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Theoretical Discussion

Here’s a couple of questions for you—If the two cars in figure 1 are identical Saturns, and they race down
their respective frictionless tracks, which one will be going fastest at the bottom of the track, or will they
be going the same speed? Which one will reach the bottom first?

FIG. 1: Kinematics of two identical cars on inclined planes of equal height

If you answered that they would have the same speed at the bottom, you were absolutely right. The
conservation of energy requires that if their initial kinetic energies are the same, and the change in their
potential energies are the same, then their final kinetic energies are the same; if they have the same mass,
then their final speeds are the same. It is pretty clear, however, that Saturn 1 is going to get to the bottom
first. Is there a contradiction? In fact, there is no contradiction. Although they both experience the same
change in their speeds, the rates at which their speeds change are very different. Saturn 1 goes from its
initial to its final speed a lot faster than Saturn 2. However, since Saturn 2’s track is longer, it has a longer
time period over which to reach its final speed.

The time rate of change of velocity is called acceleration. The time rate of change of momentum is called
force. If the mass of an object is constant, then the force is simply the mass times the acceleration. Since
Saturn 1’s acceleration is greater than Saturn 2’s, it must have a greater net force acting on it. Yet the only
external force in the system is gravity, and it is the same for both cars. How is it that the same external force
can give rise to different net forces? The answer to this question can be found by considering the nature of
contact interactions.

The situation is described graphically in figure 2A. The gravitational force acting on an object on an inclined
plane can be broken into two components; one parallel and one perpendicular to the plane of the incline.
The incline exerts a force, called the normal force that is equal and opposite to the perpendicular component
of gravity, and therefore cancels it. But in the absence of friction, the inclined plane cannot exert a reaction
force to compensate the parallel component of gravity. Therefore, the net force on the object is equal to the
uncompensated parallel component.

~Fnet = ~FG + ~FN = ~F‖ + ~F⊥ + ~FN︸ ︷︷ ︸
0

= ~F‖



.
If the x̂-axis is chosen along the parallel direction, as in figure 2A, the net gravitational force on an object
of mass m (near the surface of the Earth), lying on an inclined plane, is

~Fnet = ~F‖ = −FG sin θx̂ = −mg sin θx̂

.
where θ is the angle the incline makes with the horizontal. The geometry of the inclined plane is described
in figure 2B. The fact the the angle θ between the direction of the gravitational force and the perpendicular
component of the normal force is equal to the angle that the incline makes with the horizontal should be
clear from the figure; the x-y coordinate system of the inclined plane is just the usual horizontal-vertical
coordinate system, rotated through an angle θ.

Figure 2A Figure 2B

FIG. 2: The decomposition of forces and geometry of the inclined plane

If no other forces act on the object, it will accelerate down the inclined plane, with an acceleration whose
magnitude is a = g sin θ. As θ gets larger, the acceleration gets larger also, until at 90◦—straight up and
down—it is equal to g. In the ideal case of no friction, as soon as θ is greater than 0, the object will begin
to accelerate down the plane. The fact that this does not usually happen in the real world—we do not all
slide down to the lowest nearby point—is because of friction.

Friction acts at the interface between two surfaces to oppose the relative motion of those surfaces. It always
acts parallel to the surface and it always opposes motion in any direction; whichever way you try to move an
object, up or down, right or left, friction will oppose that motion. It has another peculiarity. Unlike forces
like gravity, the frictional force is “variable” or “interactive” in that, for a body at rest, below a certain
threshold it changes in magnitude so as to keep the net force equal to zero. For instance, if an object is
stationary on an inclined plane, and you increase the tilt of the plane, thereby increasing the component of
gravity parallel to the surface, the amount of friction opposing the downward motion increases also, so that
the net force is zero. If you apply a light push upwards along the slope, the frictional force will act to oppose
that also. However, the static frictional force, as the type of friction that opposes all motion is called, has
an maximum strength, whose value depends on the nature of the surfaces that are in contact. Once this
maximum is exceeded—by increasing the tilt beyond a certain angle, for instance—then the frictional force



can no longer compensate enough to keep the object stationary. The frictional force “maxes out”. Friction,
although it has been observed and described mathematically at an elementary level for several hundred
years, is nonetheless very complex and is not, even today, completely understood at the most fundamental,
microscopic level.

In the absence of friction, the only way to keep the object from accelerating down the incline is to pull on it
from the opposite direction. A very convenient way to do this is with a pulley and some weights. Remember
that a simple pulley does not change the magnitude of the string force, only its direction. Therefore, to keep
an object—a box of mass mb, for instance—stationary on an inclined plane, you can pull upward on it with
the weight of a mass m1 suspended from a pulley, as shown in figure 3, where the value of m1 is given by

FIG. 3: Experimental setup for the inclined plane experiment

m1g = mbg sin θ (1)

If you set the inclined plane at a number of different angles, and measure the mass needed to balance the
downward motion of the box, then plotted the mass m1(θ) vs. sin θ, the slope of this line would be the mass
of the box, mb.

In the real world, however, there is friction. If you attempted this experiment, you would find that, for any
given angle θ, there was a small range of masses m1 for which you could achieve equilibrium. This is because
friction opposes the motion of the box in either direction along the track. Suppose that the downward force
of the box were slightly larger than the upward force of the weights. A small frictional force Ff would act in
parallel with the weights, to keep the system in equilibrium. Taking the positive x-axis to be upwards along
the track, one would have

m1gx̂+ Ff x̂−mbg sin θx̂ = 0

If you decreased the mass m1 to the point where the frictional force could no longer compensate, and the box
began sliding down the track, then m1 = m1,min would be minimal, and the frictional force at that point,
Ff,max would be at its maximum value. You would then have

m1,mingx̂+ Ff,maxx̂−mbg sin θx̂ = 0 (2)

On the other hand, if the upward force were slightly larger than the downward force, then the frictional force
would be downward, and you would have



m1gx̂− Ff x̂−mbg sin θx̂ = 0

By increasing the amount of mass m1 until the box began to slide upward along the track, you would again
maximize the frictional force, but this time in the opposite direction.

m1,maxgx̂− Ff,maxx̂−mbg sin θx̂ = 0 (3)

Adding equation 2 to equation 3, then re-arranging and dividing by 2g, gives you

m1,max +m1,min

2
= mb sin θ (4)

Equation 4 provides the means to experimentally weigh the box with an inclined plane. By plotting the
average of the minimum and maximum holding weights for a number of different angles θ, and then plotting
these vs. sin θ, one can use the fact that the slope of this plot is equal to mb to weigh the box. Note that in
the limit that the frictional force goes to zero, m1,max = m1,min = m1, and equation 4 reduces to equation 1.
A summary of the experimental procedure is as follows:

1. Place approximately 500 g of loading weights inside the box.

2. For four different values of the incline angle; θ ≈ 30◦, 35◦, 40◦ and 45◦; set up the box on the inclined
plane as shown in figure 3. Use the angle marker on the side of the inclined plane to roughly set the
angle. Then you can make a more precise measurement of the the angle using the digital level. Note
that you will use the more precise measurement in your analysis. Do not attempt to adjust the incline
of the plane to exactly match your target angle: this would take forever.

3. Estimate the amount of mass m1 needed to balance the box and place this amount of mass on the
hanger. Remember to include the mass of the hanger. You should assume that the string itself is
massless.

4. At each angle, find the minimum and maximum values of the mass, m1,min and m1,max for which you
can keep the box in equilibrium.

5. Plot m1,max+m1,min
2 vs. sin θ and use the slope to find the mass of the box, mb.

6. Weigh the box (with the loading weights still inside) on a mass balance.

7. Calculate the fractional discrepancy between the mass of the box determined from the slope, mb, and
the mass of the box as measured on the mass balance.

8. Neatly and intelligently tabulate your data and results.


