The Lane-Emden-Fowler Equation

- An Intriguing ODE

JMM 2023

Dr. R. L. Herman

January 5, 2023 Mathematics & Statistics UNC Wilmington

Introduction The Lane-Emden Equation In Search of Solutions Nonlinear Dynamics Stability Analysis

Student Search of a Capstone Problem

- Interested in applications, physics, nonlinear dynamics, solar energy.
- Mancas and Rosu (2015), Existence of periodic orbits in nonlinear oscillators of Emden-Fowler form, Phys. Lett. A 380, 422-428.
- Paper referred to applications and Generalization of Lane-Emden equation,

$$\frac{1}{\xi^2} \frac{d}{d\xi} \left(\xi^2 \frac{d\theta}{d\xi} \right) = -\theta^n,$$

$$\theta'' + \frac{2}{\xi} \theta' + \theta^n = 0.$$

- Gravitational potential of self-gravitating gas.
- Used by Eddington internal constitution of stars.
- Thomas-Fermi model of electrons in atoms.
- Authors studied a related dynamical system.

Literature Search

- Thomson, W., 1862 Convective Equilibrium Temperature of Earth. Collected Papers, Vol 5, pg 266.
- Jonathan Homer Lane (1819-1880)

1870 - On the Theoretical Temperature of the Sun under the Hypothesis of a Gaseous Mass maintaining its Volume by its Internal Heat, and depending on the Laws of Gases as known to Terrestrial Experiment.

Independently - A. Ritter (1878), Kelvin (1887).

- (Jacob) Robert Emden (1862-1940) 1907 *Gaskugeln* - thermal behavior of a spherical cloud of gas acting under mutual attraction of molecules.
- Ralph Howard Fowler (1889-1944) Published papers in 1914, 1930, 1931 on a generalized equation.
- Subrahmanyan Chandrasekhar (1910-1995) An Introduction to the Study of Stellar Structure, 1939, Univ. Chicago. -Discussed solutions and astrophysical applications.
- Harold T. Davis, Introduction to Nonlinear Differential Equations, 1962, Dover.
 Emphasizes Emden-like equations.
 The Lane-Emden-Fowler Equation
 R. L. Herman, UNCW JMM 2023 3/27

• Hydrostatic Equilibrium

$$\frac{dP}{dr} = -\frac{GM(r)\rho(r)}{r^2}.$$

• Mass Conservation

$$\frac{dM}{dr} = 4\pi\rho(r)r^2.$$

• Leads to

$$\frac{d}{dr}\left(\frac{r^2}{\rho(r)}\frac{dP}{dr}\right) = -G\frac{dM(r)}{dr}$$
$$= -4\pi G\rho(r)r^2.$$

Figure 1: Balance of thermal pressure with gravitational pressure.

Note: Adiabatic $P \propto \rho^{\gamma}, P^{1-\gamma}T^{\gamma} = \text{const.}, T\rho^{1-\gamma} = \text{const.}$

Polytropic Models

$$\frac{d}{dr}\left(\frac{r^2}{\rho(r)}\frac{dP}{dr}\right) = -4\pi G\rho(r)r^2.$$

Need an Equation of State, $P = P(\rho)$.

$$P = K \rho^{\gamma}, \quad \gamma = \frac{n+1}{n},$$

where *n* is the polytropic index.

- n = 0, rocky planets.
- $0.5 \le n \le 1$, neutron stars.
- n = 3, white dwarfs, Sun.

Gives Poisson Equation: $\nabla^2 \rho = f$.

$$\frac{(n+1)K}{4\pi nG}\frac{1}{r^2}\frac{d}{dr}\left(\frac{r^2}{\rho^{\frac{n-1}{n}}}\frac{d\rho}{dr}\right)=-\rho.$$

The Lane-Emden-Fowler Equation R. L. Herman, UNCW JMM 2023 5/27

Lane-Emden Equation

• Rewrite the Poisson Equation:

$$\frac{(n+1)K}{4\pi nG}\frac{1}{r^2}\frac{d}{dr}\left(\frac{r^2}{\rho^{\frac{n-1}{n}}}\frac{d\rho}{dr}\right)=-\rho.$$

• Let $\rho = \rho_c \theta^n$, $r = \alpha \xi$, then get Lane-Emden Equation

$$\frac{1}{\xi^2}\frac{d}{d\xi}\left(\xi^2\frac{d\theta}{d\xi}\right) = -\theta^n$$

- Initial Conditions, $\theta(0) = 1, \theta'(0) = 0.$
- Fowler generalized to Emden-Fowler Equation

$$\frac{d}{d\xi}\left(\xi^{\rho}\frac{d\theta}{d\xi}\right)+b\xi^{\sigma}\theta^{n}=0.$$

$$\alpha = \left(\frac{(n+1)\kappa}{4\pi G}\rho_c^{\frac{1}{n}-1}\right)^{\frac{1}{2}}$$

<i>n</i> = 3	Eddington		
$n = \frac{3}{2}$	Thomas-Fermi Model		
$n = \frac{3}{2}, \frac{5}{2}$	Kelvin, "Homer Lane's Function,"		

Generalizations: $\frac{d^2y}{dx^2} + \frac{2}{x}\frac{dy}{dx} + f(y) = 0.$

- f(y) = (y² C)^{3/2}, Chandrasekhar white dwarfs
- f(y) = e^y, isothermal gas spheres, Emden–Chandrasekhar equation.

Known Solutions: $\frac{1}{\xi^2} \frac{d}{d\xi} \left(\xi^2 \frac{d\theta}{d\xi} \right) = -\theta^n, \ \theta(0) = 1, \ \theta'(0) = 0.$

•
$$n = 0, \ \theta'' + \frac{2}{\xi}\theta' + 1 = 0.$$
 Solution: $\theta = -\frac{1}{6}\xi^2 - \frac{c_1}{\xi} + c_2.$

•
$$n = 1, \theta'' + \frac{2}{\xi}\theta' + \theta = 0.$$
 Solution: $\theta = \frac{c_1 \cos \xi + c_2 \sin \xi}{\xi}$

• Apply conditions:
$$n = 0$$
: $\theta = 1 - \frac{\xi^2}{6}$, $n = 1$: $\theta = \frac{\sin \xi}{\xi}$.

•
$$n = 5, \ \theta = \frac{1}{\sqrt{1 + \frac{1}{3}\xi^2}}.$$

• Series:
$$\theta = 1 - \frac{1}{6}\xi^2 + \frac{n}{120}\xi^4 - \cdots, \xi < 1.$$

• Sambhunath Srivastava (1962), $n = 5, \theta = \frac{\sin(\ln\sqrt{\xi})}{\sqrt{\xi} \left[3 - 2\sin^2(\ln\sqrt{\xi})\right]}.$

Write
$$\theta'' = -\frac{2}{\xi} \frac{d\theta}{d\xi} - \theta^n$$
.
For $\theta_i \approx \theta(\xi_i)$, and $\omega_i = \left(\frac{d\theta}{d\xi}\right)_i$,
 $\xi_i = i\Delta\xi, i = 0, 1, \dots, N$,
 $\theta_{i+1} = \theta_i + \Delta\xi\omega_i$
 $\omega_{i+1} = \omega_i + \Delta\xi \left[\frac{2}{\xi}\omega_i - \theta_i^n\right]$

Set conditions $\theta_0 = 1$, $\omega_0 = 0$.

Figure 2: Numerical Solutions for n = 0, 1, 2, 3, 4, 5. **Note** - Zeros are important for n < 5.

Nonlinear Dynamics

Mancas and Rosu [9] studied the Emden-Fowler equation $(\theta \rightarrow \eta)$,

$$\frac{d}{d\xi}\left(\xi^2\frac{d\eta}{d\xi}\right) = \alpha\xi^\lambda\eta^n,$$

Using a homework problem in Jordan and Smith [7], one sets¹

$$X=rac{\xi\eta'}{\eta}$$
 and $Y=\xi^{\lambda-1}rac{\eta^n}{\eta'}$

and $\xi = e^t$, to obtain a two-dimensional autonomous system,

$$\dot{X} = -X(1 + X - \alpha Y)$$

$$\dot{Y} = Y(1 + \lambda + nX - \alpha Y).$$
(1)

Here the dot represents $\frac{d}{dt}$.

¹Chandrasekhar studied homology invariant functions for Lane-Emden eqn., pg 105, $u = -\frac{\xi \eta^n}{\eta}$, $v = \frac{-\xi \eta'}{\eta}$. Then, $\frac{u}{v} \frac{dv}{du} = \frac{u+v-1}{u+nv-3}$, attributed to E. A. Milne.

The Lane-Emden-Fowler Equation R. L. Herman, UNCW JMM 2023 9/27

Linear Stability Analysis $(n \neq 1)$

$$\dot{X} = -X(1 + X - \alpha Y)$$

$$\dot{Y} = Y(1 + \lambda + nX - \alpha Y).$$
(2)

The Jacobian matrix,

$$J(X,Y) = \begin{pmatrix} -1 - 2X + \alpha Y & \alpha X \\ nY & 1 + \lambda + nX - 2\alpha Y \end{pmatrix},$$

with eigenvalues $\mu = \frac{\mathrm{tr}J \pm \sqrt{\mathrm{tr}^2 J - 4\mathrm{det}J}}{2} \equiv \frac{\mathrm{tr}J \pm \sqrt{\Delta}}{2}.$

(X_0, Y_0)	det J	tr J	Δ	
(0,0)	$-1 - \lambda$	λ	$(\lambda+2)^2$	
(-1, 0)	$\lambda - n + 1$	$\lambda - n + 2$	$(\lambda - n)^2$	
$(0, \frac{1+\lambda}{\alpha})$	$-\lambda(1+\lambda)$	$^{-1}$	$(1+2\lambda)^2$	
$\left(\frac{\lambda}{1-n},\frac{\lambda-n+1}{\alpha(1-n)}\right)$	$\frac{\lambda(n-\lambda-1)}{n-1}$	$\frac{2\lambda - n + 1}{n - 1}$	$\frac{4\lambda n(\lambda - n + 1) + (-1 + n)^2}{(n - 1)^2}$	
The Lane-Emden-Fowler Equation R. L. Herman, UNCW JMM 2023 10/27				

The Behavior of the Equilibrium Points - Standard Diagram

Figure 3: The behavior of equilibrium points in the det – tr plane. The curve $tr^2(J) = 4det(J)$ indicates where the discriminant vanishes.

The Lane-Emden-Fowler Equation R. L. Herman, UNCW JMM 2023 11/27

The stability of the equilibrium points depends on the eigenvalues, which in turn depend on the trace and determinant of J.

The Lane-Emden-Fowler Equation R. L. Herman, UNCW JMM 2023 12/27

Stability for X = 0, Y = 0

Figure 4: Blue line: det J = 0. Red line: $\Delta = 0$. The equilibrium point is a saddle or a stable node. The black dots are examples in [9] for $\alpha = -1$, and $(n, \lambda) = (-2, -3)$, $(n, \lambda) = (-2, -1)$, and $(n, \lambda) = (\frac{1}{2}, 2)$.

The Lane-Emden-Fowler Equation R. L. Herman, UNCW JMM 2023 13/27

Stability for X = -1, Y = 0

Figure 5: Stability for the equilibrium point (X, Y) = (-1, 0). The white line is where det J = 0. The red line is for $\Delta = 0$. The diagram indicates the equilibrium point can only be a saddle or an unstable node.

The Lane-Emden-Fowler Equation R. L. Herman, UNCW JMM 2023 14/27

Stability for $(X, Y) = \left(\frac{\lambda}{1-n}, \frac{\lambda-n+1}{\alpha(1-n)}\right)$.

Figure 6: The blue lines show where det J = 0. The red line is where $\Delta = 0$. The equilibrium point can only be a saddle or a stable node. The Lane-Emden-Fowler Equation R. L. Herman, UNCW JMM 2023 15/27 Stability for $(X, Y) = \left(\frac{\lambda}{1-n}, \frac{\lambda-n+1}{\alpha(1-n)}\right)$.

Figure 7: White lines: det J = 0. Red curves: $\Delta = 0$. Equilibrium point is a stable spiral (light yellow), unstable spiral (light blue), or center (black line). The Lane-Ender-Fowler Equation R. L. Herman, UNCW JMM 2023 16/27

Cubic Curves $x = \lambda + 1, y = n - \frac{1}{2}$

$$p(x,y) = -4\left(y - x - \frac{1}{4}\right)\left(y + \frac{1}{2}\right)\left(x - \frac{5}{4}\right) - \frac{3}{4}y + \frac{5}{8}$$

Stability of Equilibria

Summary of Analysis

- How does local behavior connect to global behavior?
- Can only be done numerically. Need parameters for interesting behaviors.
- Mancas and Rosu [9] concerned periodic solutions (centers).

19/27

The Lane-Emden-Fowler Equation R. L. Herman, UNCW JMM 2023 20/27

Phase Portrait for n = -2, $\lambda = 2$ - Stable Node

The Lane-Emden-Fowler Equation R. L. Herman, UNCW JMM 2023 21/27

The Lane-Emden-Fowler Equation R. L. Herman, UNCW JMM 2023 22/27

Phase Portrait for $n = 2, \lambda = 0.5$ - **Center**

The Lane-Emden-Fowler Equation R. L. Herman, UNCW JMM 2023 23/27

Mathematica - Detailed Plot $n = 2, \lambda = 0.5$ - Center

The Lane-Emden-Fowler Equation R. L. Herman, UNCW JMM 2023 24/27

Summary

Convert Emden-Fowler equation $\frac{d}{d\xi}\left(\xi^2\frac{d\eta}{d\xi}\right) = \alpha\xi^\lambda\eta^n$, using homology invariant functions,

$$X = rac{\xi \eta'}{\eta}$$
 and $Y = \xi^{\lambda - 1} rac{\eta^n}{\eta'}$

and $\xi = e^t$, to obtain a two-dimensional autonomous system,

$$\dot{X} = -X(1 + X - \alpha Y) \dot{Y} = Y(1 + \lambda + nX - \alpha Y).$$

Using color-coding, we can identify interesting dynamics involving nodes, saddles, and spirals or centers.

Thanks for listening!

References i

- Davis, H. T. Introduction to Nonlinear Differential Equations, Dover, (1962).
- Eddington, A. S., The Internal Combustion of the Stars, Cambridge Univ. Press (1926).
- Emden, J. R. Gaskugeln: Anwendungen der mechanischen Wärmetheorie auf kosmologische und meteorologische probleme, (1907).
- Fowler, R. H., Quart. J. of Math., Vol 45 (1914) 289.
- Fowler, R. H., The Solutions of Emden's and Similar Differential Equations, M. N. R. A. S., Vol 91 (1930) 63. http://adsabs.harvard.edu/pdf/1930MNRAS..91...63F

References ii

- Fowler, R. H., *Further Studies Of Emden's And Similar Differential Equations*, **The Quarterly Journal of Mathematics**, Vol. os-2, Issue 1, (1931), 259–288.
- - Jordan, D. W. and Smith, P., *Nonlinear Differential Equations,* second edition, Clarendon Press, (1987), 63.
- Lane, J. H., On the theoretical temperature of the Sun, under the hypothesis of a gaseous mass maintaining its volume by its internal heat, and depending on the laws of gases as known to terrestrial experiment, American Journal of Science. 2. 50 (148): (1870) 57–74.
- Mancas, S. C. and Rosu, H. C., *Existence of periodic orbits in nonlinear oscillators of Emden-Fowler form*, **Phys. Lett. A** 380 (2016) 422-428.

Thomson, W. Collected Papers. Vol 5, p. 266 (1862).