
All-Pairs Shortest Path

Dr. Gur Saran Adhar

Reference clrs, Chapter 25, Page 620-

+ +

Introduction to Problem:

All Pairs Shortest Paths

Reference: clrs, page-620

Given a weighted, directed graph G = (V, E), with
weight function w : E → R mapping edges to real-
values weights. Find shortest paths between all pairs
of vertices.
This problem arises in making a table of distances
between all pairs of cities for a road atlas. Typically,
the table in row u and column v is the length of the
shortest path from u to v.

+ 1

+ +

11

22

33

4455

33

44

88

−4

66

22

11

77

−5

+ 2

+ +

Representation

We assume that the vertices are numbered
1,2, . . . , | V |.
The input is an n×n matrix W representing the edge
weights on an n vertex directed graph G = (V, E)
where:

wij =

0 if i = j
weight of edge (i, j) if i 6= j and (i, j) ∈ E
∞ if i 6= j and (i, j) 6∈ E

The output is the predecessor matrix Π = (πij)

πij =

{
NIL if i = j or there is no shortest path from i to j
predecessor of j

+ 3

+ +

Main Idea

Note: Induction on the number of edges in the short-
est path.

Let lmij denotes the length of shortest path from i to
j that contains at most m edges.

l0ij =

{
0 if i = j
∞ if i 6= j

For m ≥ 1, we compute lmij by taking the minimum

of lm−1
ij (the weight of the shortest path from i to j

containing at most m − 1 edges) and the minimum
weight of path with m edges (obtained by looking at
all predecessors of j)

lmij = min(lm−1
ij ,min1≤k≤n{lm−1

ik + wkj})
= min1≤k≤n(l

m−1
ik + wkj}

If the graph contains no negative weight cycles,
then for every pair of vertices i and j there is a
shortest path that contains at most (n−1) edges.

The weight of shortest path are therefore,

δ(i, j) = ln−1
ij = lnij = ln+1

ij = . . .

+ 4

+ +

II

JJ

KK
w(kj)

LL

LL

IK

IJ

(m−1)

(m−1)

+ 5

+ +

11

22

33

4455

33

44

88

−4

66

22

11

77

−5

+ 6

+ +

Example

L(1) =

0 3 8 ∞ −4
∞ 0 ∞ 1 7
∞ 4 0 ∞ ∞
2 ∞ −5 0 ∞
∞ ∞ ∞ 6 0

L(2) =

0 3 8 2 −4
3 0 −4 1 7
∞ 4 0 5 11
2 −1 −5 0 −2
8 ∞ 1 6 0

L(3) =

0 3 −3 2 −4
3 0 −4 1 −1
7 4 0 5 11
2 −1 −5 0 −2
8 5 1 6 0

L(4) =

0 1 −3 2 −4
3 0 −4 1 −1
7 4 0 5 3
2 −1 −5 0 −2
8 5 1 6 0

+ 7

+ +

cij =
n∑

k=1

aik.bkj

MATRIX-MULTIPLY(A, B)

1 n ← rows[L]
2 let C be an n× n matrix
3 for i ← 1 to n
4 do for j ← 1 to n
5 do cij = 0
6 for k ← 1 to n
7 do cij ← cij + aik.bkj

8 return C

Reference clrs 625

+ 8

+ +

==

AA BB CC

II

JJ

II

JJ

CC
II JJ

+ 9

+ +

EXTEND-SHORTEST-PATHS(L, W)

1 n ← rows[L]
2 let L

′
= (l

′

ij) be an n× n matrix
3 for i ← 1 to n
4 do for j ← 1 to n
5 do l

′

ij = infty
6 for k ← 1 to n
7 do l

′

ij = min{l′ij, l
′

ik + wkj}
8 return L

′

Reference clrs 624

+ 10

+ +

L1 = L0.W = W
L2 = L1.W = W 2

L3 = L2.W = W 3

...
Ln−1 = Ln−2.W = W n−1

ALL-PAIRS-SHORTEST-PATHS(W)

1 n ← rows[W]
2 L1 ← W
3 for m ← 2 to n− 1
4 do Lm ← EXTEND-SHORTEST-PATHS(Lm−1, W)
5 return Ln−1

Reference clrs 625

+ 11

+ +

L1 = L0.W = W
L2 = W 2 = W.W
L4 = W 4 = W 2.W 2

L8 = W 8 = W 4.W 4

...

FAST-PAIRS-SHORTEST-PATHS(W)

1 n ← rows[W]
2 L1 ← W
3 m ← 1
4 while m < n− 1
5 do L2m ← EXTEND-SHORTEST-PATHS(Lm, Lm)
5 return Lm

Reference clrs 627

+ 12

+ +

Floyd Warshall Algorithm: Main Idea

dk
ij =

{
wij if k = 0
min(dk−1

ij , dk−1
ik + dk−1

kj) if k ≥ 1

+ 13

+ +

II JJ

KK

PP PP
11 22

P: all intermediate vertices in {1,2,....k}

+ 14

+ +

FLOYD-WARSHALL(W)

1 n ← rows[L]
2 let D0 ← W
3 for k ← 1 to n
4 do for i ← 1 to n
5 do for j ← 1 to n

6 do dk
ij ← min(dk−1

ij , dk−1
ik + dk−1

kj)
7 return Dn

Reference clrs 624

+ 15

