Dynamic Programming Algorithms for Some
Problems

Dr. Gur Saran Adhar

Reference clrs, Chapter 15

Approach: Dynamic Programming

Dynamic Programming: is a general tech-
nigue which can be used to solve many opti-
mization problems that exhibit optimal sub-
structure. That is, an optimal solution to the
problem contains within it optimal solution to
sub-problems.

Solution of a large problem can be found by ex-
amining the solution of smaller sub-problems.

Reference clrs, Chapter-15, Page-339

List Of Some Example Problems

1. | Assembly Line Scheduling Clrs 324-

2. | Matrix Multiply clrs 331-

3. | Longest Common Subsequence | clrs 350-

4. | 0-1 Knap Sack clrs 382-, and

Udi Manber 108-

5. | Optimal Polygon Triangulation

6. | Optimal Binary Search Tree clrs 356

7. | Edit Distance clrs 364

Udi Manber 156-

Approach: Dynamic Programming

Problem: Assembly Line Scheduling:
There are two assembly lines, each with n sta-
tions. Find the fastest way through the factory.
Notation:

a; ;- assembly time at station S; ;

t;.;: transfer time from assembly line i to j
after station §; ;.

Reference clrs page 324 Chapter-15

|

Notation: Assembly Line Scheduling:

Station ~ S11 S12 S13

Station 1)

S23 S2.n-1 S2.n

Recurrence Equation: Assembly Line
Scheduling:
e1+ a1
filil = T
1171 — m|n(fl[J — 1] —I— a/l,j)fQ[j — 1] + tQ,j—l + a/l,j)
if > 2
e2 + a2
f2li) = e
UL =Y min(falj — 1] + a2, f1lj — 1] + t1,5-1 + az;)
if > 2

Reference clrs page 328 Chapter-15

|

Example: Assembly Line Scheduling:

Station S11 S12 S13 S14 S15 S16

Station

S22 S23 S24 S25 S26

Approach: Dynamic Programming

Problem: Sequencing the Multiplication of
Matrices:

To multiply n matrices

A=A1 X Ap X A3 X ... X Ap,

where each A; has r;,_1 rows and r; columns,
the problem is to determine the sequence in
which the matrices should be multiplied so that
the number of multiplications is minimum over
all sequences.

Note: we are not actually multiplying the

matrices, the goal is to determine the

order.

Reference clrs page 331 Chapter-16

Approach: Dynamic Programming

Example: Sequencing the Multiplication of
Matrices:

To multiply 3 matrices < Aq,A>, A3 > of di-
mensions 10 x 100, 100 x 5 and 5 x 50 if they
are multiplied according to parenthesization
(A1,A5),A3) there are a total of 7500 mul-
tiplications; whereas if they are multiplied ac-
cording to (A1(A», A3)) there are 75000 mul-
tiplications. Thus the multiplication according
to first parenthesization is ten times faster.

Conclusion: The order in which the matrices
are multiplied can have a significant effect

on the total number of multiplication

operations required to find A

Reference clrs page 332 Chapter-16

Approach: Dynamic Programming

Recurrence: Sequencing the Multiplication
of Matrices:

Let ml[i, 7] be the minimum cost (number of
scalar multiplications) needed to compute the
matrix A; ;. For the full problem the cost to
compute A7 ,, would be m[1,n]. The recursive
equation is :

mli] =1 O i
’ Min;<p<j{imli, k] +mlk + 1,5] + pi—1prp;} if i<y

The term mli, k] is the minimum cost of evaluating
A = A; X Ai-l—l X ...A; and

m[k + 1, 7] is the cost of evaluating

Ak+1...j = Ak:—l—l X Ak+2 X ... Aj.

The third term is the cost of multiplying these two ma-
trices.

Reference clrs page 334 Chapter-16

Approach: Dynamic Programming

Problem: Longest Common Subsequence:
Given two sequences
X =<x1,T2,...,Tm > and

Y =< Y1,Y2,-- -, Yn >
Find a maximum length common subsequence

of X and Y.

note: skipping is allowed when finding
common subsequence. It is not a

"consecutive" subsequence.

Reference clrs page 350 Chapter-15

Approach: Dynamic Programming

Problem: Longest Commmon Subsequence:

Example: A strand of DNA of one organism
may be:
ACCGGTCGAGTGCGCGGAAGCCGEGCCGAA
and the DNA of another organism may be:
GTCGTTCGGAATGCCGTTGCTCTGTAA
and the goal of comparing two strands of DNAS
IS to determine how "similar’ two DNAs are,
as a measure of how closely related two organ-
isms are.

Reference clrs page 350 Chapter-15

Approach: Dynamic Programming

Problem: Longest Common Subsequence:

Theorem:

Let X =< zq,20,...,2m > and

Y =<wy1,92,---,Yn >

be two sequences, and let

Z =< 2z1,29,...,2 > be LCS of X and Y then:

1. if xyy = yn then zp =z = yn, and
Zp—1=LCOS(Xn—1,Yn 1)

2. Tm F yn and xm F 2z,
then Z = LCS(X,,-1,Y)

3. Tm F yn and yp F 2
then 7 = LCS(X, Yn—l)

Reference clrs page 350 Chapter-15

Approach: Dynamic Programming

Problem: Longest Common Subsequence:

Observation: To find LCS of X and Y we
need to find the LCS of X and Y,,_1 and also
LCS of X,,_1 and Y. But each of subprob-
lems in turn have sub-subproblems of find LCS
of X,,—1 and Y,,_1.

Conclusion: When solutions of subproblems
share solution of sub-subproblems don’t re-
compute them just store them away.

Reference clrs page 350 Chapter-15

Approach: Dynamic Programming

Problem: Longest Common Subsequence:

Let c[i,j] be the length of LCS of sequences
X; and Yj; then the following recursive formulae

hold.

Oifi=0o0r 3=0
c[z,]]: C[’I,—l,_]—].]—l—l Ifz,]>Oandxz=yJ
maX(C[i—l,j],C[’i,j—l]) if i7j7>0 and xz#y

Reference clrs page 350 Chapter-15

+ +

Approach: Dynamic Programming

Problem: KnapSack:

Given an integer K (say the size of the knap-
sack), and n items of different sizes such that
the it item has an integer size S[i], find a sub-
set of the items whose sizes sum to exactly K,
or determine that no such subset exists.

Note: 1in a 0O-1 knap sack either the item is
picked or not picked. There is no fractional

amount of item which can be picked.

Reference Udi Manber page 108-100 for 0-1 knapsa
Reference clrs page 382 Chapter-15 for fractiona

knapsack

+ 15

Algorithm Knap_Sack(S, K)
Input: S (an array of size n storing the sizes of the item:
K (the size of the KnapSack)
Output:P (a two dimensional array such that
Pli, k]).exist = true if there exists
a solution to the knapsack problem with
first ¢+ items and a knapsack of size k
P[i, k].belong = true if the "
element belongs to that solution)

Reference Udi Manber page 108-110

+ +

Algorithm Knap_Sack(S, K)

begin
P[0, 0].exist = true;
for k=1 to K do
P[0, k].exist = false;
{comment —there is no need to initialize
P[i,0] for ¢ > 1 it will be computed from P[0, 0]}
for : =1 to n AO {comment —for each item}
for k = 0 to K dO {comment—for each incremental size)
PJi, k].exist = false; {comment —the default value}
If Pli — 1,k].exist then
Pli, k].belong = false;
PJi, k].exist = true;
//there is no solution with any selection from fii
else if £k — S[i] > 0 then
if P[i — 1,k — SJ[i]].exist then
Pli, k].exist = true;
PJi, k].belong = true;
end.

Reference Udi Manber page 108-110

+ 17

Approach: Dynamic Programming

Problem: Optimal Polygon Triangulation:
Given a Convex polygon

P =< vg,v1,...,v,-1 > and a weight func-
tion w defined on triangles formed by sides and
chords of P. The Optimal Polygon Triangu-
lation problem is to find a triangulation that
minimizes the sum of the weights in the trian-
gulation.

Approach: Dynamic Programming

Problem: Optimal Polygon Triangulation:
One weight function w on triangles is:

w(Avvjvg) = |vvg]| + [vjog| + [vivg|

where |v;v;| denotes the Euclidean distance
from v; to v;.

+ +

Example: Optimal Triangulation:

A3 A5 A6

(((A1(A2,A3))(A4(A5,A6)))

Approach: Dynamic Programming

Problem: Minimum Edit Distance:

Given two strings

A= {CL]_,CLQ, ce an}, and

B = {b1,bp,...bm}

and the cost of transformation operations such
as copy, insert, delete, and replace, the edit
distance from A to B is the cost of transfor-
mation sequence that transforms A to B.
The "Minimum Edit Distance’ problem is to
find the edit distance with the least cost.

Reference Udi Manber page 155-158
Reference clrs page 364 Chapter-15

Approach: Dynamic Programming

Example: Minimum Edit Distance:
In the example following transformation-
operations are used:

o Copy:

e Replace:
o Delete:
e Insert:

e Twiddle:
o Kill:

Reference Udi Manber page 155-158
Reference clrs page 364 Chapter-15

+ 22

Approach: Dynamic Programming

Example: Minimum Edit Distance:
A source string algorithm is transformed to a
target string altruistic by following sequence

of transformations:
operation X V4
initial string | algorithm | _
Copy algorithm | a_
Copy algorithm | al_
replace by t | algorithm | alt_
delete algorithm | alt_
copy algorithm | altr_
insert u algorithm | altru_
insert i algorithm | altrui_
insert s algorithm | altruis_
twiddle algorithm | altruisti_
insert C algorithm | altruistic_
Kill algorithm_ | altruistic

The cost of transformation is
(3.cost(copy)) + cost(replace) + cost(delete) 4+
(4.cost(insert)) + cost(twiddle) + cost(kill)

Approach: Dynamic Programming

We consider all the different possibilities
of constructing the minimum change from
A to B with the aid of best changes of
smaller sequences involving A and B.

A(i7) denotes the prefix string aq,ao,...,aq;
and

B(j) denotes the prefix string b1,b,...,b;.
C(i,7) denotes the minimum cost of chang-
ing A(:) to B(j).

and Denote

T 0 ifaizbj
m[z’]]_{ 1 if ai#bj

+ 24

Three transformations (plus one do nothing) are con-
sidered.

delete:

if a, is deleted in the minimum change from A(n) to
B(m), then the best change would be from A(n — 1) to
B(m) plus one more deletion. That is:

C(n,m) =C(n —1,m) + deletion_cost

insert:
if the minimum change from A(n) to B(m) involves in-
sertion of a character to match b,,, then we have

C(n,m) =C(n,m — 1) 4+ insertion_cost

That is, we find the minimum change from A(n) to
B(m — 1) and insert a character equal to b,,.

replace:

if a,, is replacing b,,, then we first need to find the min-
imum change from A(n — 1) to B(m — 1) and and then
to add 1 if a, # b,,. That is

C(n,m)=C(n—1,m— 1) 4 replacement_cost

do nothing:
if ap, = by, then C(n,m) =C(n—1,m —1)

25

In short (assuming insertion cost, deletion cost, replacement cost

is equal to 1),

C(n —1,m) + cost_of _deletion
o C(n,m — 1) 4 cost_of _insertion
C(n,m) = min C(n—1,m — 1) + cost_of _replacement
Cln—1,m—-1)

deleting a,
inserting fo
replacing a

=

a

do_nothing

26

I

The dependencies of C(i,))

27

Approach: Dynamic Programming

Algorithm Minimum_Edit_Distance(A,n, B, m)
Input: A (a string of size n; and
B (a string of size m)
Output:C (the cost matrix)
begin
for : = 0 to n do CJi, 0] = 1;
for j =1 to m do C|[0,j] = j;
for i =1 ton do
for =1 to m do
x = C[i— 1, 7] 4 cost_of _deletion;
y = C[i,7 — 1] 4+ cost_of _insertion;
iIf a; = b; then
else
z2=C[t— 1,5 — 1] + cost_of _replacement;
Cli, j] = min(z, y, 2);
end.

Reference Udi Manber page 158

