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Abstract

How often have you used the small angle approximation sin θ ≈ θ or the binomial

expansion (1 + x)p ≈ 1 + px? How accurate is the formula T = 2π
√

L
g giving the

period of a pendulum for angles that are not small? How fast must you have to
move for relativistic effects to be important? Do series expansions have to
converge to be useful? In this lecture we will explore some of these questions as
we investigate the role of series expansions in our approximations. In particular,
we describe the typical use of series expansions in undergraduate physics, provide
some examples and if there is time we may see how divergent series are often
useful.
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Geometric Series

Definition
A geometric series is of the form

∞∑
n=0

arn = a + ar + ar2 + ar3 + · · ·+ arn + . . . . (1)

Here a is the first term and r is called the ratio.

Examples
∞∑

n=0

2n

3n
= 1 +

2

3
+

22

32
+

23

33
+ · · ·

∞∑
n=2

3(2n) = 3(22) + 3(23) + 3(24) + · · ·

∞∑
n=0

(−1)n

2n
= 1− 1

2
+

1

4
− 1

8
+ · · ·
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nth Partial Sum

Sum of Geometric Progression

Consider the nth partial sum:

sn = a + ar + · · ·+ arn−2 + arn−1. (2)

Now, multiply this equation by r .

rsn = ar + ar2 + · · ·+ arn−1 + arn. (3)

Subtracting
(1− r)sn = a− arn. (4)

Thus, the nth partial sum is

sn =
a(1− rn)

1− r
. (5)
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Sum of a Geometric Series

Limit of Partial Sums
Recall that the sum, if it exists, is given by

S = lim
n→∞

sn = lim
n→∞

a(1− rn)

1− r
.

Geometric Series Result
The sum of the geometric series is

∞∑
n=0

arn =
a

1− r
, |r | < 1. (6)
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Examples

Example 1.
∑∞

n=0
1
2n

In this case we have that a = 1 and r = 1
2 . Therefore, this infinite series converges

and the sum is

S =
1

1− 1
2

= 2.

Example 2.
∑∞

k=2
4
3k

In this example we note that the first term occurs for k = 2. So, a = 4
9 . Also,

r = 1
3 . So,

S =
4
9

1− 1
3

=
2

3
.
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Binomial Series

Definition

A binomial series is the power series expansion of (1 + x)p when p is not a
nonnegative integer and |x | < 1.

The First Terms

(1 + x)p = 1 + px +
p(p − 1)

2!
x2 +

p(p − 1)(p − 2)

3!
x3 + . . . . (7)

More General Expressions

Consider the approximation (r << R) :

1√
r2 + R2

= (r2 + R2)−1/2 =
1

R

(
1 +

( r

R

)2
)−1/2

≈ 1

R

(
1− r2

2R2
+

3

8

r4

R4

)
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Nonnegative Integer Powers

Looking for Patterns ...

Consider (a + b)p for nonnegative integer p’s:

(a + b)0 = 1

(a + b)1 = a + b

(a + b)2 = a2 + 2ab + b2

(a + b)3 = a3 + 3a2b + 3ab2 + b3

(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4

· · ·

Do you see any patterns?
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General Patterns

Observations

Each term consists of a product of a power of a and a power of b.

The powers of a are decreasing from n to 0

The powers of b increase from 0 to n.

The sums of the exponents in each term is n.

Result
So, we can write the k + 1st term in the expansion as

C r
k−1a

n−kbk .

Example - 6th term in (a + b)51

a51−5b5 = a46b5. What is the numerical coefficient?
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Patterns in the Coefficients - Pascal’s Triangle

n = 0 : 1
n = 1 : 1 1
n = 2 : 1 2 1
n = 3 : 1 3 3 1
n = 4 : 1 4 6 4 1

(8)

Observations

Each row begins and ends with a one.

The second and next to last terms have coefficient = n.

Add consecutive pairs in each row to obtain next row.

n = 2 : 1 2 1
↘ ↙ ↘ ↙

n = 3 : 1 3 3 1
(9)
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Coefficient Patterns

n = 2 : 1 2 1
↘ ↙ ↘ ↙

n = 3 : 1 3 3 1
(10)

We can generate the next several rows of our triangle.

n = 3 : 1 3 3 1
n = 4 : 1 4 6 4 1
n = 5 : 1 5 10 10 5 1
n = 6 : 1 6 15 20 15 6 1

(11)

The kth term in the expansion of (a + b)n.

Let r = k − 1. Then this term is of the form C n
r an−rbr , where C n

r = C n−1
r + C n−1

r−1 .
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Combinatorial Coefficients

Actually, the coefficients have been found to take a simple form.

C n
r =

n!

(n − r)!r !
=

(
n
r

)
.

For example, the r = 2 case for n = 4 involves the six products: aabb, abab,
abba, baab, baba, and bbaa.

The Binomial Series for Nonnegative Integer Powers

So, we have found that

(a + b)n =
n∑

r=0

(
n
r

)
an−rbr . (12)
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Binomial Expansion - Other Powers

Note: Sums may be infinite.

(1− x)−1 =
1

1− x
= 1 + x + x2 + . . . .

(1 + x)p =
∞∑
r=0

(
p
r

)
x r for p real. (13)

Is There a Problem?

Consider the coefficient for r = 1 in an expansion of (1 + x)−1.(
−1
1

)
=

(−1)!

(−1− 1)!1!
=

(−1)!

(−2)!1!
.

where (−1)! = (−1)(−2)(−3) · · · =????
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Eliminate the factorials

Exercising a little care:

(−1)!

(−2)!
=

(−1)(−2)!

(−2)!
= −1.

In General

(
p
r

)
=

p!

(p − r)!r !

=
p(p − 1) · · · (p − r + 1)(p − r)!

(p − r)!r !

=
p(p − 1) · · · (p − r + 1)

r !
. (14)

Dr. Herman (UNCW) How Small is Small? April 11, 2007 15 / 37



Eliminate the factorials

Exercising a little care:

(−1)!

(−2)!
=

(−1)(−2)!

(−2)!
= −1.

In General

(
p
r

)
=

p!

(p − r)!r !

=
p(p − 1) · · · (p − r + 1)(p − r)!

(p − r)!r !

=
p(p − 1) · · · (p − r + 1)

r !
. (14)

Dr. Herman (UNCW) How Small is Small? April 11, 2007 15 / 37



General Binomial Expansion

Theorem

The general binomial expansion of (1 + x)p for p real is

(1 + x)p =
∞∑
r=0

p(p − 1) · · · (p − r + 1)

r !
x r . (15)

Approximations

Often we need the first few terms for the case that x � 1 :

(1 + x)p = 1 + px +
p(p − 1)

2
x2 + O(x3). (16)
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Example

Relativistic Kinetic Energy

K = E − E0

= γmc2 −mc2

=
mc2√

1−
(

v
c

)2
−mc2

=

((
1 +

(
−1

2

) (
−v2

c2

)
+ · · ·

)
− 1

)
mc2

=
1

2

(
v2

c2

)
mc2

=
1

2
mv2.
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Taylor and Maclaurin Series

Power Series
A power series expansion about x = a with coefficients cn is given by∑∞

n=0 cn(x − a)n.

Taylor Series

A Taylor series expansion of f (x) about x = a is the series

f (x) ∼
∞∑

n=0

cn(x − a)n, (17)

where

cn =
f (n)(a)

n!
. (18)

Maclaurin Series - a = 0

Dr. Herman (UNCW) How Small is Small? April 11, 2007 18 / 37



Taylor and Maclaurin Series

Power Series
A power series expansion about x = a with coefficients cn is given by∑∞

n=0 cn(x − a)n.

Taylor Series

A Taylor series expansion of f (x) about x = a is the series

f (x) ∼
∞∑

n=0

cn(x − a)n, (17)

where

cn =
f (n)(a)

n!
. (18)

Maclaurin Series - a = 0

Dr. Herman (UNCW) How Small is Small? April 11, 2007 18 / 37



Taylor and Maclaurin Series

Power Series
A power series expansion about x = a with coefficients cn is given by∑∞

n=0 cn(x − a)n.

Taylor Series

A Taylor series expansion of f (x) about x = a is the series

f (x) ∼
∞∑

n=0

cn(x − a)n, (17)

where

cn =
f (n)(a)

n!
. (18)

Maclaurin Series - a = 0

Dr. Herman (UNCW) How Small is Small? April 11, 2007 18 / 37



Sample Coefficient Computation

Expand f (x) = ex about x = 0.

n f (n)(x) cn = f (n)(0)
n!

0 ex e0

0! = 1

1 ex e0

1! = 1

2 ex e0

2! = 1
2!

3 ex e0

3! = 1
3!

In this case, we have that the
pattern is obvious:

cn =
1

n!
.

So,

ex ∼
∞∑

n=0

xn

n!
.
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More Expansions

Common Series Expansions

cos x = 1− x2

2
+

x4

4!
− · · · =

∞∑
n=0

(−1)n
x2n

(2n)!

sin x = x − x3

3!
+

x5

5!
− · · · =

∞∑
n=0

(−1)n
x2n+1

(2n + 1)!

1

1 + x
= 1− x + x2 − x3 + · · · =

∞∑
n=0

(−1)nxn

tan−1 x = x − x3

3
+

x5

5
− x7

7
+ · · · =

∞∑
n=0

(−1)n
x2n+1

2n + 1

ln(1 + x) = −x +
x2

2
− x3

3
+ · · · =

∞∑
n=1

(−1)n
xn

n
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Small Angle Approximation

sin θ = θ − θ3

3!
+

θ5

5!
+ . . . ⇒ Relative Error =

∥∥∥∥ sin θ − θ

sin θ

∥∥∥∥ .

The relative error in percent when approximating sin θ by θ.

A one percent relative
error occurs for θ ≈ 0.24
radians
= 0.24rad 180o

πrad < 14o .
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The Simple Pendulum

Consider Newton’s Second Law for Rotational
Motion:

τ = Iα

Then

−(mg sin θ)L = mL2θ̈ ⇒ Lθ̈ + g sin θ = 0.

Pendulum Equations

Nonlinear Pendulum: Lθ̈ + g sin θ = 0

Linear Pendulum: Lθ̈ + gθ = 0.
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Linear Pendulum, Lθ̈ + gθ = 0

The general solution

θ(t) = c1 cos(ωt) + c2 sin(ωt) (19)

where

ω ≡
√

g

L
.

The period is found to be

T =
2π

ω
= 2π

√
L

g
. (20)
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The Nonlinear Pendulum, θ̈ + ω2 sin θ = 0

Multiply Equation by θ̇ :

θ̈θ̇ + ω2 sin θθ̇

= 0 ⇒ d

dt

[
1

2
θ̇2 − ω2 cos θ

]
= 0.

Therefore,
1

2
θ̇2 − ω2 cos θ = c . (21)

Solving for θ̇, we obtain
dθ

dt
=

√
2(c + ω2 cos θ).

Rearrange and integrate:

t =

∫
dt =

∫
dθ√

2(c + ω2 cos θ)
.
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Energy Analysis

The kinetic energy,

potential energy, and total mechanical energy.

T =
1

2
mv2 =

1

2
mL2θ̇2.

U = mgh = mgL(1− cos θ).

E =
1

2
mL2θ̇2 + mgL(1− cos θ). (22)

A little rearranging:

1

2
θ̇2 − ω2 cos θ =

1

mL2
E − ω2 = c .

and for θmax = θ0,

E = mgL(1− cos θ0) = mL2ω2(1− cos θ0).
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Returning to Nonlinear Pendulum Computation

Therefore, we have found that

1

2
θ̇2 − ω2 cos θ = ω2(1− cos θ0). (23)

Using the half angle formula,sin2 θ
2 = 1

2 (1− cos θ), we have

1

2
θ̇2 = 2ω2

[
sin2 θ0

2
− sin2 θ

2

]
. (24)

Solving for θ̇,

dθ

dt
= 2ω

[
sin2 θ0

2
− sin2 θ

2

]1/2

. (25)

And separating:

2ωdt =
dθ[

sin2 θ0

2 − sin2 θ
2

]1/2
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The Period of Oscillation

Consider a quarter of a cycle (θ = 0 to θ = θ0):

T =
2

ω

∫ θ0

0

dφ√
sin2 θ0

2 − sin2 θ
2

. (26)

Defining z =
sin θ

2

sin
θ0
2

and k = sin θ0

2 , we obtain

T = 4
ω

∫ 1

0
dz√

(1−z2)(1−k2z2)

This is done using

dz = 1
2k cos θ

2 dθ = 1
2k (1− k2z2)1/2 dθ and sin2 θ0

2 − sin2 θ
2 = k2(1− z2).
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Period - Small Angle Approximation

For small angles, k = sin θ0

2 is small.

(1− k2z2)−1/2 = 1 +
1

2
k2z2 +

3

8
k2z4 + O((kz)6)

T =
4

ω

∫ 1

0

dz√
(1− z2)(1− k2z2)

= 2π

√
L

g

[
1 +

1

4
k2 +

9

64
k4 + . . .

]
. (27)
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... and finally!

T = 2π
√

L
g

[
1 + 1

4k2 + 9
64k4 + . . .

]
The Relative Error - Using 1,2,3 Terms

Dr. Herman (UNCW) How Small is Small? April 11, 2007 29 / 37



Usefulness of Divergent Series

Convergent Power Series

To date you have learned that convergent power series are good and divergent
series are bad. Recall the ratio test: For

∑
cn(x − a)n, the ratio test

ρ = lim
n→∞

∣∣∣∣cn+1

cn

∣∣∣∣ |x − a| < 1

Simple Example

Recall

ln(1 + x) = −x +
x2

2
− x3

3
+ · · · =

∞∑
n=1

(−1)n
xn

n

This converges absolutely when

ρ = lim
n→∞

∣∣∣∣ (−1)n+1n

(−1)n(n + 1)

∣∣∣∣ |x | < 1,

or |x | < 1.
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Asymptotic Series

Definition

f (x) ' φ(x)
∑∞

n=0
an

xn provided

lim
|x|→∞

xn

[
f (x)

φ(x)
−

N∑
n=0

an

xn

]
→ 0

Thus,

for a given N, the sum of N + 1 terms of the series can be as close to f (x)
φ(x) as

one desires for sufficiently large x .

For each x and N the error is of the order 1/xN+1

However, the series is divergent and thus there are an optimal number of
terms needed.
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A Simple Asymptotic Series

Example∫ ∞

0

e−zt

1 + t2
dt =

1

z
− 2!

z3
+

4!

z5
− · · ·+ (−1)n−1(2n − 2)!

z2n−1
+ Rn(z)

where |Rn(z)| ≤ (2n)!
z2n+1 and for fixed n, lim|z|→∞ Rn(z) = 0.

The Relative Error for x = 5, 10
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Asymptotic Series from Integrals

Exponential Integral

Ei(x) =

∫ ∞

x

e−t

t
dt.

Integration by parts (u = x−1 , dv = e−x dx) gives

Ei(x) =
e−x

x
−

∫ ∞

x

e−t

t2
dt.

Further integration by parts gives

Ei(x) =
e−x

x

[
1− 1

x
+

2!

x2
− 3!

x3
+ · · ·+ (−1)nn!

xn

]
+(−1)n+1(n+1)!

∫ ∞

x

e−t

tn+2
dt.

In general,

Ei(x) =
e−x

x

∞∑
n=0

(−1)nn!

xn
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Convergence

Convergence of the Series Ei(x) = e−x

x

∑∞
n=0

(−1)nn!
xn

ρ = lim
n→∞

∣∣∣∣ (n + 1)!

n!

∣∣∣∣ |x | =∞,

This series is divergent! Is it useless?

The Relative Error - Using 1,5,10 Terms
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The World on a String Problem

The Problem
Tie a string around the Earths equator so that it is tight. Now, add ten feet to the
string. Pull it at one point until it is tight but comes up to a point. How far from
the Earths surface is this? (How long a pole would you need to support it?) To
how many digits can you give your answer?
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Hints

Key Equations

tan θ =
x

R

x =
d

2
+ Rθ

h =
√

R2 + x2 − R

Note: θ is small Solve

tan θ − θ =
d

2R
≈ 5

21008452.4881

h =

√
R2 + (

d

2
+ Rθ)2 − R
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Summary of Talk

1 Geometric Series

2 Binomial Series
Special Relativity Example

3 Taylor Series

4 Applications
Small Angles
The Nonlinear Pendulum

5 Asymptotic Series

6 Homework - The World on a String
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