
Homework-7 

 

44. REASONING  The magnetic moment of a current-carrying coil is discussed in 

Section 21.6, where it is given as 

 

 Magnetic moment NIA  (1) 

 

In Equation (1), N is the number of turns in the coil, I is the current it carries, and A is its 

area. Both coils in this problem are circular, so their areas are calculated from their radii via 
2A r .  

 

SOLUTION  Because the magnetic moments of the two coils are equal, Equation (1) yields 

 

 2 2 2 1 1 1
N I A N I A  (2) 

 

Substituting 2A r into Equation (2) and solving for r2, we obtain 
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Therefore, the radius of the second coil is 
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46. REASONING AND SOLUTION The torque is given by   = NIAB sin . 

 

 a.  The maximum torque occurs when  = 90.0° (sin  = 1).  In this case we want the torque 

to be 80.0% of the maximum value, so 

 

NIAB NIABsin . sin . sin . .     0 800 90 0 0 800 53 11b g e jso that  

 

 b.  The edge-on view of the coil at the right 

shows the normal to the plane of the coil, the 

magnetic field B, and the angle  . 

 

 

 

 

 

53. SSM  REASONING AND SOLUTION  

Coil 

B 

Normal 

 = 53.1 



 a. In Figure 21.26a the magnetic field that exists at the location of each wire points upward.  

Since the current in each wire is the same, the fields at the locations of the wires also have 

the same magnitudes.  Therefore, a single external field that points downward  will cancel 

the mutual repulsion of the wires, if this external field has a magnitude that equals that of 

the field produced by either wire. 

 

 b. Equation 21.5 gives the magnitude of the field produced by a long straight wire.  The 

external field must have this magnitude: 
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54. REASONING  The torque  exerted on a coil with a current Icoil is given by 

coil
sinNI AB   (Equation 21.4), where N is the number of turns in the coil, A is its area, 

B is the magnitude of the external magnetic field causing the torque, and  is the angle 

between the normal to the surface of the coil and the direction of the external magnetic field. 

The external magnetic field B, in this case, is the magnetic field of the solenoid. We will use 

0
B nI  (Equation 21.7) to determine the magnetic field, where 7

0
4 10  T m/A     is 

the permeability of free space, n is the number of turns per meter of length of the solenoid, 

and I is the current in the solenoid. The magnetic field in the interior of a solenoid is parallel 

to the solenoid’s axis. Because the normal to the surface of the coil is perpendicular to the 

axis of the solenoid, the angle  is equal to 90.0°. 

 

SOLUTION  Substituting the expression 
0

B nI  (Equation 21.7) for the magnetic field of 

the solenoid into 
coil

sinNI AB   (Equation 21.4), we obtain 

 

 coil coil 0 0 coil
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Therefore, the torque exerted on the coil is 
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56. REASONING AND SOLUTION  The magnetic field at the center of a current loop of 

radius R is given by  B = µ
0
I/(2R), so that 
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59. REASONING AND SOLUTION  Let the current in the left-hand wire be labeled I1 and that 

in the right-hand wire I
2
. 

 

 a.  At point A:  B
1
 is up and B

2
 is down, so we subtract them to get the net field.  We have 
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 So the net field at point A is 

B
A
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 b.  At point B:  B
1
 and B

2
 are both down so we add the two.  We have 

 

B
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 So the net field at point B is 

B
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68.  REASONING   Since the two wires are next to each other, the net magnetic field is 

everywhere parallel to  in Figure 21.37.  Moreover, the net magnetic field B has the same 

magnitude B at each point along the circular path, because each point is at the same distance 

from the wires.  Thus, in Ampère's law (Equation 21.8), ||
B B , 

1 2
I I I  , and we have 

 

    || 0 1 2
B B I I       

 

 But  is just the circumference (2r) of the circle, so Ampère's law becomes 

 

    0 1 2
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 This expression can be solved for B.    

 

 SOLUTION 

 a.  When the currents are in the same direction, we find that  
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 b. When the currents have opposite directions, a similar calculation shows that 
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