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ABSTRACT

This work examines the use of ant colony optimization (ACO) to im-
prove long short-term memory (LSTM) recurrent neural networks
(RNNSs) by refining their cellular structure. The evolved networks
were trained on a large database of flight data records obtained from
an airline containing flights that suffered from excessive vibration.
Results were obtained using MPI (Message Passing Interface) on
a high performance computing (HPC) cluster, which evolved 1000
different LSTM cell structures using 208 cores over 5 days. The
new evolved LSTM cells showed an improvement in prediction
accuracy of 1.37%, reducing the mean prediction error from 6.38%
to 5.01% when predicting excessive engine vibrations 10 seconds in
the future, while at the same time dramatically reducing the num-
ber of trainable weights from 21,170 to 11,650. The ACO optimized
LSTM also performed significantly better than traditional Nonlinear
Output Error (NOE), Nonlinear AutoRegression with eXogenous
(NARX) inputs, and Nonlinear Box-Jenkins (NBJ) models, which
only reached error rates of 11.45%, 8.47% and 9.77%, respectively.
The ACO algorithm employed could be utilized to optimize LSTM
RNNs for any time series data prediction task.
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1 INTRODUCTION

This work proposes an algorithm based on ant colony optimization
(ACO) which can optimize the cell structure of long short-term
memory (LSTM) recurrent neural networks. LSTM RNNs have
been used successfully in many studies on involving time series
data [2, 6, 8, 14, 19] and were chosen by this study to examine
them as a solution to predicting aircraft engine vibration. Aircraft
engine vibration provides both a challenging learning task as well
as a strong motivation — if accurate predictions can be made far
enough in the future, it is possible to develop warning systems with
the potential to save time, effort, money, and human lives in the
aviation industry.

Engine vibrations are not that simple to calculate or predict ana-
lytically because of the fact that various parameters contribute to
their occurrence. This fact is always a problem for aviation perfor-
mance monitors, especially as engines vary in design, size, operation
conditions, service life span, the aircraft they are mounted on, and
many other parameters. Most of these parameters’ contributions
can be translated in some key parameters measured and recorded
on the flight data recorder. Nonetheless, vibrations are likely to be
a result of a mixture of these contributions, making it very hard to
predict the real cause behind the excess in vibrations.

Holistic computation methods represent a promising solution
for this problem by letting the computers find relations and anom-
alies that might lead to the problem through a learning process
using time series data from flight data recorders (FDR). Traditional
neural networks, however, lack the required capabilities to capture
those relations and anomalies as they work on current time series
without taking the effect of the previous time instances’ parame-
ters on the current or future time instants. Due to this, recurrent
neural networks have been developed which utilize memory neu-
rons that retain information from previous passes for use with the
current experienced data, giving a chance for the neural network
to know which parameter really have higher contributions to the
investigated problem.

However, these complicated neural network designs in turn pose
their own challenges. Regardless of the difficulty of implementing
it to a specific problem, the learning process is the main concern
when dealing with such neural networks with a large number of
interactive connections. When supervised learning is considered
and back-propagation is implemented to update the weights of
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the connections of the neural network, vanishing and exploding
gradients are very serious obstacles for the successfully training
recurrent neural networks. As noted by Hochrieter and Schmid-
huber [10], "Learning to store information over extended period of
time intervals via recurrent backpropagation takes a very long time,
mostly due to insufficient, decaying error back flow." While this draw-
back hindered the application of such sophisticated neural network
designs, RNNs which utilize LSTM memory cells offer a solution
for this problem as the memory cells provide forget and remember
gates which prevent or lessen vanishing or exploding gradients.

Even so, large LSTM RNNs can be challenging to train and design.
The structure of the LSTM RNN and how well they can be trained
are highly correlated, yet not in an readily apparent way. Neuro-
evolution algorithms provide a way to overcome these challenges by
automating the design and optimization process of a neural network.
In traditional neuroevolution [28], an evolutionary algorithm is
used to train a neural networks’ connection weights with a fixed
structure, but significant benefit has been demonstrated in using
these techniques to both optimize and evolve connections and
topologies [9, 12, 26], as weights are not the only key parameter for
best performance of neural networks [24]. These strategies are of
particular interest as determining the optimal structure for a neural
network is still an open question. This particular work focuses
on evolving the structure of LSTM neurons with an ant colony
optimization [5] based algorithm, which allows for keeping the
superstructure of the LSTM RNN fixed while refining its individual
components.

Using k-fold cross validation (k = 3), results demonstrate that the
evolved LSTM architecture increase the performance by 1.37% over
the non-optimized architecture in predicting vibration 10 seconds
in the future (reducing error from 6.35% to 5.01%), while at the same
time only requiring nearly half the number of trainable connections
(the number of weights was reduced from 21,170 to 11,650). These
results also significantly outperform traditional methods, such as
Nonlinear Output Error (NOE), Nonlinear AutoRegression with eX-
ogenous (NARX) input, and Nonlinear Box-Jenkins (NBJ) recurrent
neural networks which only reached error rates of 11.45%, 8.47%
and 9.77%, respectively.

2 RELATED WORK
2.1 Evolutionary Optimization Methods

Several methods for evolving topologies along with weights have
been searched and deployed. In [21], NeuroEvolution of Augment-
ing Topologies (NEAT) has been developed. It is a genetic algo-
rithm that evolves increasingly complex neural network topologies,
while at the same time evolving the connection weights. Genes
are tracked using historical markings with innovation numbers
to perform crossover among different structures and enable effi-
cient recombination. Innovation is protected through speciation
and the population initially starts small without hidden layers and
gradually grows through generations [1, 11, 13]. However, NEAT
still has some limitations when it comes evolving neural networks
with weights or LSTM cells for time series prediction tasks as it has
been claimed in [5]. More recent works by Miikkulainen, Rawal et
alhave extended NEAT to evolve LSTM RNNs with success on a
sequence recall task [18] and CoDeepNeat to utilize LSTM variants
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for image captioning [15]. To our knowledge, LSTM RNNs have not
been evolved for time series data prediction, as done in this work.

2.2 RNN Regularization vs. ACO Optimization

Srivastava et al. have demonstrated the ability to utilize Dropout,
a popular method for regularization of convolutional neural net-
works [20], to be applied as a regularizer for recurrent neural net-
works [27]. This work has shown strong results in reducing over-
fitting when utilizing large RNNs. As dropout randomly drops out
connections during the forward pass of the backpropagation al-
gorith, it effectively trains the network over randomly sampled
subnetworks of the fully connected architecture. As each forward
path is a different randomly selected network, this forces the trained
weights to become more robust and serves to reduce overfitting.

While this approach is highly successful for classification prob-
lems, such as those presented in Zaremba et al.’s work [27], which
can easily be overfit — this work focuses on time series data pre-
diction multiple readings in the future. In all tested architectures,
the RNNs have not come close to overfitting on the training data,
but rather the problem has been effectively training the network
given the highly challenging prediction task. The ACO approach
described in this work focuses on finding the best subset of connec-
tions to use in an RNN, which makes training them more efficient
and effective — using a fixed sub-topology for an entire training
process, as opposed to randomly dropping out connections in each
forward pass, as done by dropout.

3 METHODOLOGY

3.1 Experimental Data

The flight data used consists of 76 different parameters recorded
on the aircraft Flight Data Recorder (FDR), inclusive of the engine
vibration parameters. A subset of the FDR parameters were cho-
sen based on the likelihood of their contribution to the vibration
based on aerodynamics/turbo-machinery expert knowledge. These
paremeters were validated with a simple fully connected one layer
feed forward neural network, which provided results encouraging
enough to use these parameters for predicting vibration in future.

Some parameters, such as Inlet Guide Vans Configuration, Fuel
Flow, Spoilers Configuration (this was preliminarily considered
because of the special position of the engine mount), High Pressure
Valve Configuration and Static Air Temperature were excluded
because it was found that they generated more noise than posi-
tively contributing to the vibration prediction. The final chosen
parameters were:

(1) Altitude [ALT]

(2) Angle of Attack [AOA]

(3) Bleed Pressure [BPRS]

(4) Turbine Inlet Tempera-
ture [TIT]

(5) Mach Number [M]

(6) Primary Rotor/Shaft
Rotation Speed [N1]

(7) Secondary Rotor/Shaft
Rotation Speed [N2]

(8) Engine Oil pressure
[EOP]

(9) Engine Oil Quantity

[EOQ)]

(10) Engine Oil Tempera-
ture [EOT]

(11) Aircraft Roll [Roll]

(12) Total Air Temperature
[TAT]

(13) Wind Direction [WDir]

(14) Wind Speed [WSpd]

(15) Engine Vibration [Vib]
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Figure 1: The base LSTM RNN archiecture used in this work.

3.2 Recurrent Neural Network Design

This work utilizes as base a LSTM RNN architecture (Figure 1)
which has been shown by ElSaid et al. to have strong predictive
accuracy on engine vibration data in a comparison of various LSTM
RNN architectures [7]. The first level of the architecture uses the 15
selected parameters from ten time series (the current time instant
and the past nine) as input. It then feeds the second level of the
neural network with the output of the first level. The output of the
first level of the neural network is considered the first hidden layer.
The second level of the neural network then reduces the number
of nodes fed to it from 16 nodes (15 input nodes + bias) per cell to
only one node per cell. The output of the second level of the neural
network is considered the second hidden layer. Finally, the output
of the second level of the neural network is 10 nodes, a node from
each cell. These nodes are fed to a final neuron in the third level to
compute the prediction of the whole network.

All the utilized architectures follow the common LSTM cell de-
sign (see Figure 2). Cells consist of the following gates: i) the input
gate, which controls how much information will flow from the
inputs of the cell, ii) the forget gate, which controls how much in-
formation will flow from the cell-memory, and iii) the output gate,
which controls how much information will flow out of the cell. This
design allows the network to learn not only about the target values,
but also about how to tune its controls to reach the target values.

There are two variations of this common design used which are
labeled the ‘M1’ and ‘M2’ cells. Cells that take an initial number of
inputs and output the same number of outputs are denoted by M1
cells. As input nodes are needed to be reduced through the neural
network, the design of the cells are different. Cells which perform
a reduction on the inputs are denoted by M2 cells. M1 cells have
a fully connected (or mesh) layer for each of the LSTM gates, 15
inputs + 1 bias fully connected to 15 outputs; while the M2 cells
have a data reduction, 15 inputs + 1 bias to 1 output. In total, this
architecture has 21,170 trainable weights.
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Figure 2: LSTM cell design
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Figure 3: Schematic of Neural Network Structure after AOC.
Different ants can select the same edge through the network,
however that will not result in duplicate edges in the gener-
ated LSTM RNN.

4 EVOLVING LSTM RNN CELLS USING ANT
COLONY OPTIMIZATION

The algorithm begins with a fully connected gate that will be used
by the ants each time to generate new paths for new network
designs. Paths are selected by the ants based on pheromones — each
connection in the network has a pheromone value that determines
its probability to be chosen as a path. Given a number of ants, each
one will select one path from the fully connected network. All the
paths selected from all the ants are then collected, duplicated edges
are removed and a design network is generated based on the new
cell topology. Figure 3 shows an example on an M1 cell, assuming
four ants choosing their paths on an input gate to an M1 cell, which
generates a subgraph from the potentially fully connected input
gate. The same ACO generated topology is used for each of these 8
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input gates. Figure 10 provides an example of the best found ACO
optimized M1 cell.

In detail, the paths generated by ACO are used in the connections
between the “Input” and the hidden layer neurons that follow it,
and the “Previous Cell Output”and the hidden layer neurons that
follow it. The connections between the “Input”and the hidden layer
neurons that follow it are shown in the first level M1 cells in black,

, blue, and red at the gates of the cell. Once a hidden node
in first level cell is reached by an ant, the connection between this
node and the output node shown in second level M2 cells in black,

, blue, and red, will automatically be part of the evolved mesh
because the ant will not have any other option to reach the output
node except through that single connection.

The same generated mesh is used at all the gates: Main Gate,

, Forget Gate, and Output Gate at the M1 cells and M2
cells. In other words, regardless the LSTM RNN time-step, when-
ever there is a transition without data reduction the first set of
connections in the generated mesh is used, and whenever there is a
transition with data reduction the second set of connections in the
generated mesh is used.

4.1 Distributed ACO Optimization

Evolving large LSTM RNNs is a computationally expensive process.
Even training a single LSTM RNN is extremely time consuming
(approximately 8.5-9 hours to train one architecture), and applying
the ACO algorithm requires running the training process on each
evolved topology. This significantly raises the computational re-
quirements in time and resources necessary to process and evolve
better LSTM networks. For that reason, the ant colony algorithm
was parallelized using the message passing interface (MPI) for
Python [3] to allow for it to be run utilizing high performance
computing resources.

The distributed algorithm utilizes an asynchronous master worker
approach, which has been shown to provide performance and scal-
ability over iterative approaches in evolutionary algorithms [4, 22].
This approach provides an additional benefit in that it is automati-
cally load balanced — workers request and receive new LSTM RNNs
when they have completed training previous ones, without block-
ing on results from other workers. The master process can generate
anew LSTM RNN from whatever the pheromone values currently
present are.

In detail, the algorithm beings with workers requesting LSTM
RNNs from an uninitialized population. In this case, random LSTM
RNNss designs are generated as all pheromones on edges are set
to 1. The workers then trained the LSTM RNN on different flight
data records using the backpropagation algorithm and the resulting
fitness (mean squared error) is evaluated and sent back along with
the LSTM cell paths to the master process.

The master process then compares the fitness of the evaluated
network to the other results in the population, inserts it into the
population, and will reward the edges of the best performing net-
works by increasing the pheromones by 15% of their original value
if it was found that the result was better than the best in the popu-
lation. However, the pheromones values are not allowed to exceed
a fixed threshold of 20. The networks that did not out perform the
best in the population are penalized by reducing the pheromones
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along their paths by 15%. To control the pheromones values, all
paths’ pheromones are reduced every 100 iterations by 10%.

5 IMPLEMENTATION

5.1 Data Processing

The flight data parameters used were normalized between 0 and 1.
The sigmoid function was used as an activation function over all
the gates and inputs/outputs. The ArcTan activation function was
tested on the data, however it gave distorted results and sigmoid
function provided significantly better performance.

5.2 Comparison to Traditional Methods

The NOE, NARX, and NBJ models were implemented as baseline
comparison methods. These traditional models are dynamical sys-
tems can experience limitations which reduce their stability and
ability to make most effective use of embedded memory. In particu-
lar, they can suffer from vanishing and exploding gradients [10, 17],
especially when using the back propagation through time algo-
rithm [25] on long time series such as the vibration data used in
this work.

It should further be noted that the purpose of this work is predict
values multiple time steps into the future, which is not possible for
the NBJ model, as it the actual value to be predicted along with
the error between the prediction at that value to be fed back into
the RNN at the next iteration. If this model is being used online to
predict data 10 seconds in the future, the output and error values
will not be known for an additional 10 time steps (given readings
every second) until that time actually occurs. However, as the data
used in this study has already been collected we still evaluated
these models in an offline manner where this future knowledge can
be known for sake of comparison.

5.2.1  Nonlinear Output Error (NOE) Inputs Neural Network: The
structure of the NOE network is depicted in Figure 4. The actual
vibration values are fed as an inputs along with the current instance
parameters and lag inputs. To make the model more comparable
to the architectures used in this study, the parameters fed are the
same used in the proposed LSTM RNN architectures to predict
the vibration value in 10 seconds in the future, i.e., they utilize
the previous 10 seconds of input data, instead of just the current
input data. The NOE does not have actual recurrent inputs, as it
instead includes the actual prediction value as input instead. The
vibration has been included as an input parameter in all models
utilized, so the NOE model is no different than a traditional feed
forward network.

5.2.2  Nonlinear AutoRegression with eXogenous (NARX) Inputs
Neural Network: This network, has been updated in a similar way
to the NOE network. The previous 10 seconds of input data are
utilized, and the previous 10 output values are fed to the network
as recurrent inputs. Traditionally in the NARX model the weights
for recurrent connects are fixed constants [16], and therefore their
corresponding inputs are not considered in the gradient calculations
and these weights are not updated in the training epochs. This
was experimented on the data and the NARX network depicted in
Figure 5 was used. However, the output of the cost functions in the
training iterations of this implementation froze at a constant value,



Using ACO to Optimize LSTM Recurrent Neural Networks

t+10
@ Currentinput
O Inputlag
[] Actual vibration
@ Hidden layer

GECCO 18, July 15-19, 2018, Kyoto, Japan

Table 1: K-Fold Cross Validation Results

Prediction Errors (MAE)
LSTM NOE NARX NBJj ACO

Subsample 1 8.34% 10.6% 8.13% 8.40% 7.80%
Subsample 2 4.05% 6.96% 6.08% 7.34% 3.70%
Subsample 3  6.76%  16.8% 11.2%  13.6%  3.49%

Figure 4: Nonlinear Output Error inputs neural network.
This network was updated to utilize 10 seconds of input data.

t t+1 t+9 t+10
@ Currentinput ",

O Inputlag A PR A

/\ Prediction

@ Hidden layer

Figure 5: Nonlinear AutoRegressive with eXogenous inputs
neural network. This network was updated to utilize 10 sec-
onds of input data, along with the previous 10 predicted out-
put values.
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Figure 6: Nonlinear Box-Jenkins inputs neural network.
This network was updated to utilize 10 seconds of input data,
along with the future output and error values. Due to requir-
ing future knowledge, it is not possible to utilize this net-
work in an online fashion.

indicative of a case of vanishing gradients. Accordingly, the study
allowed for the recurrent weights to be considered in the gradient
calculations in order to update the weights with respect to the cost
function output.

5.2.3 Nonlinear Box-Jenkins (NBJ) Inputs Neural Network: The
structure of the NBJ is depicted in Figure 6. As previously noted,
this network is not feasible for prediction past one time step in
the future in an online manner, as it requires the actual prediction
value and error between it and the predicted value to be fed back
into the network. However, as this work delt with offline data, the
actual future vibration values, error, and the output were all fed to
the network along with the current instance parameters and lag
inputs. As in the other networks, the values for the previous 10
time steps were also utilized.

Mean 0.0638 0.1145
Std. Dev. 0.0217 0.0497

5.3 Error Function

For all the networks studied in this work, Mean Squared Error (MSE)
(shown in Equation 1) was used as an error measure for training,
as it provides a smoother optimization surface for backpropagation
than mean average error. Mean Absolute Error (MAE) (shown in
Equation 2) was used as a final measure of accuracy for the three
architectures, as because the parameters were normalized between
0 and 1, the MAE is also the percentage error.

0.0847 0.0977 0.0501
0.0258 0.0333 0.0245

0.5 X Y.(Actual Vib — Predicted Vib)?

E = 1
rrer Testing Seconds W
> [ABS(Actual Vib — Predicted Vib)]
Error = - (2)
Testing Seconds

5.4 Machine Specifications

Python’s Theano Library [23] was used to implement the neural
networks and MPI for Python [3] and was used to run the ACO op-
timization on a high performance computing cluster. The cluster’s
operating system was Red Hat Enterprise Linux (RHEL) 7.2, and
had 31 nodes, each with 8 cores (248 cores in total) and 64GBs RAM
(1948 GB in total). The interconnect was 10 gigabit (GB) InfiniBand.

6 RESULTS

The ACO algorithm was run for 1000 iterations using 200 ants. The
networks were allowed to train for 575 epochs to learn and for
the error curve to flatten. The minimum value for the pheromones
were 1 and the maximum was 20. The population size was equal to
number number of iterations in the ACO process, i.e., the population
size was also 1000. Each run took approximately 4 days.

A dataset of 57 flights was divided into 3 subsamples, each con-
sisting of 19 flights. The subsamples were used to cross validate the
results by examining combations utilizing two of the subsamples
as the training data set and the third as the testing set. Subsamples
1, 2 and 3 consisted of 23,371, 31,207 and 25,011 seconds of flight
data, respectively.

These subsamples were used to train the NOE, NARX, NBH, base
architecture and the ACO optimized architecture. Figures 7 shows
predictions for the different models over a selection of test flights,
and Figure 8 shows predictions an single uncompressed (higher
resolution) test flight. Table 1 compares these models to the base
architecture (LSTM) and the ACO optimized architecture (ACO).

6.1 NOE, NARX, and NBJ Results

Somewhat expectedly, the NOE model performed the worst with
with a mean error of 11.45% (o = 0.0497). The NBJ model performed
better than the NOE model with a mean error of 9.77% (o = 0.0333),
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Figure 7: Results for the RNNs trained on the different K-fold K-fold cross validation subsamples predicting vibration ten
seconds in the future for a selection of 5 flights from the unseen subsample. Each flight is divided by a dashed line.
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Figure 8: Results for the RNNs trained on the different K-fold cross validation subsamples predicting vibration ten seconds in
the future for a different individual flight from the unseen subsample.

however the NARX model better than the previous two models
with a mean error of 8.47 % (¢ = 0.0258). This is interesting in
that the NBJ model had access to actual future vibration values,
unlike NOE, NARX and the LSTM models; and could be expected
to perform better utilizing this information. The differences in
performance is likely due to the high nonlinearity in the input and
target parameters, along with the difficulty of training RNNs on
long time series data.

6.2 Base Architecture Revisited

The base architecture was trained utilizing the three subsamples to
validate the results. The mean error for each of the three subsamples
(using the other two as training data) was 6.38% (o = 0.0217).

6.3 Ant Colony Optimized Architecture

When ACO optimization was used to find the optimal connections
to use in the base architecture RNN, the best evolved with ACO
showed an improvement of 1.37% for predictions 10 seconds in the
future, reducing prediction error from 6.38% to 5.01% compared to
the architecture’s performance before ACO. Figure 9a provides an
example of the improvement in predictions on a single test flight,
before and after the ACO optimization.

Figure 10 provides an example of how the M1 cells are updated
with these connections. For clarity, Figure 10b shows the differences
between the M1 cells before and after ACO optimization. Figure 10a
is simply a LSTM cell “M1” that have its gates’ meshes (shown
in Figure 10b, Up) substituted with the ACO meshes (shown in
Figure 10b, Down). “M2” did not change from its original topology
as shown in Figure 1 since all the elements in mesh_2 after the

Calculated Vib
Actual Vib

i A NP

G

el e JN

0.0 B

Vib (normal zed)
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time
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(a) Unoptimized: single test flight

Calculated Vib
Actual Vib

ST §

1.0

(S) 500 1000

time

1500 2000

(b) Optimized: single test flight

Figure 9: Plotted results for predicting ten seconds in the fu-
ture.

optimization remained active. While the connections reduction did
not show any inputs being fully eliminated, which was sought as
one of the goals of the study, a significant number of connections
were removed.
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Figure 10: An example of the M1 cell before and after optimization.

Returning to an initial question of how the number of the con-
nections in the network affects the soundness of the results, Table 2
shows the fitnesses, number of M1 and M2 connections and total
number of weights for the top 30 evolved LSTM RNNs. Comparing
these to the number of connetions in the base architecture, which
had 21,170 weights, ACO reduced the total number of weights in
these top 30 architectures by 42% to 45%.

7 DISCUSSION AND FUTURE WORK

The results have shown that the ACO approach for optimizing the
gates within LSTM cells can dramatically reduce the number of
connections required, while at the same time improve the predic-
tive ability of the recurrent neural network. The evolved structures
in the M1 cell connections (see Figure 10b) were sparse; however
no inputs ended up being fully removed, which was discussed a
potential means for improving predictions in Section 1. This is a
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Table 2: ACO Top Thirty Evolved Networks

No. Fitness Number Number Total Number | No. Fitness Number Number Total Number
of M1 of M2 of of M1 of M2 of

Cy i C i C i Cy i C i c i
1 0.034388 137 16 11650 16 0.036795 140 16 11890
2 0034917 136 16 11570 17 0.036820 145 16 12290
3 0.035851 141 16 11970 18 0.036901 140 16 11890
4 0.036063 146 16 12370 19 0.036932 131 16 11170
5 0.036067 143 16 12130 20 0.036953 142 16 12050
6 0.036337 140 16 11890 21 0.037001 141 16 11970
7 0.036535 136 16 11570 22 0.037040 145 16 12290
8 0.036582 140 16 11890 23 0.037041 147 16 12450
9 0.036588 133 16 11330 24 0037082 133 16 11330
10 0.036647 134 16 11410 25 0.037106 142 16 12050
11 0.036715 135 16 11490 26 0037114 135 16 11490
12 0036727 143 16 12130 27 0037134 137 16 11650
13 0.036730 147 16 12450 28 0.037142 138 16 11730
14 0.036787 143 16 12130 29 0.037145 144 16 12210
15 0.036788 137 16 11650 30 0.037161 139 16 11810

indication that all the chosen parameters actually had a positive
contributing influence on the vibration. On the other hand, it sug-
gests that having extraneous connections can increase the difficulty
of appropriately training the LSTM RNN, resulting in less predic-
tive ability (as in the case of the original unoptimized LSTM RNN
architectures).

This also opens up the potential for significant future work.
While the optimized LSTM RNNs did not remove any input con-
nections, by increasing the number of flight parameters used as
input (even using all available parameters), the algorithm has the
potential to determine which parameters contribute most to the
predictive ability, instead of relying on a priori expert knowledge
to select parameters. This can be investigated by adding additional
flight parameters (such as those which should not effect vibration)
as inputs to the RNNS and see if the ant colony optimization elim-
inates them. Further, in this work one mesh of connections was
generated and then used in all the LSTM cell gates at all time-steps.
Future work will evolve each mesh in the LSTM RNN independently
using ACO.

In addition, all connections of the structure shown in Figure 1
will be subject to the ACO process along with the optimization
of the connections within the LSTM cells. This has the potential
to make a large step forward in the evolution of the LSTM RNNs
as it will allow for connections between non-adjacent cells, and
potentially even remove unused cells the LSTM RNN.

As this work shares some similarities with dropout strategies for
recurrent neural networks [27], it is worth investigating if training
RNNs with permanently removed connections (as done in this
work) provides benefit over using a regularization method. It may
also be possible to combine the two strategies, using dropout as a
regularizer while training the RNNs in the ACO process.

Lastly, work investigating the tuning of the ACO hyperparame-
ters can be done to improve how quickly the algorithm converges
to optimal LSTM RNN structures. For example, modifying the num-
ber of ants, reducing pheromones on paths from LSTM RNNs with
lower fitness, and periodically refreshing the pheromones levels by
decreasing all of its levels by certain amount.
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