

A Modular Presentation System for the Calculus Sequence

5.1 Areas and Distances

Yaw Chang Michael Freeze

Mathematics and Statistics UNC-Wilmington

C The Area Problem

 Sigma Notation
 Sums of Consecutive Integers
 Finding the Area of a Triangle Via Calculus
 Sums of Consecutive Squares
 Finding the Area under a Parabola **PROBLEM** Let $f(x) \ge 0$ be a continuous function on a closed interval[a, b]. How can we find the area under the curve y = f(x)and above x-axis on [a, b]?

EXAMPLE Find the area under the parabola $y = x^2$ from 0 to 4. Idea?

C The Area Problem

Sigma Notation

- C Sums of Consecutive Integers
- O Finding the Area of a
- Triangle Via Calculus
- Sums of Consecutive
- Squares
- Finding the Area under a
- Parabola

\sum is known as the sigma notation.

C The Area Problem		
Sigma Notation	\sim	
• Sums of Consecutive	n	
Integers		
Finding the Area of a	$\sum i = 1 + 2 + \dots + n$	
Triangle Via Calculus	$\int b = 1 + 2 + b + 1b$	
Sums of Consecutive		
Squares	i=1	(1)
Finding the Area under a	v - 1	(1)
Parabola	n(n+1)	

2

The Area Problem
Sigma Notation
Sums of Consecutive Integers
Finding the Area of a Triangle Via Calculus
Sums of Consecutive Squares
Finding the Area under a Parabola

C The Area Problem
C Sigma Notation
C Sums of Consecutive Integers
C Finding the Area of a Triangle Via Calculus
C Sums of Consecutive Squares
C Finding the Area under a Parabola

$$\sum_{i=1}^{n} i^2 = 1^2 + 2^2 + \dots + n^2$$

$$= \frac{n(n+1)(2n+1)}{6}$$
(2)

C The Area Problem
C Sigma Notation
C Sums of Consecutive Integers
Finding the Area of a Triangle Via Calculus
C Sums of Consecutive Squares
Finding the Area under a Parabola