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ABSTRACT
�is work presents the use of an ant colony optimization (ACO)
based neuro-evolution algorithm to optimize the structure of a
long short-term memory (LSTM) recurrent neural network (RNN)
for the prediction of aircra� turbine engine vibrations. It expands
upon previous work using three di�erent LSTM architectures, with
the new evolved LSTM cells showing an improvement of 1.35%,
reducing prediction error from 5.51% to 4.17% when predicting
excessive engine vibrations 10 seconds in the future. �ese results
were gained using MPI on a high performance computing cluster,
evolving 1000 di�erent LSTM cell structures using 168 cores over 4
days.
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1 INTRODUCTION
Initial work examined building viable Recurrent Neural Networks
(RNN) using Long Short Term Memory (LSTM) neurons to predict
aircra� engine vibrations [3]. �e di�erent networks were trained
on time series �ight data records obtained from a regional airline
containing �ights that su�ered from excessive vibration. �e struc-
ture of the used LSTM Recurrent Neural Network used in this study
is shown in Figure 3. A�er selecting an initial set of 15 relevant
parameters, these LSTM RNNs were able to predict vibration values
for 1, 5, 10, and 20 seconds in the future, with 2.84% 3.3%, 5.51% and
10.19% mean absolute error, respectively.

2 IMPLEMENTATION
�is study expands on the previous work by optimizing the struc-
ture of the cells used in the previous LSTM architecture. An ant
colony optimization (ACO) based algorithm was chosen for this, as
it has shown prior success in evolving evolving general RNNs for
time series data prediction [2].

An MPI4 version of the ACO algorithm was developed and com-
pared to the �xed topology examined in previous work[3]. �e
optimization process targeted the structure of the “M1” LSTM cells
as shown in Figure 3 based on predicting vibration for 10 seconds in
the future. �e goal of the method was to optimize the connections
between the nodes. Worker processes used �eano [1] to train the
LSTM RNNs with the evolved cell structures.

�e �rst stage of the optimization process started by generating
a fully connected network that is used by the ants to generate new
paths for new cell structure designs. Paths are selected by the ants
based on the value of pheromones on edges; each connection in the
network has a pheromone value that determine its probability to be
chosen as a path. Given a number of ants, each one will select one
path from the fully connected network as shown in Figure 2. All
the paths selected from all the ants are then collected, duplicated
paths are removed and a network cell is generated.

3 RESULTS
�e algorithm was run using 168 cores on a high performance
computing cluster where 1,000 di�erent cell structures were evolved
4Message Passing Interface
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(a) Unoptimized

(b) Optimized

Figure 1: Plotted results for predicting ten seconds in the
future for one test �ight.

over the course of 4 days. Worker processes requested di�erent
cell structures from the master process, and then trained the LSTM
RNNs using those cell structures for 575 epochs.

�e LSTMs with evolved cell structures have shown an 1.35%
increase in performance (5.51% � 4.17% mean absolute error for 10
seconds prediction in the future). Plots for results of unoptimized
and optimized predictions for one test �ight are shown in Figures 1.

4 DISCUSSION
�ese neural networks provide a promising means for the future
development of warning systems so that suitable actions can be
taken before the occurrence of excess vibration to avoid unfavorable
situations during �ight. Future work involves using ACO to evolve
the overall structure of the RNN, as well as optimizing the cells
independently.
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Figure 2: Ants’ paths through the network (schematic)
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Figure 3: Neural Network Structure
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