Computational Geometry

Dr. Gur Saran Adhar

Reference clrs, Chapter 33, Page 933-

Intersection of Horizontal and Vertical Line
Segments

The Problem: Given a set of n horizontal and m
vertical line segments in the plane, find all the inter-
sections among them

Algorithm Intersection((vi,vo,...,vm), (h1,ho,..., hy))

Input: (vi,vo,...,v,) (@ set of vertical line segments and
(h1i,ho,...,hy) (2 set of horizontal line segments)

Output:The set of all pairs of intersecting segments.
{yp(v;),yr(vi)} denote the bottom and top of
the vertical segment v;

Reference Udi Manber page 286

Algorithm Intersection(S, K)

begin
sort all x coordinates in increasing order
and place them in @
Vi=0
while @ is not empty do
remove the first end point p from @
iIf p is the right endpoint of h; then
remove h; from V.
else if p is the left endpoint of A, then
insert A, from V.
else if p is the x coordinate of a
vertical line v; then
perform a one-dimensional range
query for the range yg(v;) to ypr(v;)

end.

Reference Udi Manber page 286

Intersection of Line Segments

The Problem: Given a set of n line segments in the
plane, find all the intersections among them.

Assumption:
No input segment is vertical
No three input segments intersect at a single point

Il I I EHp Il I =N = E . U

B C A CD

B C

B C

» Time

Algorithm Any-Segments-Intersect(S)

T :=10
sort the endpoints of the segments in S from
left to right breaking ties by putting points
with lower y-coordinates first
for each point p in the sorted list of endpoints
do if p is the left endpoint of a segment s
then INSERT (T, s)
if (ABOV E(T,s) exists and intersects s)
then return TRUE
if p is the right endpoint of a segment s
then if both ABOVE(T,s) and BELOW (T, s) exists
and (ABOVE(T, s) intersects BELOW (T, s))
then return TRUE
DELETE(T,s)
return FALSE

Reference clrs2e page 943

Convex Hull of Points

Problem: Given a set of n points in the plane,
find a smallest convex polygon for which either
each point is on the boundary or inside the

polygon.

Reference clrs page947-

10

12

[
[

aay

10

@9

@ 0

Q@

11

12

12

@9

(OX)

Q-

® 2

10

@9

@ 0

@

s,
e,

12

10
o
11 ©9 7
o
12 8
o (©)
1
G
0
10
(@)
5
6
11 @9 Z/.\.
4 3
12 8 ®
() (©)
@)
1
D
0

11
@
12
()
1

—

0

10
. -
9 6 5
® e 4
12 48 7 o
e o
@2
1
[C—
0

+ 14

12

15

16

Algorithm Graham-Scan(Q)

Let po be the point with minimum y-coordinate
or the leftmost such point in case of a tie
Let < p1,p2,...,pm > be the remaining points in Q
sorted by polar angles in counterclockwise order
around pg
PUSH (pg, S)
PUSH(p1,S)
PUSH(p>,S)
for i — 3 tom
do while the angle formed by points
NEXT-TO-TOP(S), TOP(S), and p;
makes a non-left (right turn)
do POP(S)
then return TRUE
PUSH(pZ', S)
return S

Reference clrs2e page 943

17

Approach: Divide and Conquer- T he Clos-
est Pair of Points

Problem: Given a set of n points in the plane,
find a pair of closest points

Reference clrs page957-,
Udi Manber page 279

+ 18

o ®
® i
@
()
@ @
o o D1
()
® Q
D1 | D1 |
4—pr4—>>

Closest Pair Problem

19

D1 | DI |
<4—Dr4—>

The worst case of six points d1 apart

20

Algorithm Closest_Pair(p1,p2,...,pn)

Input: pi1,po,...,pn a set of n points in the plane
Output: d (the distance between the two closest
points)

begin

Sortpoints according to their xz-coordinates;
{comment-this sorting is done only once }
divide the set into two equal-sized parts;
Recursively, compute the minimal distance
in each part;
Let d be the minimal of the two minimal distances;
Eliminate points that lie farther than d apart
from the separation line
Sort the remaining points according to
their y coordinates,;
Scan the remaining points in the y order and find
the distance of each point to its five neighbors;
iIf any of these distances is less than d
then update d
end.

Reference Udi Manber page 280

