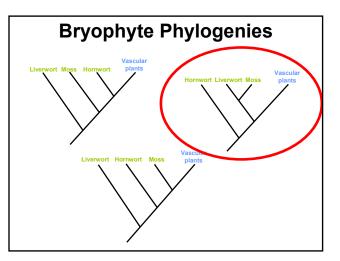


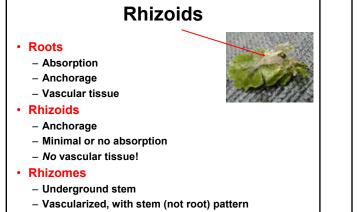
Bryophyte Divisions

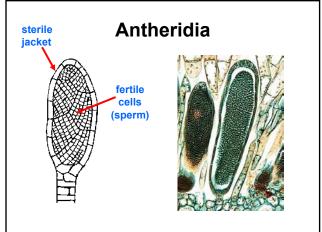
- Three divisions
 - -Hepatophyta (liverworts)
 - -Anthocerophyta (hornworts)
 - -Bryophyta (mosses)

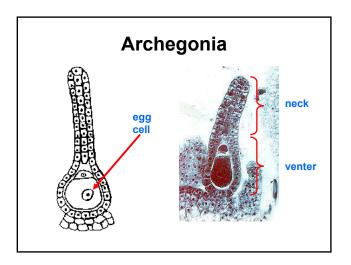
Common Characteristics

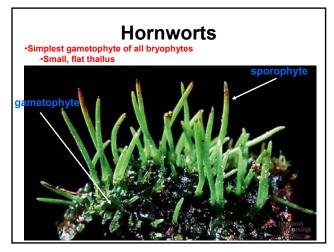
- Motile sperm
- Gametophyte thallus most prominent generation, not sporophyte
 - Thallus = plant tissue undifferentiated into a leaf, stem or root
- Most leaves lack cuticle
 For absorption
- No true leaves, stems or roots
 - General lack of vascular tissue
 - But see mosses, …

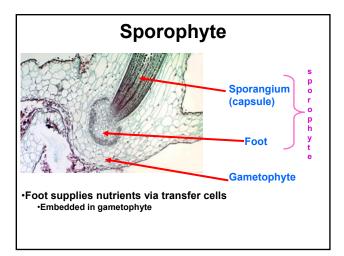

Homospory

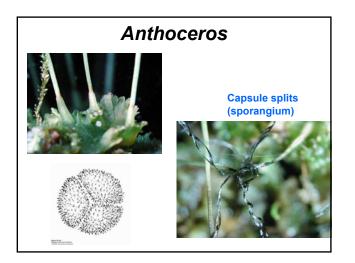

- All bryophytes homosporous
- Produce 1 kind of spore
- Spore develops into gametophyte
- Gametophyte produces both antheridia (sperm) and archegonia (eggs)

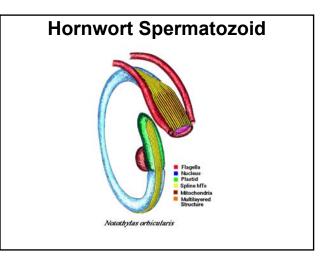



- In other words, what other people thought was correct was, in fact, wrong
- Based on an old taxonomy





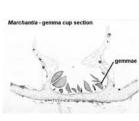




Sporophyte

- Contains true stomata
 - Gas exchange
- Under favorable conditions may outlive gametophyte
 - Foot acts as root
 - Conducting tissue may develop at sporangium base
 - Unusual condition of free-living sporophyte!

Liverworts



Liverworts

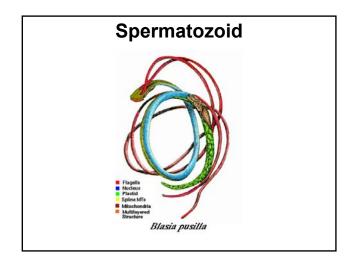
- Gametophyte often ribbon-like – Thallose or leafy
- Rhizoids
- Sporangia with 4 valves
- Capsule with elaters
 - Specialized, thickened cells
 - Dispersal
- Examples: Riccia & Marchantia
- Gametangia buried in deep, lengthwise depressions on upper surface of thallus

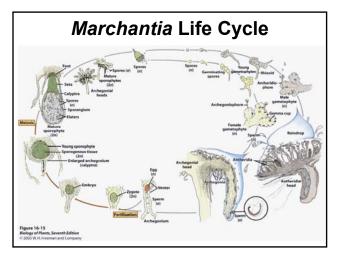
Asexual reproduction

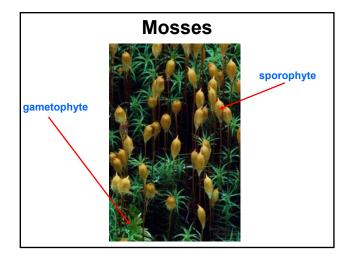
•Form on upper surface. •Contain gemmae (small green disks of tissue) •Raindrops break them free of cup, & these can turn into gametophytes

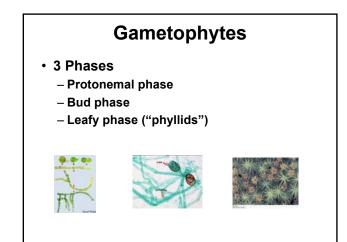
Sexual reproduction: Archegoniophores

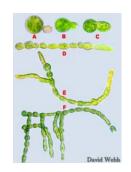
Marchantia is dioecious (separate male & female plants)




Marchantia Antheridiophores

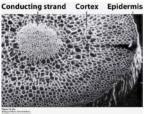






- True mosses

Protonemal Phase



- Creeping, filamentous
 phase
- Spores initially dormant
 - Water + light cause growth
 - Protonema comes out of spore
 - Growth is directed towards red light

Bud Phase Some protonemal cells develop into a mass of cells called a *bud*One bud cell functions as the tip of a caulid, controlling direction of further cell division Each bud develops into a mature gametophyte Rhizoids grow downward from bud

Vascular Plants?

- Some mosses have hydroids & leptoids
- Not the same as xylem & phloem

Hydroids

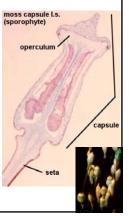
- Hydroids have no lignin
- Very slow translocation of water
- Limited distribution in plant
- Mosses can remain dry for a long time, yet come back to life when wetted
 - Up to 20 years in drought-tolerant species, yet come back to life within 4-24 hours!
 - Try it! Get some moss, let it dry for a few weeks or longer, then wet it

Leptoids

- Primitive sieve elements?
- Degenerate, inactive nuclei
- Many plasmodesmata in end walls
 Plasmodesmata connect cells
- Nearby parenchyma tissue may act as companion cells
 - Details when we cover anatomy
 - Companion cells (higher plants) help load/unload sugars, etc.

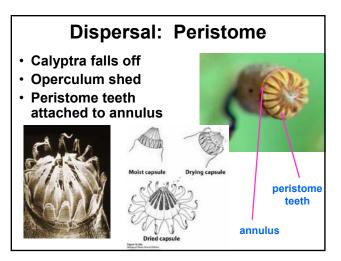
Asexual reproduction

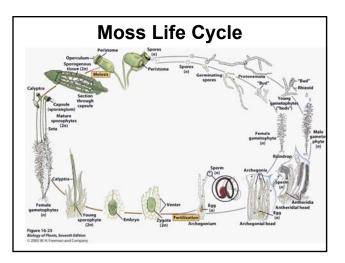
- Gemma cups (splash cups)
- Clonal
 - Protonema can produce more buds
- Phyllid tissue in wet soil may produce protonemal strands


Rhizoids can produce buds (sometimes)

Sexual Reproduction

- Gametangia produced at main caulid apex
- Monoecious or dioecious
- Apparent independent of light
 - Soil pH, air temp., etc.
- Antheridial heads
 - Antheridia elongate
 - Outer sterile jacket usually contains chloroplasts
 - Sperm have 2 flagella
- Archegonial heads.
 - Often retain a layer of water (phyllids aid in this)
 - Any sperm that land can swim on in


Moss Sporophyte


- Foot, seta and capsule
- Old archegonium increases in size, becomes the calyptra
 - Acts as temporary protective covering over sporangium
- Operculum covers sporangium opening
- Up to 50 million spores
 per sporangium

Moss Sporophyte

- Mature seta and capsules contain:
 - epidermis of cuticle
 - stomata
 - thick-walled steroids (small, thick-walled parenchyma cells)
 - a cortex region
 - central strand of conducting tissue
- Can produce 10-50% of photosynthesis needs
 - Rest from gametophyte

What good is it?


What about ecological indicators?

Sphagnum

- Sphagnum have large, empty, clear cells in epidermis that fill with water (via a pore) & serve as reservoir
- Worldwide carbon dioxide buffer
 - High CO₂ levels, take in more
 - Low levels, take in less
- Environmental indicators
- WWI wound dressing – Antiseptic & absorbent
- Peat bogs cover ~ 1% earth's surface
 - Half size USA!

