

A Modular Presentation System for the Calculus Sequence

3.4 Derivatives of Trigonometric Functions

Yaw Chang Michael Freeze

Mathematics and Statistics UNC-Wilmington

Derivative of the Sine Function

C Derivative of the Sine

Function C Derivatives Involving Sine C Derivative of the Cosine

C Derivatives Involving Sine

Simple Harmonic Motion
Derivatives of Other Basic

Function

and Cosine

Trig Functions

CLimits

Recalling that

 $\lim_{\theta\to 0}\frac{\sin\theta}{\theta}=1$

and

$$\lim_{\theta \to 0} \frac{\cos \theta - 1}{\theta} = 0$$

we may use the limit definition of derivative to show that

$$\frac{d}{dx}(\sin x) = \cos x$$

Derivatives Involving Sine

Derivative of the Sine Function
Derivatives Involving Sine
Derivative of the Cosine Function
Derivatives Involving Sine and Cosine
Simple Harmonic Motion
Derivatives of Other Basic Trig Functions

C Limits

EXAMPLE: Find the derivative of

$$y = x^2 - \sin x$$

EXAMPLE: Find the derivative of $y = \frac{\sin x}{x}$

 Derivative of the Sine Function
 Derivatives Involving Sine
 Derivative of the Cosine Function
 Derivatives Involving Sine and Cosine
 Simple Harmonic Motion

• Derivatives of Other Basic Trig Functions

C Limits

 $\frac{d}{dx}(\cos x) = -\sin x$

Derivatives Involving Sine and Cosine

Derivative of the Sine Function
Derivatives Involving Sine
Derivative of the Cosine Function
Derivatives Involving Sine and Cosine
Simple Harmonic Motion
Derivatives of Other Basic Trig Functions
Limits

EXAMPLE: Find the derivative of

$$y = \sin x \cos x$$

EXAMPLE: Find the derivative of $y = \frac{\cos x}{1 - \sin x}$

Simple Harmonic Motion

 Derivative of the Sine Function
 Derivatives Involving Sine
 Derivative of the Cosine Function
 Derivatives Involving Sine and Cosine
 Simple Harmonic Motion
 Derivatives of Other Basic Trig Functions

C Limits

EXAMPLE: A body hanging from a spring is stretched 5 units beyond its rest position and released at time t = 0 to bob up and down. Its position at any later

time t is

$$s = 5\cos t$$

What are its velocity and acceleration at time t?

Derivatives of Other Basic Trig Functions

c Derivative of the Sine Function
c Derivatives Involving Sine
c Derivative of the Cosine Function
c Derivatives Involving Sine and Cosine

Simple Harmonic Motion

• Derivatives of Other Basic Trig Functions • Limits

Functions $\frac{d}{dx}(\sin x) = \cos x$

Derivatives of Trigonometric

2.

3.

C Derivative of the Sine Function C Derivatives Involving Sine C Derivative of the Cosine Function C Derivatives Involving Sine and Cosine • Simple Harmonic Motion C Derivatives of Other Basic **Trig Functions**

C Limits

• Use $\lim_{x\to 0} \frac{\sin(x)}{x} = 1$ to find other limits. **Examples:** 1. $\lim_{x \to 0} \frac{\sin(7x)}{4x}$

 $\frac{\sin(\cos x)}{\cos x}$ lim $\sec x$ $x \rightarrow 0$

 $\lim x \cot x$ $x \rightarrow 0$