
Using LSTM Recurrent Neural Networks to Predict
Excess Vibration Events in Aircraft Engines

AbdElRahman ElSaid∗, Brandon Wild†, James Higgins†, Travis Desell∗
Department of Computer Science∗

Department of Aviation†

University of North Dakota
Grand Forks, North Dakota 58202

Email: abdelrahman.elsaid@und.edu, bwild@aero.und.edu, jhiggins@aero.und.edu, tdesell@cs.und.edu

Abstract—This paper examines building viable Recurrent Neu-
ral Networks (RNN) using Long Short Term Memory (LSTM)
neurons to predict aircraft engine vibrations. The model is
trained on a large database of flight data records obtained
from an airline containing flights that suffered from excessive
vibration. RNNs can provide a more generalizable and robust
method for prediction over analytical calculations of engine
vibration, as analytical calculations must be solved iteratively
based on specific empirical engine parameters, and this database
contains multiple types of engines. Further, LSTM RNNs provide
a “memory” of the contribution of previous time series data
which can further improve predictions of future vibration values.
LSTM RNNs were used over traditional RNNs, as those suffer
from vanishing/exploding gradients when trained with back
propagation. The study managed to predict vibration values for
5, 10 and 20 seconds in the future, with 3.3%, 5.51% and 10.19%
mean absolute error, respectively. These neural networks provide
a promising means for the future development of warning systems
so that suitable actions can be taken before the occurrence of
excess vibration to avoid unfavorable situations during flight.

I. INTRODUCTION

Aircraft Engine vibration is a critical aspect of the aviation
industry, and accurate predictions of excessive engine vibration
have the potential to save time, effort, money as well as human
lives in the aviation industry. An aircraft engine, as turbo-
machinery, should normally vibrate as it has many dynamic
parts. However, it is not supposed to exceed resonance limits
so not to destroy the Engine [1].

Reference [1] is discussing vibrations generated from en-
gine baldes’ fluttering. Engine blades are the engine rotating
components that have the largest dimensions among other
components. While their rotation at high speeds, they will
withstand high centrifugal forces that would logically give the
highest contribution to engine vibrations.

Engine vibrations are not that simple to calculate or predict
analytically because of the fact that various parameters con-
tribute to their occurrence. This fact is always a problem for
aviation performance monitors, especially that engines vary in
design, size, operation conditions, service life span, the aircraft
they are mounted on, and many other parameters. Most of
these parameters’ contributions can be translated in some key
parameters measured and recorded on the flight data recorder.
Nonetheless, vibrations are likely to be a result of a mixture

of these contributions, making it very hard to predict the real
cause behind the excess in vibrations.

This paper presents a means to make these predictions
viable in the aviation industry within a reasonable time
window. The problem is approached using LSTM RNNs,
which have seen widespread recent use with strong results in
image [2], speech [3] and, language prediction [4]. LTSM
RNNs were chosen for this work in particular due to their
generalizability and predictive power due to having a memory
for the contribution of the previous time series data to predict
the future values of vibration. This study provides another
dimension for the use of this promising type of recurrent neural
network.

II. RELATED WORK

A. Aircraft Engine Vibration

According to Reference [1]: “The most common types
of vibration problems that concern the designer of jet en-
gines include (a) resonant vibration occurring at an in-
tegral order, i.e. multiple of rotation speed, and (b) flut-
ter, an aeroelastic instability occurring generally as a non-
integral order vibration, having the potential to escalate,
unless checked by any means available to the operator, into
larger and larger stresses resulting in serious damage to the
machine. The associated failures of engine blades are referred
to as high cycle fatigue failures”. The means available to
the operator in practical aviation operations are mainly: i)
maintenance engine checks scheduled in maintenance pro-
grams based on engine reliability observations, and ii) engine
vibration monitoring for forecasting the excess vibration oc-
currence based on statistical and analytical methods which
consider empirical factors of safety. Some effort had been
done using neural networks to classify engine abnormalities
without doing analytical computation, e.g., Alexandre Nairac
et al. [5] worked on this aspect to detect abnormalities in
engine vibrations based on recorded data.

David A. Clifton et al [6] presented work for predicting
abnormalities in engine vibration based on statistical analysis
of vibration signatures. The paper presents two modes of
prediction. One is ground-based (off-line), where prediction
is done by run-by-run analysis to predict abnormalities based
on previous engine runs. The success in this approach was



predicting abnormalities two runs ahead. The other mode is an
flight based-mode (online) in which detection is done either
by sending reduced data to the ground-base or onboard the
aircraft. The paper mentions that they had future 2.5 hours
successful prediction. However, this prediction is done after
half an hour of flight data collection, which might be a critical
time as well, as excess vibration may occur during this data
collection time. The paper did not mention how much data
was required to have a sound prediction.

B. LSTM RNN

LSTM RNN was first introduced by S. Hochrieter & J.
Schmidhuber [7]. The paper introduced a solution for this
problem: ”Learning to store information over extended period
of time intervals via recurrent backpropagation takes a very
long time, mostly due to insufficient, decaying error back
flow”. It was a solution for the exploding/vanishing gradients
in backpropagtion to modify the weights of the network. This
study paved the way for many interesting projects. LSTM
RNN’s have been used with strong performance in image
recognition [2], audio visual emotion recognition [3], music
composition [8] and other areas.

III. EXPERIMENTAL DATA

The data used consists of 76 different parameters recorded
on the aircraft Flight Data Recorder (FDR) as well as the
vibration parameter. A subset of these parameters were chosen
based on the likelihood of their contribution to the vibration
based on aerodynamics/turbo-machinary background. Some
parameters, such as Inlet Guide Vans Configuration, Fuel
Flow, Spoilers Configuration (this was preliminary considered
because of the special position of the engine mount), High
Pressure Valve Configuration and Static Air Temperature were
excluded because it was found that they generated noise more
than positively contributing in the vibration prediction.

The finally chosen parameters were:
1) Altitude
2) Angle of Attack
3) Bleed Pressure
4) Turbine Inlet Temperature
5) Mach Number
6) Primary Rotor/Shaft Rotation Speed
7) Secondary Rotor/Shaft Rotation Speed
8) Engine Oil pressure
9) Engine Oil Quantity

10) Engine Oil Temperature
11) Aircraft Roll
12) Total Air Temperature
13) Wind Direction
14) Wind Speed
15) Engine Vibration

IV. METHODOLOGY

Three LSTM RNN architectures were designed to predict
engine vibration 5 seconds, 10 seconds, and 20 seconds in the
future. Each of the 15 selected FDR parameters is represented

Fig. 1. LSTM cell design

by a node in the inputs of the neural network and an additional
node is used for a bais. Each neural network in the three
designs consists of LSTM cells that receive both an initial
input and the output of the previous cell, as inputs. Each cell
has three gates to control the flow of information through the
cell and accordingly, the output of the cell. Each cell also has a
cell-memory which is the core of the LSTM RNN design. The
cell-memory allows the flow of information from the previous
states into current predictions.

The gates that control the flow are shown in Figure 1. They
are: i) the input gate, which controls how much information
will flow from the inputs of the cell, ii) the forget gate,
which controls how much information will flow from the cell-
memory, and iii) the output gate, which controls how much
information will flow out of the cell. This design allows the
network to learn not only about the target values, but also
about how to tune its controls to reach the target values.

All the utilized architectures have a common LSTM cell
design shown in Figure 1. However, there are two variations of
this common design used in the utilized architectures, shown
in Figures 2 and 3, with the difference being the number of
inputs from the previous. Cells that take initial inputs from
more input nodes are denoted by ‘M1’ cells. As input nodes are
needed to be reduced through the neural network, the design
of the cell will be different and it is denoted by ‘M2’ cells.

The equations used in the forward propagation through the
neural network are:



Fig. 2. Level 1 LSTM cell design

Fig. 3. Level 2 LSTM cell design



it = Sigmoid(wi • xt + ui • at−1 + baisi) (1)

ft = Sigmoid(wf • xt + uf • at−1 + baisf ) (2)

ot = Sigmoid(wo • xt + uo • at−1 + baiso) (3)

gt = Sigmoid(wg • xt + ug • at−1 + baisg) (4)

ct = ft • ct−1 + it • gt (5)

at = ot • Sigmoid(ct) (6)

where (see Figure 1):
it: input-gate output
ft: forget-gate output
ot: output-gate output
gt: input’s sigmoid
ct: cell-memory output
wi: weights associated with input and input-gate
ui: weights associated with previous output and input-

gate
wf : weights associated with input and forget-gate
uf : weights associated with previous output and forget-

gate
wo: weights associated with input and output-gate
uo: weights associated with previous output and the

output-gate
wg: weights associated with the cell input
ug: weights associated with previous output and the

cell input

V. LSTM RNN ARCHITECTURES

The three architectures are as follows, with the dimensions
of the weights of these architectures shown in Table I and the
total number of weights shown in Table II:

A. Architecture I

As shown in Figure 4, this architecture takes inputs from
ten time series (the current time instant and the past nine). It
feeds the second level of the neural network with its output.
The output of the first level of the neural network is considered
the first hidden layer. The second level of the neural network
then reduces the number of nodes fed to it from 16 nodes (15
input nodes + bais) per cell to only one node per cell. The
output of the second level of the neural network is considered
the second hidden layer. Finally, the out of the second level
of the neural network would be only 10 nodes, a node from
each cell. These nodes are fed to a final neuron in the third
level to compute the output of the whole network.

TABLE I
ARCHITECTURES WEIGHTS-MATRICES DIMENSIONS

Architecture I
wi ui wf uf wo uo wg ug

Level 1 16×16 16×16 16×16 16×16 16×16 16×16 16×16 16×16

Level 2 16×1 1×1 16×1 1×1 16×1 1×1 16×1 1×1

Level 3 16×1

Architecture II
wi ui wf uf wo uo wg ug

Level 1 16×16 16×16 16×16 16×16 16×16 16×16 16×16 16×16

Level 2 16×1 1×1 16×1 1×1 16×1 1×1 16×1 1×1

Architecture III
wi ui wf uf wo uo wg ug

Level 1 16×16 16×16 16×16 16×16 16×16 16×16 16×16 16×16

Level 2 16×16 16×16 16×16 16×16 16×16 16×16 16×16 16×16

Level 3 16×1 1×1 16×1 1×1 16×1 1×1 16×1 1×1

Level 4 16×1

TABLE II
ARCHITECTURES WEIGHTS MATRICES’ TOTAL ELEMENTS

Art I Art II Art III

21,170 21,160 83,290

B. Architecture II

As shown in Figure 5, this architecture is almost the same
as the previous one except that it does not have the third level.
Instead, the output of the second level is averaged to compute
the output of the whole network.

C. Architecture III

Figure 6 presents a deeper neural network architecture. In
this design, the neural network takes inputs from twenty time
series (the current time instant and the past nineteen). It feeds
the second level of the neural network with its output. Second
level does the same procedure as first level giving a chance for
more abstract decision making. The output of the second level
of the neural network is considered the first hidden layer and
the output of the second level is considered the second hidden
layer. The third level of the neural network then reduces the
number of nodes fed to it from 16 nodes (15 input nodes +
bais) per cell to only one node per cell. The output of the third
level of the neural network is considered the third hidden layer.
Finally, the output of the third level of the neural network is
twenty nodes, a node from each cell. These nodes are fed to
a final neuron in the fourth level to compute the output of the
whole network.

D. Forward Propagation

The following is a general description for the forward
propagation path. This example uses Architecture I as an
example but similar steps are taken in the other architectures
with minor changes apparent in their diagrams. With Figure 4



Fig. 4. Architecture I

Fig. 5. Architecture II



Fig. 6. Architecture III

presenting an overview of the structure of the whole network
and considering Figure 2 as an overview of the structure of
the cells in Level 1 and in Level 2 – the input at each iteration
consists of 10 seconds of time series data of the 15 input
parameters and 1 bais (Input in Figure 2) in one vector (xt in
Figure 4) and the output of the previous cell (Previous Cell
Output in Figure 2) in another vector (at−1 in Figure 4). Each
second of time series input is fed to the corresponding cell
(i.e., the first seconds’ 15 parameters and 1 bais are fed to
first cell, the second seconds’ 15 parameters and 1 bais are fed
to second cell, ...) into the cell gate (shown in black color),
input gate (shown in green color), forget gate (shown in blue
color) and the output gate (shown in red color). If the gates
(input gate, forget gate and, output gate) are seen as valves
that control how much of the data flow through it, the outputs
of these gates (it, ft and, ot) are considered as how much
these valves are opened or closed.

First, at the cell gate, xt is dot multiplied by its weights
matrix wg and at−1 is dot multiplied by its weights matrix
ug . The output vectors are summed and an activation function
is applied to it as in Equation 4. The output is called gt.

Second, at the input gate, xt is dot multiplied by its weights
matrix wi and at−1 is dot multiplied by its weights matrix ui.
The output vectors are summed and an activation function is
applied to it as in Equation 1. The output is called it.

Third, at the forget gate, xt is dot multiplied by its weights
matrix wf and at−1 is dot multiplied by its weights matrix

uf . The output vectors are summed and an activation function
is applied to it as in Equation 2. It controls how much of the
cell memory Figure 4 (saved from previous time step) should
pass. The output is called ft.

Fourth, at the output gate, xt is dot multiplied by its weights
matrix wo and at−1 is dot multiplied by its weights matrix uo.
The output vectors are summed and an activation function is
applied to it as in Equation 3. The output is called ot.

Fifth, the contribution of the cell input Input gt and cell
memory ct−1 is decided in Equation 5 by dot multiplying them
by ft and it respectively. The output of this step is the new
cell memory ct.

Sixth, cell output is also regulated by the output gate (valve).
This is done by applying the sigmoid function to the cell
memory ct and dot multiplying it by ot as shown in Equation 6.
The output of this step is the final output of the cell at the
current time step at. at is fed to the next cell in the same
level and also fed to the cell in the above level as an Input at.

The same procedure is applied at Level 2 but with different
weight vectors and different dimensions. Weights at Level 2
have smaller dimensions to reduce their input dementions from
vectors with 16 dimensions to vectors with one dimension. The
output from Level 2 a one dimensional vector from each cell
of the 10 cells in Level 2. These vectors are fed as one 10
dimensional vector to a simple neuron shown in Figure 4 at
Level 3 to be dot multiplied by a weight vector to reduce the
vector to a single scalar value: the final output of the network



TABLE III
TRAINING RESULTS

Error at Error at Error at
5 seconds 10 seconds 20 seconds

Architecture I 0.000398 0.000972 0.001843
Architecture II 0.001516 0.001962 0.002870
Architecture III 0.000409 0.000979 0.001717

at the time step.

VI. IMPLEMENTATION

A. Programming Langauge

Python’s Theano Library [9] was used to implement the
neural networks. It has four major advantages: i) it will
compile the most, if not all, of functions coded using it to
C and CUDA giving fast performance, ii) it will perform the
weights updates for back propagation with minimal overhead,
iii) Theano can compute the gradients of the error (cost
function output) with respect to the weights saving significant
effort and time needed to manually derive the gradients, coding
and debugging them, and finally, iv) it can utilize GPU’s for
further increased performance.

B. Data Processing

The flight data parameters used were normalized between
0 and 1. The sigmoid function is used as an activation
function over all the gates and inputs/outputs. The ArcTan
activation function was tested on the data, however it gave
distorted results and sigmoid function provided significantly
better performance.

C. Machine Specifications

Each of the examined architectures runs on a hyperthreaded
3.5 GHz core and is considered capable of real-time process-
ing. Results were collected using a Mac Pro with 12 logical
cores, with each different architecture being trained for 575
epochs. Run times for training are shown in Table IV. Some
unexpected variance might be realized in these run-times, due
to CPU interruptions which may have occurred over the course
of the experiments. In general, the first two architectures took
similar amounts of time (approximately 8.5-9 hours) for each
time prediction (5, 10 and 20 seconds), and the third took a
bit more than twice as long, at approximately 20 hours for
each time prediction.

VII. RESULTS

The neural networks were run against flights that suffered
from the excessive vibration in a training phase. They were
then run against different set of flights, which also suffered
from the same problem, in a testing phase. There were 28
flights in the training set, with a total of 41,431 seconds of
data. There were 57 flights in the testing set, with a total of
38,126 seconds of data. The networks were allowed to train
for 575 epochs to learn and for the cost function output curve
to flaten.

TABLE IV
RUN TIME (HOURS)

05 10 20

Architecture I 9 8.98 8.85
Architecture II 8.44 8.41 8.4
Architecture III 21.6 19.7 18.5

Fig. 7. Cost function plot for ART III predicting vibration in 10 future sec

A. Cost Function

Mean squared error was used to train the neural networks
as it provides a smoother optimization surface for backprop-
agation. A sample of the cost function output can be seen in
Figure 7. The Figure is a logarithmic plot for architecture III,
for predicting vibrations 10 seconds in the future.

B. Architecture Results

Mean Squared Error (MSE) (shown in Equation 7) was used
as an error measure to train the three architectures, which
resulted in values shown in Table V. Mean Absolute Error
(MAE) (shown in Equation 8) is used as a final measure
of accuracy for the three architectures, with results shown in
Table VI. As the parameters were normalized between 0 and
1, the MAE is also the percentage error.

Error =
0.5×

∑
(Actual V ib− Predicted V ib)2

Testing Seconds
(7)

Error =

∑
[ABS(Actual V ib− Predicted V ib)]

Testing Seconds
(8)

Figures 9, Figures 10, and Figures 11 present the predictions
for all the test flights condensed on the same plot. Time shown
on the x-axis is the total time for all the test flights. Each
flight ends when the vibration reaches the max critical value
(normalized to 1) and then the next flight in the test set beings.
Figure 8 provides an uncompressed example of Architecture



TABLE V
TESTING RESULTS

Error at Error at Error at
5 seconds 10 seconds 20 seconds

Architecture I 0.001165 0.002926 0.010427
Architecture II 0.009708 0.009056 0.012560
Architecture III 0.002386 0.004780 0.041417

TABLE VI
NEW

¯
TESTING RESULTS

Error at Error at Error at
5 seconds 10 seconds 20 seconds

Architecture I 0.033048 0.055124 0.101991
Architecture II 0.097588 0.096054 0.112320
Architecture III 0.048056 0.070360 0.202609

I predicting vibration 10 seconds in the future over a single
flight from the testing data.

1) Results of Architecture I: The results of this architecture,
shown in Table V, came out to be the best results regarding
the overall accuracy of the vibration prediction. While there is
more misalignment between the actual and calculated vibration
values as predictions are made further in the future, as shown
in Figure 9, this is to be expected. Also, it can be seen that
the prediction of higher peaks is more accurate than the lower
peaks prediction as if the neural network is tending to learn
more about the max critical vibration value, which is favorable
for this project.

2) Results of Architecture II: The results of this architecture
in Table V came out to be the least successful in vibration
prediction. While it managed to predict much of the vibration,
its performance was weak at the peaks (either low or high)
compared to the other architectures, as shown in Figure 10.
It is also worth mentioning that somehow the lower peaks
were better at some positions on the curve of this architecture,
compared to to the other architectures.

Fig. 8. Architecture I predicting vibration 10 seconds in the future.

(a) ART I Results Plot @ 05 SEC

(b) ART I Results Plot @ 10 SEC

(c) ART I Results Plot @ 20 SEC

Fig. 9. Plotted results for Architecture I for the for the three scenarios.



(a) ART II Results Plot @ 05 SEC

(b) ART II Results Plot @ 10 SEC

(c) ART II Results Plot @ 20 SEC

Fig. 10. Plotted results for Architecture II for the for the three scenarios.

(a) ART III Results Plot @ 05 SEC

(b) ART III Results Plot @ 10 SEC

(c) ART III Results Plot @ 20 SEC

Fig. 11. Plotted results for Architecture I for the for the three scenarios.



3) Results of Architecture III: Although it was the most
computationally expensive and had a chance for deeper learn-
ing, its results were not as good as expected, as shown in
Figure 11. The results of this architecture in Table V show
that the prediction accuracy for this architecture was less
than the more simple Architecture I. As this came counter
to the predictions for deeper learning, this opens door for
investigating about the deeper learning for this problem; this
LSTM RNN was one layers deeper and also had 20 seconds
memory from the past which was not available for the other
two LSTM RNN’s used. It is also realized that the overall
error in Table V for the prediction at 20 future seconds
came relatively high. Looking at Figure 11c between time
10,000-15,0000, 20,000-25,000 and 35,000-40,000, it can be
seen that the calculated curve got very much higher than
the actual vibration curve. This strange behaviour is unique
as it can be seen that the calculated vibration would rarely
exceed the actual vibration for all the curves plotted for all
the architectures at all scenarios, and it would be for relatively
small value if occurred. This network could potentially gain
further improvement if trained for more epochs over the other
simpler architectures.

VIII. CONCLUSIONS AND FUTURE WORK

This paper presents early work for utilizing long short term
memory (LSTM) recurrent neural networks (RNNs) of differ-
ent types to predict engine vibrations and other critical aviation
parameters. The results obtained from this study are very
encouraging, given the accuracy of the predictions rather far in
the futuer – 3.3% error for 5 second predictions, 5.51% error
for 10 second predictions, and 10.19% error for 20 second
predictions. This work opens up many avenues for future work,
such as fine tuning the neural network designs and their hyper
parameters, changing the design of the layers and/or combine
different types of RNNs to further refine the results. Selecting
flight parameters also had a great influence on the results.
This work could be extended by further investigating the flight
parameters and their contributions to the prediction process.
This could be achieved by either statistical means or going
deeper in the analytical and empirical theories and equations

to provide a deeper understanding of the relations between
parameters, and thus, more precise future predictions.

Also the use of accelerator cards such as GPUs could be
used in this research to further improve training times, and
allow the neural networks to be trained longer (which could
potentially improve the performance of Architecture III). This
can save time if well implemented; as data weights vectors
and matrices for all gates (inputs, input gates, forget gates,
and output gates) can be grouped together in one matrix/vector
saved in one global memory variable to be transfered as on
group to the GPU. This would reduce the penalty of data
transfer between the CPU and GPU. Similar measures can be
followed for processing the data for the several files instead
of doing one data file (FDR reading) at a time. Subsequently,
processing the data for several future vibration predictions (ex.
at 5 sec, 10 sec, 20 sec, ...) could be performed together at
the same time, reducing data transfer between CPU and GPU.

Overall, this work provides promising inital work in engine
vibration prediction that could be integrated into future warn-
ing systems so that pilots can act to prevent excessive vibration
events before unfavorable situations happen during flight.

REFERENCES

[1] A. V. Srinivasan, “FLUTTER AND RESONANT VIBRATION
CHARACTERISTICS OF ENGINE BLADES,” 1997. [Online].
Available: http://www.energy.kth.se/compedu/webcompedu/WebHelp

[2] Donahue, Jeffrey and Anne Hendricks, Lisa and Guadarrama, Sergio and
Rohrbach, Marcus and Venugopalan, Subhashini and Saenko, Kate and
Darrell, Trevor, “Long-term recurrent convolutional networks for visual
recognition and description,” June 2015.

[3] Linlin Chao et al, “Audio visual emotion recognition with temporal
alignment and perception attention,” Mar 2016.

[4] Ilya Sutskever, Oriol Vinyals, Quoc V. Le, “Sequence to Sequence
Learning with Neural Networks,” Dec 2014.

[5] A. NAIRAC et al, “A System for the Analysis of Jet Engine Vibration
Data,” 1999.

[6] David A. Clifton et al, “A Framework for Novelty Detection in Jet Engine
Vibration Data,” 2007.

[7] S. Hochrieter & J. Schmidhuber, “Long Short Term Memory.”
[8] D. Eck & J. Schmidhuber, “A First Look at Music Composition using

LSTM Recurrent Neural Network.”
[9] Theano Development Team, “Theano: A Python framework

for fast computation of mathematical expressions,” arXiv e-
prints, vol. abs/1605.02688, May 2016. [Online]. Available:

http://arxiv.org/abs/1605.02688


