

A Modular Presentation System for the Calculus Sequence 2.5 Continuity

Yaw Chang Michael Freeze

Mathematics and Statistics UNC-Wilmington

Continuity at a Point

Identifying Continuous Functions
Types of Discontinuity
Composites
Example
The Intermediate Value Theorem
Example
Application

Definition

A function f is **continuous at a number** a if

$$\lim_{x \to a} f(x) = f(a)$$

This definition hides three conditions in its statement. For f to be continuous at a, all three of the following must hold:

- 1. f(a) is defined
- 2. $\lim_{x \to a} f(x)$ exists

$$3. \quad \lim_{x \to a} f(x) = f(a)$$

Identifying Continuous Functions

Continuity at a Point
 Identifying Continuous
 Functions

Types of Discontinuity

Composites

Example

 The Intermediate Value Theorem
 Example

Application

QUESTION: What classes of functions are continuous?

Remark: A function f is *continuous on an interval* (a, b) if it is continuous at every number in the interval.

If *f* and *g* are continuous at x = a and *c* is a constant, then the following functions are also continuous at x = a: $f \pm g$, cf, fg, and f/g if $g(a) \neq 0$.

Continuity at a Point	Т
Identifying Continuous	I
Functions	
Types of Discontinuity	
Composites	
> Example	
The Intermediate Value	
Theorem	
S Example	
> Application	

There are several basic types of discontinuities: 1. Oscillating Discontinuity $\sin\left(\frac{\pi}{x}\right)$ at x = 0

- 2. Jump Discontinuity $\frac{|x-1|}{x-1}$ at x = 1
- 3. Infinite Discontinuity $\frac{1}{x-2}$ at x=2
- 4. Removable Discontinuity $\frac{x^2-9}{x-3}$ at x=3

 Continuity at a Point
 Identifying Continuous Functions
 Types of Discontinuity

Composites

Example

 The Intermediate Value Theorem
 Example
 Application

Moving a Limit Through a Function

If f is continuous at b and $\lim_{x \to a} g(x) = b$, then $\lim_{x \to a} f(g(x)) = f(b)$. In other words,

$$\lim_{x \to a} f(g(x)) = f\left(\lim_{x \to a} g(x)\right)$$

Continuity at a Point

Identifying Continuous

Functions

Types of Discontinuity

Composites

C Example

• The Intermediate Value Theorem • Example • Application Find $\lim_{x\to 1} \arcsin(\frac{1-\sqrt{x}}{1-x})$.

Solution: Because $\arcsin(x)$ is a continuous function, we can apply the above theorem:

$$\lim_{x \to 1} \arcsin\left(\frac{1 - \sqrt{x}}{1 - x}\right) = \arcsin\left(\lim_{x \to 1} \frac{1 - \sqrt{x}}{1 - x}\right)$$
$$= \arcsin\left(\lim_{x \to 1} \frac{(1 - \sqrt{x})(1 + \sqrt{x})}{(1 - x)(1 + \sqrt{x})}\right)$$
$$= \arcsin\left(\lim_{x \to 1} \frac{1}{1 + \sqrt{x}}\right)$$
$$= \arcsin\left(\frac{1}{2} = \frac{\pi}{6}\right)$$

 Continuity at a Point
 Identifying Continuous Functions
 Types of Discontinuity
 Composites
 Example
 The Intermediate Value Theorem
 Example

Application

The Intermediate Value Theorem

Suppose that f is continuous on the closed interval [a, b] and let N be any number between f(a) and f(b), where $f(a) \neq f(b)$. Then there exists a number c in (a, b) such that f(c) = N.

- Continuity at a PointIdentifying Continuous
- Functions
- Types of Discontinuity
- Composites
- Example
- C The Intermediate Value
- Theorem
- Example
- Application

Show that there is a solution of the equation $4x^3 - 6x^2 + 3x - 2 = 0$ between 1 and 2.

Proof

1. $f(x) = 4x^3 - 6x^2 + 3x - 2$ is a continuous function on [1, 2]. (Why?)

2.
$$f(1) = -1$$
 and $f(2) = 12$.

3. Because f(1) < 0 < f(2), by Intermediate Value Theorem, there is a number *c* between 1 and 2 such that f(c) = 0. i.e. the above equation has a solution between 1 and 2.

 Continuity at a Point
 Identifying Continuous Functions
 Types of Discontinuity
 Composites
 Example
 The Intermediate Value

Theorem

© Example

• Application

QUESTION: Is any real number exactly 2 less than its cube?