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Abstract

In this paper we present a simple introduction to the first consequences
of special relativity (simultaneity, time dilation, and length contraction) as
depicted using Lorentz transformations and the superimposed Minkowski
diagrams for two observers.

1 Minkowski Diagrams

In this document we will consider the use of superimposed Minkowski
diagrams displaying Lorentz boosts. We will first refer to Figure 1. There
are two inertial reference frames, S and S′. The spacetime coordinates
in S are given by (x, ct). Those in S′ are given by (x′, ct′). They are
connected through a Lorentz transformation.

The Lorentz transformation in 1+1 dimensional spacetime is

x = γ(x′ + vt′) = γ(x′ + βct′), (1)

ct = cγ(t′ +
vx′

c2
) = γ(ct′ + βx′). (2)

The inverse transformation is

x′ = γ(x − vt) = γ(x − βct), (3)

ct′ = cγ(t − vx

c2
) = γ(ct − βx). (4)

As we proceed, it should be noted that distances in this spacetime,
denoted by (∆s2) is not the Euclidean line element, but instead given by

(∆s)2 = (∆x)2 − (c∆t)2. (5)

This can make some figures appear to have longer distances between events
in spacetime than they actually are.

Under Lorentz transformations, (∆s)2 is an invariant, i.e., (∆s)2 =
(∆s′)2. For easy reference, we note the form of the transformations on
spatial and temporal increments:
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∆x = γ(∆x′ + βc∆t′), (6)

c∆t = γ(c∆t′ + β∆x′), (7)

∆x′ = γ(∆x − βc∆t), (8)

c∆t′ = γ(c∆t − β∆x). (9)

We would like to describe the connections between the measurements
of spatial and time intervals in the two frames of reference. (We will use
one dimensional spatial coordinates (x) and scaled time coordinates (ct).
First, we describe how the two reference frames are related. We drew
Figure 1 showing the unprimed axes as orthogonal. The primed axes
appear skewed with this view. Let’s determined how they were drawn.

Figure 1: Diagram for investigating Lorentz boosts and changes in coordinates

in 1+1 dimensions.

Consider Figure 1. A given point can be described in reference frame
S with unprimed coordinates, (x, ct). As usual,we draw lines parallel to
the axes to determine the values of the coordinates. In the same way, we
can establish the primed coordinates. As seen in the figure, we can pick
out the coordinates, (x′, ct′).

First, we can locate the primed axes with respect to the unprimed
system using the equations for the Lorentz transformation. For the x′-
axis, we set x′ = 1 and ct′ = 0 in Equations (1-2). Then we obtain x = γ
and ct = βγ. Thus, ct = βx. So, the ct′-axis has slope β = v/c with
respect to the unprimed axes.

The ct′ axes can be found in the same way. We set x′ = 0 and ct′ = 1.
Then ct = γ and x = γβ = βct. Thus, the slope of the ct′-axis is 1/β =
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c/v.
In Figure 1 we show axes which have been drawn with β = 0.6. Thus,

γ = 1√
1−β2

= 5

4
. Setting x = γ and ct = βγ, we can locate the point (1, 0)

in the primed system. This is shown on the figure. Similarly, we can mark
off unit “lengths” along the time axis. Just set ct = γ and x = βγ to get
started. For the given value of β = 0.6, we just use multiples of γ = 1.25
to locate the integer markings on the primed axes.

2 Simultaneity

The first consequence of Einstein’s theory of special relativity is simultane-
ity. In Figure 2 we show what two observers see when a light is turned
on inside the train car. On the left the observer in the train sees two
light rays leave the bulb, traveling at c. The two rays simultaneously hit
opposite sides of the train car. On the right side we show what an outside
observer at the train station sees. Again, each light ray moves at speed
c, but the train is moving as well. Each ray travels the same distance
from the starting point, denoted by the dashed line. However, the left ray
strikes the train wall first. Therefore, this observe does not see the light
rays simultaneously strike the wall of the train car.

Figure 2: Comparing what different observers see when a light is turned on

inside a moving train.

We can show that events simultaneous in system S will not be in
system S′ moving at speed v with respect to S using our Minkowski
diagram. We first locate two simultaneous events in S, A and B, as shown
in Figure 3. The horizontal dashed line indicates the common time in the
S frame at which these two events take place. In order to determine the
times recorded in the S′ frame, we draw dashed lines through the events
and parallel to the x′-axis. These lines intersect the ct′-axis at points C
and D. It is obvious that an observer at rest with respect to the S′ frame
does not see events A and B as occurring at the same time.

Example This can be verified numerically using the Lorentz trans-
formations. Let β = 0.6. From Figure 3 we have that ∆t = 0 for two
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Figure 3: Diagram exhibiting simultaneous events.

simultaneous events in frame S. Let’s say that event A occurs at posi-
tion x1 = 2.0 m, event B occurs at position 4.0 m, and they occur at
ct1 = ct2 = 3.0cmin. (Note that a cmin = one c×(one minute) is a unit
of length!) Then from Equations 3-4 we have

x′

1 = γ(x1 − βct1) =
5

4
(2.0 − 0.6(3.0)) = 0.25 m,

x′

2 = γ(x2 − βct2) =
5

4
(4.0 − 0.6(3.0)) = 2.75 m,

ct′1 = γ(ct1 − βx1) =
5

4
(3.0 − 0.6(2.0)) = 2.25 cmin,

ct′2 = γ(ct2 − βx2) =
5

4
(3.0 − 0.6(4.0)) = 0.75 cmin,

3 Time Dilation

Next we take up time dilation. In order to measure time we need a simple
clock with no moving parts, especially in the direction of motion of the
clock. We introduce a time clock which consists of an enclosed contained
in which a light ray moves perpendicular to the clock’s velocity. At the
top and bottom of the clock are two mirrors spaced a distance D apart
as shown in Figure 4. In a frame at rest with the clock a light ray is
seen simply to move from the lower mirror to the top mirror, reflect and
return to the first mirror. This takes time ∆t0 = 2D/c. This gives the
time for an observer at rest with respect to the clock. Note that we used
a subscript to denote the proper time.

Now, consider that this observer is moving at speed v with the clock
with respect to a stationary observer. What the stationary observer sees
is shown in Figure 5. As the light ray leaves mirror one to mirror two and
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Figure 4: A light clock consists of two mirrors. In a frame at rest with the

clock a light ray is seen simply to move from the lower mirror to the top mirror,

reflect and return to the first mirror. This takes time ∆t0 = 2D/c.

back, the clock moves forward. The second observers sees a triangular
path traced as shown in the figure.

Figure 5: Depiction of moving light clock from the point of view of a stationary

observer watching the light clock speed past. The light ray is seen to traverse a

bent path.

We can relate the times measured by our two observers by referring
to Figure 6. Let the time measured by the stationary observer be ∆t for
the round trip of the light ray as it travels from mirror one to two and
back. Thus, the time to travel just between the two mirrors is ∆t/2. The
light ray travels at speed c and thus over distance c∆t/2 according to the
second observer.

Figure 6: Diagram used for determining time dilation.

In the same time, the clock (and first observer) move forward a distance
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of v∆t/2. Using the Pythagorean Theorem, we have

D2 +
(

v∆t

2

)2

=
(

c∆t

2

)2

.

Note that in the rest frame of the clock (observer one) we have D = c∆t0
2

.
Thus,

(

c∆t0
2

)2

+
(

v∆t

2

)2

=
(

c∆t

2

)2

.

Solving for ∆t, we find the time dilation equation

∆t = γ∆t0, γ =
1

√

1 − v2

c2

. (10)

In this problem ∆t0 is the time measured by the moving clock and ∆t is
the time measured by the stationary observer. Since γ ≥ 1, this indicates
that moving clocks tick slower.

Figure 7: Diagram for showing time dilation for events located at a fixed point

in frame S.

Now we want to show that the measurement of time intervals in the S
frame are not the same as those in the S′ frame using Minkowski diagrams.
In Figure 7 we mark two events, A and B, located at the same point in
space but different points in time, in the S frame. The horizontal (with
respect to the x-axis) dashed lines mark off the times along the ct-axis.
Drawing lines parallel to the x′-axis shows intersections with the ct′-axis.
The respective time intervals are marked as c∆t and c∆t′, respectively.
How are these time intervals related?

We can use the Lorentz transformations to find this out. Note that
∆x = 0. Using c∆t′ = γ(c∆t − β∆x), we have

∆t′ = γ∆t.
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Notice that events A and B are on the world line of a particle at rest
on the dashed line connecting these events. Therefore, ∆t measure the
proper time. Thus, we have that the proper time in S is less than the
time measured in S′.

This is not the Minkowski diagram that one would use to describe the
moving light clock earlier in the section. The diagram we would need is
in Figure 8. In this case the events A and B correspond to when the light
ray leaves mirror one (A) and returns to mirror 2 (B). In frame S′ this
occurs at a fixed position, so ∆x′ = 0. Using c∆t = γ(c∆t′ + β∆x′, ) we
recover the time dilation equation ∆t = γ∆t′, where ∆t′ is the proper
time in this example. This is the same result as in Equation 10.

Figure 8: Diagram for showing time dilation for events located at a fixed point

in frame S′.

As a further note, we can derive this result using the invariance relation

(∆s)2 = −(c∆t)2 + (∆x)2 = −(c∆t′)2 + (∆x′)2.

Setting ∆x′ = 0 we have

(c∆t)2 − (∆x)2 = (c∆t′)2.

Notice that the sides of the triangle in Figure 8 do not satisfy the Pythagorean
relation from Euclidean geometry!

We would like to relate the time increments. So, we have to eliminate
(∆x). Recall that the slope of the hypotenuse on the triangle is

c∆t

∆x
=

1

β
.
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Thus, ∆x = βc∆t. This yields

(c∆t)2 − (∆x)2 = (c∆t′)2

(c∆t)2 − (βc∆t)2 = (c∆t′)2

(1 − β2)(c∆t)2 = (c∆t′)2. (11)

Therefore, we once again obtain ∆t = γ∆t′.

4 Length Contraction

Finally, we want to look at the idea of length contraction. This is depicted
in Figure 9. We begin with a rod (or, measuring stick) whose length is
L0 as measured by an observer in the rest frame of the rod, which will be
S′. We now need to determine how one measures the rod when the rod is
moving at speed v past a second observer.

Figure 9: Diagram for determining length contraction for a moving meter stick.

As the rod moves, we have a hard time lining up a meter stick next to
the rod to make any measurements. Instead, we watch as the rod passes a
fixed point and record the time interval from the time the first end passes
the point to the time the back end does. The time obtained is

∆t =
L

v
,

where L is the length of the moving rod as recorded by the stationary
observer. The observer in the rest frame of the rod would record a time
of

∆t′ =
L0

v
.

However, we can use time dilation to relate the times. The time measured
by the stationary observer is measured by focussing on a fixed point in
space. So, ∆t is the proper time in system S. It is shorter than that
measured in S′. Thus,

∆t′ = γ∆t.

Note that the time measured in frame S′ cannot be a proper time as the
observer has to measure two different times in two different locations, as
we will see using the Minkowski diagrams.
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Continuing with the computation, we have so far ∆t′ = γ∆t, ∆t = L

v
,

and ∆t′ = L0

v
. Eliminating the time variables, we are left with the length

contraction equation:

L =
L0

γ
.

This indicates that the proper length is larger than the length measured
in other inertial frames. So, moving rods contract.

We now return to Minkowski diagrams. We will determine which sys-
tem records shorter lengths in space in two cases. In Figure 11 the rod is
at rest in reference frame S and in Figure 10 the rod is at rest in the S′

frame.

Figure 10: Diagram for determining length contraction.

The earlier example is depicted by the diagram in Figure 10. The
observer in frame S′ initially places the rod along the x′-axis. As time
evolves, the world lines traced out by the ends of the rod trace out the two
parallel black solid lines shown. During the time interval ∆t′ the observer
measures the rod length as ∆x′ as indicate in red. The observer in at rest
with respect to reference frame S measures the ends of the rod at a fixed
time and finds that the length of the moving rod is ∆x. From the Lorentz
transformations with ∆t = 0, we have

∆x′ = γ∆x.

This is the length contraction equation.
In a similar manner, a rod at rest with respect to frame S is depicted

in Figure 11. An typical example would be the situation where one per-
son would stand on a train platform and the second stands in the moving
train and makes a measurement of the length of the platform. The plat-
form is initially aligned with the x-axis. The world lines for the ends
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Figure 11: Diagram for determining length contraction.

of the platform are shown as two black parallel lines. The observer on
the train measures the length at a fixed time, so ∆t′ = 0. The Lorentz
transformation gives

∆x = γ∆x′.

Again, the apparently moving platform yields a shorter length according
to the observer on the train.

Notice that in both cases the Euclidean lengths of the ∆x′ sides of
each triangle appear longer than side ∆x between points A and B. How
can this be? Remember, these increments in spacetime are given by the
invariant ∆s in both systems. First consider the situation in Figure 10.
We have that (∆s)2 between A and B is given by

(∆x)2 = (∆x′)2 − (−c∆t′)2.

From the Lorentz transformations, setting ∆t = 0, we also have

c∆t′ = −βγ∆x.

So,

(∆x)2 = (∆x′)2 − (−c∆t′)2

= (∆x′)2 − (βγ∆x)2 (12)

Rearranging,

(∆x′)2 = (1 + β2γ2)(∆x)2 = γ2(∆x)2,

where we have used

1 + β2γ2 = 1 +
β2

1 − β2
=

1

1 − β2
= γ2.
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The final result is that ∆x′ = γ∆x. This indicates that ∆x′ > ∆x.
In Figure 11 the computation is simpler. We have

(∆x′)2 = (∆x)2 − (c∆t)2.

From the slope of the segment ∆x′ is given as

c∆t

∆x
= β.

So,
(∆x′)2 = (∆x)2 − (β∆x)2 = γ−2(∆x)2.

This leads to the relation ∆x = γ∆x′, showing ∆x > ∆x′ in Figure 11.

5 Summary

We have presented an introduction to some of the consequences of special
relativity (simultaneity, time dilation, and length contraction) as depicted
using Lorentz transformations and the superimposed Minkowski diagrams
for two observers. We gave simple derivations of the time dilation and
length contraction equations, derived them from the Lorentz transforma-
tions, Minkowski diagrams and the 1+1 dimensional increment form of
the Minkowski line element.

Denoting the proper time interval by ∆t0 and the proper length by
L0, the time dilation and length contraction equations can be written as

∆t = γ∆t0, (13)

L =
L0

γ
, (14)

where γ = 1√
1−β2

, β = v/c.
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