-
ments separately as shown in the following MATLAB code snippet. (This
code snippet could replace the Euler’s Method section in the code in the last
section.)

% Midpoint Method

y(1)=1;

for i=2:N+1

k1=h/2*f(t(i-1),y(i-1));

k2=h*f(t(i-1)+h/2,y(i-1)+k1);

y(i)=y(i-1)+k2;

t(i)=t(i-1)+h;

end

Example 3.3. Compare the Midpoint Method with the 2nd Order Tay-
lor’s Method for the problem

y′ = t2 + y, y(0) = 1, t ∈ [0, 1]. (3.23)

The solution to this problem is y(t) = 3et − 2− 2t− t2. In order to
implement the 2nd Order Taylor’s Method, we need

T(2) = f (t, y) +
h
2

f ′(t, y)

= t2 + y +
h
2
(2t + t2 + y). (3.24)

The results of the implementation are shown in Table 3.3.

There are other way to approximate higher order Taylor polynomials. For
example, we can approximate T(3)(t, y) using four parameters by

T(3)(t, y) ≈ a f (t, y) + b f (t + α, y + β f (t, y).
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Exact Taylor Error Midpoint Error
1.0000 1.0000 0.0000 1.0000 0.0000

1.1055 1.1050 0.0005 1.1053 0.0003

1.2242 1.2231 0.0011 1.2236 0.0006

1.3596 1.3577 0.0019 1.3585 0.0010

1.5155 1.5127 0.0028 1.5139 0.0016

1.6962 1.6923 0.0038 1.6939 0.0023

1.9064 1.9013 0.0051 1.9032 0.0031

2.1513 2.1447 0.0065 2.1471 0.0041

2.4366 2.4284 0.0083 2.4313 0.0053

2.7688 2.7585 0.0103 2.7620 0.0068

3.1548 3.1422 0.0126 3.1463 0.0085

Table 3.5: Numerical values for 2nd Or-
der Taylor’s Method, Midpoint Method,
exact solution, and errors for solving Ex-
ample 3.3 with N = 10..

Expanding this approximation and using

T(3)(t, y) ≈ f (t, y) +
h
2

d f
dt

(t, y) +
h2

6
d f
dt

(t, y),

we find that we cannot get rid of O(h2) terms. Thus, the best we can do is
derive second order schemes. In fact, following a procedure similar to the
derivation of the Midpoint Method, we find that

a + b = 1, , αb =
h
2

, β = α.

There are three equations and four unknowns. Therefore there are many
second order methods. Two classic methods are given by the modified Euler
method (a = b = 1

2 , α = β = h) and Huen’s method (a = 1
4 , b = 3

4 ,
α = β = 2

3 h). The Fourth Order Runge-Kutta.

The Fourth Order Runge-Kutta Method, which is most often used, is
given by the scheme

ỹ0 = y0,

k1 = h f (ti, ỹi),

k2 = h f (ti +
h
2

, ỹi +
1
2

k1),

k3 = h f (ti +
h
2

, ỹi +
1
2

k2),

k4 = h f (ti + h, ỹi + k3),

ỹi+1 = ỹi +
1
6
(k1 + 2k2 + 2k3 + k4), i = 0, 1, . . . , N − 1. (3.25)

Again, we can test this on Example 3.3 with N = 10. The MATLAB
implementation is given by

% Runge-Kutta 4th Order to solve dy/dt = f(t,y), y(a)=y0, on [a,b]

clear

a=0;

b=1;
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N=10;

h=(b-a)/N;

% Slope function

f = inline(’t^2+y’,’t’,’y’);

sol = inline(’-2-2*t-t^2+3*exp(t)’,’t’);

% Initial Condition

t(1)=0;

y(1)=1;

% RK4 Method

y1(1)=1;

for i=2:N+1

k1=h*f(t(i-1),y1(i-1));

k2=h*f(t(i-1)+h/2,y1(i-1)+k1/2);

k3=h*f(t(i-1)+h/2,y1(i-1)+k2/2);

k4=h*f(t(i-1)+h,y1(i-1)+k3);

y1(i)=y1(i-1)+(k1+2*k2+2*k3+k4)/6;

t(i)=t(i-1)+h;

end
MATLAB has built-in ODE solvers, as do
other software packages, like Maple and
Mathematica. You should also note that
there are currently open source pack-
ages, such as Python based NumPy and
Matplotlib, or Octave, of which some
packages are contained within the Sage
Project.

MATLAB has built-in ODE solvers, such as ode45 for a fourth order
Runge-Kutta method. Its implementation is given by

[t,y]=ode45(f,[0 1],1);

In this case f is given by an inline function like in the above RK4 code.
The time interval is enetered as [0, 1] and the 1 is the initial condition, y(0) =
1.

However, ode45 is not a straight forward RK4 implementation. It is a
hybrid method in which a combination of 4th and 5th order methods are
combined allowing for adaptive methods to handled subintervals of the in-
tegration region which need more care. In this case, it implements a fourth
order Runge-Kutta-Fehlberg method. Running this code for the above ex-
ample actually results in values for N = 41 and not N = 10. If we wanted
to have the routine output numerical solutions at specific times, then one
could use the following form

tspan=0:h:1;

[t,y]=ode45(f,tspan,1);

In Table 3.6 we show the solutions which results for Example 3.3 com-
paring the RK4 snippet above with ode45. As you can see RK4 is much
better than the previous implementation of the second order RK (Midpoint)
Method. However, the MATLAB routine is two orders of magnitude better
that RK4.
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Exact Taylor Error Midpoint Error
1.0000 1.0000 0.0000 1.0000 0.0000

1.1055 1.1055 4.5894e-08 1.1055 -2.5083e-10

1.2242 1.2242 1.2335e-07 1.2242 -6.0935e-10

1.3596 1.3596 2.3850e-07 1.3596 -1.0954e-09

1.5155 1.5155 3.9843e-07 1.5155 -1.7319e-09

1.6962 1.6962 6.1126e-07 1.6962 -2.5451e-09

1.9064 1.9064 8.8636e-07 1.9064 -3.5651e-09

2.1513 2.1513 1.2345e-06 2.1513 -4.8265e-09

2.4366 2.4366 1.6679e-06 2.4366 -6.3686e-09

2.7688 2.7688 2.2008e-06 2.7688 -8.2366e-09

3.1548 3.1548 2.8492e-06 3.1548 -1.0482e-08

Table 3.6: Numerical values for Fourth
Order Runge-Kutta Method, rk45, exact
solution, and errors for solving Example
3.3 with N = 10.

There are many ODE solvers in MATLAB. These are typically useful if
RK4 is having difficulty solving particular problems. For the most part, one
is fine using RK4, especially as a starting point. For example, there is ode23,
which is similar to ode45 but combining a second and third order scheme.
Applying the results to Example 3.3 we obtain the results in Table 3.6. We
compare these to the second order Runge-Kutta method. The code snippets
are shown below.

% Second Order RK Method

y1(1)=1;

for i=2:N+1

k1=h*f(t(i-1),y1(i-1));

k2=h*f(t(i-1)+h/2,y1(i-1)+k1/2);

y1(i)=y1(i-1)+k2;

t(i)=t(i-1)+h;

end

tspan=0:h:1;

[t,y]=ode23(f,tspan,1);

Exact Taylor Error Midpoint Error
1.0000 1.0000 0.0000 1.0000 0.0000

1.1055 1.1053 0.0003 1.1055 2.7409e-06

1.2242 1.2236 0.0006 1.2242 8.7114e-06

1.3596 1.3585 0.0010 1.3596 1.6792e-05

1.5155 1.5139 0.0016 1.5154 2.7361e-05

1.6962 1.6939 0.0023 1.6961 4.0853e-05

1.9064 1.9032 0.0031 1.9063 5.7764e-05

2.1513 2.1471 0.0041 2.1512 7.8665e-05

2.4366 2.4313 0.0053 2.4365 0.0001

2.7688 2.7620 0.0068 2.7687 0.0001

3.1548 3.1463 0.0085 3.1547 0.0002

Table 3.7: Numerical values for Second
Order Runge-Kutta Method, rk23, exact
solution, and errors for solving Example
3.3 with N = 10.
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We have seen several numerical schemes for solving initial value prob-
lems. There are other methods, or combinations of methods, which aim
to refine the numerical approximations efficiently as if the step size in the
current methods were taken to be much smaller. Some methods extrapolate
solutions to obtain information outside of the solution interval. Others use
one scheme to get a guess to the solution while refining, or correcting, this
to obtain better solutions as the iteration through time proceeds. Such meth-
ods are described in courses in numerical analysis and in the literature. At
this point we will apply these methods to several physics problems before
continuing with analytical solutions.

3.5 Numerical Applications

In this section we apply various numerical methods to several
physics problems after setting them up. We first describe how to work with
second order equations, such as the nonlinear pendulum problem. We will
see that there is a bit more to numerically solving differential equations than
to just running standard routines. As we explore these problems, we will
introduce other methods and provide some MATLAB code indicating how
one might set up the system.

Other problems covered in these applications are various free fall prob-
lems beginning with a falling body from a large distance from the Earth,
to flying soccer balls, and falling raindrops. We will also discuss the nu-
merical solution of the two body problem and the Friedmann equation as
nonterrestrial applications.

3.5.1 The Nonlinear Pendulum

Now we will investigate the use of numercial methods for solv-
ing the nonlinear pendulum problem.

Example 3.4. Nonlinear pendulum Solve

θ̈ = − g
L

sin θ, θ(0) = θ0, ω(0) = 0, t ∈ [0, 8],

using Euler’s Method. Use the parameter values of m = 0.005 kg,
L = 0.500 m, and g = 9.8 m/s2.

This is a second order differential equation. As describe later, we
can write this differential equation as a system of two first order dif-
ferential equations,

θ̇ = ω,

ω̇ = − g
L

sin θ. (3.26)

Defining the vector

Θ(t) =

(
θ(t)
ω(t)

)
,
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we can write the first order system as

dΘ
dt

= F(t, Θ), Θ(0) =

(
θ0

0

)
,

where

F(t, Θ) =

(
ω(t)

− g
L sin θ(t)

)
.

This allows us to use the the methods we have discussed on this first
order equation for Θ(t).

For example, Euler’s Method for this system becomes

Θi+1 = Θi+1 + hF(ti, Θi)

with Θ0 = Θ(0).
We can write this scheme in component form as(

θi+1

ωi+1

)
=

(
θi

ωi

)
+ h

(
ωi

− g
L sin θi

)
,

or

θi+1 = θi + hωi,

ωi+1 = ωi − h
g
L

sin θi, (3.27)

starting with θ0 = θ0 and ω0 = 0.
The MATLAB code that can be used to implement this scheme takes

the form

g=9.8;

L=0.5;

m=0.005;

a=0;

b=8;

N=500;

h=(b-a)/N;

% Initial Condition

t(1)=0;

theta(1)=pi/6;

omega(1)=0;

% Euler’s Method

for i=2:N+1

omega(i)=omega(i-1)-g/L*h*sin(theta(i-1));

theta(i)=theta(i-1)+h*omega(i-1);

t(i)=t(i-1)+h;

end
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Figure 3.19: Solution for the nonlin-
ear pendulum problem using Euler’s
Method on t ∈ [0, 8] with N = 500.
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In Figure 3.19 we plot the solution for a starting position of 30

o

with N = 500. Notice that the amplitude of oscillation is increasing,
contrary to our experience. So, we increase N and see if that helps. In
Figure 3.20 we show the results for N = 500, 1000, and 2000 points, or
h = 0.016, 0.008, and 0.004, respectively. We note that the amplitude is
not increasing as much.

The problem with the solution is that Euler’s Method is not an energy
conserving method. As conservation of energy is important in physics, we
would like to be able to seek problems which conserve energy. Such schemes
used to solve oscillatory problems in classical mechanics are called symplec-
tic integrators. A simple example is the Euler-Cromer, or semi-implicit Eu-
ler Method. We only need to make a small modification of Euler’s Method.
Namely, in the second equation of the method we use the updated value of
the dependent variable as computed in the first line.

Figure 3.20: Solution for the nonlin-
ear pendulum problem using Euler’s
Method on t ∈ [0, 8] with N =
500, 1000, 2000.
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N = 500
N = 1000
N = 2000

Let’s write the Euler scheme as

ωi+1 = ωi − h
g
L

sin θi,
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θi+1 = θi + hωi. (3.28)

Then, we replace ωi in the second line by ωi+1 to obtain the new scheme

ωi+1 = ωi − h
g
L

sin θi,

θi+1 = θi + hωi+1. (3.29)

The MATLAB code is easily changed as shown below.

g=9.8;

L=0.5;

m=0.005;

a=0;

b=8;

N=500;

h=(b-a)/N;

% Initial Condition

t(1)=0;

theta(1)=pi/6;

omega(1)=0;

% Euler-Cromer Method

for i=2:N+1

omega(i)=omega(i-1)-g/L*h*sin(theta(i-1));

theta(i)=theta(i-1)+h*omega(i);

t(i)=t(i-1)+h;

end

We then run the new scheme for N = 500 and compare this with what
we obtained before. The results are shown in Figure 3.21. We see that the
oscillation amplitude seems to be under control. However, the best test
would be to investigate if the energy is conserved.

Recall that the total mechanical energy for a pendulum consists of the
kinetic and gravitational potential energies,

E =
1
2

mv2 + mgh.

For the pendulum the tangential velocity is given by v = Lω and the height
of the pendulum mass from the lowest point of the swing is h = L(1− cos θ).
Therefore, in terms of the dynamical variables, we have

E =
1
2

mL2ω2 + mgL(1− cos θ).

We can compute the energy at each time step in the numerical simulation.
In MATLAB it is easy to do using

E = 1/2*m*L^2*omega.^2+m*g*L*(1-cos(theta));
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Figure 3.21: Solution for the nonlinear
pendulum problem comparing Euler’s
Method and the Euler-Cromer Method
on t ∈ [0, 8] with N = 500.
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after implementing the scheme. In other programming environments one
needs to loop through the times steps and compute the energy along the
way. In Figure 3.22 we shown the results for Euler’s Method for N =

500, 1000, 2000 and the Euler-Cromer Method for N = 500. It is clear that
the Euler-Cromer Method does a much better job at maintaining energy
conservation.

Figure 3.22: Total energy for the nonlin-
ear pendulum problem.
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3.5.2 Extreme Sky Diving*

On October 14, 2012 Felix Baumgartner jumped from a helium bal-
loon at an altitude of 39045 m (24.26 mi or 128100 ft). According preliminary
data from the Red Bull Stratos Mission1, as of November 6, 2012 Baumgart-1 The original estimated data was

found at the Red Bull Stratos site,
http://www.redbullstratos.com/. Some
of the data has since been updated. The
reader can redo the solution using the
updated data.

ner experienced free fall until he opened his parachute at 1585 m after 4

minutes and 20 seconds. Within the first minute he had broken the record
set by Joe Kittinger on August 16, 1960. Kittinger jumped from 102,800 feet
(31 km) and fell freely for 4 minutes and 36 seconds to an altitude of 18,000 ft
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(5,500 m). Both set records for their times. Kittinger reached 614 mph (Mach
0.9) and Baumgartner reached 833.9 mph (Mach 1.24). Another record that
was broken was that over 8 million watched the event on YouTube, breaking
current live stream viewing events.

This much attention also peaked interest in the physics of free fall. Free
fall at constant g through a height of h should take a time of

t =

√
2h
g

=

√
2(36, 529)

9.8
= 86 s.

Of course, g is not constant. In fact, at an altitude of 39 km, we have

g =
GM

R + h
=

6.67× 10−11 N m2kg2(5.97× 1024 kg)
6375 + 39 km

= 9.68 m/s2.

So, g is roughly constant.
Next, we need to consider the drag force as one free falls through the

atmosphere, FD = 1
2 CAρav2. One needs some values for the parameters in

this problem. Let’s take m = 90 kg, A = 1.0 m2, and ρ = 1.29 kg/m3,
C = 0.42. Then, a simple model would give

mv̇ = −mg +
1
2

CAρv2,

or
v̇ = −g + .0030v2.

This gives a terminal velocity of 57.2 m/s, or 128 mph. However, we again
have assumed that the drag coefficient and air density are constant. Since
the Reynolds number is high, we expect C is roughly constant. However,

The Reynolds number is used several
times in this chapter. It is defined as

Re =
2rv
ν

,

where ν is the kinematic viscosity. The
kinematic viscosity of air at 60

o F is
about 1.47× 10−5 m2/s.

the density of the atmosphere is a function of altitude and we need to take
this into account.

A simple model for ρ = ρ(h) can be found at the NASA site.2. Using
2 http://www.grc.nasa.gov/WWW/k-
12/rocket/atmos.html

their data, we have

ρ(h) =


101290(1.000− 0.2253× 10−4h)5.256

83007− 1.8696h
, h < 11000,

.3629e1.73−0.157×10−3h, h,< 25000
2488

(.6551 + 0.1380× 10−4h)11.388(40876 + .8614h)
, h > 25000.

(3.30)
In Figure 3.23 the atmospheric density is shown as a function of altitude.

In order to use the methods for solving first order equations, we write
the system of equations in the form

dh
dt

= v,

dv
dt

= − GM
(R + h)2 +

1
5

ρ(h)CAv2. (3.31)

This is now in the form of a system of first order differential equations.
Then, we define a function to be called and store in as gravf.m as shown

below.
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Figure 3.23: Atmospheric density as a
function of altitude.
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function dy=gravf(t,y);

G=6.67E-11;

M=5.97E24;

R=6375000;

m=90;

C=.42;

A=1;

dy(1,1)=y(2);

dy(2,1)=-G*M/(R+y(1)).^2+.5*density2(y(1))*C*A*y(2).^2/m;

Now we are ready to call the function in our favorite routine.

h0=1000;

tmax=20;

tmin=0;

[t,y]=ode45(’dgravf’,[tmin tmax],[h0;0]);% Const rho

plot(t,y(:,1),’k--’)

Here we are simulating free fall from an altitude of one kilometer. In
Figure 3.24 we compare different models of free fall with g taken as constant
or derived from Newton’s Law of Gravitation. We also consider constant
density or the density dependence on the altitude as given earlier. We chose
to keep the drag coefficient constant at C = 0.42.

We can see from these plots that the slight variation in the acceleration
due to gravity does not have as much an effect as the variation of density
with distance.

Now we can push the model to Baumgartner’s jump from 39 km. In
Figure 3.25 we compare the general model with that with no air resistance,
though both taking into account the variation in g. As a body falls through
the atmosphere we see the changing effects of the denser atmosphere on the
free fall. For the parameters chosen, we find that it takes 238.8s, or a little
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less than four minutes to reach the point where Baumgartner opened his
parachute. While not exactly the same as the real fall, it is amazingly close.
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Figure 3.24: Comparison of different
models of free fall from one kilometer
above the Earth.
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Figure 3.25: Free fall from 39 km at
constant g as compared to nonconstant
g and nonconstant atmospheric density
with drag coefficient C = .42.

3.5.3 The Flight of Sports Balls*

Another interesting problem is the projectile motion of a sports
ball. In an introductory physics course, one typically ignores air resistance
and the path of the ball is a nice parabolic curve. However, adding air
resistance complicates the problem significantly and cannot be solved an-
alytically. Examples in sports are flying soccer balls, golf balls, ping pong
balls, baseballs, and other spherical balls.

We will consider a ball moving in the xz-plane spinning about an axis
perpendicular to the plane of motion. Such an analysis was reported in
Goff and Carré, AJP 77(11) 1020. The typical trajectory of the ball is shown
in Figure 3.26. The forces acting on the ball are the drag force, FD, the lift
force, FL, and the gravitational force, FW . These are indicated in Figure 3.27.
The equation of motion takes the form

ma = FW + FD + FL.
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Writing out the components, we have

max = −FD cos θ − FL sin θ (3.32)

maz = −mg− FD sin θ + FL cos θ. (3.33)

Figure 3.26: Sketch of the path for pro-
jectile motion problems.
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Figure 3.27: Forces acting on ball.

As we had seen before, the magnitude of the damping (drag) force is
given by

FD =
1
2

CDρAv2.

For the case of soccer ball dynamics, Goff and Carré noted that the Reynolds
number, Re = 2rv

ν , is between 70000 and 490000 by using a kinematic viscos-
ity of ν = 1.54× 10−5 m2/s and typical speeds of v = 4.5− 31 m/s. Their
analysis gives CD ≈ 0.2. The parameters used for the ball were m = 0.424
kg and cross sectional area A = 0.035 m2 and the density of air was taken
as 1.2 kg/m3.

The lift force takes a similar form,

FL =
1
2

CLρAv2.

The sign of CL indicates if the ball has top spin (CL < 0) or bottom spin
*CL > 0). The lift force is just one component of a more general Magnus
force, which is the force on a spinning object in a fluid and is perpendicular
to the motion. In this example we assume that the spin axis is perpendicular
to the plane of motion. Allowing for spinning balls to veer from this plane
would mean that we would also need a component of the Magnus force
perpendicular to the plane of motion. This would lead to an additional side-
ways component (in the k direction) leading to a third acceleration equation.
We will leave that case for the reader.

The lift coefficient can be related to the
spin as

CL =
1

2 + v
vspin

,

where vspin = rω is the peripheral speed
of the ball. Here R is the ball radius and
ω is the angular speed in rad/s. If v =
20 m/s, ω = 200 rad/s, and r = 20 mm,
then CL = 0.45.

So far, the problem has been reduced to

dvx

dt
= −ρA

2m
(CD cos θ + CL sin θ)v2, (3.34)

dvz

dt
= −g− ρA

2m
(CD sin θ − CL cos θ)v2, (3.35)

for vx and vz the components of the velocity. Also, v2 = v2
x + v2

z . Further-
more, from Figure 3.27, we can write

cos θ =
vx

v
, sin θ =

vz

v
.
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So, the equations can be written entirely as a system of differential equations
for the velocity components,

dvx

dt
= −α(CDvx + CLvz)(v2

x + v2
z)

1/2, (3.36)

dvz

dt
= −g− α(CDvz − CLvx)(v2

x + v2
z)

1/2, (3.37)

where α = ρA/2m = 0.0530 m−1.
Such systems of equations can be solved numerically by thinking of this

as a vector differential equation,

dv
dt

= F(t, v),

and applying one of the numerical methods for solving first order equations.
Since we are interested in the trajectory, z = z(x), we would like to de-

termine the parametric form of the path, (x(t), z(t)). So, instead of solving
two first order equations for the velocity components, we can rewrite the
two second order differential equations for x(t) and z(t) as four first order
differential equations of the form

dy
dt

= F(t, y).

We first define

y =


y1(t)
y2(t)
y3(t)
y4(t)

 =


x(t)
z(t)

vx(t)
vz(t)


Then, the systems of first order differential equations becomes

dy1

dt
= y3,

dy2

dt
= y4,

dy3

dt
= −α(CDvx + CLvz)(v2

x + v2
z)

1/2,

dy4

dt
= −g− α(CDvz − CLvx)(v2

x + v2
z)

1/2. (3.38)

The system can be placed into a function file which can be called by an
ODE solver, such as the MATLAB m-file below.

function dy = ballf(t,y)

global g CD CL alpha

dy = zeros(4,1); % a column vector

v = sqrt(y(3).^2+y(4).^2); % speed v

dy(1) = y(3);

dy(2) = y(4);

dy(3) = -alpha*v.*(CD*y(3)+CL*y(4));

dy(4) = alpha*v.*(-CD*y(4)+CL*y(3))-g;
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Then, the solver can be called using

[T,Y] = ode45(’ballf’,[0 2.5],[x0,z0,v0x,v0z]);

Figure 3.28: Example of soccer ball un-
der the influence of drag.
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In Figures 3.28 and 3.29 we indicate what typical solutions would look
like for different values of drag and lift coefficients. In the case of nonzero
lift coefficients, we indicate positive and negative values leading to flight
with top spin, CL < 0, or bottom spin, CL > 0.
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Figure 3.29: Example of soccer ball un-
der the influence of lift with CL > 0 and
CL < 0

3.5.4 Falling Raindrops*

A simple problem that appears in mechanics is that of a falling rain-
drop through a mist. The raindrop not only undergoes free fall, but the
mass of the drop grows as it interacts with the mist. There have been sev-
eral papers written on this problem and it is a nice example to explore using
numerical methods. In this section we look at models of a falling raindrop
with and without air drag.

First we consider the case in which there is no air drag. A simple model
of free fall from Newton’s Second Law of Motion is

d(mv)
dt

= mg.

In this discussion we will take downward as positive. Since the mass is not
constant. we have

m
dv
dt

= mg− v
dm
dt

.
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In order to proceed, we need to specify the rate at which the mass is
changing. There are several models one can adapt.We will borrow some of
the ideas and in some cases the numerical values from Sokal(2010)3 and Ed- 3 A. D. Sokal, The falling raindrop, revis-

ited, Am. J. Phys. 78, 643-645, (2010).wards, Wilder, and Scime (2001).4 These papers also quote other interesting
4 B. F. Edwards, J. W. Wilder, and E. E.
Scime, Dynamics of Falling Raindrops, Eur.
J. Phys. 22, 113-118, (2001).

work on the topic.
While v and m are functions of time, one can look for a way to eliminate

time by assuming the rate of change of mass is an explicit function of m and
v alone. For example, Sokal (2010) assumes the form

dm
dt

= λmσvβ, λ > 0.

This contains two commonly assumed models of accretion:

1. σ = 2/3, β = 0. This corresponds to growth of the raindrop propor-
tional to the surface area. Since m ∝ r3 and A ∝ r2, then ṁ ∝ A implies
that ṁ ∝ m2/3.

2. σ = 2/3, β = 1. In this case the growth of the raindrop is proportional
to the volume swept out along the path. Thus, ∆m ∝ A(v∆t), where
A is the cross sectional area and v∆t is the distance traveled in time
∆t.

In both cases, the limiting value of the acceleration is a constant. It is g/4 in
the first case and g/7 in the second case.

Another approach might be to use the effective radius of the drop, assum-
ing that the raindrop remains close to spherical during the fall. According
to Edwards, Wilder, and Scime (2001), raindrops with Reynolds number
greater than 1000 and with radii larger than 1 mm will flatten. Even larger
raindrops will break up when the drag force exceeds the surface tension.
Therefore, they take 0.1 mm < r < 1 mm and 10 < Re < 1000. We will
return to a discussion of the drag later.

It might seem more natural to make the radius the dynamic variable,
than the mass. In this case, we can assume the accretion rate takes the form

dr
dt

= γrαvβ, γ > 0.

Since, m = 4
3 πρdr3,

dm
dt
∼ r2 dr

dt
∼ m2/3 dr

dt
.

Therefore, the two special cases become

1. α = 0, β = 0. This corresponds to a growth of the raindrop propor-
tional to the surface area.

2. α = 0, β = 1. In this case the growth of the raindrop is proportional
to the volume swept out along the path.

Here ρd is the density of the raindrop.
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We will also need

v
m

dm
dt

=
4πρdr2

4
3 πρdr3

v
dr
dt

= 3
v
r

dr
dt

= 3γrα−1vβ+1. (3.39)

Putting this all together, we have a systems of two equations for v(t) and
r(t) :

dv
dt

= g− 3γrα−1vβ+1,

dr
dt

= γrαvβ. (3.40)

Example 3.5. Determine v = v(r) for the case α = 0, β = 0 and the
initial conditions r(0) = 0.1 mm and v(0) = 0 m/s.

In this case Equations (3.40) become

dv
dt

= g− 3γr−1v,

dr
dt

= γ. (3.41)

Noting that
dv
dt

=
dv
dr

dr
dt

= γ
dv
dr

,

we can convert the problem to one of finding the solution v(r) subject
to the equation

dv
dr

=
g
γ
− 3

v
r

with the initial condition v(r0) = 0 m/s for r0 = 0.0001 m.
Rearranging the differential equation, we find that it is a linear first

order differential equation,

dv
dr

+
3
r

v =
g
γ

.

This equation can be solved using an integrating factor, µ = r3, ob-
taining

d
dr

(r3v) =
g
γ

r3.

Integrating, we obtain the solution

v(r) =
g

4γ
r
(

1−
( r0

r

)4
)

.

Note that for large r, v ∼ g
4γ r. Therefore, dv

dt ∼
g
4 .

While this case was easily solved in terms of elementary operations, it is
not always easy to generate solutions to Equations (3.40) analytically. Sokal
(2010) derived a general solution in terms of incomplete Beta functions,
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though this does not help visualize the solution. Also, as we will see, adding
air drag will lead to a nonintegrable system. So, we turn to numerical
solutions.

In MATLAB, we can use the function in raindropf.m to capture the sys-
tem (3.40). Here we put the velocity in y(1) and the radius in y(2).

function dy=raindropf(t,y);

global alpha beta gamma g

dy=[g-3*gamma*y(2)^(alpha-1)*y(1)^(beta+1); ...

gamma*y(2)^alpha*y(1)^beta];

We then use the Runge-Kutta solver, ode45, to solve the system. An
implementation is shown below which calls the function containing the sys-
tem. The value γ = 2.5 × 10−7 is based on empirical results quoted by
Edwards, Wilder, and Scime (2001).
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Figure 3.30: The plots of position and ve-
locity as a function of time for α = β = 0.

clear

global alpha beta gamma g

alpha=0;

beta=0;

gamma=2.5e-07;

g=9.81;

r0=0.0001;

v0=0;

y0=[v0;r0];

tspan=[0 1000];



114 differential equations

[t,y]=ode45(@raindropf,tspan,y0);

plot(1000*y(:,2),y(:,1),’k’)

The resulting plots are shown in Figures 3.30-3.31. The plot of velocity
as a function of position agrees with the exact solution, which we derived
in the last example. We note that these drops do not grow much, but they
seem to attain large speeds.
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Figure 3.31: The plot the velocity as a
function of position for α = β = 0.

For the second case, α = 0, β = 1, one can also obtain an exact solution.
The result is

v(r) =
[

2g
7γ

r
(

1−
( r0

r

)7
)] 1

2
.

For large r one can show that dv
dt ∼

g
7 . In Figures 3.33-3.32 we see again

large velocities, though about a third as fast over the same time interval.
However, we also see that the raindrop has significantly grown well past
the point it would break up.

In this simple model of a falling raindrop we have not considered air
drag. Earlier in the chapter we discussed the free fall of a body with air
resistance and this lead to a terminal velocity. Recall that the drag force
given by

fD(v) = −
1
2

CD Aρav2, (3.42)

where CD is the drag coefficient, A is the cross sectional area and ρa is the air
density. Also, we assume that the body is falling downward and downward
is positive, so that fD(v) < 0 so as to oppose the motion.
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Figure 3.32: The plot the velocity as a
function of position for α = 0, β = 1.

We would like to incorporate this force into our model (3.40). The first
equation came from the force law, which now becomes

m
dv
dt

= mg− v
dm
dt
− 1

2
CD Aρav2,

or
dv
dt

= g− v
m

dm
dt
− 1

2m
CD Aρav2.

The next step is to eliminate the dependence on the mass, m, in favor of
the radius, r. The drag force term can be written as

fD
m

=
1

2m
CD Aρav2

=
1
2

CD
πr2

4
3 πρdr3

ρav2

=
3
8

ρa

ρd
CD

v2

r
. (3.43)

We had already done this for the second term; however, Edwards, Wilder,
and Scime (2001) point to experimental data and propose that

dm
dt

= πρmr2v,

where ρm is the mist density. So, the second terms leads to

v
m

dm
dt

=
3
4

ρm

ρd

v2

r
.
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Figure 3.33: The plots of position and ve-
locity as a function of time for α = 0, β =
1.

But, since m = 4
3 πρdr3,

dm
dt

= 4πρdr2 dr
dt

.

So,
dr
dt

=
ρm

4ρd
v.

This suggests that their model corresponds to α = 0, β = 1, and γ = ρm
4ρd

.
Now we can write down the modified system

dv
dt

= g− 3γrα−1vβ+1 − 3
8

ρa

ρd
CD

v2

r
,

dr
dt

= γrαvβ. (3.44)

Edwards, Wilder, and Scime (2001) assume that the densities are constant
with values ρa = .856 kg/m3, ρd = 1.000 kg/m3, and ρm = 1.00 × 10−3

kg/m3. However, the drag coefficient is not constant. As described later in
Section 3.5.7, there are various models indicating the dependence of CD on
the Reynolds number,

Re =
2rv
ν

,

where ν is the kinematic viscosity, which Edwards, Wilder, and Scime (2001)
set to ν = 2.06× 10−5 m2/s. For raindrops of the range r = 0.1 mm to 1
mm, the Reynolds number is below 1000. Edwards, Wilder, and Scime
(2001) modeled CD = 12Re−1/2. In the plots in Section 3.5.7 we include this
model and see that this is a good approximation for these raindrops. In
Chapter 10 we discuss least squares curve fitting and using these methods,
one can use the models of Putnam (1961) and Schiller-Naumann (1933) to
obtain a power law fit similar to that used here.
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So, introducing

CD = 12Re−1/2 = 12
(

2rv
ν

)−1/2

and defining

δ =
9

23/2
ρa

ρd
ν1/2,

we can write the system of equations (3.44) as

dv
dt

= g− 3γ
v2

r
− δ

(v
r

) 3
2 ,

dr
dt

= γv. (3.45)

Now, we can modify the MATLAB code for the raindrop by adding the
extra term to the first equation, setting α = 0, β = 1, and using δ = 0.0124
and γ = 2.5× 10−7 from Edwards, Wilder, and Scime (2001).

Figure 3.34: The plots of position and ve-
locity as a function of time with air drag
included.
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Figure 3.35: The plot the velocity as a
function of position with air drag in-
cluded.

In Figures 3.34-3.35 we see different behaviors as compared to the previ-
ous models. It appears that the velocity quickly reaches a terminal velocity
and the radius continues to grow linearly in time, though at a slow rate.

We might be able to understand this behavior. Terminal, or constant v,
would occur when

g− 3γ
v2

r
− δ

(v
r

) 3
2
= 0.

Looking at these terms, one finds that the second term is significantly smaller
than the other terms and thus

δ
(v

r

) 3
2 ≈ g,

or
v
r
≈
( g

δ

)2/3
≈ 85.54 s−1.

This agrees with the numerical data which gives the slope of the v vs r plot
as 85.5236 s−1.
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3.5.5 The Two-body Problem*

A standard problem in classical dynamics is the study of the mo-
tion of several bodies under the influence of Newton’s Law of Gravitation.
The so-called n-body problem is not solvable. However, the two body prob-
lem is. Such problems can model the motion of a planet around the sun,
the moon around the Earth, or a satellite around the Earth. Further inter-
esting, and more realistic problems, would involve perturbations of these
orbits due to additional bodies. For example, one can study problems such
as the influence of large planets on the asteroid belt. Since there are no
analytic solutions to these problems, we have to resort to finding numerical
solutions. We will look at the two body problem since we can compare the
numerical methods to the exact solutions.

m1

m2

O

r2

r1

r2 − r1

Figure 3.36: Two masses interact under
Newton’s Law of Gravitation.

We consider two masses, m1 and m2, located at positions, r1 and r2, re-
spectively, as shown in Figure 3.36. Newton’s Law of Gravitation for the
force between two masses separated by position vector r is given by

F = −Gm1m2

r2
r
r

.

Each mass experiences this force due to the other mass. This gives the
system of equations

m1 r̈1 = − Gm1m2

|r2 − r1|3
(r1 − r2) (3.46)

m2 r̈2 = − Gm1m2

|r2 − r1|3
(r2 − r1). (3.47)

Now we seek to set up this system so that we can find numerical so-
lutions for the positions of the masses. From the conservation of angular
momentum, we know that the motion takes place in a plane. [Note: The so-
lution of the Kepler Problem is discussed in Chapter 9.] We will choose the
orbital plane to be the xy-plane. We define r12 = |r2 − r1|, and (xi, yi) = ri,
i = 1, 2. Furthermore, we write the two second order equations as four first
order equations. So, defining the velocity components as (ui, vi) = vi, the
system of equations can be written in the form

d
dt



x1

y1

x2

y2

u1

v1

u2

v2


=



u1

v1

u2

v2

−αm2(x1 − x2)

−αm2(y1 − y2)

−αm1(x2 − x1)

−αm1(y2 − y1).


, (3.48)

where α = G
r3

12
.

This system can be encoded in MATLAB as indicated in the function
twobody:
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function dz = twobody(t,z)

dz = zeros(8,1);

G = 1;

m1 = .1;

m2 = 2;

r=((z(1) - z(3)).^2 + (z(2) - z(4)).^2).^(3/2);

alpha=G/r;

dz(1) = z(5);

dz(2) = z(6);

dz(3) = z(7);

dz(4) = z(8);

dz(5) = alpha*m2*(z(3) - z(1));

dz(6) = alpha*m2*(z(4) - z(2));

dz(7) = alpha*m1*(z(1) - z(3));

dz(8) = alpha*m1*(z(2) - z(4));
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-1

-0.5

0

0.5

Figure 3.37: Simulation of two bodies
under gravitational attraction.

In the above code we picked some seemingly nonphysical numbers for G
and the masses. Calling ode45 with a set of initial conditions,

[t,z] = ode45(’twobody’,[0 20], [-1 0 0 0 0 -1 0 0]);

plot(z(:,1),z(:,2),’k’,z(:,3),z(:,4),’k’);

we obtain the plot shown in Figure 3.37. We see each mass moves along
what looks like elliptical helices with the smaller body tracing out a larger
orbit.

In the case of a very large body, most of the motion will be due to the
smaller body. So, it might be better to plot the relative motion of the small
body with respect to the larger body. Actually, an analysis of the two body
problem shows that the center of mass

R =
m1r1 + m2r2

m1 + m2

satisfies R̈ = 0. Therefore, the system moves with a constant velocity.
The relative position of the masses is defined through the variable r =

r1 − r2. Dividing the masses from the left hand side of Equations (3.47) and
subtracting, we have the motion of m1 about m2

r̈ = −G(m1 + m2)
r
r3 ,

where r = |r| = |r1 − r2|. Note that r× r̈ = 0. Integrating, this gives r× ṙ =
constant. This is just a statement of the conservation of angular momentum.

The orbiting body will remain in a plane and, therefore, we can take the
z-axis perpendicular to r× ṙ, the position as r = (x(t), y(t)), and the velocity
as ṙ = (u(t), v(t)). Then, the equations of motion can be written as four first
order equations:

ẋ = u

ẏ = v
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u̇ = −µ
x
r3

v̇ = −µ
y
r3 , (3.49)

where µ = G(m1 + m2) and r =
√

x2 + y2.
While we have established a system of equations which can be integrated,

we should note a few results from the study of the Kepler problem in clas-
sical dynamics which we review in Chapter 9. Kepler’s Laws of Planetary
Motion state:

1. All planets travel in ellipses.
The polar equation for the path is given by

r =
a(1− e2)

1 + e cos φ
,

where e is the eccentricity and a is the length of the semimajor axis.
For 0 ≤ e < 1, the orbit is an ellipse.

2. A planet sweeps out equal areas in equal times.

3. The square of the period of the orbit is proportional to the cube of the
semimajor axis. In particular, one can show that

T2 =
4π2

µ
a3.

By an appropriate choice of units, we can make µ = G(m1 + m2) a
reasonable number. For the Earth-Sun system,

µ = 6.67× 10−11m3kg−1s−2(1.99× 1030 + 5.97× 1024)kg

= 1.33× 1020m3s−1.

That is a large number and can cause problems in the numerics. How-
ever, if one uses astronomical scales, such as putting lengths in astro-
nomical units, 1 AU = 1.50× 108 km, and time in years, then

µ =
4π2

T2 a3 = 4π2

in units of AU3/yr2.

Setting φ = 0, the location of the perigee is given by

r =
a(1− e2)

1 + e
= a(1− e),

or
r = (a(1− e), 0).

At this point the velocity is given by

ṙ =

(
0,

√
µ

a
1 + e
1− e

)
.

Knowing the position and velocity at φ = 0,, we can set the initial conditions
for a bound orbit. The MATLAB code based on the above analysis is given
below and the solution can be seen in Figure 3.38.
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e=0.9;

tspan=[0 100];

z0=[1-e;0;0;sqrt((1+e)/(1-e))];

[t,z] = ode45(’twobodyf’,tspan, z0);

plot(z(:,1),z(:,2),’k’);

axis equal

function dz = twobodyf(t,z)

dz = zeros(4,1);

GM = 1;

r=(z(1).^2 + z(2).^2).^(3/2);

alpha=GM/r;

dz(1) = z(3);

dz(2) = z(4);

dz(3) = -alpha*z(1);

dz(4) = -alpha*z(2);
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Figure 3.38: Simulation of one body or-
biting a larger body under gravitational
attraction.

While it is clear that the mass is following an elliptical orbit, we see
that it will only do so for a finite period of time partly because the Runge-
Kutta code does not conserve energy and it does not conserve the angular
momentum. The conservation of energy is found (up to a factor of m1) as

1
2
(ẋ2 + ẏ2)− µ

t
= − µ

2a
.

Similarly, the conservation of (specific) angular momentum is given by

r× v = (xẏ− yẋ)k =
√

µa(1− e2)k.

As was the case with the nonlinear pendulum example, we saw that an
implicit Euler method, or Cromer’s method, was better at conserving en-
ergy. So, we compare the Euler’s Method version with the Implicit-Euler
Method. In general, we seek to solve the system

ṙ = F(r, v),

v̇ = G(r, v). (3.50)

As we had seen earlier, Euler’s Method is given by

vn = vn−1 + ∆t ∗G(tn−1, xn−1),

rn = rn−1 + ∆t ∗ F(tn−1, vn−1). (3.51)

For the two body problem, we can write out the Euler Method steps using
v = (u, v), r = (x, y), F = (u, v), and G = − µ

r3 (x, y). The MATLAB code
would use the loopEuler’s Method for the two body prob-

lem
for i=2:N+1

alpha=mu/(x(i-1).^2 + y(i-1).^2).^(3/2);

u(i)=u(i-1)-h*alpha*x(i-1);
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v(i)=v(i-1)-h*alpha*y(i-1);

x(i)=x(i-1)+h*u(i-1);

y(i)=y(i-1)+h*v(i-1);

t(i)=t(i-1)+h;

end

Note that more compact forms can be used, but they are not readily adapt-
able to other packages or programming languages.
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Table 3.8: Results for using Euler
method for N = 4000000 and t ∈ [0, 100].
The parameters are µ = 1, e = 0, 9, and
a = 1.

In Figure 3.8 we show the results along with the energy and angular
momentum plots for N = 4000000 and t ∈ [0, 100] for the case of µ = 1,
e = 0, 9, and a = 1. The orbit based on the exact solution is in the center
of the figure on the left. The energy and angular momentum as a function
of time are shown along with the similar plots obtained using ode45. In
neither case are these two quantities conserved.

for i=2:N+1

alpha=mu/(x(i-1).^2 + y(i-1).^2).^(3/2);

u(i)=u(i-1)-h*alpha*x(i-1);

v(i)=v(i-1)-h*alpha*y(i-1);

x(i)=x(i-1)+h*u(i);

y(i)=y(i-1)+h*v(i);

t(i)=t(i-1)+h;

end
Implicit-Euler Method for the two body
problemThe Implicit-Euler Method is a slight modification to the Euler Method

and has a better chance at handing the conserved quantities as the Implicit-
Euler Method is one of many symplectic integrators. The modification uses
the new value of the velocities in the updating of the position. Thus, we
have

vn = vn−1 + ∆t ∗G(tn−1, xn−1),

rn = rn−1 + ∆t ∗ F(tn−1, vn). (3.52)

It is a simple matter to update the MATLAB code. In Figure 3.9 we show
the results along with the energy and angular momentum plots for N =
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200000 and t ∈ [0, 100] for the case of µ = 1, e = 0, 9, and a = 1. The orbit
based on the exact solution coincides with the orbit as seen in the left figure.
The energy and angular momentum as functions of time are appear to be
conserved. The energy fluctuates about −0.5 and the angular momentum
remains constant. Again, the ode45 results are shown in comparison. The
number of time steps has been decreased from the Euler Method by a factor
of 20.
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Table 3.9: Results for using the Implicit-
Euler method for N = 200000 and t ∈
[0, 100]. The parameters are µ = 1, e =
0, 9, and a = 1. The Euler and Implicit Euler are first order methods. We can attempt a

faster and more accurate process which is also a symplectic method. As a
final example, we introduce the velocity Verlet method for solving

r̈ = a(r(t)).

The derivation is based on a simple Taylor expansion:

r(t + ∆t) = r(t) + v(t)∆t +
1
2

a(t)∆t2 + · · · .

Replace ∆t with −∆t to obtain

r(t− ∆t) = r(t)− v(t)∆t +
1
2

a(t)∆t2 − · · · .

Now, adding these expressions leads to some cancellations,

r(t + ∆t) = 2r(t)− r(t− ∆t) + a(t)∆t2 + O(∆t4).

Writing this in a more useful form, we have

rn+1 = 2rn − rn−1 + a(rn)∆t2.

Thus, we can find rn+1 from the previous two values without knowing the
velocity. This method is called the Verlet, or Störmer-Verlet Method.Loup Verlet (1931-) is a physicist who

works on molecular dynamics and
Fredrik Carl Mülertz Störmer (1874-
1957) was a mathematician and physi-
cist who modeled the motion of charged
particles in his studies of the aurora bo-
realis.

It is useful to know the velocity so that we can check energy conservation
and angular momentum conservation. The Verlet Method can be rewritten
in an equivalent form know as the velocity Verlet method. We use

r(t)− r(t− ∆t) ≈ v(t)∆t− 1
2

a∆t2
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in the Stömer-Verlet Method and write

rn = rn−1 + vn−1u +
h2

2
a(rn−1),

vn−1/2 = vn−1 +
h
2

a(rn−1),

an = a(rn),

vn = vn−1/2 +
h
2

an, (3.53)

where h = ∆t. For the current problem, a(rn) = − µ

r2
n

rn.
The MATLAB snippet is given as Störmer-Verlet Method for the two body

problem.
for i=2:N+1

alpha=mu/(x(i-1).^2 + y(i-1).^2).^(3/2);

x(i)=x(i-1)+h*u(i-1)-h^2/2*alpha*x(i-1);

y(i)=y(i-1)+h*v(i-1)-h^2/2*alpha*y(i-1);

u(i)=u(i-1)-h/2*alpha*x(i-1);

v(i)=v(i-1)-h/2*alpha*y(i-1);

alpha=mu/(x(i).^2 + y(i).^2).^(3/2);

u(i)=u(i)-h/2*alpha*x(i);

v(i)=v(i)-h/2*alpha*y(i);

t(i)=t(i-1)+h;

end

The results using the velocity Verlet method are shown in Figure 3.10.
For only 50, 000 steps we have much better results for the conservation laws
and the orbit appears stable.
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Table 3.10: Results for using velocity
Verlet method for N = 50000 and t ∈
[0, 100]. The parameters are µ = 1,
e = 0, 9, and a = 1.3.5.6 The Expanding Universe*

One of the remarkable stories of the twentieth century is the devel-
opment of both the theory and the experimental data leading to our current
understanding of the large scale structure of the universe. In 1916 Albert
Einstein (1879-1955) published his general theory of relativity. It is a ge-
ometric theory of gravitation which relates the curvature of spacetime to
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its energy and momentum content. This relationship is embodied in the
Einstein field equations, which are written compactly as

Gµν + Λgµν =
8πG

c4 Tµν.

The left side contains the curvature of spacetime as determined by the
metric gµν. The Einstein tensor, Gµν = Rµν − 1

2 Rgµν, is determined from
the curvature tensor Rµν and the scalar curvature, R. These in turn are ob-
tained from the metric tensor. Λ is the famous cosmological constant, which
Einstein originally introduced to maintain a static universe, which has since
taken on a different role. The right-hand side of Einstein’s equation involves
the familiar gravitational constant, the speed of light, and the stress-energy
tensor, Tµν.Georges Lemaître (1894-1966) had actu-

ally predicted the expansion of the uni-
verse in 1927 and proposed what later
became known as the big bang theory.

In 1917 Einstein applied general relativity to cosmology. However, it
was Alexander Alexandrovich Friedmann (1888-1925) who was the first to
provide solutions to Einstein’s equation based on the assumptions of homo-
geneity and isotropy and leading to the expansion of the universe. Unfor-
tunately, Friedmann died in 1925 of typhoid.

In 1929 Edwin Hubble (1889-1953) showed that the radial velocities of
galaxies are proportional to their distance, resulting in what is now called
Hubble’s Law. Hubble’s Law takes the form

v = H0r,

where H0 is the Hubble constant and indicates that the universe is expand-
ing. The current values of the Hubble constant are (70± 7) km s−1 Mpc
−1 and some recent WMAP results indicate it could be (71.0± 2.5) km s−1

Mpc −1.55 These strange units are in common us-
age. Mpc stands for 1 megaparsec =
3.086 × 1022 m and 1 km s−1 Mpc −1

= 3.24 × 10−20 s−1. The recent value
was reported at the NASA website on
March 25, 2013 http://map.gsfc.nasa.

gov/universe/bb_tests_exp.html

In this section we are interested in Friedmann’s Equation, which is the
simple differential equation(

ȧ
a

)2
=

8πG
3c2 ε(t)− κc2

R2
0
+

Λ
3

.

Here, a(t) is the scale factor of the universe, which is taken to be one at
present time; ε(t) is the energy density; R0 is the radius of curvature; and, κ

is the curvature constant, (κ = +1 for positively curved space, κ = 0 for flat
space, κ = −1 for negatively curved space.) The cosmological constant,Λ,
is now added to account for dark energy. The idea is that if we know
the right side of Friedmann’s equation, then we can say something about
the future size of the unverse. This is a simple differential equation which
comes from applying Einstein’s equation to an isotropic, homogenous, and
curved spacetime. Einstein’s equation actually gives us a little more than
this equation, but we will only focus on the (first) Friedmann equation. The
reader can read more in books on cosmology, such as B. Ryden’s Introduction
to Cosmology.

Friedmann’s equation can be written in a simpler form by taking into
account the different contributions to the energy density. For Λ = 0 and

http://map.gsfc.nasa.gov/universe/bb_tests_exp.html
http://map.gsfc.nasa.gov/universe/bb_tests_exp.html
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zero curvature, one has (
ȧ
a

)2
=

8πG
3c2 ε(t).

We define the Hubble parameter as H(t) = ȧ/a. At the current time, t0,
H(t0) = H0, Hubble’s constant, and we take a(t0) = 1. The energy density
in this case is called the critical density,

εc(t) =
3c2

8πG
H(t)2.

It is typical to introduce the density parameter, Ω =

varepsilon/εc. Then, the Friedmann equation can be written as

1−Ω = − κc2

R2
0a(t)2H(t)2

.

Evaluating this expression at the current time, then

1−Ω0 = − κc2

R2
0H2

0
;

and, therefore,

1−Ω = −
H2

0(1−Ω0)

a2H2 .

Solving for H2, we have the differential equation(
ȧ
a

)2
= H2

0

[
Ω(t) +

1−Ω0

a2

]
,

where Ω takes into account the contributions to the energy density of the
universe. These contributions are due to nonrelativistic matter density, con-
tributions due to photons and neutrinos, and the cosmological constant,
which might represent dark energy. This is discussed in Ryden (2003). In
particular, Ω is a function of a(t) for certain models. So, we write

Ω =
Ωr,0

a4 +
Ωm,0

a3 + ΩΛ,0,

where current estimates (Ryden (2003)) are Ωr,0 = 8.4× 10−5, Ωm,0 = 0.3,
ΩΛ,0 ≈ 0.7. In general, We require

Ωr,0 + Ωm,0 + ΩΛ,0 = Ω0.

So, in later examples, we will take this relationship into account. The compact form of Friedmann’s equa-
tion.Therefore, the Friedmann equation can be written as(

ȧ
a

)2
= H2

0

[
Ωr,0

a4 +
Ωm,0

a3 + ΩΛ,0 +
1−Ω0

a2

]
. (3.54)

Taking the square root of this expression, we obtain a first order equation
for the scale factor,

ȧ = ±H0

√
Ωr,0

a2 +
Ωm,0

a
+ ΩΛ,0a2 + 1−Ω0.
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The appropriate sign will be used when the scale factor is increasing or
decreasing.

For special universes, by restricting the contributions to Ω, one can get
analytic solutions. But, in general one has to solve this equation numerically.
We will leave most of these cases to the reader or for homework problems
and will consider some simple examples.

Example 3.6. Determine a(t) for a flat universe with nonrelativistic
matter only. (This is called an Einstein-de Sitter universe.)

In this case, we have Ωr,0 = 0, ΩΛ,0 = 0, and Ω0 = 1. Since Ωr,0 +

Ωm,0 + ΩΛ,0 = Ω0, Ωm,0 = 1 and the Friedman equation takes the
form

ȧ = H0

√
1
a

.

This is a simple separable first order equation. Thus,

H0 dt =
√

ada.

Integrating, we have

H0t =
2
3

a3/2 + C.

Taking a(0) = 0, we have

a(t) =

(
t

2
3 H0

)2/3

.

Since a(t0) = 1, we find

t0 =
2

3H0
.

This would give the age of the universe in this model as roughly t0 =

9.3 Gyr.

Example 3.7. Determine a(t) for a curved universe with nonrelativis-
tic matter only.

We will consider Ω0 > 1. In this case, the Friedman equation takes
the form

ȧ = ±H0

√
Ω0

a
+ (1−Ω0).

Note that there is an extremum amax which occurs for ȧ = 0. This
occurs for

a = amax ≡
Ω0

Ω0 − 1
.

Analytic solutions are possible for this problem in parametric form.
Note that we can write the differential equation in the form

ȧ = ±H0

√
Ω0

a
+ (1−Ω0)

= ±H0

√
Ω0

a

√
1 +

a(1−Ω0)

Ω0

= ±H0

√
Ω0

a

√
1− a

amax
. (3.55)
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A separation of variables gives

H0
√

Ω0 dt = ±
√

a√
1− a

amax

da.

This form suggests a trigonometric substitution,
a

amax
= sin2 θ

with da = 2amax sin θ cos θ dθ. Thus, the integration becomes

H0
√

Ω0t = ±
∫ √

amax sin2 θ√
cos2 θ

2amax sin θ cos θ dθ.

In proceeding, we should be careful. Recall that for real numbers√
x2 = |x|. In order to remove the roots of squares we need to consider

the quadrant θ is in. Since a = 0 at t = 0, and it will vanish again for
θ = π, we will assume 0 ≤ θ ≤ π. For this range, sin θ ≥ 0. However,
cos θ is not of one sign for this domain. In fact, a reaches it maximum
at θ = π/2. So, ȧ > 0. This corresponds to the upper sign in front
of the integral. For θ > π/2, ȧ < 0 and thus we need the lower sign
and
√

cos2 θ = − cos θ for that part of the domain. Thus, it is safe to
simplify the square roots and we obtain

H0
√

Ω0t = 2a3/2
max

∫
sin2 θ, dθ.

= a3/2
max

∫
(1− cos 2θ) , dθ.

= a3/2
max

(
θ − 1

2
sin 2θ

)
(3.56)

for t = 0 at θ = 0.
We have arrived at a parametric solution to the example,

a = = amax sin2 θ,

t =
a3/2

max

H0
√

Ω0

(
θ − 1

2
sin 2θ

)
, (3.57)

for 0 ≤ θ ≤ π. Letting, φ = 2θ, this solution can be written as

a =
1
2

amax(1− cos φ),

t =
a3/2

max

2H0
√

Ω0
(φ− sin φ) , (3.58)

for 0 ≤ φ ≤ 2π. As we will see in Chapter 10, the curve described by
these equations is a cycloid.

A similar computation can be performed for Ω0 < 1. This will be
left as a homework exercise. The answer takes the form

a =
Ω0

2(1−Ω0)
(cosh η − 1),

t =
Ω0

2H0(1−Ω)3/2 (sinh η − η) , (3.59)

for η ≥ 0.
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Example 3.8. Determine the numerical solution of Friedmann’s equa-
tion for a curved universe with nonrelativistic matter only.

Since Friedmann’s equation is a differential equation, we can use
our favorite solver to obtain a solution. Not all universe types are
amenable to obtaining an analytic solution as the last example. We
can create a function in MATLAB for use in ode45:

function da=cosmosf(t,a)

global Omega

f=Omega./a+1-Omega;

da=sqrt(f);

end

Figure 3.39: Numerical solution (cir-
cles) of the Friedmann equation super-
imposed on the analytic solutions for a
matter plus curvature (Ω0 6= 1) or no
curvature (Ω0 = 1) universe.
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We can then solve the Friedmann equation and compare the so-
lutions to the analytic forms in the last two examples. The code for
doing this is given below:

clear

global Omega

for Omega=0.8:.1:1.2;

if Omega<1

amax=50;

tmax=100;

elseif Omega==1

amax=50;

tmax=100;

else

amax=Omega/(Omega-1);

tmax=Omega/(Omega-1)^1.5/2*pi;

end

tspan=0:4:tmax;
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a0=.1;

[t,a]=ode45(@cosmosf,tspan,a0);

plot(t,a,’ok’)

hold on

if Omega<1

eta=0:.1:4;

a3 = Omega/(1-Omega)/2*(cosh(eta)-1);

t3 = Omega/(1-Omega)^1.5/2*(sinh(eta)-eta);

plot(t3,a3,’k’)

axis([0,max(t3),0,max(a3)])

xlabel(’t’)

ylabel(’a’)

elseif Omega==1

t3=0:.1:1.5*tmax;

a3=(3*t3/2).^(2/3);

plot(t3,a3,’k’)

else

phi=0:.1:2*pi;

a3 = Omega/(Omega-1)/2*(1-cos(phi));

t3 = Omega/(Omega-1)^1.5/2*(phi-sin(phi));

plot(t3,a3,’k’)

end

end

hold off

axis([0,150,0,50])

xlabel(’t’)

ylabel(’a’)

In Figure 3.39 we show the results. For Ω0 > 1 the solutions lie on
the first half of the cycloid solution. The other solutions indicate that
the universe continues to expand, leading to what is called the Big
Chill. The analytic solutions to the Ω0 > 1 cases eventually collapse
to a = 0 in finite time. These final states are what Stephen Hawking
calls the Big Crunch.

The numerical solutions for Ω0 > 1 run into difficulty because the
radicand in the square root is negative. But, this corresponds to when
ȧ < 0. So, we have to modify the code by estimating the maximum
on the curve and run the numerical algorithm with new initial condi-
tions and using the fact that ȧ < 0 in the function cosmosf by setting
da=-sqrt(f). The modified code is below and the resulting numerical
solutions are shown in Figure 3.40.

tspan=0:4:tmax;

a0=.1;

[t,a]=ode45(@cosmosf,tspan,a0);

plot(t,a,’ok’,’MarkerSize’,2)
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hold on

if Omega>1

tspan=tmax+.0001:4:2*tmax;

a0=amax-.0001;

[t2,a2]=ode45(@cosmosf2,tspan,a0);

plot(t2,a2,’ok’,’MarkerSize’,2)

end

Figure 3.40: Modified numerical solu-
tion (circles) of the Friedmann equation
superimposed on the analytic solutions
for a matter plus curvature (Ω0 6= 1) or
no curvature (Ω0 = 1) universe with the
extension past the maximum value of a
when Ω0 > 1..
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3.5.7 The Coefficient of Drag*

We have seen that air drag can play a role in interesting physics prob-
lems in differential equations. This also is an important concept in fluid
flow and fluid mechanics when looking at flows around obstacles, or when
the obstacle is moving with respect to the background fluid. The simplest
such object is a sphere, such as a baseball, soccer ball, golf ball, or ideal
spherical raindrop. The resistive force is characterized by the dimensionless
drag coefficient

CD =
FD

1
2 ρU2L2

,

where L and U are the characteristic length and speed of the object moving
through the fluid.

There has been much attention focussed on relating the drag coefficient
to the Reynolds number. The Reynolds number is given byThe Reynolds number, Re, is named af-

ter Osborne Reynolds (1842-1912) who
first determined it in 1883.

Re =
ρLU

η
=

LV
ν

,

where η is the viscosity and ν = η
ρ is the kinematic viscosity. It is a mea-

sure of the size of the kinematic to viscous forces in the problem at hand.
There are different ranges of fluid behavior depending on the order of the
Reynolds number. These range from laminar flow (Re < 1000) to turbulent
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flow (Re > 2.5× 105). There are a range of other types of flows such as
creeping flow (Re << 1) and transitional flows, which are a mix of laminar
and turbulent flow.

For low Reynolds number, the inertial forces are small compared to the
viscous forces, leading to the Stokes drag force, CD = 24Re−1. This result
can be determined analytically. Similarly, for large Reynolds number the
drag coefficient is a constant. This is the Newtonian regime. Somewhere in
between the form of the drag coefficient is found through empirical studies.
There have been many empirical expressions developed and all are within a
few percent of the data in the range of applicability. Some of the commonly
used expressions are given below.

Models that are useful for Re < 103 :

C2 =
24
Re

+
4

Re1/3 , Putnam (1961), (3.60)

C3 =
24
Re

(
1 + 0.15Re0.687

)
, Schiller-Naumann (1933), (3.61)

C4 = 12Re−.5; Edwards et al. (2000), (3.62)

(3.63)

Models that are useful for Re < 2× 105 are the White (1991) and Clift-
Gavin (1970), respectively,

C1 =
24
Re

+
6.

1 +
√

Re
+ 0.4, (3.64)

C5 =
24
Re

(
1 + 0.15Re0.687

)
+

.42
1 + 42500/Re1.16 . (3.65)

A more recent model was proposed by Morrison (2010) for Re < 106 :

C6 =
24
Re

+
2.6
(

Re
5.0

)
1 +

(
Re
5.0

)1.52 +
.411

(
Re

263000

)−7.94

1 +
(

Re
263000

)−8.00 +
Re0.80

461000
. (3.66)

Plots for these models are shown in Figures 3.41-3.42. In Figure 3.41 we
see that the models differ significantly for large Reynolds numbers.

Figure 3.42 shows a log-log plot of the drag coefficient as a function of
Reynolds number. In Figure 3.43 we show a power law fit for Reynolds
number less than 1000 confirming the model used by Edwards, Wilder, and
Scime (2001) as described in the raindrop problem.
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Figure 3.41: Drag coefficient as a func-
tion of Reynolds number for spheres.
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Figure 3.42: Log-log plot of the drag co-
efficient as a function of Reynolds num-
ber for spheres.

10
0

10
2

10
4

10
-1

10
0

10
1

10
2

10
3

 

 

White (1991)
Putnam (1961)
Schiller-Naumann (1933)
Edwards et al. (2000)
Clift-Gavin (1970)
Morrison (2010)

Figure 3.43: A power law fit for the drag
coefficient as a function of Reynolds
number using linearization and linear
regression.

0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Re

C
D



numerical solutions 133

Problems

1. Use Euler’s Method to determine the given value of y for the following
problems. When possible compare the numerical approximations with the
exact solutions.

a.
dy
dx

= 2y, y(0) = 2. Find y(1) with h = 0.1.

b.
dy
dx

= x− y, y(0) = 1. Find y(2) with h = 0.2.

c.
dy
dx

= x
√

1− y2, y(1) = 0. Find y(2) with h = 0.2.

d.
dy
dt

= 1 +
y
t

, y(1) = 2 with h = 0.25.

e.
dy
dt

= −3y + te2t, y(0) = 0 with h = 0.25.

2. Use the Midpoint Method to solve the initial value problems in Problem
1.

3. Numerically solve the nonlinear pendulum problem using the Euler-
Cromer code for a pendulum with length L = 0.5 m using initial angles
of θ0 = 10o, and θ0 = 70o. In each case run the routines long enough and
with an appropriate h such that you can determine the period in each case.
Compare your results with the linear pendulum period.

4. For the Baumgartner sky dive we had obtained the results for his position
as a function of time. There are other questions which could be asked.

a. Find the velocity as a function of time for the model developed in
the text.

b. Find the velocity as a function of altitude for the model developed
in the text.

c. What maximum velocity is obtained in the model? At what time
and position?

d. Does the model indicate that terminal velocity was reached?

e. What speed is predicted for the point at which the parachute
opened?

f. How do these numbers compare with reported data?

5. Consider the flight of a golf ball with mass 46 g and a diameter of 42.7
mm. Assume it is projected at 30

o with a speed of 36 m/s and no spin.

a. Ignoring air resistance, analytically find the path of the ball and
determine the range, maximum height, and time of flight for it to
land at the height that the ball had started.

b. Now consider a drag force fD = 1
2 CDρπr2v2, with CD = 0.42 and

ρ = 1.21 kg/m3. Determine the range, maximum height, and time
of flight for the ball to land at the height that it had started.
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c. Plot the Reynolds number as a function of time. [Take the kine-
matic viscosity of air, ν = 1.47× 10−5.

d. Based on the plot in part c, create a model to incorporate the
change in Reynolds number and repeat part b. Compare the re-
sults from parts a, b and d.

6. Consider the flight of a tennis ball with mass 57 g and a diameter of 66.0
mm. Assume the ball is served 6.40 meters from the net at a speed of 50.0
m/s down the center line from a height of 2.8 m. It needs to just clear the
net (0.914 m).

a. Ignoring air resistance and spin, analytically find the path of the
ball assuming it just clears the net. Determine the angle to clear
the net and the time of flight.

b. Find the angle to clear the net assuming the tennis ball is given a
topspin with ω = 50 rad/s.

c. Repeat part b assuming the tennis ball is given a bottom spin with
ω = 50 rad/s.

d. Repeat parts a, b, and c with a drag force, taking CD = 0.55.

7. In Example 3.7 a(t) was determined for a curved universe with nonrela-
tivistic matter for Ω0 > 1. Derive the parametric equations for Ω0 < 1,

a =
Ω0

2(1−Ω0)
(cosh η − 1),

t =
Ω0

2H0(1−Ω)3/2 (sinh η − η) , (3.67)

for η ≥ 0.

8. Find numerical solutions for other models of the universe.

a. A flat universe with nonrelativistic matter only with Ωm,0 = 1.

b. A curved universe with radiation only with curvature of different
types.

c. A flat universe with nonrelativistic matter and radiation with sev-
eral values of Ωm,0 and Ωr,0 + Ωm,0 = 1.

d. Look up the current values of Ωr,0, Ωm,0, ΩΛ,0, and κ. Use these
values to predict future values of a(t).

e. Investigate other types of universes of your choice, but different
from the previous problems and examples.
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