

A Modular Presentation System for the Calculus Sequence

2.4 The Precise Definition of a Limit

Yaw Chang Michael Freeze

Mathematics and Statistics UNC-Wilmington

Formal Definition of Limit

C Formal Definition of Limit

c Finding Deltas Graphically
c Finding Deltas Algebraically
c One-side Limit
c Infinite Limits
c An Example

Definition

Let f be a function defined on some open interval that contains the number a, except possibly at a itself. Then we say that the **limit of** f(x) **as** x **approaches** a **is** L, and we write

$$\lim_{x \to a} f(x) = L$$

if for every given number $\epsilon>0$ there is a number $\delta>0$ such that

$$|f(x) - L| < \epsilon$$
 whenever $0 < |x - a| < \delta$

Finding Deltas Graphically

Formal Definition of Limit
 Finding Deltas Graphically

• Finding Deltas

Algebraically

One-side Limit

O Infinite Limits

C An Example

EXAMPLE: Use a graph to find a number δ such that |(5x-3)-2| < 0.5 whenever $|x-1| < \delta$

Let's see this maple demo.

EXAMPLE: Use a graph to find a number δ such that $|(3x^2 - x) - 10| < 0.84$ whenever $|x - 2| < \delta$

Finding Deltas Algebraically

Formal Definition of Limit
Finding Deltas Graphically
Finding Deltas

Algebraically

One-side Limit

C Infinite Limits

O An Example

EXAMPLE: Show that $\lim_{x \to 1} (5x - 3) = 2$.

EXAMPLE: Show that
$$\lim_{x \to 2} (3x^2 - x) = 10$$
.

 Formal Definition of Limit
 Finding Deltas Graphically
 Finding Deltas Algebraically
 One-side Limit
 Infinite Limits

• An Example

Definition

▲ Left-Hand Limit:

 $\lim_{x\to a^-} f(x) = L$ if and only if for every $\varepsilon > 0$, there is a corresponding number $\delta > 0$ such that

$$|f(x) - L| < \varepsilon$$
 whenever $a - \delta < x < a$

▲ Right-Hand Limit:

 $\lim_{x\to a^+} f(x) = L$ if and only if for every $\varepsilon > 0$, there is a corresponding number $\delta > 0$ such that

 $|f(x) - L| < \varepsilon$ whenever $a < x < a + \delta$

 Formal Definition of Limit
 Finding Deltas Graphically
 Finding Deltas Algebraically
 One-side Limit

Infinite Limits

O An Example

Definition

 $\lim_{x \to a} f(x) = \infty$

if and only if for every positive number M, there is a corresponding positive number δ such that

f(x) > M whenever $|x - a| < \delta$

 Formal Definition of Limit
 Finding Deltas Graphically
 Finding Deltas Algebraically
 One-side Limit
 Infinite Limits

• An Example

Consider the function $f(x) = 1/x^2$. Clearly, $\lim_{x\to 0} f(x) = \infty$. The following table illustrates the relation about M and δ .

M	δ	Result
100	0.1	when $ x - 0 < 0.1$, $f(x) > 10$
10000	0.01	when $ x - 0 < 0.001$, $f(x) > 10000$
1000000	0.001	when $ x - 0 < 0.001$, $f(x) > 1000000$