
Single Source Shortest Path

Dr. Gur Saran Adhar

Reference clrs, Chapter 24, Page 580-



+ +

Introduction to Problem:

Single Source Shortest Path

Reference: clrs, page-580

Given a weighted, directed graph G = (V, E),
with weight function w : E → R mapping edges
to real-values weights. The weight of a path p =
〈v0, v1, . . . vk〉 is the sum of the weights of edges in the
path

w(p) =
k∑

i=1

w(vi−1, vi)

The shortest-path weight from u to v is defined as

δ(u, v) =

{
min{w(p) : u → v} if there is a path u to v
∞ otherwise

A shortest-path from u to v is then defined as any
path p with weight w(p) = δ(u, v)
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Variants of the Problem:

1. Single-destination shortest-

paths problem: Find shortest path to

a given destination vertex t from each

vertex v. By reversing the direction of

each edge, we can reduce it to a single

source problem

2. Single-pair shortest-path problem:

Find a shortest path from u to v for given

vertices u and v.

3. All-pair shortest-path problem: Find a

shortest path from u to v for every pair

of vertices u and v (chapter-25).
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Optimal Substructure

Property: The shortest path between two

vertices contains other shortest path within

it.

Sketch of the proof: Decompose the short-

est path p =< v1, v2, . . . , vk > into p1i =

v1 → vi, pij = vi → vj and pjk = vj → vk.

The weight of the shortest path w(p) =

w(p1i) + w(pij) + w(pjk). Now if there is a

shorter path p
′
ij between i and j. That is,

w(p
′
ij) < w(pij) then there is shorter path

with weight w(p1i)+w(p
′
ij)+w(pjk) than the

original shortest path p. Which means the p

could not have been shortest.
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V1 Vi Vj Vk
w(p(1i)) w(p(jk))w(p(i j))

w(p(i j))’’
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Negative Weight Edges

Can shortest path contain negative cycles?

If there are no negative edge cycles reach-

able from the source s, the shortest path

weight δ(s, v) remains well defined for all ver-

tices v, even if there may be edges with neg-

ative weights.

If there is a negative weight cycle reachable

from s, shortest path weights are not well

defined. No path from s to a vertex on the

cycle can be a shortest path.

A ”lesser-weight” path can always be found.
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Cycles

Can a shortest path contain any cycle?

Sketch of the proof: Suppose p is a short-

est path p =< v0, v1, . . . , vk > and c is a pos-

itive weight cycle c =< vi, vi+1, . . . vj > (so

that vi = vj and w(c) > 0), then another path

p
′
=< v0, vi, vj+1, . . . vk > ( the path p minus

the cycle c) has weight w(p
′
) = w(p) − w(c)

which is less then w(p) and therefore p could

not have been the shortest path.
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Representation Of shortest path

Since no cycles are permissible single-source

shortest paths are represented by shortest

path trees rooted at s.

Note: shortest paths and shortest path

trees are not unique
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INITIALIZE-SINGLE-SOURCE(G, s)

1 for each vertex v ∈ V (G)
2 do d[v] = ∞
3 π[v] = NIL
4 d[s] ← 0

Reference clrs 586
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RELAX(u, v, w)

1 if d[v] > d[u] + w(u, v)
2 then d[v] = d[u] + w(u, v)
3 π[v] = u { set u the predecessor of v }

Reference clrs 586
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BELLMAN-FORD(G, w, s)

1 INITIALIZE-SINGLE-SOURCE(G, s)
2 for i = 1 to | V (G) | −1
3 do for each edge (u, v) ∈ E(G)
4 do RELAX(u, v, w)
5 for each edge (u, v) ∈ E(G)
6 do if d[v] > d[u] + w(u, v)
7 then return FALSE
8 return TRUE

Reference clrs 588
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Dijkstra Algorithm: Main Idea

• Dijkstra’s Algorithm solves single-source

shortest paths problem on a weighted di-

rected graph in which all edge weights are

non-negative.

• Dijkstra’s Algorithm maintains a set S of

vertices whose final shortest paths from

the source s have already been deter-

mined.

• The algorithm repeatedly selects one ver-

tex u ∈ V −S with the minimum shortest

path, adds u to S, and relaxes all edges

leaving u.

• A min-priority queue Q of vertices, keyed

by their d values is used to select u as the

algorithm proceeds.
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DIJKSTRA(G, w, s)

1 INITIALIZE-SINGLE-SOURCE(G, s)
2 S ← φ
3 Q ← V (G)
4 while Q 6= φ
5 do u ← EXTRACT −MIN(Q)
6 S ← S ∪ {u}
7 for each vertex v ∈ Adj[u]
8 do RELAX(u, v, w)

Reference clrs 595
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Arbitrage

Arbitrage is the use of discrepancies in cur-
rency exchange rates to transform one unit
of currency into more than one unit of the
same currency.

For example, suppose that 1 U.S. dollar buys
0.6 English Pounds; 1 English pound buys 120
Japanese Yen; and one Japanese Yen buys
0.014661 U.S. dollars. Then by converting
currencies, a trader can turn a 1 U.S. dollar
and 0.6*120*0.014661 = 1.055 U.S. dollar,
thus turning a profit of 5.56 percent.

Suppose that we are given n currencies c1, c2, . . . cn

and an nxn table of exchange rates R, such
that one unit of currency i buys R[i, j] units
of currency j.

Give an algorithm to determine whether or
not there exists a sequence of currencies <
ci1, ci2, . . . , cik > such that

R[i1, i2] ∗R[i2, i3] ∗ . . . ∗R[ik, i1] > 1
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Difference Constraints

Solving a system of difference constraints

when each constraint is a simple linear in-

equality of the form:

xj − xi ≤ bk

where 1 ≤ i, j ≤ n and 1 ≤ k ≤ m
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For example:



1 −1 0 0 0
1 0 0 0 −1
0 1 0 0 −1

−1 0 1 0 0
−1 0 0 1 0
0 0 −1 1 0
0 0 −1 0 1
0 0 0 −1 1







x1
x2
x3
x4
x5



≤




0
−1
1
5
4

−1
−3
−3




x1 − x2 ≤ 0, (1)

x1 − x5 ≤ −1, (2)

x2 − x5 ≤ 1, (3)

x3 − x1 ≤ 5, (4)

x4 − x1 ≤ 4, (5)

x4 − x3 ≤ −1, (6)

x5 − x3 ≤ −3, (7)

x5 − x4 ≤ −3, (8)
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