
Computational Geometry

Dr. Gur Saran Adhar

Reference clrs, Chapter 33, Page 933-

+ +

Intersection of Horizontal and Vertical Line

Segments

The Problem: Given a set of n horizontal and m
vertical line segments in the plane, find all the inter-
sections among them

+ 1

+ +

LL

+ 2

+ +

Algorithm Intersection((v1, v2, . . . , vm), (h1, h2, . . . , hn))
Input: (v1, v2, . . . , vm) (a set of vertical line segments and)

(h1, h2, . . . , hn) (a set of horizontal line segments)
Output:The set of all pairs of intersecting segments.

{yB(vi), yT(vi)} denote the bottom and top of
the vertical segment vi

Reference Udi Manber page 286

+ 3

+ +

Algorithm Intersection(S, K)

begin

sort all x coordinates in increasing order

and place them in Q

V := ∅
while Q is not empty do

remove the first end point p from Q

if p is the right endpoint of hk then

remove hk from V .

else if p is the left endpoint of hk then

insert hk from V .

else if p is the x coordinate of a

vertical line vi then

perform a one-dimensional range

query for the range yB(vi) to yT (vi)

end.

Reference Udi Manber page 286

+ 4

+ +

Intersection of Line Segments

The Problem: Given a set of n line segments in the
plane, find all the intersections among them.

Assumption:
No input segment is vertical
No three input segments intersect at a single point

+ 5

+ +

AA

BB

CC

DD

RR TT UU

HH

GG

EE

FF

II

VV ZZ
WW

+ 6

+ +

AA

BB

CC

DD

EE

FF

A A A D D E E

 B C A C D D

B C B C B

B B

Time

+ 7

+ +

Algorithm Any-Segments-Intersect(S)

T := ∅
sort the endpoints of the segments in S from

left to right breaking ties by putting points

with lower y-coordinates first

for each point p in the sorted list of endpoints

do if p is the left endpoint of a segment s

then INSERT (T, s)

if (ABOV E(T, s) exists and intersects s)

then return TRUE

if p is the right endpoint of a segment s

then if both ABOV E(T, s) and BELOW (T, s) exists

and (ABOV E(T, s) intersects BELOW (T, s))

then return TRUE

DELETE(T, s)

return FALSE

Reference clrs2e page 943

+ 8

+ +

Convex Hull of Points

Problem: Given a set of n points in the plane,

find a smallest convex polygon for which either

each point is on the boundary or inside the

polygon.

Reference clrs page947-

+ 9

+ +

00

11

33

10

12
11

99

88

77

66

55

44

22

+ 10

+ +

00

11

33

10

12

11 99

88

77
66

55

44

22

00

11

33

10

12

11 99

88

77
66

55

44

22

+ 11

+ +

00

11

33

10

12

11 99

88

77
66

55

44

22

00

11

33

10

12

11 99

88

77
66

55

44

22

+ 12

+ +

00

11

33

10

12

11 99

88

77
66

55

44

22

00

11

33

10

12

11 99

88

77
66

55

44

22

+ 13

+ +

00

11

33

10

12

11 99

88

77
66

55

44

22

00

11

33

10

12

11

99

88 77

66
55

44

22

+ 14

+ +

00

11

33

10

12

11

99

88 77

66
55

44

22

00

11

33

10

12

11
99

88 77

66
55

44

22

+ 15

+ +

00

11

33

10

12

11

99

88 77

66
55

44

22

00

11

33

10

12

11
99

88 77

66
55

44

22

+ 16

+ +

Algorithm Graham-Scan(Q)

Let p0 be the point with minimum y-coordinate

or the leftmost such point in case of a tie

Let < p1, p2, . . . , pm > be the remaining points in Q

sorted by polar angles in counterclockwise order

around p0

PUSH(p0, S)

PUSH(p1, S)

PUSH(p2, S)

for i ← 3 to m

do while the angle formed by points

NEXT-TO-TOP(S), TOP(S), and pi

makes a non-left (right turn)

do POP (S)

then return TRUE

PUSH(pi, S)

return S

Reference clrs2e page 943

+ 17

+ +

Approach: Divide and Conquer- The Clos-

est Pair of Points

Problem: Given a set of n points in the plane,

find a pair of closest points

Reference clrs page957-,

Udi Manber page 279

+ 18

+ +

Closest Pair Problem

D1

D1 D1

D2

+ 19

+ +

D1 D1

The worst case of six points d1 apart

D1

D1

+ 20

+ +

Algorithm Closest Pair(p1, p2, . . . , pn)
Input: p1, p2, . . . , pn a set of n points in the plane
Output: d (the distance between the two closest
points)

begin
Sortpoints according to their x-coordinates;
{comment-this sorting is done only once }
divide the set into two equal-sized parts;
Recursively, compute the minimal distance

in each part;
Let d be the minimal of the two minimal distances;
Eliminate points that lie farther than d apart

from the separation line
Sort the remaining points according to

their y coordinates;
Scan the remaining points in the y order and find

the distance of each point to its five neighbors;
if any of these distances is less than d

then update d
end.

Reference Udi Manber page 280

+ 21

