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Theoretical Discussion

For each of the linear kinematic variables; displacement ~r, velocity ~v and acceleration ~a; there is a corre-
sponding angular kinematic variable; angular displacement ~θ, angular velocity ~ω, and angular acceleration
~α, respectively. Associated with these kinematic variables are dynamical variables—momentum and force
for linear variables—angular momentum and torque for angular variables. The rotational analogue of the
inertial mass m is the moment of inertia I[1].

The angular analogue of force is the torque: Just as force acts to change the magnitude and/or direction
of an object’s linear velocity, torque acts to change the magnitude and/or direction of an object’s angular
velocity. The equation

~τ = I~α (1)

describes the effect of a torque on an object’s angular kinematic variables. It tells you what a torque does,
but not where it comes from. A torque arises whenever a force acts upon a rigid body that is free to rotate
about some axis. If the applied force is ~F and the displacement vector from the axis of rotation to the point
where the force is applied is ~r, then the magnitude of the torque is equal to

τ = rF sin θ (2)

where θ is the smallest angle between the vectors ~F and ~r. The direction of the torque vector is given by the
right-hand rule—place the fingers of your right hand along ~r and curl them into ~F : your thumb will point
in the direction of ~τ . The directional relationships between ~F , ~r, and ~τ are shown in figure 1.

FIG. 1: Directional relationships between ~F , ~r, and ~τ

So long as the total net force on an object is zero, the velocity of its center of mass will not change. However,
it is possible for an object to have zero net force acting on it, but to nevertheless have a non-zero torque
acting on it. Figure 2 shows one such possible scenario. The velocity of the center of mass of the object in
figure 2, acted upon by two equal and opposite forces, will remain constant, but since the torque is non-zero,
it will spin about its axis at an ever-increasing rate of rotation.



FIG. 2: Equal forces applied to opposite sides of a rotation axis

For an object to remain in static equilibrium, so that both the velocity of its center of mass and its angular
velocity about any axis are constant, both the net force and the net torque on it must equal zero. The
conditions for static equilibrium are:

~Fnet = 0 (3)
~τnet = 0 (4)

In today’s lab you will use the conditions for static equilibrium to measure the mass of a meter stick that is
balanced on a knife-edge fulcrum.

Procedure

FIG. 3: Experimental setup for using torque to weigh a meter stick

The experimental setup is shown in figure 3. Suppose you can get your meter stick in balance as shown
in the figure. There are three forces acting on the left-hand side of the stick and one force acting on the
right-hand side. The mass of the section of ruler on the right hand side is mrhs = m l2

l , where l = 100 cm is
the length of the ruler. The center of mass of the ruler material on the right-hand side is located a distance
l2
2 from the fulcrum, as illustrated in figure 4. Since the force acts at right angles to the displacement, the
magnitude of the total torque acting on the right-hand side is



τright = mrhsg
l2
2

= mg
l22
2l

(5)

FIG. 4: Illustration of the balance of torques

On the left hand side, there are the gravitational forces due to m1, m2, and the mass of the ruler material
mlhs on the left-hand side of the stick. The magnitude of the forces arising from these three sources are,
respectively,

F1 = m1g

F2 = m2g

F3 = mlhsg = m
l1
l
g

The center-of mass of the ruler material on the left-hand side is located a distance l1
2 from the fulcrum. Since

all three forces act at right angles to the displacement, the total torque on the left-hand side is

τleft = m1gr1 + m2gr2 + mg
l21
2l

(6)

All of the downward forces acting on the ruler are countered by an equal and opposite upward reaction force
(normal force) that acts at the point of the fulcrum. Since it acts at the fulcrum point, it exerts no torque,
so that the equation for static equilibrium is

τleft = τright −→ m1gr1 + m2gr2 + mg
l21
2l

= mg
l22
2l

(7)

Cancelling the common factor of g, and re-arranging the equation, you get an equation for the mass of the
ruler:

m =
2l(m1r1 + m2r2)

(l22 − l21)
(8)

By varying the fulcrum point, and hence the values of l1 and l2, and adjusting the locations of m1 and m2

to achieve static equilibrium, you can obtain independent measurements of the mass of the ruler.



Summary

1. Set the fulcrum location at approximately 30 cm.

2. Bring the meter stick into balance (static equilibrium) by varying the positions of the two masses, m1

and m2. The inner mass m2 (mass closest to the fulcrum) should be about 150 g. The outer mass m1

should be about 10–20 g. You can use the position of m1 to “fine-tune” the balance.

3. Record the distances r1, r2, l1, l2, m1 and m2.

4. Calculate the ruler’s mass using the method of static equilibrium (equation 8) and label it mexp.

5. Weigh the ruler using the mass balance. Record this value as mb.

6. Calculate and report the fractional discrepancy δ between mexp and mb.

[1] The moment of inertia I for a collection of masses mj , is I =
∑

j r2
j mj , where the displacement rj is from the axis

of rotation to the location of the mass mj . For the case of continuous bodies, the expression is more complicated
and requires integral calculus to evaluate.


