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Introduction to Problem: Max Flow

Given a tuple G = (V, c, s, t), where V is the set of
vertices, s, t ∈ V are distinguished vertices called the
source and the sink respectively, and c is a function
c : V 2 → R+ assigning a nonnegative real capacity
to each pair of vertices. We make G into a directed
graph defining the set of directed edges

E = {(u, v) | c(u, v) > 0}
Edges can be thought of as wires or pipes along which
electric current or fluid can flow. The capacity rep-
resents the carrying capacity of wires or pipes, say in
amps or gallons per minute.
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Problem Statement: Max Flow

The max flow problem is to determine the maximum
possible flow that can be pushed from s to t, and to
find a routing that achieves this maximum
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Definitions: flow

A function f : V 2 → R is called a flow if the following
three conditions are satisfied.
(a). skew symmetry: for all u, v ∈ V

f(u, v) = −f(v, u)

(b). conservation of flow at interior vertices: for all
vertices u not in {s, t}

∑

v∈V

f(u, v) = 0

That is, net flow (total flow out minus total flow in)
at any interior vertex u is 0.
(c). capacity constraint: for all u, v

f(u, v) ≤ c(u, v)
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Definitions: cut

An s, t − cut (or just cut when s, t are understood) is
a pair A, B of disjoint subsets of V whose union is V
and s ∈ A, t ∈ B. The capacity of the cut denoted
c(A, B), is:

c(A, B) =
∑

u∈A,v∈B

c(u, v)

flow across the cut is similarly defined as:

f(A, B) =
∑

u∈A,v∈B

f(u, v)

f(A, B) is the sum of the positive flow values on edges
from A to B minus the sum of the positive flow values
on edges from B to A.
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Definitions: Value of flow in a network

The value of a flow f , in a network denoted | f |, is:

| f |= f({s}, V − {s}) = f(V − {t}, {t})
or in other words the net flow out of s is same as net
flow into the sink.
In the illustration the flow is 6.

Note: Although the definition gives the value of flow
with respect to the cut {s}, V −{s}, (and V −{t}, {t} )
the flow is the same no matter where it is measured.

+ 8



+ +

Definitions: flow across a cut

For any s, t-cut A, B and flow f

| f |= f(A, B)

| f |≤ c(A, B)
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Definitions: Residual Capacity of an edge

Given a flow f on G with capacities c, the residual
capacity r is defined for each pair of vertices as:

r = c− f

The residual graph associated with G = (V, E, c) and
flow f is the graph Gf = (V, Ef , r), where

Ef = {(u, v) | r(u, v) > 0}
The residual capacity r(u, v) represents the amount of
additional flow that could be pushed along the edge
(u, v) without violating the capacity constraint.
Note: When the flow is negative, the residual capacity
can be greater than the capacity. For example, if
c(u, v) = 16 and f(u, v) = −4 the residual capacity is
16− (−4) = 20
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Definitions: Augmenting Path

Given G and flow f on G, an augmenting path is a
directed path from s to t in the residual graph Gf .

Note: An augmenting path represents a sequence of
edges on which the capacity exceeds the flow.
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Definitions: Residual Capacity of an Aug-

menting Path

The maximum amount by which we can increase the
flow on each edge in an augmenting path p is the
residual capacity of p, given by:

cf(p) = min{cf(u, v) : (u, v) is on p}
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FORD-FULKERSON-METHOD(G, s, t)

1 initialize flow f to 0
2 while there exists an augmenting path p
3 do augment flow f along p
4 return f

Reference clrs 651
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Max-Flow Minimum-Cut Theorem

If f is a flow network G = (V, E) with source s and
sink t, then the following conditions are equivalent:
1. f is a maximum flow in G
2. The residual network Gf contains no augmenting

paths
3. | f |= c(S, T ) for some cut (S, T ) of G.

Reference: clrs2e p-657
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FORD-FULKERSON-METHOD(G, s, t)

1 for each edge (u, v) ∈ E(G)
2 dof [u, v] ← 0
3 f [v, u] ← 0
4 while there exists a path p from s to t in the residual network Gf

5 do cf(p) ← min{cf(u, v) : (u, v) is in p}
6 for each edge (u, v) in p
7 do f [u, v] ← f [u, v] + cf(p)
8 f [v, u] ← −f [u, v]
9 cf(u, v) ← cf(u, v)− f [u, v]/* Adhar */
10 cf(v, u) ← cf(v, u)− f [v, u]/* Adhar */

Reference clrs 651

+ 21



+ +

SS TT

UU

VV

SS

UU

1,000,000
1,000,000

1,000,0001,000,000

11

VV

999,999

999,999

1,000,000

1,000,000

11
11

11

Reference clrs page 660

+ 22



+ +

Edmond Karp Algorithm

Worst case complexity of FORD FULKERSON algo-
rithm is O(E | f∗ |).

The complexity of FORD FULKERSON algorithm is
improved by implementing the computation of the
augmenting path (in line 4) with a breadth first search.
That is, the augmenting path is the shortest path from
s to t in the residual network.
The resulting algorithm is called Edmond Karp Algo-
rithm

Reference clrs 660
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Network Flow Problem : Revisited

Let x̄ = x1, x2, . . . , xn represent the values of the flow
for all the edges (n is the number of edges here).
The objective function is the value of the total flow
in the network:

c(x̄) =
∑

i∈S

xi

where S is the set of edges leaving the source.
subject to the constraints:

• The flow xi in a link is limited by its capacity ci.

xi ≤ ci

for all i, 1 ≤ i ≤ n
• The conservation constraint- the flow into a node

and out of the node are equal.
∑

xioutofv

xi −
∑

xjintov

xj = 0

for all v ∈ V − {s, t}
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