
Chapter 7

Nonlinear Systems

“The scientist does not study nature because it is useful; he studies it because he
delights in it, and he delights in it because it is beautiful.” - Jules Henri Poincaré
(1854-1912)

7.1 Introduction

Some of the most interesting phenomena in the world are modeled
by nonlinear systems. These systems can be modeled by differential equa-
tions when time is considered as a continuous variable or difference equa-
tions when time is treated in discrete steps. Applications involving differ-
ential equations can be found in many physical systems such as planetary
systems, weather prediction, electrical circuits, and kinetics. Even in some
simple dynamical systems a combination of damping and a driving force
can lead to chaotic behavior. Namely, small changes in initial conditions
could lead to very different outcomes. In this chapter we will explore a few
different nonlinear systems and introduce some of the tools needed to in-
vestigate them. These tools are based on some of the material in Chapters 2

and 3 for linear systems of differential equations.
Nonlinear differential equations are either integrable, but difficult to solve,

or they are not integrable and can only be solved numerically. We will see
that we can sometimes approximate the solutions of nonlinear systems with
linear systems in small regions of phase space and determine the qualitative
behavior of the system without knowledge of the exact solution.

Nonlinear problems occur naturally. We will see problems from many
of the same fields we explored in Section 6.2. We will concentrate mainly
on continuous dynamical systems. We will begin with a simple population
model and look at the behavior of equilibrium solutions of first order au-
tonomous differential equations. We will then look at nonlinear systems in
the plane, such as the nonlinear pendulum and other nonlinear oscillations.
We will conclude by discussing a few other interesting physical examples
stressing some of the key ideas of nonlinear dynamics.
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7.2 The Logistic Equation

In this section we will explore a simple nonlinear population model.
Typically, we want to model the growth of a given population, y(t), and the
differential equation governing the growth behavior of this population is
developed in a manner similar to that used previously for mixing problems.
Namely, we note that the rate of change of the population is given by an
equation of the form

dy
dt

= Rate In − Rate Out.

The Rate In could be due to the number of births per unit time and the Rate
Out by the number of deaths per unit time. While there are other potential
contributions to these rates we will consider the birth and death rates in the
simplest examples.

A simple population model can be obtained if one assumes that these
rates are linear in the population. Thus, we assume that the

Rate In = by and the Rate Out = my.

Here we have denoted the birth rate as b and the mortality rate as m. This
gives the rate of change of population as

dy
dt

= by−my. (7.1)

Generally, these rates could depend on the time. In the case that they
are both constant rates, we can define k = b − m and obtain the familiar
exponential model of population growth:Malthusian population growth.

dy
dt

= ky.

This is easily solved and one obtains exponential growth (k > 0) or de-
cay (k < 0). This Malthusian growth model has been named after Thomas
Robert Malthus (1766-1834), a clergyman who used this model to warn of
the impending doom of the human race if its reproductive practices contin-
ued.

When populations get large enough, there is competition for resources,
such as space and food, which can lead to a higher mortality rate. Thus,
the mortality rate may be a function of the population size, m = m(y).
The simplest model would be a linear dependence, m = m̃ + cy. Then, the
previous exponential model takes the form

dy
dt

= ky− cy2, (7.2)

where k = b− m̃. This is known as the logistic model of population growth.

The logistic model was first published in
1838 by Pierre François Verhulst (1804-
1849) in the form

dN
dt

= rN
(

1− N
K

)
,

where N is the population at time t, r is
the growth rate, and K is what is called
the carrying capacity. Note that in our
model r = k = Kc.

Typically, c is small and the added nonlinear term does not really kick in
until the population gets large enough.
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Example 7.1. Show that Equation (7.2) can be written in the form

z′ = kz(1− z)

which has only one parameter.
We carry this out be rescaling the population, y(t) = αz(t), where

α is to be determined. Inserting this transformation, we have

y′ = ky− cy2

αz′ = αkz− cα2z2,

or
z′ = kz

(
1− α

c
k

z
)

.

Thus, we obtain the result, z′ = kz(1− z), if we pick α = k
c .

Before we obtain the exact solution, it is instructive to study the quali-
tative behavior of the solutions without actually writing down any explicit
solutions. Such methods are useful for more difficult nonlinear equations
as we will see later in this chapter.

We will demonstrate this analysis with a simple logistic equation exam-
ple. We will first look for constant solutions, called equilibrium solutions,
satisfying y′(t) = 0. Then, we will look at the behavior of solutions near
the equilibrium solutions, or fixed points, and determine the stability of the
equilibrium solutions. In the next section we will extend these ideas to other
first order differential equations.

Example 7.2. Find and classify the equilibrium solutions of the logistic
equation,

dy
dt

= y− y2. (7.3)

First, we determine the equilibrium, or constant, solutions given by
y′ = 0. For this case, we have y− y2 = 0. So, the equilibrium solutions
are y = 0 and y = 1.

These solutions divide the ty-plane into three regions, y < 0, 0 <

y < 1, and y > 1. Solutions that originate in one of these regions at
t = t0 will remain in that region for all t > t0 since solutions of this
differential equation cannot intersect.

Note: If two solutions of the differential
equation intersect then they have com-
mon values y1 at time t1. Using this
information, we could set up an initial
value problem for which the initial con-
dition is y(t1) = y1. Since the two differ-
ent solutions intersect at this point in the
phase plane, we would have an initial
value problem with two different solu-
tions. This would violate the uniqueness
theorem for initial value problems.

Next, we determine the behavior of solutions in the three regions.
Noting that y′(t) gives the slope of any solution in the plane, then
we find that the solutions are monotonic in each region. Namely, in
regions where y′(t) > 0, we have monotonically increasing functions
and in regions where y′(t) < 0, we have monotonically decreasing
functions. We determine the sign of y′(t) from the right-hand side of
the differential equation. t

y

y = 1

y = 0

Figure 7.1: Representative solution be-
havior for y′ = y− y2.

For example, in this problem y− y2 > 0 only for the middle region
and y− y2 < 0 for the other two regions. Thus, the slope is positive
in the middle region, giving a rising solution as shown in Figure 7.1.
Note that this solution does not cross the equilibrium solutions. Simi-
lar statements can be made about the solutions in the other regions. Stable and unstable equilibria.
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We further note that the solutions on either side of the equilibrium
solution y = 1 tend to approach this equilibrium solution for large
values of t. In fact, no matter how far these solutions are from y =

1, as long as y(t) > 0, the solutions will eventually approach this
equilibrium solution as t → ∞. We then say that the equilibrium
solution, y = 1, is a stable equilibrium.

Similarly, we note that the solutions on either side of the equilib-
rium solution y = 0 tend away from y = 0 for large values of t. No
matter how close a solution is to y = 0 at some given time, eventually
these solutions will diverge as t → ∞. We say that such equilibrium
solutions are unstable equilibria.

Figure 7.2: Representative solution be-
havior and the phase line for y′ = y− y2.

t

y

y = 1

y = 0

Phase lines.
If we are only interested in the behavior of the equilibrium solu-

tions, we could just display a phase line. In Figure 7.2 we place a
vertical line to the right of the ty-plane plot. On this line we first
place dots at the corresponding equilibrium solutions and label the
solutions. These points divide the phase line into three intervals.

In each interval we then place arrows pointing upward or down-
ward indicating solutions with positive or negative slopes, respec-
tively. For example, for the interval y > 1 there is a downward point-
ing arrow indicating that the slope is negative in that region.

y = 1

y = 0

Figure 7.3: Phase line for y′ = y− y2.

Looking at the resulting phase line we can determine if a given
equilibrium is stable (arrows pointing towards the point) or unstable
(arrows pointing away from the point). In Figure 7.3 we draw the final
phase line by itself. We see that y = 1 is a stable equilibrium point and
y = 0 is an unstable equilibrium point.

7.2.1 The Riccati Equation*

We have seen that one does not need an explicit solution of the logis-
tic equation (7.2) in order to study the behavior of its solutions. However,
the logistic equation is an example of a nonlinear first order equation that
is solvable. It is also an example of a general Riccati equation, a first order
differential equation quadratic in the unknown function.

The general form of the Riccati equation is

The Riccati equation is named after the
Italian mathematician Jacopo Francesco
Riccati (1676-1754). When a(t) = 0, the
equation becomes a Bernoulli equation.

dy
dt

= a(t) + b(t)y + c(t)y2. (7.4)



nonlinear systems 263

As long as c(t) 6= 0, this equation can be reduced to a second order linear
differential equation through the transformation

y(t) = − 1
c(t)

x′(t)
x(t)

.

We will demonstrate the use of this transformation in obtaining the solution
of the logistic equation.

Example 7.3. Solve the logistic equation

dy
dt

= ky− cy2 (7.5)

using the transformation

y =
1
c

x′

x
.

differentiating this transformation with respect to t, we obtain

dy
dt

=
1
c

[
x′′

x
−
(

x′

x

)2
]

=
1
c

[
x′′

x
− (cy)2

]
=

1
c

x′′

x
− cy2. (7.6)

Inserting this result into the logistic equation (7.5), we have

1
c

x′′

x
− cy2 = k

1
c

(
x′

x

)
− cy2.

Simplifying, we see that the logistic equation has been reduced to a
second order linear, differential equation,

x′′ = kx′.

This equation is readily solved. One integration gives

x′(t) = Bekt.

A second integration gives

x(t) = A + Bekt,

where A and B are two arbitrary constants.
Inserting this result into the Riccati transformation, we obtain

y(t) =
1
c

x′

x
=

kBekt

c(A + Bekt)
.

It appears that we have two arbitrary constants. However, we started
out with a first order differential equation and so we expect only one
arbitrary constant. We can resolve this dilemma by dividing1 the nu- 1 This general solution holds for B 6= 0. If

B = 0, then we have x(t) = A and, thus,
y(t) is the constant equilibrium solution.

merator and denominator by Bekt and defining C = A
B . Then, we have

the solution
y(t) =

k/c
1 + Ce−kt , (7.7)

showing that there really is only one arbitrary constant in the solution.
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Plots of the solution (7.7) of the logistic equation for different initial con-
ditions gives the solutions seen in the last section. In particular, setting all
of the constants to unity, we have the sigmoid function,

y(t) =
1

1 + e−t .

This is the signature S-shaped curve of the logistic model as shown in Fig-
ure 7.4. We should note that this is not the only way to obtain the solution
to the logistic equation, though this approach has provided us with an in-
troduction to Riccati equations. A more direct approach would be to use
separation of variables on the logistic equation, which is Problem 1.

x

y

−5 −3 −1 1 3 5

0.5

1

Figure 7.4: Plot of the sigmoid function.

7.3 Autonomous First Order Equations

In this section we will study the stability of nonlinear first order
autonomous equations. We will then extend this study in the next section
to looking at families of first order equations which are connected through
a parameter.

Recall that a first order autonomous equation is given in the form

dy
dt

= f (y). (7.8)

We will assume that f and ∂ f
∂y are continuous functions of y, so that we know

that solutions of initial value problems exist and are unique.
A solution y(t) of Equation (7.8) is called an equilibrium solution, or a fixed

point solution, if it is a constant solution satisfying y′(t) = 0. Such solutions
are the roots of the right-hand side of the differential equation, f (y) = 0.

Example 7.4. Find the equilibrium solutions of y′ = 1− y2.
The equilibrium solutions are the roots of f (y) = 1− y2 = 0. The

equilibria are found to be y = ±1.

Once we have determined the equilibrium solutions, we would like to
classify them. Are they stable or unstable? As we had seen previously, we
are interested in the behavior of solutions near the equilibria. This classifica-
tion can be determined using a linearization of the given equation. This will
provide an analytic criteria to establish the stability of equilibrium solutions
without geometrically drawing the phase lines as we had done previously.Linearization of first order equations.

Let y∗ be an equilibrium solution of Equation (7.8). Then, any solution
can be written in the form

y(t) = y∗ + ξ(t),

where ξ(t) measures how far the solution is from the equilibrium at any
given time.

Inserting this form into Equation (7.8), we have

dξ

dt
= f (y∗ + ξ).
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We now consider small ξ(t) in order to study solutions near the equilibrium
solution. For such solutions, we can expand f (y) about the equilibrium
solution,

f (y∗ + ξ) = f (y∗) + f ′(y∗)ξ +
1
2!

f ′′(y∗)ξ2 + · · · .

Since y∗ is an equilibrium solution, f (y∗) = 0, the first term in the Taylor
series vanishes. If the first derivative does not vanish, then for solutions
close to equilibrium, we can neglect higher order terms in the expansion.
Then, ξ(t) approximately satisfies the differential equation

dξ

dt
= f ′(y∗)ξ. (7.9)

This is called a linearization of the original nonlinear equation about the
equilibrium point. This equation has exponential solutions for f ′(y∗) 6= 0,

ξ(t) = ξ0e f ′(y∗)t.

Now we see how the stability criteria arise. If f ′(y∗) > 0, ξ(t) grows
in time. Therefore, nearby solutions stray from the equilibrium solution for
large times. On the other hand, if f ′(y∗) < 0, ξ(t) decays in time and nearby
solutions approach the equilibrium solution for large t. Thus, we have the
results: The stability criteria for equilibrium so-

lutions of a first order differential equa-
tion.

f ′(y∗) < 0, y∗ is stable.
f ′(y∗) > 0, y∗ is unstable.

(7.10)

Example 7.5. Determine the stability of the equilibrium solutions of
y′ = 1− y2.

In the last example we found the equilibrium solutions, y∗ = ±1.
The stability criteria require computing

f ′(y∗) = −2y∗.

For this problem we have f ′(±1) = ∓2. Therefore, y∗ = 1 is a stable
equilibrium and y∗ = −1 is an unstable equilibrium.

Example 7.6. Find and classify the equilibria for the logistic equation
y′ = y− y2.

We had already investigated this problem using phase lines. There
are two equilibria, y = 0 and y = 1.

We next apply the stability criteria. Noting that f ′(y) = 1− 2y, the
first equilibrium solution gives f ′(0) = 1. So, y = 0 is an unstable
equilibrium. Since f ′(1) = −1 < 0, we see that y = 1 is a stable
equilibrium. These results are the same as we hade determined earlier
using phase lines.
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7.4 Bifurcations for First Order Equations

We now consider families of first order autonomous differential equa-
tions of the form

dy
dt

= f (y; µ).

Here µ is a parameter that we can change and then observe the resulting
behaviors of the solutions of the differential equation. When a small change
in the parameter leads to changes in the behavior of the solution, then the
system is said to undergo a bifurcation. The value of the parameter, µ, atBifurcations and bifurcation points.

which the bifurcation occurs is called a bifurcation point.
We will consider several generic examples, leading to special classes of

bifurcations of first order autonomous differential equations. We will study
the stability of equilibrium solutions using both phase lines and the stability
criteria developed in the last section

µ

y

y =
√

µ

y = −√µ

y = 0

Figure 7.5: Phase lines for y′ = y2 − µ.
On the right µ > 0 and on the left µ < 0.

Example 7.7. y′ = y2 − µ.
First note that equilibrium solutions occur for y2 = µ. In this prob-

lem, there are three cases to consider.

1. µ > 0.

In this case there are two real solutions of y2 = µ, y = ±√µ. Note that
y2− µ < 0 for |y| < √µ. So, we have the right phase line in Figure 7.5.

2. µ = 0.

There is only one equilibrium point at y = 0. The equation becomes
y′ = y2. It is obvious that the right side of this equation is never
negative. So, the phase line, which is shown as the middle line in
Figure 7.5, has upward pointing arrows.

3. µ < 0.

In this case there are no equilibrium solutions. Since y2 − µ > 0, the
slopes for all solutions are positive as indicated by the last phase line
in Figure 7.5.

We can also confirm the behaviors of the equilibrium points by not-
ing that f ′(y) = 2y. Then, f ′(±√µ) = ±2

√
µ for µ ≥ 0. Therefore, the

equilibria y = +
√

µ are unstable equilibria for µ > 0. Similarly, the
equilibria y = −√µ are stable equilibria for µ > 0.

We can combine these results for the phase lines into one diagram
known as a bifurcation diagram. We will plot the equilibrium solu-
tions and their phase lines y = ±√µ in the µy-plane. We begin by
lining up the phase lines for various µ’s. These are shown on the left
side of Figure 7.6. Note the pattern of equilibrium points lies on the
parabolic curve y2 = µ. The upper branch of this curve is a collection
of unstable equilibria and the bottom is a stable branch. So, we can
dispose of the phase lines and just keep the equilibria. However, we
will draw the unstable branch as a dashed line and the stable branch
as a solid line.
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µ

y

(a) (b)

Figure 7.6: (a) The typical phase lines
for y′ = y2 − µ. (b) Bifurcation diagram
for y′ = y2 − µ. This is an example of a
saddle-node bifurcation.

The bifurcation diagram is displayed on the right side of Figure
7.6. This type of bifurcation is called a saddle-node bifurcation. The
point µ = 0 at which the behavior changes is the bifurcation point. As
µ changes from negative to positive values, the system goes from having no
equilibria to having one stable and one unstable equilibrium point.

Example 7.8. y′ = y2 − µy.
Writing this equation in factored form, y′ = y(y− µ), we see that

there are two equilibrium points, y = 0 and y = µ. The behavior of the
solutions depends upon the sign of y′ = y(y− µ). This leads to four
cases with the indicated signs of the derivative. The regions indicating
the signs of y′ are shown in Figure 7.7. µ

y
y = µ

1

y′ > 0

2

y′ < 0

3

y′ < 0

4

y′ > 0

Figure 7.7: The regions indicating the
different signs of the derivative for y′ =
y2 − µy.

1. y > 0, y− µ > 0⇒ y′ > 0.

2. y < 0, y− µ > 0⇒ y′ < 0.

3. y > 0, y− µ < 0⇒ y′ < 0.

4. y < 0, y− µ < 0⇒ y′ > 0.

The corresponding phase lines and superimposed bifurcation dia-
gram are shown in figure 7.8. The bifurcation diagram is on the right
side of Figure 7.8 and this type of bifurcation is called a transcritical
bifurcation.

Again, the stability can be determined from the derivative f ′(y) =
2y− µ evaluated at y = 0, µ. From f ′(0) = −µ, we see that y = 0 is
stable for µ > 0 and unstable for µ < 0. Similarly, f ′(µ) = µ implies
that y = µ is unstable for µ > 0 and stable for µ < 0. These results are
consistent with the phase line plots.

Example 7.9. y′ = y3 − µy.
For this last example, we find from y3 − µy = y(y2 − µ) = 0 that

there are two cases.

1. µ < 0. In this case there is only one equilibrium point at y = 0. For
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Figure 7.8: (a) Collection of phase lines
for y′ = y2 − µy. (b) Bifurcation diagram
for y′ = y2 − µy. This is an example of a
transcritical bifurcation.

µ

y

y = 0

(a) (b)

positive values of y we have that y′ > 0 and for negative values of y
we have that y′ < 0. Therefore, this is an unstable equilibrium point.

2. µ > 0. Here we have three equilibria, y = 0,±√µ. A careful investiga-
tion shows that y = 0 is a stable equilibrium point and that the other
two equilibria are unstable.

Figure 7.9: (a) The phase lines for y′ =
y3 − µy. The left one corresponds to µ <
0 and the right phase line is for µ > 0.
(b)Bifurcation diagram for y′ = y3 − µy.
This is an example of a pitchfork bifur-
cation.

µ

y

y = 0

y =
√

µ

y = −√µ

(a) (b)

In Figure 7.9 we show the phase lines for these two cases. The
corresponding bifurcation diagram is then sketched on the right side
of Figure 7.9. For obvious reasons this has been labeled a pitchfork
bifurcation.When two of the prongs of the pitchfork

are unstable branches, the bifurcation is
called a subcritical pitchfork bifurcation.
When two prongs are stable branches,
the bifurcation is a supercritical pitch-
fork bifurcation.

Since f ′(y) = 3y2 − µ, the stability analysis gives that f ′(0) = −µ.
So, y = 0 is stable for µ > 0 and unstable for µ < 0. For µ > 0, we have
that f ′(±√µ) = 2µ. Therefore, y = ±√µ, µ > 0, is unstable. Thus, we
have a subcritical pitchfork bifurcation.
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7.5 The Stability of Fixed Points in Nonlinear Systems

We next investigate the stability of the equilibrium solutions

of the nonlinear pendulum which we first encountered in Section 2.3.2.
Along the way we will develop some basic methods for studying the sta-
bility of equilibria in nonlinear systems in general.

Recall that the derivation of the pendulum equation was based upon a
simple point mass m hanging on a string of length L from some support as
shown in Figure 7.10. One pulls the mass back to some starting angle, θ0,
and releases it. The goal is to find the angular position as a function of time,
θ(t).

L

m

O

Figure 7.10: A simple pendulum consists
of a point mass m attached to a string of
length L. It is released from an angle θ0.

In Chapter 2 we derived the nonlinear pendulum equation,

Lθ̈ + g sin θ = 0. (7.11)

There are several variations of Equation (7.11) which we have used in this
text. The first one is the linear pendulum, which was obtained using a small
angle approximation,

Lθ̈ + gθ = 0. (7.12)

We also made the system more realistic by adding damping and forcing. A
variety of these oscillation problems are summarized in the table below.

Equations for Pendulum Motion

1. Nonlinear Pendulum: Lθ̈ + g sin θ = 0.

2. Damped Nonlinear Pendulum: Lθ̈ + bθ̇ + g sin θ = 0.

3. Linear Pendulum: Lθ̈ + gθ = 0.

4. Damped Linear Pendulum: Lθ̈ + bθ̇ + gθ = 0.

5. Forced Damped Nonlinear Pendulum: Lθ̈ + bθ̇ + g sin θ = F cos ωt.

6. Forced Damped Linear Pendulum: Lθ̈ + bθ̇ + gθ = F cos ωt.

There are two simple systems that we will consider, the damped linear
pendulum, in the form

x′′ + bx′ + ω2x = 0

and the the damped nonlinear pendulum, in the form

x′′ + bx′ + ω2 sin x = 0.

These are second order differential equations and can be cast as a system of
two first order differential equations using the methods of Chapter 6.

The linear equation can be written as

x′ = y,

y′ = −by−ω2x. (7.13)
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This system has only one equilibrium solution, x = 0, y = 0.
The damped nonlinear pendulum takes the form

x′ = y,

y′ = −by−ω2 sin x. (7.14)

This system also has the equilibrium solution x = 0, y = 0. However, there
are actually an infinite number of solutions. The equilibria are determined
from

y = 0 and − by−ω2 sin x = 0. (7.15)

These equations imply that y = 0 and sin x = 0. There are an infinite number
of solutions to the latter equation: x = nπ, n = 0,±1,±2, . . . . So, this system
has an infinite number of equilibria, (nπ, 0), n = 0,±1,±2, . . . .

The next step is to determine the stability of the equilibrium solutions
these systems. This can be accomplished just as we had done for first order
equations. To do this we need a more general theory for nonlinear systems.
So, we will develop the needed machinery.

We begin with the n−dimensional system

x′ = f(x), x ∈ Rn. (7.16)

Here f : Rn → Rn is a mapping from Rn to Rn. We define the equilibrium
solutions, or fixed points, of this system as the points x∗ satisfying f(x∗) = 0.Linear stability analysis of systems.

The stability in the neighborhood of equilibria will now be determined.
We are interested in what happens to solutions of the system with initial
conditions starting near a fixed point. We will represent a general point in
the plane, which is near the fixed point, in the form x = x∗+ ξ. We note that
the length of ξ gives an indication of how close we are to the fixed point.
So, we consider that initially, |ξ| � 1.

x

y

x∗

x = x∗ + ξ

ξ

Figure 7.11: A general point in the plane,
which is near the fixed point, in the form
x = x∗ + ξ,

As the system evolves, ξ will change. The change of ξ in time is in turn
governed by a system of equations. We can approximate this evolution as
follows. First, we note that

x′ = ξ′.

Next, we have that
f(x) = f(x∗ + ξ).

We can expand the right side about the fixed point using a multidimensional
version of Taylor’s Theorem. Thus, we have that

f(x∗ + ξ) = f(x∗) + Df(x∗)ξ + O(|ξ|2).

Here Df(x) is the Jacobian matrix, defined asThe Jacobian matrix.

Df(x∗) ≡



∂ f1
∂x1

∂ f1
∂x2

· · · ∂ f1
∂xn

∂ f2
∂x1

. . . . . .
...

...
. . . . . .

...
∂ fn
∂x1

· · · · · · ∂ fn
∂xn

 .
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Noting that f(x∗) = 0, we then have that system (7.16) becomes

ξ ′ ≈ Df(x∗)ξ. (7.17)

It is this equation which describes the behavior of the system near the fixed
point. As with first order equations, we say that system (7.16) has been
linearized or that Equation (7.17) is the linearization of system (7.16). Linearization of the system x′ = f(x).

The stability of the equilibrium point of the nonlinear system is now re-
duced to analyzing the behavior of the linearized system given by Equation
(7.17). We can use the methods from the last two chapters to investigate the
eigenvalues of the Jacobian matrix evaluated at each equilibrium point. We
will demonstrate this procedure with several examples.

Example 7.10. Determine the equilibrium points and their stability for
the system

x′ = −2x− 3xy,

y′ = 3y− y2. (7.18)

We first determine the fixed points. Setting the right-hand side
equal to zero and factoring, we have

−x(2 + 3y) = 0,

y(3− y) = 0. (7.19)

From the second equation, we see that either y = 0 or y = 3. The
first equation then gives x = 0 in either case. So, there are two fixed
points: (0, 0) and (0, 3).

Next, we linearize the system of differential equations about each
fixed point. First, we note that the Jacobian matrix is given by

Df(x, y) =

(
−2− 3y −3x

0 3− 2y

)
. (7.20)

1. Case I Equilibrium point (0, 0).

In this case we find that

Df(0, 0) =

(
−2 0
0 3

)
. (7.21)

Therefore, the linearized equation becomes

ξ ′ =

(
−2 0
0 3

)
ξ. (7.22)

This is equivalently written out as the system

ξ ′1 = −2ξ1,

ξ ′2 = 3ξ2. (7.23)

This is the linearized system about the origin. Note the similarity with
the original system.
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We should emphasize that the linearized equations are constant co-
efficient equations and we can use matrix methods to determine the
nature of the equilibrium point. The eigenvalues of this system are
obviously λ = −2, 3. Therefore, we have that the origin is a saddle
point.

2. Case II Equilibrium point (0, 3).

Again we evaluate the Jacobian matrix at the equilibrium point and
look at its eigenvalues to determine the type of fixed point. The Jaco-
bian matrix for this case becomes

Df(0, 3) =

(
−11 0

0 −3

)
. (7.24)

The eigenvalues are λ = −11,−3. So, this fixed point is a stable node.

Figure 7.12: Phase plane for the system
x′ = −2x− 3xy, y′ = 3y− y2.

This analysis has given us a saddle and a stable node. We know
what the behavior is like near each fixed point, but we have to resort to
other means to say anything about the behavior far from these points.
The phase portrait for this system is given in Figure 7.12. You should
be able to locate the saddle point and the node in the figure. Notice
how solutions behave in regions far from these points.

We can expect to be able to perform a linearization under general condi-
tions. These are given in the Hartman-Großman Theorem:

Theorem 7.1. A continuous map exists between the linear and nonlinear systems
when Df(x∗) does not have any eigenvalues with zero real part.

Generally, there are several types of behavior that one can see in non-
linear systems. One can see sinks or sources, hyperbolic (saddle) points,
elliptic points (centers) or foci. We have defined some of these for planar
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systems. In general, if at least two eigenvalues have real parts with opposite
signs, then the fixed point is a hyperbolic point. If the real part of a nonzero
eigenvalue is zero, then we have a center, or elliptic point.

For linear systems in the plane, this classification was done in Chapter 6.
The Jacobian matrix evaluated at the equilibrium points is simply the 2× 2
coefficient matrix we had called A.

J =

(
a b
c d

)
. (7.25)

Here we are using J = Df(x∗).
The eigenvalue equation is given by

λ2 − (a + d)λ + (ad− bc) = 0.

However, a + d is the trace, tr(J) and det(J) = ad − bc. Therefore, we can
write the eigenvalue equation as

λ2 − tr(J)λ + det(J) = 0.

The solution of this equation is found using the quadratic formula,

λ =
1
2

[
−tr(J)±

√
tr2(J)− 4det(J)

]
.

We had seen in previous chapter that equilibrium points in planar sys-
tems can be classified as nodes, saddles, centers, or spirals (foci). The type
of behavior can be determined from solutions of the eigenvalue equation.
Since the nature of the eigenvalues depends on the trace and determinant
of the Jacobian matrix at the equilibrium point, we can relate the types of
equilibria to points in the det-tr plane. This is shown in Figure 7.13, which
is similar to Figure 6.25.

In Figure 7.13 the parabola tr2(J) = 4det(J) divides the det-tr plane.
Points on this curve give a vanishing discriminant in the computation of the
eigenvalues. In these cases one finds repeated roots, or eigenvalues. Along
this curve one can find stable and unstable degenerate nodes. Also along
this line are stable and unstable proper nodes, called star nodes. These arise
from systems of the form x′ = ax, y′ = ay.

In the case that det(J) < 0, we have that the discriminant

∆ ≡ tr2(J)− 4det(J)

is positive. Not only that, ∆ > tr2(J). Thus, we obtain two real and distinct
eigenvalues with opposite signs. These lead to saddle points.

In the case that det(J) > 0, we can have either ∆ > 0 or ∆ < 0. The
discriminant is negative for points inside the parabolic curve. It is in this
region that one finds centers and spirals, corresponding to complex eigen-
values. When tr(J) > 0, there are unstable spirals. There are stable spirals
when tr(J) < 0. For the case that tr(J) = 0, the eigenvalues are pure imagi-
nary, giving centers.

There are several other types of behavior depicted in the figure, but we
will now turn to studying a few of examples.
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Figure 7.13: Diagram indicating the be-
havior of equilibrium points in the det−
tr plane. The parabolic curve

tr2(J) = 4det(J)

indicates where the discriminant van-
ishes.

det(J)

tr(J)

tr2(J) = 4det(J)
unstable nodes

stable nodes

saddles

centers

unstable spirals

stable spirals

unstable lines

stable lines

degenerate nodes

degenerate nodes

Example 7.11. Find and classify all of the equilibrium solutions of the
nonlinear system

x′ = 2x− y + 2xy + 3(x2 − y2),

y′ = x− 3y + xy− 3(x2 − y2). (7.26)

In Figure 7.14 we show the direction field for this system. Try to
locate and classify the equilibrium points visually. After the stability
analysis, you should return to this figure and determine if you identi-
fied the equilibrium points correctly.

We will first determine the equilibrium points. Setting the right-
hand side of each differential equation to zero, we have

2x− y + 2xy + 3(x2 − y2) = 0,

x− 3y + xy− 3(x2 − y2) = 0. (7.27)

This system of algebraic equations can be solved exactly. Adding the
equations, we have

3x− 4y + 3xy = 0.



nonlinear systems 275

Figure 7.14: Phase plane for the system

x′ = 2x− y + 2xy + 3(x2 − y2),

y′ = x− 3y + xy− 3(x2 − y2).

Solving for x,

x =
4y

3(1 + y)
,

and substituting the result for x into the first algebraic equation, we
find an equation for y :

y(1− y)(9y2 + 22y + 5)
3(1 + y)2 = 0.

The solutions to this equation are

y = 0, 1,−11
9
± 2

9

√
19.

The corresponding values for x are

x = 0,
2
3

, 1∓
√

19
3

.

Now that we have located the equilibria, we can classify them. The
Jacobian matrix is given by

Df(x, y) =

(
6x + 2y + 2 2x− 6y− 1
−6x + y + 1 x + 6y− 3

)
. (7.28)

Now, we evaluate the Jacobian at each equilibrium point and find the
eigenvalues.

1. Case I. Equilibrium point (0, 0).

In this case we find that

Df(0, 0) =

(
−2 −1
1 −3

)
. (7.29)

The eigenvalues of this matrix are λ = − 1
2 ±

√
21
2 . Therefore, the origin

is a saddle point.
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2. Case II. Equilibrium point ( 2
3 , 1).

Again we evaluate the Jacobian matrix at the equilibrium point and
look at its eigenvalues to determine the type of fixed point. The Jaco-
bian matrix for this case becomes

Df
(

2
3

, 1
)
=

(
8 − 17

3
−2 11

3

)
. (7.30)

The eigenvalues are λ = 35
6 ±

√
577
6 ≈ 9.84, 1.83. This fixed point is an

unstable node.

3. Case III. Equilibrium point (1∓
√

19
3 ,− 11

9 ±
2
9

√
19).

The Jacobian matrix for this case becomes

Df

(
1∓
√

19
3

,−11
9
± 2

9

√
19

)
=

(
50
9 ∓

14
9

√
19 25

3 ∓ 2
√

19
− 56

9 ±
20
9

√
19 − 28

3 ±
√

19

)
.

(7.31)
There are two equilibrium points under this case. The first is given by

(1−
√

19
3

,−11
9

+
2
9

√
19) ≈ (0.453,−0.254).

The eigenvalues for this point are

λ = −17
9
− 5

18

√
19± 1

18

√
3868
√

19− 16153.

These are approximately −4.58 and −1.62 So, this equilibrium point
is a stable node.

The other equilibrium is (1 +
√

19
3 ,− 11

9 −
2
9

√
19) ≈ (2.45,−2.19). The

corresponding eigenvalues are complex with negative real parts,

λ = −17
9

+
5

18

√
19± i

18

√
16153 + 3868

√
19,

or λ ≈ −0.678± 10.1i. This point is a stable spiral.

Plots of the phase plane are given in Figures 7.12 and 7.14. The
reader can look at the direction field and verify these results for the
behavior of equilibrium solutions. A zoomed in view is shown in
Figure 7.15 with several orbits indicated.

Example 7.12. Damped Nonlinear Pendulum Equilibria
We are now ready to establish the behavior of the fixed points of

the damped nonlinear pendulum system in Equation (7.14). Recall
that the system for the damped nonlinear pendulum was given by

x′ = y,

y′ = −by−ω2 sin x. (7.32)

For a damped system, we will need b > 0. We had found that there are
an infinite number of equilibrium points at (nπ, 0), n = 0,±1,±2, . . . .
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Figure 7.15: A closer look at the phase
plane for the system

x′ = 2x− y + 2xy + 3(x2 − y2),

y′ = x− 3y + xy− 3(x2 − y2)

with a few trajectories shown.

The Jacobian matrix for this systems is

Df(x, y) =

(
0 1

−ω2 cos x −b

)
. (7.33)

Evaluating this matrix at the fixed points, we find that

Df(nπ, 0) =

(
0 1

−ω2 cos nπ −b

)
=

(
0 1

(−1)n+1ω2 −b

)
. (7.34)

The eigenvalue equation is given by

λ2 + bλ + (−1)nω2 = 0.

There are two cases to consider: n even and n odd. For the first
case, we find the eigenvalues

λ =
−b±

√
b2 − 4ω2

2
.

For b2 < 4ω2, we have two complex conjugate roots with a negative
real part. Thus, we have stable foci for even n values. If there is no
damping, then we obtain centers (λ = ±iω).

In the second case, n odd, we find

λ =
−b±

√
b2 + 4ω2

2
.

Since b2 + 4ω2 > b2, these roots will be real with opposite signs. Thus,
we have hyperbolic points, or saddles. If there is no damping, the
eigenvalues reduce to λ = ±ω.

In Figure (7.16) we show the phase plane for the undamped nonlin-
ear pendulum with ω = 1.25. We see that we have a mixture of centers
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Figure 7.16: Phase plane for the un-
damped nonlinear pendulum. Solution
curves are shown for initial conditions
(x0, y0) = (0, 3), (0, 2), (0, 1), (5, 1).

and saddles. There are orbits for which there is periodic motion. In
the case that θ = π we have an inverted pendulum. This is an un-
stable position and this is reflected in the presence of saddle points,
especially if the pendulum is constructed using a massless rod.

There are also unbounded orbits, going through all possible angles.
These correspond to the mass spinning around the pivot in one direc-
tion forever due to initially having large enough energies.

We have indicated in the figure solution curves with the initial
conditions (x0, y0) = (0, 3), (0, 2), (0, 1), (5, 1). These show the various
types of motions that we have described.

Figure 7.17: Phase plane for the
damped nonlinear pendulum. Solution
curves are shown for initial conditions
(x0, y0) = (0, 3), (0, 2), (0, 1), (5, 1).

When there is damping, we see that we can have a variety of other be-
haviors as seen in Figure (7.17). In this example we have set b = 0.08 and
ω = 1.25. We see that energy loss results in the mass settling around one of
the stable fixed points. This leads to an understanding as to why there are
an infinite number of equilibria, even though physically the mass traces out
a bound set of Cartesian points. We have indicated in the Figure (7.17) so-
lution curves with the initial conditions (x0, y0) = (0, 3), (0, 2), (0, 1), (5, 1).

In Figure 7.18 we show a region of the phase plane which corresponds to
oscillations about x = 0. For small angles the pendulum oscillates following
somewhat elliptical orbits. As the angles get larger, due to greater initial
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Figure 7.18: Several orbits in the phase
plane for the undamped nonlinear pen-
dulum with ω = 5.0. The orbits sur-
round a center at (0, 0). At the edges
there are saddle points, (±π, 0).

energies, these orbits begin to change from ellipses to other periodic orbits.
There is a limiting orbit, beyond which one has unbounded motion. The
limiting orbit connects the saddle points on either side of the center. The
curve is called a separatrix and being that these trajectories connect two
saddles, they are often referred to as heteroclinic orbits. Heteroclinc orbits and separatrices.

In Figures 7.19-7.19 we show more orbits, including both bound and un-
bound motion beyond the interval x ∈ [−π, π]. For both plots we have
chosen ω = 5 and the same set of initial conditions, x(0) = πk/10, k =

−20, . . . , 20. for y(0) = 0,±10. The time interval is taken for t ∈ [−3, 3]. The
only difference is that in the damped case we have b = 0.5. In these plots
one can see what happens to the heteroclinic orbits and nearby unbounded
orbits under damping.

Figure 7.19: Several orbits in the phase
plane for the undamped nonlinear pen-
dulum with ω = 5.0.

Before leaving this problem, we should note that the orbits in the phase
plane for the undamped nonlinear pendulum can be obtained graphically.
Recall from Equation (7.70), the total mechanical energy for the nonlinear
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Figure 7.20: Several orbits in the phase
plane for the damped nonlinear pendu-
lum with ω = 5.0 and b = 0.5.

pendulum is

E =
1
2

mL2θ̇2 + mgL(1− cos θ).

From this equation we obtained Equation (7.71),

1
2

θ̇2 −ω2 cos θ = −ω2 cos θ0.

Letting y = θ̇, x = θ, and defining z = −ω2 cos θ0, this equation can be
written as

1
2

y2 −ω2 cos x = z. (7.35)

For each energy (z), this gives a constant energy curve. Plotting the family
of energy curves we obtain the phase portrait shown in Figure 7.21.

Figure 7.21: A family of energy curves in
the phase plane for 1

2 θ̇2 − ω2 cos θ = z.
Here we took ω = 1.0 and z ∈ [−5, 15].

7.6 Nonlinear Population Models

We have already encountered several models of population dy-
namics in this and previous chapters. Of course, one could dream up sev-
eral other examples. While such models might seem far from applications
in physics, it turns out that these models lead to systems od differential
equations which also appear in physical systems such as the coupling of
waves in lasers, in plasma physics, and in chemical reactions.
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Two well-known nonlinear population models are the predator-prey and
competing species models. In the predator-prey model, one typically has
one species, the predator, feeding on the other, the prey. We will look at
the standard Lotka-Volterra model in this section. The competing species The Lotka-Volterra model is named after

Alfred James Lotka (1880-1949) and Vito
Volterra (1860-1940).

model looks similar, except there are a few sign changes, since one species
is not feeding on the other. Also, we can build in logistic terms into our
model. We will save this latter type of model for the homework.

The Lotka-Volterra model takes the form The Lotka-Volterra model of population
dynamics.

ẋ = ax− bxy,

ẏ = −dy + cxy, (7.36)

where a, b, c, and d are positive constants. In this model, we can think of x as
the population of rabbits (prey) and y is the population of foxes (predators).
Choosing all constants to be positive, we can describe the terms.

• ax: When left alone, the rabbit population will grow. Thus a is the
natural growth rate without predators.

• −dy: When there are no rabbits, the fox population should decay.
Thus, the coefficient needs to be negative.

• −bxy: We add a nonlinear term corresponding to the depletion of the
rabbits when the foxes are around.

• cxy: The more rabbits there are, the more food for the foxes. So, we
add a nonlinear term giving rise to an increase in fox population.

Example 7.13. Determine the equilibrium points and their stability for
the Lotka-Volterra system.

The analysis of the Lotka-Volterra model begins with determining
the fixed points. So, we have from Equation (7.36)

x(a− by) = 0,

y(−d + cx) = 0. (7.37)

Therefore, the origin, (0, 0), and ( d
c , a

b ) are the fixed points.
Next, we determine their stability, by linearization about the fixed

points. We can use the Jacobian matrix, or we could just expand the
right-hand side of each equation in (7.36) about the equilibrium points
as shown in he next example. The Jacobian matrix for this system is

D f (x, y) =

(
a− by −bx

cy −d + cx

)
.

Evaluating at each fixed point, we have

D f (0, 0) =

(
a 0
0 −d

)
, (7.38)

D f
(

d
c

,
a
b

)
=

(
0 − bd

c
ac
b 0

)
. (7.39)
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The eigenvalues of (7.38) are λ = a,−d. So, the origin is a saddle
point.

The eigenvalues of (7.39) satisfy λ2 + ad = 0. So, the other point
is a center. In Figure 7.22 we show a sample direction field for the
Lotka-Volterra system.

Figure 7.22: Phase plane for the Lotka-
Volterra system given by ẋ = x − 0.2xy,
ẏ = −y + 0.2xy. Solution curves are
shown for initial conditions (x0, y0) =
(8, 3), (1, 5).

Another way to carry out the linearization of the system of differential
equations is to expand the equations about the fixed points. For fixed points
(x∗, y∗), we let

(x, y) = (x∗ + u, y∗ + v).

Inserting this translation of the origin into the equations of the system, and
dropping nonlinear terms in u and v, results in the linearized system. This
method is equivalent to analyzing the Jacobian matrix for each fixed point.

Direct linearization of a system is car-
ried out by introducing x = x∗ + ξ, or
(x, y) = (x∗ + u, y∗ + v) into the system
and dropping nonlinear terms in u and
v. Example 7.14. Expand the Lotka-Volterra system about the equilib-

rium points.
For the origin (0, 0) the linearization about the origin amounts to

simply dropping the nonlinear terms. In this case we have

u̇ = au,

v̇ = −dv. (7.40)

The coefficient matrix for this system is the same as D f (0, 0).
For the second fixed point, we let

(x, y) =
(

d
c
+ u,

a
b
+ v
)

.

Inserting this transformation into the system gives

u̇ = a
(

d
c
+ u

)
− b

(
d
c
+ u

)( a
b
+ v
)

,

v̇ = −d
( a

b
+ v
)
+ c

(
d
c
+ u

)( a
b
+ v
)

. (7.41)
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Expanding, we obtain

u̇ =
ad
c
+ au− b

(
ad
bc

+
d
c

v +
a
b

u + uv
)

,

v̇ = − ad
b
− dv + c

(
ad
bc

+
d
c

v +
a
b

u + uv
)

. (7.42)

In both equations the constant terms cancel and linearization is sim-
ply getting rid of the uv terms. This leaves the linearized system

u̇ = au− b
(

d
c

v +
a
b

u
)

,

v̇ = −dv + c
(
+

d
c

v +
a
b

u
)

, (7.43)

or

u̇ = − bd
c

v,

v̇ =
ac
b

u. (7.44)

The coefficient matrix for this linearized system is the same as

D f
(

d
c , a

b

)
. In fact, for nearby orbits, they are almost circular orbits.

From this linearized system, we have ü + adu = 0.
We can take u = A cos(

√
adt + φ), where A and φ can be deter-

mined from the initial conditions. Then,

v = − c
bd

u̇

=
c

bd
A
√

ad sin(
√

adt + φ)

=
c
b

√
a
d

A sin(
√

adt + φ). (7.45)

Therefore, the solutions near the center are given by

(x, y) =
(

d
c
+ A cos(

√
adt + φ),

a
b
+

c
b

√
a
d

A sin(
√

adt + φ)

)
.

For a = d = 1, b = c = 0.2, and initial values of (x0, y0) = (5.5, 5), these
solutions become

x(t) = 5.0 + 0.5 cos t, y(t) = 5.0 + 0.5 sin t.

Plots of these solutions are shown in Figure (7.23).
It is also possible to find a first integral of the Lotka-Volterra system

whose level curves give the phase portrait of the system. As we had done
in Chapter 2, we can write

dy
dx

=
ẏ
ẋ

=
−dy + cxy
ax− bxy

=
y(−d + cx)
x(a− by)

. (7.46)
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Figure 7.23: The linearized solutions of
Lotka-Volterra system ẋ = x − 0.2xy,
ẏ = −y + 0.2xy for the initial conditions
(x0, y0) = (5.5, 5).

This is an equation of the form seen in Problem 2.13. This equation is now
a separable differential equation. The solution this differential equation is
given in implicit form as

a ln y + d ln x− cx− by = C,

where C is an arbitrary constant. This expression is known as the first
integral of the Lotka-Volterra system. These level curves are shown in FigureThe first integral of the Lotka-Volterra

system.
7.24.

Figure 7.24: Phase plane for the Lotka-
Volterra system given by ẋ = x − 0.2xy,
ẏ = −y + 0.2xy based upon the first in-
tegral of the system.

7.7 Limit Cycles*

So far we have just been concerned with equilibrium solutions and
their behavior. However, asymptotically stable fixed points are not the only
attractors. There are other types of solutions, known as limit cycles, towards
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which a solution may tend. In this section we will look at some examples of
these periodic solutions.

Such solutions are common in nature. Rayleigh investigated the problem

x′′ + c
(

1
3
(x′)2 − 1

)
x′ + x = 0 (7.47)

in the study of the vibrations of a violin string. Balthasar van der Pol
(1889-1959) studied an electrical circuit, modeling this behavior. Others have
looked into biological systems, such as neural systems, chemical reactions,
such as Michaelis-Menten kinetics, and other chemical systems leading to
chemical oscillations. One of the most important models in the historical
study of dynamical systems is that of planetary motion and investigating
the stability of planetary orbits. As is well known, these orbits are periodic.

Limit cycles are isolated periodic solutions towards which neighboring
states might tend when stable. A key example exhibiting a limit cycle is
given in the next example.

Example 7.15. Find the limit cycle in the system

x′ = µx− y− x(x2 + y2)

y′ = x + µy− y(x2 + y2). (7.48)

It is clear that the origin is a fixed point. The Jacobian matrix is
given as

D f (0, 0) =

(
µ −1
1 µ

)
. (7.49)

The eigenvalues are found to be λ = µ± i. For µ = 0 we have a center.
For µ < 0 we have a stable spiral and for µ > 0 we have an unstable
spiral. However, this spiral does not wander off to infinity. We see in
Figure 7.25 that the equilibrium point is a spiral. However, in Figure
7.26 it is clear that the solution does not spiral out to infinity. It is
bounded by a circle.

Figure 7.25: Phase plane for system
(7.48) with µ = 0.4.

One can actually find the radius of this circle. This requires rewrit-
ing the system in polar form. Recall from Chapter 2 that we can
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Figure 7.26: Phase plane for system
(7.48) with µ = 0.4 showing that the in-
ner spiral is bounded by a limit cycle.

change derivatives of Cartesian coordinates to derivatives of polar co-
ordinates by using the relations

rr′ = xx′ + yy′, (7.50)

r2θ′ = xy′ − yx′. (7.51)

Inserting the system (7.48) into these expressions, we have

rr′ = µr2 − r4, r2θ′ = r2.

This leads to the system

r′ = µr− r3,

θ′ = 1. (7.52)

Of course, for a circle the radius is constant, r = const. Therefore,
in order to find the limit cycle, we need to look at the equilibrium
solutions of Equation (7.52). This amounts to finding the constant
solutions of µr − r3 = 0. The equilibrium solutions are r = 0,±√µ.
The limit cycle corresponds to the positive radius solution, r =

√
µ.

In Figures 7.25-7.26 we take µ = 0.4. In this case we expect a circle
with r =

√
0.4 ≈ 0.63. From the θ equation, we have that θ′ > 0. This

means that we follow the limit cycle in a counterclockwise direction as
time increases.

Limit cycles are not always circles. In Figures 7.27-7.28 we show the
behavior of the Rayleigh system (7.47) for c = 0.4 and c = 2.0. In this case
we see that solutions tend towards a noncircular limit cycle in a clockwise
direction.

A slight change of the Rayleigh system leads to the van der Pol equation:

x′′ + c(x2 − 1)x′ + x = 0 (7.53)

The limit cycle for c = 2.0 is shown in Figure 7.29.The van der Pol system.

Can one determine ahead of time if a given nonlinear system will have
a limit cycle? In order to answer this question, we will introduce some
definitions.
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Figure 7.27: Phase plane for the Rayleigh
system (7.47) with c = 0.4.

Figure 7.28: Phase plane for the van der
Pol system (7.53) with c = 2.0.

Figure 7.29: Phase plane for the van der
Pol system (7.53) with c = 0.4.
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φ(x, 0)

φ(x, t1)

φ(φ(x, t1), t2)

t1

t2

Figure 7.30: A sketch depicting the idea
of trajectory, or orbit, passing through x.Flows.

We first describe different trajectories and families of trajectories. A flow
on R2 is a function φ that satisfies the following

1. φ(x, t) is continuous in both arguments.

2. φ(x, 0) = x for all x ∈ R2.

3. φ(φ(x, t1), t2) = φ(x, t1 + t2).

The orbit, or trajectory, through x is defined as γ = {φ(x, t)|t ∈ I}. In FigureOrbits and trajectories.

7.30 we demonstrate these properties. For t = 0, φ(x, 0) = x. Increasing t,
one follows the trajectory until one reaches the point φ(x, t1). Continuing t2

further, one is then at φ(φ(x, t1), t2). By the third property, this is the same
as going from x to φ(x, t1 + t2) for t = t1 + t2.

Having defined the orbits, we need to define the asymptotic behavior of
the orbit for both positive and negative large times. We define the positive
semiorbit through x as γ+ = {φ(x, t)|t > 0}. The negative semiorbit through x
is defined as γ− = {φ(x, t)|t < 0}. Thus, we have γ = γ+ ∪ γ−.Limit sets and limit points.

The positive limit set, or ω-limit set, of point x is defined as

Λ+ = {y| there exists a sequence of tn → ∞ such that φ(x, tn)→ y}.

The y’s are referred to as ω-limit points. This is shown in Figure 7.31.
Λ+

Figure 7.31: A sketch depicting an ω-
limit set. Note that the orbits tend to-
wards the set as t increases.

Similarly, we define the negative limit set, or the alpha-limit set, of point x
is defined as

Λ− = {y| there exists a sequences of tn → −∞ such that φ(x, tn)→ y}

and the corresponding y’s are α-limit points. This is shown in Figure 7.32.

Cycles and periodic orbits.
There are several types of orbits that a system might possess. A cycle

or periodic orbit is any closed orbit which is not an equilibrium point. A
periodic orbit is stable if for every neighborhood of the orbit such that all
nearby orbits stay inside the neighborhood. Otherwise, it is unstable. The
orbit is asymptotically stable if all nearby orbits converge to the periodic
orbit.

A limit cycle is a cycle which is the α or ω-limit set of some trajectory
other than the limit cycle. A limit cycle Γ is stable if Λ+ = Γ for all x in
some neighborhood of Γ. A limit cycle Γ is unstable if Λ− = Γ for all x in
some neighborhood of Γ. Finally, a limit cycle is semistable if it is attracting
on one side and repelling on the other side. In the previous examples, we
saw limit cycles that were stable. Figures 7.31 and 7.32 depict stable and
unstable limit cycles, respectively.

Λ−

Figure 7.32: A sketch depicting an α-
limit set. Note that the orbits tend away
from the set as t increases.

We now state a theorem which describes the type of orbits we might find
in our system.
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Theorem 7.2. Poincaré-Bendixon Theorem Let γ+ be contained in a
bounded region in which there are finitely many critical points. Then Λ+ is
either

1. a single critical point;

2. a single closed orbit;

3. a set of critical points joined by heteroclinic orbits.
[Compare Figures 7.33 and 7.34.]

Figure 7.33: A heteroclinic orbit connect-
ing two critical points.

Figure 7.34: A homoclinic orbit return-
ing to the point it left.

We are interested in determining when limit cycles may, or may not, exist.
A consequence of the Poincaré-Bendixon Theorem is given by the following
corollary.

Corollary Let D be a bounded closed set containing no critical points and
suppose that γ+ ⊂ D. Then there exists a limit cycle contained in D.

More specific criteria allow us to determine if there is a limit cycle in a
given region. These are given by Dulac’s Criteria and Bendixon’s Criteria.

Dulac’s Criteria Consider the autonomous planar system

x′ = f (x, y), y′ = g(x, y)

and a continuously differentiable function ψ defined on an annular region
D contained in some open set. If

∂

∂x
(ψ f ) +

∂

∂y
(ψg)

does not change sign in D, then there is at most one limit cycle contained
entirely in D.

Bendixon’s Criteria Consider the autonomous planar system

x′ = f (x, y), y′ = g(x, y)

defined on a simply connected domain D such that

∂

∂x
(ψ f ) +

∂

∂y
(ψg) 6= 0

in D. Then, there are no limit cycles entirely in D.

Proof. These are easily proved using Green’s Theorem in the Plane. (See
your calculus text.) We prove Bendixon’s Criteria. Let f = ( f , g). Assume
that Γ is a closed orbit lying in D. Let S be the interior of Γ. Then∫

S
∇ · f dxdy =

∮
Γ
( f dy− g dx)

=
∫ T

0
( f ẏ− gẋ)dt

=
∫ T

0
( f g− g f )dt = 0. (7.54)
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So, if ∇ · f is not identically zero and does not change sign in S, then from
the continuity of∇ · f in S we have that the right side above is either positive
or negative. Thus, we have a contradiction and there is no closed orbit lying
in D

Example 7.16. Consider the earlier example in (7.48) with µ = 1.

x′ = x− y− x(x2 + y2)

y′ = x + y− y(x2 + y2). (7.55)

We already know that a limit cycle exists at x2 + y2 = 1. A simple
computation gives that

∇ · f = 2− 4x2 − 4y2.

For an arbitrary annulus a < x2 + y2 < b, we have

2− 4b < ∇ · f < 2− 4a.

For a = 3/4 and b = 5/4, −3 < ∇ · f < −1. Thus, ∇ · f < 0 in the
annulus 3/4 < x2 + y2 < 5/4. Therefore, by Dulac’s Criteria there is
at most one limit cycle in this annulus.

Example 7.17. Consider the system

x′ = y

y′ = −ax− by + cx2 + dy2. (7.56)

Let ψ(x, y) = e−2dx. Then,

∂

∂x
(ψy) +

∂

∂y
(ψ(−ax− by + cx2 + dy2)) = −be−2dx 6= 0.

We conclude by Bendixon’s Criteria that there are no limit cycles for
this system.

7.8 Nonautonomous Nonlinear Systems*

In this section we discuss nonautonomous systems. Recall that an
autonomous system is one in which there is no explicit time dependence. A
simple example is the forced nonlinear pendulum given by the nonhomo-
geneous equation

ẍ + ω2 sin x = f (t). (7.57)

We can set this up as a system of two first order equations:

ẋ = y

ẏ = −ω2 sin x + f (t). (7.58)
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This system is not in a form for which we could use the earlier methods.
Namely, it is a nonautonomous system. However, we introduce a new vari-
able z(t) = t and turn it into an autonomous system in one more dimension.
The new system takes the form

ẋ = y

ẏ = −ω2 sin x + f (z).

ż = 1. (7.59)

The system is now a three dimensional autonomous, possibly nonlinear,
system and can be explored using methods from Chapters 2 and 3.

xMagnet Magnet

Beam

Support

Γ cos(ωt + φ)

Figure 7.35: One model of the Duffing
equation describes a periodically forced
beam which interacts with two magnets.

A more interesting model is provided by the Duffing Equation. This
equation, named after Georg Wilhelm Christian Caspar Duffing (1861-1944),
models hard spring and soft spring oscillations. It also models a periodically
forced beam as shown in Figure 7.35. It is of interest because it is a simple
system which exhibits chaotic dynamics and will motivate us towards using
new visualization methods for nonautonomous systems.

The most general form of Duffing’s equation is given by the damped,
forced system

ẍ + kẋ + (βx3 ±ω2
0x) = Γ cos(ωt + φ). (7.60)

This equation models hard spring, (β > 0), and soft spring, (β < 0), oscil-
lations. However, we will use the simpler version of the Duffing equation:

ẍ + kẋ + x3 − x = Γ cos ωt. (7.61)

An equation of this form can be obtained by setting φ = 0 and rescaling x
and t in the original equation. We will explore the behavior of the system
as we vary the remaining parameters. In Figures 7.36-7.39 we show some
typical solution plots superimposed on the direction field. The undamped, unforced Duffing equa-

tion.We start with the undamped (k = 0) and unforced (Γ = 0) Duffing equa-
tion,

ẍ + x3 − x = 0.

We can write this second order equation as the autonomous system

ẋ = y

ẏ = x(1− x2). (7.62)

We see that there are three equilibrium points at (0, 0) and (±1, 0). In Figure
7.36 we plot several orbits for k = 0, and Γ = 0. We see that the three
equilibrium points consist of two centers and a saddle. The unforced Duffing equation.

We now turn on the damping. The system becomes

ẋ = y

ẏ = −ky + x(1− x2). (7.63)

In Figures 7.37 and 7.38 we show what happens when k = 0.1. These plots
are reminiscent of the plots for the nonlinear pendulum; however, there are
fewer equilibria. Note that the centers become stable spirals for k > 0.
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Figure 7.36: Phase plane for the un-
damped, unforced Duffing equation
(k = 0, Γ = 0).

Figure 7.37: Phase plane for the unforced
Duffing equation with k = 0.1 and Γ = 0.

Next we turn on the forcing to obtain a damped, forced Duffing equation.
The system is now nonautonomous.

ẋ = y

ẏ = x(1− x2) + Γ cos ωt. (7.64)

In Figure 7.39 we only show one orbit with k = 0.1, Γ = 0.5, and ω = 1.25.The damped, forced Duffing equation.

The solution intersects itself and look a bit messy. We can imagine what
we would get if we added any more orbits. For completeness, we show in
Figure 7.40 an example with four different orbits.

In cases for which one has periodic orbits such as the Duffing equation,
Poincaré introduced the notion of surfaces of section. One embeds the orbit
in a higher dimensional space so that there are no self intersections, like we
saw in Figures 7.39 and 7.40. In Figure 7.42 we show an example where a
simple orbit is shown as it periodically pierces a given surface.

In order to simplify the resulting pictures, one only plots the points at
which the orbit pierces the surface as sketched in Figure 7.41. In practice,
there is a natural frequency, such as ω in the forced Duffing equation. Then,
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Figure 7.38: Display of two orbits for the
unforced Duffing equation with k = 0.1
and Γ = 0.

Figure 7.39: Phase plane for the Duff-
ing equation with k = 0.1, Γ = 0.5, and
ω = 1.25. In this case we show only one
orbit which was generated from the ini-
tial condition (x0 = 1.0, y0 = 0.5).

one plots points at times that are multiples of the period, T = 2π
ω . In Figure

7.43 we show what the plot for one orbit would look like for the damped,
unforced Duffing equation.
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Figure 7.40: Phase plane for the Duffing
equation with k = 0.1, Γ = 0.5, and ω =
1.25. In this case four initial conditions
were used to generate four orbits.

Figure 7.41: As an orbit pierces the sur-
face of section, one plots the point of in-
tersection in that plane to produce the
surface of section plot.

The more interesting case, is when there is forcing and damping. In this
case the surface of section plot is given in Figure 7.44. While this is not as
busy as the solution plot in Figure 7.39, it still provides some interesting
behavior. What one finds is what is called a strange attractor. Plotting many
orbits, we find that after a long time, all of the orbits are attracted to a small
region in the plane, much like a stable node attracts nearby orbits. However,
this set consists of more than one point. Also, the flow on the attractor is
chaotic in nature. Thus, points wander in an irregular way throughout the
attractor. This is one of the interesting topics in chaos theory and this whole
theory of dynamical systems has only been touched in this text leaving the
reader to wander of into further depth into this fascinating field.

Figure 7.42: Poincaré’s surface of sec-
tion. One notes each time the orbit
pierces the surface.

The surface of section plots at the end of the last section were obtained
using code from S. Lynch’s book Dynamical Systems with Applications Using
Maple. For reference, the plots in Figures 7.36 and 7.37 were generated in
Maple using the following commands:

> with(DEtools):

> Gamma:=0.5:omega:=1.25:k:=0.1:

> DEplot([diff(x(t),t)=y(t), diff(y(t),t)=x(t)-k*y(t)-(x(t))^3
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Figure 7.43: Poincaré’s surface of section
plot for the damped, unforced Duffing
equation.
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Figure 7.44: Poincaré’s surface of sec-
tion plot for the damped, forced Duffing
equation. This leads to what is known as
a strange attractor.
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+ Gamma*cos(omega*t)], [x(t),y(t)],t=0..500,[[x(0)=1,y(0)=0.5],

[x(0)=-1,y(0)=0.5], [x(0)=1,y(0)=0.75], [x(0)=-1,y(0)=1.5]],

x=-2..2,y=-2..2, stepsize=0.1, linecolor=blue, thickness=1,

color=black);

7.9 The Period of the Nonlinear Pendulum*

Recall that the period of the simple pendulum is given by

T =
2π

ω
= 2π

√
L
g

(7.65)

for

ω ≡
√

g
L

. (7.66)

This was based upon the solving the linear pendulum equation (7.12). This
equation was derived assuming a small angle approximation. How good is
this approximation? What is meant by a small angle?

We recall that the Taylor series approximation of sin θ about θ = 0 :

sin θ = θ − θ3

3!
+

θ5

5!
+ . . . . (7.67)

One can obtain a bound on the error when truncating this series to one
term after taking a numerical analysis course. But we can just simply plot
the relative error, which is defined as

Relative Error =

∣∣∣∣ sin θ − θ

sin θ

∣∣∣∣ .

A plot of the relative error is given in Figure 7.45. Thus for θ ≈ 0.4 radians
(or, 23

o) we have that the relative error is about 2.6%.Relative error in sin θ approximation.

We would like to do better than this. So, we now turn to the nonlinear
pendulum equation (7.11) in the simpler form

θ̈ + ω2 sin θ = 0. (7.68)

Figure 7.45: The relative error in percent
when approximating sin θ by θ.

Solution of nonlinear pendulum equa-
tion. We next employ a technique that is useful for equations of the form

θ̈ + F(θ) = 0
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when it is easy to integrate the function F(θ). Namely, we note that

d
dt

[
1
2

θ̇2 +
∫ θ(t)

F(φ) dφ

]
= (θ̈ + F(θ))θ̇.

For the nonlinear pendulum problem, we multiply Equation (7.68) by θ̇,

θ̈θ̇ + ω2 sin θθ̇ = 0

and note that the left side of this equation is a perfect derivative. Thus,

d
dt

[
1
2

θ̇2 −ω2 cos θ

]
= 0.

Therefore, the quantity in the brackets is a constant. So, we can write

1
2

θ̇2 −ω2 cos θ = c. (7.69)

Solving for θ̇, we obtain

dθ

dt
=
√

2(c + ω2 cos θ).

This equation is a separable first order equation and we can rearrange
and integrate the terms to find that

t =
∫

dt =
∫ dθ√

2(c + ω2 cos θ)
.

Of course, we need to be able to do the integral. When one finds a so-
lution in this implicit form, one says that the problem has been solved by
quadratures. Namely, the solution is given in terms of some integral.

In fact, the above integral can be transformed into what is known as an
elliptic integral of the first kind. We will rewrite this result and then use
it to obtain an approximation to the period of oscillation of the nonlinear
pendulum, leading to corrections to the linear result found earlier.

We will first rewrite the constant found in (7.69). This requires a little
physics. The swinging of a mass on a string, assuming no energy loss at the
pivot point, is a conservative process. Namely, the total mechanical energy is
conserved. Thus, the total of the kinetic and gravitational potential energies
is a constant. The kinetic energy of the mass on the string is given as

T =
1
2

mv2 =
1
2

mL2θ̇2.

The potential energy is the gravitational potential energy. If we set the
potential energy to zero at the bottom of the swing, then the potential energy
is U = mgh, where h is the height that the mass is from the bottom of the
swing. A little trigonometry gives that h = L(1− cos θ). So,

U = mgL(1− cos θ).
Total mechanical energy for the nonlin-
ear pendulum.



298 differential equations

So, the total mechanical energy is

E =
1
2

mL2θ̇2 + mgL(1− cos θ). (7.70)

We note that a little rearranging shows that we can relate this result to
Equation (7.69). Dividing by m and L2 and using the definition of ω2 = g/L,
we have

1
2

θ̇2 −ω2 cos θ =
1

mL2 E−ω2.

Therefore, we have determined the integration constant in terms of the total
mechanical energy,

c =
1

mL2 E−ω2.

We can use Equation (7.70) to get a value for the total energy. At the top
of the swing the mass is not moving, if only for a moment. Thus, the kinetic
energy is zero and the total mechanical energy is pure potential energy.
Letting θ0 denote the angle at the highest angular position, we have that

E = mgL(1− cos θ0) = mL2ω2(1− cos θ0).

Therefore, we have found that

1
2

θ̇2 −ω2 cos θ = −ω2 cos θ0. (7.71)

We can solve for θ̇ and integrate the differential equation to obtain

t =
∫

dt =
∫ dθ

ω
√

2(cos θ − cos θ0)
.

Using the half angle formula,

sin2 θ

2
=

1
2
(1− cos θ),

we can rewrite the argument in the radical as

cos θ − cos θ0 = 2
[

sin2 θ0

2
− sin2 θ

2

]
.

Noting that a motion from θ = 0 to θ = θ0 is a quarter of a cycle, we have
that

T =
2
ω

∫ θ0

0

dθ√
sin2 θ0

2 − sin2 θ
2

. (7.72)

This result can now be transformed into an elliptic integral.2 We define

2 Elliptic integrals were first studied by
Leonhard Euler and Giulio Carlo de’
Toschi di Fagnano (1682-1766) , who
studied the lengths of curves such as the
ellipse and the lemniscate,

(x2 + y2)2 = x2 − y2. z =
sin θ

2

sin θ0
2

and
k = sin

θ0

2
.
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Then, Equation (7.72) becomes

T =
4
ω

∫ 1

0

dz√
(1− z2)(1− k2z2)

. (7.73)

This is done by noting that dz = 1
2k cos θ

2 dθ = 1
2k (1− k2z2)1/2 dθ and that

sin2 θ0
2 − sin2 θ

2 = k2(1− z2). The integral in this result is called the complete
elliptic integral of the first kind.

We note that the incomplete elliptic integral of the first kind is defined as

F(φ, k) ≡
∫ φ

0

dθ√
1− k2 sin2 θ

=
∫ sin φ

0

dz√
(1− z2)(1− k2z2)

.

Then, the complete elliptic integral of the first kind is given by K(k) = The complete and incomplete elliptic in-
tegrals of the first kind.F(π

2 , k), or

K(k) =
∫ π/2

0

dθ√
1− k2 sin2 θ

=
∫ 1

0

dz√
(1− z2)(1− k2z2)

.

Therefore, the period of the nonlinear pendulum is given by

T =
4
ω

K
(

sin
θ0

2

)
. (7.74)

There are table of values for elliptic integrals. However, one can use a
computer algebra system to compute values of such integrals. We will look
for small angle approximations.

For small angles (θ0 � π
2 ), we have that k is small. So, we can develop a

series expansion for the period, T, for small k. This is simply done by using
the binomial expansion,

(1− k2z2)−1/2 = 1 +
1
2

k2z2 +
3
8

k2z4 + O((kz)6)

Inserting this expansion into the integrand for the complete elliptic integral
and integrating term by term, we find that

T = 2π

√
L
g

[
1 +

1
4

k2 +
9

64
k4 + . . .

]
. (7.75)

The first term of the expansion gives the well known period of the simple
pendulum for small angles. The next terms in the expression give further
corrections to the linear result which are useful for larger amplitudes of os-
cillation. In Figure 7.46 we show the relative errors incurred when keeping
the k2 (quadratic) and k4 (quartic) terms as compared to the exact value of
the period.

7.10 Exact Solutions Using Elliptic Functions*

The solution in Equation (7.73) of the nonlinear pendulum equa-
tion led to the introduction of elliptic integrals. The incomplete elliptic
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Figure 7.46: The relative error in percent
when approximating the exact period of
a nonlinear pendulum with one (solid),
two (dashed), or three (dotted) terms in
Equation (7.75).

integral of the first kind is defined as

F(φ, k) ≡
∫ φ

0

dθ√
1− k2 sin2 θ

=
∫ sin φ

0

dz√
(1− z2)(1− k2z2)

. (7.76)

The complete integral of the first kind is given by K(k) = F(π
2 , k), or

K(k) =
∫ π/2

0

dθ√
1− k2 sin2 θ

=
∫ 1

0

dz√
(1− z2)(1− k2z2)

.

Elliptic integrals of the second kind are defined as

E(φ, k) =
∫ φ

0

√
1− k2 sin2 θ dθ =

∫ sin φ

0

√
1− k2t2
√

1− t2
dt (7.77)

E(k) =
∫ π/2

0

√
1− k2 sin2 θ dθ =

∫ 1

0

√
1− k2t2
√

1− t2
dt (7.78)

Recall, a first integration of the nonlinear pendulum equation from Equa-
tion (7.70), (

dθ

dt

)2
−ω2 cos θ = −ω2 cos θ0.

or (
dθ

dt

)2
= 2ω2

[
sin2 θ

2
− sin2 θ0

2

]
.

Letting

kz = sin
θ

2
and k = sin

θ0

2
,

the differential equation becomes

dz
dτ

= ±ω
√

1− z2
√

1− k2z2.

Applying separation of variables, we find

±ω(t− t0) =
1
ω

∫ z

1

dz√
1− z2

√
1− k2z2

(7.79)

=
∫ 1

0

dz√
1− z2

√
1− k2z2

−
∫ z

0

dz√
1− z2

√
1− k2z2

(7.80)

= K(k)− F(sin−1(k−1 sin θ), k). (7.81)
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The solution, θ(t), is then found by solving for z and using kz = sin θ
2 to

solve for θ. This requires that we know how to invert the elliptic integral,
F(z, k).

Elliptic functions result from the inversion of elliptic integrals. Consider

u(sin φ, k) = F(φ, k) =
∫ φ

0

dθ√
1− k2 sin2 θ

. (7.82)

=
∫ sin φ

0

dt√
(1− t2)(1− k2t2)

. (7.83)

Note:F(φ, 0) = φ and F(φ, 1) = ln(sec φ + tan φ). In these cases F is obvi-
ously monotone increasing and thus there must be an inverse.

The inverse of Equation (7.76) is defined as φ = F−1(u, k) = am(u, k),
where u = sin φ. The function am(u, k) is called the Jacobi amplitude func-
tion and k is the elliptic modulus. [In some references and software like
MATLAB packages, m = k2 is used as the parameter.] Three of the Jacobi
elliptic functions, shown in Figure 7.47, can be defined in terms of the am-
plitude function by

sn(u, k) = sin am(u, k) = sin φ,

cn(u, k) = cos am(u, k) = cos φ,

and the delta amplitude Jacobi elliptic functions.

dn(u, k) =
√

1− k2 sin2 φ.

They are related through the identities

cn2(u, k) + sn2(u, k) = 1, (7.84)

dn2(u, k) + k2 sn2(u, k) = 1. (7.85)

0 1 2 3 4 5 6 7
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Figure 7.47: Plots of the Jacobi elliptic
functions sn(u, k), cn(u, k), and dn(u, k)
for m = k2 = 0.5. Here K(k) = 1.8541.

Also, we see that these functions are periodic. The period is given in
terms of the complete elliptic integral of the first kind, K(k). Consider

The elliptic functions can be extended to
the complex plane. In this case the func-
tions are doubly periodic. However, we
will not need to consider this in the cur-
rent text.
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F(φ + 2π, k) =
∫ φ+2π

0

dθ√
1− k2 sin2 θ

.

=
∫ φ

0

dθ√
1− k2 sin2 θ

+
∫ φ+2π

φ

dθ√
1− k2 sin2 θ

= F(φ, k) +
∫ 2π

0

dθ√
1− k2 sin2 θ

= F(φ, k) + 4K(k). (7.86)

Since F(φ + 2π, k) = u + 4K, we have

sn(u + 4K) = sin(am(u + 4K)) = sin(am(u) + 2π) = sin am(u) = sn u.

In general, we have

sn(u + 2K, k) = − sn(u, k) (7.87)

cn(u + 2K, k) = − cn(u, k) (7.88)

dn(u + 2K, k) = dn(u, k). (7.89)

The plots of sn(u), cn(u), and dn(u), are shown in Figures 7.48-7.50.

Figure 7.48: Plots of sn(u, k) for m =
0, 0.25, 0.50, 0.75, 1.00.
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Figure 7.49: Plots of cn(u, k) for m =
0, 0.25, 0.50, 0.75, 1.00.
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Namely,

sn(u + K, k) =
cn u
dn u

, sn(u + 2K, k) = − sn u,

cn(u + K, k) = −
√

1− k2 sn u
dn u

, dn(u + 2K, k) = − cn u,
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Figure 7.50: Plots of dn(u, k) for m =
0, 0.25, 0.50, 0.75, 1.00.

dn(u + K, k) =

√
1− k2

dn u
, dn(u + 2K, k) = dn u.

Therefore, dn and cn have a period of 4K and dn has a period of 2K.
Special values found in Figure 7.47 are seen as

sn(K, k) = 1,

cn(K, k) = 0,

dn(K, k) =
√

1− k2 = k′,

where k′ is called the complementary modulus.
Important to this section are the derivatives of these elliptic functions,

∂

∂u
sn(u, k) = cn(u, k)dn(u, k),

∂

∂u
cn(u, k) = − sn(u, k)dn(u, k),

∂

∂u
dn(u, k) = −k2 sn(u, k) cn(u, k),

and the amplitude function

∂

∂u
am(u, k) = dn(u, k).

Sometimes the Jacobi elliptic functions are displayed without reference
to the elliptic modulus, such as sn(u) = sn(u, k). When k is understood, we
can do the same.

Example 7.18. Show that sn(u) satisfies the differential equation

y′′ + (1 + k2)y = 2k2y3.

From the above derivatives, we have that

d2

du2 sn(u) =
d

du
(cn(u)dn(u))

= − sn(u)dn2(u)− k2 sn(u) cn2(u). (7.90)

Letting y(u) = sn(u) and using the identities (7.84)-(7.85), we have
that

y′′ = −y(1− k2y2)− k2y(1− y2) = −(1 + k2)y + 2k2y3.

This is the desired result.
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Example 7.19. Show that θ(t) = 2 sin−1(k sn t) is a solution of the
equation θ̈ + sin θ = 0.

Differentiating θ(t) = 2 sin−1(k sn t), we have

d2

dt2

(
2 sin−1(k sn t)

)
=

d
dt

(
2

k cn t dn t√
1− k2 sn2 t

)
=

d
dt

(2k cn t)

= −2k sn t dn t. (7.91)

However, we can evaluate sin θ for a range of θ. Thus, we have

sin θ = sin(2 sin−1(k sn t))

= 2 sin(sin−1(k sn t)) cos(sin−1(k sn t))

= 2k sn t
√

1− k2 sn2 t

= 2k sn t dn t. (7.92)

Comparing these results, we have shown that θ̈ + sin θ = 0.

The solution to the last example can be used to obtain the exact solution
to the nonlinear pendulum problem, θ̈ + ω2 sin θ = 0, θ(0) = θ0, θ̇(0) = 0.
The general solution is given by θ(t) = 2 sin−1(k sn(ωt + φ)) where φ has
to be determined from the initial conditions. We note that

d sn(u + K)
du

= cn(u + K)dn(u + K)

=
(
−
√

1− k2 sn u
dn u

)(√1− k2

dn u

)
= −(1− k2)

sn u
dn2 u

. (7.93)

Evaluating at u = 0, we have sn′(K) = 0.
Therefore, if we pick φ = K, then θ̇(0) = 0 and the solution is

θ(t) = 2 sin−1(k sn(ωt + K)).

Furthermore, the other initial value is found to be

θ(0) = 2 sin−1(k sn K) = 2 sin−1 k.

Thus, k = sin θ0
2 , as we had seen in the earlier derivation of the elliptic

integral solution. The solution is given as

θ(t) = 2 sin−1(sin
θ0

2
sn(ωt + K)).

In Figures 7.51-7.52 we show comparisons of the exact solutions of the
linear and nonlinear pendulum problems for L = 1.0 m and initial angles
θ0 = 10o and θ0 = 50o.
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Figure 7.51: Comparison of exact solu-
tions of the linear and nonlinear pen-
dulum problems for L = 1.0 m and
θ0 = 10o .

0 2 4 6 8 10

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

 

 

Nonlinear
Linear

Figure 7.52: Comparison of the exact so-
lutions of the linear and nonlinear pen-
dulum problems for L = 1.0 m and
θ0 = 50o .

Problems

1. Solve the general logistic problem,

dy
dt

= ky− cy2, y(0) = y0 (7.94)

using separation of variables.

2. Find the equilibrium solutions and determine their stability for the fol-
lowing systems. For each case draw representative solutions and phase
lines.

a. y′ = y2 − 6y− 16.

b. y′ = cos y.

c. y′ = y(y− 2)(y + 3).

d. y′ = y2(y + 1)(y− 4).

3. For y′ = y− y2, find the general solution corresponding to y(0) = y0.
Provide specific solutions for the following initial conditions and sketch
them: a. y(0) = 0.25, b. y(0) = 1.5, and c. y(0) = −0.5.

4. For each problem determine equilibrium points, bifurcation points and
construct a bifurcation diagram. Discuss the different behaviors in each
system.
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a. y′ = y− µy2

b. y′ = y(µ− y)(µ− 2y)

c. x′ = µ− x3

d. x′ = x− µx
1+x2

5. Consider the family of differential equations x′ = x3 + δx2 − µx.

a. Sketch a bifurcation diagram in the xµ-plane for δ = 0.

b. Sketch a bifurcation diagram in the xµ-plane for δ > 0.

Hint: Pick a few values of δ and µ in order to get a feel for how this system
behaves.

6. System 7.52 can be solved exactly. Integrate the r-equation using sepa-
ration of variables. For initial conditions a) r(0) = 0.25, θ(0) = 0, and b)
r(0) = 1.5, θ(0) = 0, and µ = 1.0, find and plot the solutions in the xy-plane
showing the approach to a limit cycle.

7. Consider the system

x′ = −y + x
[
µ− x2 − y2

]
,

y′ = x + y
[
µ− x2 − y2

]
.

Rewrite this system in polar form. Look at the behavior of the r equation
and construct a bifurcation diagram in µr space. What might this diagram
look like in the three dimensional µxy space? (Think about the symmetry
in this problem.) This leads to what is called a Hopf bifurcation.

8. Find the fixed points of the following systems. Linearize the system
about each fixed point and determine the nature and stability in the neigh-
borhood of each fixed point, when possible. Verify your findings by plotting
phase portraits using a computer.

a.

x′ = x(100− x− 2y),

y′ = y(150− x− 6y).

b.

x′ = x + x3,

y′ = y + y3.

c.

x′ = x− x2 + xy,

y′ = 2y− xy− 6y2.
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d.

x′ = −2xy,

y′ = −x + y + xy− y3.

9. Plot phase portraits for the Lienard system

x′ = y− µ(x3 − x)

y′ = −x.

for a small and a not so small value of µ. Describe what happens as one
varies µ.

10. Consider the period of a nonlinear pendulum. Let the length be L = 1.0
m and g = 9.8 m/s2. Sketch T vs the initial angle θ0 and compare the linear
and nonlinear values for the period. For what angles can you use the linear
approximation confidently?

11. Another population model is one in which species compete for re-
sources, such as a limited food supply. Such a model is given by

x′ = ax− bx2 − cxy,

y′ = dy− ey2 − f xy.

In this case, assume that all constants are positive.

a Describe the effects/purpose of each terms.

b Find the fixed points of the model.

c Linearize the system about each fixed point and determine the sta-
bility.

d From the above, describe the types of solution behavior you might
expect, in terms of the model.

12. Consider a model of a food chain of three species. Assume that each
population on its own can be modeled by logistic growth. Let the species
be labeled by x(t), y(t), and z(t). Assume that population x is at the bottom
of the chain. That population will be depleted by population y. Population
y is sustained by x’s, but eaten by z’s. A simple, but scaled, model for this
system can be given by the system

x′ = x(1− x)− xy

y′ = y(1− y) + xy− yz

z′ = z(1− z) + yz.

a. Find the equilibrium points of the system.

b. Find the Jacobian matrix for the system and evaluate it at the equi-
librium points.

c. Find the eigenvalues and eigenvectors.
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d. Describe the solution behavior near each equilibrium point.

e. Which of these equilibria are important in the study of the pop-
ulation model and describe the interactions of the species in the
neighborhood of these point(s).

13. Derive the first integral of the Lotka-Volterra system, a ln y + d ln x −
cx− by = C.

14. Show that the system x′ = x − y − x3, y′ = x + y − y3, has a unique
limit cycle by picking an appropriate ψ(x, y) in Dulac’s Criteria.

15. The Lorenz model is a simple model for atmospheric convection devel-
oped by Edward Lorenz in 1963. The system is given by the three equations

dx
dt

= σ(y− x)

dy
dt

= x(ρ− z)− y

dz
dt

= xy− βz.

a. Find the equilibrium points of the system.

b. Find the Jacobian matrix for the system and evaluate it at the equi-
librium points.

c. Determine any bifurcation points and describe what happens near
the bifurcation point(s). Consider σ = 10, β = 8/3, and vary ρ.

d. This system is know to exhibit chaotic behavior. Lorenz found a
so-called strange attractor for parameter values σ = 10, β = 8/3,
and ρ = 28. Using a computer, locate this strange attractor.

16. The Michaelis-Menten kinetics reaction is given by

E + S
k1

// ES
k3oo

k2

// E + P.

The resulting system of equations for the chemical concentrations is

d[S]
dt

= −k1[E][S] + k3[ES],

d[E]
dt

= −k1[E][S] + (k2 + k2)[ES],

d[ES]
dt

= k1[E][S]− (k2 + k2)[ES],

d[P]
dt

= k3[ES]. (7.95)

In chemical kinetics one seeks to determine the rate of product formation
(v = d[P]/dt = k3[ES]). Assuming that [ES] is a constant, find v as a
function of [S] and the total enzyme concentration [ET ] = [E] + [ES]. As a
nonlinear dynamical system, what are the equilibrium points?
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17. In Equation (6.58) we saw a linear version of an epidemic model. The
commonly used nonlinear SIR model is given by

dS
dt

= −βSI

dI
dt

= βSI − γI

dR
dt

= γI, (7.96)

where S is the number of susceptible individuals, I is the number of infected
individuals, and R are the number who have been removed from the the
other groups, either by recovering or dying.

a. Let N = S + I + R be the total population. Prove that N = con-
stant. Thus, one need only solve the first two equations and find
R = N − S− I afterwards.

b. Find and classify the equilibria. Describe the equilibria in terms of
the population behavior.

c. Let β = 0.05 and γ = 0.2. Assume that in a population of 100 there
is one infected person. Numerically solve the system of equations
for S(t) and I(t) and describe the solution being careful to deter-
mine the units of population and the constants.

d. The equations can be modified by adding constant birth and death
rates. Assuming these are te same, one would have a new system.

dS
dt

= −βSI + µ(N − S)

dI
dt

= βSI − γI − µI

dR
dt

= γI − µR. (7.97)

How does this affect any equilibrium solutions?

e. Again, let β = 0.05 and γ = 0.2. Let µ = 0.1 For a population
of 100 with one infected person numerically solve the system of
equations for S(t) and I(t) and describe the solution being careful
to determine the units of population and the constants.

18. An undamped, unforced Duffing equation, ẍ + ω2x + εx3 = 0, can be
solved exactly in terms of elliptic functions. Using the results of Exercise
7.18, determine the solution of this equation and determine if there are any
restrictions on the parameters.

19. Determine the circumference of an ellipse in terms of an elliptic integral.

20. Evaluate the following in terms of elliptic integrals and compute the
values to four decimal places.

a.
∫ π/4

0
dθ√

1− 1
2 sin2 θ

.
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b.
∫ π/2

0
dθ√

1− 1
4 sin2 θ

.

c.
∫ 2

0
dx√

(9−x2)(4−x2)
.

d.
∫ π/2

0
dθ√
cos θ

.

e.
∫ ∞

1
dx√
x4−1

.
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