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Theoretical Discussion

An object moving in a circular orbit[1] at constant speed is said to be executing uniform circular motion.
The kinematic variables that describe an object in uniform circular motion are the radius R of the orbit and
the frequency f (or ν) of the orbit. The frequency refers to the number of revolutions per unit time that
the object makes about the axis of rotation. It is closely related to the angular velocity ω, which describes
the number of radian degrees ∆θ per unit time ∆t that the rotating object passes through while following
its trajectory. Since there are 2π radians in a complete circle, the angular velocity is
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The arclength ∆s subtended by the path of an object moving in a circular trajectory of radius R as it
undergoes an angular displacement of ∆θ is numerically equal to

∆s = R∆θ

so long as ∆θ is given in radians. It follows that the magnitude of the tangential velocity v, which is the
instantaneous rate of change of the object’s displacement as it follows its circular trajectory, is given by

v =
∆s
∆t

= R
∆θ
∆t

= Rω

The direction of the tangential velocity vector is, not surprisingly, tangential to the circular orbit. The
geometry describing these rotational variables is shown in figure 1.

FIG. 1: Geometry describing rotational kinematic variables

A dynamically isolated object—one that does not have any external forces acting upon it—will travel at a
constant speed in a straight line forever. The only way that an object can execute uniform circular motion,
is for a force to act on it in such a way that its speed never changes, but the direction of its velocity does.
Consider an object of mass m which has a velocity of ~v(t0) at time t0, shown in figure 2. At some later time



t1 = t0 + ∆t, the velocity is ~v(t1). The magnitudes of ~v(t0) and ~v(t1) are the same, but their directions are
different. By definition, the average force ~Favg that turns ~v(t0) into ~v(t1) is given by

~Favg = m
∆~v
∆t

= m
~v(t1)− ~v(t0)

t1 − t0

so that the three vectors ~v(t0), ~v(t1) and (t1−t0)
m

~Favg form the triangle shown in figure 2. As the time interval
∆t becomes smaller and smaller, as shown in figures 3A and 3B, the instantaneous force is seen to be directed
towards the center of the circle. The magnitude of the instantaneous force is equal to

Finst = m
v2

R
= mω2R = m(2πf)2R (1)

FIG. 2: Change in tangential velocity over a finite time interval

Figure 3A Figure 3B

FIG. 3: Direction of centripetal force in the limit as ∆t→ 0

Procedure

In today’s lab, you will determinine (among other things) the magnitude of the instantaneous force required
to keep a massive object in uniform circular motion. The experimental set-up is shown in figure 4. You
will spin the rotor arm from which the mass is suspended at a constant rate of angular rotation so that the



radius of the circular orbit of the mass is kept constant. You can ensure this by keeping the pointed end of
the mass vertically aligned with the pointer. It is important that the mass is hanging straight up and down
while you are making your measurement, because in this case, the string from which the mass is suspended
exerts no component of force along the direction of the radius of the orbit; the force keeping the mass in
uniform circular motion is therefore supplied completely by the spring.

FIG. 4: Experimental setup for the measurement of centripetal force

The radius of the orbit R is equal to the distance from the axis of rotation to the pointer when the mass is
disconnected from the spring and therefore, free to hang straight down. You should align the pointer so that
it is vertically aligned with the pointed end of the mass when the spring is disconnected. After re-connecting
the spring, spin the rotor arm, at as constant a rate as possible, so that the mass point is once again vertically
aligned with the pointer. When this condition is achieved, you should time (using a stopwatch) how long it
takes for the mass to execute 20 rotations. It would be ideal to have two timers make this measurement and
then average the two times. From this average time, along with your measurement of the orbital radius R,
you can calculate the frequency f , the angular frequency ω and the tangential speed v according to

〈t〉 =
t1 + t2

2
(2)

f =
20
〈t〉

rev/s (3)

ω = 2πf rad/s (4)
v = ωR m/s (5)

Using these results, you can calculate a predicted value for the instantaneous force Fpred acting on the mass:

Fpred = mω2R (6)

where m is the mass of the rotating object. (Measure this mass without the spring attached, but with the
string from which it is suspended from the rotor arm). In order to check your prediction, you must make an
independent measurement of the force exerted by the spring when the mass is vertically suspended over the
pointer.

The magnitude of the force Fspring exerted by a spring when it is displaced a distance x from its equilibrium
position is equal to



Fspring = ksx

where ks is a parameter called the spring constant that, in general, depends on the particular spring you
are using. The dimensions of ks are N/m in SI units. It is not necessary, however, to determine ks in
order to measure the force exerted by the spring during the course of the experiment. All that is necessary
is to determine the magnitude of the force W is required to extend the spring until the mass is vertically
suspended over the pointer when the rotor arm is not turning. As shown in figure 5, if we attach a mass
hanger to the rotating mass and drape the hanger over a pulley, then suspend some weights from the mass
hanger until the rotating object is vertically aligned with the pointer, the force W produced by gravitational
force acting on the mass M suspended from the pulley (including the mass of the hanger), is equal and
opposite to the force exerted by the spring when the object is rotating.

Fexp = Fspring = W = Mg (7)

FIG. 5: Method for determining centripetal force by imposing static equilibrium with gravitational forces

Report

1. Tabulate all of your measured data;

• The mass m of the rotating object.

• The radius R of the object’s trajectory.

• The time intervals t1, and t2 for the object to execute 20 rotations, as measured by your two
timers, as well as the average time interval 〈t〉.
• The mass M of the weight (including the hanger) required to counterbalance the spring force and

position the object over the pointer.

2. Tabulate all of your calculated results;

• The mean period τ = 〈t〉
20 .

• The frequency f .

• The angular velocity ω.



• The predicted force Fpred.

• The measured force Fexp.

3. Calculate and report the fractional discrepancy between Fpred and Fexp.

Hint: It would be a good idea to convert all of your measurements to standard SI units (kg, m, s) before
making your calculations.

[1] Circular motion can be defined as continuous motion in a plane that maintains a constant distance R from some
fixed point P in the plane.


