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Abstract
Neural architecture search (NAS) and neuroevolution have emerged
as key methods for designing artificial neural networks (ANNs).
While several nature-inspired algorithms, such as Continuous Ant-
Based Neural Topology Search (CANTS), have successfully auto-
mated the design of recurrent neural networks (RNNs), they suf-
fer from certain limitations, including fixed search constraints and
limited exploration strategies. This paper introduces Genetic Pro-
gramming Collaborative Ant-Based Neural Topology Search (CG-
CANTS-N), a novel graph-based NAS framework that employs mul-
tiple colonies of simulated ants which move through a continuous
search space based on previously placed pheromones. The ant paths
through the search space are used to construct graphs which are used
as neural architectures. Both the individual ant agents and the ant
colonies evolve over time using evolutionary strategies. CG-CANTS-
N extends on CANTS by allowing more flexible graph structures,
and by utilizing genetic programming functions (e.g., addition, mul-
tiplication, trigonometric functions) with trainable weights on graph
edges as opposed to traditional neural network neurons. Key inno-
vations include adaptive colony evaporation control, dynamic ant
movement strategies, and cycle removal via depth-first search. We
demonstrate that CG-CANTS-N is capable of designing graph based
genetic programs for time series forecasting tasks which outperform
existing state of the art methods.

CCS Concepts
• Computing methodologies → Neural networks; • Mathematics
of computing → Time series analysis; • Theory of computation
→ Bio-inspired optimization.
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1 Introduction
Designing optimal computational graph architectures is a critical
challenge in modern machine learning. Traditional methods demand
extensive manual tuning and expert knowledge, which often leads to
suboptimal solutions—especially in high-dimensional or complex
tasks. Neural Architecture Search (NAS) and neuroevolution tech-
niques have emerged to address these challenges by automating the
discovery process and reducing human bias.

Early NAS methods often relied on reinforcement learning [12]
and evolutionary algorithms [11] to iteratively refine neural architec-
tures. Although effective, these approaches typically require substan-
tial computational resources and can suffer from slow convergence.
Recent advances have introduced nature-inspired methods. For ex-
ample, ANTS [4–6] leveraged ant colony optimization for RNN
design, while EXAMM [1, 3, 9, 10] used neuroevolution techniques
to scale these ideas for time series forecasting. The CANTS [2]
method further extended these ideas by exploring continuous search
spaces, although it remained limited by fixed movement rules and
predefined architectural boundaries. Recent work has also shown
that neural architecture search and graph based genetic programming
can be performed with similar methodologies, by replacing neural
components with genetic programming (GP) operations [7, 8].

Inspired by this and the adaptive and collaborative behaviors ob-
served in natural ant colonies, our approach, CG-CANTS-N, lever-
ages multiple parallel ant colonies that both compete and cooperate
while exploring the search space. In our framework, some colonies
work to broadly cover diverse regions, while others focus on refining
promising candidate architectures. The synergy between exploration
and exploitation in a multi-colony setting facilitates a more robust
search process. Ultimately, this framework enables the evolution
of flexible, interpretable computational graphs that are suitable for
a wide range of applications. This work investigates utilizing this
ant colony strategy which has been previously used for neural ar-
chitecture search [2, 4–6] for automating the design of graph based
genetic programs (GBGPs), by generalizing the ant-based paradigm
to arbitrary computational graphs and utilizing GP operations while
incorporating adaptive and collaborative optimization mechanisms.

2 Proposed Method: CG-CANTS-N
CG-CANTS-N constructs flexible computational graphs where each
node performs a GP operation. Nodes are embedded within a unique
four-dimensional space:

• 𝑥,𝑦: Represent the two-dimensional spatial location within a
layer, facilitating a clear mapping of the architecture.

• 𝑧: Encodes temporal information, where 𝑧 = 1 corresponds to
the current time step and 𝑧 = 0 to the most previous time step
for recurrency, thus modeling sequential dependencies.
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• 𝐹 : Denotes a discretized functional space; the set of available
functions includes addition, multiplication, sine, cosine, tan-
gent, tanh, sigmoid, inverse, and mean. Ant agents round their
selected 𝐹 coordinate to the nearest function value.

This 4D representation allows our method to capture both spatial and
temporal patterns efficiently, enabling more nuanced architectural
exploration.

Adaptive Colony Behavior. To maximize the effectiveness of
the search, CG-CANTS-N employs an adaptive evaporation con-
trol mechanism. During the initial search phase, colonies suppress
pheromone evaporation to ensure that every region of the search
space is visited at least once. Once a sufficient level of exploration
is achieved, the standard evaporation rate is reinstated. Simultane-
ously, a Particle Swarm Optimization (PSO) framework dynamically
tunes colony parameters—including ant count, evaporation rate, and
mortality rate—to balance exploration and exploitation effectively.

Ant Movement and Exploration Strategy: Ant agents in CG-
CANTS-N are allowed to move in both the spatial (x, y) and temporal
(𝑧) dimensions. After each step, an ant will deposit a pheromone
in the search space. Additionally, ants compute the center-of-mass
of local pheromone traces and deliberately move towards the oppo-
site direction, thereby ensuring a systematic coverage of the search
space and reducing the risk of getting trapped in local optima. This
flexibility enables the exploration of nodes (generated by clustering
pheromone deposit locations) representing both present and past
information. To avoid temporal inconsistencies (e.g., using future in-
puts), recurrent nodes are automatically introduced at the appropriate
𝑧-level.

Node Consolidation and Cycle Removal: The approach employs
DBSCAN clustering to merge pheremone deposit positions into
graph nodes that are in close proximity and share similar pheromone
intensities, thereby reducing redundancy in the computational graph.
Ant paths are used as edges between these nodes. However, merging
nodes and utilizing these edges can sometimes result in cycles. To
address this, a depth-first search (DFS) algorithm is applied to detect
and remove redundant back-flowing edges, ensuring that the final
graph is a directed acyclic graph (DAG) suitable for effective forward
propagation.

Edge Weight Optimization: Once the graph structure has been
refined, edge weights are fine-tuned using a short backpropagation
phase (typically 10 epochs). This step quickly adjusts the strength
of the connections between nodes, optimizing the network for the
target task without incurring excessive computational cost.

3 Results
3.1 Experimental Setup
We evaluated CG-CANTS-N on three time-series benchmark datasets:

• Cessna C172 Aircraft: 5061 data points, 31 features; target:
Engine 1 Cylinder Head Temperature.

• Coal-Fired Power Plant Burner: 14,402 data points, 12 fea-
tures; target: Main Flame Intensity.

• Wind Turbine: 14,184 data points, 123 features; target: Gener-
ator Average Power.

(a) C172 E1CHT1

(b) Burner Main Flame Intensity

(c) Generator Average Power

Figure 1: Boxplots of Repeated Experiments

3.2 Collaborative Multi-Colony Optimization
A key feature of CG-CANTS-N is its multi-colony design. Multiple
colonies evolve candidate architectures independently while period-
ically sharing their best solutions and hyperparameter settings via
a centralized environment process using MPI. This inter-colonial
communication not only prevents premature convergence but also
enhances the overall exploration, as colonies continuously update
their strategies based on both local performance and global insights.
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Figure 2: Predictions: Cessna C172 E1CHT1

3.3 Computational Complexity and Scalability
The overall computational complexity is influenced by factors includ-
ing the number of iterations (𝐼 ), graph size (𝑁 ), dataset size (𝐷), and
the number of workers (𝑊 ). Additionally, the dynamic pheromone
management introduces a cost proportional to the number of ants (𝐴)
and pheromone points (𝑅), while the graph consolidation step adds
approximately 𝐺2 complexity for 𝐺 nodes. Empirical results indi-
cate that although the dominant cost in data-intensive tasks is 𝐼 ·𝑁 ·𝐷

𝑊
,

the combined overhead remains manageable, ensuring scalability in
complex, high-dimensional scenarios.

Each experiment was repeated 10 times for statistical signifi-
cance. We initialized 20 colonies, with each colony generating 1,000
candidate graph architectures using 201 CPU cores over four days.
Parameter exchanges (e.g., ant count, evaporation rate) occurred
every two generations through a centralized MPI process, ensuring
robust coordination across colonies.

Table 1: Average Prediction Errors (10 Repeats)

Dataset CG-CANTS-N EXA-GP EXAMM

Cessna C172 1.87 × 10−6 2.86 × 10−6 1.31 × 10−4
Burner 4.02 × 10−4 1.32 × 10−3 7.77 × 10−4
Turbine 1.50 × 10−3 2.85 × 10−3 2.69 × 10−3

Figure 3: Graph: Cessna C172 E1CHT1

𝑓 (𝑥 ) =𝑠𝑖𝑛(𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑐𝑜𝑠(𝑡𝑎𝑛ℎ(𝑡𝑎𝑛(𝑠𝑖𝑔𝑚𝑜𝑖𝑑(
𝑡𝑎𝑛(𝑂𝐴𝑇 )) +𝑂𝐴𝑇 )) ∗ 1.0001 +𝑂𝐴𝑇 ) ∗ 0.9996) ∗ 0.9986)
∗ 0.9942 +𝑂𝐴𝑇 ∗ 0.9945) ∗ 0.0413+
𝑠𝑖𝑛(((𝐸1_𝐶𝐻𝑇 1 ∗ 0.9789) ∗ 0.9789) ∗ 0.9789) ∗ 0.9312)/2

(1)

3.4 Performance Evaluation
CG-CANTS-N consistently produced lower prediction errors than
EXA-GP and EXAMM. For example, on the Cessna dataset the
average error was 1.87 × 10−6 compared to 2.86 × 10−6 (EXA-GP)
and 1.31 × 10−4 (EXAMM), state of the art benchmark algorithms
for these datasets. Similar performance improvements were observed
on the Burner and Wind Turbine datasets, as summarized in Table 1.
Boxplots in Figure 1 illustrate that CG-CANTS-N achieves lower
median errors with reduced variability. Representative computational
graphs (Figures 3 and 4) and prediction plots (e.g., Figure 2) further
confirm the method’s strong performance and interpretability.

3.5 Colony Dynamics and Exploration
Figure 5 illustrates colony trait trajectories over 1000 generations,
depicting the interplay between exploration and exploitation driven
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Figure 4: Graph: Power Plant Burner

by PSO. Marker shapes represent individual colonies, and a logarith-
mic color gradient indicates progression through generations. This
collaborative dynamic enables colonies to refine hyperparameters
and enhance overall search robustness.

Figure 5: Colony Trajectories: PSO-driven trait evolution over
1000 generations.

4 Summary and Discussion
We have presented CG-CANTS-N, a collaborative graph-based NAS
framework that extends Genetic Programming Collaborative Ant-
Based Neural Topology Search by evolving flexible computational
graphs using simple node functions, adaptive colony dynamics, and
robust exploration strategies. Our multi-colony design—with fea-
tures such as adaptive pheromone evaporation, directed ant move-
ment, DBSCAN node consolidation, and DFS cycle removal—yields
architectures that are both efficient and interpretable. Experimental
results on three diverse time-series datasets demonstrate significant
improvements in prediction accuracy and consistency over estab-
lished methods.

Future work will focus on improving computational efficiency
(e.g., transitioning to a C++ implementation) and exploring more

advanced agent decision-making models using active inference. Ex-
tending the framework to other network types, such as CNNs and
NLP architectures, represent other exciting directions for further
research.
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