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Introduction

George Green (1793-1841)

Green’s Theorem

Green’s Function

Cylindrical Oil Reservoir

Abstract

Green’s functions, named after a relatively unknown grain miller, are

used to solve boundary value problems. We will follow their path

from an unknown 1928 Essay on the Application of Mathematical

Analysis to the Theory of Electricity and Magnetism to a standard

technique in mathematical physics in the mid-1900’s. We sketch how

Green’s functions provide solutions to flow problems in reservoirs.
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A Lifetime with Green’s Functions

• Graduate School

• Mathematical Physics

• Electrodynamics

• Integral Equations

• Poisson-Boltzmann Equation between

two spheres: ∇2ψ = sinhψ.

• Teaching

• Differential Equations

• Textbooks and Notes

• Recent - Petroleum Engineering
Image from here.

Who was Green?
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George Green’s Life (1793-1841)

• Self-taught, about one year of formal schooling, between 8 and 9.

• Lived most of his life Sneinton, Nottinghamshire.

• His father, George, was a baker who built and owned a brick

windmill to grind grain.

• In 1828 he published his famous essay.

He published privately at his expense.

Sold to 51 mostly friends.

• Wealthy landowner, mathematician, Edward Bromhead bought a

copy and encouraged Green.

• Green did not contact Bromhead for two years.

• 1829, father died wealthy left to son and daughter.

• Younger George had time to pursue mathematics.

• In his final years at Cambridge, Green became rather ill, and in 1840

he returned to Sneinton, only to die a year later.
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Discovery of 1828 Paper

• Green’s work was not well known during

his lifetime.

• In 1833 Robert Murphy (1806–1843)

quoted the essay.

• In 1845, Green’s essay was rediscovered &

popularised by William Thomson (21 yr).

• In 1871 Ferrers assembled The Mathem.

Papers of the Late George Greena.

• Other contributions in these papers:

On the motion of waves in a canal

Green’s pre-WKB approx.

Green’s Theorem and Identities.

Green’s Functions (named by

Riemann), and potential functions.
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Green’s Theorem - Page 23, Green’s Essay

Let U and V be two continuous functions of the rectangular co-ordinates

x , y , z , whose differential co-efficients do not become infinite at any point

within a solid body of any form whatever; then will∫
dxdydz UδV +

∫
dσU

(
dV

dw

)
=

∫
dxdydz V δU +

∫
dσV

(
dU

dw

)
;

the triple integrals extending over the whole interior of the body, and those

relative to dσ, over its surface, of which dσ represents an element: dw being

an infinitely small line perpendicular to the surface, and measured from this

surface towards the interior of the body.

Modern Notation: Also Green’s Second Identity∫ ∫ ∫
U∇2V dv+

∫ ∫
U
∂V

∂n
dσ =

∫ ∫ ∫
V∇2U dv+

∫ ∫
V
∂U

∂n
dσ.

Equivalent to the Divergence Theorem. [Lagrange, 1754; Gauss, 1813

pub 1833,39; Ostrogradsky proved 1831.]
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Green’s Identities

In modern notation Green’s first and second identities are given by the

following with ψ and ϕ satisfying appropriate conditions of

differentiability on a given domain..

∫
Ω

[ϕ∇2ψ +∇ψ · ∇ϕ] dV =

∫
∂Ω

ϕ∇ψ · n dS . (1)∫
Ω

[ϕ∇2ψ − ψ∇2ϕ] dV =

∫
∂Ω

[ϕ∇ψ − ψ∇ϕ] · n dS . (2)

Figure 1: Caption
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Poisson’s Equation - Green Introduced in Essay

Let Poisson’s equation,

∇2u(r) = f (r),

hold inside a region Ω bounded by the surface ∂Ω.

This is the nonhomogeneous form of Laplace’s equation.

f (r), could represent a heat source in a steady-state problem, a charge

distribution in an electrostatic problem, or an oil well.

∂Ω

Ω

n̂
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Green’s Function - Modern Approach

What is the response of the system to a point source?

The point source at r′ is felt at r. Call the response G (r, r′).

The response (Green’s) function would satisfy

∇2G (r, r′) = δ(r − r′),

where δ(r − r′) is the Dirac delta function satisfying

δ(r) = 0, r ̸= 0,∫
Ω

δ(r) dV = 1.∫
Ω

δ(r − r′)f (r) dV = f (r′).

Green and others talked about singularity. It wasn’t until mid-1900’s that the

Dirac delta function was understood in theory of distributions.
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Green’s Function and Poisson’s Equation, ∇2u = 0.

Green’s second identity:∫
∂Ω

[ϕ∇ψ − ψ∇ϕ] · n dS =

∫
Ω

[ϕ∇2ψ − ψ∇2ϕ] dV .

Letting ϕ = u(r) and ψ = G (r, r′), we have∫
∂Ω

[u(r)∇G (r, r′)− G (r, r′)∇u(r)] · n dS

=

∫
Ω

[
u(r)∇2G (r, r′)− G (r, r′)∇2u(r)

]
dV

=

∫
Ω

[u(r)δ(r − r′)− G (r, r′)f (r)] dV

= u(r′)−
∫
Ω

G (r, r′)f (r) dV . (3)

Solve for u(r′).
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Solution

We have

u(r′) =

∫
Ω

G (r, r′)f (r) dV

+

∫
∂Ω

[u(r)∇G (r, r′)− G (r, r′)∇u(r)] · n dS . (4)

If both u(r) and G (r, r′) satisfied Dirichlet conditions, u = 0 on ∂Ω, then

the last integral vanishes and we are left with

u(r′) =

∫
Ω

G (r, r′)f (r) dV .

In many applications, G (r, r′) = G (r′, r). Then,

u(r) =

∫
Ω

G (r, r′)f (r′) dV ′.

If we know the Green’s function, we can solve nonhomogeneous differential

equations and nonhomogenous boundary value and initial value problems.
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Green’s Functions for PDE’s

The wave, heat, and Laplace’s equation are typical homogeneous PDEs.(
∂2

∂t2
− c2∇2

)
u = 0,(

∂

∂t
− k∇2

)
u = 0,

∇2u = 0. (5)

They can be written in the form

Lu(x) = 0,

where L is a differential operator, x = {r, t}.

We solve the nonhomogeneous equations, Lu(x) = f (x), by seeking out

the Green’s function, LG (x , x ′) = δ(x − x ′).
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Diffusion Equation

∂u(r, t)

∂t
− k∇2u(r, t) = S(r, t).

∂G (r, r′, t, t ′)

∂t
− k∇2G (r, r′, t, t ′) = δ(r − r′)δ(t − t ′).

How to find G (r, r′, t, t ′) :

Integral transforms: Laplace to remove t-dependence.

Symmetry to reduce to ODEs.

Often, one obtains Green’s functions analytically as infinite series.

Problems with convergence.

There are numerical techniques needed for inverse Laplace transforms.
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Cylindrical Oil Reservoirs - Diffusion Equation

Let p = p(r , t) be the pressure in

the reservior. A general form of the

line source problem would be

1

r

∂

∂r

(
r
∂p

∂r

)
− ∂p

∂t
= S(r , t), (6)

p(r , 0) = p0(r),

lim
r→0

r
∂p

∂r
= b(t), lim

r→∞
p(r , t) = 0. (7)

Here S(r , t) would be a source term

and b(t) a lower boundary value.
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Cylindrical Oil Reservoirs - Boundary Conditions

(a) (b)

R

No flow

R

No flow

rw

Figure 2: Examples with no flow boundaries. (a) Line source in a finite region

of radius R. (b) Finite well source of radius rw inside a finite region of radius R.
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Laplace Transform

For the diffusion equation

1

r

∂

∂r

(
r
∂p

∂r

)
− ∂p

∂t
= S(r , t), (8)

p(r , 0) = p0(r),

one can apply the Laplace transform,

p̂(r , s) =

∫ ∞

0

p(r , t)e−st dt,

to the diffusion equation to obtain

r2
∂2p̂

∂r2
+ r

∂p̂

∂r
− r2sp̂ = −r2p0(r) + r2Ŝ(r , s) ≡ F (r , s).

The general solution takes the form

p̂(r , s) = c1I0(r
√
s) + c2K0(r

√
s) + P(r , s). (9)
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Modified Bessel Functions

In(x) : Modified Bessel function of the first kind.

Kn(x) : Modified Bessel function of the second kind.

These are related to the Bessel functions of the first and second kind,

In(x) = i−nJn(ix), Kn(x) =
π

2

I−n(x)− In(x)

sin nπ
.
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Examples

At this point one considers different boundary value problems and if one

can find exact solutions or numerical solutions.

To make sure numerical techniques work, one needs analytical solutions

to toy problems.

• Solve for p̂(r , s).

• Find p(r , t) using table look-up or the Bromwich integral.

The Laplace transform of a function f (t) is defined as

F (s) = L[f ](s) =
∫ ∞

0

f (t)e−st dt, s > 0. (10)

The inverse Laplace transform is obtained using the Bromwich

integral, or Fourier-Mellin integral,

f (t) =
1

2πi

∫ c+i∞

c−i∞
F (s)est ds. (11)
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Next - Some rough computations!

Next we go through a few notes indicating the type of functions and

mathematics needed.

• Modified Bessel functions.

• Line source infinite reservoir.

• Constant rate at finite radius.

• No-flow boundaries.

• Finite wells.

• Application of Green’s functions.

• Inversion of Laplace transform.

During the presentation some research notes were presented. Here we

add the important computation of the inverse Laplace transform.
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Inverse Laplace Transform

Starting with the Bromwich integral,

f (t) =
1

2πi

∫ c+i∞

c−i∞
F (s)est ds, (12)

we choose c so that all poles are to the left of the contour such as seen

in Figure 3. The contour is a closed semicircle enclosing all the poles.

One then relies on a generalization of Jordan’s Lemma.1

We follow up with a seemingly simple problem.

1One has a choice to close the contour to the left or right of the contour. Writing the

exponential as est = e(sR+isI )t = esR te isI t , we see that the second factor is an

oscillating factor. The growth in the exponential can only come from the first factor.

In order for the exponential to decay as the radius of the semicircle grows, we need

sR t < 0. Since t > 0, then s < 0 and we close the contour to the left. If t < 0, then

the enclosed contour to the right would enclose no singularities and preserve the

causality of f (t). MAT 595 Green’s Functions R. L. Herman Sept. 23, 2022 19/27



Inverse Laplace Transform - Contour

c + iR

c − iR

ℜ(s)

ℑ(s)

C1

C2

LR

Cϵ

Γ+

Γ−
c

Figure 3: A contour used for applying the Bromwich integral to the Laplace

transform F (s) = K0(r
√
s) with a branch point at s = 0.
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Inverse Laplace Transform - Example

Example
Let F (s) = K0(r

√
s). Then, the Bromwich integral is given by

f (t) =
1

2πi

∫ c+i∞

c−i∞
K0(r

√
s)est ds. (13)

Since there is a branch point at s = 0, we choose c > 0.

We consider the complex integral around the contour

C = lim
R→∞

lim
ϵ→0

(LR + C1 + Γ+ + Cϵ + Γ− + C2)

in Figure 3,

I =
1

2πi

∮
C

K0(r
√
z)etz dz = 0.

MAT 595 Green’s Functions R. L. Herman Sept. 23, 2022 21/27



Inverse Laplace Transform - Example (cont’d)

The integrals over C1 and C2 vanish by Jordan’s Lemma. So, we need to
compute f (t) as

lim
R→∞

lim
ϵ→0

(
−

1

2πi

∫
Γ+

K0(r
√
z)etz dz −

1

2πi

∫
Cϵ

K0(r
√
z)etz dz −

1

2πi

∫
Γ−

K0(r
√
z)etz dz

)
.

First we note that

lim
ϵ→0

∫
Cϵ

K0(r
√
z)etz dz = − lim

ϵ→0

∫ π

−π

K0(r
√
ϵe iθ)etϵe

iθ

iϵe iθ dθ

= lim
ϵ→0

i

2
ϵ ln ϵ

∫ π

−π

dθ = 0. (14)

For the integrals over Γ± we let z = xe±iπ, giving∫
Γ±

K0(r
√
z)etz dz = ∓

∫ ∞

0

K0(r
√
xe±iπ)etxe

±iπ

e±iπ dx

= ±
∫ ∞

0

K0(±ir
√
x)e−tx dx .

MAT 595 Green’s Functions R. L. Herman Sept. 23, 2022 22/27



Inverse Laplace Transform - Example (cont’d)

Letting y = r
√
x , or x = y2/r2 and dx = 2ydy/r2, we have

±
∫ ∞

0

K0(±ir
√
x)e−tx dx = ± 2

r2

∫ ∞

0

K0(±iy)e−ty2/ry dy

Combining the integrals, we have∫
Γ+

K0(r
√
z)etz dz +

∫
Γ−

K0(r
√
z)etz dz (15)

=

∫ ∞

0

[K0(ir
√
x)− K0(−ir

√
x)]e−tx dx

= −iπ

∫ ∞

0

J0(r
√
x)e−tx dx , (16)

where we employed the identity

K0(ir
√
x)− K0(−ir

√
x) = −iπI0(ir

√
x) = −iπJ0(r

√
x), r > 0.
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Inverse Laplace Transform - Example (cont’d)

We need the Laplace transform of J0(r
√
x). Writing w(x) = J0(r

√
x),

w(x) satisfies the initial value problem

4xw ′′ + 4w ′ + r2w = 0, w(0) = 1,w ′(0) = 0.

Taking the Laplace transform, W (t) =
∫∞
0

J0(r
√
x)e−tx dx ,

0 = −4
d

dt
(t2W (t)− t) + 4(tW (t)− 1) + r2W (t)

= −4t2W ′(t)− 4tW (t) + r2W (t) (17)

The solution of this differential equation is W (t) = 1
t e

−r2/4t . Therefore,

we have that

f (t) =
1

2t
e−r2/4t .
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Thanks for listening. For more than above you can check out my course

notes, people.uncw.edu/hermanr/books.htm
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