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Causal Structure

There are several approaches to visualize spacetimes in general rel-
ativity. One is to look at a grid formed by the paths that light rays
take. For example, consider the two-dimensional line element for a
flat spacetime

ds* = —dt* + dx*.

Here we have set ¢ = 1.
Light rays travel on worldlines such that ds?> = 0, Therefore,

dt

|

dx ’
ort = £x + const. These families of solutions are shown in Figure
1. Future pointing light cones are shown where the boundaries of
these light cones lie along the paths of outgoing (+1) and infalling
(-1) worldlines.

tJ\

Now consider the line element

ds? = —x%dt? + dx?.

Figure 1: Plot of null curves and light-
cones for ds? = —dt? + dx?



In order to determine light ray paths for this spacetime, we set
—x?dt* +dx* = 0,

or

So, x(t) = e*(t—10),
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In Figure 2 we plot these families of curves. Locally, we can draw

future null cones whose sides are tangent to these curves at the
present point. Furthermore, we drew the worldline

x(t) = cosht

with a few light cones on it. We see that this is a timelike path since

% =sinht < cosht = x.

Schwarzschild Geometry

The line element for empty space outside a spherically symmetric

source of curvature is given by the Schwarzschild line element,

-1
ds? = — (1—%”) ar> + (1—2]:4> dr? + 12

/N

d6% + sin” 0 d¢2) .

(1)
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Figure 2: Plot of null curves and light-
cones for ds? = —x2dt? + dx2.
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We have used geometrized units (c = 1 and G = 1). We want to
investigate the geometry by looking at its causal structure. Namely,
what do the light cones look like?

We consider radial null curves. Radial null curves are curves fol-

lowed by light rays (ds> = 0) for which 6 and ¢ are constant. Thus, * We can write this as
2 ar’ 5
—(1—)dt2—|—(1—) dr? = 0. =5
r ¥ where 7, is called the tortoise coordi-

nate. Integrating these equations, we

Therefore, the slope of the light cones in r-t space is given by have

4

dt oM\ ! re =1+ 2MIn|r —2M]|
(-7)
dr

and t 4 r. = const. We note that as r
approaches 2M, r, — .
We note that for large 7, % — =£1. This indicates that for large r
light rays travel as if in flat spacetime. As light rays approach r =
2M, % — too. Thus, the light cones have infinite slope and close, not

allowing any causal structure. This can be seen from the solution
t(r) = £r £ 2MIn|r — 2M| 4+ constant.

In Figure 3 we show the radial light rays for the Schwarzschild geom-
etry. Note how the solutions on either side of r = 2M suggest that no
information can cross the event horizon.

This is a result of the coordinate singularity at ¥ = 2M. We will ex-
plore other coordinate systems in order to see how light rays outside
the event horizon, r = 2M, are connected to those inside.

ta Figure 3: Radial light rays for the
Schwarzschild geometry given by
t(r) = £r+£2MIn|r — 2M| + constant..

Eddington-Finkelstein Coordinates

We begin with the Schwarzschild line element in geometrized units
(c=1land G =1),

-1
FE <1 B Zfr\/f> a2+ <1 _ 21”) A2 42 (d92—|—sin29d¢2) :
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We will first transform this system using different sets of coordinates.
The first set of coordinates are the Eddington-Finkelstein coordinates.
These are defined by replacing the time variable, ¢, with a new time
variable,
.
= tr =t 2MIn | - 1]
v + 7 +r+2MlIn M
The line element becomes
2M
ds? = — (1 - r) do? + 2dodr + 12 (d6 + sin? 0 dg? ) .

Radjial light rays in this system (ds = 0 and dff = d¢ = 0) are found

to satisfy
0=— (1 - 25/“) dv? + 2dodr.

Therefore, either dv = 0 or

0 = —(1—2]:4>dv+2dr
dl _ 2r
dr ~ r—2M
_2(r—2M) +4M
o r—2M
4M
= 2
+r—2M
v = 2r+4Mln|r —2M| + const

Therefore, radial light rays follow lines of constant v or
v—2r—4MIn|r — 2M| = const
as shown in Figure 4.

U ‘ Figure 4: Radial light rays follow lines
of constant v or v = 2r +4MIn |r — 2M)|
in Eddington Finkelstein coordinates.

/

In order to have ingoing radial light rays depicted at 45°, such
as we saw in Figure 1, we can instead use the new time coordinate
F = v — r. Under this transformation, the radial light rays follow the
paths depicted in Figure 5.
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Picking a point in the spacetime, these light rays can be used to

sketch the light cones. In Figure 6 we show select future null cones.

As one approaches r = 2M, it can be seen that the light cones tip

towards the event horizon. Worldlines emanating from these light

cones indicate how difficult it is to bend away from the event hori-
zon. Light cones for r < 2M point towards the singularity making
any massive test particle
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Kruskal-Szekeres Coordinates

We will introduce Kruskal-Szekeres coordinates for which all light
rays travel at 45°. These are given by the relations

W-v2 = (o —1)e/2M

% = tanh(), r>2M,
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Figure 5: Radial light rays in Eddington
Finkelstein coordinates (7, ), where
f=v—r

Figure 6: Radial light rays in Eddington
Finkelstein coordinates (r, f) with select
future light cones shown.
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u t
v = tanh <4M> , r<2M. (2)
These equations can be solved for the transformation mapping
(t,r) into (V,U).

U (51 — 1)1/2 e"/*Mcosh b, r>2M. 3)
(1= ) /2 e/4Msinh b r < 2M.

vV - (1 — 1)1/22 e"/*Msinh 5, > 2M. @
(1—5%) /2 or/4M cogh i T <2M.

Under this transformation the Schwarzschild metric becomes

_BR2M° _om
r

ds?

(—av? +du?) +r* (6% + sin® 0. d¢? )

for both r > 2M and r < 2M.
In Figure 7 we show curves of constant r (blue) and constant ¢

(red) in a Kruskal diagram. Lines of constant r are given by

U2—V2:( r

i 1) e /M — const.

and lines of constant ¢ are given by

u
1%

d
an v

u

t
— = tanh —— = const for » > 2M,,

4M

t
— = tanh i const for r < 2M.

These give families of hyperbolae. In particular, r = 2M maps to the
lines V = +U and r = 0 maps to lines V2 — U? = 1. For t = 0, we

have V=0, >2M, or U

=0,r <2M.

There are several regions of interest in Figure 7. The white re-

gion on the right is where Schwarzschild coordinates are mapped.

In the region V' > —U, the Eddington-Finkelstein coordinates are

mapped.The regions III and IV in Figure 8, not depicted in Figure

7, can be interpreted as a second copy of the first region and could

represent a second universe. The two universes are connected by a

wormbhole.

The light cones under the Kruskal-Szekeres coordinates are given

by

ds?
r

_B2M o

(deZ +du2) — 0.

This gives the null rays travel along the curves V. = £V + const.

Therefore, the light rays travel at 45°.

6
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g\ Figure 7: In this Kruskal diagram we
show curves of constant r (blue) and
Va Q X 4 constant ¢ (red). The white region on
Z the right is where Schwarzschild co-
ordinates are mapped. In the region
V > —U, the Eddington-Finkelstein
coordinates are mapped. The singular-
ity is at r = 0, which is denoted by the
wavy black curve.

Penrose Diagram for Minkowski Space

The idea of a Penrose diagram is that one can introduce a transfor-
mation that maps Minkowski spacetime into a compact region so one
can see the causal structure of spacetimes. We begin with the line
element in spherical coordinates,

2 Recall that one rotates coordinates
in two dimensions using the rotation

ds? = —dr> + dr®> 4+ 12 (d92 +sin 0 dgbz) .

Now, define matrix
u=t—r, v=t+4r. R— cosf —sinf
Then, “\ sinf  cosf
ds? = —dudo + 1(u - ?J)z (d@z +sin%0 d¢2> . Thus, a 457 rofation is given by
4 u V2 V2 t
This is a rotation® of the tr-axes to the uv-axes by 45°. ( v > = ﬁ ﬁz < ’ )
Radial light rays (ds = 0 and d6 = d¢ = 0) give dudv = 0. Thus, V2 2 t—rz
radial light rays travel on lines of constant u and v. This is shown in = ( P ) :
Figure 9.
Now let
1
W = tan lu= E(T —0),
1
v = tan lov= E(T+p)’

Since 0 < r < coand —oo < t < oo, then —72 < ', v < /2.
Rotating this primed system by 45°, we obtain a set of new coordi-
nates,
T = tan 'u+ttan 1o =tan 1(t —r) +tan"1(t + 1),

p = tanlo—tanlu=tan"(t+7) —tan"(t —r).



v = const

These give the Penrose diagram for Minkowski space in Figure 10.
We show on the diagram lines of constant r and ¢.

So, we have mapped infinity to a finite region. There are several
types of infinity: I, I_, Iy, and .¥ £, Light rays that are outgoing
follow paths t = r + const. They leave along lines of slope 1. They
arrive at v/ = 71/2, or future null infinity, .# *. This symbol is called
scri plus. Ingoing radial lines end at scri minus, .# —, past null infinity.
The motion of particles start at past timelike infinity, [ and end
at future timelike infinity, I . Finally, spacelike trajectories arrive
at spacelike infinity, I. These infinities are shown on the Penrose
diagram in Figure 10.

Penrose Diagram from Kruskal-Szekeres Coordinates

The Kruskal-Szekeres coordinates were introduced as a way to view
the causal structure of the spherically symmetric source. The next
step is to construct a Penrose diagram from this system. As with the
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Figure 8: There are four regions of the
extended Kruskal diagram. Region I is
the region to which the Schwarzschild
coordinates are mapped. Regions I and
1I are the regions to which the Kruskal-
Szekeres coordinates are mapped.
Regions III and IV are the extension of
the Kruskal diagram, often interpreted
as another, perhaps fictional, universe
connected to the first by a wormhole.
The second wavy black singularity
next to Region IV is sometimes called
a white hole since future pointing
worldlines diverge from the region.

Figure 9: Radial light rays travel on
lines of constant u and .
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Figure 10: A Penrose diagram for
Minkowski space. Lines of constant r
(blue) and t (red) are shown.

You are here.

Minkowski coordinates, we first rotate the coordinate system (U, V)
by 45° to system (u,v) :

1 1
u= E(v—u), V= E(v—l—u),

or
u=V-U, v=V+U.

Then, similar to the construction of the Penrose diagram for flat
space, we now define

V' = tan 'u+tan o,

U = tanlo—tan tu,
This will transform the infinite space to a bounded region as seen in
Figure 11.

In order to look at curves of constant t or r, we want V' = V/(¢,r)
and U’ = U'(t,r). Since the transformations involve the Schwarzschild
radius, s = 2M, we can assume that r and ¢ are rescaled in these
units. Namely, we let # = r/2M and f=1t/2M. Then, noting that

Vou - — (g — 1 V2,r-0/4M 4 S oM. 5)
(1= p) /2 elr=m/aM - < oM,
ViU - (ﬁ . 1)1/26(r+t)/4M, r>2M. ©)
(1— o) /2 eH0/4M, 4 <o,
we have
(F—1)2e-D/2 751
1-7)2el-m/2, §< .
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You are here.

v = B 7)1/2 eFHm)/2 5 1
I v b
It <
Iy . u
54 7
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Figure 11: Penrose diagram for the
Schwarzschild Geometry.

Figure 12: Penrose diagram for the
maximally extended Schwarzschild
solution,
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