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Box 4.1: Chaos

, '

The fact that deterministic \:,quations can lead to seemingly unpredictable dynamics was first dis-
covered by Edward Lorenz in 1961 (see Lorenz 1963), AS a meteorologist working at MIT, Lorenz
was developing computer simulations to predict weather patterns .a coniplex model
involVing twelve differential equations. One day, he took the predicted weather from a printout
of a previous simulation and started a new set of simulations 'from these values. holding every-
thing else coostant. Soon thereafter, however, he noUced that the predicted weather was com-
pletely different from his previous results. He later realized that he started the second simulation
at a very slightly different position because he had rounded a variable when printing it out..
While the position was off by just 0.0001.27, the long-term weather predictions were
entirely different. A defining characteristic of chaos is this sensitivity to il/itiql wnditio/1s, such that•.
two trajectories that start near one another grow apart over time until they are no nearer than
two trajectories that started far apart. This sensitivity to initial conditions has become known as
the "butte\fJy effect:"

The tlapping of a si-ngle bU,tterfly's wirig today produces atiny change in the.state of the
atmosphere, a period cif tim€, 'what trhe atmos.phertc,actually does diverges from
what it would have done. So, in it month's time, a tornado that would have devastated
the Ind0nesian coast doesn't happen. Or maybe one that wasn't going to happen, does.
Stewart (1997), p. 141.

TIle emergence of chaos entirely equations led Lorenz to that there
was little hope of predicting long·term weather patterns,
In 1974, the biologist May (19741 published the simplest equation known to exhibit

chaos: the logistic equation in discrete time. The logistic model involves a single variable and
describes population growth as a quadratic function elf the cur·rent population size (equation
3.5a). Because the population size can overshoot the equilibritun, chaotic fluctuations around the
equilibrium are observed when the growth ratc is large (e.g., r .=; '2.7 'in Figure 4.2), Because the
dynamics are chaotic, the dynamks are to initial conditions. For example, two papula·
Hons 'whose in,iti I sizes are very similar (e.g., 10,000 and 10,001) become as different
in population size as a population whose inltial size is dramatically different (see Figure 4.1.1).
In the continuous-time logistic model, however, chaos is not observed (see Figure 4.3). Indeed,

continuous-tim'e models with only one or two variables never exhibit chaos. ThiS does not mean
that continuous-time models are always nicely 'behaved. In fact, continuous-time models with
three or more variables can exhibit chaos, Indeed, chaotic dynamics are a common feature of
food webs involVing more than two species (Hastings and Po'well 1991; j(lebanoff ami Hastings
1994; McCann and Hastings 1997), Interestingly, these m0gerS 'have been used to show that
some forms of species interactions (e.g., hoear food webs) are more prone to exhibit chaos than
other forms of species interactions (e.g., omnivory).
We have mentioned th'at a clefniing feattlre of chaos is sensilivi.ty to initial conditions.

are other clues that a model might exhibit chaos. One of them is that the system tends to oscil"
iate between a number of states that doubles ("bifurcates") repealedly as a parahleter in the model
is altered. This sort of behaVior is observed in the logistic model as we increase the intrinsic
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Figure 4.1.1: Sensitivity to initial conditions. A diagram of 'the population
size versus time for the logistic equation (3.5a), starting from thr.ee differ,
ent, population sizes. After a few hundred generatIOns, the population size '
dynamics of the two 1irajectories whose initial sizes were nCO) "" 10,000
(short dashed lines) and nCO) ,,,- 1C,OOl (long dashed lines) are no closer.
together than they are the population size dynamics starting from
nCO) '" 1 (solid lines). The parameter.s used were r = 2) and K = 20,00b.
Only time points 485 to 500 are shown to help see the differences
between the trajectories.

growth rate, r (Figure 4.2). For low values, of r, the population size approaches a single value K
(e.g., r = 0.7 in Figure 4.2a). For higher values of 'I the population size approaches an oscillation
ben,veen t\,vo values, above ,ind one below K (e.g., 1= 2.1 in Figure 4.2a). As r is increased
further, the. system settles down to a cycle involving four population sizes (e.g., r = 2.5 in Figure
4.2b). And as 'is even further, the number of points through which the cycle passes
(the period) doubles again and again. This period-doubling behavior is to viSUalize using
a bit'urci1tion diagram. .
Bifurcation diagrams illustrate the eventual states of a system' on the vertical axis as'a func-

tion of it parameter of interest on the horizontal axis. In the logistic model, the dynamics of the
logistic model are quite sensitive to the intrinsic 'groyvth ratc I, but not to other parameters stlch
as tIle carrying capacity K (Problem 4.3). Thus, we use I as the parameter of intere.st in our bifur-
cation diagram (Figure 4.1.2). To produce this diagram, we iterated the recursion equatipn (3.5a)
for a large number of generations (200) the dynamics approached an equilibrium, a cycle,
or showed no telldem:y to settle down. v\le then took the last 20 time points and plotted their
values on the veitical axis: For snl,all growth rates (r < 2), these last 20 time points were always
very near the carrying capacity (K = 1000). The first period doubling occurred at r := 2, above
which the population size cycled between two values (e.g., with r = 2.1, the population size
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Figure 4.1.2: Abifurcation diagram for the logislk model. The recursion equation (3.5a) was
iterated for 200' time steps, the last 20 of which are plotted on the vertical axis over a range
of r ;"alues along the horizontal axis (r was increased from 1 to 3.in steps of 0.001). In every
case, the initial population size was nCO) == lO, and the carrying capacity was K = 1000.

cycled between /I = 823 and rl == 1129, which give the vertical positions of the two points on
the bifurcation diagram for r = 2.1). These two values grew further apart from one another until
about r :: 2.45, where the next period-doubling event occurred: Each subsequent period-
doubling event occurred after shorter and shorter intervals in ,.. Eventually, the period doublings
occurred so rapidly as t increased that the dynamics passed through a p6irit at which an infinite
number of period doubling.s had occurred. It is at this point that the dynamics become chaotic
(at about r* = 2.569944).
Period· doubling is one route to chaos, and bifurcatiop diagrams allOW us to visualize this

process. If the bifurcation diagram for a model exh.ibits a forklike with,tongs that divide
faster and faster as the parameter of interest increases (as in hgure 4.1.2), expect to see chabs in
the model. ' .
A bifurcation diagram also illustrates that chaos does not imply a complete lack of order. In

fact, for r values slightly above "., the population size remains within a fairly narrow region
around the carrying capacHy. This region expands as I" increases and eventually includes zero at
r = 1. Between the onset of chaos at 1'* and extinction at r = 3, "periodic windows" appear, where
t'he population size no IO.l)-ger fluctuates chaotically bU,t cycles once again between a limited set
of values. For example, a cycle among three points is observed at r = 2.84. Forklike bifurcations
also occm within these periodic windows as r h increased further until, onte again, the dynamicS
become chaotic. .


