
Using Long-Short-Term-Memory Recurrent Neural Networks to
Predict Aviation Engine Vibrations

by

AbdElRahman Ahmed ElSaid
Bachelor of Science, Cairo University, 2007

A thesis

Submitted to the Graduate Faculty

of the

University of North Dakota

in partial fulfillment of the requirements

for the degree of

Master of Science

Grand Forks, North Dakota
December

2016

mailto:abdelrahman.elsaid@und.edu
http://und.edu

PERMISSION

Title Using Long-Short-Term-Memory Recurrent Neural Networks to
Predict Aviation Engine Vibrations

Department Department of Computer Science

Degree Master of Science

In presenting this thesis in partial fulfillment of the requirements for a
graduate degree from the University of North Dakota, I agree that the library of
this University shall make it freely available for inspection. I further agree that
permission for extensive copying for scholarly purposes may be granted by the
professor who supervised my thesis work or, in his absence, by the Chairperson
of the department or the dean of the School of Graduate Studies. It is
understood that any copying or publication or other use of this thesis or part
thereof for financial gain shall not be allowed without my written permission. It
is also understood that due recognition shall be given to me and to the
University of North Dakota in any scholarly use which may be made of any
material in my thesis.

AbdElRahman Ahmed
ElSaid
December 2016

iii

http://cs.und.edu
http://und.edu
http://und.edu

Contents

List of Figures v

List of Tables vi

Acknowledgements vii

Abstract ix

Notations x

1 Introduction 1

2 Related Work 3
I Aircraft Engine Vibration . 3
II Time Series Prediction . 4

II.I Statistical Prediction Models 5
II.I.1 Autoregressive (AR) Model 5
II.I.2 Moving Average (MA) Model 6
II.I.3 ARMA (Autoregressive Moving Average) Model . . 7
II.I.4 ARIMA (Autoregressive Integrated Moving Aver-

age) Model . 7
II.I.5 SARIMA (Seasonal ARIMA) Model 8

II.II Artificial Neural Network (ANN) Prediction Models 8
II.II.1 RNN for Predicting Flight Parameters 10
II.II.2 LSTM RNN . 13

II.III Hybrid Forecasting Models 14
II.IV Summary . 15

3 Methodology 17
I Experimental Data . 17

I.I Data Correlation . 17
I.II Aerodynamics/Turbo-machinery Parameters’ Selection . . . 18

II Methodology . 20
II.I Neural Networks Overview 20
II.II LSTM RNN Forward Propagation Equations 22
II.III LSTM RNN Architectures 25

II.III.1 Architecture I . 26
II.III.2 Architecture II . 26
II.III.3 Architecture III . 26

II.IV Forward Propagation . 31

iv

4 Implementation 33
I Programming Langauge . 33
II Data Processing . 33
III Machine Specifications . 34

III.I Optimizing Matrices for GPU Computations 34
IV Training Results . 36

5 Results 37
I Cost Function . 37
II Architecture Results . 37

II.I Results of Architecture I . 48
II.II Results of Architecture II 48
II.III Results of Architecture III 51

6 Conclusion 52

7 Future Work 53

A Architecture I Back Propagation 54

Bibliography 66

List of Figures

1 Biological - Artificial neurons [13] 10
2 Perceptron input/output [13] . 11
3 Simple neural network [13] . 11
4 Perceptron neuron Vs. Activation neuron [13] 12
5 Learning Process [13] . 12
6 Time Series Prediction Summary [8] 15

7 Simple Neural Network . 19
8 LSTM cell design . 21
9 Level 1 LSTM cell design . 22
10 Level 2 LSTM cell design . 23
11 Architecture I . 27
12 Architecture II . 28
13 Architecture III . 30

14 Cost function plot for the three architectures predicting vibration
in 1 future sec. 38

15 Cost function plot for the three architectures predicting vibration
in 5 future sec. 39

v

16 Cost function plot for the three architectures predicting vibration
in 10 future sec. 40

17 Cost function plot for the three architectures predicting vibration
in 20 future sec. 41

18 Architecture I predicting vibration for one flight. 43
19 Architecture III predicting vibration for one flight. 44
20 Plotted results for Architecture I for the for the three scenarios. . . 45
21 Plotted results for Architecture II for the for the three scenarios. . . 46
22 Plotted results for Architecture III for the for the three scenarios. . 47
23 Plotted results for the three architectures predicting one second in

the future. 49
24 Plotted results for Architecture I & III predicting one second in the

future. 50

List of Tables

1 Summary of advantages and challenges of classical and ANNs based time

series prediction methods [48] . 16

2 Architectures Weights-Matrices Dimensions 29
3 Architectures Weights Matrices’ Total Elements 29

4 Run Time (hours) . 34
5 Training Results . 36

6 Testing Process Mean Squared Error 42
7 Testing Process Mean Absolute Error 42

vi

ACKNOWLEDGEMENTS

I would first like to thank my thesis advisor Dr. Travis Desell of the

Department of Computer Science, School of Aerospace Studies at the University

of North Dakota. My advisor was always available whenever I ran into a trouble

spot or had a question about my research or writing. He consistently directed

this paper to be my own work, but steered and advised me in the right direction

whenever he thought I needed it. Ultimately, this e↵ort could not see the light if

not for his strong support, kind patience, and teaching.

I would also like to thank my respectable advisory committee members for

their valuable comments and support: Dr. Wen-Chen Hu and Dr. Marina Kim

of the Department of Computer Science, School of Aerospace Studies at the

University of North Dakota and Mr. James Higgins of the Aviation Department,

School of Aerospace Studies at the University of North Dakota. Special thanks

to Dr. Hu for the influence he had on me through his classes in which I enjoyed

his teaching very much.

In addition, I would like to thank Dr. Yen Lee Loh of the Physics

Department, School of Art and Science at the University of North Dakota for his

kind e↵ort revising the work done in deriving the neural network’s

backpropagation gradients. I can not also forget to thank Ms. Run Li of the

Chemistry Department, School of Art and Science at the University of North

Dakota for her support and e↵ort on this side of the project.

vii

http://cs.und.edu
http://und.edu
http://und.edu
http://cs.und.edu
http://und.edu
http://und.edu
http://und.edu
http://und.edu
http://und.edu

Last but not least, I want to express my sincere appreciation to my

life-partner for the endless support and tolerance I enjoyed in her company.

Thanks are extended to my family, especially my dearest brother who never

failed me. This work would not have even started if not for him.

viii

DEDICATION

To my parents, how can I possibly thank you enough for the gift of life!
To my partner, thank you for your care and for making life easier.

To my brother, thank you for always being there.
To Wesam Elshamy, thank you my friend.

ABSTRACT

This thesis examines building viable Recurrent Neural Networks (RNN) using

Long Short Term Memory (LSTM) neurons to predict aircraft engine vibrations.

The di↵erent networks are trained on a large database of flight data records

obtained from an airline containing flights that su↵ered from excessive vibration.

RNNs can provide a more generalizable and robust method for prediction over

analytical calculations of engine vibration, as analytical calculations must be

solved iteratively based on specific empirical engine parameters, and this

database contains multiple types of engines. Further, LSTM RNNs provide a

“memory” of the contribution of previous time series data which can further

improve predictions of future vibration values. LSTM RNNs were used over

traditional RNNs, as those su↵er from vanishing/exploding gradients when

trained with back propagation. The study managed to predict vibration values

for 1, 5, 10, and 20 seconds in the future, with 2.84% 3.3%, 5.51% and 10.19%

mean absolute error, respectively. These neural networks provide a promising

means for the future development of warning systems so that suitable actions

can be taken before the occurrence of excess vibration to avoid unfavorable

situations during flight.

ix

NOTATIONS

x

NOMENCLATURE

ANN(s) Artificiale Neural Network(s)

AR Autoregressive Model

ARIMA Autoregressive Integrated Moving Model

ARMA Autoregressive Moving Model

ART Architecture

CPU Central Processing Unit

ESN Echo State Networks

FDR Flight Data Recorder

FFNN FeedForward Neural Network

GPU Graphics Processing Unit

LAH List Appreviations Here

LSTM Long Short Term Memory

MA Moving Average Model

MAE Mean Absolute Error

MSE Mean Squared Error

O/P Output

RNN Recurrent Neural Networks

xi

SARIMA Seasonal ARIMA

SVM Support Vector Machines

VAM Vector Autoregressive Model

vib Vibration

xii

CHAPTER 1

INTRODUCTION

Aircraft Engine vibration is a critical aspect of the aviation industry, and

accurate predictions of excessive engine vibration have the potential to save

time, e↵ort, money as well as human lives in the aviation industry. An aircraft

engine, as turbo-machinery, should normally vibrate as it has many dynamic

parts. However, it is not supposed to exceed resonance limits so not to destroy

the engine [1].

A. V. Srinivasan [1] describes vibrations generated from engine blades’

fluttering. Engine blades are the engine rotating components that have the

largest dimensions among other components. When rotating at high speeds, they

will withstand high centrifugal forces that would logically give the highest

contribution to engine vibrations.

Engine vibrations are not that simple to calculate or predict analytically

because of the fact that various parameters contribute to their occurrence. This

fact is always a problem for aviation performance monitors, especially as engines

vary in design, size, operation conditions, service life span, the aircraft they are

mounted on, and many other parameters. Most of these parameters’

contributions can be translated in some key parameters measured and recorded

on the flight data recorder. Nonetheless, vibrations are likely to be a result of a

mixture of these contributions, making it very hard to predict the real cause

behind the excess in vibrations.

1

This thesis presents a means to make these predictions viable in the aviation

industry within a reasonable time window. The problem is approached using

LSTM RNNs, which have seen widespread recent use with strong results in

image [2], speech [3] and, language prediction [4]. LTSM RNNs were chosen for

this work in particular due to their generalizability and predictive power due to

having a memory for the contribution of the previous time series data to predict

the future values of vibration. This study provides another dimension for the use

of this promising type of recurrent neural network.

Chapter 2 presents related work in the fields of LSTM RNN’s and vibration

detection. Chapter 3 covers the approaches taken to design out neural network

architectures. Performance results and limitations of the algorithms are

described in Chapter 5. Finally, Chapter 6 concludes with future work and a

discussion of the next steps to improving the results, enhancing the algorithms,

and proposing solutions to utilize advanced computing alternatives. As an

appendix, an e↵ort for driving back propagation process’s gradients for

Architecture I is introduced in Appendix A.

2

CHAPTER 2

RELATED WORK

Aircraft Engine Vibration

According to A. V. Srinivasan [1]: “The most common types of vibration

problems that concern the designer of jet engines include (a) resonant vibration

occurring at an integral order, i.e. multiple of rotation speed, and (b) flutter, an

aeroelastic instability occurring generally as a nonintegral order vibration, having

the potential to escalate, unless checked by any means available to the operator,

into larger and larger stresses resulting in serious damage to the machine. The

associated failures of engine blades are referred to as high cycle fatigue failures”.

The means available to the operator in practical aviation operations are mainly:

i) maintenance engine checks scheduled in maintenance programs based on

engine reliability observations, and ii) engine vibration monitoring for

forecasting the excess vibration occurrence based on statistical and analytical

methods which consider empirical factors of safety.

Some e↵ort has been done using neural networks to classify engine

abnormalities without doing analytical computation, e.g., Alexandre Nairac et

al. [5] worked on this aspect to detect abnormalities in engine vibrations based

on recorded data. To achieve that, the paper used two modules. One of the

modules uses the overall shape of the vibration curve to detects unusual

vibration signature. The second one reports sudden unexpected transition in the

signature curves. Their approach to detect defects is not to introduce examples

3

of faulty engines to the neural network. Rather, only examples of healthy

engines are introduced to the neural networks in the training phase. This

approach was taken to overcome the lack of existence of adequate faulty engine

data, enough for training. In this context, the paper introduces the term

‘normality’ to describe the behavior of normal engines and ‘abnormality’ to

describe the behavior of faulty engines. Using statistical models, the faulty

engines detection would be described as ‘novelty’ detection based on the

deviation from the data distribution. The best results the paper achieved was

the prediction of faulty engines with 84% successful classifications.

David A. Clifton et al. [6] presented work for predicting abnormalities in

engine vibration based on statistical analysis of vibration signatures. The paper

presents two modes of prediction. One is ground-based (o↵-line), where

prediction is done by run-by-run analysis to predict abnormalities based on

previous engine runs. The success in this approach was predicting abnormalities

two flights ahead. The other mode is a flight based-mode (online) in which

detection is done either by sending reduced data to the ground-base or onboard

the aircraft. The paper mentions that they could successfully predict 2.5 hours

in the future. However, this prediction is done after half an hour of flight data

collection, which might be a critical time as well, as excess vibration may occur

during this data collection time. The paper did not mention how much data was

required to have a sound prediction.

Time Series Prediction

From a statistical point of view, the main goal of prediction is to provide vital

information for decision makers, economists, planners optimizers, industrialists

and critical systems operators. There are two sides for prediction: the qualitative

4

side and the quantitative side. The qualitative side utilizes methods known as

the judgmental or subjective prediction methods which covers methods relaying

on intuition, judgement or opinions of some kind of a referee as customers,

consumers, experts and/or supporting information. Qualitative methods are

considered in cases when past data is not available. On the other hand

quantitative methods include univariate and multivariate methods. Though, for

many study cases related to di↵erent scientific and real life problems, the time

series data are available on several dependent variables, in such cases

multivariate prediction methods are used [7]. This section will provide a brief

discussion about some of the available prediction models.

Statistical Prediction Models

Some of the common time series prediction statistical models are discussed here.

Linear statistical methods have been influencing prediction e↵orts for a long

time. These methods include the autoregressive (AR) model, the moving average

(MA) model, and hybrid models that derive from them such as ARMA

(autoregressive moving average), ARIMA (autoregressive integrated moving

average), and SARIMA (seasonal ARIMA) [8].

II.I.1 Autoregressive (AR) Model

In this model, there is a linear dependence between the output variable and its

own value in previous time steps and a certain error. The model can formally be

defined as: a process {z
t

} is an autoregressive process of order n at time t

denoted AR(n) if z
t

can be formally represented by:

z

t

= ↵1zt�1 + ↵2zt�2 + . . . + ↵

n

z

t�n

+ "

t

(1)

5

where "

t

is the error with mean zero and fixed finite variance �

Z

.

A vector autoregressive (VAR) model can be used when there is more than

one dependent variables. Formally this can be represented by:

z

t

=
nX

l=1

A

l

z

t�l

+ "

t

(2)

where z

t

, z
t�l

, and "

t

are a vector with number of elements equal to the number

of dependent variables. A
l

is a square matrix of dimensions equal to the number

of independent variables squared [7].

II.I.2 Moving Average (MA) Model

If "
t

is random with mean zero and fixed finite variance �

Z

, then process {z
t

} is

a moving average process of order k denoted MA(k) and represented by [7, 9]:

z

t

= "

t

+ �1"t�1 + �2"t�2 + . . . + �

k

"

t�k

(3)

MA is also the process where the next sample depends on the weighted sum of

the past or present inputs of an exogenous time series {y
t

} of N-dimensions

formally described by:

z

t

= �0yt + �1yt�1 + . . . + �

k

y

t�k

+ "

t

(4)

For more than one independent variable, MA model is represented by:

z

t

=
kX

j=0

B

j

y

t�j

+ "

t

(5)

where y

t

is an exogenous N-dimension time series and B

k

are M-by-N matrices of

parameters and M is the number of independent observed variables.

6

II.I.3 ARMA (Autoregressive Moving Average) Model

This model is widely used because it benefits from the advantages of both

auto-regressive AR(n) and the moving average MA(k) models. An ARMA(n, k)

model of order (n, k) is formally defined by:

z

t

= ↵1zt�1 + . . . + ↵

n

z

t�n

+ "

t

+ �1"t�1 + . . . + �

k

"

t�k

(6)

where z

t

is the original series and "

t

is a series of random errors which are

assumed to followed the normal probability distribution. For more than one

independent variable, ARMA model is called vector auto-regressive moving

average (VARMA) which is represented by:

z

t

=
nX

l=1

A

l

z

t�l

+ "

t

+
kX

j=0

B

j

y

t�j

+ "

t

(7)

II.I.4 ARIMA (Autoregressive Integrated Moving Average) Model

AR, MA, and ARMA are used in stationary time series analysis [10]. A time

series is defined as stationary when the mean of the series and the covariance

among its variables do not change over time and do not follow any trend [11]. In

real life, the majority of the time series is non-stationary. To fit stationary

models, it is absolutely necessary to remove the non-stationary sources of

variation [7]. One of the proposed solutions for this was presented by Box and

Jenkins [9] when their work introduced the ARIMA model which uses

di↵erencing process to transform the non-stationary data into a stationary one

[7, 11]. The general form of the ARIMA (n, h, k) process is formally described

as:

7

z

0
t

= rk

z

t

= ↵1z
0
t�1 + . . . + ↵

n

z

0
t�n

+ "

t

+ �1"t�1 + . . . + �

k

"

t�k

(8)

II.I.5 SARIMA (Seasonal ARIMA) Model

SARIMA is an extension to the ARIMA model [7]. It is used when the data is

presented with a periodic characteristic that must be known in advance [9].

Artificial Neural Network (ANN) Prediction Models

Artificial neural networks are part of the machine learning models used in time

series prediction. Neural networks are an imitation for human neural cells as

shown in Figure 1, where neurons (nodes/perceptrons) takes input data and

perform simple operations then selectively pass the results onto other

neurons [12]. In the very beginning, McCulloch and Pitts developed the first

artificial neuron model in 1943 [8]. However, artificial neural networks emerged

in the 1950’s with a simple simulation to the biological neuron and the building

cells were called perceptrons. The perceptrons took several binary inputs and

produced single binary output. To compute the output, real numbers called

weights are used expressing the importance of the respective inputs to the

output as shown in Figure 2. The perceptron’s output, 0 or 1, is determined by

whether the weighted sum
X

j=1

w

j

· x
j

is less than or greater than some threshold value. Layers of perceptrons are used

where simple decision are made in early layers and then more complex and

abstract decisions could be taken in later layers as shown in Figure 3. Thus,

8

perceptrons can be looked at as a method for weighing evidence to make

decisions. To use neural networks in a learning algorithm it should be trained on

a set of data by forward propagating inputs to let it try to compute the target

value. Then feedback the error some how to modify the weights. This is done in

a loop until the neural network can predict the target values by its own.

However, The problem with perceptrons is that a small change in one of the

weights can completely flip the output (output is binary). Thus, a new type of

neurons are introduced: “Activation Neurons”. The advantage of this type of

neurons is that a small changes in their weights cause only a small change in

their output. The di↵erence between a perceptron neuron and an activation

neuron is shown in Figure 4. There are several algorithms which can be used to

set the weights of a neural network to represent a desired function. One of the

more popular methods is by supervised learning. This involves training the

neural network using a subset of correct outputs for specific inputs. The neural

network then extrapolates means to classify (predict) vectors of input signals

that it had not yet been presented with. An error function (cost/loss), E, is used

to measure the discrepancy between the output of the neural network and the

targeted value. This function has a global minima at a point at which the target

value and network output are nearly equal. Di↵erent sets of input and known

output are chosen for each training iteration. This causes the state of the

weights of the network to converge along the average of each error function

associated with each desired output. This process is shown in Figure 5 [13].

Over time, many variations and type of ANNs were developed. Di↵erences

between these variations and types could be in the architectures, the activation

function, the learning algorithms, etc, depending on the proposed problem. One

of those ANNs is the feed-forward neural networks (FFNNs) or multilayer

perceptron’s (MLP) Figure 3 presents the basic neural networks architecture [14].

In addition, there are also other more advanced ANNs architectures as recurrent

9

Figure 1: Biological - Artificial neurons [13]

neural networks (RNNs) that include simple recurrent neural networks as well as

more complicated models as long short term memory network (LSTM) [14–16]

and echo state networks (ESN) [17]. Other ANNs architectures are radial basis

function (RBF) [18], cascading neural networks [19]. There are however other

machine learning techniques such as support vector machines (SVM) [20].

II.II.1 RNN for Predicting Flight Parameters

Having an advantage over standard FFNNs, RNNs can deal with sequential

input data, using their internal memory to process sequences of inputs and deep

learn from them. This is done by feedback connections or by looping between

neurons and thus making them capable of predicting more complex data [21].

An inspiring work was done on predicting flight parameters [22, 23]. The

research used recurrent neural networks and applied an ant-colony optimization

(ACO) algorithm [24–26], an optimization technique used in the beginning on

10

Figure 2: Perceptron input/output [13]

Figure 3: Simple neural network [13]

11

Figure 4: Perceptron neuron Vs. Activation neuron [13]

Figure 5: Learning Process [13]

12

discrete problems, mainly on the Traveling Salesman Problem [27]. Later it was

used in continuous optimization problems [28–33], including training neural

networks [34–37] T. Desell et al. used the ACO to give the neural network the

ability to evolve to a near optimum structure. The neural network predicted

airspeed, altitude and, pitch with a 63%, 97% and 120% improvement

respectively, over previously best published results [38].

II.II.2 LSTM RNN

LSTM RNNs were first introduced by S. Hochrieter & J. Schmidhuber [39]. The

paper introduced a solution for this problem: “ Learning to store information

over extended period of time intervals via recurrent backpropagation takes a very

long time, mostly due to insu�cient, decaying error back flow”. It was a solution

for the exploding/vanishing gradients in backpropagtion (S. Hochrieter in 1991)

to modify the weights of the network. This study paved the way for many

interesting projects.

Later on, J. Schmidhuber et al. [16] emphasized about the forget gate in the

LSTM RNNs in another publication. The paper mentioned that “We identify a

weakness of LSTM networks processing continual input streams that are not a

priori segmented into subsequences with explicitly marked ends at which the

network’s internal state could be reset. Without resets, the state may grow

indefinitely and eventually cause the network to break down. Our remedy is a

novel, adaptive “forget gate” that enables an LSTM cell to learn to reset itself at

appropriate times, thus releasing internal resources. We review illustrative

benchmark problems on which standard LSTM outperforms other RNN

algorithms. All algorithms (including LSTM) fail to solve continual versions of

13

these problems. LSTM with forget gates, however, easily solves them, and in an

elegant way.”

However, Felix A. Gers et al. [40] suggest that “LSTM RNNs does not carry

over to certain simpler time series prediction tasks solvable by time window

approaches”. The paper suggests to use LSTM when “simpler traditional

approaches fails”.

LSTM RNNs have been used with strong performance in image recognition

[2], audio visual emotion recognition [3], music composition [41] and other areas.

Regarding time series prediction, for example, LSTM RNNs have been used

for stock market forecasting [42] and forex market forecasting [43]. Also

forecasting wind speeds [39, 44] for wind energy mills, and even predicting

diagnoses for patients based on health records [45].

Hybrid Forecasting Models

After ANNs were widely used for time series predictions, a new hybrid models

were introduced. Hybrid models represented a mixture of machine learning and

standard statistical models. In the literature, di↵erent combination of methods

have been introduced to overcome the limitation of a specific model. The idea

behind these kind of models is to build a model that take advantage of the

strength of di↵erent models to capture di↵erent aspects in the data. One famous

example of hybrid model is the ARIMA and ANNs mixture. ARIMA itself

combines three di↵erent processes including an AR function regressed on past

values of the process, MA function regressed on a purely random process, and it

also deals with the non-stationary linear components. On the other side, the

ANN takes care of the non-linear components of the data [46, 47].

14

Figure 6: Time Series Prediction Summary [8]

Summary

Each of the discussed models have its own importance and strength point(s).

Statistical models have provided good e�ciencies for linear low order systems.

On the other hand, ANNs have shown good performance with non-linear

systems. Hybrid models o↵er the benefits of both previous systems. Figure 6 [8]

shows this summary. A comparison between the standard statistical models and

ANNs is presented in Table 1 [48].

15

Table 1: Summary of advantages and challenges of classical and ANNs based time series

prediction methods [48]

Time
Series
Pre-
diction
Method

Challenges Error

Standard
Statistical
Models

• Can be computationally
e�cient for low order mod-
els.

• Assumes linear, station-
ary processes.

• Convergence guaranteed. • Can be computationally
expensive for higher order
models.

• Minimizes mean square
error by design.

ANNs
• Not model dependent. • Selection of free param-

eters usually calculated em-
pirically.

• Not dependent on linear,
stationary processes.

• Not guaranteed to con-
verge to optimal solution.

• Can be computation-
ally e�cient for feed for-
ward process.

• Can be computation-
ally expensive (training pro-
cess).

• Capable of learning long
term dependencies (LSTM).

• Neural networks have a
“black box” nature. There-
fore, errors within the com-
plex network are di�cult to
target.

• Can detect all possi-
ble, complex nonlinear rela-
tionships between input and
outputs.

16

CHAPTER 3

METHODOLOGY

Experimental Data

The data used consists of 76 di↵erent parameters recorded on the aircraft Flight

Data Recorder (FDR) as well as the vibration parameter. During the data

processing phase of the project, two e↵orts were done to identify the parameters

that most contributed to the engine vibration.

Data Correlation

Primarily, cross-correlation analysis [49] was exercised to find the potential

parameters that highly contribute to vibration. Every parameter from each flight

was cross-correlated to vibration then plotted to pick the highest correlated

parameters. Cross correlation was calculated using the following Equation:

Cross Correlation =
1X

a=�1
x[a] · vib[a] (9)

Highest correlation was determined by calculating the area under the plotted

curve for the normalized data. Top correlated parameters to vibration were:

1. Right InBoard Spoiler

17

2. Right OutBoard Spoiler

3. Left InBoard Spoiler

4. Left OutBoard Spoiler

5. Static Air Temperature

6. Pitch 2

7. Pitch

8. Slat Configuration

9. Main Landing Gear Lock Down Sensore

10. Flap Configuration

A simple neural network was built as shown in Figure 7 to predict vibration

given other parameters within the same second. However, the results were not

good and there was much noise in the predictions. This imposed a question

about the quality of the chosen parameters using this method and, another way

of parameter-selection was sought. The potential cause for such misleading

cross-correlation chosen parameters might be that some flight configuration

parameters like spoilers/slats/flaps positions, pitch angle and main-landing-gear

position do not change but few times during the flight. Consequently, this might

be translated in high correlation with the vibration.

Aerodynamics/Turbo-machinery Parameters’ Selection

A subset of the FDR parameters were chosen based on the likelihood of their

contribution to the vibration based on aerodynamics/turbo-machinery

18

Figure 7: Simple Neural Network

background. Again, the simple neural network with a structure about the same

of the one shown in Figure 7 was applied and this time results were encouraging

enough to take it to the next level of prediction; predicting vibration in future.

Some parameters, such as Inlet Guide Vans Configuration, Fuel Flow, Spoilers

Configuration (this was preliminary considered because of the special position of

the engine mount), High Pressure Valve Configuration and Static Air

Temperature were excluded because it was found that they generated noise more

than positively contributing in the vibration prediction.

The final chosen parameters were:

1. Altitude

2. Angle of Attack

3. Bleed Pressure

4. Turbine Inlet Temperature

19

5. Mach Number

6. Primary Rotor/Shaft Rotation Speed

7. Secondary Rotor/Shaft Rotation Speed

8. Engine Oil pressure

9. Engine Oil Quantity

10. Engine Oil Temperature

11. Aircraft Roll

12. Total Air Temperature

13. Wind Direction

14. Wind Speed

15. Engine Vibration

Methodology

Neural Networks Overview

Three LSTM RNN architectures were designed to predict engine vibration 5

seconds, 10 seconds, and 20 seconds in the future. Each of the 15 selected FDR

parameters is represented by a node in the inputs of the neural network and an

additional node is used for a bais. Each neural network in the three designs

consists of LSTM cells that receive both an initial input and the output of the

previous cell, as inputs. Each cell has three gates to control the flow of

information through the cell and accordingly, the output of the cell. Each cell

20

Figure 8: LSTM cell design

also has a cell-memory which is the core of the LSTM RNN design. The

cell-memory allows the flow of information from the previous states into current

predictions.

The gates that control the flow are shown in Figure 8. They are: i) the input

gate, which controls how much information will flow from the inputs of the cell,

ii) the forget gate, which controls how much information will flow from the

cell-memory, and iii) the output gate, which controls how much information will

flow out of the cell. This design allows the network to learn not only about the

target values, but also about how to tune its controls to reach the target values.

All the utilized architectures have a common LSTM cell design shown in

Figure 8. However, there are two variations of this common design used in the

utilized architectures, shown in Figures 9 and 10, with the di↵erence being the

21

FLOW

Previous

Input

Cell Output

P
re

vi
ou

s

In
pu

t

C
el

l O
ut

pu
t

P
revious

Input

C
ell O

utput

P
revious

Input

C
ell O

utput

Cell
Output

Input
Input Gate
Forget Gate
Output Gate
Cell-MemoryM1

Figure 9: Level 1 LSTM cell design

number of inputs from the previous. Cells that take initial inputs from more

input nodes are denoted by ‘M1’ cells. As input nodes are needed to be reduced

through the neural network, the design of the cell will be di↵erent and it is

denoted by ‘M2’ cells.

LSTM RNN Forward Propagation Equations

The equations used in the forward propagation through the neural network are:

i

t

= Sigmoid(w
i

• x
t

+ u

i

• a
t�1 + bais

i

) (10)

22

FLOW

Cell
Output

Previous
Cell Output

Input

P
re

vi
ou

s
C

el
l O

ut
pu

t

In
pu

t

P
revious

C
ell O

utput

Input

P
revious

C
ell O

utput

Input

M2

Input
Input Gate
Forget Gate
Output Gate
Cell-Memory

Figure 10: Level 2 LSTM cell design

23

f

t

= Sigmoid(w
f

• x
t

+ u

f

• a
t�1 + bais

f

) (11)

o

t

= Sigmoid(w
o

• x
t

+ u

o

• a
t�1 + bais

o

) (12)

g

t

= Sigmoid(w
g

• x
t

+ u

g

• a
t�1 + bais

g

) (13)

c

t

= f

t

• c
t�1 + i

t

• g
t

(14)

a

t

= o

t

• Sigmoid(c
t

) (15)

where (see Figure 8):

i

t

: input-gate output

f

t

: forget-gate output

o

t

: output-gate output

g

t

: input’s sigmoid

c

t

: cell-memory output

24

w

i

: weights associated with input and input-gate

u

i

: weights associated with previous output and input-gate

w

f

: weights associated with input and forget-gate

u

f

: weights associated with previous output and forget-gate

w

o

: weights associated with input and output-gate

u

o

: weights associated with previous output and the output-gate

w

g

: weights associated with the cell input

u

g

: weights associated with previous output and the cell input

and the formula of the sigmoid function is:

Sigmoid(↵) =
1

1 + e

�↵

(16)

LSTM RNN Architectures

The three architectures are as follows, with the dimensions of the weights of these

architectures shown in Table 2 and the total number of weights shown in Table 3:

25

II.III.1 Architecture I

As shown in Figure 11, this architecture takes inputs from ten time series (the

current time instant and the past nine). It feeds the second level of the neural

network with its output. The output of the first level of the neural network is

considered the first hidden layer. The second level of the neural network then

reduces the number of nodes fed to it from 16 nodes (15 input nodes + bais) per

cell to only one node per cell. The output of the second level of the neural

network is considered the second hidden layer. Finally, the out of the second

level of the neural network would be only 10 nodes, a node from each cell. These

nodes are fed to a final neuron in the third level to compute the output of the

whole network.

II.III.2 Architecture II

As shown in Figure 12, this architecture is almost the same as the previous one

except that it does not have the third level. Instead, the output of the second

level is averaged to compute the output of the whole network.

II.III.3 Architecture III

Figure 13 presents a deeper neural network architecture. In this design, the

neural network takes inputs from twenty time series (the current time instant

and the past nineteen). It feeds the second level of the neural network with its

output. Second level does the same procedure as first level giving a chance for

more abstract decision making. The output of the second level of the neural

26

F
ig
u
re

11
:

A
rc
h
it
ec
tu
re

I

27

F
ig
u
re

12
:

A
rc
h
it
ec
tu
re

II

28

Table 2: Architectures Weights-Matrices Dimensions

Architecture I
w

i

u

i

w

f

u

f

w

o

u

o

w

g

u

g

Level 1 16⇥16 16⇥16 16⇥16 16⇥16 16⇥16 16⇥16 16⇥16 16⇥16

Level 2 16⇥1 1⇥1 16⇥1 1⇥1 16⇥1 1⇥1 16⇥1 1⇥1

Level 3 16⇥1

Architecture II
w

i

u

i

w

f

u

f

w

o

u

o

w

g

u

g

Level 1 16⇥16 16⇥16 16⇥16 16⇥16 16⇥16 16⇥16 16⇥16 16⇥16

Level 2 16⇥1 1⇥1 16⇥1 1⇥1 16⇥1 1⇥1 16⇥1 1⇥1

Architecture III
w

i

u

i

w

f

u

f

w

o

u

o

w

g

u

g

Level 1 16⇥16 16⇥16 16⇥16 16⇥16 16⇥16 16⇥16 16⇥16 16⇥16

Level 2 16⇥16 16⇥16 16⇥16 16⇥16 16⇥16 16⇥16 16⇥16 16⇥16

Level 3 16⇥1 1⇥1 16⇥1 1⇥1 16⇥1 1⇥1 16⇥1 1⇥1

Level 4 16⇥1

Table 3: Architectures Weights Matrices’ Total Elements

Architecture I Architecture II Architecture III

21,170 21,160 83,290

network is considered the first hidden layer and the output of the second level is

considered the second hidden layer. The third level of the neural network then

reduces the number of nodes fed to it from 16 nodes (15 input nodes + bais) per

cell to only one node per cell. The output of the third level of the neural network

is considered the third hidden layer. Finally, the output of the third level of the

neural network is twenty nodes, a node from each cell. These nodes are fed to a

final neuron in the fourth level to compute the output of the whole network.

29

F
ig
u
re

13
:

A
rc
h
it
ec
tu
re

II
I

30

Forward Propagation

The following is a general description for the forward propagation path. This

example uses Architecture I as an example but similar steps are taken in the

other architectures with minor changes apparent in their diagrams. With

Figure 11 presenting an overview of the structure of the whole network and

considering Figure 9 as an overview of the structure of the cells in Level 1 and in

Level 2 – the input at each iteration consists of 10 seconds of time series data of

the 15 input parameters and 1 bais (Input in Figure 9) in one vector (x
t

in

Figure 11) and the output of the previous cell (Previous Cell Output in Figure 9)

in another vector (a
t�1 in Figure 11). Each second of time series input is fed to

the corresponding cell (i.e., the first seconds’ 15 parameters and 1 bais are fed to

first cell, the second seconds’ 15 parameters and 1 bais are fed to second cell, ...)

into the cell gate (shown in black color), input gate (shown in green color), forget

gate (shown in blue color) and the output gate (shown in red color). If the gates

(input gate, forget gate and, output gate) are seen as valves that control how

much of the data flow through it, the outputs of these gates (i
t

, f
t

and, o
t

) are

considered as how much these valves are opened or closed.

First, at the cell gate, x
t

is dot multiplied by its weights matrix w

g

and a

t�1 is

dot multiplied by its weights matrix u

g

. The output vectors are summed and an

activation function is applied to it as in Equation 13. The output is called g

t

.

Second, at the input gate, x
t

is dot multiplied by its weights matrix w

i

and

a

t�1 is dot multiplied by its weights matrix u

i

. The output vectors are summed

and an activation function is applied to it as in Equation 10. The output is

called i

t

.

31

Third, at the forget gate, x
t

is dot multiplied by its weights matrix w

f

and

a

t�1 is dot multiplied by its weights matrix u

f

. The output vectors are summed

and an activation function is applied to it as in Equation 11. It controls how

much of the cell memory Figure 11 (saved from previous time step) should pass.

The output is called f

t

.

Fourth, at the output gate, x
t

is dot multiplied by its weights matrix w

o

and

a

t�1 is dot multiplied by its weights matrix u

o

. The output vectors are summed

and an activation function is applied to it as in Equation 12. The output is

called o

t

.

Fifth, the contribution of the cell input Input g
t

and cell memory c

t�1 is

decided in Equation 14 by dot multiplying them by f

t

and i

t

respectively. The

output of this step is the new cell memory c

t

.

Sixth, cell output is also regulated by the output gate (valve). This is done by

applying the sigmoid function to the cell memory c

t

and dot multiplying it by o

t

as shown in Equation 15. The output of this step is the final output of the cell at

the current time step a

t

. a
t

is fed to the next cell in the same level and also fed

to the cell in the above level as an Input a
t

.

The same procedure is applied at Level 2 but with di↵erent weight vectors

and di↵erent dimensions. Weights at Level 2 have smaller dimensions to reduce

their input dementions from vectors with 16 dimensions to vectors with one

dimension. The output from Level 2 a one dimensional vector from each cell of

the 10 cells in Level 2. These vectors are fed as one 10 dimensional vector to a

simple neuron shown in Figure 11 at Level 3 to be dot multiplied by a weight

vector to reduce the vector to a single scalar value: the final output of the

network at the time step.

32

CHAPTER 4

IMPLEMENTATION

Programming Langauge

Python’s Theano Library [50] was used to implement the neural networks. It has

four major advantages: i) it will compile the most, if not all, of functions coded

using it to C and CUDA giving fast performance, ii) it will perform the weights

updates for back propagation with minimal overhead, iii) Theano can compute

the gradients of the error (cost function output) with respect to the weights

saving significant e↵ort and time needed to manually derive the gradients,

coding and debugging them, and finally, iv) it can utilize GPU’s for further

increased performance.

Data Processing

The flight data parameters used were normalized between 0 and 1. The sigmoid

function is used as an activation function over all the gates and inputs/outputs.

The ArcTan activation function was tested on the data, however it gave

distorted results and sigmoid function provided significantly better performance.

33

Table 4: Run Time (hours)

05 sec 10 sec 20 sec

Architecture I 9 8.98 8.85
Architecture II 8.44 8.41 8.4
Architecture III 21.6 19.7 18.5

Machine Specifications

Each of the examined architectures runs on a hyperthreaded 3.5 GHz core and is

considered capable of real-time processing. Results were collected using a Mac

Pro with 12 logical cores, with each di↵erent architecture being trained for 575

epochs. Run times for training are shown in Table 4. Some unexpected variance

might be realized in these run-times, due to CPU interruptions which may have

occurred over the course of the experiments. In general, the first two

architectures took similar amounts of time (approximately 8.5-9 hours) for each

time prediction (5, 10 and 20 seconds), and the third took a bit more than twice

as long, at approximately 20 hours for each time prediction.

Optimizing Matrices for GPU Computations

The neural networks weight matrices for a LSTM cell is repeated at a given time

step at a given layer. Thus, the computational cost would increase if the output

if these gates would be computed separately, one gate at a time, as data

input/output would consume CPU cycles. This case is also obvious if a GPU is

utilized for high performance computing as the cost of sending data forward and

backward between the CPU (host) and GPU (device). For that, the input of a

cell at a given layer is dot multiplied by a matrix that holds all of the gates

weights concatenated one after the other. Then, the outputs; g Equation 13, i

Equation 10, f Equation 11 and, o Equation 12, can be extracted from the dot

34

product output matrix. Equation 17 is an example of combining (concatenating)

the weights matrices for the LSTM cells’ gates of layer one in Architecture I. By

this, all weights are transferred between the CPU and the GPU as one data

structure, which would theoretically boost the performance.

These measures were followed when applied GPU using the Theano library to

manage the GPU threads, blocks and grids as well as the data transfer between

the CPU and GPU. However, the performance was not better compared to the

pure CPU version. For Architecture I as an example, for one iteration through

the network during the learning process, it took the GPU version more than

twenty minutes while it took slightly more than two minutes for the pure CPU

version.

A further e↵ort was made to overcome the data transfer penalty between the

CPU and the GPU. The whole input data set was sent to the GPU as one data

structure to avoid the data transfer through the iterations at every time series in

the data and to perform those iterations on the GPU. Unfortunately, this also

did not help with the performance.

Ultimately, a conclusion was reached that the subject matrices are not large

enough to overcome the data transfer overhead.

35

Table 5: Training Results

Prediction Error
1 seconds 5 seconds 10 seconds 20 seconds

Architecture I 0.000154 0.000398 0.000972 0.001843
Architecture II 0.001239 0.001516 0.001962 0.002870
Architecture III 0.000133 0.000409 0.000979 0.001717

2

66666666666666666666666666666666664

w

g1,1 w

g1,2 w

g1,3 . . . w

g1,16

...
...

...
. . .

...

w

g16,1 w

g16,2 w

g16,3 . . . w

g16,16

w

i1,1 w

i1,2 w

i1,3 . . . w

i1,16

...
...

...
. . .

...

w

i16,1 w

i16,2 w

i16,3 . . . w

i16,16

w

f1,1 w

f1,2 w

f1,3 . . . w

f1,16

...
...

...
. . .

...

w

f16,1 w

f16,2 w

f16,3 . . . w

f16,16

w

o1,1 w

o1,2 w

g1,3 . . . w

o1,16

...
...

...
. . .

...

w

o16,1 w

o16,2 w

o16,3 . . . w

o16,16

3

77777777777777777777777777777777775

K

2

66666666664

x11

x12

x13

...

x16

3

77777777775

=

2

66666666666666666666666666666666664

out

g1

...

out

g16

out

i1

...

out

i16

out

f1

...

out

f16

out

o1

...

out

o16

3

77777777777777777777777777777777775

(17)

Training Results

Training process results are shown in Table 5. These results are directly

proportional to the testing results as will be shown in the results chapter. The

errors shown are mean squared error.

36

CHAPTER 5

RESULTS

The neural networks were run against flights that su↵ered from the excessive

vibration in a training phase. They were then run against di↵erent set of flights,

which also su↵ered from the same problem, in a testing phase. There were 28

flights in the training set, with a total of 41,431 seconds of data. There were 29

flights in the testing set, with a total of 38,126 seconds of data. The networks

were allowed to train for 575 epochs to learn and for the cost function output

curve to flatten.

Cost Function

Mean squared error was used to train the neural networks as it provides a

smoother optimization surface for backpropagation. The cost function output for

predicting 1 sec, 5 sec, 10 sec and, 20 sec can be seen in Figures 14, 15, 16 and,

17 respectively. The Figure is a logarithmic plot for the three architectures, for

predicting vibrations 10 seconds in the future.

Architecture Results

Mean Squared Error (MSE) (shown in Equation 18) was used as an error

measure to train the three architectures, which resulted in values shown in

37

(a) ART I Cost Plot @ 1 SEC

(b) ART II Cost Plot @ 1 SEC

(c) ART III Cost Plot @ 1 SEC

Figure 14: Cost function plot for the three architectures predicting vibration in 1
future sec.

38

(a) ART I Cost Plot @ 5 SEC

(b) ART II Cost Plot @ 5 SEC

(c) ART III Cost Plot @ 5 SEC

Figure 15: Cost function plot for the three architectures predicting vibration in 5
future sec.

39

(a) ART I Cost Plot @ 10 SEC

(b) ART II Cost Plot @ 10 SEC

(c) ART III Cost Plot @ 10 SEC

Figure 16: Cost function plot for the three architectures predicting vibration in
10 future sec.

40

(a) ART I Cost Plot @ 20 SEC

(b) ART II Cost Plot @ 20 SEC

(c) ART III Cost Plot @ 20 SEC

Figure 17: Cost function plot for the three architectures predicting vibration in
20 future sec.

41

Table 6: Testing Process Mean Squared Error

Prediction Error
1 seconds 5 seconds 10 seconds 20 seconds

Architecture I 0.000792 0.001165 0.002926 0.010427
Architecture II 0.010311 0.009708 0.009056 0.012560
Architecture III 0.000838 0.002386 0.004780 0.041417

Table 7: Testing Process Mean Absolute Error

Prediction Error
1 seconds 5 seconds 10 seconds 20 seconds

Architecture I 0.028407 0.033048 0.055124 0.101991
Architecture II 0.098357 0.097588 0.096054 0.112320
Architecture III 0.027621 0.048056 0.070360 0.202609

Table 6. Mean Absolute Error (MAE) (shown in Equation 19) is used as a final

measure of accuracy for the three architectures, with results shown in Table 7.

As the parameters were normalized between 0 and 1, the MAE is also the

percentage error.

Error =
0.5⇥

P
(Actual V ib� Predicted V ib)2

Testing Seconds

(18)

Error =

P
[ABS(Actual V ib� Predicted V ib)]

Testing Seconds

(19)

Figures 20, Figures 21, and Figures 22 present the predictions for all the test

flights condensed on the same plot. Time shown on the x-axis is the total time

for all the test flights. Each flight ends when the vibration reaches the max

critical value (normalized to 1) and then the next flight in the test set beings.

Figure 19 provides an uncompressed example of Architecture I predicting

vibration 5, 10 and, 20 seconds in the future over a single flight from the testing

data.

42

(a) ART I predicting vibration 5 seconds in the future for one flight.

(b) ART I predicting vibration 10 seconds in the future for one flight.

(c) ART I predicting vibration 20 seconds in the future for one flight.

Figure 18: Architecture I predicting vibration for one flight.

43

(a) ART III predicting vibration 5 seconds in the future for one flight.

(b) ART III predicting vibration 10 seconds in the future for one flight.

(c) ART III predicting vibration 20 seconds in the future for one flight.

Figure 19: Architecture III predicting vibration for one flight.

44

(a) ART I Results Plot @ 05 SEC

(b) ART I Results Plot @ 10 SEC

(c) ART I Results Plot @ 20 SEC

Figure 20: Plotted results for Architecture I for the for the three scenarios.

45

(a) ART II Results Plot @ 05 SEC

(b) ART II Results Plot @ 10 SEC

(c) ART II Results Plot @ 20 SEC

Figure 21: Plotted results for Architecture II for the for the three scenarios.

46

(a) ART III Results Plot @ 05 SEC

(b) ART III Results Plot @ 10 SEC

(c) ART III Results Plot @ 20 SEC

Figure 22: Plotted results for Architecture III for the for the three scenarios.

47

Results of Architecture I

The results of this architecture, shown in Table 6, came out to be the best

results regarding the overall accuracy of the vibration prediction. While there is

more misalignment between the actual and calculated vibration values as

predictions are made further in the future, as shown in Figure 20, this is to be

expected. Also, it can be seen that the prediction of higher peaks is more

accurate than the lower peaks prediction as if the neural network is tending to

learn more about the max critical vibration value, which is favorable for this

project. To test this further, this architecture was trained and tested on the

same data set but for predicting vibration just one second in future. As

expected, the results showed improvement in mean absolute error over all the

test flights by about 0.5% compared to the results of the same architecture

predicting five seconds in the future. A plot of the test data prediction for this

experiment is shown in Figure 23a. Also, for comparison, a plot for the same

flights plotted in Figure 19 is shown in Figure 24a.

Results of Architecture II

The results of this architecture in Table 6 came out to be the least successful in

vibration prediction. While it managed to predict much of the vibration, its

performance was weak at the peaks (either low or high) compared to the other

architectures, as shown in Figure 21. It is also worth mentioning that somehow

the lower peaks were better at some positions on the curve of this architecture,

compared to to the other architectures.

48

(a) Architecture I predicting vibration 1 second in the future.

(b) Architecture II predicting vibration 1 second in the future.

(c) Architecture III predicting vibration 1 second in the future.

Figure 23: Plotted results for the three architectures predicting one second in the
future.

49

(a) Architecture I predicting vibration 1 seconds in the future for one flight.

(b) Architecture III predicting vibration 1 second in the future for one flight.

Figure 24: Plotted results for Architecture I & III predicting one second in the
future.

50

Results of Architecture III

Although it was the most computationally expensive and had a chance for

deeper learning, its results were not as good as expected, as shown in Figure 22.

The results of this architecture in Table 6 show that the prediction accuracy for

this architecture was less than the more simple Architecture I. As this came

counter to the predictions for deeper learning, this opens door for investigating

about the deeper learning for this problem; this LSTM RNN was one layer

deeper and also had 20 seconds memory from the past which was not available

for the other two LSTM RNNs used. It is also realized that the overall error in

Table 6 for the prediction at 20 future seconds came relatively high. Looking at

Figure 22c between time 10,000-15,0000, 20,000-25,000 and 35,000-40,000, it can

be seen that the calculated curve got very much higher than the actual vibration

curve. This strange behaviour is unique as it can be seen that the calculated

vibration would rarely exceed the actual vibration for all the curves plotted for

all the architectures at all scenarios, and it would be for relatively small value if

occurred. Ideally, This network could potentially gain further improvement if

trained for more epochs over the other simpler architectures since it is deeper.

This was tried, giving the neural network about double the number of training

epochs. However, a significant improvement in the prediction was not achieved.

Nonetheless, it was realized that the plots of the cost function of this

architecture was not smooth while trained to predict for 20 seconds in the future.

This is thought of as a result of under-training. Initially, the training epochs

were fixed at 575 for all the architecture as a standard for performance

comparison. Further, the performance of this architecture (the mean absolute

error) was slightly better than the other architectures when predicting for 1

second in the future. This result supports the believe that this architecture can

perform better if given the chance to train for more epochs.

51

CHAPTER 6

CONCLUSION

This paper presents early work for utilizing long short term memory (LSTM)

recurrent neural networks (RNNs) of di↵erent types to predict engine vibrations

and other critical aviation parameters. The results obtained from this study are

very encouraging, given the accuracy of the predictions rather far in the future –

2.84% error for 1 second predictions, 3.3% error for 5 seconds predictions, 5.51%

error for 10 seconds predictions, and 10.19% error for 20 seconds predictions.

This work opens up many avenues for future work, such as fine tuning the neural

network designs and their hyper parameters, changing the design of the layers

and/or combine di↵erent types of RNNs to further refine the results. Selecting

flight parameters also had a great influence on the results. This work could be

extended by further investigating the flight parameters and their contributions to

the prediction process. This could be achieved by either statistical means or

going deeper in the analytical and empirical theories and equations to provide a

deeper understanding of the relations between parameters, and thus, more

precise future predictions.

Overall, this work provides promising initial work in engine vibration

prediction that could be integrated into future warning systems so that pilots

can act to prevent excessive vibration events before unfavorable situations

happen during flight. Nonetheless, with the availability of an appropriate data

set, this work can be slightly modified to train the neural network to learn about

engine abnormalities and predict problems before aircraft actually take o↵.

52

CHAPTER 7

FUTURE WORK

The use of genetic algorithms is considered as an extension for the work done

in this paper to optimize the neural network. Ant Colony Optimization (ACO)

will be used to let the LSTM neural network evolve to an optimized structure.

Good results obtained from the work done on optimizing RNNs using ACO by

T. Desell et al. [22] provide a good motive to try the concept on LSTM RNNs.

Though LSTM RNNs might be more complicated structure wise, the concept

should remain the same. This initial work concentrated primarily on the basic

structure of the LSTM RNN’s cell i.e. M1, M2 shown in Figures 9 and 10 for

Architecture I. It would be interesting if a better prediction was achieved after

optimizing the research’s best architecture.

On the other hand, Architecture III, which has a deeper structure than the

others, should be a good candidate for ACO. Although it had the worst

prediction in this work susceptibly due to insu�cient training iteration, ACO

can optimize the connections between the nodes so we take advantage of the

deeper learning capability of this architecture in even reasonable number of

iterations. Ultimately, ACO can be used on yet deeper architectures to explore

deep learning further.

Since the use of GPU did not work for this problem because of the size of the

matrices, MPI can be used to run the ACO’s ants-picked-neural-networks in

parallel to reduce the run-time of the optimization’s iterations.

53

CHAPTER A

ARCHITECTURE I BACK PROPAGATION

LEVEL1:

i1
t

= Sigmoid(W
i

� x

t

+ U

i

� a

t�1) (20)

f1
t

= Sigmoid(W
f

� x

t

+ U

f

� a

t�1) (21)

o1
t

= Sigmoid(W
o

� x

t

+ U

o

� a

t�1) (22)

g1
t

= Sigmoid(W
g

� x

t

+ U

g

� a

t�1) (23)

m1
t

= f

t

�m1
t�1 + i1

t

� g1
t

) Sigmoid(m1
t

) = mo1
t

(24)

a

t

= o1
t

�mo1
t

(25)

54

LEVEL2:

i2
t

= Sigmoid(T
i

� a

t

+ V

i

� b

t�1) (26)

f2
t

= Sigmoid(T
f

� a

t

+ V

f

� b

t�1) (27)

o2
t

= Sigmoid(T
o

� a

t

+ V

o

� b

t�1) (28)

g2
t

= Sigmoid(T
g

� a

t

+ V

g

� b

t�1) (29)

m2
t

= f

t

�m2
t�1 + i1

t

� g2
t

) Sigmoid(m2
t

) = mo2
t

(30)

b

t

= o2
t

�mo2
t

(31)

LEVEL3:

i3
T

= Sigmoid(Y
i

� b

T

+ Z

i

� c

T�1) (32)

55

f3
T

= Sigmoid(Y
f

� b

T

+ Z

f

� c

T�1) (33)

o3
T

= Sigmoid(Y
o

� b

T

+ Z

o

� c

T�1) (34)

g3
T

= Sigmoid(Y
g

� b

T

+ Z

g

� c

T�1) (35)

m3
T

= f

t

�m3
T�1 + i1

t

� g3
T

) Sigmoid(m3
T

) = mo3
T

(36)

c

t

= o3
T

�mo3
T

(37)

E =
1

2
(Target� c)2 (38)

�1 =
@E

@d

= �(Target� c) (39)

@E

@Y

o

=
@E

@c

· @c

@o3
net

· @o3out
@o3

net

· @o3net

@Y

o

= �1 ·mo3 · (1� o3)o3 · bT
(40)

56

@E

@Z

o

=
@E

@c

· @c

@o3
net

· @o3out
@o3

net

· @o3net

@Z

o

= �1 ·mo3 · (1� o3)o3 · cT�1

(41)

@E

@Y

f

=
@E

@c

· @c

@mo3
· @mo3

out

@mo3
net

· @mo3
n

et

@f3
· @f3out
@f3

net

· @f3net

@Y

f

= �1 · o3 · (1�mo3)mo3 ·m3 · (1� f3)f3 · bT
(42)

@E

@Z

f

=
@E

@c

· @c

@mo3
· @mo3

out

@mo3
net

· @mo3
net

@f3
· @f3out
@f3

net

· @f3net

@Z

f

= �1 · o3 · (1�mo3)mo3 ·m3 · (1� f3)f3 · cT�1

(43)

@E

@Y

i

=
@E

@c

· @c

@mo3
· @mo3

out

@mo3
net

· @mo3
net

@i3
· @i3out
@i3

net

· @i3net

@Y

i

= �1 · o3 · (1�mo3)mo3 · g3 · (1� i3)i3 · bT
(44)

@E

@Z

i

=
@E

@c

· @c

@mo3
· @mo3

out

@mo3
net

· @mo3
net

@i3
· @i3out
@i3

net

· @i3net

@Z

i

= �1 · o3 · (1�mo3)mo3 · g3 · (1� i3)i3 · cT�1

(45)

@E

@Y

i

=
@E

@c

· @c

@mo3
· @mo3

out

@mo3
net

· @mo3
net

@g3
· @g3out
@g3

net

· @g3net

@Y

g

= �1 · o3 · (1�mo3)mo3 · i3 · (1� g3)g3 · bT
(46)

57

@E

@Z

i

=
@E

@c

· @c

@mo3
· @mo3

out

@mo3
net

· @mo3
net

@i3
· @i3out
@i3

net

· @i3net

@Z

i

= �1 · o3 · (1�mo3)mo3 · i3 · (1� g3)g3 · cT�1

(47)

@E

@T

o

=
@E

@c

· @c

@b

T

· @bT
@T

o

(48)

@c

@b

T

=
@o3

@b

T

·mo3 + o3 ·
@mo3

@b

T

(49)

@o3

@b

T

=
@o3

out

@o3
net

· @o3net

@b

T

(50)

@mo3

@b

T

=
@mo3

out

@mo3
net

· @mo3
net

@b

T

(51)

@o3

@b

T

= (1� o3)o3 · Yo

(52)

@mo3

@b

T

= (1�mo3)mo3 ·
@mo3

net

@b

T

(53)

@mo3

@b

T

=
@f3

@b

T

�m3
T�1 +

h
@i3

@b

T

� g3 + i3 �
@g3

@b

T

i
(54)

58

@f3

@b

T

=
@f3

out

@f3
net

· @f3net

@b

T

= (1� f3)f3 · Yf

(55)

@i3

@b

T

=
@i3

out

@i3
net

· @i3net

@b

T

= (1� i3)i3 · Yi

(56)

@g3

@b

T

=
@g3

out

@g3
net

· @g3net

@b

T

= (1� g3)g3 · Yg

(57)

@c

@b

T

= (1� o3)o3 · Yo

·mo3 + o3 · (1�mo3)mo3·

[(1� f3)f3 · Yf

� c3
T�1

+(1� i3)i3 · Yi

� g3

+i3 � (1� g3) · g3 · Yg

]

(58)

Similarly get the following:

@E

@T

i

=
@E

@c

· @c

@b

T

· @bT
@T

i

(59)

@E

@T

f

=
@E

@c

· @c

@b

T

· @bT
@T

f

(60)

59

@E

@T

g

=
@E

@c

· @c

@b

T

· @bT
@T

g

(61)

@E

@V

o

=
@E

@c

· @c

@b

T

· @bT
@V

o

(62)

@E

@V

i

=
@E

@c

· @c

@b

T

· @bT
@V

i

(63)

@E

@V

f

=
@E

@c

· @c

@b

T

· @bT
@V

f

(64)

@E

@V

g

=
@E

@c

· @c

@b

T

· @bT
@V

g

(65)

@b

@T

o

=
tX

k=0

⇣ tY

j=k+1

@b

j

@b

j�1

⌘
· @bk
@T

o

(66)

@b

@b

↵�1
=

@o2
↵

@b

↵�1
·mo2

↵

+ o2
↵

· (1�mo2)mo2 ·
@mo2

@b

↵�1
(67)

@o2
↵

@b

↵�1
= (1� o2

↵

)o2
↵

· V
o

(68)

@mo2

@b

↵�1
=

@f2
↵

@b

↵�1
·m2

T�1 +
@i2

↵

@b

↵�1
� g2

↵

+ i2
↵

� @g2
↵

@b

↵�1
(69)

60

@i2
↵

@b

↵�1
= (1� i2

↵

)i2
↵

· V
i

(70)

@f2
↵

@f

↵�1
= (1� f2

↵

)f2
↵

· V
f

(71)

@g2
↵

@b

↵�1
= (1� g2

↵

)g2
↵

· V
g

(72)

@b

↵

@b

↵�1
= (1� o2

↵

)o2
↵

· V
o

·mo2
↵

+ o2
↵

· (1�mo2
↵

)mo2
↵

·

[(1� f2
↵

)f2
↵

· Y
f

� c2
↵

T�1

+(1� i2
↵

)i2
↵

· Y
i

� g2
↵

+i2
↵

� (1� g2
↵

) · g2
↵

· Y
g

]

(73)

@b

�

@T

o

=
@b

�

@o2
�

·
@o2

�

out

@o2
�

net

·
@o2

�

net

@T

o

(74)

@b

�

@T

o

= mo2
�

· (1� o2
�

)o2
�

· a
�

(75)

boxed

@b

�

@V

o

= mo2
�

· (1� o2
�

)o2
�

· b
��1 (76)

@b

�

@T

f

= o2
�

· (1�mo2
�

)mo2
�

·m2
�

· (1� f2
�

)f2
�

· a
�

(77)

61

@b

�

@V

f

= o2
�

· (1�mo2
�

)mo2
�

·m2
�

· (1� f2
�

)f2
�

· b
��1 (78)

@b

�

@T

i

= o2
�

· (1�mo2
�

)mo2
�

· g2
�

· (1� i2
�

)i2
�

· a
�

(79)

@b

�

@V

i

= o2
�

· (1�mo2
�

)mo2
�

· g2
�

· (1� i2
�

)i2
�

· b
��1 (80)

@b

�

@T

g

= o2
�

· (1�mo2
�

)mo2
�

· i2
�

· (1� g2
�

)g2
�

· a
�

(81)

@b

�

@V

g

= o2
�

· (1�mo2
�

)mo2
�

· i2
�

· (1� g2
�

)g2
�

· b
��1 (82)

@E

@W

o

=
@E

@c

· @c

@b

T

· @bT
@a

t

· @a

t

@W

o

(83)

@b

@a

�

= (1� o2
�

)o2
�

· T
o

·mo2
�

+mo2
�

· (1� o2
�

)o2
�

·

[(1� f2
�

)f2
�

· T
f

� c2
�

T�1

+(1� i2
�

)i2
�

· T
i

� g2
�

+i2
�

� (1� g2
�

) · g2
�

· T
g

]

(84)

@a

@W

o

=
tX

k=0

⇣ tY

j=k+1

@a

j

@b

j�1

⌘
· @a

k

@W

o

(85)

62

@a

@a

↵�1
= (1� o1

↵

)o2
↵

· U
o

·mo1
↵

+mo1
↵

· (1� o1
↵

)o1
↵

·

[(1� f1
↵

)f1
↵

· U
f

� c1
↵

T�1

+(1� i1
↵

)i1
↵

· U
i

� g1
↵

+i1
↵

� (1� g1
↵

) · g1
↵

· U
g

]

(86)

@a

�

@W

o

= mo1
�

· (1� o1
�

)o1
�

· x
�

(87)

@a

�

@U

o

= mo1
�

· (1� o1
�

)o1
�

· a
��1 (88)

@a

�

@W

f

= o1
�

· (1�mo1
�

)mo1
�

·m1
�

· (1� f1
�

)f1
�

· x
�

(89)

@a

�

@U

f

= o1
�

· (1�mo1
�

)mo1
�

·m1
�

· (1� f1
�

)f1
�

· a
��1 (90)

@a

�

@W

i

= o1
�

· (1�mo1
�

)mo1
�

· g1
�

· (1� i1
�

)i1
�

· x
�

(91)

@a

�

@U

i

= o1
�

· (1�mo1
�

)mo1
�

· g1
�

· (1� i1
�

)i1
�

· a
��1 (92)

@a

�

@W

g

= o1
�

· (1�mo1
�

)mo1
�

· i1
�

· (1� g1
�

)g1
�

· x
�

(93)

63

@a

�

@U

g

= o1
�

· (1�mo1
�

)mo1
�

· i1
�

· (1� g1
�

)g1
�

· a
��1 (94)

where (see Figure 8):

t: previous second

T : previous iteration

i: input-gate output

f : forget-gate output

o: output-gate output

g: input’s sigmoid

m: cell-memory output

w

i

: weights associated with input and input-gate

u

i

: weights associated with previous output and input-gate

w

f

: weights associated with input and forget-gate

u

f

: weights associated with previous output and forget-gate

64

w

o

: weights associated with input and output-gate

u

o

: weights associated with previous output and the output-gate

w

g

: weights associated with the cell input

u

g

: weights associated with previous output and the cell input

65

BIBLIOGRAPHY

[1] A. V. Srinivasan, “FLUTTER AND RESONANT VIBRATION

CHARACTERISTICS OF ENGINE BLADES,” 1997. [Online]. Available:

http://www.energy.kth.se/ compedu/webcompedu/WebHelp

[2] Donahue, Je↵rey and Anne Hendricks, Lisa and Guadarrama, Sergio and

Rohrbach, Marcus and Venugopalan, Subhashini and Saenko, Kate and

Darrell, Trevor, “Long-term recurrent convolutional networks for visual

recognition and description,” June 2015.

[3] Linlin Chao et al, “Audio visual emotion recognition with temporal

alignment and perception attention,” Mar 2016.

[4] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with

neural networks,” in Advances in neural information processing systems,

2014, pp. 3104–3112.

[5] A. Nairac, N. Townsend, R. Carr, S. King, P. Cowley, and L. Tarassenko,

“A system for the analysis of jet engine vibration data,” Integrated

Computer-Aided Engineering, vol. 6, no. 1, pp. 53–66, 1999.

[6] D. A. Clifton, P. R. Bannister, and L. Tarassenko, “A framework for

novelty detection in jet engine vibration data,” in Key engineering

materials, vol. 347. Trans Tech Publ, 2007, pp. 305–310.

[7] C. Chatfield, The analysis of time series: an introduction. CRC press,

2016.

66

http://www.energy.kth.se/compedu/webcompedu/WebHelp

[8] N. A. Boukary, “A comparison of time series forecasting learning

algorithms on the task of predicting event timing,” Ph.D. dissertation, Royal

Military College of Canada, 2016.

[9] P. GE, “Box., and g. m, jenkins.,“time series analysis, forecasting and

control”,” ed: San Francisco, CA: Holden Day, 1970.

[10] X. Zhang, Y. Liu, M. Yang, T. Zhang, A. A. Young, and X. Li,

“Comparative study of four time series methods in forecasting typhoid fever

incidence in china,” PloS one, vol. 8, no. 5, p. e63116, 2013.

[11] I. Moghram and S. Rahman, “Analysis and evaluation of five short-term

load forecasting techniques,” IEEE Transactions on power systems, vol. 4,

no. 4, pp. 1484–1491, 1989.

[12] D. Leverington, “A basic introduction to feedforward backpropagation neural

networks,” Neural Network Basics, 2012.

[13] M. Nielsen, “Neural networks and deep learning.” [Online]. Available:

http:// neuralnetworksanddeeplearning.com

[14] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward

networks are universal approximators,” Neural networks, vol. 2, no. 5, pp.

359–366, 1989.

[15] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural

computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[16] Felix A. Gers, Jürgen Schmidhuber, and Fred Cummins, “Learning to

Forget: Continual Prediction with LSTM,” October 2000.

[17] H. Jaeger, “Echo state network,” Scholarpedia, vol. 2, no. 9, p. 2330, 2007.

[18] D. S. Broomhead and D. Lowe, “Radial basis functions, multi-variable

functional interpolation and adaptive networks,” DTIC Document, Tech.

Rep., 1988.

67

http://neuralnetworksanddeeplearning.com

[19] V. N. Ghate and S. V. Dudul, “Cascade neural-network-based fault classifier

for three-phase induction motor,” IEEE Transactions on Industrial

Electronics, vol. 58, no. 5, pp. 1555–1563, 2011.

[20] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm for

optimal margin classifiers,” in Proceedings of the fifth annual workshop on

Computational learning theory. ACM, 1992, pp. 144–152.

[21] F. A. Gers, N. N. Schraudolph, and J. Schmidhuber, “Learning precise

timing with lstm recurrent networks,” Journal of machine learning research,

vol. 3, no. Aug, pp. 115–143, 2002.

[22] Travis Desell, Sophine Clachar, James Higgins, and Brandon Wild,

“Evolving Deep Recurrent Neural Networks Using Ant Colony

Optimization,” 2015.

[23] ——, “Evolving Neural Network Weights for Time-Series Prediction of

General Aviation Flight Data,” 2014.

[24] C. Blum and X. Li., “Swarm intelligence in optimization,” 2008.

[25] M.DorigoandM.Birattari., “Antcolonyoptimization.In Encyclopedia of

Machine Learning,” p. 36–39, 2010.

[26] M.DorigoandT.Stützle, “Ant colony optimization: overview and recent

advances. In Hand book of metaheuristics,” p. 227–263, 2010.

[27] M. Dorigo and L. M. Gambardella, “Ant colonies for the travelling sales

man problem,” 1997.

[28] K. Socha, “Aco for continuous and mixed-variable optimization. in ant

colony optimization and swarm intelligence,” Future Generation Computer

Systems, pp. 25—-36, 2004.

[29] K. Sochaand & M. Dorigo, “Bottom hole pressure estimation using evolved

neural networks by real coded ant colony optimization and genetic

68

algorithm,” Journal of Petroleum Science and Engineering, 77(3):375–385,

2011.

[30] K. Socha, “Ant colony optimisation for continuous and mixed-variable

domains,” 2009.

[31] G. Bilchev and I. C. Parmee, “The ant colony metaphor for searching

continuous design spaces. In Evolutionary Computing,” pp. 25—-39, 1995.

[32] N. Monmarché and G. Venturini and M. Slimane, “On how pachycondyla

apicalis ants suggest a new search algorithm,” Future Generation Computer

Systems, vol. 16, pp. 937–946, 2000.

[33] J. Dréo and P. Siarry, “A new ant colony algorithm using the heterarchical

concept aimed at optimization of multiminima continuous functions,” in

International Workshop on Ant Algorithms. Springer, 2002, pp. 216–221.

[34] R. Ashena and J. Moghadasi, “Ant colony optimization for continuous

domains,” European journal of operational research, 185(3):1155–1173,

2008.

[35] C. Blum and K. Socha, “Training feed-forward neural networks with ant

colony optimization: An application to pattern classification,” in Fifth

International Conference on Hybrid Intelligent Systems (HIS’05). IEEE,

2005, pp. 6–pp.

[36] J.-B. Li and Y.-K. Chung, “A novel back-propagation neural network

training algorithm designed by an ant colony optimization,” 2005.

[37] M. Unal, M. Onat, and A. Bal, “Cellular neural network training by ant

colony optimization algorithm,” 2010.

[38] R. K. Sivagaminathan and S. Ramakrishnan, “A hybrid approach for feature

subset selection using neural networks and ant colony optimization,” 2007.

69

[39]

[40] F. A. Gers, D. Eck, and J. Schmidhuber, Applying LSTM to Time Series

Predictable through Time-Window Approaches. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2001, pp. 669–676. [Online]. Available:

http:// dx.doi.org/ 10.1007/ 3-540-44668-0 93

[41] D. Eck and J. Schmidhuber, “A first look at music composition using lstm

recurrent neural networks,” Istituto Dalle Molle Di Studi Sull Intelligenza

Artificiale, vol. 103, 2002.

[42] L. Di Persio and O. Honchar, “Artificial neural networks approach to the

forecast of stock market price movements.”

[43] N. Maknickienė and A. Maknickas, “Application of neural network for

forecasting of exchange rates and forex trading,” in The 7th international

scientific conference” Business and Management, 2012, pp. 10–11.

[44] M. Felder, A. Kaifel, and A. Graves, “Wind power prediction using mixture

density recurrent neural networks,” in Poster Presentation gehalten auf der

European Wind Energy Conference, 2010.

[45] E. Choi, M. T. Bahadori, and J. Sun, “Doctor ai: Predicting clinical events

via recurrent neural networks,” arXiv preprint arXiv:1511.05942, 2015.

[46] G. P. Zhang, “Time series forecasting using a hybrid arima and neural

network model,” Neurocomputing, vol. 50, pp. 159–175, 2003.

[47] J. ürgen Schmidhuber, D. Wierstra, and F. Gomez, “Evolino: Hybrid

neuroevolution/optimal linear search for sequence learning.”

[48] N. I. Sapankevych and R. Sankar, “Time series prediction using support

vector machines: a survey,” IEEE Computational Intelligence Magazine,

vol. 4, no. 2, pp. 24–38, 2009.

70

http://dx.doi.org/10.1007/3-540-44668-0_93

[49] J. P. Lewis, “Fast Normalized Cross-Correlation,” 1995.

[50] Theano Development Team, “Theano: A Python framework for fast

computation of mathematical expressions,” arXiv e-prints, vol.

abs/1605.02688, May 2016. [Online]. Available:

http:// arxiv.org/ abs/ 1605.02688

71

http://arxiv.org/abs/1605.02688

	List of Figures
	List of Tables
	Acknowledgements
	Abstract
	Notations
	1 Introduction
	2 Related Work
	I Aircraft Engine Vibration
	II Time Series Prediction
	II.I Statistical Prediction Models
	II.I.1 Autoregressive (AR) Model
	II.I.2 Moving Average (MA) Model
	II.I.3 ARMA (Autoregressive Moving Average) Model
	II.I.4 ARIMA (Autoregressive Integrated Moving Average) Model
	II.I.5 SARIMA (Seasonal ARIMA) Model

	II.II Artificial Neural Network (ANN) Prediction Models
	II.II.1 RNN for Predicting Flight Parameters
	II.II.2 LSTM RNN

	II.III Hybrid Forecasting Models
	II.IV Summary

	3 Methodology
	I Experimental Data
	I.I Data Correlation
	I.II Aerodynamics/Turbo-machinery Parameters' Selection

	II Methodology
	II.I Neural Networks Overview
	II.II LSTM RNN Forward Propagation Equations
	II.III LSTM RNN Architectures
	II.III.1 Architecture I
	II.III.2 Architecture II
	II.III.3 Architecture III

	II.IV Forward Propagation

	4 Implementation
	I Programming Langauge
	II Data Processing
	III Machine Specifications
	III.I Optimizing Matrices for GPU Computations

	IV Training Results

	5 Results
	I Cost Function
	II Architecture Results
	II.I Results of Architecture I
	II.II Results of Architecture II
	II.III Results of Architecture III

	6 Conclusion
	7 Future Work
	A Architecture I Back Propagation
	Bibliography

