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Theoretical Discussion

Gravity is one of the four known fundamental forces. Besides gravity, these are; the electromagnetic force,
the weak force, and the strong (nuclear) force. In addition to these four known forces, there is strong evidence
for the existence of a fifth force which is long-ranged, repulsive, and depends on mass in some manner—a
sort of anti-gravity. The exact source and nature of this force, and even definitive proof of its existence,
remain elusive. Gravity, by contrast, was the first force to be given a “correct” mathematical description.
Sir Isaac Newton discovered a universal mathematical model for the gravitational force that is valid for all
classical (non-quantum mechanical), non-relativistic interactions where the field is not “too large”. This
model was extended by Einstein in the early 20th century in his General Theory of Relativity to cover the
cases of relativistic velocities (velocities comparable to the speed of light) and very large masses. Interestingly,
although Gravity was the first of the fundamental forces to be given a mathematical description, it is the
only force for which a relativistic, quantum-mechanical model has not yet been developed. The problem of
quantum gravity is one of the most theoretically challenging and important unsolved problems in physics
today.

As important as a relativistic, quantum-mechanical description of gravity is for a fundamental understanding
of the workings of the universe, as a practical matter Newton’s universal gravitational force law is sufficient
for nearly every circumstance likely to be encountered in the ordinary course of events. This model states
that the force between any two masses m1 and m2, separated by a displacement vector ~r is given by

~FG = −Gm1m2

r2
r̂ (1)

Like all fundamental forces, the gravitational interaction is binary, meaning that it always acts between pairs
of objects. One can arbitrarily identify one object as the source of the force field, and the other as the object
of the force field. For example, if one takes m1 as the source of the gravitational field, then the force exerted
by m1 on m2 is described by equation 1, with the unit vector r̂ pointing from m1 to m2. The negative
sign, a consequence of the attractive character of gravity, means that the force on m2 due to m1 acts in the
direction opposite to the unit vector r̂; i.e., the force on m2 due to m1 points from m2 to m1. Conversely,
one could take m2 as the source of the field, and m1 its object. In this case, the unit vector r̂ points from
m2 to m1 and the force acts in the opposite direction, so that the force of m2 on m1 acts along the line
separating them, in the direction from m1 to m2. In general terms, the unit vector r̂ points from the source
mass to the object mass, and because gravity is attractive, the force acts in the opposite direction, from the
object mass to the source mass. Figure 1 depicts the directions of the forces of two massive objects on one
another.

We can therefore decompose the gravitational force that a source mass ms exerts on an object mass mo into
the product of the object mass and the gravitational field due to the source mass, so that

~Fmsonmo
=

[
−Gms

r2
r̂

]
mo = ~Γsmo (2)

where the gravitational field created by the source mass is given by

~Γs = −Gms

r2
r̂ (3)

and the unit vector r̂ points from ms to mo. It is in this form that the gravitational force exerted by the
earth on a mass m near its surface is probably most familiar to you:



FIG. 1: Directions of gravitational forces of two massive objects on one another

~FGE
= m~ΓE = −mgŷ (4)

where the unit vector ŷ points in the local direction of “up”. This direction, of course, is just the direction
of the unit vector pointing from the center of the earth to the local position of the mass m. We can then
identify the gravitational field of the earth near its surface as

~ΓE = −gŷ (5)

The numerical value of the earth’s gravitational field “constant” g can be found by evaluating the magnitude
of ~Γ from equation 3, using the values of the universal gravitational constant G = 6.67 × 10−11 N·m2

kg2 , the
mass of the earth, ME = 5.94× 1024 kg, and the earth’s radius[1], RE = 6.37× 106 m:

g =
GME

R2
E

=
(6.67× 10−11)(5.94× 1024)

(6.37× 106)2

= 9.76
m
s2

The magnitude of the earth’s gravitational field is not really constant. For one thing, the density of the
earth is not uniform, creating small local variations in the earth’s gravitational field. In addition, g depends
on r, the distance of the object mass from the center of mass of the earth. The earth is not a perfect
sphere. Besides macroscopic distortions caused by its rotation, it’s surface is not smooth, but is puckered
with mountains and valleys. Even if the earth were a perfectly smooth sphere, it should be clear that g
decreases as one moves upward from the earth’s surface. One can use the Taylor series expansion[2] to show
that g varies with the ratio δ = y

RE
according to g ≈ g(1 − 2δ), where y = (r − RE) denotes the distance

above or below the mean radius of the earth. The reason we can treat g as a constant for most ordinary
applications is that typically, δ � 1.

In today’s lab we are going to measure the local value of g by dropping a slotted plate through a photogate
timer. The timer will give us a series of measurements of the velocity v of the plate as a function of the
vertical position y. Recall that we have two kinematic equations to describe the motion of an object under
constant acceleration:

y = y0 + v0t+
1
2
at2 (6)



and

v = v0 + at (7)

Since we do not have access to experimental information about the time t, we are going to have to use these
two equations to eliminate it as a variable. Solving equation 7 for t, we get

t =
(v − v0)

a

Inserting this result into equation 6, we get

y = y0 + v0

(
(v − v0)

a

)
+
a

2

(
(v − v0)

a

)2

= y0 +
1
a

(
v0v − v2

0 +
v2

2
+
v2
0

2
− vv0

)
= y0 +

1
2a

(v2 − v2
0)

Solving for v2, we obtain

v2 = 2a(y − y0) + v2
0

and with a = −g, we have the desired relation between the velocity and g.

v2 = −2g(y − y0) + v2
0 (8)

Inspection of equation 8 reveals two facts pertinent for our analysis. The first is that only the change in
vertical position, ∆y = (y − y0) is relevant for determining g, so that we can arbitrarily choose the origin
of the y-axis. The second is that the initial velocity appears only as a constant offset. If we rewrite the
equation as

v2 = −2g(∆y) + v2
0 (9)

it is clear that the slope m of the v2 vs ∆y curve is proportional to g, and that the square of the initial
velocity, v2

0 , which is of no physical interest, appears only as the offset constant, so that we don’t require a
priori knowledge of this parameter and can, in fact, neglect it.

Procedure

A schematic diagram of the experimental setup is shown in figure 2A. The slotted bar is dropped vertically
through the aperture of a photogate timing device. The timing module will be set to the s2 functional mode.
In this mode of operation, a timing cycle begins when the photogate beam is interrupted and ends upon
being interrupted again. The next cycle begins when the beam is once again interrupted, and so on. The
slotted bar, depicted in figure 2B, consists of a series of 1 cm wide slots, each 1 cm apart. The distance over
which a timing cycle occurs is therefore 2 cm. Because a new cycle doesn’t begin until the beam is again
interrupted, the timing cyles themselves are spatially separated by 4 cm, as shown in the figure.

Prior to conducting the experiment, you should verify that the function mode is set to s2. The function mode
can be altered by repeatedly pushing the function button. The device cycles through each of the functions;
an LED indicates which function is activated. There is also an LED indicator that identifies the units in



Figure 2A Figure 2B

FIG. 2: Physical setup and dimensions for the measurement of g

which the result will be output on the display panel. You should press the clear button, to clear out any
previous results. After dropping the bar through the timing gate, press the stop button. The display unit
will then cyclically read out the time intervals. Preceding each time interval readout, the display will indicate
which time interval is about to be shown; i.e., 1st, 2nd, 3rd, . . .. You should record these times, starting from
# 1 through #7. This is your raw data.

Figure 3 depicts an appropriate coordinate system for analyzing the data. The average velocity in the jth
time interval ∆tj is equal to[3]

vj =
dt

∆tj
(10)

where dt = 2 cm, as shown in figure 2B. Because the spatial distance between the middle of each timing
cycle is equal to dy = 4 cm, the value of the vertical displacement for the jth time interval is equal to

∆yj = −(jdy + ∆y0) (11)

where dy = 4 cm. The value of ∆y0 is arbitrary. The simplest choice is to make it equal to zero, so that

∆yj = −jdy (12)

In summary, the procedure is as follows:

1. Set up the timing device so that the functional mode is s2. Clear any previous data.

2. Carefully drop the slotted bar vertically through the photogate timer aperture.

3. Press the stop button on the timing module.



FIG. 3: Coordinate system for analyzing data from the measurement of g

4. Record the time intervals ∆tj . Pay attention to units

5. Calculate the velocities vj using equation 10. Convert the dimensions to meters/s.

6. Calculate the displacements ∆yj using equation 12 and convert the result to meters.

7. Square each of the velocities and plot v2
j vs ∆yj .

8. Find the slope of this curve and determine g from g = −m
2 . Report your result in m/s2.

9. Numerically compare your result to the value g = 9.76 m/s2 by calculating the fractional discrepancy.

[1] This is the mean radius of the earth. The earth is somewhat flattened at the poles, and bulges at the equator so
that, for instance, the equatorial radius is larger than the mean radius.

[2] The Taylor Series expansion allows one to expand any analytic function f(x) about a point x0 in an infinite series

given by f(x) =
∑∞

n=0
1
n!

dnf
dxn (x− x0)n. If we take a function of the form f(r) = A

r2 = Ar−2 and apply the Taylor

series expansion in a series about the point r = RE , we get f(r) ≈ f(RE) + df
dr

∣∣
r=RE

(r−RE) + 1
2

d2f
dr2

∣∣∣
r=RE

(r−

RE)2 + · · · . The first and second derivatives can be calculated as df
dr

∣∣
r=RE

= −2A r−3
∣∣
r=RE

= −2AR−3
E , and

d2f
dr2

∣∣∣
r=RE

= 6A r−4
∣∣
r=RE

= 6AR−4
E , respectively, so the expansion to second order is f(r) ≈ A

R2
E
− 2 A

R3
E

(r −

RE) + 3 A
R4

E
(r−RE)2, which we can re-write as f(r) ≈ A

R2
E

(
1− 2

[
(r−RE)

RE

]
+ 3

[
(r−RE)

RE

]2)
. Setting A

R2
E

= g, and

taking δ = y
RE

and y = (r − RE), we have, to second order, Γ = g
(
1− 2δ + 3δ2

)
. The expression in the text

retains only the first order of this expansion.
[3] Note that this is not equal to the instantaneous velocity at the midpoint of the interval. This is because the slotted

bar is accelerating as it falls. However, the approximation is sufficient for us to obtain the requisite accuracy.


