

A Modular Presentation System for the Calculus Sequence

2.8,2.9 Derivatives

Yaw Chang Michael Freeze

Mathematics and Statistics UNC-Wilmington

Definition of Derivative

• Definition of Derivative

- How to Apply the Definition
- Applying the Definition
- Interpretation: Slope
- C Interpretation: Rate of Change
- Other Notations
- Differentiability implies Continuity
- C Intermediate Value Property
- Types of
- Nondifferentiability

Definition

The derivative of a function f at a number a, denoted by f'(a), is

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

if this limit exists.

How to Apply the Definition

ODefinition of Derivative

O How to Apply the Definition

- Applying the Definition
- OInterpretation: Slope
- C Interpretation: Rate of Change
- Other Notations
- Differentiability implies Continuity
- Intermediate Value
 Property
- C Types of
- Nondifferentiability

1. Write expressions for f(x) and f(x+h).

- 2. Expand and simplify the difference quotient $\frac{f(x+h)-f(x)}{h}$.
- 3. Using the simplified quotient, find f'(x) by evaluating the limit $f'(x) = \lim_{h \to 0} \frac{f(x+h) f(x)}{h}$.

Applying the Definition

Definition of DerivativeHow to Apply the Definition

• Applying the Definition

C Interpretation: Slope

C Interpretation: Rate of Change

Other Notations

• Differentiability implies Continuity

C Intermediate Value Property

Types of

Nondifferentiability

EXAMPLE: Find the derivative of $y = \sqrt{x}$ for x > 0.

EXAMPLE: Find the derivative of $y = 4 - x^2$.

Interpretation: Slope

Definition of Derivative

C How to Apply the Definition

C Applying the Definition

Interpretation: Slope

C Interpretation: Rate of Change

Other Notations

• Differentiability implies Continuity

Intermediate Value Property

C Types of

Nondifferentiability

The tangent line to y = f(x) at (a, f(a)) is the line through (a, f(a)) whose slope is equal to f'(a), the derivative of f at a.

Interpretation: Rate of Change

Definition of Derivative

C How to Apply the Definition

• Applying the Definition

O Interpretation: Slope

C Interpretation: Rate of Change

Other Notations

C Differentiability implies Continuity

Intermediate Value Property

C Types of

Nondifferentiability

The derivative f'(a) is the instantaneous rate of change of y = f(x) with respect to x when x = a.

Other Notations

 Pefinition of Derivative How to Apply the Definition Applying the Definition Interpretation: Slope Interpretation: Rate of Change Other Notations Differentiability implies Continuity Intermediate Value Property Types of Nondifferentiability 	Symbol y'	Verbalization "y prime"	Utility Nice and brief but does not name the independent variable
	$rac{dy}{dx}$	" $dy dx$ "	Names the variables and uses d for derivative
	$rac{df}{dx}$	" $df dx$ "	Emphasizes the function's name
	$\frac{d}{dx}f(x)$	" ddx of $f(x)$ "	Emphasizes the idea that differentiation is an operation performed on f

Differentiability implies Continuity

O Definition of Derivative

- C How to Apply the Definition
- O Applying the Definition
- O Interpretation: Slope
- OInterpretation: Rate of
- Change
- Other Notations
- C Differentiability implies Continuity
- C Intermediate Value Property
- C Types of
- Nondifferentiability

Theorem

If f is differentiable at a, then f is continuous at a.

WARNING: The converse of this theorem is false. There are functions that are continuous but not differentiable.

Types of Nondifferentiability

How to Apply the Definition
Applying the Definition
Interpretation: Slope
Interpretation: Rate of Change
Other Notations
Differentiability implies Continuity
Intermediate Value Property
Types of Nondifferentiability

C Definition of Derivative

There are several basic situations where a function fails to be differntiable:

1. Corner |x| at x = 0

2. Cusp $|x|^{1/3}$ at x = 0

3. Vertical Tangent $\sqrt[3]{x}$ at x = 0

4. Discontinuity $\frac{x^2-9}{x-3}$ at x=3