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Definition of Derivative

Definition
The derivative of a function f at a number a,
denoted by f ′(a), is

f ′(a) = lim
h→0

f(a + h) − f(a)

h

if this limit exists.
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How to Apply the Definition

1. Write expressions for f(x) and f(x + h).

2. Expand and simplify the difference quotient
f(x+h)−f(x)

h
.

3. Using the simplified quotient, find f ′(x) by

evaluating the limit f ′(x) = lim
h→0

f(x + h) − f(x)

h
.
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Applying the Definition

EXAMPLE: Find the derivative of y =
√

x for x > 0.

EXAMPLE: Find the derivative of y = 4 − x2.
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Interpretation: Slope

The tangent line to y = f(x) at (a, f(a)) is the line
through (a, f(a)) whose slope is equal to f ′(a), the
derivative of f at a.
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Interpretation: Rate of Change

The derivative f ′(a) is the instantaneous rate of
change of y = f(x) with respect to x when x = a.
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Other Notations

Symbol Verbalization Utility

y′ “y prime”
Nice and brief but does not
name the independent variable

dy
dx

“dy dx”
Names the variables and uses
d for derivative

df
dx

“df dx” Emphasizes the function’s
name

d
dx

f(x) “ddx of f(x)”
Emphasizes the idea that
differentiation is an operation
performed on f
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Differentiability implies Continuity

Theorem
If f is differentiable at a, then f is continuous at a.

WARNING: The converse of this theorem is false.
There are functions that are continuous but not
differentiable.
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Types of Nondifferentiability

There are several basic situations where a function
fails to be differntiable:
1. Corner |x| at x = 0

2. Cusp |x|1/3 at x = 0

3. Vertical Tangent 3
√

x at x = 0

4. Discontinuity x2
−9

x−3
at x = 3
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