Dynamic Programming Algorithms for Some Problems

Dr. Gur Saran Adhar

Reference clrs, Chapter 15

+ +

Dynamic Programming: is a general technique which can be used to solve many optimization problems that exhibit optimal substructure. That is, an optimal solution to the problem contains within it optimal solution to sub-problems.

Solution of a large problem can be found by examining the solution of smaller sub-problems. Reference clrs, Chapter-15, Page-339

List Of Some Example Problems

Problem: Assembly Line Scheduling:

+ +

There are two assembly lines, each with n stations. Find the fastest way through the factory. Notation:

 $a_{i,j}$: assembly time at station $S_{i,j}$

 $t_{i,j}$: transfer time from assembly line i to j after station $S_{i,j}$.

Reference clrs page 324 Chapter-15

Notation: Assembly Line Scheduling:

Recurrence Equation: Assembly Line Scheduling:

+ +

$$
f_1[j] = \begin{cases} e_1 + a_{1,1} & \text{if } j = 1\\ \min(f_1[j-1] + a_{1,j}, f_2[j-1] + t_{2,j-1} + a_{1,j}) & \text{if } j \ge 2 \end{cases}
$$

$$
f_2[j] = \begin{cases} e_2 + a_{2,1} & \text{if } j = 1\\ \min(f_2[j-1] + a_{2,j}, f_1[j-1] + t_{1,j-1} + a_{2,j}) \\ \text{if } j \ge 2 \end{cases}
$$

Reference clrs page 328 Chapter-15

Example: Assembly Line Scheduling:

Problem: Sequencing the Multiplication of Matrices:

To multiply n matrices

 $A = A_1 \times A_2 \times A_3 \times \ldots \times A_n$

where each A_i has r_{i-1} rows and r_i columns, the problem is to determine the sequence in which the matrices should be multiplied so that the number of multiplications is minimum over all sequences.

Note: we are not actually multiplying the matrices, the goal is to determine the order.

Reference clrs page 331 Chapter-16

Example: Sequencing the Multiplication of Matrices:

+ +

To multiply 3 matrices $\langle A_1, A_2, A_3 \rangle$ of dimensions 10×100 , 100×5 and 5×50 if they are multiplied according to parenthesization $(A_1, A_2), A_3$) there are a total of 7500 multiplications; whereas if they are multiplied according to $(A_1(A_2, A_3))$ there are 75000 multiplications. Thus the multiplication according to first parenthesization is ten times faster. Conclusion: The order in which the matrices are multiplied can have a significant effect on the total number of multiplication operations required to find A

Reference clrs page 332 Chapter-16

Recurrence: Sequencing the Multiplication of Matrices:

Let $m[i, j]$ be the minimum cost (number of scalar multiplications) needed to compute the matrix $A_{i...i}$. For the full problem the cost to compute $A_{1...n}$ would be $m[1, n]$. The recursive equation is :

$$
m[i,j] = \begin{cases} 0 & \text{if } i = j \\ \min_{i \le k < j} \{ m[i,k] + m[k+1,j] + p_{i-1}p_k p_j \} & \text{if } i < j \end{cases}
$$

The term $m[i, k]$ is the minimum cost of evaluating $A_{i...k} = A_i \times A_{i+1} \times \ldots A_k$ and $m[k+1,j]$ is the cost of evaluating $A_{k+1...j} = A_{k+1} \times A_{k+2} \times \ldots A_j.$ The third term is the cost of multiplying these two matrices.

Reference clrs page 334 Chapter-16

```
Problem: Longest Common Subsequence:
 Given two sequences :
 X = <x_1, x_2, \ldots, x_m> and
 Y = \langle y_1, y_2, \ldots, y_n \rangleFind a maximum length common subsequence
 of X and Y.
 note: skipping is allowed when finding
 common subsequence. It is not a
 "consecutive" subsequence.
Reference clrs page 350 Chapter-15
```
Problem: Longest Common Subsequence:

+ +

Example: A strand of DNA of one organism may be:

ACCGGT CGAGT GCGCGGAAGCCGGCCGAA and the DNA of another organism may be: GTCGTTCGGAATGCCGTTGCTCTGTAA and the goal of comparing two strands of DNAs is to determine how "similar" two DNAs are, as a measure of how closely related two organisms are.

Reference clrs page 350 Chapter-15

+ +

Problem: Longest Common Subsequence:
\nTheorem:
\nLet
$$
X = \langle x_1, x_2, ..., x_m \rangle
$$
 and
\n $Y = \langle y_1, y_2, ..., y_n \rangle$
\nbe two sequences, and let
\n $Z = \langle z_1, z_2, ..., z_k \rangle$ be LCS of X and Y then:
\n1. if $x_m = y_n$ then $z_k = x_m = y_n$ and
\n $Z_{k-1} = LCS(X_{m-1}, Y_{n-1})$
\n2. $x_m \neq y_n$ and $x_m \neq z_k$
\nthen $Z = LCS(X_{m-1}, Y)$
\n3. $x_m \neq y_n$ and $y_n \neq z_k$
\nthen $Z = LCS(X, Y_{n-1})$
\nReference clrs page 350 Chapter-15

Problem: Longest Common Subsequence:

+ +

Observation: To find LCS of X and Y we need to find the LCS of X and Y_{n-1} and also LCS of X_{m-1} and Y. But each of subproblems in turn have sub-subproblems of find LCS of X_{m-1} and Y_{n-1} .

Conclusion: When solutions of subproblems share solution of sub-subproblems don't recompute them just store them away. Reference clrs page 350 Chapter-15

Problem: Longest Common Subsequence:

+ +

Let $c[i, j]$ be the length of LCS of sequences X_i and \check{Y}_j then the following recursive formulae hold.

$$
c[i,j] = \begin{cases} \n0 \text{if } i = 0 \text{ or } j = 0\\ \nc[i-1, j-1] + 1 & \text{if } i, j > 0 \text{ and } x_i = y_j\\ \n\max(c[i-1, j], c[i, j-1]) & \text{if } i, j, > 0 \text{ and } x_i \neq y_j \n\end{cases}
$$

Reference clrs page 350 Chapter-15

Problem: KnapSack:

Given an integer K (say the size of the knapsack), and n items of different sizes such that the i^{th} item has an integer size $S[i]$, find a subset of the items whose sizes sum to exactly K , or determine that no such subset exists.

Note: in a 0-1 knap sack either the item is picked or not picked. There is no fractional amount of item which can be picked.

Reference Udi Manber page 108-100 for 0-1 knapsa Reference clrs page 382 Chapter-15 for fractiona knapsack

Algorithm Knap_Sack (S, K) Input: S (an array of size n storing the sizes of the items K (the size of the KnapSack) **Output:** P (a two dimensional array such that $P[i, k]$.exist = true if there exists a solution to the knapsack problem with

first i items and a knapsack of size k

element belongs to that solution)

 $P[i, k]$.belong $= true$ if the i^{th}

+ +

Reference Udi Manber page 108-110

Algorithm Knap_Sack (S, K)

begin $P[0,0]$.exist = true; for $k = 1$ to K do $P[0, k]$.exist = false; {comment –there is no need to initialize $P[i, 0]$ for $i > 1$ it will be computed from $P[0, 0]$ **for** $i = 1$ to n **do** {comment –for each item} **for** $k = 0$ to K do {comment-for each incremental size} $P[i, k]$. $exist = false$; {comment –the default value} if $P[i-1, k]$.exist then $P[i, k]$.belong = false; $P[i, k]$.exist = true; //there is no solution with any selection from fir else if $k - S[i] \geq 0$ then if $P[i-1, k-S[i]]$.*exist* then $P[i, k]$.exist = true; $P[i, k]$.belong = true; end.

Problem: Optimal Polygon Triangulation: Given a Convex polygon

+ +

 $P = \langle v_0, v_1, \ldots, v_{n-1} \rangle$ and a weight function w defined on triangles formed by sides and chords of P. The Optimal Polygon Triangulation problem is to find a triangulation that minimizes the sum of the weights in the triangulation.

Problem: Optimal Polygon Triangulation: One weight function w on triangles is:

 $w(\triangle v_i v_j v_k) = |v_i v_j| + |v_j v_k| + |v_i v_k|$

where $\left|v_iv_j\right|$ denotes the Euclidean distance from v_i to v_j .

 $(((A1(A2,A3))(A4(A5,A6)))$

+ +

Problem: Minimum Edit Distance: Given two strings $A = \{a_1, a_2, \ldots a_n\}$, and $B = \{b_1, b_2, \ldots b_m\}$ and the cost of transformation operations such as copy, insert, delete, and replace, the edit **distance** from A to B is the cost of transformation sequence that transforms A to B . The 'Minimum Edit Distance' problem is to find the edit distance with the least cost.

Reference Udi Manber page 155-158 Reference clrs page 364 Chapter-15

Example: Minimum Edit Distance:

In the example following transformationoperations are used:

+ +

- Copy:
- Replace:
- Delete:
- Insert:
- Twiddle:
- Kill:

Reference Udi Manber page 155-158 Reference clrs page 364 Chapter-15

Example: Minimum Edit Distance:

A source string algorithm is transformed to a target string altruistic by following sequence of transformations:

The cost of transformation is

 $(3.cost(copy)) + cost(replace) + cost(delete) +$ $(4. \cos t (insert)) + \cos t (twiddle) + \cos t (kill)$

We consider all the different possibilities of constructing the minimum change from A to B with the aid of best changes of smaller sequences involving A and B .

 $A(i)$ denotes the prefix string a_1, a_2, \ldots, a_i and

 $B(j)$ denotes the prefix string b_1, b_2, \ldots, b_j .

 $C(i, j)$ denotes the minimum cost of changing $A(i)$ to $B(j)$.

and Denote

$$
m[i,j] = \begin{cases} 0 & \text{if } a_i = bj \\ 1 & \text{if } a_i \neq b_j \end{cases}
$$

Three transformations (plus one do nothing) are considered.

delete:

if a_n is deleted in the minimum change from $A(n)$ to $B(m)$, then the best change would be from $A(n-1)$ to $B(m)$ plus one more deletion. That is:

$$
C(n, m) = C(n - 1, m) + deletion_cost
$$

insert:

if the minimum change from $A(n)$ to $B(m)$ involves insertion of a character to match b_m , then we have

 $C(n, m) = C(n, m - 1) + insertion_cost$

That is, we find the minimum change from $A(n)$ to $B(m-1)$ and insert a character equal to b_m .

replace:

if a_n is replacing b_m , then we first need to find the minimum change from $A(n-1)$ to $B(m-1)$ and and then to add 1 if $a_n \neq b_m$. That is

$$
C(n,m) = C(n-1,m-1) + replacement_cost
$$

do nothing: if $a_n = b_m$, then $C(n, m) = C(n - 1, m - 1)$ In short (assuming insertion cost, deletion cost, replacement cost is equal to 1),

 $C(n, m) = \min$ $\overline{ }$ $\sqrt{ }$ \mathcal{L} $C(n-1,m)+cost_of_detection$ deleting a_n $C(n, m - 1) + cost_of_insertion$ inserting for $C(n-1,m-1)+cost_of_replacement$ replacing $a_n\mid$ $C(n-1,m-1)$ do_nothing $\vert a$ + +

The dependencies of C(i,j)

Algorithm Minimum Edit Distance (A, n, B, m) **Input:** A (a string of size n ; and B (a string of size m) Output:C (the cost matrix) begin for $i = 0$ to n do $C[i, 0] = i$; for $j = 1$ to m do $C[0, j] = j$; for $i = 1$ to n do for $j = 1$ to m do $x = C[i-1, j] + cost_of_deletion;$ $y = C[i, j - 1] + cost_of_insertion;$ if $a_i = b_j$ then $z = C[i-1, j-1];$ else $z = C[i-1, j-1] + cost_of_replacement;$ $C[i, j] = min(x, y, z);$

end.

Reference Udi Manber page 158