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Chapter 4

Box 4.1: Chaos

The fact that deterministic equations can lead to seemingly unpredictable dynaﬁlics was first dis-
covered by Edward Lorenz in 1961 (see Lorenz 1963}, As a meteorologist working at MIT, Lorenz
was developing computer simulations to predict weather patterns Llsing a complex model
involving twelve differential equations. One day, he took the predicted weather from a printout
of a previous simulation and started a new set of simulations from these values, holding every-
thing else constant. Soon thereafter, however, he noticed that the predicted weather was com-
pletely different from his previous results. He later realized that he started the second simulation
at a very slightly different position because he had rounded a variable when printing it out..
While the initial position was off by just 0.000127, the long-term weather predictions were
entirely different. A defining characteristic of chaos is this sensitivity to initigl conditions, such that
two trajectories that start near one another grow apart over time until they are no nearer than
two trajectories that started far apart. This sensitivity to initial conditions has become known as
the “butterfly effect:” :

The flapping of a single butterfly's wing today produces a tiny change in the state of the
atmosphere. Over a period of time, what the atmosphere actually does diverges from
what it would have done, So, in a month’s time, a tornado that would have devastated
the Indonesian coast doesn't happen. Or maybe one that wasn't going to happen, does.
Stewart (1997), p. 141.

The emergence of chaos from entirely deterministic equations led Lorenz to conclude that there
was little hope of predicting long-term weather patterns.

In 1974, the biologist Robert May {1974) published the simplest equation known to exhibit
chaos: the logistic equation in discrete time. The logistic model involves a single variable and
describes population growth as a guadratic function of the current population size (equation
3.5a). Because the population size can overshoot the equilibrium, chaotic fluctuations around the
equilibrium are observed when the growth rate is large (e.g., r = 2.7 in Figure 4.2). Because the
dynamics are chaoctic, the dynamics are sensitive to initial conditions. For example, two popula-
tions whose initial sizes are very similar (e.g., 10,000 and 10,001) eventually become a$ different
in population size as a population whose initial size Is dramatically different (see Figure 4.1.1).

In the continuous-time logistic model, however, chaos is not observed (see Figure 4.3}, Indeed,
continuous-time models with only ene or two variables never exhibit chaos. This does not mean
that continuous-time models are always nicely behaved. In fact, continuous-time models with
three or more variables can exhibit chaos. Indeed, chaotic dynamics are a common feature of
food webs involving more than two species (Hastings and Powell 1991; Klebanoff and Hastings
1994; McCann and Hastings 1997). Interestingly, these models have been used to show that
some forms of species interactions (e.g., linear food webs) are more prone to exhibit chaos than
other forms of species interactions {e.g., omnivory).

We have mentioned that a defining feature of chaos is sensitivity to initial conditions. There
are other clues that 2 model might exhibit chaos. One of them is that the system tends to oscil-
Jate between a number of states that doubles (“bifurcates”) repeatedly as a parameter in the model
is altered. This sort of behavior is observed in the logistic model as we increase the intrinsic
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Box 4.1 (continued)
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Figure 4.1.1: Sensitivity to initial conditions. A diagram of the population
size versus time for the logistic equation {3.5a), starting from three differ-
ent population sizes. After a few hundred generations, the population size -
dynamics of the two trajectorfes whose initial sizes were n(0) = 10,000
(short dashed lines} and n(Q) = 10,001 (Jong dashed lines) are no closer.
together than they are to the population size dynamics starting from

n(0) = 1 (solid lines). The parameters used were r = 2.7 and K = 20,000.
Only time points 485 to 500 are shown to help see the differences
between the trajectories. :

growth rate, r (Figure 4.2). For low values of 7, the population size approaches a single value K
(e.g., r = 0.7 in Figure 4.2a). For higher values of 1, the population size approaches an oscillation
between two values, one above and one below K (e.g., r = 2.1 in Figure 4.2a). Asr is increased
further, the system settles down to a cycle involving four population sizes (e.g., r = 2.5 in Figure
4.2b), And as r is increased even further, the number of points through which the cycle passes
(the period) doubles again and again. This period-doubling behavior is easiest to visualize using
a bifurcation diagram. ;

Bifurcation diagramis illustrate the eventual states of a system on the vertical axis as a func-
tion of a parameter of interest on the horizontal axis. In the logistic model, the dynamics of the
logistic model are quite sensitive to the intrinsic growth rate r, but not to other parameters such
as the canrying capacity K {(Problem 4.3). Thus, we use r as the parameter of interest in our bifur-
cation diagram (Figure 4.1.2). To produce this diagram, we iterated the recursion equation (3.5a)
for a large number of generations (200) until the dynamlcs approached an equilibrium, a cycle,
or showed no tendency to settle down. We then took the last 20 time points and plotted their
values on the vertical axis. For small growth rates (r < 2), these last 20 time points ‘were always
very near the carrying capacity (K = 1000}). The first period doubling occurred at r = 2, above
which the populahon size cycled between two values (e.g., with r = 2.1, the populauon size
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Box 4.1 (continued)

g 2 5
. £33
2000 E 58 b
£ o %
2 B 2 =
o 1750 = g 4=
=~ = i
S = =4 5
ot i s 2 E. S
21500 | g Ty
= [ S k {
S(; 5 - :’:’_‘ ¢
N o= (250} =
Ef II : ¢
8 g =k
Tam & :
£ g 1000} <
S8 10t (T
% _
5 500 |
7] B
A2 L
=} L
250 |
s alplde s & Firaga (Ul

- n i i < -
1.5 2 2.51\ 3
* p

Intrinsic growth rate (7) 7

Figure 4,1.2: A bifurcation diagram for the logistic model. The recursion equation (3.5a) was
iterated for 200 time steps, the last 20 of which are plotted on the vertical axis over a range
of rvalues along the herizontal axis (r was increased from 1 to 3.in steps of 0.001). In every
case, the initial population size was n(0) = 10, and the carrying capacity was K = 1000,

cycled between » = 823 and n = 1129, which give the vertical positions of the two points on
the bifurcation diagram for r = 2.1). These two values grew further apart from one another until
about r = 2.45, where the next period-doubling event occurred:. Each subsequent period-
doubling event occurred after shorter and shorter intervals in r. Eventually, the period doublings

_ occurred so rapidly as r increased that the dynamics passed through a point at which an infinite

number of period doublings had occurred. It is at this point that the dynamics become chaotic
(at about r* = 2.569944). ' :

Period doubling is one route to chaos, and bifurcation diagrams allow us to visualize this
process. If the bifurcation diagram for a mode] exhibits a forklike shape with tongs that divide
faster and faster as the parameter of interest increases (as in Figure 4.1.2), expect to see chaos in
the model. ' 1

A bifurcation diagram also illustrates that chaos does not imply a complete lack of order. In
fact, for r values slightly above r¥ the population size remains within a fairly narrow region
around the carrying capacity. This region expands as r increases and eventually includes zero at
r = 3. Between the onset of chaos at r* and extinction at r = 3, “periodic windows” appear, where
the population size no longer fluctuates chaotically but cycles once again between a limited set
of values. For example, a cycle among three points is observed at r = 2.84, Forklike bifurcations
also occur within these periodic windows as 7 is increased further until, once again, the dynamics
become chaotic.




