```
How many Molecules of SiO2 are in my Quartz Sphere?
Quartz Sphere:
m = 346.3 q
D = 6.30 \text{ cm} => R = 3.15 \text{ cm}
             => V = [(4/3)\pi R^3] = 130.9 \text{ cm}^3
Density = \rho = m/V = m/[(4/3)\pi R^3] = 346.3g/130.9 \text{ cm}^3 = 2.645 \text{ g/cm}^3 = 2.65 \text{ g/cm}^3
Given Density and Volume => Mass: m = \rho V = 346.3 g
What is the mass of one Molecule of SiO<sub>2</sub> (Quartz)?
Z \equiv Atomic Number of an Element = # of Protons in Nucleus = # of electrons in atom
N =
                                     = # of Neutrons in Nucleus ≈usually≈ Z
A = Atomic Weight of an Atom of an Element \approx Z + N
     is given in units called: amu = Atomic Mass Units
1 amu = (1/12) {Mass of Carbon 12 (with Z + N = 6 + 6 = 12)}
       = 1.66053886 \times 10^{-24} \text{ grams}
1 amu ≈ mass of the proton ≈ mass of the Neutron ≈ mass of a Nucleon
       ≈ mass of a Hydrogen Atom (since electrons have mass ≈ amu/1823)
       \approx [1/(6.02 \times 10^{23})] grams = [1/(Avogadro's Number] grams
where: 1 mole \equiv Avogadro's Number = 6.02 X 10<sup>23</sup>
  ==>: (6.02 \times 10^{23})^{-} \text{ amu } = 1 \text{ gram}
     or: Mass of a mole of Nucleons = 1 gram
MW = Molecular Weight of SiO_2:
             \approx [A<sub>Si</sub> = Z + N = 2*Z<sub>Si</sub> = 2*14 = 28] + 2*[A<sub>O</sub> = Z + N = 2*Z<sub>O</sub> = 2*8 = 16]
                = 60 amu = # of Protons + # of Neutrons
             = 28.0855 + 2*15.9994 = 60.0843 amu (from Tables or a good Periodic Table)
Mass in grams of SiO_2 = 60.0843 amu [1.66053886 X 10^{-24} g/amu] = 9.977 X 10^{-23} g
                                          [1.661 	 X 10^{-24} g/amu] = 

[1/(6.02 X 10^{23}) g/amu] = 
                                          [ 1g / (6.02 \times 10^{23} \text{ amu}) ] =
                                                                 )] since mole = 6.02 \times 10^{23}
Mass in grams of SiO_2 = 60.0843 amu [ 1g / (mole amu
                         = 60 grams/mole
==> Mass of 1 mole in grams of SiO_2 = 60 grams = MW in grams
In General: MW in grams = Mass of a Mole of Molecules
______
n = # of Molecules in Quartz Sphere = [mass of n Molecules] / [mass of 1 Molecule]
                                         = [mass of our Sample ]/[mass of 1 Molecule]
                                         = [346.3 \text{ g}]/[9.977 \text{ X } 10^{-23} \text{ g}]
                                          = 3.471 \times 10^{24} \text{ Molecules}
                                         = 3.47 \times 10^{24} Molecules [1 mole/6.02 X 10^{23} Molecules]
                                         = 5.77 moles of molecules
or equivalently:
```

Remember:

- 1 amu ≈ mass of the proton ≈ mass of the Neutron ≈ mass of a Nucleon
 - ≈ mass of a Hydrogen Atom (since electrons have mass ≈ amu/1823)

of moles of Molecules in Quartz Sphere = [mass of our Sample]/[mass of 1 mole]

= [346.3 g]/[60 g]= 5.77 moles

 $\approx [1/(6.02 \times 10^{23})]$ grams = [1/(Avogadro's Number] grams