Dynamic Programming Algorithms for Some Problems

Dr. Gur Saran Adhar

Reference clrs, Chapter 15

Dynamic Programming: is a general technique which can be used to solve many optimization problems that exhibit **optimal substructure**. That is, an optimal solution to the problem contains within it optimal solution to sub-problems.

Solution of a large problem can be found by examining the solution of smaller sub-problems. Reference clrs, Chapter-15, Page-339

+

List Of Some Example Problems

1.	Assembly Line Scheduling	clrs 324-
2.	Matrix Multiply	clrs 331-
3.	Longest Common Subsequence	clrs 350-
4.	0-1 Knap Sack	clrs 382-, and
		Udi Manber 108-
5.	Optimal Polygon Triangulation	
6.	Optimal Binary Search Tree	clrs 356
7.	Edit Distance	clrs 364
		Udi Manber 156-

Problem: Assembly Line Scheduling:

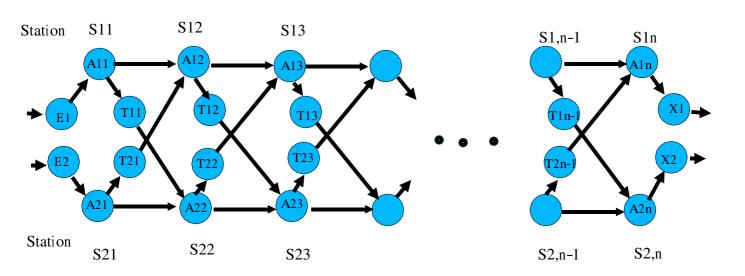
There are two assembly lines, each with n stations. Find the fastest way through the factory. <u>Notation:</u>

 $a_{i,j}$: assembly time at station $S_{i,j}$

 $t_{i,j}$: transfer time from assembly line i to j after station $S_{i,j}$.

Reference clrs page 324 Chapter-15

Notation: Assembly Line Scheduling:



Recurrence Equation: Assembly Line Scheduling:

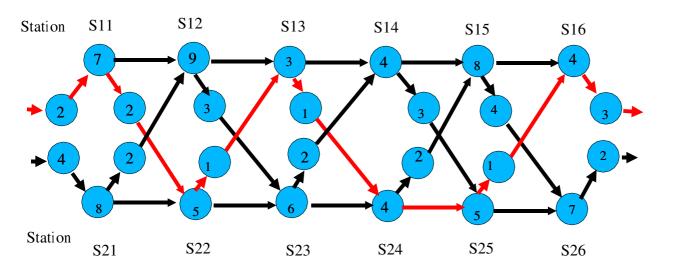
$$f_1[j] = \begin{cases} e_1 + a_{1,1} & \text{if } j = 1\\ \min(f_1[j-1] + a_{1,j}, f_2[j-1] + t_{2,j-1} + a_{1,j}) & \text{if } j \ge 2 \end{cases}$$

$$f_{2}[j] = \begin{cases} e_{2} + a_{2,1} & \text{if } j = 1 \\ \min(f_{2}[j-1] + a_{2,j}, f_{1}[j-1] + t_{1,j-1} + a_{2,j}) & \text{if } j \ge 2 \end{cases}$$

Reference clrs page 328 Chapter-15

+

Example: Assembly Line Scheduling:



Problem: Sequencing the Multiplication of Matrices:

To multiply n matrices

 $A = A_1 \times A_2 \times A_3 \times \ldots \times A_n$

where each A_i has r_{i-1} rows and r_i columns, the problem is to determine the sequence in which the matrices should be multiplied so that the number of multiplications is minimum over all sequences.

Note: we are not actually multiplying the matrices, the goal is to determine the order.

Reference clrs page 331 Chapter-16

Example: Sequencing the Multiplication of Matrices:

To multiply 3 matrices $\langle A_1, A_2, A_3 \rangle$ of dimensions 10×100 , 100×5 and 5×50 if they are multiplied according to parenthesization $(A_1, A_2), A_3$) there are a total of 7500 multiplications; whereas if they are multiplied according to $(A_1(A_2, A_3))$ there are 75000 multiplications. Thus the multiplication according to first parenthesization is ten times faster. Conclusion: The order in which the matrices are multiplied can have a significant effect on the total number of multiplication operations required to find A

Reference clrs page 332 Chapter-16

Recurrence: Sequencing the Multiplication of Matrices:

Let m[i, j] be the **minimum cost** (number of scalar multiplications) needed to compute the matrix $A_{i...j}$. For the full problem the cost to compute $A_{1...n}$ would be m[1, n]. The recursive equation is :

$$m[i,j] = \begin{cases} 0 & \text{if } i = j \\ \min_{i \le k < j} \{m[i,k] + m[k+1,j] + p_{i-1}p_k p_j\} & \text{if } i < j \end{cases}$$

The term m[i, k] is the minimum cost of evaluating $A_{i...k} = A_i \times A_{i+1} \times ... A_k$ and m[k+1, j] is the cost of evaluating $A_{k+1...j} = A_{k+1} \times A_{k+2} \times ... A_j$. The third term is the cost of multiplying these two matrices.

Reference clrs page 334 Chapter-16

```
Problem: Longest Common Subsequence:
 Given two sequences :
 X = < x_1, x_2, \dots, x_m > \text{ and }
 Y = \langle y_1, y_2, ..., y_n \rangle
 Find a maximum length common subsequence
 of X and Y.
 note: skipping is allowed when finding
 common subsequence. It is not a
 "consecutive" subsequence.
Reference clrs page 350 Chapter-15
```

Problem: Longest Common Subsequence:

Example: A strand of DNA of one organism may be:

ACCGGTCGAGTGCGCGGGAAGCCGGCCGAA and the DNA of another organism may be: GTCGTTCGGAATGCCGTTGCTCTGTAA and the goal of comparing two strands of DNAs is to determine how "similar" two DNAs are,

as a measure of how closely related two organisms are.

Reference clrs page 350 Chapter-15

Problem: Longest Common Subsequence:
Theorem:
Let
$$X = \langle x_1, x_2, ..., x_m \rangle$$
 and
 $Y = \langle y_1, y_2, ..., y_n \rangle$
be two sequences, and let
 $Z = \langle z_1, z_2, ..., z_k \rangle$ be LCS of X and Y then:
1. if $x_m = y_n$ then $z_k = x_m = y_n$ and
 $Z_{k-1} = LCS(X_{m-1}, Y_{n-1})$
2. $x_m \neq y_n$ and $x_m \neq z_k$
then $Z = LCS(X_{m-1}, Y)$
3. $x_m \neq y_n$ and $y_n \neq z_k$
then $Z = LCS(X, Y_{n-1})$
Reference clrs page 350 Chapter-15

Problem: Longest Common Subsequence:

Observation: To find LCS of X and Y we need to find the LCS of X and Y_{n-1} and also LCS of X_{m-1} and Y. But each of subproblems in turn have sub-subproblems of find LCS of X_{m-1} and Y_{n-1} .

Conclusion: When solutions of subproblems <u>share</u> solution of sub-subproblems don't recompute them just store them away. Reference clrs page 350 Chapter-15

+

Problem: Longest Common Subsequence:

Let c[i, j] be the **length** of LCS of sequences X_i and Y_j then the following recursive formulae hold.

$$c[i,j] = \begin{cases} \text{ Oif } i = 0 \text{ or } j = 0\\ c[i-1,j-1] + 1 & \text{ if } i,j > 0 \text{ and } x_i = y_j\\ \max(c[i-1,j],c[i,j-1]) & \text{ if } i,j, > 0 \text{ and } x_i \neq y_j \end{cases}$$

Reference clrs page 350 Chapter-15

Problem: KnapSack:

Given an integer K (say the size of the knapsack), and n items of different sizes such that the i^{th} item has an integer size S[i], find a subset of the items whose sizes sum to exactly K, or determine that no such subset exists.

Note: in a 0-1 knap sack either the item is picked or not picked. There is no fractional amount of item which can be picked.

Reference Udi Manber page 108-100 for 0-1 knapsa Reference clrs page 382 Chapter-15 for fractiona knapsack

Algorithm Knap_Sack(S, K)Input: S (an array of size n storing the sizes of the items K (the size of the KnapSack) Output:P (a two dimensional array such that P[i,k].exist = true if there exists a solution to the knapsack problem with first i items and a knapsack of size k P[i,k].belong = true if the i^{th} element belongs to that solution)

Reference Udi Manber page 108-110

+

+

Algorithm $Knap_Sack(S, K)$

begin P[0,0].exist = true;for k = 1 to K do P[0,k].exist = false;{comment –there is no need to initialize P[i,0] for $i \ge 1$ it will be computed from P[0,0]for i = 1 to n do {comment –for each item} for k = 0 to K do {comment-for each incremental size} $P[i,k].exist = false; \{comment - the default value\}$ if P[i-1,k].exist then P[i,k].belong = false; P[i,k].exist = true;//there is no solution with any selection from fin else if $k - S[i] \ge 0$ then if P[i-1, k-S[i]].exist then P[i,k].exist = true;P[i,k].belong = true; end.

Problem: Optimal Polygon Triangulation: Given a **Convex** polygon

 $P = \langle v_0, v_1, \ldots, v_{n-1} \rangle$ and a weight function w defined on triangles formed by sides and chords of P. The Optimal Polygon Triangulation problem is to find a triangulation that minimizes the sum of the weights in the triangulation.

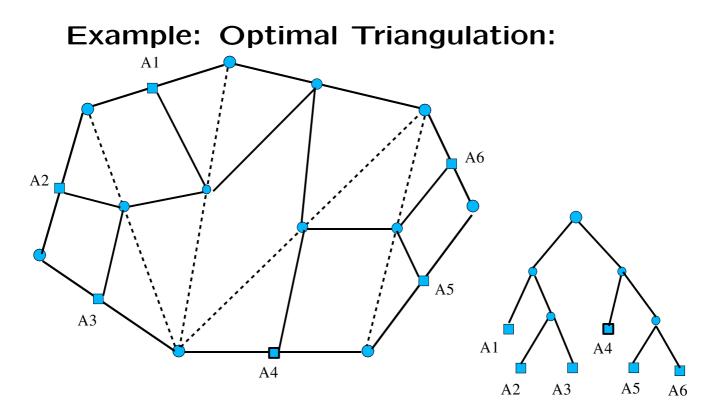
+

Problem: Optimal Polygon Triangulation: One weight function *w* on triangles is:

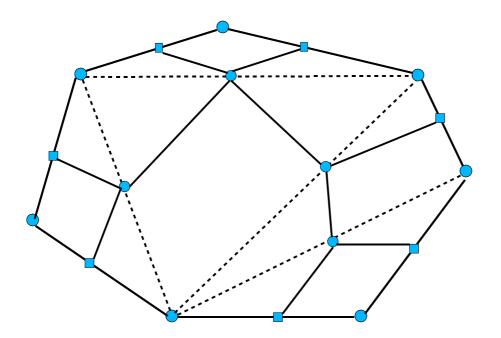
$$w(\triangle v_i v_j v_k) = |v_i v_j| + |v_j v_k| + |v_i v_k|$$

where $|v_i v_j|$ denotes the Euclidean distance from v_i to v_j .

+



(((A1(A2,A3))(A4(A5,A6)))



Problem: Minimum Edit Distance: Given two strings $A = \{a_1, a_2, \dots a_n\}$, and $B = \{b_1, b_2, \dots b_m\}$ and the cost of transformation operations such as copy, insert, delete, and replace, the **edit distance** from *A* to *B* is the cost of transformation sequence that transforms *A* to *B*. The 'Minimum Edit Distance' problem is to find the edit distance with the least cost.

Reference Udi Manber page 155-158 Reference clrs page 364 Chapter-15

Example: Minimum Edit Distance:

In the example following transformationoperations are used:

- Copy:
- Replace:
- Delete:
- Insert:
- Twiddle:
- Kill:

Reference Udi Manber page 155-158 Reference clrs page 364 Chapter-15

Example: Minimum Edit Distance:

A source string algorithm is transformed to a target string altruistic by following sequence of transformations:

<u>UI</u>		
operation	X	Z
initial string	<u>a</u> lgorithm	_
сору	a <u>l</u> gorithm	a_
сору	al <u>g</u> orithm	al_
replace by t	al <u>go</u> rithm	alt_
delete	algo <u>r</u> ithm	alt_
сору	algor <u>i</u> thm	altr_
insert u	algor <u>i</u> thm	altru_
insert i	algor <u>i</u> thm	altrui_
insert s	algor <u>i</u> thm	altruis_
twiddle	algorit <u>h</u> m	altruisti_
insert c	algorit <u>h</u> m	altruistic_
kill	algorithm_	altruistic

The cost of transformation is

(3.cost(copy)) + cost(replace) + cost(delete) + (4.cost(insert)) + cost(twiddle) + cost(kill)

We consider all the different possibilities of constructing the minimum change from A to B with the aid of best changes of smaller sequences involving A and B.

A(i) denotes the prefix string a_1, a_2, \ldots, a_i and

B(j) denotes the prefix string b_1, b_2, \ldots, b_j .

C(i, j) denotes the minimum cost of changing A(i) to B(j).

and Denote

$$m[i,j] = \begin{cases} 0 & \text{if } a_i = bj \\ 1 & \text{if } a_i \neq b_j \end{cases}$$

Three transformations (plus one do nothing) are considered.

<u>delete</u>:

if a_n is deleted in the minimum change from A(n) to B(m), then the best change would be from A(n-1) to B(m) plus one more deletion. That is:

$$C(n,m) = C(n-1,m) + deletion_cost$$

insert:

if the minimum change from A(n) to B(m) involves insertion of a character to match b_m , then we have

 $C(n,m) = C(n,m-1) + insertion_cost$

That is, we find the minimum change from A(n) to B(m-1) and insert a character equal to b_m .

replace:

if a_n is replacing b_m , then we first need to find the minimum change from A(n-1) to B(m-1) and and then to add 1 if $a_n \neq b_m$. That is

$$C(n,m) = C(n-1,m-1) + replacement_cost$$

 $\frac{\text{do nothing:}}{\text{if } a_n = b_m, \text{ then } C(n,m) = C(n-1,m-1)$

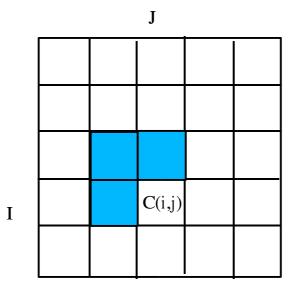
In short (assuming insertion cost, deletion cost, replacement cost is equal to 1),

$$C(n,m) = \min \begin{cases} C(n-1,m) + cost_of_deletion \\ C(n,m-1) + cost_of_insertion \\ C(n-1,m-1) + cost_of_replacement \\ C(n-1,m-1) \end{cases} deleting a_n$$
inserting for replacing a_n do_nothing a

+

+

The dependencies of C(i,j)



Algorithm Minimum_Edit_Distance(A, n, B, m) Input: A (a string of size n; and B (a string of size m) **Output:***C* (the cost matrix) begin for i = 0 to n do C[i, 0] = i; for j = 1 to m do C[0, j] = j; for i = 1 to n do for j = 1 to m do $x = C[i - 1, j] + cost_of_deletion;$ $y = C[i, j - 1] + cost_of_insertion;$ if $a_i = b_j$ then z = C[i - 1, j - 1];else $z = C[i - 1, j - 1] + cost_of_replacement;$ $C[i, j] = \min(x, y, z);$

end.

Reference Udi Manber page 158