

# A Modular Presentation System for the Calculus Sequence

## 6.1 Areas Between Curves

#### Yaw Chang Michael Freeze

Mathematics and Statistics UNC-Wilmington



## How to Find the Area Between Two Curves

O Slice, Approximate,

Integrate

 How to Find the Area Between Two Curves
 Area Between Intersecting Curves
 Additional Areas
 Boundaries with Changing Formulas 1. Graph the curves and draw a representative rectangle.

- 2. Find the limits of integration.
- 3. Write a formula for f(x) g(x).
- 4. Integrate [f(x) g(x)] from a to b.



## **Area Between Intersecting Curves**

 Slice, Approximate, Integrate
 How to Find the Area Between Two Curves
 Area Between Intersecting Curves
 Additional Areas
 Boundaries with Changing Formulas EXAMPLE: Find the area of the region enclosed by the parabola  $y = 2 - x^2$  and the line y = -x.



## **Additional Areas**

Slice, Approximate, Integrate
How to Find the Area Between Two Curves
Area Between Intersecting Curves
Additional Areas
Boundaries with Changing

Formulas

Find the area of the region enclosed between the given functions y = f(x) and y = g(x).

EXAMPLE: 
$$f(x) = x^3$$
,  $g(x) = 4x$   
EXAMPLE:  $f(x) = 16x$ ,  $g(x) = x^5$   
EXAMPLE:  $f(x) = 3 - x$ ,  $g(x) = x^2 + 2x + 3$ 



# **Boundaries with Changing Formulas**

 Slice, Approximate, Integrate
 How to Find the Area Between Two Curves
 Area Between Intersecting Curves
 Additional Areas

• Boundaries with Changing Formulas EXAMPLE: Find the area of the region in the first quadrant that is bounded above by  $y = \sqrt{x}$  and below by the *x*-axis and the line y = x - 2.