

Eusporangium

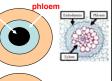
- Relatively large
- Thick-walled (several cell-layers)
- Many spores (100s-1,000s)
- No specialized dehiscence mechanism
- No stalk
- Form from several initial cells

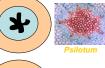
Leptosporangium

- Relatively small
- Thin-walled (1 celllayer thick)
- (Usually) 64 spores
- Dehisce via annulus
- Stalked
- Form from just 1 initial cell

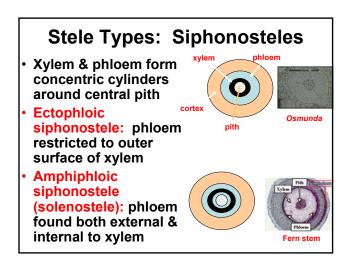
Location of Vascular Tissue

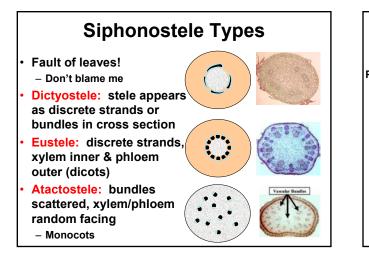
- Evolutionary progression in complexity & location of vascular tissue (esp. stems)
- Related to megaphyll development
 Large, numerous leaf traces = many large leaf gaps
- Location of stele = equilibrium between location of strengthening & conducting cells
- Ideal location for strengthening tissue is just beneath the surface of a cylindrical structure at the center of the axis
 - Least likely to break when stems are bent by wind

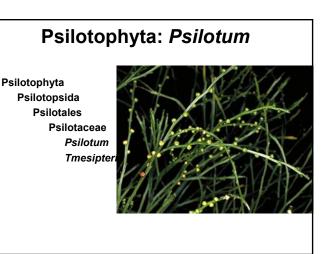

The Stele


- Arrangement (pattern) of vascular tissue
- Root & stem morphology usually different from each other
 - How we can tell a rhizome is a modified stem, not a root
- Useful for distinguishing between different taxonomic groups
- Roots, which do not produce leaves, have the most simple stelar types & the stele is in the center of the axis
 - Mostly an Actinostele

Stele Types: Protostele


xylem


- Simplest type of stele
- Solid core of xylem surrounded by a cylinder of phloem
- · 3 general variations
- Haplostele: solid cylinder of xylem
- Actinostele: radiating coglike ridges of xylem
- Plectostele: cylindrical xylem core with masses of phloem interspersed within

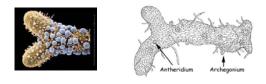


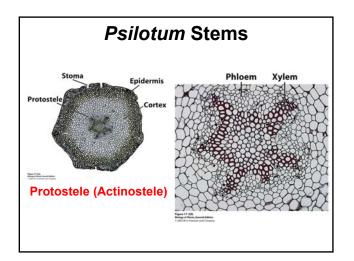
Psilophyta


- Until recently, though to be most primitive, extant lineage of vascular plants
- 2 genera
 - Psilotum (pantropical)
 - Tmesipteris (New Zealand)
- Homosporous
- Cultivated in Japan for 400-500 years as an ornamental
- Whiskferns

Sporophyte Morphology

- Naked stems
- · Dichotomous branching
- Rhizomes & rhizoids
 - No true leaves or roots
 - Enations
- Similar to Rhyniophytes, but:
 - Enations (leaf-like flaps of tissue)
 - Sporangia axillary (not terminal)
 - Sporangia fused into synangium


Synangium


- 3 fused sporangia (in Psilotum)
- In axils of enations (axillary)

Gametophytes

- Small
- Subterranean
- Lack chlorophyll
 - Mycotrophic
 - Depend on fungal partners for nutrition

Primitive Lineage?

- Many believe that *Psilotum* (& *Tmesipteris*) closest living relatives to Rhyniophytes.
- BUT there are alternative hypotheses
- Psilotophyta are highly modified group of ferns which have lost many fern-like characters
 - Why? Large fossil gap; gametophyte similarities
- Chemical & morphological features suggest affinity with "eusporangiate"

Tmesipteris

- Similar to *Psilotum*, but with leaf-like structures
- Enations or flattened stem? – Vascular tissue (rules against enation)
- Only 2 sporangia in synangium

Ophioglossophyta Ophioglossophyta

Ophioglossopsida Ophioglossales Ophioglossaceae Ophioglossum Botrychium

Ophioglossophyta

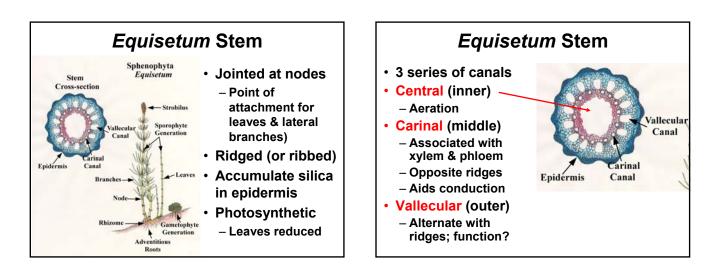
- Dimorphic fronds
 - Sporangia borne on fertile fronds
 - Other segment is flattened & vegetative
- Leaves are megaphylls
- True roots
- Homosporous
- Gametophytes
 - Subterranean
 - Lack chlorophyll

The Players

- Ophioglossum

 Adder's-tongue ferns
- Ophioglossum reticulatum has largest known chromosome # (2n = 1,260!)
 - 84-ploid!
 - Haplopappus gracilis = lowest #, 2n = 4
- Botrychium
 - Grape ferns; rattlesnake ferns

Equisetophyta: Equisetum


Equisetophyta Equisetopsida Equisetales Equisetaceae *Equisetum*

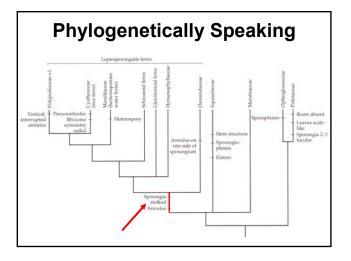
Equisetum

- Horsetails, scouring rushes
- Near-cosmopolitan
- Many fossil taxa
 Up to large trees
- Dates back to Triassic
- Toxins include nicotine & thiaminase (breaks down thiamine)
- May help with Alzheimer's

Strobilus & Sporangiophore

- Sporangia in strobilus
- But in sporangiophores
 - Stem tissue, not sporophylls
 - Peltate (umbrella-shaped)
- Homosporous

Spores • Elaters • Modifications of outer spore wall • Dispersal • Uncurl when dry • Coiled when wet


Gametophyte

- Photosynthetic
- Unisexual but plant homosporous!
- Sex due to environmental cues, e.g., light intensity, quality (e.g., red light)
- Some female gametophytes exude a chemical that turns neighboring ones male

Pteridophyta: "True" Ferns

Leptosporangiate Fern Taxonomy

Polypodiophyta Polypodiopsida Polypodiales Polypodiaceae *sensu lato* Many genera; Various families (we'll put them just in this one for now) Osmundaceae *Osmunda* Marsileaceae *Marsilea Azolla Salvinia*

Polypodiophyta

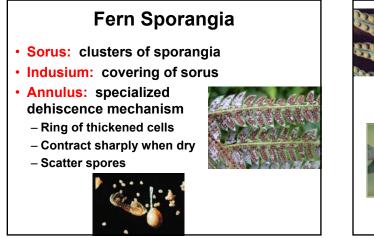
- Date to Devonian (like lycophytes & eusporangiate Monilophytes)
- Abundant in Carboniferous (Pennsylvanian)
- Modern fern genera date back to Tertiary & Cretaceous (not as old as extant lycophyte genera)
- Largest group of extant cryptogams (> 12,000 spp.)
- Morphologically diverse
- Variety of habitats – Still require water for fertilization

General Morphology

- Leptosporangiate
- Dictyostele
- · Leaves simple to compound
 - Very variable across fern groups
 - Megaphylls
- Circinate vernation
- Sporophyte dominant
 - Free-living

Circinate vernation

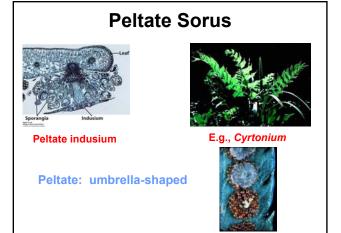
- Distinctive uncoiling of young leaves – Also in cycads (convergence)
- Fiddleheads (or croziers) – Prior to uncoiling

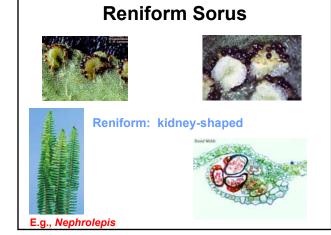


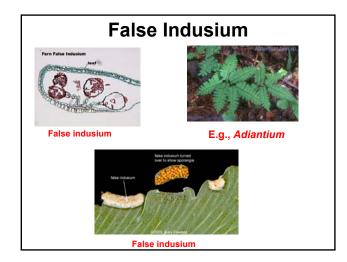
Reproductive Morphology

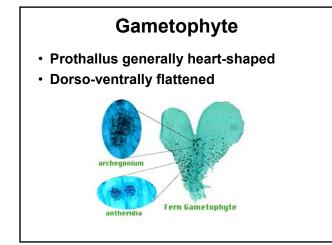
- Mostly homosporous
- Sporophylls = megaphylls anatomically
- Sporangia mostly in sori
 - Underside of leaves
 - That brown stuff that most people think is fungus or dirt

E.g., Phymatosorum

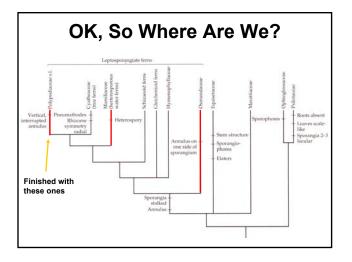

Indusium completely lacking




E.g., Platysereus




Exindusiate



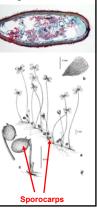
Osmunda cinnamomea (cinnamon fern)

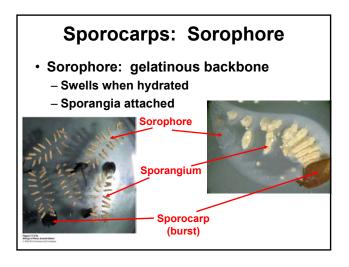
Heterosporous Water Ferns

- ONLY heterosporous "true" fern lineage - Marsileaceae & Salviniaceae (sister groups)
- Not particularly fern-like to look at
- Sporocarps: specialized adaptations to living in water
 - Modified sporophylls with tightly clustered sori; sporophyll fronds are hardened
 - Morphology varies across groups

Marsileaceae

- Water clovers
- Cosmopolitan in warm temperate & tropical areas

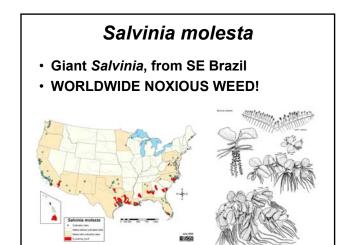


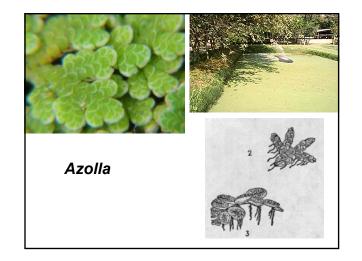

Marsilea

Marsilea Sporocarp

- Paired at sterile leaf base
- Burst when hydrated
- Each sorus with micro- & mega sporangia
- Can keep spores viable up to 100 years
 - Adaptations for growth in arid regions?
- Dispersed by waterfowl
- Sporangia lacking annulus

Spores & Gametophytes


- Megasporangia with just 1 megaspore – Megagametophyte with 1 archegonium
- Microsporangia with 16-64 microspores – Microspores burst as sperm released
- Gametophytes minute, endosporic


Salviniaceae

Salvinia • Rootless • 3 leaves - 2 floating, leaf-like • Produce sporocarps • Produce sporocarps

Salvinia molesta

- Aggressive weed with wide ecological tolerance
- Very rapid growth
- A single plant has been described to cover 40 square miles in 3 months!
- Rapidly expanding populations can overgrow & replace native plants
- Resulting dense surface cover prevents light & atmospheric oxygen from entering water
- Decomposing material drops to bottom, consuming dissolved oxygen needed by fish & other aquatic life

Azolla: Mosquito Ferns

- 1 leaf with 2 lobes
- Upper lobe houses Anabaena
 - Filamentous blue-green alga
 - Fixes atmospheric nitrogen
- Was important in past rice crops
 - Fertilizer for rice plants
 - Still used in many places for same reason