Jones, Maillardet, and Robinson 2009.
3.9 Exercises Introduction to Scientific

Programming and Simulation Using R.
1. Consider the function y = f(x) defined by

r | <0 €(0,1] >1

Supposing that you are given z, write an R expression for y using if state-
ments.

Add your expression for y to the following program, then run it to plot the
function f. :

input
x.values <- seq(-2, 2, by = 0.1)

for each x calculate vy

n <- length(x.values)

y.values <- rep(0, n)

for (i in 1:n) {
x <- x.values[i]
your expression for y goes here
y.values[i] <~ y

output
plot(x.values, y.values, type = "1")

Your plot should look like Figure 3.2. Do you think f has a derivative at
17 What about at 07
We remark that it is possible to vectorise the program above, using the

ifelse function.

T

2. Let h(z,n) = 1+a+2> 4+ +2™ = Yoo o', Write an R program to
calculate h(x,n) using a for loop.
3. The function A(x,n) from Exercise 2 is the finite sum of a gecometric se-
quence. It has the following explicit formula, for « # 1,
] — g™t!

h(z,n) = o
-z

borretts

borretts
Jones, Maillardet, and Robinson 2009. Introduction to Scientific Programming and Simulation Using R.

44

6.

BASIC PROGRAMMING

o
© -
w
[}
3
T Y
>
<
~ -
o -
1 | 1 | |
-2 -1 0 1 2

x.values

Figure 3.2 The graph produced by Exercise 1.

Test your program from Exercise 2 against this formula using the following
values
T n h(z,n)
0.3 55 1.428571
6.6 8 4243335.538178

You should use the computer to calculate the formula rather than doing it
yourself.

First write a program that achieves the same result as in Exercise 2 but
using a while loop. Then write a program that does this using vector
operations (and no loops).

If it doesn’t already, make sure your program works for the case © = 1.

To rotate a vector (z,)T anticlockwise by 6 radians, you premultiply it by

the matrix
cos(f) —sin(f)
sin(#) cos(#)

Write a program in R that does this for you.
Given a vector x, calculate its geometric mean using both a for loop and

. . . \1/n
vector operations. (The geometric mean of x1,...,%n 18 (TTy @))

EXERCISES 45

You might also like to have a go at calculating the harmonic mean,
(XF, 1/2;)", and then check that if the x; are all positive, the harmonic
mean is always less than or equal to the geometric mean, which is always
less than or equal to the arithmetic mean.

7. How would you find the sum of every third element of a vector x?

8. How does program quad2.r (Exercise 3.2.1) behave if a2 is 0 and/or al is
07 Using if statements, modify quad2.r so that it gives sensible answers
for all possible (numerical) inputs.

Chart the flow through the following two programs.

(a). The first program is a modification of the example from Section 3.6,

where is now an array. You will need to keep track of the value of
each element of z, namely z[1], z[2], etc.

threexpluslarray.r
x <- 3
for (i in 1:3) {
show(x)
if (x[i] %% 2 == 0) {
x[i+1] <- x[il/2
} else {
x[i+1] <- 3=x[i] + 1
}
}

show (x)

. The second program implements the Lotka-Volterra model for a

‘predator-prey’ system. We suppose that z(t) is the number of prey
animals at the start of a year ¢ (rabbits) and y(¢) is the number of
predators (foxes), then the Lotka-Volterra model is:

z(t+1) = z(t)+b-z(t) —d, z(t) - y(t):
y(t+1) = y(t) +b-dr-a(t) - y(t) —ds - y(t);
where the parameters are defined by:

b, is the natural birth rate of rabbits in the absence of predation;

d, is the death rate per encounter of rabbits due to predation;

dy is the natural death rate of foxes in the absence of food (rabbits);
by is the efficiency of turning predated rabbits into foxes.

program spuRs/resources/scripts/predprey.r

Lotka-Volterra predator-prey equations

br <- 0.04 # growth rate of rabbits

dr <- 0.0005 # death rate of rabbits due to predation

df <- 0.2 # death rate of foxes

bf <- 0.1 # efficiency of turning predated rabbits into foxes
x <- 4000
y <= 100

while (x > 3900) {

46

10.

11.

12.

BASIC PROGRAMMING

cat("x =", x, "y =", y, "\a")

x.new <- (1+br)*x - dr*x*y

y.new <- (1-df)=*y + bixdrxxxy

X <- X.new

y <- y.new

}

Note that you do not actually need to know anything about the pro-
gram to be able to chart its flow.

Write a program that uses a loop to find the minimum of a vector x, without
using any predefined functions like min(. .) orsort(...).

You will need to define a variable, x.min say, in which to keep the small-
est value vou have yet seen. Start by assigning x.min <= x[1] then use
a for loop to compare x.min with x[2], x[3]. ete. If/when you find
x[i] < x.min, update the value of x.min accordingly.

Write a program to merge two sorted vectors into a single sorted vector.
Do not use the sort (x) function, and try to make your program as efficient
as possible. That is, try to minimise the number of operations required to
merge the vectors.

The game of craps is played as follows. First, you roll two six-sided dice; let
= be the sum of the dice on the first roll. If x = 7 or 11 you win, otherwise
you keep rolling until either you get again, in which case you also win, or
until you get a 7 or 11, in which case you lose.

Write a program to simulate a game of craps. You can use the following
snippet of code to simulate the roll of two (fair) dice:

x <- sum(ceiling(6*runif(2)))

. Suppose that (z(t),y(t)) has polar coordinates (Vt,2mt). Plot (x(t),y(t))

for t € [0,10]. Your plot should look like Figure 3.3.

-2

-3

-3

-2 -1 0 1 2

Figure 3.3 The output from Ezxercise 13.

	exercises 1 copy
	exercises 10 copy
	exercises 4 copy
	exercises 7 copy
	fig3.3 copy

