
Chapter 5

Laplace Transforms

“We could, of course, use any notation we want; do not laugh at notations; invent
them, they are powerful. In fact, mathematics is, to a large extent, invention of
better notations.” - Richard P. Feynman (1918-1988)

5.1 The Laplace Transform
The Laplace transform is named after
Pierre-Simon de Laplace (1749 - 1827).
Laplace made major contributions, espe-
cially to celestial mechanics, tidal analy-
sis, and probability.

Up to this point we have only explored Fourier exponential trans-
forms as one type of integral transform. The Fourier transform is useful
on infinite domains. However, students are often introduced to another
integral transform, called the Laplace transform, in their introductory dif-
ferential equations class. These transforms are defined over semi-infinite
domains and are useful for solving initial value problems for ordinary dif-
ferential equations. Integral transform on [a, b] with respect

to the integral kernel, K(x, k).The Fourier and Laplace transforms are examples of a broader class of
transforms known as integral transforms. For a function f (x) defined on an
interval (a, b), we define the integral transform

F(k) =
∫ b

a
K(x, k) f (x) dx,

where K(x, k) is a specified kernel of the transform. Looking at the Fourier
transform, we see that the interval is stretched over the entire real axis and
the kernel is of the form, K(x, k) = eikx. In Table 5.1 we show several types
of integral transforms.

Laplace Transform F(s) =
∫ ∞

0 e−sx f (x) dx
Fourier Transform F(k) =

∫ ∞
−∞ eikx f (x) dx

Fourier Cosine Transform F(k) =
∫ ∞

0 cos(kx) f (x) dx
Fourier Sine Transform F(k) =

∫ ∞
0 sin(kx) f (x) dx

Mellin Transform F(k) =
∫ ∞

0 xk−1 f (x) dx
Hankel Transform F(k) =

∫ ∞
0 xJn(kx) f (x) dx

Table 5.1: A Table of Common Integral
Transforms.

It should be noted that these integral transforms inherit the linearity of
integration. Namely, let h(x) = α f (x) + βg(x), where α and β are constants.
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Then,

H(k) =
∫ b

a
K(x, k)h(x) dx,

=
∫ b

a
K(x, k)(α f (x) + βg(x)) dx,

= α
∫ b

a
K(x, k) f (x) dx + β

∫ b

a
K(x, k)g(x) dx,

= αF(x) + βG(x). (5.1)

Therefore, we have shown linearity of the integral transforms. We have seen
the linearity property used for Fourier transforms and we will use linearity
in the study of Laplace transforms.The Laplace transform of f , F = L[ f ].

We now turn to Laplace transforms. The Laplace transform of a function
f (t) is defined as

F(s) = L[ f ](s) =
∫ ∞

0
f (t)e−st dt, s > 0. (5.2)

This is an improper integral and one needs

lim
t→∞

f (t)e−st = 0

to guarantee convergence.
Laplace transforms also have proven useful in engineering for solving

circuit problems and doing systems analysis. In Figure 5.1 it is shown that
a signal x(t) is provided as input to a linear system, indicated by h(t). One
is interested in the system output, y(t), which is given by a convolution
of the input and system functions. By considering the transforms of x(t)
and h(t), the transform of the output is given as a product of the Laplace
transforms in the s-domain. In order to obtain the output, one needs to
compute a convolution product for Laplace transforms similar to the convo-
lution operation we had seen for Fourier transforms earlier in the chapter.
Of course, for us to do this in practice, we have to know how to compute
Laplace transforms.

Figure 5.1: A schematic depicting the
use of Laplace transforms in systems
theory.

x(t)

Laplace
Transform

X(s)

h(t)

H(s)

y(t) = h(t) ∗ x(t)

Inverse Laplace
Transform

Y(s) = H(s)X(s)

5.2 Properties and Examples of Laplace Transforms

It is typical that one makes use of Laplace transforms by referring to
a Table of transform pairs. A sample of such pairs is given in Table 5.2.
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Combining some of these simple Laplace transforms with the properties of
the Laplace transform, as shown in Table 5.3, we can deal with many ap-
plications of the Laplace transform. We will first prove a few of the given
Laplace transforms and show how they can be used to obtain new trans-
form pairs. In the next section we will show how these transforms can be
used to sum infinite series and to solve initial value problems for ordinary
differential equations.

f (t) F(s) f (t) F(s)

c
c
s

eat 1
s− a

, s > a

tn n!
sn+1 , s > 0 tneat n!

(s− a)n+1

sin ωt
ω

s2 + ω2 eat sin ωt ω
(s−a)2+ω2

cos ωt
s

s2 + ω2 eat cos ωt
s− a

(s− a)2 + ω2

t sin ωt
2ωs

(s2 + ω2)2 t cos ωt
s2 −ω2

(s2 + ω2)2

sinh at
a

s2 − a2 cosh at
s

s2 − a2

H(t− a)
e−as

s
, s > 0 δ(t− a) e−as, a ≥ 0, s > 0

Table 5.2: Table of Selected Laplace
Transform Pairs.

We begin with some simple transforms. These are found by simply using
the definition of the Laplace transform.

Example 5.1. Show that L[1] = 1
s .

For this example, we insert f (t) = 1 into the definition of the
Laplace transform:

L[1] =
∫ ∞

0
e−st dt.

This is an improper integral and the computation is understood by
introducing an upper limit of a and then letting a → ∞. We will not
always write this limit, but it will be understood that this is how one
computes such improper integrals. Proceeding with the computation,
we have

L[1] =
∫ ∞

0
e−st dt

= lim
a→∞

∫ a

0
e−st dt

= lim
a→∞

(
−1

s
e−st

)a

0

= lim
a→∞

(
−1

s
e−sa +

1
s

)
=

1
s

. (5.3)

Thus, we have found that the Laplace transform of 1 is 1
s . This result

can be extended to any constant c, using the linearity of the transform,
L[c] = cL[1]. Therefore,

L[c] = c
s

.
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Example 5.2. Show that L[eat] = 1
s−a , for s > a.

For this example, we can easily compute the transform. Again, we
only need to compute the integral of an exponential function.

L[eat] =
∫ ∞

0
eate−st dt

=
∫ ∞

0
e(a−s)t dt

=

(
1

a− s
e(a−s)t

)∞

0

= lim
t→∞

1
a− s

e(a−s)t − 1
a− s

=
1

s− a
. (5.4)

Note that the last limit was computed as limt→∞ e(a−s)t = 0. This
is only true if a− s < 0, or s > a. [Actually, a could be complex. In
this case we would only need s to be greater than the real part of a,
s > Re(a).]

Example 5.3. Show that L[cos at] = s
s2+a2 and L[sin at] = a

s2+a2 .
For these examples, we could again insert the trigonometric func-

tions directly into the transform and integrate. For example,

L[cos at] =
∫ ∞

0
e−st cos at dt.

Recall how one evaluates integrals involving the product of a trigono-
metric function and the exponential function. One integrates by parts
two times and then obtains an integral of the original unknown in-
tegral. Rearranging the resulting integral expressions, one arrives at
the desired result. However, there is a much simpler way to compute
these transforms.

Recall that eiat = cos at + i sin at. Making use of the linearity of the
Laplace transform, we have

L[eiat] = L[cos at] + iL[sin at].

Thus, transforming this complex exponential will simultaneously pro-
vide the Laplace transforms for the sine and cosine functions!

The transform is simply computed as

L[eiat] =
∫ ∞

0
eiate−st dt =

∫ ∞

0
e−(s−ia)t dt =

1
s− ia

.

Note that we could easily have used the result for the transform of an
exponential, which was already proven. In this case, s > Re(ia) = 0.

We now extract the real and imaginary parts of the result using the
complex conjugate of the denominator:

1
s− ia

=
1

s− ia
s + ia
s + ia

=
s + ia

s2 + a2 .
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Reading off the real and imaginary parts, we find the sought-after
transforms,

L[cos at] =
s

s2 + a2 ,

L[sin at] =
a

s2 + a2 . (5.5)

Example 5.4. Show that L[t] = 1
s2 .

For this example we evaluate

L[t] =
∫ ∞

0
te−st dt.

This integral can be evaluated using the method of integration by
parts: ∫ ∞

0
te−st dt = −t

1
s

e−st
∣∣∣∞
0
+

1
s

∫ ∞

0
e−st dt

=
1
s2 . (5.6)

Example 5.5. Show that L[tn] = n!
sn+1 for nonnegative integer n.

We have seen the n = 0 and n = 1 cases: L[1] = 1
s and L[t] = 1

s2 .
We now generalize these results to nonnegative integer powers, n > 1,
of t. We consider the integral

L[tn] =
∫ ∞

0
tne−st dt.

Following the previous example, we again integrate by parts:1 1 This integral can just as easily be done
using differentiation. We note that(
− d

ds

)n ∫ ∞

0
e−st dt =

∫ ∞

0
tne−st dt.

Since ∫ ∞

0
e−st dt =

1
s

,∫ ∞

0
tne−st dt =

(
− d

ds

)n 1
s
=

n!
sn+1 .

∫ ∞

0
tne−st dt = −tn 1

s
e−st

∣∣∣∞
0
+

n
s

∫ ∞

0
t−ne−st dt

=
n
s

∫ ∞

0
t−ne−st dt. (5.7)

We could continue to integrate by parts until the final integral is
computed. However, look at the integral that resulted after one inte-
gration by parts. It is just the Laplace transform of tn−1. So, we can
write the result as

L[tn] =
n
s
L[tn−1].

We compute
∫ ∞

0 tne−st dt by turning it
into an initial value problem for a first-
order difference equation and finding
the solution using an iterative method.

This is an example of a recursive definition of a sequence. In this
case, we have a sequence of integrals. Denoting

In = L[tn] =
∫ ∞

0
tne−st dt

and noting that I0 = L[1] = 1
s , we have the following:

In =
n
s

In−1, I0 =
1
s

. (5.8)

This is also what is called a difference equation. It is a first-order
difference equation with an “initial condition,” I0. The next step is to
solve this difference equation.
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Finding the solution of this first-order difference equation is easy to
do using simple iteration. Note that replacing n with n− 1, we have

In−1 =
n− 1

s
In−2.

Repeating the process, we find

In =
n
s

In−1

=
n
s

(
n− 1

s
In−2

)
=

n(n− 1)
s2 In−2

=
n(n− 1)(n− 2)

s3 In−3. (5.9)

We can repeat this process until we get to I0, which we know. We
have to carefully count the number of iterations. We do this by iterat-
ing k times and then figuring out how many steps will get us to the
known initial value. A list of iterates is easily written out:

In =
n
s

In−1

=
n(n− 1)

s2 In−2

=
n(n− 1)(n− 2)

s3 In−3

= . . .

=
n(n− 1)(n− 2) . . . (n− k + 1)

sk In−k. (5.10)

Since we know I0 = 1
s , we choose to stop at k = n obtaining

In =
n(n− 1)(n− 2) . . . (2)(1)

sn I0 =
n!

sn+1 .

Therefore, we have shown that L[tn] = n!
sn+1 .

Such iterative techniques are useful in obtaining a variety of inte-
grals, such as In =

∫ ∞
−∞ x2ne−x2

dx.

As a final note, one can extend this result to cases when n is not an
integer. To do this, we use the Gamma function, which was discussed in
Section 4.7. Recall that the Gamma function is the generalization of the
factorial function and is defined as

Γ(x) =
∫ ∞

0
tx−1e−t dt. (5.11)

Note the similarity to the Laplace transform of tx−1 :

L[tx−1] =
∫ ∞

0
tx−1e−st dt.

For x− 1 an integer and s = 1, we have that

Γ(x) = (x− 1)!.
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Thus, the Gamma function can be viewed as a generalization of the factorial
and we have shown that

L[tp] =
Γ(p + 1)

sp+1

for p > −1.
Now we are ready to introduce additional properties of the Laplace trans-

form in Table 5.3. We have already discussed the first property, which is a
consequence of the linearity of integral transforms. We will prove the other
properties in this and the following sections.

Laplace Transform Properties
L[a f (t) + bg(t)] = aF(s) + bG(s)

L[t f (t)] = − d
ds

F(s)

L
[

d f
dt

]
= sF(s)− f (0)

L
[

d2 f
dt2

]
= s2F(s)− s f (0)− f ′(0)

L[eat f (t)] = F(s− a)
L[H(t− a) f (t− a)] = e−asF(s)

L[( f ∗ g)(t)] = L[
∫ t

0
f (t− u)g(u) du] = F(s)G(s)

Table 5.3: Table of selected Laplace
transform properties.

Example 5.6. Show that L
[

d f
dt

]
= sF(s)− f (0).

We have to compute

L
[

d f
dt

]
=
∫ ∞

0

d f
dt

e−st dt.

We can move the derivative off f by integrating by parts. This is sim-
ilar to what we had done when finding the Fourier transform of the
derivative of a function. Letting u = e−st and v = f (t), we have

L
[

d f
dt

]
=

∫ ∞

0

d f
dt

e−st dt

= f (t)e−st
∣∣∣∞
0
+ s

∫ ∞

0
f (t)e−st dt

= − f (0) + sF(s). (5.12)

Here we have assumed that f (t)e−st vanishes for large t.
The final result is that

L
[

d f
dt

]
= sF(s)− f (0).

Example 6: Show that L
[

d2 f
dt2

]
= s2F(s)− s f (0)− f ′(0).

We can compute this Laplace transform using two integrations by
parts, or we could make use of the last result. Letting g(t) = d f (t)

dt , we
have

L
[

d2 f
dt2

]
= L

[
dg
dt

]
= sG(s)− g(0) = sG(s)− f ′(0).
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But,

G(s) = L
[

d f
dt

]
= sF(s)− f (0).

So,

L
[

d2 f
dt2

]
= sG(s)− f ′(0)

= s [sF(s)− f (0)]− f ′(0)

= s2F(s)− s f (0)− f ′(0). (5.13)

We will return to the other properties in Table 5.3 after looking at a few
applications.

5.3 Solution of ODEs Using Laplace Transforms

One of the typical applications of Laplace transforms is the so-
lution of nonhomogeneous linear constant coefficient differential equations.
In the following examples we will show how this works.

The general idea is that one transforms the equation for an unknown
function y(t) into an algebraic equation for its transform, Y(t). Typically,
the algebraic equation is easy to solve for Y(s) as a function of s. Then,
one transforms back into t-space using Laplace transform tables and the
properties of Laplace transforms. The scheme is shown in Figure 5.2.

Figure 5.2: The scheme for solving
an ordinary differential equation using
Laplace transforms. One transforms the
initial value problem for y(t) and obtains
an algebraic equation for Y(s). Solve for
Y(s) and the inverse transform gives the
solution to the initial value problem.

L[y] = g

y(t)

F(Y) = G

Y(s)

Laplace Transform

Inverse Laplace Transform

ODE
for y(t)

Algebraic

Equation

Y(s)

Example 5.7. Solve the initial value problem y′ + 3y = e2t, y(0) = 1.
The first step is to perform a Laplace transform of the initial value

problem. The transform of the left side of the equation is

L[y′ + 3y] = sY− y(0) + 3Y = (s + 3)Y− 1.

Transforming the right-hand side, we have

L[e2t] =
1

s− 2
.

Combining these two results, we obtain

(s + 3)Y− 1 =
1

s− 2
.
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The next step is to solve for Y(s) :

Y(s) =
1

s + 3
+

1
(s− 2)(s + 3)

.

Now we need to find the inverse Laplace transform. Namely, we
need to figure out what function has a Laplace transform of the above
form. We will use the tables of Laplace transform pairs. Later we
will show that there are other methods for carrying out the Laplace
transform inversion.

The inverse transform of the first term is e−3t. However, we have not
seen anything that looks like the second form in the table of transforms
that we have compiled, but we can rewrite the second term using a
partial fraction decomposition. Let’s recall how to do this.

The goal is to find constants A and B such that

1
(s− 2)(s + 3)

=
A

s− 2
+

B
s + 3

. (5.14)

We picked this form because we know that recombining the two terms This is an example of carrying out a par-
tial fraction decomposition.into one term will have the same denominator. We just need to make

sure the numerators agree afterward. So, adding the two terms, we
have

1
(s− 2)(s + 3)

=
A(s + 3) + B(s− 2)

(s− 2)(s + 3)
.

Equating numerators,

1 = A(s + 3) + B(s− 2).

There are several ways to proceed at this point.

a. Method 1.

We can rewrite the equation by gathering terms with common powers
of s, we have

(A + B)s + 3A− 2B = 1.

The only way that this can be true for all s is that the coefficients of the
different powers of s agree on both sides. This leads to two equations
for A and B:

A + B = 0,

3A− 2B = 1. (5.15)

The first equation gives A = −B, so the second equation becomes
−5B = 1. The solution is then A = −B = 1

5 .

b. Method 2.

Since the equation 1
(s−2)(s+3) =

A
s−2 + B

s+3 is true for all s, we can pick

specific values. For s = 2, we find 1 = 5A, or A = 1
5 . For s = −3, we

find 1 = −5B, or B = − 1
5 . Thus, we obtain the same result as Method

1, but much quicker.
1 2

2

4

6

8

t

y(t)

Figure 5.3: A plot of the solution to Ex-
ample 5.7.
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c. Method 3.

We could just inspect the original partial fraction problem. Since the
numerator has no s terms, we might guess the form

1
(s− 2)(s + 3)

=
1

s− 2
− 1

s + 3
.

But, recombining the terms on the right-hand side, we see that

1
s− 2

− 1
s + 3

=
5

(s− 2)(s + 3)
.

Since we were off by 5, we divide the partial fractions by 5 to obtain

1
(s− 2)(s + 3)

=
1
5

[
1

s− 2
− 1

s + 3

]
,

which once again gives the desired form.

Returning to the problem, we have found that

Y(s) =
1

s + 3
+

1
5

(
1

s− 2
− 1

s + 3

)
.

We can now see that the function with this Laplace transform is given
by

y(t) = L−1
[

1
s + 3

+
1
5

(
1

s− 2
− 1

s + 3

)]
= e−3t +

1
5

(
e2t − e−3t

)
works. Simplifying, we have the solution of the initial value problem

y(t) =
1
5

e2t +
4
5

e−3t.

We can verify that we have solved the initial value problem.

y′ + 3y =
2
5

e2t − 12
5

e−3t + 3(
1
5

e2t +
4
5

e−3t) = e2t

and y(0) = 1
5 + 4

5 = 1.

Example 5.8. Solve the initial value problem y′′ + 4y = 0, y(0) = 1,
y′(0) = 3.

We can probably solve this without Laplace transforms, but it is a
simple exercise. Transforming the equation, we have

0 = s2Y− sy(0)− y′(0) + 4Y

= (s2 + 4)Y− s− 3. (5.16)

Solving for Y, we have

Y(s) =
s + 3
s2 + 4

.

We now ask if we recognize the transform pair needed. The denom-
inator looks like the type needed for the transform of a sine or cosine.
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We just need to play with the numerator. Splitting the expression into
two terms, we have

Y(s) =
s

s2 + 4
+

3
s2 + 4

.

The first term is now recognizable as the transform of cos 2t. The
second term is not the transform of sin 2t. It would be if the numerator
were a 2. This can be corrected by multiplying and dividing by 2:

3
s2 + 4

=
3
2

(
2

s2 + 4

)
.

The solution is then found as

y(t) = L−1
[

s
s2 + 4

+
3
2

(
2

s2 + 4

)]
= cos 2t +

3
2

sin 2t.

The reader can verify that this is the solution of the initial value prob-
lem and is shown in Figure 5.4. 2 4 6 8

−2

2

t

y(t)

Figure 5.4: A plot of the solution to Ex-
ample 5.8.

5.4 Step and Impulse Functions

5.4.1 Heaviside Step Function

Often, the initial value problems that one faces in differential
equations courses can be solved using either the Method of Undetermined
Coefficients or the Method of Variation of Parameters. However, using the
latter can be messy and involves some skill with integration. Many circuit
designs can be modeled with systems of differential equations using Kir-
choff’s Rules. Such systems can get fairly complicated. However, Laplace
transforms can be used to solve such systems, and electrical engineers have
long used such methods in circuit analysis.

In this section we add a couple more transform pairs and transform prop-
erties that are useful in accounting for things like turning on a driving force,
using periodic functions like a square wave, or introducing impulse forces.

We first recall the Heaviside step function, given by

H(t) =

{
0, t < 0,
1, t > 0.

(5.17)

t

H(t− a)

1

a

Figure 5.5: A shifted Heaviside function,
H(t− a).

A more general version of the step function is the horizontally shifted
step function, H(t− a). This function is shown in Figure 5.5. The Laplace
transform of this function is found for a > 0 as

L[H(t− a)] =
∫ ∞

0
H(t− a)e−st dt

=
∫ ∞

a
e−st dt

=
e−st

s

∣∣∣∞
a
=

e−as

s
. (5.18)
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The Laplace transform has two Shift Theorems involving the multiplica-
tion of the function, f (t), or its transform, F(s), by exponentials. The First
and Second Shift Properties/Theorems are given by

L[eat f (t)] = F(s− a), (5.19)

L[ f (t− a)H(t− a)] = e−asF(s). (5.20)

The Shift Theorems.
We prove the First Shift Theorem and leave the other proof as an exercise

for the reader. Namely,

L[eat f (t)] =
∫ ∞

0
eat f (t)e−st dt

=
∫ ∞

0
f (t)e−(s−a)t dt = F(s− a). (5.21)

Example 5.9. Compute the Laplace transform of e−at sin ωt.
This function arises as the solution of the underdamped harmonic

oscillator. We first note that the exponential multiplies a sine function.
The First Shift Theorem tells us that we first need the transform of the
sine function. So, for f (t) = sin ωt, we have

F(s) =
ω

s2 + ω2 .

Using this transform, we can obtain the solution to this problem as

L[e−at sin ωt] = F(s + a) =
ω

(s + a)2 + ω2 .

More interesting examples can be found using piecewise defined func-
tions. First we consider the function H(t)− H(t− a). For t < 0, both terms
are zero. In the interval [0, a], the function H(t) = 1 and H(t− a) = 0. There-
fore, H(t)− H(t− a) = 1 for t ∈ [0, a]. Finally, for t > a, both functions are
one and therefore the difference is zero. The graph of H(t) − H(t − a) is
shown in Figure 5.6.t

1

0 a

Figure 5.6: The box function, H(t) −
H(t− a).

We now consider the piecewise defined function:

g(t) =

{
f (t), 0 ≤ t ≤ a,
0, t < 0, t > a.

This function can be rewritten in terms of step functions. We only need to
multiply f (t) by the above box function,

g(t) = f (t)[H(t)− H(t− a)].

We depict this in Figure 5.7.t

1

0 a

Figure 5.7: Formation of a piecewise
function, f (t)[H(t)− H(t− a)].

Even more complicated functions can be written in terms of step func-
tions. We only need to look at sums of functions of the form f (t)[H(t −
a) − H(t − b)] for b > a. This is similar to a box function. It is nonzero
between a and b and has height f (t).
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We show as an example the square wave function in Figure 5.8. It can be
represented as a sum of an infinite number of boxes,

f (t) =
∞

∑
n=−∞

[H(t− 2na)− H(t− (2n + 1)a)],

for a > 0.

Example 5.10. Find the Laplace Transform of a square wave “turned
on” at t = 0.

t
-2a 0 a 2a 4a 6a

Figure 5.8: A square wave, f (t) =

∑∞
n=−∞[H(t− 2na)− H(t− (2n + 1)a)].

We let

f (t) =
∞

∑
n=0

[H(t− 2na)− H(t− (2n + 1)a)], a > 0.

Using the properties of the Heaviside function, we have

L[ f (t)] =
∞

∑
n=0

[L[H(t− 2na)]−L[H(t− (2n + 1)a)]]

=
∞

∑
n=0

[
e−2nas

s
− e−(2n+1)as

s

]

=
1− e−as

s

∞

∑
n=0

(
e−2as

)n

=
1− e−as

s

(
1

1− e−2as

)
=

1− e−as

s(1− e−2as)

=
1

s(1 + e−as)
. (5.22)

Note that the third line in the derivation is a geometric series. We
summed this series to get the answer in a compact form since e−2as <

1.

5.4.2 Periodic Functions*

The previous example provides us with a causal function ( f (t) = 0 for
t < 0.) which is periodic with period a. Such periodic functions can be
teated in a simpler fashion. We will now show that Laplace transform of periodic functions.

Theorem 5.1. If f (t) is periodic with period T and piecewise continuous on [0, T],
then

F(s) =
1

1− e−sT

∫ T

0
f (t)e−st dt.
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Proof.

F(s) =
∫ ∞

0
f (t)e−st dt

=
∫ T

0
f (t)e−st dt +

∫ ∞

T
f (t)e−st dt

=
∫ T

0
f (t)e−st dt +

∫ ∞

T
f (t− T)e−st dt

=
∫ T

0
f (t)e−st dt + e−sT

∫ ∞

0
f (τ)e−sτ dτ

=
∫ T

0
f (t)e−st dt + e−sT F(s). (5.23)

Solving for F(s), one obtains the desired result.

Example 5.11. Use the periodicity of

f (t) =
∞

∑
n=0

[H(t− 2na)− H(t− (2n + 1)a)], a > 0

to obtain the Laplace transform.
We note that f (t) has period T = 2a. By Theorem 5.1, we have

F(s) =
∫ ∞

0
f (t)e−st dt

=
1

1− e−2as

∫ 2a

0
[H(t)− H(t− a)]e−st dt

=
1

1− e−2as

[∫ 2a

0
e−st dt−

∫ 2a

a
e−st dt

]
=

1
1− e−2as

[
e−st

−s

∣∣∣2a

0
− e−st

−s

∣∣∣2a

a

]
=

1
s(1− e−2as)

[
1− e−2as + e−2as − e−as

]
=

1− e−as

s(1− e−2as)

=
1

s(1 + e−as)
. (5.24)

This is the same result that was obtained in the previous example.

5.4.3 Dirac Delta Function

Another useful concept is the impulse function. If we want to
apply an impulse function, we can use the Dirac delta function δ(x). This

P. A. M. Dirac (1902-1984) introduced
the δ function in his book, The Princi-
ples of Quantum Mechanics, 4th Ed., Ox-
ford University Press, 1958, originally
published in 1930, as part of his orthog-
onality statement for a basis of func-
tions in a Hilbert space, < ξ ′|ξ ′′ >=
cδ(ξ ′ − ξ ′′) in the same way we intro-
duced discrete orthogonality using the
Kronecker delta. Historically, a number
of mathematicians sought to understand
the Diract delta function, culminating in
Laurent Schwartz’s (1915-2002) theory of
distributions in 1945.

is an example of what is known as a generalized function, or a distribution.
Dirac had introduced this function in the 1930s in his study of quantum

mechanics as a useful tool. It was later studied in a general theory of dis-
tributions and found to be more than a simple tool used by physicists. The
Dirac delta function, as any distribution, only makes sense under an in-
tegral. Here will will introduce the Dirac delta function through its main
properties.
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The delta function satisfies two main properties:

1. δ(x) = 0 for x 6= 0.

2.
∫ ∞
−∞ δ(x) dx = 1.

Integration over more general intervals gives

∫ b

a
δ(x) dx =

{
1, 0 ∈ [a, b],
0, 0 6∈ [a, b].

(5.25)

Another important property is the sifting property:∫ ∞

−∞
δ(x− a) f (x) dx = f (a).

This can be seen by noting that the delta function is zero everywhere except
at x = a. Therefore, the integrand is zero everywhere and the only contribu-
tion from f (x) will be from x = a. So, we can replace f (x) with f (a) under
the integral. Since f (a) is a constant, we have that∫ ∞

−∞
δ(x− a) f (x) dx =

∫ ∞

−∞
δ(x− a) f (a) dx

= f (a)
∫ ∞

−∞
δ(x− a) dx = f (a). (5.26)

Example 5.12. Evaluate:
∫ ∞
−∞ δ(x + 3)x3 dx.

This is a simple use of the sifting property:∫ ∞

−∞
δ(x + 3)x3 dx = (−3)3 = −27.

Properties of the Dirac delta function:∫ ∞

−∞
δ(x− a) f (x) dx = f (a).

∫ ∞

−∞
δ(ax) dx =

1
|a|

∫ ∞

−∞
δ(y) dy.

Another property results from using a scaled argument, ax. In this case,
we show that

δ(ax) = |a|−1δ(x). (5.27)

As usual, this only has meaning under an integral sign. So, we place δ(ax)
inside an integral and make a substitution y = ax:

∫ ∞

−∞
δ(ax) dx = lim

L→∞

∫ L

−L
δ(ax) dx

= lim
L→∞

1
a

∫ aL

−aL
δ(y) dy. (5.28)

If a > 0 then ∫ ∞

−∞
δ(ax) dx =

1
a

∫ ∞

−∞
δ(y) dy.

However, if a < 0 then∫ ∞

−∞
δ(ax) dx =

1
a

∫ −∞

∞
δ(y) dy = −1

a

∫ ∞

−∞
δ(y) dy.

The overall difference in a multiplicative minus sign can be absorbed into
one expression by changing the factor 1/a to 1/|a|. Thus,
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∫ ∞

−∞
δ(ax) dx =

1
|a|

∫ ∞

−∞
δ(y) dy. (5.29)

Example 5.13. Evaluate
∫ ∞
−∞(5x + 1)δ(4(x− 2)) dx.

This is a straightforward integration:∫ ∞

−∞
(5x + 1)δ(4(x− 2)) dx =

1
4

∫ ∞

−∞
(5x + 1)δ(x− 2) dx =

11
4

.

The first step is to write δ(4(x − 2)) = 1
4 δ(x − 2). Then, the final

evaluation is given by

1
4

∫ ∞

−∞
(5x + 1)δ(x− 2) dx =

1
4
(5(2) + 1) =

11
4

.

The Dirac delta function can be used to represent a unit impulse. Sum-
ming over a number of impulses, or point sources, we can describe a general
function as shown in Figure 5.9. The sum of impulses located at points ai,
i = 1, . . . , n, with strengths f (ai) would be given by

f (x) =
n

∑
i=1

f (ai)δ(x− ai).

A continuous sum could be written as

f (x) =
∫ ∞

−∞
f (ξ)δ(x− ξ) dξ.

This is simply an application of the sifting property of the delta function.

f (x)

x
a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

Figure 5.9: Plot representing im-
pulse forces of height f (ai). The sum
∑n

i=1 f (ai)δ(x − ai) describes a general
impulse function.

We will investigate a case when one would use a single impulse. While
a mass on a spring is undergoing simple harmonic motion, we hit it for
an instant at time t = a. In such a case, we could represent the force as a
multiple of δ(t− a).L[δ(t− a)] = e−as.

One would then need the Laplace transform of the delta function to solve
the associated initial value problem. Inserting the delta function into the
Laplace transform, we find that for a > 0,

L[δ(t− a)] =
∫ ∞

0
δ(t− a)e−st dt

=
∫ ∞

−∞
δ(t− a)e−st dt

= e−as. (5.30)

Example 5.14. Solve the initial value problem y′′ + 4π2y = δ(t − 2),
y(0) = y′(0) = 0.

This initial value problem models a spring oscillation with an im-
pulse force. Without the forcing term, given by the delta function, this
spring is initially at rest and not stretched. The delta function models
a unit impulse at t = 2. Of course, we anticipate that at this time the
spring will begin to oscillate. We will solve this problem using Laplace
transforms.
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First, we transform the differential equation:

s2Y− sy(0)− y′(0) + 4π2Y = e−2s.

Inserting the initial conditions, we have

(s2 + 4π2)Y = e−2s.

Solving for Y(s), we obtain

Y(s) =
e−2s

s2 + 4π2 .

We now seek the function for which this is the Laplace transform.
The form of this function is an exponential times some Laplace trans-
form, F(s). Thus, we need the Second Shift Theorem since the solution
is of the form Y(s) = e−2sF(s) for

F(s) =
1

s2 + 4π2 .

We need to find the corresponding f (t) of the Laplace transform
pair. The denominator in F(s) suggests a sine or cosine. Since the
numerator is constant, we pick sine. From the tables of transforms, we
have

L[sin 2πt] =
2π

s2 + 4π2 .

So, we write

F(s) =
1

2π

2π

s2 + 4π2 .

This gives f (t) = (2π)−1 sin 2πt.
We now apply the Second Shift Theorem, L[ f (t − a)H(t − a)] =

e−asF(s), or

y(t) = L−1
[
e−2sF(s)

]
= H(t− 2) f (t− 2)

=
1

2π
H(t− 2) sin 2π(t− 2). (5.31)

5 10 15 20

−0.2

0.2

t

y(t)

Figure 5.10: A plot of the solution to Ex-
ample 5.14 in which a spring at rest ex-
periences an impulse force at t = 2.

This solution tells us that the mass is at rest until t = 2 and then
begins to oscillate at its natural frequency. A plot of this solution is
shown in Figure 5.10

Example 5.15. Solve the initial value problem

y′′ + y = f (t), y(0) = 0, y′(0) = 0,

where

f (t) =

{
cos πt, 0 ≤ t ≤ 2,

0, otherwise.

We need the Laplace transform of f (t). This function can be writ-
ten in terms of a Heaviside function, f (t) = cos πtH(t − 2). In or-
der to apply the Second Shift Theorem, we need a shifted version
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of the cosine function. We find the shifted version by noting that
cos π(t− 2) = cos πt. Thus, we have

f (t) = cos πt [H(t)− H(t− 2)]

= cos πt− cos π(t− 2)H(t− 2), t ≥ 0. (5.32)

The Laplace transform of this driving term is

F(s) = (1− e−2s)L[cos πt] = (1− e−2s)
s

s2 + π2 .

Now we can proceed to solve the initial value problem. The Laplace
transform of the initial value problem yields

(s2 + 1)Y(s) = (1− e−2s)
s

s2 + π2 .

Therefore,

Y(s) = (1− e−2s)
s

(s2 + π2)(s2 + 1)
.

We can retrieve the solution to the initial value problem using the
Second Shift Theorem. The solution is of the form Y(s) = (1 −
e−2s)G(s) for

G(s) =
s

(s2 + π2)(s2 + 1)
.

Then, the final solution takes the form

y(t) = g(t)− g(t− 2)H(t− 2).

We only need to find g(t) in order to finish the problem. This is
easily done using the partial fraction decomposition

G(s) =
s

(s2 + π2)(s2 + 1)
=

1
π2 − 1

[
s

s2 + 1
− s

s2 + π2

]
.

Then,

g(t) = L−1
[

s
(s2 + π2)(s2 + 1)

]
=

1
π2 − 1

(cos t− cos πt) .

The final solution is then given by

y(t) =
1

π2 − 1
[cos t− cos πt− H(t− 2)(cos(t− 2)− cos πt)] .

A plot of this solution is shown in Figure 5.11.

5 10

−0.4

−0.2

0.2

0.4

t

y(t)

Figure 5.11: A plot of the solution to Ex-
ample 5.15 in which a spring at rest ex-
periences an piecewise defined force.

5.5 The Convolution Theorem

Finally, we consider the convolution of two functions. Often, we are
faced with having the product of two Laplace transforms that we know and
we seek the inverse transform of the product. For example, let’s say we have
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obtained Y(s) = 1
(s−1)(s−2) while trying to solve an initial value problem. In

this case, we could find a partial fraction decomposition. But, there are
other ways to find the inverse transform, especially if we cannot perform
a partial fraction decomposition. We could use the Convolution Theorem
for Laplace transforms or we could compute the inverse transform directly.
We will look into these methods in the next two sections. We begin with
defining the convolution.

We define the convolution of two functions defined on [0, ∞) much the
same way as we had done for the Fourier transform. The convolution f ∗ g
is defined as

( f ∗ g)(t) =
∫ t

0
f (u)g(t− u) du. (5.33)

Note that the convolution integral has finite limits as opposed to the Fourier
transform case.

The convolution operation has two important properties:
The convolution is commutative.

1. The convolution is commutative: f ∗ g = g ∗ f

Proof. The key is to make a substitution y = t− u in the integral. This
makes f a simple function of the integration variable.

(g ∗ f )(t) =
∫ t

0
g(u) f (t− u) du

= −
∫ 0

t
g(t− y) f (y) dy

=
∫ t

0
f (y)g(t− y) dy

= ( f ∗ g)(t). (5.34)

2. The Convolution Theorem: The Laplace transform of a convolution is
the product of the Laplace transforms of the individual functions:

L[ f ∗ g] = F(s)G(s).
The Convolution Theorem for Laplace
transforms.

Proof. Proving this theorem takes a bit more work. We will make
some assumptions that will work in many cases. First, we assume
that the functions are causal, f (t) = 0 and g(t) = 0 for t < 0. Second,
we will assume that we can interchange integrals, which needs more
rigorous attention than will be provided here. The first assumption
will allow us to write the finite integral as an infinite integral. Then
a change of variables will allow us to split the integral into the prod-
uct of two integrals that are recognized as a product of two Laplace
transforms.

Carrying out the computation, we have

L[ f ∗ g] =
∫ ∞

0

(∫ t

0
f (u)g(t− u) du

)
e−st dt
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=
∫ ∞

0

(∫ ∞

0
f (u)g(t− u) du

)
e−st dt

=
∫ ∞

0
f (u)

(∫ ∞

0
g(t− u)e−st dt

)
du (5.35)

Now, make the substitution τ = t− u. We note that

int∞
0 f (u)

(∫ ∞

0
g(t− u)e−st dt

)
du =

∫ ∞

0
f (u)

(∫ ∞

−u
g(τ)e−s(τ+u) dτ

)
du

However, since g(τ) is a causal function, we have that it vanishes for
τ < 0 and we can change the integration interval to [0, ∞). So, after a
little rearranging, we can proceed to the result.

L[ f ∗ g] =
∫ ∞

0
f (u)

(∫ ∞

0
g(τ)e−s(τ+u) dτ

)
du

=
∫ ∞

0
f (u)e−su

(∫ ∞

0
g(τ)e−sτ dτ

)
du

=

(∫ ∞

0
f (u)e−su du

)(∫ ∞

0
g(τ)e−sτ dτ

)
= F(s)G(s). (5.36)

We make use of the Convolution Theorem to do the following examples.

Example 5.16. Find y(t) = L−1
[

1
(s−1)(s−2)

]
.

We note that this is a product of two functions:

Y(s) =
1

(s− 1)(s− 2)
=

1
s− 1

1
s− 2

= F(s)G(s).

We know the inverse transforms of the factors:

f (t) = et and g(t) = e2t.

Using the Convolution Theorem, we find y(t) = ( f ∗ g)(t). We com-
pute the convolution:

y(t) =
∫ t

0
f (u)g(t− u) du

=
∫ t

0
eue2(t−u) du

= e2t
∫ t

0
e−u du

= e2t[−et + 1] = e2t − et. (5.37)

One can also confirm this by carrying out a partial fraction decompo-
sition.

Example 5.17. Consider the initial value problem, y′′ + 9y = 2 sin 3t,
y(0) = 1, y′(0) = 0.
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The Laplace transform of this problem is given by

(s2 + 9)Y− s =
6

s2 + 9
.

Solving for Y(s), we obtain

Y(s) =
6

(s2 + 9)2 +
s

s2 + 9
.

The inverse Laplace transform of the second term is easily found as
cos(3t); however, the first term is more complicated.

We can use the Convolution Theorem to find the Laplace transform
of the first term. We note that

6
(s2 + 9)2 =

2
3

3
(s2 + 9)

3
(s2 + 9)

is a product of two Laplace transforms (up to the constant factor).
Thus,

L−1
[

6
(s2 + 9)2

]
=

2
3
( f ∗ g)(t),

where f (t) = g(t) = sin3t. Evaluating this convolution product, we
have

L−1
[

6
(s2 + 9)2

]
=

2
3
( f ∗ g)(t)

=
2
3

∫ t

0
sin 3u sin 3(t− u) du

=
1
3

∫ t

0
[cos 3(2u− t)− cos 3t] du

=
1
3

[
1
6

sin(6u− 3t)− u cos 3t
]t

0

=
1
9

sin 3t− 1
3

t cos 3t. (5.38)

Combining this with the inverse transform of the second term of
Y(s), the solution to the initial value problem is

y(t) = −1
3

t cos 3t +
1
9

sin 3t + cos 3t.

Note that the amplitude of the solution will grow in time from the first
term. You can see this in Figure 5.12. This is known as a resonance. 2 4 6 8

−2

2

t

y(t)

Figure 5.12: Plot of the solution to Exam-
ple 5.17 showing a resonance.

Example 5.18. Find L−1[ 6
(s2+9)2 ] using partial fraction decomposition.

If we look at Table 5.2, we see that the Laplace transform pairs with
the denominator (s2 + ω2)2 are

L[t sin ωt] =
2ωs

(s2 + ω2)2 ,

and

L[t cos ωt] =
s2 −ω2

(s2 + ω2)2 .
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So, we might consider rewriting a partial fraction decomposition as

6
(s2 + 9)2 =

A6s
(s2 + 9)2 +

B(s2 − 9)
(s2 + 9)2 +

Cs + D
s2 + 9

.

Combining the terms on the right over a common denominator, we
find

6 = 6As + B(s2 − 9) + (Cs + D)(s2 + 9).

Collecting like powers of s, we have

Cs3 + (D + B)s2 + 6As + (D− B) = 6.

Therefore, C = 0, A = 0, D + B = 0, and D− B = 2
3 . Solving the last

two equations, we find D = −B = 1
3 .

Using these results, we find

6
(s2 + 9)2 = −1

3
(s2 − 9)
(s2 + 9)2 +

1
3

1
s2 + 9

.

This is the result we had obtained in the last example using the Con-
volution Theorem.

5.6 Systems of ODEs*

Lapace transforms are also useful for solving systems of differential
equations. We will study linear systems of differential equation in Chapter
6. For now, we will just look at simple examples of the application of Laplace
transforms.

An example of a system of two differential equations for two unknown
functions, x(t) and y(t), is given by the pair of coupled differential equations

x′ = 3x + 4y,

y′ = 2x + y. (5.39)

Neither equation can be solved on its own without knowledge of the other
unknown function. This is why they are called couple. We will also need
initial values for the system. We will choose x(0) = 1 and y(0) = 0.

Now, what would happen if we were to take the Laplace transform of
each equation? We can apply the rules as before. Letting the Laplace trans-
forms of x(t) and y(t) be X(t) and Y(t), respectively, we have

sX− 1 = 3X + 4Y,

sY = 2X + Y. (5.40)

We have obtained a system of algebraic equations for X and Y. Using
standard methods, like Cramer’s Method, we can solve this system of two
equations and two unknowns. First, we rewrite the equations as

(s− 3)X− 4Y = 1,

−2X + (s− 1)Y = 0. (5.41)
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Using Cramer’s (determinant) Rule for solving such systems, we have

X =

∣∣∣∣∣ 1 −4
0 s− 1

∣∣∣∣∣∣∣∣∣∣ s− 3 −4
−2 s− 1

∣∣∣∣∣
, Y =

∣∣∣∣∣ s− 3 1
−2 0

∣∣∣∣∣∣∣∣∣∣ s− 3 −4
−2 s− 1

∣∣∣∣∣
. (5.42)

Note that the denominator in each solution is a 2× 2 determinant consisting
of the coefficients of X and Y in the appropriate order. The numerators are
the same determinant but with the right-hand side of the equation replacing
the respective columns.

Computing the determinants, using∣∣∣∣∣ a b
c d

∣∣∣∣∣ = ad− bc,

we have

X =
1

(s− 3)(s− 1)− 8
, Y =

2
(s− 3)(s− 1)− 8

,

or

X =
s− 1

s2 − 4s− 5
, Y =

2
s2 − 4s− 5

.

We now know the Laplace transforms of the solutions, so a simple inverse
Laplace transform is in order. The denominators are the same,

s2 − 4s− 5 = (s− 5)(s + 1).

We can apply a partial fraction decomposition to each function to obtain

X =
s− 1

(s− 5)(s + 1)

=
s− 5 + 4

(s− 5)(s + 1)

=
1

s + 1
+

4
(s− 5)(s + 1)

=
1

s + 1
+

2
3

[
1

s− 5
− 1

s + 1

]
=

2
3

1
s− 5

+
1
3

1
s + 1

.

Y =
2

(s− 5)(s + 1)

=
1
3

[
1

s− 5
− 1

s + 1

]
.

So, the solutions to the system of differential equations is given by

x(t) =
2
3

e5t +
1
3

e−t.

y(t) =
1
3
(e5t − e−t).
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We can verify that x(0) = 1 and y(0) = 0.

x′ =
10
3

e5t − 1
3

e−t

3x + 4y = (2e5t + e−t) +
4
3
(e5t − e−t)

=
10
3

e5t − 1
3

e−t.

y′ =
5
3

e5t +
1
3

e−t

2x + y = (
4
3

e5t +
2
3

e−t) +
1
3
(e5t − e−t)

=
5
3

e5t +
1
3

e−t.

(5.43)

Example 5.19. Determine the current in Figure 5.13 for the following
values: i1(0) = i2(0) = i3(0) = 0 and

v(t) =

{
v0, 0 ≤ t ≤ 3.0
0, otherwise.

+

−v(t)

L1

L2

R2

A

R1

B

i1 i3

i2

1 2

Figure 5.13: A circuit with two loops
containing two resistors and two induc-
tors in parallel.

The problem can be modeled by a system of differential equations.
In Figure 5.13 there are three currents indicated. Kirchoff’s Point
(Junction) Rule indicates that i1 = i2 + i3.

In order to apply Kirchoff’s Loop Rule , we need to tally the po-
tential drops and rises. For resistors, these come from Ohm’s Law,
v = iR, and for inductors, this comes from Faraday’s Law, v = L di

dt .
For the left loop (2), we have

L2i′3 = R1i2,

where the prime denotes the time derivative. For the right loop (1),
we have

L1i′1 + R1i2 + R2i1 = v(t).

We can use the Point Rule to eliminate one of the currents, i2 = i1− i3,
leaving the model as two first order differential equations,

L2i′3 − R1(i1 − i3) = 0

L1i′1 + R1(i1 − i3) + R2i1 = v(t),

or

L2i′3 − R1i1 + R1i3 = 0

L1i′1 + (R1 + R2)i1 − R1i3 = v0(1− H(t− 3)),

where H(t) is the Heaviside function.
Taking the Laplace transform, assuming that i1(0) = i2(0) = 0, we

obtain the algebraic system of equations

−R1 I1 + (sL2 + R1)I3 = 0

(sL1 + R1 + R2)I1 − R1 I3 =
v0

s

(
1− e−3s

)
.
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Here I1(s) and I3(s) are the Laplace transforms of i1(t) and i3(t), re-
spectively.

As before, we use Cramer’s Rule to find the solutions.

I1 =

∣∣∣∣∣ 0 sL2 + R1
v0
s
(
1− e−3s) −R1

∣∣∣∣∣∣∣∣∣∣ −R1 sL2 + R1

sL1 + R1 + R2 −R1

∣∣∣∣∣
,

=
−v0(sL2 + R1)

(
1− e−3s)

s[R2
1 − (sL2 + R1)(sL1 + R1 + R2)]

=
v0(sL2 + R1)

(
1− e−3s)

s[(L1L2)s2 + (R1L1 + L2(R1 + R2))s + R1R2]
.

I3 =

∣∣∣∣∣ −R1 0
sL1 + R1 + R2

v0
s
(
1− e−3s)

∣∣∣∣∣∣∣∣∣∣ −R1 sL2 + R1

sL1 + R1 + R2 −R1

∣∣∣∣∣
=

v0R1
(
1− e−3s)

s[R2
1 − (sL2 + R1)(sL1 + R1 + R2)]

=
−v0R1

(
1− e−3s)

s[(L1L2)s2 + (R1L1 + L2(R1 + R2))s + R1R2]
. (5.44)

The denominator in these expressions cannot be factored. So, to
make any further progress, one needs specific values for the constants.
Let R1 = 2.00Ω, R2 = 18.0Ω, L1 = 48.0 H, L2 = 6.00 H. and v0 = 18
V. Then,

I1 =
3s + 1

s(2s + 1)(4s + 1)

(
1− e−3s

)
I3 = − 1

s(2s + 1)(4s + 1)

(
1− e−3s

)
Using partial fractions on the coefficient of

(
1− e−3s) , we find that

3s + 1
s(2s + 1)(4s + 1)

=
1
s
− 2

4s + 1
− 1

2s + 1
,

1
s(2s + 1)(4s + 1)

=
1
s
− 8

4s + 1
+

2
2s + 1

.

This gives

I1 =

(
1
s
− 1

2
1

s + 1
4
− 1

2
1

s + 1
2

)
(1− e−3s)

I3 =

(
−1

s
+

2
s + 1

4
− 1

s + 1
2

)
(1− e−3s)

Taking the inverse Laplace transform, we find the solutions

i1 = 1− 1
2

e−
t
4 − 1

2
e−

t
2 +

(
−1 +

1
2

e−
t−3

4 +
1
2

e−
t−3

2

)
H(t− 3)



206 differential equations

=

{
1− 1

2 e−
t
4 − 1

2 e−
t
2 , t ≤ 3,

− 1
2 (1− e

3
4 )e−

t
4 − 1

2 (1− e
3
2 )e−

t
2 , t ≥ 3.

i3 = −1 + 2e−
t
4 − e−

t
2 +

(
1− 2e−

t−3
4 + e−

t−3
2

)
H(t− 3).

=

{
−1 + 2e−

t
4 − e−

t
2 , t ≤ 3,

2(1− e
3
4 )e−

t
4 − (1− e

3
2 )e−

t
2 , t ≥ 3.

In Figure 5.14 we plot the currents vs time. The taller curve repre-
sents i1 and the other curve is −i3. We note that the derived current,
i3, is negative, indicating a flow in reverse of the direction shown in
Figure 5.13. Not the sudden change in i[1] at t = 3, the time that the
voltage is turned on.Figure 5.14: A plot of the currents vs

time for Example 5.19 with the voltage
v(t) = v0(1− H(t− 3)). The taller curve
represents i1 and the other curve is −i3.

One can easily change the time that the voltage is applied. Namely,
if

v(t) =

{
v0, 0 ≤ t ≤ t0

0, otherwise,

then the solutions are given by

i1 = 1− 1
2

e−
t
4 − 1

2
e−

t
2 +

(
−1 +

1
2

e−
t−t0

4 +
1
2

e−
t−t0

2

)
H(t− t0)

i3 = −1 + 2e−
t
4 − e−

t
2 +

(
1− 2e−

t−t0
4 + e−

t−t0
2

)
H(t− t0).

A plot of the currents for t0 = 10 are shown in Figure 5.15.Figure 5.15: A plot of the currents vs
time for Example 5.19 for the voltage
given by v(t) = v0(1− H(t− 10)). The
taller curve represents i1 and the other
curve is −i3.

Problems

1. Find the Laplace transform of the following functions:

a. f (t) = 9t2 − 7.

b. f (t) = e5t−3.

c. f (t) = cos 7t.

d. f (t) = e4t sin 2t.

e. f (t) = e2t(t + cosh t).

f. f (t) = t2H(t− 1).

g. f (t) =

{
sin t, t < 4π,

sin t + cos t, t > 4π.

h. f (t) =
∫ t

0 (t− u)2 sin u du.

i. f (t) =
∫ t

0
cosh u du.

j. f (t) = (t + 5)2 + te2t cos 3t and write the answer in the simplest
form.

2. Find the inverse Laplace transform of the following functions using the
properties of Laplace transforms and the table of Laplace transform pairs.

a. F(s) =
18
s3 +

7
s

.
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b. F(s) =
1

s− 5
− 2

s2 + 4
.

c. F(s) =
s + 1
s2 + 1

.

d. F(s) =
3

s2 + 2s + 2
.

e. F(s) =
1

(s− 1)2 .

f. F(s) =
e−3s

s2 − 1
.

g. F(s) =
1

s2 + 4s− 5
.

h. F(s) =
s + 3

s2 + 8s + 17
.

3. Use Laplace transforms to solve the following initial value problems.
Where possible, describe the solution behavior in terms of oscillation and
decay.

a. y′′ − 5y′ + 6y = 0, y(0) = 2, y′(0) = 0.

c. y′′ + 2y′ + 5y = 0, y(0) = 1, y′(0) = 0.

b. y′′ − y = te2t, y(0) = 0, y′(0) = 1.

c. y′′ − 3y′ − 4y = t2, y(0) = 2, y′(0) = 1.

d. y′′′ − 3y′ − 2y = et, y(0) = 1, y′(0) = 0.

4. Use Laplace transforms to solve the following initial value problems.
Where possible, describe the solution behavior in terms of oscillation and
decay.

a. y′′ + 4y = δ(t− 1), y(0) = 3, y′(0) = 0.

b. y′′ − 4y′ + 13y = δ(t− 1), y(0) = 0, y′(0) = 2.

c. y′′ + 6y′ + 18y = 2H(π − t), y(0) = 0, y′(0) = 0.

d. y′′+ 4y = f (t), y(0) = 1, y′(0) = 0, where f (t) =

{
1, 0 < t < 1,
0, t > 1.

5. For the following problems, draw the given function and find the Laplace
transform in closed form.

a. f (t) = 1 +
∞

∑
n=1

(−1)n H(t− n).

b. f (t) =
∞

∑
n=0

[H(t− 2n + 1)− H(t− 2n)].

c.

f (t) =
∞

∑
n=0

(t− 2n)[H(t− 2n)− H(t− 2n− 1)]

+
∞

∑
n=0

(2n + 2− t)[H(t− 2n− 1)− H(t− 2n− 2)].
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6. The period, T, and the function defined on its first period are given.
Sketch several periods of these periodic functions. Make use of the period-
icity to find the Laplace transform of each function.

a. f (t) = sin t, T = 2π.

b. f (t) = t, T = 1.

c. f (t) =

{
t, 0 ≤ t ≤ 1,

2− t, 1 ≤ t ≤ 2,
T = 2.

d. f (t) = t[H(t)− H(t− 1)], T = 2.

e. f (t) = sin t[H(t)− H(t− π)], T = π.

7. Compute the convolution ( f ∗ g)(t) (in the Laplace transform sense) and
its corresponding Laplace transform L[ f ∗ g] for the following functions:

a. f (t) = t2, g(t) = t3.

b. f (t) = t2, g(t) = cos 2t.

c. f (t) = 3t2 − 2t + 1, g(t) = e−3t.

d. f (t) = δ
(
t− π

4
)

, g(t) = sin 5t.

8. Use the Convolution Theorem to compute the inverse transform of the
following:

a. F(s) =
2

s2(s2 + 1)
.

b. F(s) =
e−3s

s2 .

c. F(s) =
1

s(s2 + 2s + 5)
.

9. Find the inverse Laplace transform in two different ways: (i) Use tables.
(ii) Use the Convolution Theorem.

a. F(s) =
1

s3(s + 4)2 .

b. F(s) =
1

s2 − 4s− 5
.

c. F(s) =
s + 3

s2 + 8s + 17
.

d. F(s) =
s + 1

(s− 2)2(s + 4)
.

e. F(s) =
s2 + 8s− 3

(s2 + 2s + 1)(s2 + 1)
.

10. A linear Volterra integral equation, introduced by Vito Volterra (1860-
1940), is of the form

y(t) = f (t) +
∫ t

0
K(t− τ)y(τ) dτ,

where y(t) is an unknown function and f (t) and the “kernel,” K(t), are
given functions. The integral is in the form of a convolution integral and
such equations can be solved using Laplace transforms. Solve the following
Volterra integral equations.
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a. y(t) = e−t +
∫ t

0 cos(t− τ)y(τ) dτ.

b. y(t) = t−
∫ t

0 (t− τ)y(τ) dτ.

c. y(t) = t + 2
∫ t

0 et−τy(τ) dτ.

d. sin t =
∫ t

0 et−τy(τ) dτ. Note: This is a Volterra integral equation of
the first kind.

11. Use Laplace transforms to convert the following system of differential
equations into an algebraic system and find the solution of the differential
equations.

x′′ = 3x− 6y, x(0) = 1, x′(0) = 0,

y′′ = x + y, y(0) = 0, y′(0) = 0.

12. Use Laplace transforms to convert the following nonhomogeneous sys-
tems of differential equations into an algebraic system and find the solutions
of the differential equations.

a.

x′ = 2x + 3y + 2 sin 2t, x(0) = 1,

y′ = −3x + 2y, y(0) = 0.

b.

x′ = −4x− y + e−t, x(0) = 2,

y′ = x− 2y + 2e−3t, y(0) = −1.

c.

x′ = x− y + 2 cos t, x(0) = 3,

y′ = x + y− 3 sin t, y(0) = 2.

13. Redo Example 5.19 using the values R1 = 1.00Ω, R2 = 1.40Ω, L1 = 0.80
H, L2 = 1.00 H. and v0 = 100 V in v(t) = v0(1−H(t− t0)). Plot the currents
as a function of time for several values of t0.
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