

A Modular Presentation System for the Calculus Sequence

Chapter 1: Functions

Yaw Chang Michael Freeze

Mathematics and Statistics UNC-Wilmington

1.3 New Functions from Old Functions

C 1.3 New Functions from Old Functions

- 0
- 0
- C 1.5 Exponential Functions

▲ Transformation of functions: Let f(x) be a given function and c > 0 be a constant. To obtain the graph of

- 1. y = f(x) + c, shift the graph of y = f(x) c units upward. (Compare the graph of y = |x| and y = |x| + 2.)
- 2. y = f(x) c, shift the graph of y = f(x) c units downward. (Compare the graph of y = |x| and y = |x| - 2.)
- 3. y = f(x c), shift the graph of y = f(x) c units to the right. (Compare the graph of y = |x| and y = |x 2|.)
- 4. y = f(x + c), shift the graph of y = f(x) c units to the left. (Compare the graph of y = |x| and y = |x + 2|.)

C 1.3 New Functions from Old Functions

• • • 1.5 Exponential Functions

- ▲ Vertical and Horizontal Stretching and Reflecting: Let f(x) be a given function and c > 1 be a constant. To obtain the graph of
 - 1. y = cf(x), stretch the graph of y = f(x) vertically by a factor of c. (Compare y = sin(x) and y = 2sin(x).)
 - 2. y = (1/c)f(x), compress the graph of y = f(x) vertically by a factor of c. (Compare $y = \sin(x)$ and $y = \frac{1}{2}\sin(x)$.)
 - 3. y = f(cx), compress the graph of y = f(x) horizontally by a factor of c. (Compare $y = \sin(x)$ and $y = \sin(2x)$.)
 - 4. y = f(x/c), stretch the graph of y = f(x) horizontally by a factor of c. (Compare $y = \sin(x)$ and $y = \sin(x/2)$.)
 - 5. y = -f(x), reflect the graph of y = f(x) about the x-axis. (Compare y = |x| and y = -|x|.)
 - 6. y = f(-x), reflect the graph of y = f(x) about the y-axis. (Compare $y = x^3$ and $y = (-x)^3 = -x^3$.)

• 1.3 New Functions from Old Functions

0

C 1.5 Exponential Functions

Algebra of Functions: Let f and g be two functions with domains A and B. Then

- 1. (f+g)(x) = f(x) + g(x) and domain = $A \cap B$
- 2. (f-g)(x) = f(x) g(x) and domain = $A \bigcap B$
- 3. (fg)(x) = f(x)g(x) and domain = $A \bigcap B$
- 4. (f/g)(x) = f(x)/g(x) and domain = $\{x \in A \cap B | g(x) \neq 0\}$ (Consider $f(x) = x^2$ and $g(x) = \sqrt{x}$.)
- ▲ Composition: Let f and g be two functions, the *composite* function $f \circ g$ is defined by

$$(f \circ g)(x) = f(g(x)).$$

• 1.3 New Functions from Old Functions

€ 1.5 Exponential Functions

0

C

▲ Definition: An *exponential function* is a function of the form

 $f(x) = a^x$

where $a > 0, a \neq 1$ is a constant.

- ▲ Properties:
 - 1. f(x) > 0 for all x.
 - 2. When a > 1, f(x) is increasing.
 - 3. When 0 < a < 1, f(x) is decreasing.
 - 4. Is there any x-intercept of the function graph?
 - 5. Is there any y-intercept of the function graph?

• 1.3 New Functions from Old Functions •

© 1.5 Exponential Functions

0

▲ Laws of Exponents 1. $a^{x+y} = a^x a^y$

2.
$$a^{x-y} = a^x/a^y$$

3. $(a^x)^y = a^{xy}$
4. $(ab)^x = a^x b^x$
5. $a^0 = 1$

▲ Solving equations:

$$3^{x+1} = 81$$
$$e^{-x^2} = (e^x)^2 \cdot \frac{1}{e^3}$$