
Spacetime Diagrams
R. Herman

March 2, 2021

Causal Structure

There are several approaches to visualize spacetimes in general rel-
ativity. One is to look at a grid formed by the paths that light rays
take. For example, consider the two-dimensional line element for a
flat spacetime

ds2 = −dt2 + dx2.

Here we have set c = 1.
Light rays travel on worldlines such that ds2 = 0, Therefore,

dt
dx

= ±1,

or t = ±x + const. These families of solutions are shown in Figure
1. Future pointing light cones are shown where the boundaries of
these light cones lie along the paths of outgoing (+1) and infalling
(-1) worldlines.

x

t Figure 1: Plot of null curves and light-
cones for ds2 = −dt2 + dx2

Now consider the line element

ds2 = −x2dt2 + dx2.
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In order to determine light ray paths for this spacetime, we set

−x2dt2 + dx2 = 0,

or
dx
dt

= ±x.

So, x(t) = e±(t−t0).

x

t Figure 2: Plot of null curves and light-
cones for ds2 = −x2dt2 + dx2.

In Figure 2 we plot these families of curves. Locally, we can draw
future null cones whose sides are tangent to these curves at the
present point. Furthermore, we drew the worldline

x(t) = cosh t

with a few light cones on it. We see that this is a timelike path since
dx
dt = sinh t < cosh t = x.

Schwarzschild Geometry

The line element for empty space outside a spherically symmetric
source of curvature is given by the Schwarzschild line element,

ds2 = −
(

1− 2M
r

)
dt2 +

(
1− 2M

r

)−1
dr2 + r2

(
dθ2 + sin2 θ dφ2

)
.

(1)
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We have used geometrized units (c = 1 and G = 1). We want to
investigate the geometry by looking at its causal structure. Namely,
what do the light cones look like?

We consider radial null curves. Radial null curves are curves fol-
lowed by light rays (ds2 = 0) for which θ and φ are constant. Thus,1 1 We can write this as

dt2 =
dr2

1− 2M
r
≡ dr2

∗,

where r∗ is called the tortoise coordi-
nate. Integrating these equations, we
have

r∗ = r + 2M ln |r− 2M|

and t + r∗ = const. We note that as r
approaches 2M, r∗ → ∞.

−
(

1− 2M
r

)
dt2 +

(
1− 2M

r

)−1
dr2 = 0.

Therefore, the slope of the light cones in r-t space is given by

dt
dr

= ±
(

1− 2M
r

)−1
.

We note that for large r, dt
dr → ±1. This indicates that for large r

light rays travel as if in flat spacetime. As light rays approach r =

2M, dt
dr → ±∞. Thus, the light cones have infinite slope and close, not

allowing any causal structure. This can be seen from the solution

t(r) = ±r± 2M ln |r− 2M|+ constant.

In Figure 3 we show the radial light rays for the Schwarzschild geom-
etry. Note how the solutions on either side of r = 2M suggest that no
information can cross the event horizon.

This is a result of the coordinate singularity at r = 2M. We will ex-
plore other coordinate systems in order to see how light rays outside
the event horizon, r = 2M, are connected to those inside.

r

t

r = 2M

Figure 3: Radial light rays for the
Schwarzschild geometry given by
t(r) = ±r± 2M ln |r− 2M|+ constant..

Eddington-Finkelstein Coordinates

We begin with the Schwarzschild line element in geometrized units
(c = 1 and G = 1),

ds2 = −
(

1− 2M
r

)
dt2 +

(
1− 2M

r

)−1
dr2 + r2

(
dθ2 + sin2 θ dφ2

)
.
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We will first transform this system using different sets of coordinates.
The first set of coordinates are the Eddington-Finkelstein coordinates.
These are defined by replacing the time variable, t, with a new time
variable,

v = t + r∗ = t + r + 2M ln
∣∣∣ r
2M
− 1
∣∣∣ .

The line element becomes

ds2 = −
(

1− 2M
r

)
dv2 + 2dvdr + r2

(
dθ2 + sin2 θ dφ2

)
.

Radial light rays in this system (ds = 0 and dθ = dφ = 0) are found
to satisfy

0 = −
(

1− 2M
r

)
dv2 + 2dvdr.

Therefore, either dv = 0 or

0 = −
(

1− 2M
r

)
dv + 2dr

dv
dr

=
2r

r− 2M

=
2(r− 2M) + 4M

r− 2M

= 2 +
4M

r− 2M
v = 2r + 4M ln |r− 2M|+ const

Therefore, radial light rays follow lines of constant v or

v− 2r− 4M ln |r− 2M| = const

as shown in Figure 4.

r

v

r = 2M

Figure 4: Radial light rays follow lines
of constant v or v = 2r + 4M ln |r− 2M|
in Eddington Finkelstein coordinates.

In order to have ingoing radial light rays depicted at 45◦, such
as we saw in Figure 1, we can instead use the new time coordinate
t̃ = v− r. Under this transformation, the radial light rays follow the
paths depicted in Figure 5.
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r

t̃

r = 2M

Figure 5: Radial light rays in Eddington
Finkelstein coordinates (r, t̃), where
t̃ = v− r.

Picking a point in the spacetime, these light rays can be used to
sketch the light cones. In Figure 6 we show select future null cones.
As one approaches r = 2M, it can be seen that the light cones tip
towards the event horizon. Worldlines emanating from these light
cones indicate how difficult it is to bend away from the event hori-
zon. Light cones for r < 2M point towards the singularity making
any massive test particle

r

t̃

r = 2M

Figure 6: Radial light rays in Eddington
Finkelstein coordinates (r, t̃) with select
future light cones shown.

Kruskal-Szekeres Coordinates

We will introduce Kruskal-Szekeres coordinates for which all light
rays travel at 45◦. These are given by the relations

U2 −V2 =
( r

2M
− 1
)

er/2M

V
U

= tanh
(

t
4M

)
, r > 2M,
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U
V

= tanh
(

t
4M

)
, r < 2M. (2)

These equations can be solved for the transformation mapping
(t, r) into (V, U).

U =

{ ( r
2M − 1

)1/2 er/4M cosh t
4M , r > 2M.(

1− r
2M
)1/2 er/4M sinh t

4M , r < 2M.
(3)

V =

{ ( r
2M − 1

)1/2 er/4M sinh t
4M , r > 2M.(

1− r
2M
)1/2 er/4M cosh t

4M , r < 2M.
(4)

Under this transformation the Schwarzschild metric becomes

ds2 =
32M3

r
e−r/2M

(
−dV2 + dU2

)
+ r2

(
dθ2 + sin2 θ dφ2

)
for both r > 2M and r < 2M.

In Figure 7 we show curves of constant r (blue) and constant t
(red) in a Kruskal diagram. Lines of constant r are given by

U2 −V2 =
( r

2M
− 1
)

e−r/2M = const.

and lines of constant t are given by

U
V

= tanh
t

4M
= const for r > 2M,

and
V
U

= tanh
t

4M
= const for r < 2M.

These give families of hyperbolae. In particular, r = 2M maps to the
lines V = ±U and r = 0 maps to lines V2 −U2 = 1. For t = 0, we
have V = 0, r > 2M, or U = 0, r < 2M.

There are several regions of interest in Figure 7. The white re-
gion on the right is where Schwarzschild coordinates are mapped.
In the region V > −U, the Eddington-Finkelstein coordinates are
mapped.The regions III and IV in Figure 8, not depicted in Figure
7, can be interpreted as a second copy of the first region and could
represent a second universe. The two universes are connected by a
wormhole.

The light cones under the Kruskal-Szekeres coordinates are given
by

ds2 =
32M3

r
e−r/2M

(
−dV2 + dU2

)
= 0.

This gives the null rays travel along the curves V = ±V + const.
Therefore, the light rays travel at 45◦.
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U

V

r =
0 r =

2M

r =
2M

I

II

Figure 7: In this Kruskal diagram we
show curves of constant r (blue) and
constant t (red). The white region on
the right is where Schwarzschild co-
ordinates are mapped. In the region
V > −U, the Eddington-Finkelstein
coordinates are mapped. The singular-
ity is at r = 0, which is denoted by the
wavy black curve.

Penrose Diagram for Minkowski Space

The idea of a Penrose diagram is that one can introduce a transfor-
mation that maps Minkowski spacetime into a compact region so one
can see the causal structure of spacetimes. We begin with the line
element in spherical coordinates,

ds2 = −dt2 + dr2 + r2
(

dθ2 + sin2 θ dφ2
)

.

Now, define
u = t− r, v = t + r.

Then,

ds2 = −dudv +
1
4
(u− v)2

(
dθ2 + sin2 θ dφ2

)
.

This is a rotation2 of the tr-axes to the uv-axes by 45◦.

2 Recall that one rotates coordinates
in two dimensions using the rotation
matrix

R =

(
cos θ − sin θ
sin θ cos θ

)
.

Thus, a 45◦ rotation is given by(
u
v

)
=

( √
2

2 −
√

2
2√

2
2

√
2

2

)(
t
r

)

=

√
2

2

(
t− r
t + r

)
.

Radial light rays (ds = 0 and dθ = dφ = 0) give dudv = 0. Thus,
radial light rays travel on lines of constant u and v. This is shown in
Figure 9.

Now let

u′ = tan−1 u =
1
2
(τ − ρ),

v′ = tan−1 v =
1
2
(τ + ρ).

Since 0 < r < ∞ and −∞ < t < ∞, then −π
/ 2 < u′, v′ < π/2.

Rotating this primed system by 45◦, we obtain a set of new coordi-
nates,

τ = tan−1 u + tan−1 v = tan−1(t− r) + tan−1(t + r),

ρ = tan−1 v− tan−1 u = tan−1(t + r)− tan−1(t− r).
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U

V

r =
0

r =
0

r =
2M

r =
2M

I

II

III

IV

Figure 8: There are four regions of the
extended Kruskal diagram. Region I is
the region to which the Schwarzschild
coordinates are mapped. Regions I and
II are the regions to which the Kruskal-
Szekeres coordinates are mapped.
Regions III and IV are the extension of
the Kruskal diagram, often interpreted
as another, perhaps fictional, universe
connected to the first by a wormhole.
The second wavy black singularity
next to Region IV is sometimes called
a white hole since future pointing
worldlines diverge from the region.

r

t u = const

v = const

Figure 9: Radial light rays travel on
lines of constant u and v.

These give the Penrose diagram for Minkowski space in Figure 10.
We show on the diagram lines of constant r and t.

So, we have mapped infinity to a finite region. There are several
types of infinity: I+, I−, I0, and I ±. Light rays that are outgoing
follow paths t = r + const. They leave along lines of slope 1. They
arrive at v′ = π/2, or future null infinity, I +. This symbol is called
scri plus. Ingoing radial lines end at scri minus, I −, past null infinity.
The motion of particles start at past timelike infinity, I− and end
at future timelike infinity, I+. Finally, spacelike trajectories arrive
at spacelike infinity, I0. These infinities are shown on the Penrose
diagram in Figure 10.

Penrose Diagram from Kruskal-Szekeres Coordinates

The Kruskal-Szekeres coordinates were introduced as a way to view
the causal structure of the spherically symmetric source. The next
step is to construct a Penrose diagram from this system. As with the
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ρ

τ I+

I−

I0

I +

I −

You are here.

Figure 10: A Penrose diagram for
Minkowski space. Lines of constant r
(blue) and t (red) are shown.

Minkowski coordinates, we first rotate the coordinate system (U, V)

by 45◦ to system (u, v) :

U =
1
2
(v− u), V =

1
2
(v + u),

or
u = V −U, v = V + U.

Then, similar to the construction of the Penrose diagram for flat
space, we now define

V′ = tan−1 u + tan−1 v,

U′ = tan−1 v− tan−1 u.

This will transform the infinite space to a bounded region as seen in
Figure 11.

In order to look at curves of constant t or r, we want V′ = V′(t, r)
and U′ = U′(t, r). Since the transformations involve the Schwarzschild
radius, rs = 2M, we can assume that r and t are rescaled in these
units. Namely, we let r̃ = r/2M and t̃ = t/2M. Then, noting that

V −U =

{
−
( r

2M − 1
)1/2 e(r−t)/4M, r > 2M.(

1− r
2M
)1/2 e(r−m)/4M, r < 2M.

(5)

V + U =

{ ( r
2M − 1

)1/2 e(r+t)/4M, r > 2M.(
1− r

2M
)1/2 e(r+t)/4M, r < 2M.

(6)

we have

u =

{
− (r̃− 1)1/2 e(r̃−t̃)/2, r̃ > 1.
(1− r̃)1/2 e(r̃−m̃)/2, r̃ < 1.

(7)
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U′

V′
I+

I−

I0

I −

I +

You are here. Figure 11: Penrose diagram for the
Schwarzschild Geometry.

v =

{
(r̃− 1)1/2 e(r̃+t̃)/2, r̃ > 1.
(1− r̃)1/2 e(r̃+m̃)/2, r̃ < 1.

(8)

U′

V′ I+

I−

I0

I+

I−

I0

I −

I +

I+

I−

I0

I −

I +

Figure 12: Penrose diagram for the
maximally extended Schwarzschild
solution,
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