

A Modular Presentation System for the Calculus Sequence

4.4 Indeterminate Forms and L'Hospital's Rule

Yaw Chang Michael Freeze

Mathematics and Statistics UNC-Wilmington

Indeterminate Form 0/0

• Indeterminate Form 0/0

Weak L'Hospital's Rule
Strong L'Hospital's Rule
Applying L'Hospital's Rule
Other Indeterminate Forms

Other Indeterminate Forms

If the continuous functions f(x) and g(x)are both zero at x = a, then $\lim_{x \to a} \frac{f(x)}{g(x)}$

cannot be found by direct substitution. We develop a general method for evaluating such limits.

Weak L'Hospital's Rule

Theorem

• Indeterminate Form 0/0

€ Weak L'Hospital's Rule

Strong L'Hospital's Rule
 Applying L'Hospital's Rule
 Other Indeterminate Forms

 Other Indeterminate Forms
 Other Indeterminate Forms
 I

Suppose that f(a) = g(a) = 0, that f'(a) and g'(a) exist, and that $g'(a) \neq 0$. Then $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{f'(a)}{g'(a)}$

Strong L'Hospital's Rule

Indeterminate Form 0 / 0
Weak L'Hospital's Rule
Strong L'Hospital's Rule
Applying L'Hospital's Rule
Other Indeterminate Forms

Other Indeterminate Forms

Theorem

Suppose that $\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = 0$ or $\lim_{x\to a} f(x) = \pm \infty$ and $\lim_{x\to a} g(x) = \pm \infty$, that *f* and *g* are differentiable on an open interval *I* containing *a*, and that $g'(x) \neq 0$ on *I* if $x \neq a$. Then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

provided that the limit on the right side exists.

Indeterminate Form 0 / 0
Weak L'Hospital's Rule
Strong L'Hospital's Rule
Applying L'Hospital's Rule
Other Indeterminate Forms

Other Indeterminate Forms
Other Indeterminate Forms

EXAMPLE:	Find		$\tan x$
			$\overline{x - \sin x}$

Indeterminate Form 0/0
Weak L'Hospital's Rule
Strong L'Hospital's Rule
Applying L'Hospital's Rule
Other Indeterminate Forms

Other Indeterminate Forms

EXAMPLE: ∞/∞ Find $\lim_{x\to\infty} \frac{x^2}{e^x}$ EXAMPLE: $\infty \cdot 0$ Find $\lim_{x\to\infty} x \sin\left(\frac{1}{x}\right)$

EXAMPLE:
$$\infty - \infty$$
 Find $\lim_{x \to 0^+} \left(\frac{1}{\sin x} - \frac{1}{x} \right)$

Other Indeterminate Forms II

Indeterminate Form 0/0
Weak L'Hospital's Rule
Strong L'Hospital's Rule
Applying L'Hospital's Rule
Other Indeterminate Forms

Other Indeterminate Forms

EXAMPLE: 1° Find
$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x$$

EXAMPLE: 0° Find $\lim_{x \to 0^+} x^x$

EXAMPLE:
$$\infty^{\circ}$$
 Find $\lim_{x \to 0^+} \left[\ln \left(\frac{1}{x} \right) \right]^x$