
Dynamic Programming Algorithms for Some

Problems

Dr. Gur Saran Adhar

Reference clrs, Chapter 15

+ +

Approach: Dynamic Programming

Dynamic Programming: is a general tech-

nique which can be used to solve many opti-

mization problems that exhibit optimal sub-

structure. That is, an optimal solution to the

problem contains within it optimal solution to

sub-problems.

Solution of a large problem can be found by ex-

amining the solution of smaller sub-problems.
Reference clrs, Chapter-15, Page-339

+ 1

+ +

List Of Some Example Problems

1. Assembly Line Scheduling clrs 324-
2. Matrix Multiply clrs 331-
3. Longest Common Subsequence clrs 350-
4. 0-1 Knap Sack clrs 382-, and

Udi Manber 108-
5. Optimal Polygon Triangulation
6. Optimal Binary Search Tree clrs 356
7. Edit Distance clrs 364

Udi Manber 156-

+ 2

+ +

Approach: Dynamic Programming

Problem: Assembly Line Scheduling:

There are two assembly lines, each with n sta-

tions. Find the fastest way through the factory.

Notation:

ai,j: assembly time at station Si,j

ti,j: transfer time from assembly line i to j

after station Si,j.

Reference clrs page 324 Chapter-15

+ 3

+ +

Notation: Assembly Line Scheduling:

Station S11 S12 S13
S1nS1,n−1

Station
S21 S22 S23 S2,n−1 S2,n

A11

E1

E2

X1

X2

A12
A13

A21 A22 A23

A1n

A2n

T11

T21

T12

T22

T13

T23

T1n−1

T2n−1

+ 4

+ +

Recurrence Equation: Assembly Line

Scheduling:

f1[j] =





e1 + a1,1

if j = 1
min(f1[j − 1] + a1,j, f2[j − 1] + t2,j−1 + a1,j)

if j ≥ 2

f2[j] =





e2 + a2,1

if j = 1
min(f2[j − 1] + a2,j, f1[j − 1] + t1,j−1 + a2,j)

if j ≥ 2

Reference clrs page 328 Chapter-15

+ 5

+ +

Example: Assembly Line Scheduling:

Station S11 S12 S13

Station
S21 S22 S23 S24 S25 S26

S14 S15 S16

22 22

22 22 22 2244

4444

44

44

77

77

99 33

33

555588 66

11

11

11

33
33

88

+ 6

+ +

Approach: Dynamic Programming

Problem: Sequencing the Multiplication of

Matrices:

To multiply n matrices

A = A1 ×A2 ×A3 × . . .×An

where each Ai has ri−1 rows and ri columns,

the problem is to determine the sequence in

which the matrices should be multiplied so that

the number of multiplications is minimum over

all sequences.

Note: we are not actually multiplying the

matrices, the goal is to determine the

order.

Reference clrs page 331 Chapter-16

+ 7

+ +

Approach: Dynamic Programming

Example: Sequencing the Multiplication of

Matrices:

To multiply 3 matrices < A1, A2, A3 > of di-

mensions 10× 100, 100× 5 and 5× 50 if they

are multiplied according to parenthesization

(A1, A2), A3) there are a total of 7500 mul-

tiplications; whereas if they are multiplied ac-

cording to (A1(A2, A3)) there are 75000 mul-

tiplications. Thus the multiplication according

to first parenthesization is ten times faster.

Conclusion: The order in which the matrices

are multiplied can have a significant effect

on the total number of multiplication

operations required to find A

Reference clrs page 332 Chapter-16

+ 8

+ +

Approach: Dynamic Programming

Recurrence: Sequencing the Multiplication

of Matrices:

Let m[i, j] be the minimum cost (number of

scalar multiplications) needed to compute the

matrix Ai...j. For the full problem the cost to

compute A1...n would be m[1, n]. The recursive

equation is :

m[i, j] =

{
0 if i = j
mini≤k<j{m[i, k] + m[k + 1, j] + pi−1pkpj} if i < j

The term m[i, k] is the minimum cost of evaluating
Ai...k = Ai ×Ai+1 × . . . Ak and
m[k + 1, j] is the cost of evaluating
Ak+1...j = Ak+1 ×Ak+2 × . . . Aj.
The third term is the cost of multiplying these two ma-
trices.

Reference clrs page 334 Chapter-16

+ 9

+ +

Approach: Dynamic Programming

Problem: Longest Common Subsequence:

Given two sequences :

X =< x1, x2, . . . , xm > and

Y =< y1, y2, . . . , yn >

Find a maximum length common subsequence

of X and Y .

note: skipping is allowed when finding

common subsequence. It is not a

"consecutive" subsequence.

Reference clrs page 350 Chapter-15

+ 10

+ +

Approach: Dynamic Programming

Problem: Longest Common Subsequence:

Example: A strand of DNA of one organism

may be:

ACCGGTCGAGTGCGCGGAAGCCGGCCGAA

and the DNA of another organism may be:

GTCGTTCGGAATGCCGTTGCTCTGTAA

and the goal of comparing two strands of DNAs

is to determine how ”similar” two DNAs are,

as a measure of how closely related two organ-

isms are.
Reference clrs page 350 Chapter-15

+ 11

+ +

Approach: Dynamic Programming

Problem: Longest Common Subsequence:

Theorem:

Let X =< x1, x2, . . . , xm > and

Y =< y1, y2, . . . , yn >

be two sequences, and let

Z =< z1, z2, . . . , zk > be LCS of X and Y then:

1. if xm = yn then zk = xm = yn and

Zk−1 = LCS(Xm−1, Yn−1)

2. xm 6= yn and xm 6= zk

then Z = LCS(Xm−1, Y)

3. xm 6= yn and yn 6= zk

then Z = LCS(X, Yn−1)
Reference clrs page 350 Chapter-15

+ 12

+ +

Approach: Dynamic Programming

Problem: Longest Common Subsequence:

Observation: To find LCS of X and Y we

need to find the LCS of X and Yn−1 and also

LCS of Xm−1 and Y . But each of subprob-

lems in turn have sub-subproblems of find LCS

of Xm−1 and Yn−1.

Conclusion: When solutions of subproblems

share solution of sub-subproblems don’t re-

compute them just store them away.
Reference clrs page 350 Chapter-15

+ 13

+ +

Approach: Dynamic Programming

Problem: Longest Common Subsequence:

Let c[i, j] be the length of LCS of sequences
Xi and Yj then the following recursive formulae
hold.

c[i, j] =





0if i = 0 or j = 0
c[i− 1, j − 1] + 1 if i, j > 0 and xi = yj

max(c[i− 1, j], c[i, j − 1]) if i, j, > 0 and xi 6= yj

Reference clrs page 350 Chapter-15

+ 14

+ +

Approach: Dynamic Programming

Problem: KnapSack:

Given an integer K (say the size of the knap-

sack), and n items of different sizes such that

the ith item has an integer size S[i], find a sub-

set of the items whose sizes sum to exactly K,

or determine that no such subset exists.

Note: in a 0-1 knap sack either the item is

picked or not picked. There is no fractional

amount of item which can be picked.

Reference Udi Manber page 108-100 for 0-1 knapsack

Reference clrs page 382 Chapter-15 for fractional

knapsack

+ 15

+ +

Algorithm Knap Sack(S, K)
Input: S (an array of size n storing the sizes of the items; and

K (the size of the KnapSack)
Output:P (a two dimensional array such that

P [i, k].exist = true if there exists
a solution to the knapsack problem with
first i items and a knapsack of size k
P [i, k].belong = true if the ith

element belongs to that solution)

Reference Udi Manber page 108-110

+ 16

+ +

Algorithm Knap Sack(S, K)

begin

P [0,0].exist = true;

for k = 1 to K do

P [0, k].exist = false;

{comment –there is no need to initialize

P [i,0] for i ≥ 1 it will be computed from P [0,0]}
for i = 1 to n do {comment –for each item}
for k = 0 to K do {comment–for each incremental size}

P [i, k].exist = false; {comment –the default value}
if P [i− 1, k].exist then

P [i, k].belong = false;

P [i, k].exist = true;

//there is no solution with any selection from first i-1 items for a sack size of k

else if k − S[i] ≥ 0 then

if P [i− 1, k − S[i]].exist then

P [i, k].exist = true;

P [i, k].belong = true;

end.

Reference Udi Manber page 108-110

+ 17

+ +

Approach: Dynamic Programming

Problem: Optimal Polygon Triangulation:

Given a Convex polygon

P =< v0, v1, . . . , vn−1 > and a weight func-

tion w defined on triangles formed by sides and

chords of P . The Optimal Polygon Triangu-

lation problem is to find a triangulation that

minimizes the sum of the weights in the trian-

gulation.

+ 18

+ +

Approach: Dynamic Programming

Problem: Optimal Polygon Triangulation:

One weight function w on triangles is:

w(4vivjvk) = |vivj|+ |vjvk|+ |vivk|
where |vivj| denotes the Euclidean distance

from vi to vj.

+ 19

+ +

Example: Optimal Triangulation:
A1

A2

A3

A4

A5

A6

A2 A3

A1 A4

A5 A6

(((A1(A2,A3))(A4(A5,A6)))

+ 20

+ +

Approach: Dynamic Programming

Problem: Minimum Edit Distance:

Given two strings

A = {a1, a2, . . . an}, and

B = {b1, b2, . . . bm}
and the cost of transformation operations such

as copy, insert, delete, and replace, the edit

distance from A to B is the cost of transfor-

mation sequence that transforms A to B.

The ’Minimum Edit Distance’ problem is to

find the edit distance with the least cost.

Reference Udi Manber page 155-158

Reference clrs page 364 Chapter-15

+ 21

+ +

Approach: Dynamic Programming

Example: Minimum Edit Distance:

In the example following transformation-

operations are used:

• Copy:

• Replace:

• Delete:

• Insert:

• Twiddle:

• Kill:

Reference Udi Manber page 155-158

Reference clrs page 364 Chapter-15

+ 22

+ +

Approach: Dynamic Programming

Example: Minimum Edit Distance:

A source string algorithm is transformed to a

target string altruistic by following sequence

of transformations:
operation x z
initial string algorithm
copy algorithm a
copy algorithm al
replace by t algorithm alt
delete algorithm alt
copy algorithm altr
insert u algorithm altru
insert i algorithm altrui
insert s algorithm altruis
twiddle algorithm altruisti
insert c algorithm altruistic
kill algorithm altruistic

The cost of transformation is

(3.cost(copy)) + cost(replace) + cost(delete) +

(4.cost(insert)) + cost(twiddle) + cost(kill)

+ 23

+ +

Approach: Dynamic Programming

We consider all the different possibilities

of constructing the minimum change from

A to B with the aid of best changes of

smaller sequences involving A and B.

A(i) denotes the prefix string a1, a2, . . . , ai

and

B(j) denotes the prefix string b1, b2, . . . , bj.

C(i, j) denotes the minimum cost of chang-

ing A(i) to B(j).

and Denote

m[i, j] =

{
0 if ai = bj
1 if ai 6= bj

+ 24

+ +

Three transformations (plus one do nothing) are con-
sidered.

delete:
if an is deleted in the minimum change from A(n) to
B(m), then the best change would be from A(n− 1) to
B(m) plus one more deletion. That is:

C(n, m) = C(n− 1, m) + deletion cost

insert:
if the minimum change from A(n) to B(m) involves in-
sertion of a character to match bm, then we have

C(n, m) = C(n, m− 1) + insertion cost

That is, we find the minimum change from A(n) to
B(m− 1) and insert a character equal to bm.

replace:
if an is replacing bm, then we first need to find the min-
imum change from A(n− 1) to B(m− 1) and and then
to add 1 if an 6= bm. That is

C(n, m) = C(n− 1, m− 1) + replacement cost

do nothing:
if an = bm, then C(n, m) = C(n− 1, m− 1)

+ 25

+ +

In short (assuming insertion cost, deletion cost, replacement cost
is equal to 1),

C(n, m) = min





C(n− 1, m) + cost of deletion deleting an

C(n, m− 1) + cost of insertion inserting for bm

C(n− 1, m− 1) + cost of replacement replacing an by bm

C(n− 1, m− 1) do nothing an = bm

+ 26

+ +

The dependencies of C(i,j)

II

JJ

C(i,j)

+ 27

+ +

Approach: Dynamic Programming

Algorithm Minimum Edit Distance(A, n, B, m)
Input: A (a string of size n; and

B (a string of size m)
Output:C (the cost matrix)
begin

for i = 0 to n do C[i,0] = i;
for j = 1 to m do C[0, j] = j;
for i = 1 to n do

for j = 1 to m do
x = C[i− 1, j] + cost of deletion;
y = C[i, j − 1] + cost of insertion;
if ai = bj then

z = C[i− 1, j − 1];
else

z = C[i− 1, j − 1] + cost of replacement;
C[i, j] = min(x, y, z);

end.

Reference Udi Manber page 158

+ 28

