
Preface

The objective of the third edition of Languages and Machines: An Introduction to the 
Theory o f  Computer Science remains the same as that of the first two editions, to provide 
a mathematically sound presentation of the theory of computer science at a level suitable 
for junior- and senior-level computer science majors. The impetus for the third edition was 
threefold: to enhance the presentation by providing additional motivation and examples; to 
expand the selection of topics, particularly in the area of computational complexity; and to 
provide additional flexibility to the instructor in the design of an introductory course in the 
theory of computer science.

While many applications-oriented students question the importance o f studying the
oretical foundations, it is this subject that addresses the “big picture" issues of computer 
science. When today’s programming languages and computer architectures are obsolete 
and solutions have been found for problems currently of interest, the questions considered 
in this book will still be relevant. What types of patterns can be algorithmically detected? 
How can languages be formally defined and analyzed? What are the inherent capabilities 
and limitations of algorithmic computation? What problems have solutions that require so 
much time or memory that they are realistically intractable? How do we compare the relative 
difficulty of two problems? Each of these questions will be addressed in this text.

Organization

Since most computer science students at the undergraduate level have little or no background 
in abstract mathematics, the presentation is intended not only to introduce the foundations 
of computer science but also to increase the student’s mathematical sophistication. This 
is accomplished by a rigorous presentation of the concepts and theorems of the subject 
accompanied by a generous supply of examples. Each chapter ends with a set of exercises 
that reinforces and augments the material covered in the chapter.

To make the topics accessible, no special mathematical prerequisites are assumed. 
Instead, Chapter 1 introduces the mathematical tools of the theory of computing; naive set
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theory, recursive definitions, and proof by mathematical induction. With the exception of 
the specialized topics in Sections 1.3 and 1.4, Chapters 1 and 2 provide background material 
that will be used throughout the text. Section 1.3 introduces cardinality and diagonalization, 
which are used in the counting arguments that establish the existence of undecidable 
languages and uncomputable functions. Section 1.4 examines the use of self-reference in 
proofs by contradiction. This technique is used in undecidability proofs, including the proof 
that there is no solution to the Halting Problem. For students who have completed a course 
in discrete mathematics, most of the material in Chapter 1 can be treated as review.

Recognizing that courses in the foundations of computing may emphasize different 
topics, the presentation and prerequisite structure of this book have been designed to permit 
a course to investigate particular topics in depth while providing the ability to augment 
the primary topics with material that introduces and explores the breadth of computer 
science theory. The core material for courses that focus on a classical presentation of formal 
and automata language theory, on computability and undecidability, on computational 
complexity, and on formal languages as the foundation for programming language definition 
and compiler design are given in the following table. A star next to a section indicates that 
the section may be omitted without affecting the continuity of the presentation. A starred 
section usually contains the presentation of an application, the introduction of a related 
topic, or a detailed proof of an advanced result in the subject.

Formal Languages
Formal Language Computability Computational for Programming
and Automata Theory Theory Complexity Languages

Chap. 1 : 1-3, 6 - 8 Chap. 1: all Chap. 1: all Chap. 1: 1-3, 6 - 8

Chap. 2: 1-3,4* Chap. 2: 1-3,4* Chap. 2: 1-3,4* Chap. 2: 1-4

Chap. 3: 1-3,4* Chap. 5: 1-6,7* Chap. 5: 1-4,5-7* Chap. 3: 1-4
Chap. 4: 1-5,6 *, 7 Chap. 8 : 1-7, 8 ' Chap. 8 : 1-7, 8 * Chap. 4: 1-5,6 *. 7
Chap. 5: 1-6, 7* Chap. 9: 1-5, 6 * Chap. 9: l^ t, 5-6* Chap. 5: 1-6, 7*
Chap. 6 : 1-5, 6 * Chap. 10: 1 Chap. 11: 1-4, 5* Chap. 7: 1-3,4-5*
Chap. 7: 1-5 Chap. 11: all Chap. 14: 1-4, 5-7* Chap. 18: all
Chap. 8 : 1-7, 8 * Chap. 12: all Chap. 15: all Chap. 19: all
Chap. 9: 1-5,6 * Chap. 13: all Chap. 16: 1-6, 7* Chap. 20: all
Chap. 10: all Chap. 17: all

The classical presentation of formal language and automata theory examines the rela
tionships between the grammars and abstract machines of the Chomsky hierarchy. The com
putational properties of deterministic finite automata, pushdown automata, linear-bounded 
automata, and Turing machines are examined. The analysis of the computational power of 
abstract machines culminates by establishing the equivalence of language recognition by 
Turing machines and language generation by unrestricted grammars.
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Computability theory examines the capabilities and limitations of algorithmic prob
lem solving. The coverage of computability includes decidability and the Church-Turing 
Thesis, which is supported by the establishment of the equivalence of Turing computabil
ity and ^-recursive functions. A diagonalization argument is used to show that the Halting 
Problem for Turing machines is unsolvable. Problem reduction is then used to establish the 
undecidability of a number of questions on the capabilities of algorithmic computation.

The study of computational complexity begins by considering methods for measuring 
the resources required by a computation. The Turing machine is selected as the framework 
for the assessment of complexity, and time and space complexity are measured by the 
number of transitions and amount of memory used in Turing machine computations. The 
class 7  of problems that are solvable by deterministic Turing machines in polynomial time 
is identified as the set problems that have efficient algorithmic solutions. The class N T and 
the theory of NP-completeness are then introduced. Approximation algorithms are used to 
obtain near-optimal solutions for NP-complete optimization problems.

The most important application of formal language theory to computer science is the 
use of grammars to specify the syntax of programming languages. A course with the focus 
of using formal techniques to define programming languages and develop efficient parsing 
strategies begins with the introduction of context-free grammars to generate languages 
and finite automata to recognize patterns. After the introduction to language definition, 
Chapters 18-20 examine the properties of LL and LR grammars and deterministic parsing 
of languages defined by these types of grammars.

Exercises

Mastering the theoretical foundations of computer science is not a spectator sport; only by 
solving problems and examining the proofs of the major results can one fully comprehend 
the concepts, the algorithms, and the subtleties of the theory. That is, understanding the “big 
picture” requires many small steps. To help accomplish this, each chapter ends with a set of 
exercises. The exercises range from constructing simple examples of the topics introduced 
in the chapter to extending the theory.

Several exercises in each set are marked with a star. A problem is starred because it 
may be more challenging than the others on the same topic, more theoretical in nature, or 
may be particularly unique and interesting.

Notation

The theory of computer science is a mathematical examination of the capabilities and lim
itations of effective computation. As with any formal analysis, the notation must provide
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precise and unambiguous definitions of the concepts, structures, and operations. The fol
lowing notational conventions will be used throughout the book:

Items Description Examples

Elements and strings Italic lowercase letters from the beginning 
of the alphabet

a, b, abc

Functions Italic lowercase letters f ' g ' h

Sets and relations Capital letters X. Y.Z, z , r

Grammars Capital letters G, G„ G2

Variables of grammars Italic capital letters A, B, C, S

Abstract machines Capital letters M, M „M 2

The use of roman letters for sets and mathematical structures is somewhat nonstandard 
but was chosen to make the components of a structure visually identifiable. For example, a 
context-free grammar is a structure G = (E , V, P, S). From the fonts alone it can be seen 
that G consists of three sets and a variable S.

A three-part numbering system is used throughout the book; a reference is given by 
chapter, section, and item. One numbering sequence records definitions, lemmas, theorems, 
corollaries, and algorithms. A second sequence is used to identify examples. Tables, figures, 
and exercises are referenced simply by chapter and number.

The end of a proof is marked by ■  and the end of an example by □ .  An index of symbols, 
including descriptions and the numbers of the pages on which they are introduced, is given 
in Appendix I.

Supplements

Solutions to selected exercises are available only to qualified instructors. Please contact your 
local Addison-Wesley sales representative or send email to aw.cse@aw.com for information 
on how to access them.
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Introduction

i

The theory of computer science began with the questions that spur most scientific endeavors: 
how and what. After these had been answered, the question that motivates many economic 
decisions, how much, came to'the forefront. The objective of this book is to explain the 
significance of these questions for the study of computer science and provide answers 
whenever possible.

Formal language theory was initiated by the question, “How are languages defined?” In 
an attempt to capture the structure and nuances of natural language, linguist Noam Chomsky 
developed formal systems called grammars for defining and generating syntactically correct 
sentences. At approximately the same time, computer scientists were grappling with the 
problem of explicitly and unambiguously defining the syntax of programming languages. 
These two studies converged when the syntax of the programming language ALGOL was 
defined using a formalism equivalent to a context-free grammar.

The investigation of computability was motivated by two fundamental questions: 
“What is an algorithm?” and “What are the capabilities and limitations o f algorithmic 
computation?” An answer to the first question requires a formal model of computation. It 
may seem that the combination of a computer and high-level programming language, which 
clearly constitute a computational system, would provide the ideal framework for the study 
of computability. Only a little consideration is needed to see difficulties with this approach. 
What computer? How much memory should it have? What programming language? More
over, the selection of a particular computer or language may have inadvertent and unwanted 
consequences on the answer to the second question. A problem that may be solved on one 
computer configuration may not be solvable on another.

The question of whether a problem is algorithmically solvable should be independent 
of the model computation used: Either there is an algorithmic solution to a problem or there 
is no such solution. Consequently, a system that is capable of performing all possible al 
rithmic computations is needed to appropriately address the question of computability. 1  ni 
characterization of general algorithmic computation has been a major area o f research for 
mathematicians and logicians since the 1930s. Many different systems have been proposed 
as models of computation, including recursive functions, the lambda calculus of Alonzo
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Church, Markov systems, and the abstract machines developed by Alan Turing. All of these 
systems, and many others designed for this purpose, have been shown to be capable of solv
ing the same set of problems. One interpretation of the Church-Turing Thesis, which will 
be discussed in Chapter 11, is that a problem has an algorithmic solution only if it can be 
solved in any (and hence all) of these computational systems.

Because of its simplicity and the similarity of its components to those of a modem day 
computer, we will use the Turing machine as our framework for the study of computation. 
The Turing machine has many features in common with a computer: It processes input, 
writes to memory, and produces output. Although Turing machine instructions are primitive 
compared with those of a computer, it is not difficult to see that the computation of 
a computer can be simulated by an appropriately defined sequence of Turing machine 
instructions. The Turing machine model does, however, avoid the physical limitations of 
conventional computers; there is no upper bound on the amount of memory or time that may 
be used in a computation. Consequently, any problem that can be solved on a computer can 
be solved with a Turing machine, but the converse of this is not guaranteed.

After accepting the Turing machine as a universal model of effective computation, 
we can address the question, “What are the capabilities and limitations of algorithmic 
computation?” The Church-Turing Thesis assures us that a problem is solvable only if there 
is a suitably designed Turing machine that solves it. To show that a problem has no solution 
reduces to demonstrating that no Turing machine can be designed to solve the problem. 
Chapter 12 follows this approach to show that several important questions concerning our 
ability to predict the outcome of a computation are unsolvable.

Once a problem is known to be solvable, one can begin to consider the efficiency 
or optimality of a solution. The question how much initiates the study of computational 
complexity. Again the Turing machine provides an unbiased platform that permits the 
comparison of the resource requirements of various problems. The time complexity of 
a Turing machine measures the number of instructions required by a computation. Time 
complexity is used to partition the set of solvable problems into two classes: tractable and 
intractable. A problem is considered tractable if it is solvable by a Turing machine in which 
the number of instructions executed during a computation is bounded by a polynomial 
function of length of the input. A problem that is not solvable in polynomial time is 
considered intractable because of the excessive amount of computational resources required 
to solve all but the simplest cases of the problem.

The Turing machine is not the only abstract machine that we will consider; rather, 
it is the culmination of a series of increasingly powerful machines whose properties will 
be examined. The analysis of effective computation begins with an examination of the 
properties of deterministic finite automata. A deterministic finite automaton is a read-once 
machine in which the instruction to be executed is determined by the state o f the machine 
and the input symbol being processed. Although structurally simple, deterministic finite 
automata have applications in many disciplines including pattern recognition, the design of 
switching circuits, and the lexical analysis of programming languages.

A more powerful family of machines, known as pushdown automata, are created by 
adding an external stack memory to finite automata. The addition of the stack extends the
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computational capabilities of a finite automaton. As with the Turing machines, our study of 
computability will characterize the computational capabilities of both of these families of 
machines.

Language definition and computability, the dual themes of this book, are not two 
unrelated topics that fall under the broad heading of computer science theory, but rather 
they are inextricably intertwined. The computations of a machine can be used to recognize 
a language; an input string is accepted by the machine if the computation initiated with the 
string indicates its syntactic correctness. Thus each machine has an associated language, 
the set of strings accepted by the machine. The computational capabilities o f each family of 
abstract machines is characterized by the languages accepted by the machines in the family. 
With this in mind, we begin our investigations into the related topics of language definition 
and effective computation.



PART I

Foundations

Theoretical computer science includes the study of language definition, pattern recog
nition, the capabilities and limitations of algorithmic computation, and the analysis 

of the complexity of problems and their solutions. These topics are built on the founda
tions of set theory and discrete mathematics. Chapter 1 reviews the mathematical concepts, 
operations, and notation required for the study of formal language theory and the theory of 
computation.

Formal language theory has its roots in linguistics, mathematical logic, and computer 
science. A set-theoretic definition of language is given in Chapter 2. This definition is suffi
ciently broad to include both natural (spoken and written) languages and formal languages, 
but the generality is gained at the expense of not providing an effective method for gen
erating the strings of a language. To overcome this shortcoming, recursive definitions and 
set operations are used to give finite specifications of languages. This is followed by the 
introduction of regular sets, a family of languages that arises in automata theory, formal 
language theory, switching circuits, and neural networks. The section ends with an exam
ple of the use of regular expressions— a shorthand notation for regular sets— in describing 
patterns for searching text.



CHAPTER 1

Mathematical 
Preliminaries

Set theory and discrete mathematics provide the mathematical foundation for formal lan
guage theory, computability theory, and the analysis of computational complexity. We begin 
our study of these topics with a review of the notation and basic operations of set theory. 
Cardinality measures the size of a set and provides a precise definition of an infinite set. 
One of the interesting results of the investigations into the properties of sets by German 
mathematician Georg Cantor is that there are different sizes of infinite sets. While Cantor’s 
work showed that there is a complete hierarchy of sizes of infinite sets, it is sufficient for 
our purposes to divide infinite sets into two classes: countable and uncountable. A set is 
countably infinite if it has the same number of elements as the set of natural numbers. Sets 
with more elements than the natural numbers are uncountable.

In this chapter we will use a construction known as the diagonalization argument 
to show that the set of functions defined on the natural numbers is uncountably infinite. 
After we have agreed upon what is meant by the terms effective procedure and computable 
function (reaching this consensus is a major goal of Part III of this book), we will be 
able to determine the size of the set of functions that can be algorithmically computed. 
A comparison of the sizes of these two sets will establish the existence of functions whose 
values cannot be computed by any algorithmic process.

While a set may consist of an arbitrary collection of objects, we are interested in sets 
whose elements can be mechanically produced. Recursive definitions are introduced to 
generate the elements of a set. The relationship between recursively generated sets and 
mathematical induction is developed, and induction is shown to provide a general proof 
technique for establishing properties of elements in recursively generated infinite sets.

7
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This chapter ends with a review of directed graphs and trees, structures that will be 
used throughout the book to graphically illustrate the concepts of formal language theory 

and the theory of computation.

1.1 Set Theory

We assume that the reader is familiar with the notions of elementary set theory. In this 
section, the concepts and notation of that theory are briefly reviewed. The symbol € signifies 
membership; x  e  X indicates that x  is a member or element of the set X. A slash through a 
symbol represents not, so x & X signifies that * is not a member of X. Two sets are equal if 
they contain the same members. Throughout this book, sets are denoted by capital letters. 
In particular, X, Y, and Z are used to represent arbitrary sets. Italics are used to denote the 
elements of a set. For example, symbols and strings of the form a , b, A, B, aaaa,  and abc 
represent elements of sets.

Brackets { } are used to indicate a set definition. Sets with a small number of members 
can be defined explicitly; that is, their members can be listed. The sets

X =  {1, 2, 3}

Y =  {a, b , c, d, e)

are defined in an explicit manner. Sets having a large finite or infinite number of members 
must be defined implicitly. A set is defined implicitly by specifying conditions that describe 
the elements of the set. The set consisting of all perfect squares is defined by

{n | n =  m 2 for some natural number m }.

The vertical bar | in an implicit definition is read “such that.” The entire definition is read 
“the set of n such that n equals m squared for some natural number m.”

The previous example mentioned the set of natural numbers. This important set, 
denoted N, consists of the numbers 0, 1, 2, 3, . . .  . The em pty set, denoted 0, is the set 
that has no members and can be defined explicitly by 0  =  { }.

A set is determined completely by its membership; the order in which the elements are 
presented in the definition is immaterial. The explicit definitions

X =  {1, 2, 3}, Y =  {2, 1, 3}, Z =  {1, 3, 2, 2, 2}

describe the same set. The definition of Z contains multiple instances of the number 2. 
Repetition in the definition of a set does not affect the membership. Set equality requires 
that the sets have exactly the same members, and this is the case; each of the sets X, Y, and 
Z has the natural numbers 1, 2, and 3 as its members.

A set Y is a subset of X, written Y C X, if every member of Y is also a member of X. 
The empty set is trivially a subset of every set. Every set X is a subset of itself. If Y is a
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subset of X and Y 5 6  X, then Y is called a proper subset of X. The set of all subsets of X 
is called the power set of X and is denoted J ’(X).

Example 1.1.1

Let X =  {1, 2, 3}. The subsets of X are

0 {1} {2} {3}

{1,2} {2,3} {3,1} {1,2,3}. □

Set operations are used to construct new sets from existing ones. The union of two sets 
is defined by

X U Y  =  { z | z € X o r z €  Y}.

The or is inclusive. This means that z is a member of X U Y if it is a member of X or Y or 
both. The intersection of two sets is the set of elements common to both. This is defined

by

X n Y  =  { z | z € X  and z €  Y}.

Two sets whose intersection is empty are said to be disjoint. The union and intersection of 
n sets, Xj, X2, . . . , X„, are defined by

n

U  X, =  Xi U X 2 U • • • U X„ =  {x | x  e  X,-, for some 1 =  1, 2 , . . . .  n}
;=i
n

Q x( =  x, n x2 n • ■ • n X„ =  {* IX € X,-, for all / =  1 , 2......n },
1 = 1

respectively.
Subsets X ^ X2, . . . .  X„ of a set X are said to partition X if

i) X =  U  X,
i=i

ii) Xj H X j  =  0 , for 1 <  i, j  <  n , and i ^  j .

For example, the set of even natural numbers (zero is considered even) and the set of odd 
natural numbers partition N.

The difference of sets X and Y, X — Y, consists of the elements of X that are not in Y:

X -  Y =  { z | z € X a n d z £ Y } .

Let X be a subset of a universal set U. The com plem ent of X with respect to U is the set 
of elements in U but not in X. In other words, the complement of X with respect to U is 
the set U j— X. When the universe U is known, the complement of X with respect to U is 
denoted X. The following identities, known as DeMorgan’s Laws, exhibit the relationships
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between union, intersection, and complement when X and Y are subsets o f a set U and 
complementation is taken with respect to U:

i) ( X U Y )  =  X H Y

ii) ( X n Y )  =  X U Y .

Example 1.1.2

Let X =  {0, 1, 2, 3}, Y =  {2, 3, 4, 5), and let X and Y denote the complement of X and Y 
with respect to N. Then

X U Y =  {0, 1, 2, 3, 4, 5} X =  {n | n > 3}

X n Y  =  {2, 3} Y =  {0, 1} U {n | n > 5}

X — Y =  {0, 1} X H Y =  {h | n >  5}

Y -  X =  {4, 5} ( X U Y )  =  {« | n >  5}

The final two sets in the right-hand column exhibit the equality required by DeMorgan’s 
Law. □

The definition of subset provides the method for proving that a set X is a subset of Y; 
we must show that every element of X is also an element of Y. When X is finite, we can 
explicitly check each element of X for membership in Y. When X contains infinitely many 
elements, a different approach is needed. The strategy is to show that an arbitrary element 
of X is in Y.

Example 1.1.3

We will show that X =  {8 n — 1 1 n > 0} is a subset of Y =  {2m +  1 1 m is odd). To gain a 
better understanding of the sets X and Y, it is useful to generate some of the elements of X 
and Y:

X : 8 - 1 - 1  =  7, 8 - 2 — 1 =  15, 8 - 3 - 1 =  23, 8 - 4 - 1  =  31, . . .

Y:  2 1  +  1 =  3, 2 - 3  +  1 =  7, 2 - 5 + 1 = 1 1 ,  2 - 7 + 1 = 1 3 , . . .

To establish the inclusion, we must show that every element of X is also an element of Y. 
An arbitrary element x  of X has the form 8 n — 1, for some n > 0. Let m =  4n  — 1. Then m 
is an odd natural number and

2m +  1 =  2(4n -  1) +  1 

=  8 w -  2  +  1 

=  8n -  1 

=  x.

Thus x  is also in Y and X C Y. □
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Set equality can be defined using set inclusion; sets X and Y are equal if X C Y and
Y C X. This simply states that every element of X is also an element of Y and vice versa. 
When establishing the equality of two sets, the two inclusions are usually proved separately 
and combined to yield the equality.

Example 1.1.4

We prove that the sets

X =  {n | n =  m 2 for some natural number m > 0}

Y =  [n2 +  2n +  1 1 rt > 0}

are equal. First, we show that every element of X is also an element of Y. Let x  G X; then 
x = m 2 for some natural number m >  0. Let m j be that number. Then x  can be written

x  =  (m0 ) 2

=  (m0  -  1 +  l ) 2

=  (m0 — l)2 +  2(m o — 1) +  1.

Letting n = m 0 — 1, we see that x  =  rt2 +  2rt +  1 with rt >  0. Consequently, x  is a member 
of the set Y.

We now establish the opposite inclusion. Let y  =  (n0 ) 2  +  2«q +  1 be an element of Y. 
Factoring yields y  =  (n0 +  l)2. Thus y  is the square of a natural number greater than zero 
and therefore an element of X.

Since X c  Y and Y c  X, we conclude that X =  Y. □

1.2 Cartesian Product, Relations, and Functions

The Cartesian product is a set operation that builds a set consisting of ordered pairs of 
elements from two existing sets. The Cartesian product of sets X and Y, denoted X x Y, is 
defined by

X x Y =  {[*, y] \ x  6  X and y e  Y}.

A binary relation on X and Y is a subset of X x Y. The ordering of the natural numbers 
can be used to generate a relation LT (less than) on the set N x  N. This relation is the subset 
of N x N defined by

LT =  {[«', j ]  | i < j  and /, j  e  N}.

The notation [i, j]  € LT indicates that i is less than j ,  for example, [0, 1], [0, 2] € LT and 
[1, 1] £  LT.
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The Cartesian product can be generalized to construct new sets from any finite number
of sets. If x t, x2, . . ■ , xn are n elements, then [*,, * 2 ......... x„] is called an ordered n-tuple.
An ordered pair is simply another name for an ordered 2-tuple. Ordered 3-tuples, 4-tuples, 
and 5 -tuples are commonly referred to as triples, quadruples, and quintuples, respectively. 
The Cartesian product of n sets Xj, X2 , . . . , X„ is defined by

X, x X2  x • • • x X„ =  {[*,, x 2......... x„] | x, 6  X „ for i =  1, 2 , . . . ,  n}.

An n -ary relation on X |, X2, . . . , X„ is a subset o fX , x  X2  x  - ■ ■ x  X„. 1-ary, 2-ary, and 
3 -ary relations are called unary, binary, and ternary, respectively.

Example 1.2.1

Let X =  {1, 2, 3} and Y =  [a, b\. Then

a) X x Y =  {[1, a], [ 1 , H  [2, a], [2, b], [3, a], [3, *]}

b) Y x X =  {[a, 1], [a, 2], [a, 3], [b, 1], [b, 2], [b , 3]}

c) Y x Y =  {[a, a ], [a, b], [b, a], [b, fc]}

d) X x Y x Y =  {[1, a, a], [1, b, a], [2, a , a], [2, b , a], [3, a, a), [3, b, a],
[1, a, b], [1, b , b], [2, a, b], [2, b, b], [3, a, b], [3, b, b]} □

Informally, a function from a set X to a set Y is a mapping of elements o f X to elements 
of Y in which each element of X is mapped to at most one element of Y. A function /  from 
X to Y is denoted /  : X —►  Y. The element of Y assigned by the function /  to an element 
x  e  X is denoted / ( x ) .  The set X is called the domain of the function and the elements 
of X are the arguments or operands of the function / .  The range of /  is the subset of Y 
consisting of the members of Y that are assigned to elements of X. Thus the range of a 
function /  : X -»  Y is the set {y e  Y | y  =  f ( x )  for some x  € X).

The relationship that assigns to each person his or her age is a function from the set of 
people to the natural numbers. Note that an element in the range may be assigned to more 
than one element of the domain— there are many people who have the same age. Moreover, 
not all natural numbers are in the range of the function; it is unlikely that the number 1 0 0 0  

is assigned to anyone.
The domain of a function is a set, but this set is often the Cartesian product of two or 

more sets. A function

/  : X, x X 2  x • • ■ x X„ - ►  Y

is said to be an n-variable function or operation. The value of the function with variables
X|, * 2 , is denoted f ( x x 2 ......... x„). Functions with one, two, or three variables
are often referred to as unary, binary, and ternary operations. The function sq : N —►  N 
that assigns n2 to each natural number is a unary operation. When the domain of a function 
consists of the Cartesian product of a set X with itself, the function is simply said to be a 
binary operation on X. Addition and multiplication are examples of binary operations on N.
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A function /  relates members of the domain to members of the range of / .  A natural 
definition of function is in terms of this relation. A total function /  from X to Y is a binary 
relation on X x Y that satisfies the following two properties:

i) For each x  € X, there is a y  e  Y such that [*, y] e  / .

ii) If [x, >>,] 6  /  and [*, y2] € / ,  then y, =  y2.

Condition (i) guarantees that each element of X is assigned a member of Y, hence the term 
total. The second condition ensures that this assignment is unique. The previously defined 
relation LT is not a total function since it does not satisfy the second condition. A relation 
on N x N representing greater than fails to satisfy either of the conditions. Why?

Example 1.2.2

Let X =  {1, 2, 3} and Y =  {a, b). The eight total functions from X to Y are listed below.

x f i x ) X f ( x ) X f ( x ) x f i x )

1 a 1 a 1 a 1 b

2 a 2 a 2 b 2 a

3 a 3 b 3 a 3 a

X f i x ) X f ( x ) X f i x ) X f i x )

1 a 1 b 1 b 1 b

2 b 2 a 2 b 2 b

3 b 3 b 3 a 3 b

V  A partial function /  from X to Y is a relation on X x Y in which y x — y2 whenever 
U.ViJ € /  and [;r, _v2] 6  / .  A partial function /  is defined for an argument x  if there is a 
y  G Y such that [*, y] e  / .  Otherwise, /  is undefined for x. A total function is simply a 
partial function defined for all elements of the domain.

Although functions have been formally defined in terms of relations, we will use the 
standard notation / ( * )  =  y  to indicate that y  is the value assigned to x  by the function / ,  that 
is, that [*, y] € / .  The notation f ( x )  f  indicates that the partial function /  is undefined for 
the argument x. The notation / (x) I  is used to show that / ( * )  is defined without explicitly 
giving its value.

Integer division defines a binary partial function div from N x N to N. The quotient 
obtained from the division of i by j ,  when defined, is assigned to div(i, j ) .  For example, 
div(3, 2) =  1, div(4, 2) =  2, and div( 1, 2) =  0. Using the previous notation, div(i, 0) |  and 
div(i, j ) |  for all values of j  other than zero.

A total function /  : X —* Y is said to be one-to-one if each element o f X maps to a 
distinct element in the range. Formally, /  is one-to-one if x t ^  x 2 implies / ( * , )  ^  f  (x2). 
A function /  : X -> Y is said to be onto if the range of /  is the entire set Y. A total function
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that is both one-to-one and onto defines a correspondence between the elements of domain 

and the range.

Example 1.2.3

The functions / ,  g, and s are defined from N to N -  {0}. the set of positive natural numbers,

i) / ( « )  =  2 n +  l 

... , . f 1 i f n =  0  

“ > * < " > = ( „  otherwise

iii) s(n) =  n +  1

The function /  is one-to-one but not onto; the range of /  consists of the odd numbers. 
The mapping from N to N -  {0} defined by g is clearly onto but not one-to-one since 
g(0) =  g (l)  =  1. The function s is both one-to-one and onto, defining a correspondence 
that maps each natural number to its successor. □

Example 1.2.4

In the preceding example we noted that the function f ( n )  =  2n +  1 is one-to-one, but not 
onto the set N — {0}. It is, however, a mapping from N to the set of odd natural numbers 
that is both one-to-one and onto. We will use /  to demonstrate how to prove that a function 
has these properties.

One-to-one: To prove that a function is one-to-one, we show that n and m must be the same 
whenever f ( n )  = f ( m ) .  The assumption f  (n) — / (m) yields,

2n +  1 =  2m +  1 or

2n =  2m, and finally,

n =  m.

It follows that n ^  m implies f (n )J=  f  (m), and /  is one-to-one.

Onto: To establish that /  maps N onto the set of odd natural numbers, we must show that 
every odd natural number is in the range of / .  If m is an odd natural number, it can be 
written m =  2n +  1 for some n e  N. Then f ( n )  =  2n +  1 =  m and m is in the range of / .

□

1.3 Equivalence Relations

A binary relation over a set X has been formally defined as a subset of the Cartesian product 
X x X. Informally, we use a relation to indicate whether a property holds between two 
elements of a set. An ordered pair is in the relation if its elements satisfy the prescribed 
condition. For example, the property is less than defines a binary relation on the set of 
natural numbers. The relation defined by this property is the set LT =  {[/, j ]  | i < j }.
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Infix notation is often used to express membership in many common binary relations. 
In this standard usage, i < j  indicates that i is less than j  and consequently the pair [i, j]  

is in the relation LT defined above.
We now consider a type of relation, known as an equivalence relation, that can be used 

to partition the underlying set. Equivalence relations are generally denoted using the infix 
notation a = b to indicate that a is equivalent to b.

Definition 1.3.1

A binary relation =  over a set X is an equivalence relation if it satisfies

i) Reflexivity: a =  a, for all a  € X

ii) Symmetry: a = b implies b = a, for all a, b € X

iii) Transitivity: a = b and b =  c implies a = c, for all a, b, c e  X.

Definition 1.3.2

Let =  be an equivalence relation over X. The equivalence class of an element a € X defined 
by the relation =  is the set [a]s  =  {b e  X | a =  b).

Example 1.3.1

Let = P be the parity relation over N defined by n = P m if, and only if, n and m have the 
same parity (even or odd). To prove that = P is an equivalence relation, we must show that 
it is symmetric, reflexive, and transitive.

i) Reflexivity: For every natural number n, n has the same parity as itself and n = P n.

ii) Symmetry: If n = P m, then n and m  have the same parity and m = P n.

iii) Transitivity: If n = P m and m = P k, then n and m have the same parity and m and k 
have the same parity. It follows that n and k have the same parity and n = P k.

The two equivalence classes of the parity relation = P are [0]=p =  {0, 2, 4, . .  .} and [ l ] . p =  
{1, 3 , 5 , . . . } .  □

An equivalence class is usually written [a]E, where a is an element in the class. In the 
preceding example, [0]_p was used to represent the set of even natural numbers. Lemma
1.3.3 shows that if a =  b, then [a]s  =  [£>]_. Thus the element chosen to represent the class 
is irrelevant.

Lemma 1.3.3

Let =  be an equivalence relation over X and let a and b be elements of X. Then either 
[fl]. =  tb]m or [a]s  n  [b]s  =  0 .

Proof. Assume that the intersection of [a]= and [£>]„ is not empty. Then there is some 
element c that is in both of the equivalence classes. Using symmetry and transitivity, we 
show that [6 ]= c  [a]= . Since c is in both [a]m and [b]_, we know a = c and b =  c. By 
symmetry, c = b. Using transitivity, we conclude that a =  b.
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Now let d  be any element in [b\m. Then b = d. The combination of a =  b, b =  d, and 
transitivity yields a = d .  That is, d  € [a]_. We have shown that every element in [b]B is 
also in [a]m, so [fc]= c  [a]s . By a similar argument, we can establish that [a]_  c  The 
two inclusions combine to produce the desired set equality. ■

Theorem 1.3.4

Let =  be an equivalence relation over X. The equivalence classes of =  partition X.

Proof. By Lemma 1.3.3, we know that the equivalence classes form a disjoint family of 
subsets of X. Let a be any element of X. By reflexivity, a e  [a]*. Thus each element of X 
is in one of the equivalence classes. It follows that the union of the equivalence classes is 
the entire set X. ■

vc-------------------------------------------------------------
1.4 Countable and Uncountable Sets

Cardinality is a measure that compares the size of sets. Intuitively, the cardinality of a set is 
the number of elements in the set. This informal definition is sufficient when dealing with 
finite sets; the cardinality can be obtained by counting the elements of the set. There are 
obvious difficulties in extending this approach to infinite sets.

Two finite sets can be shown to have the same number of elements by constructing a 
one-to-one correspondence between the elements of the sets. For example, the mapping

a — ►  1 

fc— ►  2  

c — ►  3

demonstrates that the sets {a, b, c} and {1, 2, 3} have the same size. This approach, com
paring the size of sets using mappings, works equally well for sets with a finite or infinite 
number of members.

Definition 1.4.1

i) Two sets X and Y have the same cardinality if there is a total one-to-one function from 
X onto Y.

ii) The cardinality of a set X is less than or equal to the cardinality of a set Y if there is 
total one-to-one function from X into Y.

Note that the two definitions differ only by the extent to which the mapping covers the set Y. 
If the range of the one-to-one mapping is all of Y, then the two sets have the same cardinality.

The cardinality of a set X is denoted card(X). The relationships in (i) and (ii) are 
denoted card(X) = card(Y) and card(X) < card(Y), respectively. The cardinality of X is 
said to be strictly less than that of Y, written card(X) < card( Y), if card(X) <  card( Y) and 
card(X) /  card(Y). The Schroder-Bemstein Theorem establishes the familiar relationship 
between < and =  for cardinality. The proof of the Schroder-Bemstein Theorem is left as 
an exercise.
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Theorem 1.4.2 (Schrdder-Bemstein)

If card(X) < card(Y) and card(Y) <  card(X), then card(X) =  card{Y).

The cardinality of a finite set is denoted by the number of elements in the set. Thus 
card([a, fc}) =  2. A set that has the same cardinality as the set of natural numbers is said 
to be countably infinite or denumerable. Intuitively, a set is denumerable if its members 
can be put into an order and counted. The mapping /  that establishes the correspondence 
with the natural numbers provides such an ordering; the first element is / ( 0 ), the second 
/ ( l ) ,  the third / ( 2 ) ,  and so on. The term countable refers to sets that are either finite or 
denumerable. A set that is not countable is said to be uncountable.

The set N — {0} is countably infinite; the function s(n) =  n +  1 defines a one-to-one 
mapping from N onto N — {0}. It may seem paradoxical that the set N — {0}, obtained 
by removing an element from N, has the same number of elements of N. Clearly, there is 
no one-to-one mapping of a finite set onto a proper subset of itself. It is this property that 
differentiates finite and infinite sets.

Definition 1.4.3

A set is infinite if it has a proper subset of the same cardinality.

Example 1.4.1

The set of odd natural numbers is countably infinite. The function f { n )  =  2n +  1 from 
Example 1.2.4 establishes the one-to-one correspondence between N  and the odd numbers.

□

A set is countably infinite if its elements can be put in a one-to-one correspondence 
with the natural numbers. A diagram of a mapping from N onto a set graphically illustrates 
the countability of the set. The one-to-one correspondence between the natural numbers 
and the set of all integers

. . .  -3 -2 -1 0 1 2 3 . . .
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exhibits the countability of the set of integers. This correspondence is defined by the function

. . .  |  div(n, 2 ) +  1 if n is odd 
J  (” ) — j _  2 ) if n is even.

Example 1.4.2

The points of an infinite two-dimensional grid can be used to show that N x N, the set of 
ordered pairs of natural numbers, is denumerable. The grid is constructed by labeling the 
axes with the natural numbers. The position defined by the i th entry on the horizontal axis 
and the j  th entry on the vertical axis represents the ordered pair [i, j].

The elements of the grid can be listed sequentially by following the arrows in the diagram. 
This creates the correspondence

0 1 2 3 4 5 6  7

[0 , 0 ] [0 , 1 ] [1 , 0 ] [0 , 2 ] [ 1, 1 ] [2 , 0 ] [0 ,3] [ 1 , 2 ] . . .

that demonstrates the countability of N x N. The one-to-one correspondence outlined above 
maps the ordered pair [i, j]  to the natural number ((/' +  j ) ( i  + j  +  l ) / 2 ) +  i. □

The sets of interest in language theory and computability are almost exclusively finite 
or denumerable. We state, without proof, several closure properties of countable sets.

Theorem 1.4.4

i) The union of two countable sets is countable.

ii) The Cartesian product of two countable sets is countable.
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iii) The set of finite subsets of a countable set is countable.

iv) The set of finite-length sequences consisting of elements of a nonempty countable set
is countably infinite.

The preceding theorem indicates that the property of countability is retained under 
many standard set-theoretic operations. Each of these closure results can be established by 
constructing a one-to-one correspondence between the new set and a subset of the natural 
numbers.

A set is uncountable if it is impossible to sequentially list its members. The following 
proof technique, known as Cantor's diagonalization argument, is used to show that there 
is an uncountable number of total functions from N to N. Two total functions /  : N —>• N 
and g : N —>■ N are equal if they have the same value for every element in the domain. That 
is. /  =  g if / ( « )  =  g(n) for all n € N. To show that two functions are distinct, it suffices 
to find a single input value for which the functions differ.

Assume that the set of total functions from the natural numbers to the natural numbers 
is denumerable. Then there is a sequence / q, f i ,  f i ,  ■ ■ ■ that contains all the functions. The 
values of the functions are exhibited in the two-dimensional grid with the input values on 
the horizontal axis and the functions on the vertical axis.

0 1 2 3 4

fo /o(0) /oU ) /o(2) /oO ) /o<4>

A / i(0 ) / l ( l ) / i(2 ) / ]  (3) W )

f i / 2(0) / a d ) W ) h i  3) / j W

h / j (0 ) / j ( l ) M 2 ) / j(3 ) W )

U / 4(0) / . ( D u m /«(3) f* W

Consider the function /  : N —»■ N defined by f ( n )  =  /„ (« ) +  1. The values of /  are 
obtained by adding 1 to the values on the diagonal of the grid, hence the name diagonaliza
tion. By the definition of / ,  / ( i )  ^  / ,  (i) for every i. Consequently, /  is not in the sequence 
/„ , f \ ,  f i ,  • ■ • • This is a contradiction since the sequence was assumed to contain all the 
total functions. The assumption that the number of functions is countably infinite leads to 
a contradiction. It follows that the set is uncountable.

Diagonalization is a general proof technique for demonstrating that a set is not count
able. As seen in the preceding example, establishing uncountability using diagonalization 
is a proof by contradiction. The first step is to assume that the set is countable and there
fore its members can be exhaustively listed. The contradiction is achieved by producing 
a member of the set that cannot occur anywhere in the list. No conditions are put on the 
listing of the elements other than that it must contain all the elements of the set. Producing 
a contradiction by diagonalization shows that there is no possible exhaustive listing of the 
elements and consequently that the set is uncountable. This technique is exhibited again in 
the following examples.
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Example 1.4.3

A function /  from N to N has a fixed point if there is some natural number i such that 
/ ( / )  =  i. For example, f ( n )  =  n2 has fixed points 0 and 1, while f ( n )  =  n2 +  1 has no 
fixed points. We will show that the number of functions that do not have fixed points is 
uncountable. The argument is similar to the proof that the number of all functions from N 
to N is uncountable, except that we now have an additional condition that must be met when 
constructing an element that is not in the listing.

Assume that the number of the functions without fixed points is countable. Then these 
functions can be listed f 0, / (, / 2, . . . .  To obtain a contradiction to our assumption that the 
set is countable, we construct a function that has no fixed points and is not in the list. Consider 
the function / (/i) =  /„ (« ) +  n +  1. The addition of n +  1 in the definition o f /  ensures that 
f ( n )  > n for all n. Thus /  has no fixed points. By an argument similar to that given above, 
/ ( i )  ^  fj ( i)  for all i. Consequently, the listing f 0, fa, fa, . . . is not exhaustive, and we 
conclude that the number of functions without fixed points is uncountable. □

Example 1.4.4

CP(N), the set of subsets of N, is uncountable. Assume that the set of subsets of N is
countable. Then they can be listed N0, Nj, N2 ...........Define a subset D of N as follows: For
every natural number j ,

j  € D if, and only if, y £  N^.

By our construction, 0 € D if 0 ^  Nq, l e D i f l  ^  N], and so on. The set D is clearly a set of 
natural numbers. By our assumption, N0, N[, N2, . . .  is an exhaustive listing of the subsets 
of N. Hence, D =  N,- for some i . Is the number i in the set D? By definition of D,

i € D if, and only if, i & Nf.

But since D =  N,-, this becomes

/ 6  D if, and only if, i £  D,

which is a contradiction. Thus, our assumption that TfN) is countable must be false and we 
conclude that 9 (N ) is uncountable.

To appreciate the “diagonal” technique, consider a two-dimensional grid with the 
natural numbers on the horizontal axis and the vertical axis labeled by the sets N0, N h
N2 .......... The position of the grid designated by row N, and column j  contains yes if j  e  N,-.
Otherwise, the position defined by N, and column j  contains no. The set D is constructed by 
considering the relationship between the entries along the diagonal of the grid: the number 
j  and the set N^. By the way that we have defined D, the number j  is an element of D if, 
and only if, the entry in the position labeled by N; and j  is no. □
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1.5 Diagonalization and Self-Reference

In addition to its use in cardinality proofs, diagonalization provides a method for demon
strating that certain properties or relations are inherently contradictory. These results are 
used in nonexistence proofs since there can be no object that satisfies such a property. Di
agonalization proofs of nonexistence frequently depend upon contradictions that arise from 
self-reference— an object analyzing its own actions, properties, or characteristics. Russell’s 
paradox, the undecidability of the Halting Problem for Turing Machines, and Godel’s proof 
of the undecidability of number theory are all based on contradictions associated with self
reference.

The diagonalization proofs in the preceding section used a table with operators listed 
on the vertical axis and their arguments on the horizontal axis to illustrate the relationship 
between the operators and arguments. In each example, the operators were of a different 
type than their arguments. In self-reference, the same family of objects comprises the 
operators and their arguments. We will use the barber’s paradox, an amusing simplification 
of Russell’s paradox, to illustrate diagonalization and self-reference.

The barber’s paradox is concerned with who shaves whom in a mythical town. We are 
told that every man who is able to shave himself does so and that the barber of the town 
(a man himself) shaves all and only the people who cannot shave themselves. We wish to 
consider the possible truth of such a statement and the existence of such a town. In this case, 
the set of males in the town make up both the operators and the arguments; they are doing
the shaving and being shaved. Let M =  [ph p 2, p$......... ph . . . } be the set of all males in
the town. A tabular representation of the shaving relationship has the form

Pi Pi Pi ■ ■ ■  Pi

P i 

P2 

Pi

Pi

where the /', j  th position of the table has a 1 if p, shaves p j  and a 0 otherwise. Every column 
will have one entry with a 1 and all the other entries will be 0 ; each person either shaves 
himself or is shaved by the barber. The barber must be one of the people in the town, so 
he is pi for some value i. What is the value of the position i, i in the table? This is classic 
self-reference; we are asking what occurs when a particular object is simultaneously the 
operator (the person doing the shaving) and the operand (the person being shaved).

Who shaves the barber? If the barber is able to shave himself, then he cannot do so since 
he shaves only people who are unable to shave themselves. If he is unable to shave himself,
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then he must shave himself since he shaves everyone who cannot shave themselves. We 
have shown that the properties describing the shaving habits of the town are contradictory 

so such a town cannot exist.
Russell’s paradox follows the same pattern, but its consequences were much more 

significant than the nonexistence of a mythical town. One of the fundamental tenets of 
set theory as proposed by Cantor in the late 1800s was that any property or condition that 
can be described defines a set— the set of objects that satisfy the condition. There may be 
no objects, finitely many, or infinitely many that satisfy the property, but regardless of the 
number or the type of elements, the objects form a set. Russell devised an argument based 
on self-reference to show that this claim cannot be true.

The relationship examined by Russell’s paradox is that of the membership of one set 
in another. For each set X we ask the question, “Is a set Y an element of X?” This is not 
an unreasonable question, since one set can certainly be an element of another. The table 
below gives both some negative and positive examples of this question.

X Y Y e X ?

(a) {a) no

{(a), b) {«} yes

{{«).«. 0 ) 0 yes

{{a. *}. {a}) {{all no

{{{*}.&), b) {{«). b) yes

It is important to note that the question is not whether Y is a subset of X, but whether it is 
an element of X.

The membership relation can be depicted by the table

X, X2 X3 . . .  X,

x ,  n  I I ~  ~
X2

X3 . . . . . .

X,

where axes are labeled by the sets. A table entry [i, j ]  is 1 if X; is an element of X,- and 0 
if X j  is not an element of X, .

A question of self-reference can be obtained by identifying the operator and the operand 
in the membership question. That is, we ask if a set X, is an element of itself. The diagonal 
entry [/, i] in the preceding table contains the answer to the question, “Is X, an element of 
X,?" Now consider the property that a set is not an element of itself. Does this property 
define a set? There are clearly examples of sets that satisfy the property; the set {a} is not
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an element of itself. The satisfaction of the property is indicated by the complement of the 
diagonal. A set X, is not an element of itself if, and only if, entry [/, i ] is 0.

Assume that S = {X | X <f. X} is a set. Is S in S? If S is an element of itself, then it is 
not in S by the definition of S. Moreover, if S is not in S, then it must be in S since it is not 
an element of itself. This is an obvious contradiction. We were led to this contradiction by 
our assumption that the collection of sets that satisfy the property X ^  X form a set.

We have constructed a describable property that cannot define a set. This shows that 
Cantor’s assertion about the universality of sets is demonstrably false. The ramifications of 
Russell’s paradox were far-reaching. The study of set theory moved from a foundation based 
on naive definitions to formal systems of axioms and inference rules and helped initiate the 
formalist philosophy of mathematics. In Chapter 12 we will use self-reference to establish 
a fundamental result in the theory of computer science, the undecidability of the Halting 
Problem.

1.6 Recursive Definitions

Many, in fact most, of the sets of interest in formal language and automata theory contain 
an infinite number of elements. Thus it is necessary that we develop techniques to describe, 
generate, or recognize the elements that belong to an infinite set. In the preceding section we 
described the set of natural numbers utilizing ellipsis dots ( . . . ) .  This seemed reasonable 
since everyone reading this text is familiar with the natural numbers and knows what comes 
after 0, 1 ,2 , 3 .  However, this description would be totally inadequate for an alien unfamiliar 
with our base 10 arithmetic system and numeric representations. Such a being would have 
no idea that the symbol 4 is the next element in the sequence or that 1492 is a natural 
number.

In the development of a mathematical theory, such as the theory o f languages or 
automata, the theorems and proofs may utilize only the definitions of the concepts of that 
theory. This requires precise definitions of both the objects of the domain and the operations. 
A method of definition must be developed that enables our friend the alien, or a computer 
that has no intuition, to generate and “understand” the properties of the elements of a set.

A recursive definition of a set X specifies a method for constructing the elements 
of the set. The definition utilizes two components: a basis and a set of operations. The 
basis consists of a finite set of elements that are explicitly designated as members of X. 
The operations are used to construct new elements of the set from the previously defined 
members. The recursively defined set X consists of all elements that can be generated from 
the basis elements by a finite number of applications of the operations.

The key word in the process of recursively defining a set is generate. Clearly, no 
process can list the complete set of natural numbers. Any particular number, however, can be 
obtained by beginning with zero and constructing an initial sequence of the natural numbers. 
This intuitively describes the process of recursively defining the set of natural numbers. This 
idea is formalized in the following definition.
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Definition 1.6.1

A recursive definition of N, the set of natural numbers, is constructed using the successor 

function s.

i) Basis: 0 € N.

ii) Recursive step: If n e  N, then s(n) e  N.

iii) Closure: n e  N only if it can be obtained from 0 by a finite number of applications of 
the operation s.

The basis explicitly states that 0 is a natural number. In (ii), a new natural number 
is defined in terms of a previously defined number and the successor operation. The clo
sure section guarantees that the set contains only those elements that can be obtained 
from 0 using the successor operator. Definition 1.6.1 generates an infinite sequence 0, 
5 (0 ), j(s(0 )), j(s (s (0 ))) ...........This sequence is usually abbreviated 0 , 1 , 2 , 3 ............How
ever, anything that can be done with the familiar Arabic numerals could also be done with 
the more cumbersome unabbreviated representation.

The essence of a recursive procedure is to define complicated processes or structures 
in terms of simpler instances of the same process or structure. In the case of the natural 
numbers, “simpler” often means smaller. The recursive step of Definition 1.6 .1 defines a 
number in terms of its predecessor.

The natural numbers have now been defined, but what does it mean to understand their 
properties? We usually associate operations of addition, multiplication, and subtraction with 
the natural numbers. We may have learned these by brute force, either through memorization 
or tedious repetition. For the alien or a computer to perform addition, the meaning of “add” 
must be appropriately defined. One cannot memorize the sum of all possible combinations 
of natural numbers, but we can use recursion to establish a method by which the sum of any 

two numbers can be mechanically calculated. The successor function is the only operation 
on the natural numbers that has been introduced. Thus the definition of addition may use 
only 0  and s.

Definition 1.6.2

In the following recursive definition of the sum of m  and n, the recursion is done on n, the 
second argument of the sum.

i) Basis: If n =  0, then m + n =  m.

ii) Recursive step: m +  s(n) =  s(m + n).

iii) Closure: m + n = k  only if this equality can be obtained from rn +  0 =  m using finitely 
many applications of the recursive step.

The closure step is often omitted from a recursive definition of an operation on a given 
domain. In this case, it is assumed that the operation is defined for all the elements of the 
domain. The operation of addition given above is defined for all elements of N  x N.

The sum of m and the successor of n is defined in terms of the simpler case, the sum of 
m and n, and the successor operation. The choice of n as the recursive operand was arbitrary; 
the operation could also have been defined in terms of m, with n fixed.
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Following the construction given in Definition 1.6.2, the sum of any two natural 
numbers can be computed using 0  and s, the primitives used in the definition of the natural 
numbers. Example 1.6.1 traces the recursive computation of 3 +  2.

Example 1.6.1

The numbers 3 and 2 abbreviate s(s(s(0)))  and j ( 5 (0 )), respectively. The sum is computed 
recursively by

5 (5 (5 (0 ) ) ) + 5 (s(0 ))

=  i ( 5 (s(5 (0 ) ) ) + j ( 0 ))

=  s(i(5(5(s(0))) +  0))

=  s(s(s(s(s(  0 ))))) (basis case).

This final value is the representation of the number 5. □

Figure 1.1 illustrates the process of recursively generating a set X from basis Xq. Each of 
the concentric circles represents a stage of the construction. X, represents the basis elements 
and the elements that can be obtained from them using a single application of an operation 
defined in the recursive step. X,- contains the elements that can be constructed with i or 
fewer operations. The generation process in the recursive portion of the definition produces 
a countably infinite sequence of nested sets. The set X can be thought of as the infinite union 
of the X, ’s. Let x  be an element of X and let X j  be the first set in which x  occurs. This 
means that x  can be constructed from the basis elements using exactly j  applications of the 
operators. Although each element of X can be generated by a finite number o f  applications of 

the operators, there is no upper bound on the number of applications needed to generate the 
entire set X. This property, generation using a finite but unbounded number of operations, 
is a fundamental property of recursive definitions.

The successor operator can be used recursively to define relations on the set N x N. The 
Cartesian product N x N is often portrayed by the grid of points representing the ordered 
pairs. Following the standard conventions, the horizontal axis represents the first component 
of the ordered pair and the vertical axis the second. The shaded area in Figure 1.2(a) contains 
the ordered pairs [/, j]  in which i < j .  This set is the relation LT, less than, that was described 
in Section 1.2.

Example 1.6.2

The relation LT is defined as follows:

i) Basis: [0, 1 ] € LT.

ii) Recursive step: If [m, n] e  LT, then [m, s(n)] e  LT and [s(/«), f(«)] € LT.

iii) Closure: [m, n] € LT only if it can be obtained from [0, 1] by a finite number of 
applications of the operations in the recursive step.
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Recursive generation of X:

Xq =  {jt | x is a basis element}
X, + i =  X, U (at | at can be generated by < +  1 operations)
X =  {a: | x € Xj for some j  > 0}

FICURE 1.1 Nested sequence o f  sets in recursive definition.

Using the infinite union description of recursive generation, the definition of LT gen
erates the sequence LTf of nested sets where

LT0  =  ([0, 1]}

LT, =  LT0 U {[0,2], [1,2]}

LT2  =  LT, U {[0, 3], [1,3], [2,3]}

LT3 =  LT2 U {[0,4], [1,4], [2,4], [3,4]}

L T ^ L T . ^ U  { [ ; ,/  +  !] | 7 = 0 , 1......... i)

□

The construction of LT shows that the generation of an element in a recursively defined 
set may not be unique. The ordered pair [1, 3] € LT2  is generated by the two distinct 
sequences of operations:

Basis

1

2

[0, 1]

[0 , s ( l ) ] = [ 0 , 2 ] 

[5(0), 5(2)] =  [1, 3]

[0, 1]

[5(0), 5(1)] = [ 1 , 2 ] 

[1,5(2)] =  [1,3],
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0 1 2  3

(a)

4 5 

(b)

6 7 8 9

FICURE 1.2 Relations on N x N.

Example 1.6.3

The shaded area in Figure 1.2(b) contains all the ordered pairs with second component 3, 
4, 5, or 6 . A recursive definition of this set, call it X, is given below.

i) Basis: [0, 3], [0, 4], [0, 5], and [0, 6 ] are in X.

ii) Recursive step: If [m, n] 6  X, then [5 (m), n] € X.

iii) Closure: [m , n] 6  X only if it can be obtained from the basis elements by a finite number 
of applications of the operation in the recursive step.

The sequence of sets X, generated by this recursive process is defined by

X, =  {[;, 3], [j, 4], [j, 5], [j, 6 ] | j  =  0, 1 , . . . , / } .

1.7 Mathematical Induction

Establishing relationships between the elements of sets and operations on the sets requires 
the ability to construct proofs that verify the hypothesized properties. It is impossible to 
prove that a property holds for every member in an infinite set by considering each element 
individually. The principle of mathematical induction gives sufficient conditions for proving 
that a property holds for every element in a recursively defined set. Induction uses the family 
of nested sets generated by the recursive process to extend a property from the basis to the 
entire set.
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Principle o f  Mathematical Induction Let X be a set defined by recursion from the basis Xq
and let Xq, X,, X2 ...........X, , . . .  be the sequence of sets generated by the recursive process.
Also let P be a property defined on the elements of X. If it can be shown that

i) P  holds for each element in Xq,

ii) whenever P holds for every element in the sets X<), X], . . . ,X ,-,P  also holds for every

element in Xl+1,

then, by the principle of mathematical induction, P holds for every element in X.

The soundness of the principle of mathematical induction can be intuitively exhibited 
using the sequence of sets constructed in the recursive definition of X. Shading the circle X, 
indicates that P  holds for every element of X ,. The first condition requires that the interior 
set be shaded. Condition (ii) states that the shading can be extended from any circle to the 
next concentric circle. Figure 1.3 illustrates how this process eventually shades the entire 
set X.

The justification for the principle of mathematical induction should be clear from the 
preceding argument. Another justification can be obtained by assuming that conditions (i) 
and (ii) are satisfied but P is not true for every element in X. If P  does not hold for all 
elements of X, then there is at least one set X,- for which P does not universally hold. Let 
X j  be the first such set. Since condition (i) asserts that P  holds for all elements of Xq, j  
cannot be zero. Now P  holds for all elements of Xy_j by our choice of j .  Condition (ii) 
then requires that P  hold for all elements in X j.  This implies that there is no first set in the 
sequence for which the property P fails. Consequently, P  must be true for all the X, ’s, and 
therefore for X.

An inductive proof consists of three distinct steps. The first step is proving that the 
property P holds for each element of a basis set. This corresponds to establishing condition 
(i) in the definition of the principle of mathematical induction. The second is the statement 
of the inductive hypothesis. The inductive hypothesis is the assumption that the property P
holds for every element in the sets Xq, X |...........X„. The inductive step then proves, using
the inductive hypothesis, that P  can be extended to each element in Xn+(. Completing the 
inductive step satisfies the requirements of the principle of mathematical induction. Thus, 
it can be concluded that P is true for all elements of X.

In Example 1.6.2, a recursive definition was given to generate the relation LT, which 
consists of ordered pairs [/, j ]  that satisfy i <  j .  Does every ordered pair generated by 
the definition satisfy this inequality? We will use this question to illustrate the steps of an 
inductive proof on a recursively defined set.

The first step is to explicitly show that the inequality is satisfied for all elements in the 
basis. The basis of the recursive definition of LT is the set {[0, 1]}. The basis step of the 
inductive proof is satisfied since 0  < 1 .

The inductive hypothesis states the assumption that x  <  y  for all ordered pairs [x, y] e 
LT„. In the inductive step we must prove that i < j  for all ordered pairs [i, j]  e  LT„+1. The 
recursive step in the definition of LT relates the sets LTn + 1  and LT„. Let [/, j ]  be an ordered
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FIGURE 1.3 Principle of mathematical induction.

pair in LTn+1. Then either [/, j]  =  [x, ^(>>)] or [/, j ]  =  [.?(*), ■s(.y)] for some [jc, >] G LTn. 
By the inductive hypothesis, x < y. If [i, j]  =  [jc, j(y )], then

i — x  < y < *(;y) =  j .

Similarly, if [/', 7 ] =  [s(x), s(y)], then

i =  5(jc) <  j(;y) =  j .
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In either case, i < j  and the inequality is extended to all ordered pairs in LTn+1. This 
completes the requirements for an inductive proof and consequently the inequality holds 

for all ordered pairs in LT.
In the proof that every ordered pair [i, j ]  in the relation LT satisfies i < j ,  the inductive 

step used only the assumption that the property was true for the elements generated by 
the preceding application of the recursive step. This type of proof is sometimes referred 
to as simple induction. When the inductive step utilizes the full strength o f the inductive 
hypothesis— that the property holds for all the previously generated elements—the proof 
technique is called strong induction. Example 1.7.1 uses strong induction to establish a 
relationship between the number of operators and the number of parentheses in an arithmetic 
expression.

Example 1.7.1

A set E of arithmetic expressions is defined recursively from symbols {a, b}, operators 4- 
and —, and parentheses as follows:

i) Basis: a and b are in E.

ii) Recursive step: If u and v are in E, then (u +  u), (u — v), and (—v) are in E.

iii) Closure: An expression is in E only if it can be obtained from the basis by a finite 
number of applications of the recursive step.

The recursive definition generates the expressions (a + b), (a + (b + b)), ((a +  a) — 
(b — a)) in one, two, and three applications of the recursive step, respectively. We will use 
induction to prove that the number of parentheses in an expression u is twice the number 
of operators. That is, n p(u) =  2n0(u), where n p(u) is the number of parentheses in u and 
n0(u) is the number of operators.

Basis: The basis for the induction consists of the expressions a and b. In this case, 
np(a) =  0  =  2 n0(a) and n p(b) =  0  =  2 n0(b).

Inductive Hypothesis: Assume that np(u) = 2n0(u) for all expressions generated by n or 
fewer iterations of the recursive step, that is, for all u in E„.

Inductive Step: Let w be an expression generated by n +  1 applications o f the recursive 
step. Then w =  (u + v), w =  (u — v), or w =  (—u) where u and v are strings in E„. By the 
inductive hypothesis,

n p(u) =  2  n0(u) 

np(v) = 2n„(v).

If w =  (u +  v) or w = (u — v),

np(w) =  n p(u) + np(v) +  2  

n„(w) = na(u) +  na(v) +  1 .
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Consequently,

2 na(w) = 2 na(u) +  2  n„(v) +  2 =  n p(u) +  n p(v ) + 2 = np(u>).

If w =  (—v), then

2  nB(w) =  2(n„(v) +  1) =  2  n0(v) +  2 =  rtp( v) + 2 =  n p(w).

Thus the property n p(w) =  2na(w) holds for all w e  En+ 1 and we conclude, by mathemat
ical induction, that it holds for all expressions in E. □

Frequently, inductive proofs use the natural numbers as the underlying recursively 
defined set. A recursive definition of this set with basis {0} is given in Definition 1.6.1. The 
nth application of the recursive step produces the natural number n, and the corresponding 
inductive step consists of extending the satisfaction of the property under consideration 
from 0 ......... tt to n +  1 .

Example 1.7.2

Induction is used to prove that 0 +  1 +  • • • +  n =  n(n  +  l)/2 . Using the summation nota
tion, we can write the preceding expression as

n

£ i = n ( n  +  l ) / 2 .
( = 0

Basis: The basis is n =  0. The relationship is explicitly established by computing the values 
of each of the sides of the desired equality.

o

= 0 =  0 (0 +  l ) / 2 .
1= 0

Inductive Hypothesis: Assume for all values k = 1 ,  2 , . . . ,  n that

k

£ « = * ( * +  l ) / 2 .
1=0

Inductive Step: We need to prove that

n+l

£  i =  (n +  1)(« +  1 +  l ) / 2  =  (n +  l)(n +  2 ) / 2 .
1=0
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The inductive hypothesis establishes the result for the sum of the sequence containing n 
or fewer integers. Combining the inductive hypothesis with the properties of addition, we 

obtain

n+ 1  n
£ /  =  £ ,  +  (« + 1)

;=o ;=o

=  n(ji +  l ) / 2  +  {n +  1)

=  (R +  l ) ( « / 2  +  1)

=  (n +  l)(n +  2 ) / 2 .

Since the conditions of the principle of mathematical induction have been established, we 
conclude that the result holds for all natural numbers. □

Each step in the proof must follow from previously established properties of the 
operators or the inductive hypothesis. The strategy of an inductive proof is to manipulate 
the formula to contain an instance of the property applied to a simpler case. When this 
is accomplished, the inductive hypothesis may be invoked. After the application of the 
inductive hypothesis, the remainder of the proof often consists of algebraic manipulation 
to produce the desired result.

1.S Directed Graphs

A mathematical structure consists of a set or sets, distinguished elements from the sets, 
and functions and relations on the sets. A distinguished element is an element of a set that 
has special properties that differentiate it from the other elements. The natural numbers, as 
defined in Definition 1.6.1, can be expressed as a structure (N, s, 0). The set N contains 
the natural numbers, 5  is a unary function on N, and 0 is a distinguished element of N. Zero 
is distinguished because of its explicit role in the definition of the natural numbers.

Graphs are frequently used to portray the essential features of a mathematical entity 
in a diagram, which aids the intuitive understanding of the concept. Formally, a directed 
graph is a mathematical structure consisting of a set N and a binary relation A on N. The 
elements of N are called the nodes, or vertices, of the graph and the elements of A are called 
arcs.or edges. The relation A is referred to as the adjacency relation. A node y  is said to 
be adjacent to x  when [x, y] e  A. An arc from x  to >• in a directed graph is depicted by an 
arrow from x  to y. Using the arrow metaphor, y  is called the head of the arc and x  the tail. 
The in-degree of a node x  is the number of arcs with * as the head. The out-degree of x  is 
the number of arcs with x  as the tail. Node a in Figure 1.4 has in-degree two and out-degree 
one.

A path from a node x  to a node y  in a directed graph G = (N, A) is a sequence of 
nodes and arcs x0, [jc0, *i], j q ,  [ j c j ,  x 2), x 2, . . .  , *„], x„ of G w ith* =  jr0 and
y = x„. The node x  is the initial node of the path and y  is the terminal node. Each pair

(associativity of +)

(inductive hypothesis) 

(distributive property)
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N =  [a, b, c,d) Node In-degree Out-degree

A =  {la, b). lb, a], lb, c]. a 2 1

[b, d]. [c, H  [c, d]. b 2 3

Id, a]. Id, d)} c 1 2

d 3 2

FIGURE 1.4 Directed graph.

of nodes x,-, Jt, + 1  in the path is connected by the arc [x,, xi+1]. The length o f a path is the 
number of arcs in the path. We will frequently describe a path simply by sequentially listing 
its arcs.

There is a path of length zero from any node to itself called the null path . A path 
of length one or more that begins and ends with the same node is called a cycle. A cycle 
is simple if it does not contain a cyclic subpath. The path [a, b], [b, c], [c, d], [d, a] in 
Figure 1.4 is a simple cycle of length four. A directed graph containing at least one cycle is 
said to be cyclic. A graph with no cycles is said to be acyclic.

The arcs of a directed graph often designate more than the adjacency of the nodes. A 
labeled directed graph is a structure (N, L, A) where L is the set of labels and A is a relation 
on N x N x L. An element [x, y, i>] e  A is an arc from x  to y  labeled by v. The label 
on an arc specifies a relationship between the adjacent nodes. The labels on the graph in 
Figure 1.5 indicate the distances of the legs of a trip from Chicago to Minneapolis, Seattle, 
San Francisco, Dallas, St. Louis, and back to Chicago.

An ordered tree, or simply a tree, is an acyclic directed graph in which each node is 
connected by a unique path from a distinguished node called the root of the tree. The root 
has in-degree zero and all other nodes have in-degree one. A tree is a structure (N, A, r) 
where N is the set of nodes, A is the adjacency relation, and r e  N is the root of the tree. 
The terminology of trees combines a mixture of references to family trees and to those of 
the arboreal nature. Although a tree is a directed graph, the arrows on the arcs are usually 
omitted in the illustrations of trees. Figure 1.6(a) gives a tree T with root x t.

A node y  is called a child of a node x, and x  the parent of y, if y  is adjacent to x. 
Accompanying the adjacency relation is an order on the children of any node. When a tree 
is drawn, this ordering is usually indicated by listing the children of a node in a left-to-right 
manner according to the ordering. The order of the children of x2  in T  is x4, x5, and x6.
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FIGURE 1.5 Labeled directed graph.

A node with out-degree zero is called a leaf. All other nodes are referred to as internal 
nodes. The depth of the root is zero; the depth of any other node is the depth of its parent 
plus one. The height or depth of a tree is the maximum of the depths of the nodes in the 
tree.

A node y  is called a descendant of a node x ,  and x  an ancestor of y,  if  there is a path 
from x  to y. With this definition, each node is an ancestor and descendant of itself. The 
ancestor and descendant relations can be defined recursively using the adjacency relation 
(Exercises 43 and 44). The minimal common ancestor of two nodes x  and y  is an ancestor 
of both and a descendant of all other common ancestors. In the tree in Figure 1.6(a), the 
minimal common ancestor of x 10  and * n  is *5, of x 1 0  and x 6  is x 2, and of jc10  and * 1 4  is jcj.

A subtree of a tree T is a subgraph of T that is a tree in its own right. The set of 
descendants of a node x  and the restriction of the adjacency relation to this set form a 
subtree with root x. This tree is called the subtree generated by x.

The ordering of siblings in the tree can be extended to a relation LEFTOF on N x N. 
LEFTOF attempts to capture the property of one node being to the left o f another in the 
diagram of a tree. For two nodes x  and y,  neither of which is an ancestor of the other, 
the relation LEFTOF is defined in terms of the subtrees generated by the minimal common 
ancestor of the nodes. Let z be the minimal common ancestor o f*  and y  and let z (, z2, . . . , 
z„ be the children of z in their correct order. Then x  is in the subtree generated by one of the 
children of z, call it z,. Similarly, y  is in the subtree generated by Zj for some j .  Since z is 
the minimal common ancestor of x  and y, i ^  j .  i f ; <  j ,  then [*, _y] e  LEFTOF; [y, x] e  
LEFTOF otherwise. With this definition, no node is LEFTOF one of its ancestors. If * 1 3  

were to the left of x I2, then * ) 0  must also be to the left of *5 , since they are both the first
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! \

(a) (b)

FIGURE 1.6 (a) Tree with root jc(. (b) Subtree generated by Xy

child of their parent. The appearance of being to the left or right of an ancestor is a feature 
of the diagram, not a property of the ordering of the nodes.

The relation LEFTOF can be used to order the set of leaves of a tree. The frontier of 
a tree is constructed from the leaves in the order generated by the relation LEFTOF. The 
frontier of T is the sequence x9, x I0, x n , jr6, Af13, x 14, xg.

When a family of graphs is defined recursively, the principle of mathematical induction 
can be used to prove that properties hold for all graphs in the family. We will use induction to 
demonstrate a relationship between the number of leaves and the number of arcs in strictly 
binary trees, trees in which each node is either a leaf or has two children.

Example 1.8.1

A tree in which each node has at most two children is called a binary tree. If each node is 
a leaf or has exactly two children, the tree is called strictly binary. The family of strictly 
binary trees can be defined recursively as follows:

i) Basis: A directed graph T =  ({r}, 0, r ) is a strictly binary tree.

ii) Recursive step: If T! =  (Ni, A |, r () and T 2  =  (N2, A2, r2) are strictly binary trees, 
where Ni and N2  are disjoint and r & N( U N2, then

is a strictly binary tree.

iii) Closure: T is a strictly binary tree only if it can be obtained from the basis elements by 
a finite number of applications of the construction given in the recursive step.

A strictly binary tree is either a single node or is constructed from two distinct strictly 
binary trees by the addition of a root and arcs to the two subtrees. Let /v(T) and arc(T) 
denote the number of leaves and arcs in a strictly binary tree T. We prove by induction that
2 /i>(T) — 2 =  arc(T) for all strictly binary trees.

T =  ( N , U N 2 U{r}, A, U A2  U {[r, r j], [r, r2]}, r)
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Basis: The basis consists of strictly binary trees of the form ({r}, 0, r). The equality clearly 
holds in this case since a tree of this form has one leaf and no arcs.

Inductive Hypothesis: Assume that every strictly binary tree T generated by n or fewer 
applications of the recursive step satisfies 2 / v(T) — 2 — arc(T).

Inductive Step: Let T be a strictly binary tree generated by n +  1 applications o f the recursive 
step in the definition of the family of strictly binary trees. T is built from a node r and two 
previously constructed strictly binary trees T] and T 2  with roots rx and r2, respectively.

r

The node r is not a leaf since it has arcs to the roots of T | and T2. Consequently, /t>(T) =  
/v(T |) +  /d(T2). The arcs of T consist of the arcs of the component trees plus the two arcs 
from r.

Since T[ and T 2  are strictly binary trees generated by n or fewer applications of the 
recursive step, we may employ the inductive hypothesis to establish the desired equality. 
By the inductive hypothesis,

2/u(T])  — 2 =  arc(T[)

2 Iv (T2) -  2 =  arc(T2).

Now,

arc( T) =  arc(T[) +  arc( T2) +  2

=  2 /t>(T,) - 2  +  2 lv (T2) - 2  +  2 

=  2(/u(T |) +  /d(T2)) — 2 

=  2(/i>(T)) -  2,

as desired. n

Exercises

1. Let X =  {1, 2, 3, 4} and Y =  {0, 2, 4, 6 ). Explicitly define the sets described in parts 
(a) to (e).

a) X U Y d) Y -  X

b) X n  Y e) 0>(X)

c) X - Y
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2. Let X =  {a, b, c) and Y =  {1, 2).

a) List all the subsets of X.

b) List the members of X x Y.

c) List all total functions from Y to X.

3. Let X =  {3" | rt > 0} and Y =  {3n | n > 0}. Prove that X C Y.

4. Let X =  {n3 +  3n2 + 3n \ n >  0} and Y =  [rt3 — 1 1 n >  0). Prove that X =  Y.

* 5. Prove DeMorgan’s Laws. Use the definition of set equality to establish the identities.

6 . Give functions /  : N -*  N that satisfy the following.

a) /  is total and one-to-one but not onto.

b) /  is total and onto but not one-to-one.

c) /  is total, one-to-one, and onto but not the identity.

d) /  is not total but is onto.

7. Prove that the function /  : N -*  N defined by f ( n )  =  rt2 +  1 is one-to-one but not onto.

8 . Let /  : R + —►  R + be the function defined by f  (x) =  l / x ,  where R + denotes the set of 
positive real numbers. Prove that /  is one-to-one and onto.

9. Give an example of a binary relation on N x N that is

a) reflexive and symmetric but not transitive.

b) reflexive and transitive but not symmetric.

c) symmetric and transitive but not reflexive.

10. Let =  be the binary relation on N defined by rt =  m if, and only if, n =  m. Prove that 

=  is an equivalence relation. Describe the equivalence classes of = .

11. Let =  be the binary relation on N defined by n =  m for all n, m €  N. Prove that =  is 
an equivalence relation. Describe the equivalence classes of = .

12. Show that the binary relation LT, less than, is not an equivalence relation.

13. Let = p be the binary relation on N defined by n s=p m if rt mod p  =  m mod p. For 
p  >  2, prove that = p is an equivalence relation. Describe the equivalence classes of 

=p-

14. Let X], . . . , X„ be a partition of a set X. Define an equivalence relation =  on X whose 
equivalence classes are precisely the sets X ^ . . . , X„.

15. A binary relation =  is defined on ordered pairs of natural numbers as follows: 
[m, n] =  [j, fc] if, and only if, m + k  = n + j .  Prove that =  is an equivalence relation 
in N x N.

16. Prove that the set of even natural numbers is denumerable.

17. Prove that the set of even integers is denumerable.



* 18. Prove that the set of nonnegative rational numbers is denumerable.

19. Prove that the union of two disjoint countable sets is countable.

20. Prove that there are an uncountable number of total functions from N to {0, 1).

21. A total function /  from N to N is said to be repeating if f ( n )  — f ( n  +  1) for some 
n G N. Otherwise, /  is said to be nonrepeating. Prove that there are an uncountable 
number of repeating functions. Also prove that there are an uncountable number of 
nonrepeating functions.

22. A total function /  from N to N is monotone increasing if f  (n) < f ( n  +  1) for all n e  
N. Prove that there are an uncountable number of monotone increasing functions.

23. Prove that there are uncountably many total functions from N to N that have a fixed 
point. See Example 1.4.3 for the definition of a fixed point.

24. A total function /  from N to N is nearly identity if f ( n ) = n  — 1, n, orn  +  1 for every 
n. Prove that there are uncountably many nearly identity functions.

* 25. Prove that the set of real numbers in the interval [0, 1] is uncountable. Hint: Use the
diagonalization argument on the decimal expansion of real numbers. Be sure that each 
number is represented by only one infinite decimal expansion.

26. Let F be the set of total functions of the form /  : {0, 1} —»• N (functions that map from 
{0, 1} to the natural numbers). Is the set of such functions countable or uncountable? 
Prove your answer.

27. Prove that the binary relation on sets Refined by X =  Y if, and only if, card(X) =  
card(Y) is an equivalence relation.

* 28. Prove the Schroder-Bemstein Theorem.

29. Give a recursive definition of the relation is equal to on N x N using the operator s.

30. Give a recursive definition of the relation greater than on N x N using the successor 
operator s.

31. Give a recursive definition of the set of points [m, n] that lie on the line n =  3m in 
N x N. Use s as the operator in the definition.

32. Give a recursive definition of the set of points [m, n] that lie on or under the line n = 3m 
in N x N. Use s as the operator in the definition.

33. Give a recursive definition of the operation of multiplication of natural numbers using 
the operations s and addition.

34. Give a recursive definition of the predecessor operation

At \ 1 0  if n =  0  predin) =  {
I n — 1 otherwise

using the operator s.
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35. Subtraction on the set of natural numbers is defined by

! n — m if n > m 
0  otherwise.

This operation is often called proper subtraction. Give a recursive definition of proper 
subtraction using the operations s and pred.

36. Let X be a finite set. Give a recursive definition of the set of subsets of X. Use union 
as the operator in the definition.

* 37. Give a recursive definition of the set of finite subsets of N. Use union and the successor 
s as the operators in the definition.

38. Prove that 2 +  5 +  8  +  ■ • • +  (3n — 1) =  n(3n +  l) /2  for all n >  0.

39. Prove that 1 +  2 +  22  +  • • • +  2" =  2"+l — 1 for all n >  0.

40. Prove 1 +  2" <  3" for all n > 2 .

41. Prove that 3 is a factor of n 3 — n +  3 for all n >  0.

42. Let P = {A, B) be a set consisting of two proposition letters (Boolean variables). The 
set E of well-formed conjunctive and disjunctive Boolean expressions over P is defined 
recursively as follows:

i) Basis: A, B e  E.

ii) Recursive step: If u, v €  E, then (u v  v) € E and (u a  d) € E.

iii) Closure: An expression is in E only if it is obtained from the basis by a finite 
number of iterations of the recursive step.

a) Explicitly give the Boolean expressions in the sets Eq, E |, and Ej.

b) Prove by mathematical induction that for every Boolean expression in E, the number 
of occurrences of proposition letters is one more than the number of operators. For 
an expression u, let n p(u) denote the number of proposition letters in u and n„(u) 
denote the number of operators in u.

c) Prove by mathematical induction that, for every Boolean expression in E, the 
number of left parentheses is equal to the number of right parentheses.

43. Give a recursive definition of all the nodes in a directed graph that can be reached by 
paths from a given node x. Use the adjacency relation as the operation in the definition. 
This definition also defines the set of descendants of a node in a tree.

44. Give a recursive definition of the set of ancestors of a node x  in a tree.

45. List the members of the relation LEFTOF for the tree in Figure 1.6 (a).
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46. Using the tree below, give the values of each of the items in parts (a) to (e).

*5 **6 X1 * 8

1 1 r \
•*10 *11 

1

* 1 2

1

*14 *15

a) the depth of the tree

b) the ancestors of x t i

c) the minimal common ancestor of x \4 and jcj j, of jci 5  and X\i

d) the subtree generated by x2

e) the frontier of the tree

47. Prove that a strictly binary tree with n leaves contains 2n — 1 nodes.

48. A complete binary tree of depth n is a strictly binary tree in which every node on levels
1, 2...........n — 1 is a parent and each node on level n is a leaf. Prove that a complete
binary tree of depth n has 2 n + 1  — 1 nodes.
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CHAPTER 2

Languages

The concept of language includes a variety of seemingly distinct categories including 
natural languages, computer languages, and mathematical languages. A general definition 
of language must encompass all of these various types of languages. In this chapter, a purely 
set-theoretic definition of language is given: A language is a set of strings over an alphabet. 
The alphabet is the set of symbols of the language and a string over the alphabet is a finite 
sequence of symbols from the alphabet.

Although strings are inherently simple structures, their importance in communication 
and computation cannot be overemphasized. The sentence “The sun did not shine” is a string 
of English words. The alphabet of the English language is the set of words and punctuation 
symbols that can occur in sentences. The mathematical equation

p  =  ( n x r x  t ) / v

is a string consisting of variable names, operators, and parentheses. A digital photograph is 
stored as a bit string, a sequence of 0 ’s and 1 ’s. In fact, all data stored and manipulated by 
computers are represented as bit strings. As computer users, we frequently input information 
to the computer and receive output in the form of text strings. The source code of a computer 
program is a text string made up of the keywords, identifiers, and special symbols that 
constitute the alphabet of the programming language. Because of the importance of strings, 
we begin this chapter by formally defining the notion of string and studying the properties 
of operations on strings.

Languages of interest are not made up of arbitrary strings; not all strings of English 
words are sentences and not all strings of source code are legitimate computer programs. 
Languages consist of strings that satisfy certain requirements and restrictions that define the

41
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syntax of the language. In this chapter, we will use recursive definitions and set operations 
to enforce syntactic restrictions on the strings of a language.

We will also introduce the family of languages defined by regular expressions. A regular 
expression describes a pattern and the language associated with the regular expression 
consists of all strings that match the pattern. Although we introduce the regular expressions 
via a set-theoretic construction, as we progress we will see that these languages occur 
naturally as the languages generated by regular grammars and accepted by finite-state 
machines. The chapter concludes by examining the use of regular expressions in searching 
and pattern matching.

2.1 Strings and Languages

The description of a language begins with the identification of its alphabet, the set of symbols 
that occur in the language. The elements of the language are finite-length strings of alphabet 
symbols. Consequently, the study of languages requires an understanding of the operations 
that generate and manipulate strings. In this section we give precise definitions of a string 
over an alphabet and of the basic string operations.

The sole requirement for an alphabet is that it consists of a finite number o f indivisible 
objects. The alphabet of a natural language, like English or French, consists of the words 
and punctuation marks of the language. The symbols in the alphabet of the language are 
considered to be indivisible objects. The word language cannot be divided into long and 
uage. The word format has no relation to the words fo r  and maf, these are all distinct 
members of the alphabet. A string over this alphabet is a sequence of words and punctuation 
symbols. The sentence that you have just read is such a string. The alphabet o f a computer 
language consists of the permissible keywords, identifiers, and symbols of the language. A 
string over this alphabet is a sequence of source code.

Because the elements of the alphabet of a language are indivisible, we will generally 
denote them by single characters. Letters a, b, c, d, e, with or without subscripts, are 
used to represent the elements of an alphabet and £  is used to denote an alphabet. Strings 
over an alphabet are represented by letters occurring near the end of the alphabet. In 
particular, p, q, u, v, w, x ,  y, z are used to denote strings. The notation used for natural 
languages and computer languages provides an exception to this convention. In these cases, 
the alphabet consists of the indivisible elements of the particular language.

A string has been defined informally as a sequence of elements from an alphabet. In 
order to establish the properties of strings, the set of strings over an alphabet is defined 
recursively. The basis consists of the string containing no elements. This string is called the 
null string and denoted X. The primitive operator used in the definition consists o f adjoining 
a single element from the alphabet to the right-hand side of an existing string.

Definition 2.1.1

Let £  be an alphabet. E*, the set of strings over 2 ,  is defined recursively as follows:
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i) Basis: X € E*.

ii) Recursive step: If w e  E* and a € E , then wa e  S '.

iii) Closure: w  € E* only if it can be obtained from X by a finite number o f applications of 
the recursive step.

For any nonempty alphabet E , E* contains infinitely many elements. If E =  (a), E* 
contains the strings X, a, aa, aaa, . . . . The length of a string w, intuitively the number of 
elements in the string or formally the number of applications of the recursive step needed to 
construct the string from the elements of the alphabet, is denoted length(w). If E contains 
n elements, there are nk strings of length k in E*.

Example 2.1.1

Let E =  {a, b, c). The elements of E* include 

Length 0: X 

Length 1: a b c

Length 2: aa ab ac ba bb be ca cb cc 

Length 3: aaa aab aac aba abb abc aca acb acc 

baa bab bac bba bbb bbc bca beb bcc 

caa cab cac cba ebb ebe cca ccb ccc □

By our informal definition, a language consists of strings over an alphabet. For example, 
the English language consists of those strings of words that we call sentences. Not all strings 
of words form sentences, only those satisfying certain conditions on the order and type of 
the constituent words. The collection of rules, requirements, and restrictions that specify 
the correctly formed sentences defines the syntax of the language. These observations lead 
to our formal definition of language; a language consists of a subset of the set of all possible 
strings over the alphabet.

Definition 2.1.2

A language over an alphabet E is a subset of E*.

Since strings are the elements of a language, we must examine the properties of strings 
and the operations on them. Concatenation, taking two strings and “gluing them together," is 
the fundamental operation in the generation of strings. A formal definition o f concatenation 
is given by recursion on the length of the second string in the concatenation. At this point, 
the primitive operation of adjoining a single member of the alphabet to the right-hand side 
of a string is the only operation on strings that has been introduced. Thus any new operation 
must be defined in terms of it.

Definition 2.1.3

Let m, v e E*. The concatenation of u and u, written uv, is a binary operation on E* defined 
as follows:
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i) Basis: If length(v) =  0, then v =  k  and uv = u.

ii) Recursive step: Let v be a string with length(v) =  n > 0. Then v = wa, for some string 
w with length n — 1 and a e  £ ,  and uv =  (uw )a .

Example 2.1.2

Let u =  ab, v =  ca, and w -  bb. Then

uv = abca vw = cabb

(uv)w = abcabb u(vw)  =  abcabb. □

The result of the concatenation of u, v, and w is independent of the order in which 
the operations are performed. Mathematically, this property is known as associativity. 
Theorem 2.1.4 proves that concatenation is an associative binary operation.

Theorem 2.1.4

Let u, v, w e  £*. Then (uv)w = u(vw).

Proof. The proof is by induction on the length of the string w. The string w was chosen for 
compatibility with the recursive definition of strings, which builds on the right-hand side of 
an existing string.

Basis: length(w) =  0. Then w =  X, and (uv)w  =  uv  by the definition of concatenation. On 
the other hand, u(vw) — u(v) =  uv.

Inductive Hypothesis: Assume that (uv)w  = u(vw)  for all strings w of  length n or less.

Inductive Step: We need to prove that (uv)w  =  u(vw )  for all strings w of length n +  1. Let 
w be such a string. Then w = xa  for some string x  of length n and a 6  E and

(uv)w  =  (uv)(xa ) (substitution, w =  xa)

=  ((uv)x)a  (definition of concatenation)

=  (u(vx))a  (inductive hypothesis)

=  u((vx)a)  (definition of concatenation)

=  u(v(xa))  (definition of concatenation)

= u(vw)  (substitution, xa  =  w). m

Since associativity guarantees the same result regardless of the order of the operations, 
parentheses are omitted from a sequence of applications of concatenation. Exponents are 
used to abbreviate the concatenation of a string with itself. Thus uu may be written u2, 
uuu  may be written and so on. For completeness, u°, which represents concatenating 
u with itself zero times, is defined to be the null string. The operation of concatenation 
is not commutative. For strings u =  ab  and v = ba, uv  =  abba and vu = baab. Note that 
u2 =  abab  and not aabb  =  a2b2.

Substrings can be defined using the operation of concatenation. Intuitively, u is a 
substring of u if u “occurs inside o f ’ v. Formally, u is a substring of v if there are strings
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x  and y  such that v =  xuy.  A prefix of v is a substring u in which x  is the null string in the 
decomposition of v. That is, v =  uy. Similarly, u is a suffix of v if u =  xu.

The reversal of a string is the string written backward. The reversal o f abbc is cbba. 
Like concatenation, this unary operation is also defined recursively on the length of the 
string. Removing an element from the right-hand side of a string constructs a  smaller string 
that can then be used in the recursive step of the definition. Theorem 2.1 . 6  establishes the 
relationship between the operations of concatenation and reversal.

Definition 2.1.5

Let u be a string in £*. The reversal of u, denoted u R, is defined as follows:

i) Basis: If length(u)  =  0, then u =  X and k R =  X.

ii) Recursive step: If length(u) — n > 0, then u — wa for some string w with length n — 1 
and some a e  £ ,  and u R =  a w R.

Theorem 2.1.6

Let u, v e  £*. Then (uv)R =  v Ru R.

Proof. The proof is by induction on the length of the string v.

Basis: If length(v)  =  0, then v =  X and (uv)R =  u R. Similarly, vRuR =  XRu R =  uR.

Inductive Hypothesis: Assume (uv)R =  v RuR for all strings v of length n or less.

Inductive Step: We must prove that, for any string v of length n +  1, (uv)R =  v Ru R. Let i; 
be a string of length n +  1. Then v = wa, where w is a string of length n and a € S . The 
inductive step is established by

(uv)R =  (u(w a))R

=  ((uw )a)R (associativity of concatenation)

=  a (uw )R (definition of reversal)

=  a (w Ru R) (inductive hypothesis)

=  (aw R)uR (associativity of concatenation)

= (w a)Ru R (definition of reversal)

=  vRu R.

2.2 Finite Specification o f Languages

A language has been defined as a set of strings over an alphabet. Languages of interest do not 
consist of arbitrary sets of strings but rather of strings that satisfy some prescribed syntactic 
requirements. The specification of a language requires an unambiguous description of 
the strings of the language. A finite language can be explicitly defined by enumerating 
its elements. Several infinite languages with simple syntactic requirements are defined 
recursively in the examples that follow.
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Example 2.2.1

The language L of strings over {a, b] in which each string begins with an a and has even 

length is defined by

i) Basis: aa, ab 6  L.

ii) Recursive step: If u e  L, then uaa, uab, uba, ubb e  L.

iii) Closure: A string u e  L only if it can be obtained from the basis elements by a finite 
number of applications of the recursive step.

The strings in L are built by adjoining two elements to the right-hand side of a previously 
constructed string. The basis ensures that each string in L begins with an a. Adding 
substrings of length two maintains the even parity. □

Example 2.2.2

The language L over the alphabet {a, b] defined by

i) Basis: X e  L;

ii) Recursive step: If u € L, then ua, uab  e  L;

iii) Closure: A string u e  L only if it can be obtained from the basis element by a finite 
number of applications of the recursive step;

consists of strings in which each occurrence of b is immediately preceded by an a. For 
example, A., a, abaab  are in L and bb, bab, abb  are not in L. □

The recursive step in the preceding examples concatenated elements to the end of an 
existing string. Breaking a string into substrings permits the addition of elements anywhere 
within the original string. This technique is illustrated in the following example.

Example 2.2.3

Let L be the language over the alphabet {a, b) defined by

i) Basis: X € L.

ii) Recursive step: If u €  and u can be written u =  xyz ,  then xaybz  6 L and xaybz  e  L.

iii) Closure: A string u € L only if it can be obtained from the basis element by a finite 
number of applications of the recursive step.

The language L consists of all strings with the same number of cr’s and b's. The first 
construction in the recursive step, xaybz e  L, consists of the following three actions:

1. Select a string u that is already in L.

2. Divide u into three substrings x, y, z such that u =  xyz .  Note that any of the substrings 
may be X.

3. Insert an a between x  and y  and a b between y  and z.
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Taken together, the two rules can be intuitively interpreted as “insert one a  and one b 
anywhere in the string u." Cl

Recursive definitions provide a tool for defining the strings of a language. Exam
ples 2.2.1, 2.2.2, and 2.2.3 have shown that requirements on order, positioning, and parity 
can be obtained using a recursive generation of strings. The process of generating strings us
ing a single recursive definition, however, is unsuitable for enforcing the complex syntactic 
requirements of natural or computer languages.

Another technique for constructing languages is to use set operations to construct 
complex sets of strings from simpler ones. An operation defined on strings can be extended 
to an operation on sets, hence on languages. Descriptions of infinite languages can then be 
constructed from finite sets using the set operations. The next two definitions introduce 
operations on sets of strings that will be used for both language definition and pattern 
specification.

Definition 2.2.1

The concatenation of languages X and Y, denoted XY, is the language

XY =  {uv | h € X and v e  Y}.

The concatenation of X with itself n times is denoted X". X° is defined as {X}.

Example 2.2.4

Let X =  {a, b, c) and Y =  {abb, ba}. Then

XY =  {aabb , babb, cabb, aba, bba, cba}

X°={X)

X'  =  X =  {a, b, c)

X 2  =  XX =  {aa, ab, ac, ba, bb, be, ca, cb, cc}

X 3 =  X2X =  {aaa, aab, aac, aba, abb, abc, aca, acb, acc, 

baa, bab, bac, bba, bbb, bbc, bca, beb, bcc, 

caa, cab, cac, cba, ebb, ebe, cca, ccb, ccc}. □

The sets in the previous example should look familiar. For each i , X' contains the strings 
of length i in E * given in Example 2.1.1. This observation leads to another set operation, the 
Kleene star of a set X, denoted X*. Using the * operator, the strings over a set can be defined 
with the operations of concatenation and union rather than with the primitive operation of 
Definition 2.1.1.
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Definition 2.2.2

Let X be a set. Then

00 00 

x* = ( jx ' and X+ =  ( J X ' .

/=o <=i

The set X* contains all strings that can be built from the elements of X. If X is an 
alphabet, X+ is the set of all nonnull strings over X. An alternative definition of X+ using 
concatenation and the Kleene star is X+ = XX*.

The definition of a formal language requires an unambiguous specification of the strings 
that belong to the language. Describing languages informally lacks the rigor required for a 
precise definition. Consider the language over [a, b) consisting of all strings that contain the 
substring bb. Does this mean that a string in the language contains exactly one occurrence 
of bb, or are multiple substrings bb permitted? This could be answered by specifically 
describing the strings as containing exactly one or at least one occurrence o f bb. However, 
these types of questions are inherent in the imprecise medium provided by natural languages.

The precision afforded by set operations can be used to give an unambiguous descrip
tion of the strings of a language. Example 2.2.5 gives a set theoretic definition of the strings 
that contain the substring bb. In this definition it is clear that the language contains all strings 
in which bb occurs at least once.

Example 2.2.5

The language L =  {a, b}*{bb){a, b )* consists of the strings over {a , b } that contain the 
substring bb. The concatenation of {bb), which contains the single string bb, ensures the 
presence of bb in every string in L. The sets {a, b}* permit any number o f a ’s and b’s, in 
any order, to precede and follow the occurrence of bb. In particular, additional copies of 
the substring bb may occur before or after the occurrence ensured by the concatenation of 
{bb). □

Example 2.2.6

Concatenation can be used to specify the order of components of strings. Let L be the 
language that consists of all strings that begin with aa or end with bb. The set {aa){a, b}* 
describes the strings with prefix aa. Similarly, {a, b)*{bb) is the set of strings with suffix 
bb. Thus L =  {aa)[a, b)* U [a, b)*{bb). □

Example 2.2.7

Let L! =  [bb] and L2  =  {X, bb, bbbb) be languages over {/>}. The languages L* and L£ both 
contain precisely the strings consisting of an even number of b's. Note that X, with length 
zero, is an element of both L* and Lj. □
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Example 2.2.8

The set {aa, bb, ab, ba)* consists of all even-length strings over {a, b). The repeated 
concatenation constructs strings by adding two elements at a time. The set of strings of 
odd length can be defined by {a, b}* — {aa, bb, ab, ba}*. This set can also be obtained by 
concatenating a single element to the even-length strings. Thus the odd-length strings are 

also defined by {aa, bb, ab, ba}*{a, b). □

2.3 Regular Sets and Expressions

In the previous section we used set operations to construct new languages from existing 
ones. The operators were selected to ensure that certain patterns occurred in the strings of 
the language. In this section we follow the approach of constructing languages from set 
operations but limit the sets and operations that are allowed in the construction process.

A set of strings is regular if it can be generated from the empty set, the set containing the 
null string, and sets containing a single element of the alphabet using union, concatenation, 
and the Kleene star operation. The regular sets, defined recursively in Definition 2.3.1, 
comprise a family of languages that play an important role in formal languages, pattern 
recognition, and the theory of finite-state machines.

Definition 2.3.1

Let E be an alphabet. The regular sets over E are defined recursively as follows:

i) Basis: 0, {X} and {a), for every a € E , are regular sets over E.

ii) Recursive step: Let X and Y be regular sets over E . The sets

X U  Y

XY

X*

are regular sets over E .

iii) Closure: X is a regular set over E only if it can be obtained from the basis elements by 
a finite number of applications of the recursive step.

A language is called regular if it is defined by a regular set. The following examples 
show how regular sets can be used to describe the strings of a language.

Example 2.3.1

The language from Example 2.2.5, the set of strings containing the substring bb, is a regular 
set over {a, b}. From the basis of the definition, {a } and {b} are regular sets. The union 
of {a} and (£>) and the Kleene star operation produce {a, b}*, the set of all strings over
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[a ,b). By concatenation, {/>}{*>} =  {bb} is regular. Applying concatenation twice yields 

{a, b)*{bb){a, b}*. D

Example 2.3.2

The set of strings that begin and end with an a and contain at least one b is regular over 
{a, b}. The strings in this set could be described intuitively as “an a, followed by any string, 
followed by a b, followed by any string, followed by an a.” The concatenation

{a}{a, b)'{bHa, b)*{a)

exhibits the regularity of the set. □

By definition, regular sets are those that can be built from the empty set, the set 
containing the null string, and the sets containing a single element of the alphabet using 
the operations of union, concatenation, and Kleene star. Regular expressions are used to 
abbreviate the descriptions of regular sets. The regular sets 0, {A.}, and {a} are represented 
by 0, A., and a, removing the need for the set brackets { }. The set operations o f  union, Kleene 
star, and concatenation are designated by U, *, and juxtaposition, respectively. Parentheses 
are used to indicate the order of the operations.

Definition 2.3.2

Let £  be an alphabet. The regular expressions over £  are defined recursively as follows:

i) Basis: 0, A, and a , for every a €  E , are regular expressions over E.

ii) Recursive step: Let u and v be regular expressions over E. The expressions

(u U v)

(uv)

(«*)

are regular expressions over E.

iii) Closure: u is a regular expression over £  only if it can be obtained from the basis 
elements by a finite number of applications of the recursive step.

Since union and concatenation are associative, parentheses can be omitted from ex
pressions consisting of a sequence of one of these operations. To further reduce the num
ber of parentheses, a precedence is assigned to the operators. The priority designates the 
Kleene star as the most binding operation, followed by concatenation and union. Employ
ing these conventions, regular expressions for the sets in Examples 2.3.1 and 2.3.2 are 
(a U b)*bb(a U b)* and a(a  U b)*b{a U b)*a, respectively. The notation «+ is used to ab
breviate the expression uu*. Similarly, u2 denotes the regular expression uu, u3 denotes 
u2u, and so on.
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Example 2.3.3

The set {bawab \ w G {a, b}*} is regular over {a, b). The following table demonstrates the 
recursive generation of a regular set and the corresponding regular expression definition of 
the language. The column on the right gives the justification for the regularity of each of 
the components used in the recursive operations.

Set Expression Justification

1-{«1 a Basis

2. {b} b Basis

3. fa}{*} =  {ab) ab 1, 2, concatenation

4. (a) U {*>) =  {a, b) a U b 1, 2, union
5. {b){a} =  {ba} ba 2, 1, concatenation

6. {a, b}* (a U by 4, Kleene star
7. {ba){a, b}* ba(a U by 5, 6, concatenation
8. {ba){a, b)*{ab} ba(a U b y  ab 7, 3, concatenation

The preceding example illustrates how regular sets and regular expressions are gener
ated from the basic regular sets. Every regular set can be obtained by a finite sequence of 
operations in the manner shown in Example 2.3.3.

A regular expression defines a pattern and a string is in the language o f  the expression 
only if it matches the pattern. Concatenation specifies order; a string w is in uv  only if it 
consists of a string from u followed by one from v. The Kleene star permits repetition and 
U selection. The pattern specified by the regular expression in Example 2.3.3 requires ba 
to begin the string, ab to end it, and any combination of a's and b's to occur between the 
required prefix and suffix. The following examples further illustrate the ability of regular 
expressions to describe patterns.

Example 2.3.4

The regular expressions (a U b)*aa(a U b)* and (a U b)*bb(a U b)* represent the regular 
sets with strings containing aa and bb, respectively. Combining these two expressions with 
the U operator yields the expression (a U b)*aa(a U b)* U (a U b)*bb(a U b)* representing 
the set of strings over {a, b} that contain the substring aa  or bb. □

Example 2.3.5

A regular expression for the set of strings over {a, b) that contain exactly two b’s must 
explicitly ensure the presence of two b’s. Any number of a ’s may occur before, between, 
and after the b’s. Concatenating the required subexpressions produces a*ba*ba*. □



5 2  C h a p te r  2 L a n g u a g e s

Example 2.3.6

The regular expressions

i) a*ba*b{a U b)*

ii) (a U b)*ba*ba*

iii) (a U b)*b(a U b)*b(a U b)*

define the set of strings over {a, b) containing two or more b's. As in Example 2.3.5, the 
presence of at least two b's is ensured by the two instances of the expression b in the 
concatenation. □

Example 2.3.7

Consider the regular set defined by the expression a*(a*ba*ba*)*. The expression inside 
the parentheses is the regular expression from Example 2.3.5 representing the strings with 
exactly two b’s. The Kleene star generates the concatenation of any number o f these strings. 
The result is the null string (no repetitions of the pattern) and all strings with a positive, even 
number of b’s. Strings consisting of only a ’s are not included in (a*ba*ba*)*. Concatenating 
a* to the beginning of the expression produces the set consisting of all strings with an even 
number of b’s. Another regular expression for this set is a*(ba*ba*)*. □

Example 2.3.8

The ability of substrings to share elements complicates the construction of a regular expres
sion for the set of strings that begin with ba, end with ab, and contain the substring aa. The 
expression ba(a U b)*aa(a U b)*ab explicitly inserts each of the three components. Every 
string represented by this expression must contain at least four a ’s. However, the string baab 
satisfies the specification but only has two a ’s. A regular expression for this language is

ba(a U b)*aa(a U b)*ab '

U baa(a Ub)*ab  

U ba(a U b)*aab

U baab. □

The construction of a regular expression is a positive process; features of the desired 
strings are explicitly inserted into the expression using concatenation, union, or the Kleene 
star. There is no negative operation to omit strings that have a particular property. To 
construct a regular expression for the set of strings that do not have a property, it is necessary
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to formulate the condition in a positive manner and construct the regular expression using 
the reformulation of the language. The next two examples illustrate this approach.

Example 2.3.9

To construct a regular expression for the set of strings over {a, b) that do not end in aaa , we 
must ensure that aaa is not a suffix of any string described by the expression. The possible 
endings for a string with a b in one of the final three positions are b, ba, or baa. The first 
part of the regular expression

(a U b)*(b U ba U baa) U X U a U o a

defines these strings. The final three expressions represent the special case of strings of 
length zero, one, and two that do not contain a b. □

Example 2.3.10

The language L defined by c*(b Uac*)* consists of all strings over [a, b, c} that do not 
contain the substring be. The outer c* and the ac* inside the parentheses allow any number 
of a's  and c’s to occur in any order. A b can be followed by another b or a string from 
ac*. The a at the beginning of ac* blocks a b from directly preceding a c. To help develop 
your understanding of the representation of sets by expressions, convince yourself that both 
acabacc and bbaaacc are in the set represented by c*(b U ac*)*. □

Examples 2.3.6 and 2.3.7 show that the regular expression definition of a language is not 
unique. Two expressions that represent the same set are called equivalent. The identities in 
Table 2.1 can be used to algebraically manipulate regular expressions to construct equivalent 
expressions. These identities are the regular expression formulation of properties of union, 
concatenation, and the Kleene star operation.

Identity 5 follows from the commutativity of the union of sets. Identities 9 and 10 are the 
distributive laws of union and concatenation translated to the regular expression notation. 
The final set of expressions provides a number of equivalent representations of all strings 
made from elements of u and d . The identities in Table 2.1 can be used to simplify or to 
establish the equivalence of regular expressions.

Example 2.3.11

A regular expression is constructed to represent the set of strings over {a, b ) that do not 
contain the substring aa. A string in this set may contain a prefix of any number of b's. 
All a ’s must be followed by at least one b or terminate the string. The regular expression 
b*(ab+)* U b*(ab+)*a generates the desired set by partitioning it into two disjoint subsets;
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TABLE 2.1 R egu lar  E xp ress ion  Id e n t i t i e s

1. 0U =  U0 =  0

2. Xu =  uX =  u

3. 0* =  X
4. X,  =  X

5. u \ J v  =  v V u

6. u U 0 =  u

7. u U u  =  u

8. u* =  (II*)*

9. u (v U u i)  =  u tiU u w

10. (u U v)w  =  uw  U vw

11. (UU)*K =  u(vu )*

12. (u U v)* =  («* U u)*

=  u*(u U u)* =  (« U u«*)* 

=  (k*u*)* =  u*(vu*)*
= (u*v)*u*

the first consists of strings that end in b and the second of strings that end in a. This 
expression can be simplified using the identities from Table 2.1 as follows:

b*(ab+)* U b*(ab+)*a 

= b*{ab+)*(XU a)

= b*(abb*)*{k\Ja)

= (bU ab)*(X \Ja). □

While regular expressions allow us to describe many complex patterns, it is important 
to note that there are languages that cannot be defined by any regular expression. In Chapter 
6 we will see that there is no regular expression that defines the language {a 'b ' | i > 0}.

2.4 Regular Expressions and Text Searching

A common application of regular expressions, perhaps the most common for the majority 
of computer users, is the specification of patterns for searching documents and files. In 
this section we will examine the use of regular expressions in two types of text searching 
applications.

The major difference between the use of regular expressions for language definition and 
for text searching is the scope of the desired match. A string is in the language defined by 
a regular expression if the entire string matches the pattern specified by regular expression.
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For example, a string matches ab+ only if it begins with an a and is followed by one or 

more b's.
In text searching we are looking for the occurrence of a substring in the text that matches 

the desired pattern. Thus the words

about

abbot

rehabilitate

tabulate

abominable

would all be considered to match the pattern ab+. In fact, abominable would match it twice!
This brings up a difference between two types of text searching that can be described 

(somewhat simplistically) as off-line and online searching. By off-line search we mean that a 
search program is run, the input to the program is a pattern and a tile, and the output consists 
of the lines or the text in the file that match the pattern. Frequently, off-line file searching 
is done using operating system utilities or programs written in a language designed for 
searching. GREP and awk are examples of the utilities available for file searching, and 
Perl is a programming language designed for file searching. We will use GREP, which is 
an acronym for “Global search for Regular Expression and Print," to illustrate this type of 
regular expression search.

Online search tools are provided by web browsers, text editors, and word processing 
systems. The objective is to interactively find the first, the next, or to sequentially find all 
occurrences of substrings that match the search pattern. The “Find” command in Microsoft 
Word will be used to demonstrate the differences between online and off-line pattern 
matching.

Since the desired patterns are generally entered on a keyboard, the regular expression 
notation used by search utilities should be concise and not contain superscripts. Although 
there is no uniform syntax for regular expressions in search applications, the notation 
used in the majority of the applications has many features in common. We will use the 
extended regular expression notation of GREP to illustrate the description of patterns for 
text searching.

The alphabet of the file or document frequently consists of the ASCII character set, 
which is given in Appendix III. This is considerably larger than the two or three element 
alphabets that we have used in most of our examples of regular expressions. With the 
alphabet {a, b}, the regular expression for any string is (a U b)*. To write the expression 
for any string of ASCII characters using this format would require several lines and would 
be extremely inconvenient to enter on a keyboard. Two notational conventions, bracket 
expressions and range expressions, were introduced to facilitate the description of patterns 
over an extended alphabet.

The bracket notation [ ] is used to represent the union of alphabet symbols. For ex
ample, [abed] is equivalent to the expression (aU  b U c U d ) .  Adding a caret immediately
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TABLE 2.2 E x tende d  R egu lar  E x p ress io n  O p e r a t io n s

Operation Symbol Example Regular Expression

concatenation ab ab

[a-c][AB] a A U a B U b A U b B U c A U c B

Kleene star * [ab]* (,a U b y

disjunction 1 [ab]*|A (a U b y u A

zero or more + [ab]+ (a U b)+

zero or one ? a? (aUX)

one character a.a a(aUb)a  i f £  =  {a, b]

n-times {n} a(4} aaaa = a4

n or more times In.} a{4,( aaaaa*

m o m  times {n.m) a{4,6( aaaa U aaaaa U aaaaaa

after the left bracket produces the complement of the union, thus ["abed] designates all 
characters other than a, b, c, and d.

Range expressions use the ordering of the ASCII character set to describe a sequence 
of characters. For example, A-Z is the range expression that designates all capital letters. In 
the ASCII table these are the characters numbered from 65 to 90. Range expressions can 
be arguments in bracket expressions; [a-zA-ZO-9] represents the set of all letters and digits. 
In addition, certain frequently occurring subsets of characters are given there own mne
monic identifiers. For example, [ : d i g i t : ] ,  [ : a lp h a : ] ,  and [ :a ln u m :]  are shorthand 
for [0 -9 ] , [a -zA -Z ], and [a-zA -ZO -9]. The extended regular expression notation also 
includes symbols \<  and \>  that require the match to occur at the beginning or the end of 
a word.

Along with the standard operations of U, concatenation, and *, the extended regular 
expression notation of GREP contains additional operations on expressions. These opera
tions do not extend the type of patterns that can be expressed, rather they are introduced 
to simplify the representation of patterns. A description of the extended regular expression 
operations are given in Table 2.2. A set of priorities and parentheses combine to define the 
scope of the operations.

The input to GREP is a pattern and file to be searched. GREP performs a line-by-line 
search on the file. If a line contains a substring that matches the pattern, the line is printed 
and the search continues with the subsequent line. To demonstrate pattern matching using 
extended regular expressions, we will search a file caesar containing Caesar’s comments to 
his wife in Shakespeare’s Julius Caesar, Act 2, Scene 2.

Cowards die many times before their deaths;

The valiant never taste of death but once.

Of all the wonders that I yet have heard.

It seems to me most strange that men should fear;
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Seeing that death, a necessary end,

Will come when it will come.

We begin by looking for matches of the pattern m [a -z ]  n. This is matched by a substring 
of length three consisting of an m and an n separated by any single lowercase letter. The result 
of the search is

C:> grep -E "m[a-z]n" caesar

Cowards die many times before their deaths;

It seems to me most strange that men should fear;

The option -E in the GREP call indicates that the extended regular expression notation 
is used to describe the pattern, and the quotation marks delimit the pattern. The substring 
man in many and the word men match this pattern and the lines containing these strings are 
printed.

The search is now changed to find occurrences of m and n separated by any number of 
lowercase letters and blanks.

C:> grep -E "m[a-z ]*n" caesar

Cowards die many times before their deaths;

It seems to me most strange that men should fear;

Will come when it will come.

The final line is added to the output because the pattern is matched by the substring me 
when. The pattern m [a-z ] *n is matched six times in the line

It seems to me most strange that men should fear;

However, GREP does not need to find all matches; finding one is sufficient for a line to be 
selected for output.

The extended regular expression notation can be used to describe more complicated 
patterns of interest that may occur in text. Consider the task of finding lines in a text file 
that contain a person's name. To determine the form of names, we initially consider the 
potential strings that occur as parts of a name:

i) First name or initial: [A-Z] [a -z ]  + 1 [A-Z] [. ]

ii) Middle name, initial, or neither: ( [A-Z] [a -z ]  + 1 [A-Z] [. ] ) ?

iii) Family name: [A-Z] [a -z ]  +

A string that can occur in the first position is either a name or an initial. In the former case, 
the string begins with a capital letter followed by a string of lowercase letters. An initial is 
simply a capital letter followed by a period. The same expressions can be used for middle 
names and family names. The ? indicates that no middle name or initial is required. These 
expressions are concatenated with blanks

([A-Z] [a-z] +1 [A-Z] [. ] ) [ ] ( ( [A-Z] [a-z] +1 [A-Z] [. ] ) [ ] ) ?( [A-Z] [a-z] +)

to produce a general pattern for matching names.



58 C h a p te r  2 L an g u a g e s

The preceding expression will match E. B. White, Edgar Allen Poe, and Alan Turing. 
Since pattern matching is restricted to the form of the strings and not any underlying meaning 
(that is, pattern matching checks syntax and not semantics), the expression will also match 
Buckingham Palace and U. S. Mail. Moreover, the pattern will not match Vincent van Gogh, 
Dr. Watson, or Aristotle. Additional conditions would need to be added to the expression 
to match these variations of names.

Unlike off-line analysis, search commands in web browsers or word processors interac
tively find occurrences of strings that match an input pattern. A substring matching a pattern 
may span several lines. The pattern m*n in the Microsoft Word “Find” command searches 
for substrings beginning with m and ending with n; any string may separate the m and n. 
The search finds and highlights the first substring beginning at or after the current location 
of the cursor that matches the pattern. Repeating the search by clicking “next" highlights 
successive matches of the pattern. The substrings identified as matches of m*n in the file 
caesar follow, with the matching substrings highlighted.

Cowards die many times before their deaths;

Cowards die many limes before their deaths;

The valiant never taste of death but once.

It seems to me most strange that men should fear;

It seems to me most strange that men should fear;

It seems to me most strange that men should fear;

It seems to me most strange that men should fear;

Will come when it will come.

Notice that not all matching substrings are highlighted. The pattern m*n is matched by 
any substring that begins with an occurrence of m and extends to any subsequent occurrence 
of n. The search only highlights the first matching substring for every m in the file.

In Chapter 6 we will see that a regular expression can be converted into a finite-state 
machine. The computation of the resulting machine will find the strings or substrings 
that match the pattern described by the expression. The restrictions on the operations 
used in regular expressions— intersection and set difference are not allowed— facilitate the 
automatic conversion from the description of a pattern to the implementation of a search 
algorithm.

Exercises

1. Give a recursive definition of the length of a string over £ .  Use the primitive operation 
from the definition of string.
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2. Using induction on /, prove that (w R)' — (w ‘)R for any string w and all i >  0.

3. Prove, using induction on the length of the string, that (w K)K =  u> for all strings w G E*.

4. Let X =  {aa, bb) and Y =  {A., b, ab).

a) List the strings in the set XY.

b) How many strings of length 6 are there in X*?

c) List the strings in the set Y* of length three or less.

d) List the strings in the set X*Y* of length four or less.

5. Let L be the set of strings over {a, b) generated by the recursive definition

i) Basis: b gL.

ii) Recursive step: if u is in L then ub  g L, uab gL, and uba gL, and bua gL.

iii) Closure: a string v is in L only if it can be obtained from the basis by a finite 
number of iterations of the recursive step.

a) List the elements in the sets Lq, L |, and L2.

b) Is the string bbaaba  in L? If so, trace how it is produced. If not, explain why not.

c) Is the string bbaaaabb  in L? If so, trace how it is produced. If not, explain why not.

6. Give a recursive definition of the set of strings over {a, b) that contain at least one b and 
have an even number of a 's  before the first b. For example, bab, aab, and aaaabababab  
are in the set, while aa, abb  are not.

7. Give a recursive definition of the set {a'b^ \ 0 <  / <  j  < 2i).

8. Give a recursive definition of the set of strings over {a, b) that contain twice as many 
a ’s as b’s.

9. Prove that every string in the language defined in Example 2.2.1 has even length. The 
proof is by induction on the recursive generation of the strings.

10. Prove that every string in the language defined in Example 2.2.2 has at least as many a ’s 
as b’s. Let na(u) denote the number of a ’s in the string u and nb(u) denote the number 
of b’s in u. The inductive proof should establish the inequality na(u) >  nb(u).

11. Let L be the language over {a, b) generated by the recursive definition

i) Basis: X e  L.

ii) Recursive step: If u G L then aaub  G L.

iii) Closure: A string w is in L only if it can be obtained from the basis by a finite 
number of applications of the recursive step.

a) Give the sets Lq, L^ and L2 generated by the recursive definition.

b) Give an implicit definition of the set of strings defined by the recursive definition.

c) Prove by mathematical induction that for every string u in L, the number of a ’s in 
u is twice the number b’s in u. Let na(u) and nb(u) denote the number of a ’s and 
the number of b’s in u, respectively.
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* 12. A palindrome over an alphabet 2  is a string in E* that is spelled the same forward
and backward. The set of palindromes over £  can be defined recursively as follows:

i) Basis: X and a, for all a e  2 ,  are palindromes.

ii) Recursive step: If w is a palindrome and a € 2 ,  then awa  is a palindrome.

iii) Closure: w is a palindrome only if it can be obtained from the basis elements by 
a finite number of applications of the recursive step.

The set of palindromes can also be defined by {w | w = w R}. Prove that these two 
definitions generate the same set.

13. Let L] =  {aaa}*, L2 =  {a, b}[a, b}{a, b){a, £}, and L3 =  L2. Describe the strings that 
are in the languages L2, L3, and L |0  L3.

For Exercises 14 through 38, give a regular expression that represents the described set.

14. The set of strings over {a, b, c} in which all the a ’s precede the b's, which in turn 
precede the c ’s. It is possible that there are no a ’s, b’s, or c ’s.

15. The same set as Exercise 14 without the null string.

16. The set of strings over [a, b, c} with length three.

17. The set of strings over [a, b, c} with length less than three.

18. The set of strings over [a, b ,c]  with length greater than three.

19. The set of strings over {a, b) that contain the substring ab  and have length greater than 
two.

20. The set of strings of length two or more over [a, b } in which all the a ’s precede the b’s.

21. The set of strings over {a, b } that contain the substring aa and the substring bb.

22. The set of strings over {a, b } in which the substring aa  occurs at least twice. Hint: 
Beware of the substring aaa.

23. The set of strings over [a, b, c } that begin with a, contain exactly two b's, and end with
cc.

* 24. The set of strings over {a, b } that contain the substring ab  and the substring ba.

25. The set of strings over [a, b, c) in which every b is immediately followed by at least 
one c.

26. The set of strings over [a, b] in which the number of a ’s is divisible by three.

27. The set of strings over {a, b, c} in which the total number of b's and c ’s is three.

* 28. The set of strings over [a, b } in which every a is either immediately preceded or
immediately followed by b, for example, baab, aba, and b.

29. The set of strings over {a, b, c} that do not contain the substring aa.

30. The set of strings over [a, b) that do not begin with the substring aaa.

31. The set of strings over [a, b] that do not contain the substring aaa.

* 32. The set of strings over {a, b } that do not contain the substring aba.
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33. The set of strings over {a, b] in which the substring aa occurs exactly once.

34. The set of strings of odd length over [a, b } that contain the substring bb.

35. The set of strings of even length over {a , b, c} that contain exactly one a.

36. The set of strings of odd length over [a, b] that contain exactly two b's.

37. The set of strings over [a, b} with an even number of a ’s or an odd number of b's.

* 38. The set of strings over [a, b} with an even number of a ’s and an even number of b's. 
This is tricky; a strategy for constructing this expression is presented in Chapter 6.

39. Use the regular expression identities in Table 2.1 to establish the following identities:

a) (ba)+(a*b* U a*) =  (ba)*ba+(b* U k)

b) b+(a*b* U k)b  =  b(b*a* U k)b+

c) (a U b)* =  (a U b)*b*

d) (aU b)*  =  (a*Uba*)*

e) (a U b y  =  (b*(a U k)b*)*

40. Write the output that would be printed by a search of the file caesar described in Section 
2.4 with the following extended regular expressions.

a) [Cc]

b) [K-Z]

c) \< [a -z ]{ 6 } \>

d) \< [ a - z ] { 6 } \> I \< [ a - z ] { 7 } \>

41. Design an extended regular expression to search for addresses. For this exercise, an 
address will consist of

i) a number,

ii) a street name, and

iii) a street type identifier or abbreviation.

Your pattern should match addresses of the form 1428 Elm S t r e e t ,  51095 Tobacco 
R d ., and 1600 P e n n sy lv a n ia  Avenue. Do not be concerned if your regular expres
sion does not identify all possible addresses.

Bibliographic Notes

Regular expressions were developed by Kleene [1956] for studying the properties of neural 
networks. McNaughton and Yamada [1960] proved that the regular sets are closed under 
the operations of intersection and complementation. An axiomatization of the algebra of 
regular expressions can be found in Salomaa [1966].



PART II

Grammars, Automata, 
and Languages

The syntax of a language specifies the permissible forms of the strings in the language. 
In Chapter 2, set-theoretic operations and recursive definitions were used to generate 

the strings of a language. These string-building tools, although primitive, were adequate 
for enforcing simple constraints on the order and the number of elements in a string. We 
now introduce a rule-based approach for defining and generating the strings o f a language. 
This approach to language definition has its origin in both linguistics and computer science: 
linguistics in the attempt to formally describe natural language and computer science in the 
need to have precise and unambiguous definitions of high-level programming languages. 
Using terminology from the linguistic study, the string generation systems are called 
grammars.

In Chapter 3 we introduce two families of grammars, regular and context-free gram
mars. A family of grammars is defined by the form of the rules and the conditions under 
which they are applicable. A rule specifies a string transformation, and the strings of a lan
guage are generated by a sequence of rule applications. The flexibility provided by rules 
has proved to be well suited for defining the syntax of programming languages. The gram
mar that describes the programming language Java is used to demonstrate the context-free 
definition of several common programming language constructs.

After defining languages by the generation of strings, we turn our attention to the 
mechanical verification of whether a string satisfies a desired condition or matches a desired 
pattern. The family of deterministic finite automata is the first in a series o f increasingly 
powerful abstract machines that we will use for pattern matching and language definition. 
We refer to the machines as abstract because we are not concerned with constructing 
hardware or software implementations of them. Instead, we are interested in determining 
the computational capability of the machines. The input to an abstract machine is a string, 
and the result of a computation indicates the acceptability of the input string. The language 
of a machine is the set of strings accepted by the computations of the machine.



A deterministic finite automaton is a read-once machine in which the instruction to be 
executed is determined by the state of the machine and the input symbol being processed. Fi
nite automata have many applications including the lexical analysis of computer programs, 
digital circuit design, text searching, and pattern recognition. Kleene’s theorem shows that 
the languages accepted by finite automata are precisely those that can be described by reg
ular expressions and generated by regular grammars. A more powerful class of read-once 
machines, pushdown automata, is created by augmenting a finite automaton with a stack 
memory. The addition of the external memory permits pushdown automata to accept the 
context-free languages.

The correspondence between the generation of language by grammars and their accep
tance by machines is a central theme of this book. The relationship between machines and 
grammars will continue with the families of unrestricted grammars and Turing machines 
introduced in Part III. The regular, context-free, and unrestricted grammars are members of 
the Chomsky hierarchy of grammars that will be examined in Chapter 10.



CHAPTER 3

Context-Free Grammars

In this chapter we present a rule-based approach for generating the strings of a language. 
Borrowing the terminology of natural languages, we call a syntactically correct string a 
sentence of the language. A small subset of the English language is used to illustrate the 
components of the string-generation process. The alphabet of our miniature language is the 
set (a, the, John, Jill, hamburger, car, drives, eats, slowly, frequently, big, juicy, brown). The 
elements of the alphabet are called the term inal symbols of the language. Capitalization, 
punctuation, and other important features of written languages are ignored in this example.

The sentence-generation procedure should construct the strings John eats a hamburger 
and Jill drives frequently. Strings of the form Jill and car John slowly should not result from 
this process. Additional symbols are used during the construction of sentences to enforce 
the syntactic restrictions of the language. These intermediate symbols, known as variables 
or nonterminals, are represented by enclosing them in angle brackets ().

Since the generation procedure constructs sentences, the initial variable is named 
(sentence). The generation of a sentence consists of replacing variables by strings of a 
specific form. Syntactically correct replacements are given by a set of transformation rules. 
T\vo possible rules for the variable (sentence) are

1. (sentence) -*  (noun-phrase)(verb-phrase)

2. (sentence) —* (noun-phrase)(verb)(direct-object-phrase)

An informal interpretation of rule 1 is that a sentence may be formed by a  noun phrase 
followed by a verb phrase. At this point, of course, neither of the variables (noun-phrase) nor 
(verb-phrase) has been defined. The second rule gives an alternative definition of sentence, 
a noun phrase followed by a verb followed by a direct object phrase. The existence of 
multiple transformations indicates that syntactically correct sentences may have several 
different forms.

65
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A noun phrase may contain either a proper or a common noun. A common noun is 
preceded by a determiner, while a proper noun stands alone. This feature o f the syntax of 
the English language is represented by rules 3 and 4.

Rules for the variables that generate noun and verb phrases are given below. Rather 
than rewriting the left-hand side of alternative rules for the same variable, we list the right- 
hand sides of the rules sequentially. Numbering the rules is not a feature of the generation 
process, merely a notational convenience.

3. (noun-phrase) —*■ (proper-noun)

4. —►  (determiner) (common-noun)

5. (proper-noun) —*■ John

6. -*■ Jill

7. (common-noun) —* car

8. ->• hamburger

9. (determiner) -*■ a

10. —> the

11. (verb-phrase) —*■ (verb) (adverb)

12. - ►  (verb)

13. (verb) —►  drives

14. —►  eats

15. (adverb) —> slowly

16. —► frequently

With the exception of (direct-object-phrase), rules have been defined for each of the 
variables that have been introduced.

The application of a rule transforms one string to another. The transformation consists 
of replacing an occurrence of the variable on the left-hand side of the -*■ with the string on 
the right-hand side. The generation of a sentence consists of repeated rule applications to 
transform the variable (sentence) into a string of terminal symbols.

For example, the sentence Jill drives frequently is generated by the following transfor
mations:

Derivation Rule Applied

(sentence) => (noun-phrase) (verb-phrase) 1

=> (proper-noun) (verb-phrase) 3

=> Jill (verb-phrase) 6

=> Jill (verb) (adverb) 11

=> Jill drives (adverb) 13

=> Jill drives frequently 16
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The symbol =>, used to designate a rule application, is read “derives.” The column on the 
right gives the number of the rule that was applied to achieve the transformation. The 
derivation terminates when all variables have been removed from the derived string. 
The resulting string, consisting solely of terminal symbols, is a sentence o f the language. 
The set of terminal strings derivable from the variable (sentence) is the language generated 
by the rules of our example.

To complete the set of rules, the transformations for (direct-object-phrase) must be 
given. Before designing rules, we must decide upon the form of the strings that we wish 
to generate. In our language we will allow the possibility of any number of adjectives, 
including repetitions, to precede the direct object. This requires a set of rules capable of 
generating each of the following strings:

John eats a hamburger

John eats a big hamburger

John eats a big juicy hamburger

John eats a big brown juicy hamburger

John eats a big big brown juicy hamburger

As can be seen by the potential repetition of the adjectives, the rules of the grammar must be 
capable of generating strings of arbitrary length. The use of a recursive definition allows the 
elements of an infinite set to be generated by a finite specification. Following that example, 
recursion is introduced into the string-generation process, that is, into the rules.

17. (adjective-list) —*■ (adjective) (adjective-list)

18. —►  X

19. (adjective) - ►  big

20. —> juicy

21. —►  brown

The definition of (adjective-list) follows the standard recursive pattern. Rule 17 defines 
(adjective-list) in terms of itself, while rule 18 provides the basis of the recursive definition. 
The X on the right-hand side of rule 18 indicates that the application of this rule replaces 
(adjective-list) with the null string. Repeated applications of rule 17 generate a sequence 
of adjectives. Rules for (direct-object-phrase) are constructed using (adjective-list):

22. (direct-object-phrase) —*■ (adjective-list) (proper-noun)

23. —►  (determiner) (adjective-list) (common-noun)



The sentence John eats a big juicy hamburger can be derived by the following sequence of 

rule applications:
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Derivation Rule Applied

(sentence) => (noun-phrase) (verb) (direct-object-phrase) 2

=> (proper-noun) (verb) (direct-object-phrase) 3

=> John (verb) (direct-object-phrase) 5

=> John eats (direct-object-phrase) 14

=> John eats (determiner) (adjective-list) (common-noun) 23

=> John eats a (adjective-list) (common-noun) 9

=> John eats a (adjective) (adjective-list) (common-noun) 17

=> John eats a big (adjective-list) (common-noun) 19

=> John eats a big (adjective) (adjective-list) (common-noun) 17

=> John eats a big juicy (adjective-list) (common-noun) 20

=> John eats a big juicy (common-noun) 18

=> John eats a big juicy hamburger 8

The generation of sentences is strictly a function of the rules. The string the car eats 
slowly is a sentence in the language since it has the form (noun-phrase) (verb-phrase) 
outlined by rule 1. This illustrates the important distinction between syntax and semantics; 
the generation of sentences is concerned with the form of the derived string without regard 
to any underlying meaning that may be associated with the terminal symbols.

By rules 3 and 4, a noun phrase consists of a proper noun or a common noun preceded 
by a determiner. The variable (adjective-list) may be incorporated into the (noun-phrase) 
rules, permitting adjectives to modify a noun:

3'. (noun-phrase) —* (adjective-list) (proper-noun)

4'. -> (determiner) (adjective-list) (common-noun)

With this modification, the string big John eats frequently can be derived from the variable 
(sentence).

3.1 Context-Free Grammars and Languages

We will now define a formal system, the context-free grammar, that is used to generate 
the strings of a language. The natural language example was presented to motivate the 
components and features of string generation using a context-free grammar.

Definition 3.1.1

A context-free gram m ar is a quadruple (V, £ ,  P, 5) where V is a finite set of variables, 
E (the alphabet) is a finite set of terminal symbols, P is a finite set of rules, and S is a



distinguished element of V called the start symbol. The sets V and £  are assumed to be 
disjoint.

A rule is written A —* w where A 6 V and w 6 (V U E)*. A rule of this form is called 
an A rule, referring to the variable on the left-hand side. Since the null string is in (V U £)*, 
X may occur on the right-hand side of a rule. A rule of the form A  —> k  is called a null or 
X-rule.

Italics are used to denote the variables and terminals of a context-free grammar. 
Terminals are represented by lowercase letters occurring at the beginning of the alpha
bet, that is, a , b , c, . . . .  Following the conventions introduced for strings, the letters 
p , q, u, v, w, x ,  y , z, with or without subscripts, represent arbitrary members of 
(V U £)*. Variables will be denoted by capital letters. As in the natural language example, 
variables are referred to as the nonterminal symbols of the grammar.

Grammars are used to generate properly formed strings over the prescribed alphabet. 
The fundamental step in the generation process consists of transforming a string by the 
application of a rule. The application of A -+ w to the variable A in u A v  produces the 
string uwv. This is denoted u A v  => uwv. The prefix u and suffix v define the context in 
which the variable A occurs. The grammars introduced in this chapter are called context- 
free because of the general applicability of the rules. An A rule can be applied to the variable 
A whenever and wherever it occurs; the context places no limitations on the applicability 
of a rule.

A string w is derivable from v if there is a finite sequence of rule applications that 
transforms u to w; that is, if a sequence of transformations

v =$ uif => w2 =>■■■=> wn =  w

can be constructed from the rules of the grammar. The derivability of w from v is denoted 

v =$ w. The set of strings derivable from v, being constructed by a finite but unbounded 
number of rule applications, can be defined recursively.

Definition 3.1.2

Let G =  (V, Z , P, S) be a context-free grammar and t € ( V U  2)*. The set of strings 
derivable from v is defined recursively as follows:

i) Basis: v is derivable from v.

ii) Recursive step: If u =  x A y  is derivable from v and A -*■ w 6 P, then x w y  is derivable 
from t>.

iii) Closure: A string is derivable from v only if it can be generated from v by a finite 
number of applications of the recursive step.

Note that the definition of a rule uses the —►  notation, while its application uses =>. 
The symbol => denotes derivability and => designates derivability utilizing one or more 
rule applications. The length of a derivation is the number of rule applications employed. 
A derivation of w from v of length n is denoted v => w . When more than one grammar is
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being considered, the notation v => w will be used to explicitly indicate that the derivation
G

utilizes rules of the grammar G.
A language has been defined as a set of strings over an alphabet. A grammar consists of 

an alphabet and a method of generating strings. These strings may contain both variables and 
terminals. The start symbol of the grammar, assuming the role of {sentence) in the natural 
language example, initiates the process of generating acceptable strings. The language of 
the grammar G is the set of terminal strings derivable from the start symbol. We now state 
this as a definition.

Definition 3.1.3

Let G =  (V, E , P, S) be a context-free grammar.

i) A string w e  (V U E)* is a sentential form of G if there is a derivation S w in G.

ii) A string w 6  E* is a sentence of G if there is a derivation S w in G.

iii) The language of G, denoted L(G), is the set {u> e  E* | S ==> u>}.

A sentential form is a string that is derivable from the start symbol of the grammar. 
Referring back to the natural language example, the derivation

(sentence) => (noun-phrase) (verb-phrase)

=> (proper-noun) (verb-phrase)

=> Jill (verb-phrase)

shows that Jill (verb-phrase) is a sentential form of that grammar. It is not yet a sentence, 
it still contains variables, but it has the form of a sentence. A sentence is a sentential form 
that contains only terminal symbols. The language of a grammar consists of the sentences 
generated by the grammar. A set of strings over an alphabet E is said to be a context-free 
language if it is generated by a context-free grammar.

The use of recursion is necessary for a finite set of rules to generate strings of arbitrary 
length and languages with infinitely many strings. Recursion is introduced into grammars 
through the rules. A rule of the form A -*■ uA v  is called recursive since it defines the variable 
A in terms of itself. Rules of the form A —* A v  and A —*■ uA  are called left-recursive and 
right-recursive, respectively, indicating the location of recursion in the rule.

Because of the importance of recursive rules, we examine the form of strings produced 
by repeated applications of the recursive rules A -> aAb, A -* a A, A  —>■ Ab, and A —>• A A:

A = > aA b  A = $ a A  A = $ A b  A=$ AA  

=> aA b  => a A => Ab  => A A A  

=>aaAbb =$aaA  => Abb  => A A A A  

=>aaaAbbb = $aaaA  => Abbb  =» A A A A A

A derivation employing the rule A -*■ aAb  generates any number of a ’s followed by the same 
number of b's. Rules of this form are necessary for producing strings that contain symbols in
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G =  (V, E ,P ,  S)
V =  {5, A}
X  =  [a, b )
P: S - + A A

A -*  A A A  | bA  | Ab \ a

S  =>■ AA S => AA S => AA S= > A A
=> a A => A A A A =$ Aa => aA
^  a A A A => a A A A => A A A a ^  a A A A

=> ab A A A a b A A A => A A bA a => a A A a
=> abaA A => abaA A => AAbaa a b A A a
=* ababAA => ababA A =» AbAbaa => abA bA a

=> ababaA =$■ ababaA => Ababaa =>■ ababAa

=> ababaa => ababaa ^ a b a b a a => ababaa

(a) (b) (c) (d)

FIGURE 3.1 Sample derivations of ababaa in G.

matched pairs, such as left and right parentheses. The right recursive rule A —* a A generates 
any number of a ’s preceding the variable A, and the left recursive A -»  A b  generates any 
number of b’s following A. Each application of the rule A  —►  AA , which is both left- and 
right-recursive, produces an additional A. The repetitive application of a recursive rule can 
be terminated at any time by the application of a different A rule.

A variable A is called recursive if there is a derivation A => uAv. A derivation of the 
form A => w = ► uAv, where A is not in w, is said to be indirectly recursive. Note that, due 
to indirect recursion, a variable A may be recursive even if there are no recursive A rules.

A grammar G that generates the language consisting of strings with a positive, even 
number of a ’s is given in Figure 3.1. The rules are written using the shorthand A -> u \ v 
to abbreviate A -*■ u and A -> v. The vertical bar | is read “or." Four distinct derivations 
of the terminal string ababaa  are shown in Figure 3.1. The definition of derivation permits 
the transformation of any variable in the string. Each rule application in derivations (a) 
and (b) in the figure transforms the first variable occurring in a left-to-right reading of the 
string. Derivations with this property are called leftmost. Derivation (c) is rightmost, since 
the rightmost variable has a rule applied to it. These derivations demonstrate that there may 
be more than one derivation of a string in a context-free grammar.

Figure 3.1 exhibits the flexibility of derivations in a context-free grammar. The essential 
feature of a derivation is not the order in which the rules are applied, but the manner in 
which each variable is transformed into a terminal string. The transformation is graphically 
depicted by a derivation or parse tree. The tree structure indicates the rule applied to each 
variable but does not designate the order of the rule applications. The leaves o f the derivation 
tree can be ordered to yield the result of a derivation represented by the tree.

Definition 3.1.4

Let G =  (V, £ ,  P, S) be a context-free grammar and let 5 ^  w be a derivation in G. The 

derivation tree, DT, of S => w is an ordered tree that can be built iteratively as follows:

i) Initialize DT with root S.
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ii) If A —►  x xx 2 ■ ■ ■ xn with e  (V U E ) is the rule in the derivation applied to the string 
uAv, then add x2.......... x„ as the children of A  in the tree.

iii) If A ->■ X is the rule in the derivation applied to the string uA v, then add X as the only 

child of A in the tree.

The ordering of the leaves also follows this iterative process. Initially, the only leaf 
is S and the ordering is obvious. When the rule A -*■ x tx 2 . . . x„ is used to generate the 
children of A, each x, becomes a leaf and A is replaced in the ordering of the leaves by 
the sequence Xi, x2, . . . , x„. The application of a rule A —►  X simply replaces A by the 
null string. Figure 3.2 traces the construction of the tree corresponding to derivation (a) of 
Figure 3.1. The ordering of the leaves is given along with each of the trees.

The order of the leaves in a derivation tree is independent of the derivation from which 
the tree was generated. The ordering provided by the iterative process is identical to the 
ordering of the leaves given by the relation LEFTOF in Section 1.8. The frontier of the 
derivation tree is the string generated by the derivation.

Figure 3.3 gives the derivation trees for each of the derivations in Figure 3.1. The trees 
generated by derivations (a) and (d) are identical, indicating that each variable is transformed 
into a terminal string in the same manner. The only difference between these derivations is 
the order of the rule applications.

A derivation tree can be used to produce several derivations that generate the same 
string. The rule applied to a variable A can be reconstructed from the children of A in the 
tree. The rightmost derivation

S=> AA  

=*• A A A A  

=> A A A a  

=> A AbAa  

=> AAbaa  

=> AbAbaa  

=> Ababaa 

=> ababaa

is obtained from the derivation tree (a) in Figure 3.3. Notice that this derivation is different 
from the rightmost derivation (c) in Figure 3.1. In the latter derivation, the second variable in 
the string A A is transformed using the rule A —»■ a, while A —► AAA is used in the preceding 
derivation. The two trees graphically illustrate the distinct transformations.

As we have seen, the context-free applicability of rules allows a great deal of flexibility 
in the constructions of derivations. Lemma 3.1.5 shows that a derivation may be broken into 
subderivations from each variable in the string. Derivability was defined recursively, the 
length of derivations being finite but unbounded. Consequently, we may use mathematical 
induction to establish that a property holds for all derivations from a given string.
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Construction of derivation tree, (continued on next page)
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Derivation
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>ababaA
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FIGURE 3.2 (continued)

Lemma 3.1.5

Let G be a context-free grammar and v ^k- w be a derivation in G where v can be written

v = w iA iw2A 2 . . .  wkAkwk+i, 

with Wj € S*. Then there are strings € (E  U V)* that satisfy

i) A, b  Pi

ii) w = w [p lw2p 2 ■ ■ ■ u>kpkwk+{
k

' £ t i = n .
i=i
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FICURE 3.3 Trees corresponding to the derivations in Figure 3.1.

Proof. The proof is by induction on the length of the derivation of w from v.

Basis: The basis consists of derivations of the form v w. In this case, w = v and each A, 

is equal to the corresponding p,. The desired derivations have the form A,- =% p,.

Inductive Hypothesis: Assume that all derivations v => w can be decomposed into derivations 
from the A,-’s, the variables of v, which together form a derivation of w from v of length n.

Inductive Step: Let v ==> w be a derivation in G with

v = w iA lu>2A 2 . . ,w kAkwk+h

where u>, € £*. The derivation can be written v => u ^  w. This reduces the original 
derivation to the application of a single rule and derivation of length n, the latter of which 
is suitable for the invocation of the inductive hypothesis.

The first rule application in the derivation, v ^  u, transforms one of the variables in t \  
call it A j,  with a rule of the form

A j  -»• u lB lu2B2 . . .  umBmum+l,
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where each e l ' .  The string u is obtained from v by replacing A j  by the right-hand side 
of the A j  rule. Making this substitution, u can be written as

u>xA x . . .  A j_ xWjUXB xu2B2 ■ ■ ■ umBmum+lwj+xA j+ x . . .  wkAkwk+x.

Since w is derivable from u using n rule applications, the inductive hypothesis asserts 
that there are strings p x, . . . , P j- \ ,  q\, ■ • • , qm, and p j+x...........pk that satisfy

i) Aj => pj for i =  1......... j  -  1, j  +  1 , . . . ,  k

Bi => qj for i =  1......... m;

ii) w = w xp xw2 . . .  P j- \w ju xq xu2 . . .  umqmum+lwj+xp j+ x. . .  wkpkwk+i\ and

j - 1 k m
iii) J ^ t i +  Y i h + Y , S j = n .  

i=i i=j+1 i=i

Combining the rule Ay —►  u xB xu2B2 . . .  umBmum+i with the derivations B, qh  we obtain 
a derivation

A j u xq xu2q2 . . . umqmum+, =  pj

whose length is the sum of lengths of the derivations from the fi, ’s plus one. The derivations 

Aj => pi, i =  k, provide the desired decomposition of the derivation of w from v.
■

Lemma 3.1.5 demonstrates the flexibility and modularity of derivations in context- 
free grammars. Every complex derivation can be broken down into subderivations of the 
constituent variables. This modularity will be exploited in the design of complex languages 
by using variables to define smaller and more manageable subsets of the language. These 
independently defined sublanguages are then combined by additional rules to produce the 
syntax of the entire language.

3.2 Examples o f Grammars and Languages

Context-free grammars have been introduced to generate languages. Formal languages, like 
computer languages and natural languages, have requirements that the strings must satisfy 
in order to be syntactically correct. Grammars for these languages must generate precisely 
the desired strings and no others. There are two natural approaches that we may take to help 
develop our understanding of the relationship between grammars and languages. One is 
to begin with an informal specification of a language and then construct a grammar that 
generates it. This is the approach followed in the design of programming languages— 
the syntax is selected and the language designer produces a set of rules that defines the 
correctly formed strings. Conversely, we may begin with the rules of a grammar and analyze 
them to determine the form of the strings of the language. This is the approach frequently 
taken when checking the syntax of the source code of a computer program. The syntax 
of the programming is specified by a set of grammatical rules, such as the definition of



the programming language Java given in Appendix IV. The syntax of constants, identifiers, 
statements, and entire programs is correct if the source code is derivable from the appropriate 
variables in the grammar.

Initially, determining the relationship between strings and rules may seem difficult. 
With experience, you will recognize frequently occurring patterns in strings and the rules 
that produce them. The goal of this section is to analyze examples to help you develop an 
intuitive understanding of language definition using context-free grammars.

In each of the examples a grammar is defined by listing its rules. The variables and 
terminals of the grammar are those occurring in the rules. The variable S  is the start symbol 
of each grammar.

Example 3.2.1

Let G be the grammar given by the rules

S —>■ aSa  | aBa  

B —►  bB  | b.

Then L(G) =  {a"bman \ n > 0, m >  0}. The rule 5 -> aSa  recursively builds an equal 
number of a ’s on each end of the string. The recursion is terminated by the application 
of the rule S —*■ aB a,  ensuring at least one leading and one trailing a. The recursive B rule 
then generates any number of b's. To remove the variable B from the string and obtain a 
sentence of the language, the rule B —v b must be applied, forcing the presence of at least 
one b. □
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Example 3.2.2

The relationship between the number of leading a ’s and trailing d 's  in the language 
[a"bmcmd 2n | n > 0, m > 0} indicates that a recursive rule is needed to generate them. 
The same is true of the b ’s and c ’s. Derivations in the grammar

S -*  aS d d  |A  

A -*■ bAc  | be

generate strings in an outside-to-inside manner. The S  rules produce the a ’s and d ’s while 
the A rules generate the b's and c ’s. The rule A —y be, whose application terminates the 
recursion, ensures the presence of the substring be in every string in the language. □

Example 3.2.3

Recall that a string w is a palindrome if w = w R. A grammar is constructed to generate 
the set of palindromes over {a, b). The rules of the grammar mimic the recursive definition 
of palindromes given in Exercise 2.12. The basis of the set of palindromes consists of the 
strings X, a, and b. The S rules
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immediately generate these strings. The recursive part of the definition consists of adding 
the same symbol to each side of an existing palindrome. The rules

S —*■ aSa  | bSb

capture the recursive generation process. □

Example 3.2.4

The first recursive rule of

S —>aSb  | a S b b \ k

generates a trailing b for every a, while the second generates two b’s for each a.  Thus 
there is at least one b for every a and at most two. The language of the grammar is 
[anbm | 0 <  n < m < In).  □

Example 3.2.5

Consider the grammar
5 -> abScB  | k  

B ^ b B \ b .

The recursive S  rule generates an equal number of ab’s and c B ’s. The B rules generate b+. 
In a derivation each occurrence of B may produce a different number of b’s. For example, 
in the derivation

5 = ► abScB  

^  ababScBcB  

=> ababcBcB  

=>ababcbcB  

=>ababcbcbB  

=» ababcbcbb ,

the first occurrence of B generates a single b and the second occurrence produces bb. The 
language of the grammar is the set {(ab)n(cbm”)n \ n >  0, m n > 0). The superscript mn 
indicates that the number of b’s produced by each occurrence of B  may be different since 
bm' need not equal bm> when i £  j .  □

Example 3.2.6

Let Gi and G2 be the grammars

Gp S —* A B  G2: S  —>• aS  | aA

A - * a A \ a  A —* b A \ k .

B —>■ bB \ k
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Both of these grammars generate the language a +b*. The A rules in Gi provide the standard 
method of generating a nonnull string of a ’s. The use of the A-rule to terminate the derivation 
allows the possibility of having no b's. The rules in grammar G2 build the strings of a +b* 
in a left-to-right manner. O

Example 3.2.7

The grammars G! and G2 generate the strings over {a, b) that contain exactly two b's. That 
is, the language of the grammars is a*ba*ba*.

G,: S -*• AbAbA  G2: S -»■ aS  \ bA  

A —y aA  \ k  A —*• aA \ bC

C —*■ aC  | k

Gj requires only two variables since the three instances of a* are generated by the same A 
rules. The second builds the strings in a left-to-right manner, requiring a distinct variable 
for the generation of each sequence of a ’s. □

Example 3.2.8

The grammars from Example 3.2.7 can be modified to generate strings with at least two b's.

G,: S -*• A bAbA  G2: S -> aS  | bA

A -*■ aA  | bA  | k  A -*■ a A \ bC

C -*■ aC  \b C  \ k

In G |, any string can be generated before, between, and after the two b ’s produced by the S 
rule. A derivation in G2 produces the first b using the rule S -*■ bA  and the second b with 
A -> bC. The derivation finishes using applications of the C rules, which can generate any 
string of a ’s and b’s. □

Two grammars that generate the same language are said to be equivalent. Examples 
3.2.6,3.2.7, and 3.2.8 show that equivalent grammars may produce the strings o f a language 
by significantly different derivations. In later chapters we will see that rules having particular 
forms may facilitate the mechanical determination of the syntactic correctness of strings.

Example 3.2.9

A grammar is given that generates the language consisting of even-length strings over {a, b). 
The strategy can be generalized to construct strings of length divisible by three, by four, and 
so forth. The variables S and O serve as counters. An 5 occurs in a sentential form when an
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even number of terminals has been generated. An O records the presence of an odd number 

of terminals.

S - + a O \ b O \ X

O —> aS  \ bS

The application of 5 ->• X completes the derivation of a terminal string. Until this occurs, a 
derivation alternates between applications of S  and O rules. □

Example 3.2.10

Let L be the language over [a, b } consisting of all strings with an even number of b's. The 

grammar

S - * a S \ b B  | A.

B - >  a B \ b S \ b C  

C —> a C | X

that generates L combines the techniques presented in the previous examples. Example 3.2.9 
for the even number of b's and Example 3.2.7 for the arbitrary number of a ’s. Deleting all 
rules containing C yields another grammar that generates L. □

Example 3.2.11

Exercise 2.38 requested a regular expression for the language over {a , b } consisting of 
strings with an even number of a ’s and an even number of b’s. It was noted at the time that 
a regular expression for this language was quite complex. The flexibility provided by string 
generation with rules makes the construction of a context-free grammar for this language 
straightforward. The variables are chosen to represent the parities of the number of a ’s and 
b's in the derived string. The variables of the grammar with their interpretations are

Variable Interpretation

5 Even number of a’s and even number of b ’s

A Even number of a’s and odd number of b's

B Odd number of a’s and even number of b's

C Odd number of a’s and odd number of b's

The application of a rule adds one terminal symbol to the derived string and updates 
the variable to reflect the new status. The rules of the grammar are

S -+ aB  | bA  | X

A - * a C \ b S

B ^ a S \ b C

C —> aA  | bB.
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When the variable S is present, the derived string has an even number of a ’s and an even 
number of b's. The application of S  —> A. removes the variable from the sentential form, 
producing a string that satisfies the language specification. □

Example 3.2.12

The rules of a grammar are designed to impose a structure on the strings in the language. 
This structure may consist of ensuring the presence or absence of certain combinations of 
elements of the alphabet. We construct a grammar with alphabet {a, b, c} whose language 
consists of all strings that do not contain the substring abc. The variables are used to 
determine how far the derivation has progressed toward generating the string abc.

S ^  b S \ c S \ a B \ X  

B ^ a B \ c S \ b C \ X  

C -*■ aB  | bS  | X

The strings are built in a left-to-right manner. At most one variable is present in a sentential 
form. If an S  is present, no progress has been made toward deriving abc. The variable B 
occurs when the previous terminal is an a. The variable C  is present only when preceded 
by ab. Thus, the C rules cannot generate the terminal c. □

3.3 Regular Grammars

Regular grammars are an important subclass of context-free grammars that play a prominent 
role in the lexical analysis and parsing of programming languages. Regular grammars are 
obtained by placing restrictions on the form of the right-hand side of the rules. In Chapter 6 
we will show that regular grammars generate precisely the languages that are defined by 
regular expressions or accepted by finite-state machines.

Definition 3.3.1

A regular gram m ar is a context-free grammar in which each rule has one o f the following 
forms:

i) A —►  a,

ii) A —►  aB ,  or

iii) A -*  X,

where A, B e  V, and a e  S .

Derivations in regular grammars have a particularly nice form; there is at most one 
variable present in a sentential form and that variable, if present, is the rightmost symbol 
in the string. Each rule application adds a terminal to the derived string until a rule of the
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form A —* a or A  —►  X terminates the derivation. These properties are illustrated using the 
regular grammar Gj

S —* a S | a A

A -* b A \ X

from Example 3.2.6 that generates the language a+b*. The derivation of aabb,

S aS  

=> aaA  

=> aabA  

= ► aabbA  

=> aabb,

shows the left-to-right generation of the prefix of terminal symbols. The derivation ends 
with the application of the rule A - ►  X.

A language generated by a regular grammar is called a regular language. You may recall 
that the family of regular languages was introduced in Chapter 2 as the set of languages 
described by regular expressions. There is no conflict with what might appear to be two 
different definitions of the same term, since we will show that regular expressions and 
regular grammars define the same family of languages.

A regular language may be generated by both regular and nonregular grammars. The 
grammars G | and G2 from Example 3.2.6 both generate the language a +b*. The grammar 
G | is not regular because the rule S —*■ A B  does not have the specified form. A language is 
regular if it is generated by some regular grammar; the existence of nonregular grammars 
that also generate the language is irrelevant. The grammars constructed in Examples 3.2.9, 
3.2.10, 3.2.11, and 3.2.12 provide additional examples of regular grammars.

Example 3.3.1

We will construct a regular grammar that generates the same language as the context-free 
grammar

G: S —*■ abSA  \ X 

A —> Aa  | X.

The language of G is X U (ab)+a*. The equivalent regular grammar

S ^ - a B |X 

B ->■ bS  | bA  

A -*■ a A \ X
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generates the strings in a left-to-right manner. The S and B  rules generate a prefix from the 
set (ab)*. If a string has a suffix of a ’s, the rule B -*■ bA  is applied. The A rules are used 
to generate the remainder of the string. □

3.4 Verifying Grammars

The grammars in the previous sections were built to generate specific languages. An intuitive 
argument was given to show that the grammar did indeed generate the correct set of strings. 
No matter how convincing the argument, the possibility of error exists. A proof is required 
to guarantee that a grammar generates precisely the desired strings.

To prove that the language of a grammar G is identical to a given language L, the 
inclusions L c  L(G) and L(G) c  L must be established. To demonstrate the techniques 
involved, we will prove that the language of the grammar

G: 5 -> A A S B  \ A A B  

A —►  a 

B -»  bbb

is the set L =  [ a ^ b 3" \ n > 0}.
A terminal string is in the language of a grammar if it can be derived from the start 

symbol using the rules of the grammar. The inclusion {a 2nb in \ n > 0} c  L(G) is established 
by showing that every string in L is derivable in G. Since L contains an infinite number of 
strings, we cannot construct a derivation for every string in L. Unfortunately, this is precisely 
what is required. The apparent dilemma is solved by providing a derivation schema. The 
schema consists of a pattern that can be followed to construct a derivation for any string in 
L. A string of the form a 2"^3", for n > 0, can be derived by the following sequence of rule 
applications:

Derivation Rule Applied

S ^ ( A A ) n~ 'SB"-' S —► AASB

=> (AA)nBn S —*• AAB

=̂ => (aa)"B” A -*  a

=£=> (aa)" (bbb)" B -> bbb 

=  a2nb1n

where the superscripts on the => specify the number of applications of the rule. The 
preceding schema provides a “recipe,” that, when followed, can produce a derivation for 
any string in L.

The opposite inclusion, L(G) C [a2nb}‘n | n >  0}, requires each terminal string deriv
able in G to have the form specified by the set L. The derivation of a string in the language
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consists of a finite number of rule applications, indicating the suitability of a proof by induc
tion. The first difficulty is to determine exactly what we need to prove. We wish to establish 
a relationship between the a ’s and b’s in all terminal strings derivable in G. A necessary 
condition for a string w to be a member of L is that three times the number of a ’s in the 
string be equal to twice the number of b's. Letting nx(u) be the number of occurrences of 
the symbol x  in the string u, this relationship can be expressed by 3na(u) =  2nb(u).

This numeric relationship between the symbols in a terminal string clearly is not true 
for every string derivable from S. Consider the derivation

S = > A A S B  

=» aASB.

The string a A S B ,  which is derivable in G, contains one a and no b’s.
To account for the intermediate sentential forms that occur in a derivation, relationships 

between the variables and terminals that hold for all steps in the derivation must be deter
mined. When a terminal string is derived, no variables will remain and the relationships 
should yield the required structure of the string.

The interactions of the variables and the terminals in the rules of G must be examined 
to determine their effect on the derivations of terminal strings. The rule A —> a guarantees 
that every A will eventually be replaced by a single a. The number of a ’s present at the 
termination of a derivation consists of those already in the string and the number of A’s in 
the string. The sum na(u) +  nA(u) represents the number of a ’s that must be generated 
in deriving a terminal string from u. Similarly, every B will be replaced by the string 
bbb. The number of b’s in a terminal string derivable from u is nh(u) +  3n B(u). These 
observations are used to construct condition (i), establishing the correspondence of variables 
and terminals that holds for each step in the derivation.

i) 3(na(u) +  n A(u)) =  2(nb(u) +  3n B(u)).

The string a A S B ,  which we have seen is derivable in G, satisfies this condition since 
na(aA SB ) + n A(aA SB )  =  2 and rtb(a A S B ) +  3n g (aA SB ) =  3.

Conditions (ii) and (iii) are

ii) n A(u) +  na(u) >  1, and

iii) the a ’s and A’s in a sentential form precede the S, which precedes the b's  and B's.

All strings in (a2nb3n | n >  0} contain at least two a ’s and three b’s. Conditions (i) and
(ii) combine to yield this property. Condition (iii) prescribes the order of the symbols in 
a derivable string. Not all of the symbols must be present in each string; strings derivable 
from 5 by one rule application do not contain any terminal symbols.

After the appropriate relationships have been determined, we must prove that they hold 
for every string derivable from S. The basis of the induction consists of all strings that can 
be obtained by derivations of length one (the S rules). The inductive hypothesis asserts that 
the conditions are satisfied for all strings derivable by n or fewer rule appJications. The
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inductive step consists of showing that the application of an additional rule preserves the 
relationships.

There are two derivations of length one, S => A A S B  and S => AAB.  For each of these 
strings, 3(na(u) +  nA(u)) =  2(nb(u) +  3n B(u)) =  6. By observation, conditions (ii) and

(iii) hold for the two strings.
The inductive hypothesis asserts that (i), (ii), and (iii) are satisfied by all strings 

derivable by n or fewer rule applications. We now use the inductive hypothesis to show that 
the three properties hold for all strings generated by derivations of n +  1 rule applications.

Let i v b e a  string derivable from 5 by a derivation S ==> w of length n +  1. To use 
the inductive hypothesis, we write the derivation of length n + 1 as a derivation of length n 
followed by a single rule application:

5 => u => w.

Written in this form, it is clear that the string u is derivable by n rule applications. The 
inductive hypothesis asserts that properties (i), (ii), and (iii) hold for u. The inductive step 
requires that we show that the application of one rule to u preserves these properties.

For any sentential form v, we let j ( v )  =  3(na(v) + n A(v)) and k(v)  =  2 (nj,(v) +  
3n B(v)). By the inductive hypothesis, j (u )  =  k(u) and j ( u ) / 3  > 1. The effects of the 
application of an additional rule on the constituents of the string u are given in the following 
table.

Rule j(w ) k (w ) j ( w ) /3

S->- A A S B ;'(«) + 6 k(u) + 6 j ( u ) / 3 + 2
S - *  A A B ; ( « )  + 6 k{u) +  6 jU O P  + 2

A —* a j ( u ) k(u) j ( u ) /3

B —* bbb j W k(u) I M P

Since j ( u )  =  k(u), we conclude that j { w)  =  k(w). Similarly, j { w ) / 3  > 1 follows from the 
inductive hypothesis that j ( u ) / 3  > 1. The ordering of the symbols is preserved by noting 
that each rule application either replaces S by an appropriately ordered sequence of variables 
or transforms a variable to the corresponding terminal.

We have shown that the three conditions hold for every string derivable in G. Since there 
are no variables in a string w e  L(G), condition (i) implies 3na(w) =  2nb(w). Condition 
(ii) guarantees the existence of a ’s and b's, while (iii) prescribes the order. Thus L(G) c  
[a2nb}‘n | n > 0). Having established the opposite inclusions, we conclude that the language 
of G is {a2nb i n \ n > 0 ) .

As illustrated by the preceding argument, proving that a grammar generates a certain 
language is a complicated process. This, of course, was an extremely simple grammar with 
only a few rules. The inductive process is straightforward after the correct relationships 
have been determined. The most challenging part of the inductive proof is determining the
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relationships between the variables and the terminals that must hold in the intermediate 
sentential forms. The relationships are sufficient if, when all references to the variables are 
removed, they yield the desired structure of the terminal strings.

As seen in the preceding argument, establishing that a grammar G generates a language 
L requires two distinct arguments:

i) that all strings of L are derivable in G, and

ii) that all strings generated by G are in L.

The former is accomplished by providing a derivation schema that can be used to produce 
a derivation for any sting in L. The latter uses induction to show that each sentential form 
satisfies conditions that lead to the generation of a string in L. The following examples 
further illustrate the steps involved in these proofs.

Example 3.4.1

Let G be the grammar

S - ►  aS | fcB | A.

B -*■ aB  | bS  | bC 

C —*■ aC  | k

given in Example 3.2.10. We will prove that L(G) =  a*(a*ba*ba*)*, the set of all strings 
over {a, b } with an even number of b’s. It is not true that every string derivable from 5 has 
an even number of b ’s. The derivation S =$ bB  produces a single b. To derive a terminal 
string, every B must eventually be transformed into a b. Consequently, we conclude that the 
desired relationship asserts that nb(u) + n B(u) is even. When a terminal string w is derived, 
n B(w) =  0 and n b(ui) is even.

We will prove that nb(u) +  n B(u) is even for all strings derivable from S. The proof is 
by induction on the length of the derivations.

Basis: Derivations of length one. There are three such derivations:

5 => aS  

S= >bB  

S ^  k.

By inspection, nb(u) + n B(u) is even for these strings.

Inductive Hypothesis: Assume that nb(u) + n B(u) is even for all strings u that can be derived 
with n rule applications.

Inductive Step: To complete the proof, we need to show that nb(w ) +  n B(w)  is even when
ever w can be obtained by a derivation of the form 5 ==> w.  The key step is to reformulate 
the derivation to apply the inductive hypothesis. A derivation of w of length n + 1 can be 
written S ^  u ^  w.
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By the inductive hypothesis, nb(u) +  n B(u) is even. We show that the result of the 
application of any rule to u preserves the parity of nb(u) +  n B(u). The table

Rule nb(w) +  n B(u>)

S -*  a S nb(u) +  n B(,u)

S - * b B nb(u) + n B(u) +  2

S - * k nb(u) +  n B(u)

B  —►  aB nb(u) + n B(u)

B -*  bS nb( u ) + n B(u)

B ->■ bC nb(u) +  n B(u)

C -*■ aC nb(u) +  n B(u)

C ^ - k nb(u) +  n B(u)

gives the value of nb(w) + n B(w) when the corresponding rule is applied to u. Each of the 
rules leaves the total number of B ’s and b’s fixed except the second, which adds two to the 
total. Thus the sum of the b's and B's  in a string obtained from u by the application of a rule 
is even. Since a terminal string contains no B ’s, we have shown that every string in L(G) 
has an even number of b's.

To complete the proof, the opposite inclusion, L(G) c  a*(a*ba*ba*)*, must also be 
established. To accomplish this, we show that every string in a*(a*ba*ba*)* is derivable in 
G. A string in a*(a*ba*ba*)* has the form

an'ban2ban>. . .  anuba"»->-', k > 0 .

Any string in a* can be derived using the rules S  -> a S  and S -*■ k.  All other strings in L(G) 
can be generated by a derivation of the form

Derivation Rule Applied

= >  an'S S -*• aS
= >  an,bB S -* bB

= >  aniba"2B B -* aB
=> an'ba"2bS B ^ b S

an'baniban' .. .a n*B B -* aB
= >  an'baniban*.. . an»bC B —> bC

an'ba"2ban:>. .. an*ba"»+<C C - f a C
antban2b a . . . an2kba"2*+i C —► A

□
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Example 3.4.2

Let G be the grammar
S ^ > - a A S B \ k  

A —►  a d \ d  

B - ►  bb.

We show that every string in L(G) has at least as many b's as a ’s. The number of b’s in 
a terminal string depends upon the b's and B’s in the intermediate steps of the derivation. 
Each B generates two b’s, while an A generates at most one a. We will prove, for every 
sentential form u of G, that na(u) + nA(u) < nb(u) + 2n B(u). Let j ( u )  =  n a(u) +  n A(u) 
and k(u) =  nb(u) +  2n B(u).

Basis: There are two derivations of length one

Rule j ( u ) k(u)

S => aASB 2 2 
S=>k 0 0

and j  (u) < k(u) for both of the derivable strings.

Inductive Hypothesis: Assume that j (u )  < k (u ) for all strings u derivable from 5 in n or 
fewer rule applications.

Inductive Step: We need to prove that j ( w)  < k(w)  whenever 5 ==> w. The derivation of 
w can be rewritten S => u => w and, by the inductive hypothesis, j ( u )  < k(u). We must 
show that the inequality is preserved by an additional rule application. The effect of each 
rule application on j  and k is indicated in the following table.

Rule j (w ) k(w)

S —► aASB ;(« ) + 2 k(u) +  2

S -+ X j ( u ) k(u)

B ^ b b j W k(u)

A -*■ ad j(u) k(u)
A —* d j ( u ) - \ k(u)

The first rule adds 2 to each side of an inequality, maintaining the inequality. The final rule 
subtracts 1 from the smaller side, reinforcing the inequality. For a string w  e  L(G), the 
inequality yields na(w) < nb(w) as desired. □

Example 3.4.3

In Example 3.2.2 the grammar
G : S —*■ aS d d  \ A 

A —> bAc  | be
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was constructed to generate the language L =  {anbmcmd 2n | n > 0, m > 0}. We develop 
relationships among the variables and terminals that are sufficient to prove that L(G) c  L. 
The S and the A rules enforce the numeric relationships between the a ’s and d 's  and the b’s 
and c ’s. In a derivation of G, the start symbol is removed by an application of the rule S —► A. 
The presence of an A guarantees that a b will eventually be generated. These observations 
lead to the following four conditions for every sentential form u of G:

i) 2na( u ) = n d(u).

ii) nb(u) =  n c(u).

iii) n s (u) + n A(u)  +  n b(u) > 0.

iv) The a ’s precede the b’s, which precede the 5 or A, which precede the c ’s, which precede 

the d's.

The equalities guarantee that the terminals occur in correct numerical relationships. 
The description of the language also demands that the terminals occur in a specified order. 
The final condition ensures that the order is maintained at each step in the derivation. □

3.5 Leftmost Derivations and Ambiguity

The language of a grammar is the set of terminal strings that can be derived, in any 
manner, from the start symbol. A terminal string may be generated by a number of different 
derivations. For example. Figure 3.1 gave a grammar and four derivations of the string 
ababaa using the rules of the grammar. Any one of the derivations is sufficient to exhibit 
the syntactic correctness of the string.

The derivations using the natural language example that introduced this chapter were 
all given as leftmost derivations. This is a natural technique for readers of English since the 
leftmost variable is the first encountered when reading a string. To reduce the number of 
derivations that must be considered in determining whether a string is in the language of a 
grammar, we now prove that every string in the language is derivable in a leftmost manner.

Theorem 3.5.1

Let G =  (V, S , P, 5) be a context-free grammar. A string w is in L(G) if, and only if, 
there is a leftmost derivation of w from S.

Proof. Clearly, w e  L(G) whenever there is a leftmost derivation of w from S. We must 
establish the “only if” clause of the equivalence, that is, that every string in the L(G) is 
derivable in a leftmost manner. Let

5 => uj| => w2 => Wj => • ■ • =>• w„ — w

be a, not necessarily leftmost, derivation of w in G. The independence of rule applications 
in a context-free grammar is used to build a leftmost derivation of w. Let wk be the first 
sentential form in the derivation to which the rule application is not leftmost. If there is no 
such k, the derivation is already leftmost and there is nothing to show. We will show that
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the rule applications can be reordered so that the first k  +  1 rule applications are leftmost. 
This procedure can be repeated, n — k  times if necessary, to produce a leftmost derivation.

By the choice of wk, the derivation S =$ wk is leftmost. Assume that A is the leftmost 
variable in wk and B is the variable transformed in the k +  1st step of the derivation. Then 
wk can be written u xA u2B u3 with «, € £*. The application of a rule B  -> v to wk has the 
form

wk = u xAu2B u 3 => u xA u2vu$ =  wk+x.

Since w is a terminal string, an A rule must eventually be applied to the leftmost variable 
in wk. Let the first rule application that transforms the variable A occur at the j  +  1st step 
in the original derivation. Then the application of the rule A —►  p  can be written

wj =  U\Aq = *uxpq  =  wj+x.

The rules applied in steps k  +  2 to j  transform the string u 2vu^  into q.  The derivation is 
completed by the subderivation

Wj+1 =*• w„ =  w.

The original derivation has been divided into five distinct subderivations. The first k rule 
applications are already leftmost, so they are left intact. To construct a leftmost derivation, 
the rule A -*  p  is applied to the leftmost variable at step k  +  1. The context-free nature of 
rule applications permits this rearrangement. A derivation of w that is leftmost for the first 
k  +  1 rule applications is obtained as follows:

S ==> wk = u xA u2Bu$

^  u i p u j Bu j  (applying A - *  p)

=> u lp u 2vui  (applying B —*■ ii)

■==> « ip q  =  w j+i (using the derivation u 2v u j  =>■ q)

"-i-1
wn. (using the derivation wj +l => w„).

Every time this procedure is repeated, the derivation becomes “more” leftmost. If the length 
of a derivation is n, then at most n iterations are needed to produce a leftmost derivation 
of w. m

Theorem 3.5.1 does not guarantee that all sentential forms of the grammar can be 
generated by a leftmost derivation. Only leftmost derivations of terminal strings are assured. 
Consider the grammar

S - y  AB

A —> aA  | A.

B ^ b B \ k
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that generates a*b*. The sentential form A can be obtained by the rightmost derivation 
S  => A B  => A. It is easy to see that there is no leftmost derivation of A.

A similar result (Exercise 31) establishes the sufficiency of using rightmost derivations 
for the generation of terminal strings. Leftmost and rightmost derivations o f w from v are 

explicitly denoted u => w and v ^  w.

Restricting our attention to leftmost derivations eliminates many of the possible deriva
tions of a string. Is this reduction sufficient to establish a canonical derivation? That is, is 
there a unique leftmost derivation of every string in the language of a grammar? Unfortu
nately, the answer is no. Two distinct leftmost derivations of the string ababaa  were given 
in Figure 3.1.

The possibility of a string having several leftmost derivations introduces the notion of 
ambiguity. Ambiguity in formal languages is similar to ambiguity encountered frequently 
in natural languages. The sentence Jack was given a book by Hemingway has two distinct 
structural decompositions. The prepositional phrase by Hemingway can modify either the 
verb was given or the noun book. Each of these structural decompositions represents a 
syntactically correct sentence.

The compilation of a computer program utilizes the derivation produced by the parser 
to generate machine-language code. The compilation of a program that has two derivations 
uses only one of the possible interpretations to produce the executable code. An unfortunate 
programmer may then be faced with debugging a program that is completely correct 
according to the language definition but does not perform as expected. To avoid this 
possibility— and help maintain the sanity of programmers everywhere— the definitions of 
computer languages should be constructed so that no ambiguity can occur. The preceding 
discussion of ambiguity leads to the following definition.

Definition 3.5.2

A context-free grammar G is ambiguous if there is a string w € L(G) that can be derived by 
two distinct leftmost derivations. A grammar that is not ambiguous is called unambiguous.

Example 3.5.1

Let G be the grammar

S -*■ aS  | Sa \ a

that generates a +. G is ambiguous since the string aa  has two distinct leftmost derivations:

S ^  a S  S  = ► Sa 

=> aa =*• aa.

The language a + is also generated by the unambiguous grammar

5  —> aS  | a.
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This grammar, being regular, has the property that all strings are generated in a left-to-right 
manner. The variable S remains as the rightmost symbol of the string until the recursion is 
halted by the application of the rule S -*  a. □

The previous example demonstrates that ambiguity is a property of grammars, not of 
languages. When a grammar is shown to be ambiguous, it is often possible to construct 
an equivalent unambiguous grammar. This is not always the case. There are some context- 
free languages that cannot be generated by any unambiguous grammar. Such languages are 
called inherently ambiguous. The syntax of most programming languages, which require 
unambiguous derivations, is sufficiently restrictive to avoid inherent ambiguity.

Example 3.5.2

Let G be the grammar

S ->  b S \ S b \  a 

with language b*ab*. The leftmost derivations

S ^ b S  S= > Sb  

=> bSb  => bSb  

=> bab => bab

exhibit the ambiguity of G. The ability to generate the b's in either order must be eliminated 
to obtain an unambiguous grammar. L(G) is also generated by the unambiguous grammars

G,: G2: S -> bS \ A

A^>  b A \ \  A - +  A b \ a .

In G^ the sequence of rule applications in a leftmost derivation is completely determined 
by the string being derived. The only leftmost derivation of the string b"abm has the form

S ^ > b nS 

=>bnaA  

=> bnabm A 

=» bnabm.

A derivation in G2 initially generates the leading b's, followed by the trailing b's, and finally 
the a. □

A grammar is unambiguous if, at each step in a leftmost derivation, there is only one 
rule whose application can lead to a derivation of the desired string. This does not mean 
that there is only one applicable rule, but rather that the application of any other rule makes 
it impossible to complete a derivation of the string.
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Consider the possibilities encountered in constructing a leftmost derivation of the 
string bbabb using the grammar G2 from Example 3.5.2. There are two S rules that can 
initiate a derivation. Derivations initiated with the rule 5 —> A generate strings beginning 
with a. Consequently, a derivation of bbabb  must begin with the application of the rule 
S —* bS. The second b is generated by another application of the same rule. At this point, 
the derivation continues using 5 —►  A. Another application of 5 —►  bS  would generate the 
prefix bbb. The suffix bb is generated by two applications of A —> Ab. The derivation is 
successfully completed with an application of A -*• a. Since the terminal string specifies 
the exact sequence of rule applications, the grammar is unambiguous.

Example 3.5.3

The grammar from Example 3.2.4 that generates the language L =  {anbm | 0 <  n < m  <2n]  
is ambiguous. The string aabbb  can be generated by the derivations

S => aSb  S =* aSbb

=>• aaSbbb  =>• aaSbbb  

=» aabbb  =>■ aabbb.

A strategy for unambiguously generating the strings of L is to initially produce a ’s with 
a single matching b. This is followed by generating a ’s with two b's. An unambiguous 
grammar that produces the strings of L in this manner is

S - > a S b \ A  | A.

A —*■ aAbb \ abb. □

A derivation tree depicts the transformation of the variables in a derivation. There is a 
natural one-to-one correspondence between leftmost (rightmost) derivations and derivation 
trees. Definition 3.1.4 outlines the construction of a derivation tree directly from a leftmost 
derivation. Conversely, a unique leftmost derivation of a string w can be extracted from a 
derivation tree with frontier w. Because of this correspondence, ambiguity is often defined 
in terms of derivation trees. A grammar G is ambiguous if there is a string in L(G) that is the 
frontier of two distinct derivation trees. Figure 3.3 shows that the two leftmost derivations 
of the string ababaa  given in Figure 3.1 generate distinct derivation trees.

3.6 Context-Free Grammars and Programming Language 
Definition

In the preceding sections we used context-free grammars to generate “toy” languages us
ing an alphabet with only a few elements and a small number of rules. These examples 
demonstrated the ability of context-free rules to produce strings that satisfy particular syn
tactic requirements. A programming language has a larger alphabet and more complicated 
syntax, increasing the number and complexity of the rules needed to define the language.
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The first formal specification of a high-level programming language was given for the lan
guage ALGOL 60 by John Backus [1959] and Peter Naur [1963]. The system employed 
by Backus and Naur is now referred to as Backus-Naur form, or BNF. The programming 
language Java, whose specification was given in BNF, will be used to illustrate principles 
of the syntactic definition of a programming language. A complete formal definition of Java 
is given in Appendix IV.

A BNF description of a language is a context-free grammar; the only difference is the 
notation used to define the rules. We will give the rules using the context-free notation, with 
one exception. The subscript opt after a variable or a terminal indicates that it is optional. 
This notation reduces the number of rules that need to be written, but rules with optional 
components can easily be transformed into equivalent context-free rules. For example, 
A -*■ Bopt and A -*  BoptC can be replaced by the rules A —►  B \ X and A —>■ BC  \ C, 
respectively.

The notational conventions used in the Java rules are the same as the natural language 
example at the beginning of the chapter. The names of the variables indicate the components 
of the language that they generate and are enclosed in <). Java keywords are given in bold, 
and other terminal symbols are represented by character strings delimited by blanks.

The design of a programming language, like the design of a complex program, is 
greatly simplified utilizing modularity to develop subsets of the grammar independently. 
The techniques you have used in building small rule sets provide the skills needed to design 
a grammar for larger languages with more complicated syntaxes. These techniques include 
using rules to ensure the presence or relative position of elements and using recursion to 
generate sequences and to nest parentheses.

To illustrate the principles of language design, we will examine rules that define literals, 
identifiers, and arithmetic expressions in Java. Literals, strings that have a fixed type and 
value, are frequently used to initialize variables, to set the bounds on repetitive statements, 
and to store standard messages to be output. The rule for the variable {Literal) defines the 
types of Java literals. The Java literals, along with the variables that generate them, are

Literal Variable Exam ples

Boolean <  BooleanLitera l > true, false

Character < C h a ra c terL ite ra l  >  ’a’, ’\ n ’ (linefeed escape sequence), V  ’,

String <  S tr in g L ite ra l  >  "" (empty string),

Null

Floating point

Integer

<  F loating  P o in t L i tera l  >

< N u l lL i te ra l  >

< In teger L i tera l  >

"This is a nonempty string"

0, 356, 1234L (long), 077 (octal), 

0xlab2(hex)

2., .2, 2.0, 12.34, 2e3,6.2e-5 

null

Each floating point literal can have an f, F, d, or D as a suffix to indicate its precision. The 
definitions for the complete set of Java literals are given in rules 143-167 in Appendix IV.
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We will consider the rules that define the floating point literals, since they have the most 
interesting syntactic variations. The four (FloatingPointLiteral) rules specify the general 

form of floating point literals.

(FloatingPointLiteral) —►  (Digits) . (Digits)opl(ExponentPart)opl(FloatTypeSuffix)opl |

. (Digits) (ExponentPart)opt(FloatTypeSuffix)opt \

(Digits) (ExponentPart) (FloatTypeSuffix) opt \

(Digits) (ExponentPart)opt (FloatTypeSuffix)

The variables (Digits), (ExponentPart), and (FloatTypeSuffix) generate the compo
nents that make up the literal. The variable (Digits) generates a string o f digits using 
recursion. The nonrecursive rule ensures the presence of at least one digit.

(Digits) -»  (Digit) \ (Digits) (Digit)

(Digit) —> 0 | (NonZeroDigit)

(NonZemDigit) -> 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

(ExponentPart) -»• (ExponentIndicator)(SignedInteger)

(Exponentlndicator) —> e | E

(Signedlnteger) -> (Sign)op,(Digits)

(Sign) -*• +  | -

(FloatTypeSuffix) —> f | F | d | D

The subscript opt in the rule (Signedlnteger) —*■ (Sign)opt (Digits) indicates that a signed 
integer may begin with +  or but the sign is not necessary.

The first (FloatingPointLiteral) rule generates literals of the form 1., 1.1, l.le , l.e, 
l.lef, l.f, 1. If, and l.ef. The leading string of digits and decimal point are required; all 
other components are optional. The second rule generates literals that begin with a decimal 
point, and the last two rules define the floating point literals without decimal points.

Identifiers are used as names of variables, types, methods, and so forth. Identifiers are 
defined by the rules

(Identifier) —►  (IdentifierChars)

(IdentifierChars) —►  (JavaLetter) | (JavaLetter)(JavaLetterOrDigit)

where the Java letters include the letters A to Z and a to z, the underscore and the dollar 
sign $, along with other characters represented in the Unicode encoding.

The definition of statements in Java begins with the variable (Statement)-.

(Statement) -*  (StatementWithoutTrailing Substatement) \ (LabeledStatement) | 

(IfThenStatement) \ (IfThenElseStatement) |

(WhileStatement) \ (ForStatement).
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Statements without trailing substatements include blocks and the do and switch statements. 
The entire set of statements is given in rules 73-75 in Appendix IV. Like the rules for the 
literals, the statement rules define the high-level structure of a statement. For example, 
if-then and do statements are defined by

(IjThenStatement) —*• if ((Expression)){Statement)

(DoStatement) —*■ do (Statement) while ((Expression)).

The occurrence of the variable (Statement) on the right-hand side of the preceding rules 
generates the statements to be executed after the condition in the if-then statement and in 
the loop in the do loop.

The evaluation of expressions is the key to numeric computation and checking the 
conditions in if-then, do, while, and switch statements. The syntax of expressions is defined 
by the rules 118-142 in Appendix IV. The syntax is complicated because Java has numeric 
and Boolean expressions that may utilize postfix, prefix, or infix operators. Rather than 
describing individual rules, we will look at several subderivations that occur in the derivation 
of a simple arithmetic assignment.

The first steps transform the variable (Expression) to an assignment:

(Expression) => (AssignmentElxpression)

=> (Assignment)

=>• (LeftHandSide) (AssignmentOperator) (AssignmentExpression)

=> (ExpressionName) (AssignmentOperator)(AssignmentExpression)

=> (Identifier) (AssignmentOperator) (AssignmentExpression)

=> (Identifier) =  (AssignmentExpression).

The next step is to derive (AdditiveExpression) from (AssignmentExpression).

(AssignmentExpression) => (ConditionalExpression)

=> (ConditionalOrExpression)

=> (ConditionalAndExpression)

=> (InclusiveOrExpression)

=> (ExclusionOrExpression)

=> (AndExpression)

=> (EqualityExpression)

=> (RelationalExpression)

=> (ShiftExpression)

=> (AdditiveExpression).
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Derivations beginning with (AdditiveExpression) produce correctly formed expressions 
with additive operators, multiplicative operators, and parentheses. For example,

(AdditiveExpression) => (AdditiveExpression) +  {MultiplicativeExpression)

=> (MultiplicativeExpression) +  (MultiplicativeExpression)

=> (UnaryExpression) + (MultiplicativeExpression)

(Identifier) +  {MultiplicativeExpression)

=> (Identifier) +

(MultiplicativeExpression) * (MultiplicativeExpression)

begins such a derivation. Derivations from {UnaryExpression) can produce literals, vari
ables, or ((Expression)) to obtain nested parentheses.

The rules that define identifiers, literals, and expressions show how the design of a large 
language is decomposed into creating rules for frequently recurring subsets o f  the language. 
The resulting variables (Identifier), (Literal), and (Expression) become the building blocks 
for higher-level rules.

The start symbol of the grammar is (CompilationUnit) and the derivation of a Java 
program begins with the rule

(CompulationUnit) —*■ (PackageDeclaration)op,(ImportDecIarations)opl

(Type Dec larations) opt.

A string of terminal symbols derivable from this rule is a syntactically correct Java program.

Exercises

1. Let G be the grammar

5 —>■ abSc  | A 

A -y  cA d  | cd.

a) Give a derivation of ababccddcc.

b) Build the derivation tree for the derivation in part (a).

c) Use set notation to define L(G).

2. Let G be the grammar

S -+  A S B  | X 

A —*■ aA b  | k 

B —* bBa  | ba.

a) Give a leftmost derivation of aabbba.

b) Give a rightmost derivation of abaabbbabbaa.
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c) Build the derivation tree for the derivations in parts (a) and (b).

d) Use set notation to define L(G).

3. Let G be the grammar

S -+  SA B  \X  

A -> aA  | a 

B - + b B \ k .

a) Give a leftmost derivation of abbaab.

b) Give two leftmost derivations of aa.

c) Build the derivation tree for the derivations in part (b).

d) Give a regular expression for L(G).

4. Let DT be the derivation tree

5

A B

a A A B

a a b

a) Give a leftmost derivation that generates the tree DT.

b) Give a rightmost derivation that generates the tree DT.

c) How many different derivations are there that generate DT?

5. Give the leftmost and rightmost derivations corresponding to each o f the derivation 
trees given in Figure 3.3.

6. For each of the following context-free grammars, use set notation to define the language 
generated by the grammar.

a) S -*■ aaSB | A 
B ^ b B \ b

b) S - +aSbb \ A  
A - *  c A \ c

c) S -+ abSdc | A 
A -* cdAba | A.

7. Construct a grammar over [a, b, c } whose language is [anb2ncm \ n, m >0 ) .

8. Construct a grammar over [a, b, c] whose language is {a”bmc2n+m \ n , m > 0).

9. Construct a grammar over {a, b, c} whose language is {anbmc‘ \ 0 <  n + m < i }.

d) 5 -*• aSb | A
A -*■ cA d | cB d  
B -> a B b | ab

e) 5 -*• a S B | aB  
B -*  b b \ b
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10. Construct a grammar over {a, b } whose language is [ambn | 0 <  n <  m < 3n).

11. Construct a grammar over {a, b } whose language is {amb'an \ i =  m + n}.

12. Construct a grammar over [a, b} whose language contains precisely the strings with 
the same number of a ’s and b ’s.

* 13. Construct a grammar over {a, b} whose language contains precisely the strings of odd
length that have the same symbol in the first and middle positions.

14. For each of the following regular grammars, give a regular expression for the language 
generated by the grammar.

a) S -*■ a A c) S -* a S  \ bA  
A —* a A | b A | b A —* b B

B -> o B | X

b) S - * a A d) S  —► a S  \ bA \ X 
A - *  a A \ b B  A —* a A  \ bS
B -* b B \ X

For Exercises 15 through 25, give a regular grammar that generates the described language.

15. The set of strings over [a, b, c} in which all the a ’s precede the b's, which in turn 
precede the c ’s. It is possible that there are no a ’s, b’s, or c’s.

16. The set of strings over {a, b} that contain the substring aa and the substring bb.

17. The set of strings over {a, b } in which the substring aa  occurs at least twice. (Hint: 
Beware of the substring aaa.)

18. The set of strings over [a, b} that contain the substring ab  and the substring ba.

19. The set of strings over [a, b) in which the number of a ’s is divisible by three.

20. The set of strings over {a, b] in which every a is either immediately preceded or 
immediately followed by b, for example, baab, aba, and b.

21. The set of strings over {a, b} that do not contain the substring aba.

22. The set of strings over [a, b } in which the substring aa occurs exactly once.

23. The set of strings of odd length over {a, b] that contain exactly two b's.

* 24. The set of strings over [a, b, c] with an odd number of occurrences o f the substring
ab.

25. The set of strings over {a, b) with an even number of a ’s or an odd number of b's.

26. The grammar in Figure 3.1 generates (b*ab*ab*)+ , the set of all strings with a positive, 
even number of a ’s. Prove this.

27. Prove that the grammar given in Example 3.2.2 generates the prescribed language.

28. Let G be the grammar

S —> aSb  | B 

B ->• bB  | b.

Prove that L(G) = {anbm \ 0 < n < m).
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29. Let G be the grammar

S -*  aSaa \ B 

B -»■ bbB dd  | C 

C -*  bd.

a) What is L(G)?

b) Prove that L(G) is the set given in part (a).

* 30. Let G be the grammar

S -*■ aSbS  | aS  \ X.

Prove that every prefix of a string in L(G) has at least as many a ’s as b’s.

31. Let G be a context-free grammar and w e  L(G). Prove that there is a rightmost deriva
tion of u> in G.

32. Let G be the grammar

S - + a S \ S b \  ab.

a) Give a regular expression for L(G).

b) Construct two leftmost derivations of the string aabb.

c) Build the derivation trees for the derivations from part (b).

d) Construct an unambiguous grammar equivalent to G.

33. For each of the following grammars, give a regular expression or set-theoretic definition 
for the language of the grammar. Show that the grammar is ambiguous and construct 
an equivalent unambiguous grammar.

a) S  —* aaS \ aaaaaS \ X

b) S  -»• aSA  | X 
A ^ b A  \X

c) S —* aSb  | aAb  
A -*  cA d  | B 
B —y aB b  | X

d ) S - *  AaSbB  | X 
A —* aA  | a
B bB \X

* e) S -*  A | B 
A —► abA  | X 
B —>aBb  | X
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34. Let G be the grammar

S —> aA 1*

A-> aA | bB

B bB \b.

a) Give a regular expression for L(G).

b) Prove that G is unambiguous.

35. Let G be the grammar

5 —►  a S | a A \ a  

A —*■ aAb  | ab.

a) Give a set-theoretic definition of L(G).

b) Prove that G is unambiguous.

36. Let G be the grammar

S - > a S \ b A \ k  

A -*■ bA  | aS  | X.

Give a regular expression for L(G). Is G ambiguous? If so, give an unambiguous 
grammar that generates L(G). If not, prove it.

37. Construct unambiguous grammars for the languages L* =  {a"bncm \ n, m > 0} and 
L2  =  [anbmcm | n, m > 0}. Construct a grammar G that generates Lj U I P r o v e  that 
G is ambiguous. This is an example of an inherently ambiguous language.'Explain, 
intuitively, why every grammar generating Lj U L2 must be ambiguous.

38. Use the definition of Java in Appendix IV to construct a derivation of the string 1.3e2 
from the variable (Literal).

* 39. Let G) and G2 be the following grammars:

Gj: S - * a A B b  G2\ S ^ A A B B  

A —* a A | a A -*■ AA  \ a

B - > b B \ b  B -*■ B B  \ b.

a) For each variable X,  show that the right-hand side of every X  rule o f  Gj is derivable 
from the corresponding variable X  using the rules of G2. Use this to conclude that 
L(G,) c  L(G2).

b) Prove that L(Gj) =  L(G2).
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* 40. A right-linear gram m ar is a context-free grammar, each of whose rules has one of the 
following forms:

i) A-*- w, or

ii) A -*■ wB,

where u e E * .  Prove that a language L is generated by a right-linear grammar if, and 
only if, L is generated by a regular grammar.

41. Try to construct a regular grammar that generates the language {anbn | n >  0}. Explain 
why none of your attempts succeed.

42. Try to construct a context-free grammar that generates the language {anbncn \ n >  0}. 
Explain why none of your attempts succeed.
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CHAPTER 4

Normal Forms for 
Context-Free Grammars

The definition of a context-free grammar permits unlimited flexibility in the form of the 
right-hand side of a rule. This flexibility is advantageous for designing grammars, but 
the lack of structure makes it difficult to establish general relationships about grammars, 
derivations, and languages. Normal forms for context-free grammars impose restrictions on 
the form of the rules to facilitate the analysis of context-free grammars and languages. Two 
properties characterize a normal form:

i) The grammars that satisfy the normal form requirements should generate the entire set 
of context-free languages.

ii) There should be an algorithmic transformation of an arbitrary context-free grammar 
into an equivalent grammar in the normal form.

In this chapter we introduce two important normal forms for context-free grammars, the 
Chomsky and Greibach normal forms. Transformations are developed to convert an arbitrary 
context-free grammar into an equivalent grammar that satisfies the conditions of the normal 
form. The transformations consist of a series of rule modifications, additions, and deletions, 
each of which preserves the language of the original grammar.

The restrictions imposed on the rules by a normal form ensure that derivations of the 
grammar have certain desirable properties. The derivation trees for derivations in a Chomsky 
normal form grammar are binary trees. In Chapter 7 we will use the relationship between 
the depth and number of leaves of a binary tree to guarantee the existence of repetitive 
patterns in strings in a context-free language. We will also use the properties of derivations

103
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in Chomsky normal form grammars to develop an efficient algorithm for deciding if a string 
is in the language of a grammar.

A derivation using the rules of a Greibach normal form grammar builds a string in 
a left-to-right manner. Each rule application adds one terminal symbol to the derived 
string. The Greibach normal form will be used in Chapter 7 to establish a machine-based 
characterization of the languages that can be generated by context-free grammars.

4.1 Grammar Transformations

The transformation of a grammar into a normal form consists of a sequence of rule additions, 
deletions, or modifications, each of which preserves the language of the original grammar. 
The objective of each step is to produce rules that satisfy some desirable property. The 
sequence of transformations is designed to ensure that each successive step maintains the 
properties produced by the previous transformations.

Our first transformation is quite simple; the goal is to limit the role of the start symbol 
to the initiation of a derivation. If the start symbol is a recursive variable, a derivation of the 
form S ^  uSv  permits the start symbol to occur in sentential forms in intermediate steps 
of a derivation. For any grammar G, we build an equivalent grammar G' in which the start 
symbol is nonrecursive. The observation that is important for this transformation is that 
the start symbol of G' need not be the same variable as the start symbol o f  G. Although 
this transformation is straightforward, it demonstrates the steps that are required to prove a 
transformation preserves the language of the original grammar.

Lemma 4.1.1

Let G =  (V, E , P, S) be a context-free grammar. There is a grammar G ' that satisfies

i) L(G) =  L(G').

ii) The start symbol of G ' is not a recursive variable.

Proof. If the start symbol 5 does not occur on the right-hand side of a rule of G, then 
there is nothing to change and G' =  G. If S  is a recursive variable, the recursion of the start 
symbol must be removed. The alteration is accomplished by “taking a step backward” with 
the start of a derivation. The grammar G '=  (V U {S'}, £ ,  P U {S' —>■ S), S') is constructed 
by designating a new start symbol S' and adding S' -*■ S  to the rules of G. The two grammars 

generate the same language since any string u derivable in G by a derivation S  ^  u can be 

obtained by the derivation S' => 5 => u. Moreover, the only role of the rule added to P' is
... , G' G'

to initiate a derivation in G , the remainder of which is identical to a derivation in G. Thus 
a string derivable in G ' is also derivable in G. ■
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Example 4.1.1

The start symbol of the grammar G

G': S' -»• S

S aS  \ A B  | AC  

A -»  aA  | A.

B -»• bB  | bS  

C  -> cC  | X

is recursive. The technique outlined in Lemma 4.1.1 is used to construct the equivalent 
grammar G'. The start symbol of G' is S', which is nonrecursive. The variable S  is still 
recursive in G \ but it is not the start symbol of the new grammar. □

The process of transforming grammars into normal forms consists o f removing and 
adding rules to the grammar. With each alteration, the language generated by the grammar 
should remain unchanged. Lemma 4.1.2 establishes a simple criterion by which rules may 
be added to a grammar without altering the language. Lemma 4.1.3 provides a method for 
removing a rule. Of course, the removal of a rule must be accompanied by the addition of 
other rules so the language does not change.

Lemma 4.1.2

Let G =  (V, 2 ,  P, 5) be a context-free grammar. If A  =*• w, then the grammar G' =  

(V, £ ,  PU {A -»-u;} , 5) is equivalent to G.

Proof. Clearly, L(G) c  L(G') since every rule in G is also in G'. The other inclusion 
follows from the observation that the effect of the application of the rule A -*■ w in a
derivation in G' can be accomplished in G by employing the derivation A w to transform

c
A to tu. ■

Lemma 4.1.3

Let G =  (V, I ,  P, 5) be a context-free grammar, A -*  uB v  be a rule in P, and B —►  tu, | 
u>2 | . . .  | w„ be the B rules of P. The grammar G' =  (V, E , P', S) where

P* =  (P — {A —►  u B v }) U {A —* u w tv | uw 2v | . . .  | uw nv]

is equivalent to G.

Proof. Since each rule A -»■ mui, u is derivable in G, the inclusion L(G') C  L(G) follows 
from Lemma 4.1.2.

G: S 

A ■ 

B

a S \ A B \ A C  

aA  | X 

b B \ b S  

c C \ X
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The opposite inclusion is established by showing that every terminal string derivable 
in G using the rule A —* uB v  is also derivable in G'. The rightmost derivation of a terminal 
string that utilizes this rule has the form

5 pA q  => p u B vq  p x B v q  = ► pxWjVq ^  w,

where u ^  x  transforms u into a terminal string. The same string can be generated in G' 
using the rule A —* uw sv:

S pA q  =>■ puw jvq  pxWjVq => w.  ■

4.2 Elimination o f A-Rules

In the derivation of a terminal string, the intermediate sentential forms may contain variables 
that do not generate terminal symbols. These variables are removed from the sentential form 
by applications of A-rules. This property is illustrated by the derivation of the string aaaa 
in the grammar

S —*■ SaB  | aB  

B - > b B \ k .

The language generated by this grammar is (ab*)+. The leftmost derivation of aaaa 
generates four B's, each of which is removed by the application of the rule B  k:

S  => SaB  

=» SaB aB  

=> S aB aB aB  

=>■ a B a B a B a B  

=> a a B a B a B  

=> aaaB aB  

=*• aaaaB  
=> aaaa.

The objective of our next transformation is to ensure that every variable in a sentential 
form contributes to the terminal string that is derived. In the preceding example, none of the 
occurrences of the B ’s produced terminals. A more efficient approach would be to avoid 
the generation of variables that are subsequently removed by X-rules.

The language (ab*)+ is also generated by the grammar

5 -*■ SaB  | Sa \ aB  \ a 

B —y bB  \b



4.2 E l im ina t ion  o f  X-Rules 107

that does not have X-rules. The derivation of the string aaaa,

S Sa 

=> Saa 

=> Saaa 
=> aaaa,

uses half the number of rule applications as before. This efficiency is gained at the expense 
of increasing the number of rules of the grammar.

The effect of a X-rule B -> X in a derivation is not limited to the variable B. Consider 
the grammar

S —>aAb  

A —>■ aA \ B 

B —► bB  |X

that generates the language a +b+. The variable A  occurs in the derivation of the string ab,

S => aAb  

=> a Bb 

=> ab,

but the subderivation beginning with the application of the rule A —* B  does not produce 
terminal symbols. Whenever a variable can derive the null string, as A does in the preceding 
example, it is possible that its occurrence in a sentential form may not contribute to the string. 
We will call a variable that can derive the null string nullable. If a sentential form contains 
a nullable variable, the length of the derived string can be reduced by a sequence of rule 
applications.

We will now present a technique to remove X-rules from a grammar. The modification 
of the grammar consists of three steps:

1. The determination of the set of nullable variables,

2. The addition of rules in which occurrences of the nullable variables are omitted, and

3. The deletion of the X-rules.

If a grammar has no nullable variables, each variable that occurs in a derivation contributes 
to the generation of terminal symbols. Consequently, the application of a rule cannot reduce 
the length of the sentential form. A grammar with this property is called noncontracting.

The first step in the removal of X-rules is the determination of the set of nullable 
variables. Algorithm 4.2.1 iteratively constructs this set from the X-rules of the grammar. The 
algorithm utilizes two sets: the set NULL collects the nullable variables and PREV, which 
contains the nullable variables from the previous iteration, triggers the halting condition.
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Algorithm 4.2.1
Construction o f  the Set o f  Nullable Variables

input: context-free grammar G =  (V, £ ,  P, S )

1. NULL := {A | A X € P}
2. repeat

2.1. PREV :=  NULL
2.2. for each variable A € V do

if there is an A rule A —>■ w and w  6 PREV*, then 
NULL :=  NULL U {A} 

until NULL =  PREV

The set NULL is initialized with the variables that derive the null string in one rule 
application. A variable A is added to NULL if there is an A rule whose right-hand side 
consists entirely of variables that have previously been determined to be nullable. The 
algorithm halts when an iteration fails to find a new nullable variable. The repeat-until loop 
must terminate since the number of variables is finite. The definition of nullable, based on 
the notion of derivability, is recursive. Thus, induction may be used to show that the set 
NULL contains exactly the nullable variables of G at the termination of the computation.

Lemma 4.2.2

Let G =  (V, £ ,  P, 5) be a context-free grammar. Algorithm 4.2.1 generates the set of 
nullable variables of G.

Proof. Induction on the number of iterations of the algorithm is used to show that every 
variable in NULL derives the null string. If A is added to NULL in step 1, then G contains 
the rule A -*  k, and the derivation is obvious.

Assume that all the variables in NULL after n iterations are nullable. We must prove 
that any variable added in iteration n +  1 is nullable. If A is such a variable, then there is a 
rule

A -> A j A2 . . .  Ak

with each A,- in PREV at the n +  1st iteration. By the inductive hypothesis, A,- => k  for
i =  1, 2 , . . . ,  k. These derivations can be used to construct the derivation

A = ► A,A2 . . .  A k

A 2 . . . A k

4  A3 . . .  Ak

=> Ak 

h k .

exhibiting the nullability of A.
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Now we show that every nullable variable is eventually added to NULL. If n is the 
length of the minimal derivation of the null string from the variable A, then A is added to 
the set NULL on or before iteration n of the algorithm. The proof is by induction on the 
length of the derivation of the null string from the variable A.

If A ^  A, then A is added to NULL in step 1. Suppose that all variables whose minimal 
derivations of the null string have length n or less are added to NULL on or before iteration rt. 
Let A be a variable that derives the null string by a derivation of length n +  1. The derivation 
can be written

Each of the variables A,- is nullable with minimal derivations of length n or less. By the 
inductive hypothesis, each A, is in NULL prior to iteration n +  1. Let m <  n be the iteration 
in which all of the A, ’s first appear in NULL. On iteration m +  1 the rule

The language generated by a grammar contains the null string only if it can be derived 
from the start symbol of the grammar, that is, if the start symbol is nullable. Thus Algorithm 
4.2.1 provides a decision procedure for determining whether the null string is in the language 
of a grammar.

Example 4.2.1

The set of nullable variables of the grammar

is constructed using Algorithm 4.2.1. The action of the algorithm is traced by giving the 
contents of the sets NULL and PREV after each iteration of the repeat-until loop. Iteration 
zero specifies the composition of NULL prior to entering the loop.

A -> A jA2 . . .  Ak

causes A to be added to NULL.

G : S - >  A C A

A —*■ aAa \ B \ C 

B ^ > b B \ b  

C  - ►  cC | A.

Iteration NULL PREV

0 (Cl
{A. C) (C)
(S, A, C( (A, C)

{5, A, C) {5, A,  C}

2

3
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The algorithm halts after three iterations. The nullable variables of G are 5, A, and C . Since 
the start symbol is nullable, the null string is in L(G). a

A grammar with X-rules is not noncontracting. To build an equivalent noncontracting 
grammar, rules must be added to generate the strings whose derivations in the original 
grammar require the application of X-rules. There are two distinct roles that a nullable 
variable B can play in a derivation that is initiated by the application of the rule A —*• uBv;  
it can derive a nonnull terminal string or it can derive the null string. In the latter case, the 
derivation has the form

A => u Bv  

^  u v 

w.

The string w can be derived without X-rules by augmenting the grammar with the rule 
A -* uv.  Lemma 4.1.2 ensures that the addition of this rule does not affect the language of 
the grammar.

The rule A —>■ B A B a  requires three additional rules to construct derivations without 
X-rules. If both of the B's  derive the null string, the rule A -> Aa  can be used in a 
noncontracting derivation. To account for all possible derivations of the null string from 
the two instances of the variable B,  a noncontracting grammar requires the four rules

A -*■ B A B a  

A -> A Ba  

A -*• BAa  

A->- Aa

to produce all the strings derivable from the rule A -*• BABa .  Since the right-hand side of 
each of these rules is derivable from A,  their addition to the rules of the grammar does not 
alter the language.

The previous technique constructs rules that can be added to a grammar G to derive 
strings in L(G) without the use of X-rules. This process is used to construct a grammar 
without X-rules that is equivalent to G. If L(G) contains the null string, there is no equivalent 
noncontracting grammar. All variables occurring in the derivation S X must eventually 
disappear. To handle this special case, the rule S -> X is allowed in the new grammar, but 
all other X-rules are replaced. The derivations in the resulting grammar, with the exception 
of 5 => X, are noncontracting. A grammar satisfying these conditions is called essentially 
noncontracting.

When constructing equivalent grammars, a subscript is used to indicate the restriction 
being imposed on the rules. The grammar obtained from G by removing X-rules is denoted

GL-
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Theorem 4.2.3

Let G =  (V, E , P, 5) be a context-free grammar. There is an algorithm to construct a 

context-free grammar GL =  (VL, E , Pl . Sl) that satisfies

i) L(Gl ) =  L(G).

ii) SL 's not a recursive variable.

iii) GL has no X-rules other than S -*■ X if X e  L(G).

Proof. The start symbol can be made nonrecursive by the technique presented in Lemma
4 .1.1. The set of variables VL is simply V with a new start symbol added, if necessary. The 
set PL of rules of GL is obtained by a two step process.

1. For each rule A -* w in P, if u> can be written

w lA lw 2A 2 . . .  wkAkwk+i,

where Aj, A2, . . . .  A* are a subset of the occurrences of the nullable variables in w, 
then add the rule

A -*■ w,w 2  . . .  wkwk+i

to P L.

2. Delete all X-rules other than S —*■ X from P l.

Step 1 generates rules of PL from each rule of the original grammar. A rule with n oc
currences of nullable variables in the right-hand side produces 2" rules. Step 2 deletes all 
X-rules other than S l —>• X from PL. The rules in PL are either rules of G or derivable using 
rules of G. Thus, L (G l) £  L(G).

The opposite inclusion, that every string in L(G) is also in L (G l), must also be 
established. We prove this by showing that every nonnull terminal string derivable from 

a variable of G is also derivable from that variable in GL. Let A => w be a derivation in G
• G

with w e  E +. We prove that A => w by induction on n, the length of the derivation of w in
°L

G. If rt =  1, then A —►  w is a rule in P and, since w ^  X, A -> w is in PL.
Assume that terminal strings derivable from any variable of G by n or fewer rule appli

cations can be derived from the variable in GL- Note that this makes no claim concerning 
the length of the derivation in Gl- Let A w be a derivation of a terminal string. If we

G
explicitly specify the first rule application, the derivation can be written 

A w tA tw2A 2 . . .  wkAkwk+l = ► w,
G

where A,- 6  V and to,- e  E*. By Lemma 3.1.5, w can be written

w = w ip iw2p 2 . . . w kpkwk+l.
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where At derives p, in G with a derivation of length n or less. For each Pj €  E +, the inductive 

hypothesis ensures the existence of a derivation Aj => p,. If Pj = k, the variable A j  is 

nullable in G. Step 1 generates a rule from L

A -»  w lAiiv2A 2 ■ ■ ■ w^A^W/t+i

in which each of the A j ’s that derives the null string is deleted. A derivation of w in G l 
can be constructed by first applying this rule and then deriving each p, e  S + using the 
derivations provided by the inductive hypothesis. ■

Example 4.2.2

Let G be the grammar given in Example 4.2.1. The nullable variables of G are [S, A, C). 
The equivalent essentially noncontracting grammar GL is given below.

G: S  -*• AC A Gl : S  -*  A C  A \ C A  | AA \ A C  | A \ C  | X

A -*■ aAa \ B \ C A -* aAa \ aa \ B \ C

B - > b B \ b  B bB  \b

C - ►  cC  | k  C -*■ cC  | c

The rule S —> A is obtained from S  -> AC A in two ways: deleting the leading A  and C or 
the final A and C. All X-rules, other than S  —>■ X, are discarded. □

Although the grammar G l is equivalent to G, the derivation of a string in these 
grammars may be quite different. The simplest example is the derivation of the null string. 
Six rule applications are required to derive the null string from the start symbol of the 
grammar G in Example 4.2.2, while the X-rule in GL generates it immediately. Leftmost 
derivations of the string aba are given in each of the grammars.

G: S  => AC A G l: S  => A 

=>aAaCA =>aAa

=$aBaCA =>aBa

=> abaCA => aba

=> aba A 

=> abaC  

=> aba

The first rule application of the derivation in GL generates only variables that eventually 
derive terminals. Thus, all applications of the X-rule are avoided.



4.3 E l im in a t io n  o f  C h a in  Rules  1 1 3

Example 4.2.3

Let G be the grammar

G: S ->  A B C  

A —y a A |X 

B - * b B \ k  

C  -*■ cC  | X

that generates a*b*c*. The nullable variables of G are S, A , B, and C. The equivalent 
grammar obtained by removing X rules is

Gl : 5 -*• A B C  | A B  \ BC \ AC  \ A  \ B \ C  | X

A —*■ a A  | a

B —y bB \b

C —y cC  | c.

The S  rule that initiates a derivation determines which symbols occur in the derived string. 
Since S is nullable, the rule S —y X is added to the grammar. □

[4.3 Elimination o f Chain Rules

The application of a rule A —► B does not increase the length of the derived string, nor does 
it produce additional terminal symbols; it simply renames a variable. Rules of this form are 
called chain rules. The idea behind the removal of chain rules is realizing that a chain rule 
is nothing more than a renaming procedure. Consider the rules

A -*• a A \a  \ B 

B -* bB \ b \ C.

The chain rule A —y B  indicates that any string derivable from the variable B is also derivable 
from A. The extra step, the application of the chain rule, can be eliminated by adding A 
rules that directly generate the same strings as B. This can be accomplished by adding a 
rule A —y w for each rule B —y w and deleting the chain rule. The chain rule A —y B can 
be replaced by three A rules yielding the equivalent rules

A - + a A \ a \ b B \ b \ C

B ^ y b B \ b \ C .

Unfortunately, another chain rule was created by this replacement. The preceding procedure 
could be repeated to remove the new chain rule. Rather than repeating the process, we will 
develop a technique to remove all chain rules at one time.
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A derivation A => C consisting solely of chain rules is called a chain. Algorithm 4.3.1 
generates all variables that can be derived by chains from a variable A in an essentially non
contracting grammar. This set is denoted CHAIN(A). The set NEW contains the variables 
that were added to CHAIN(A) on the previous iteration.

Algorithm 4.3.1
Construction o f  the Set CHAIN (A)

input: essentially noncontracting context-free grammar G =  (V, E , P, 5)

1. CHAIN(A) :=  {A}
2. PREV :=  0
3. repeat

3.1. NEW :=  CHAIN(A) -  PREV
3.2. PREV :=  CHAIN(A)
3.3. for each variable B € NEW do

for each rule B -> C do
CHAIN(A) := CHAIN(A) U {C} 

until CHAIN(A) =  PREV

Algorithm 4.3.1 is fundamentally different from the algorithm that generates the nul
lable variables. The strategy for finding nullable variables begins by initializing the set with 
the variables that generate the null string with one rule application. The rules are then ap
plied backward; if the right-hand side of a rule consists entirely of variables in NULL, then 
the left-hand side is added to the set being built.

The generation of CHAIN(A) follows a top-down approach. The repeat-until loop iter
atively constructs all variables derivable from A using chain rules. Each iteration represents 
an additional rule application to the previously discovered chains. The proof that Algorithm
4.3.1 generates CHAIN(A) is left as an exercise.

Lemma 4.3.2

LetG  =  (V, E , P, 5) be an essentially noncontracting context-free grammar. Algorithm
4.3.1 generates the set of variables derivable from A using only chain rules.

The variables in CHAIN(A) determine the substitutions that must be made to remove 
the A chain rules. The grammar obtained by deleting the chain rules from G is denoted Gc .

Theorem 4.3.3

LetG  =  (V, E , P, 5) be an essentially noncontracting context-free grammar. There is an 
algorithm to construct a context-free grammar Gc that satisfies

i) L(GC) =  L(G).

ii) Gc is essentially noncontracting and has no chain rules.



4.3 E l im ina t ion  o f  C h a in  R ules  115

Proof. The A rules of Gc  are constructed from the set CHAIN(A) and the rules of G. The 
rule A -* w is in Pc if there is a variable B and a string w that satisfy

i) B e  CHAIN(A).

ii) B -*■ w € P.

iii) u> £ V .

Condition (iii) ensures that Pc does not contain chain rules. The variables, alphabet, and 
start symbol of Gc are the same as those of G.

By Lemma 4.1.2, every string derivable in Gc is also derivable in G. Consequently, 

L(GC) C L(G). Now let w e L(G) and A ^  B be a maximal sequence of chain rules used
G

in the derivation of u>. The derivation of w has the form

5 => uA v  => u B v  = ► upv => w,
G G G G

where B -*■ p is a rule, but not a chain rule, in G. The rule A -*  p can be used to replace 
the sequence of chain rules in the derivation. This technique can be repeated to remove all 
applications of chain rules, producing a derivation of w in Gc- ■

Example 4.3.1

The grammar Gc is constructed from the grammar Gl in Example 4.2.2. Since GL is 
essentially noncontracting. Algorithm 4.3.1 generates the variables derivable using chain 
rules. The computations construct the sets

CHAIN(S) =  (5, A, C, B }

CHAIN(A) =  {A, B, C }

CHAIN(B) =  {B ) 

s CHAIN(C) =  {C}.

These sets are used to generate the rules of Gc .

Pc : S -*• AC A  | CA | AA | AC | aAa \ a a \ b B  \b  \cC  \c  \X 

A -*■ aAa \ aa \ bB \ b | cC \ c 

B —► b B | b

C —*■ cC | c □

The removal of chain rules increases the number of rules in the grammar but reduces 
the length of derivations. This is the same trade-off that accompanied the construction of 
an essentially noncontracting grammar. The restrictions require additional rules to generate 
the language but simplify the derivations.

Eliminating chain rules from an essentially noncontracting grammar preserves the 
noncontracting property. Let A -*• w be a rule created by the removal of chain rules. This
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implies that there is a rule B —* w for some variable B e  CHAIN(A). Since the original 
grammar was essentially noncontracting, the only X-rule is S  —►  X. The start symbol, being 
nonrecursive, is not a member of CHAIN(A) for any A ^  5. It follows that no additional 

X-rules are produced in the construction of Pc-
Each rule in an essentially noncontracting grammar without chain rules has one of the 

following forms:

i) S —►  X,

ii) A -*■ a, or

iii) A —*u>,

where w e  (V U £)* is of length at least two. The rule S —►  X is used only in the derivation 
of the null string. The application of any other rule adds a terminal to the derived string or 
increases the length of the string.

4.4 Useless Symbols

Grammars are designed to generate languages, and variables define the structure of the 
sentential forms during the string-generation process. Ideally, every variable in a grammar 
should contribute to the generation of strings of the language. The construction of large 
grammars, making modifications to existing grammars, or sloppiness may produce variables 
that do not occur in derivations that generate terminal strings. Consider the grammar

S  —»■ AC | B S  | B

A —> a A  | a F

B -> C F 1 b

C - + c C  | D

D -* a D  | B D  | C

E - + a A \ B S A

F ^ - b B  1 b.

What is L(G)? Are there variables that cannot possibly occur in the generation of terminal 
strings, and if so, why? Try to convince yourself that L(G) =  b+. To begin the process of 
identifying and removing useless symbols, we make the following definition.

Definition 4.4.1

Let G be a context-free grammar. A symbol x  € (V U S ) is useful if there is a derivation

5 ^  uxv  => w ,
G G

where u, v  g (V U £)* and w e  2*. A symbol that is not useful is said to be useless.
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A terminal is useful if it occurs in a string in the language of G. For a variable to be 
useful, two conditions must be satisfied. The variable must occur in a sentential form of the 
grammar; that is, it must occur in a string derivable from S. Moreover, every symbol occur
ring in the sentential form must be capable of deriving a terminal string (the null string is 
considered to be a terminal string). A two-part procedure to eliminate useless variables is 
presented. Each construction establishes one of the requirements for the variables to be 
useful.

Algorithm 4.4.2 builds a set TERM consisting of the variables that derive terminal 
strings. The strategy used in the algorithm is similar to that used to determine the set of 
nullable variables of a grammar. The proof that Algorithm 4.4.2 generates the desired set 
follows the strategy employed by the proof of Lemma 4.2.2 and is left as an exercise.

Algorithm 4.4.2
Construction o f  the Set o f  Variables That Derive Terminal Strings

input: context-free grammar G =  (V, E , P, S )

1. TERM := {A | there is a rule i 4 - > i o e P  with w e  E*}
2 . repeat

2.1. PREV :=  TERM
2.2. for each variable A e  V do

if there is an A  rule A - ►  w and w e  (PREV U S ) '  then 
TERM :=  TERM U {A} 

until PREV =  TERM

Upon termination of the algorithm, TERM contains the variables of G that generate 
terminal strings. Variables not in TERM are useless; they cannot contribute to the generation 
of strings in L(G). This observation provides the motivation for the construction of a 
grammar GT that is equivalent to G and contains only variables that derive terminal strings.

Theorem 4.4.3

Let G =  (V, E , P, 5) be a context-free grammar. There is an algorithm to construct 
a context-free grammar GT =  (VT, E T, PT, S) that satisfies

i) L(Gt ) =  L(G).

ii) Every variable in GT derives a terminal string in GT.

Proof. PT is obtained by deleting all rules containing variables of G that do not derive ter
minal strings, that is, all rules containing variables in V — TERM. The components of G j are

VT =  TERM,

PT =  {A —» w | A -> w is a rule in P, A  e  TERM, and w € (TERM U E)*}, and 

E t  =  {a € E | a occurs in the right-hand side of a rule in PT}.

The alphabet E t consists of all the terminals occurring in the rules in PT.
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We must show that L(GX) =  L(G). Since PT C P, every derivation in Gx is also a* 
derivation in G and L(GT) c  L(G). To establish the opposite inclusion, we must show that 
removing rules that contain variables in V — TERM has no effect on the set of terminal 
strings generated. Let S => w be a derivation of a string w 6  L(G). This is also a derivation 

in Gt . If not, a variable from V -  TERM must occur in an intermediate step in the derivation. 
A derivation from a sentential form containing a variable in V — TERM cannot produce a 
terminal string. Consequently, all the rules in the derivation are in PT and w €  L(Gt ). ■

Example 4.4.1

The grammar Gt is constructed for the grammar G introduced at the beginning of this 
section.

G: S —*■ AC  | B S  | B 

A —►  a A | a F  

B —y C F  \ b 

C —y cC \ D 

D - > a D \ B D \ C  

E ^ a A \ B S A  

F ^ b B \ b

Algorithm 4.4.2 is used to determine the variables of G that derive terminal strings.

Iteration TERM PREV

0 I*.
1 [B, F, A, 5) {*. n
2 {B, F, A, S, E) (B, F, A, S)
3 [B, F, A, S, E) {B, F, A, S, E)

Using the set TERM to build GT produces

Vt  =  {5, A, B , E, F] 

E t =  {a, b}

PT: S  -*• B S  | B 

A -*■ aA  | a F  

B —y b

E - * a A  | BSA  

F ^ > b B \ b .
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The indirectly recursive derivation produced by an occurrence of the variables Cor D, which 
can never be exited once entered, is discovered by the algorithm. All rules containing these 

variables are deleted. 0

The construction of GT completes the first step in the removal of useless variables. 
All variables in GT derive terminal strings. We must now remove the variables that do not 
occur in sentential forms of the grammar. A set REACH is built that contains all variables 
derivable from S.

9

Algorithm 4.4.4
Construction o f  the Set o f  Reachable Variables

input: context-free grammar G =  (V, E , P, S )

1. REACH := {5}
2. PREV := 0
3. repeat

3.1. NEW := REACH -  PREV
3.2. PREV :=  REACH
3.3. for each variable A € NEW do

for each rule A -*■ w do add all variables in w to REACH 
until REACH =  PREV

Algorithm 4.4.4, like Algorithm 4.3.1, uses a top-down approach to construct the 
desired set of variables. The set REACH is initialized to S. Variables are added to REACH 
as they are discovered in derivations from S.

Lemma 4.4.5

Let G =  (V, E , P, S) be a context-free grammar. Algorithm 4.4.4 generates the set of 
variables reachable from S.

Proof. First we show that every variable in REACH is derivable from S. The proof is by 
induction on the number of iterations of the algorithm.

The set REACH is initialized to S, which is clearly reachable. Assume that all variables 
in the set REACH after n iterations are reachable from S. Let B be a variable added to 
REACH in iteration n +  1. Then there is a rule A -*■ u B v  where A is in REACH after n 
iterations. By induction, there is a derivation S => xAy .  Extending this derivation with the 
application of A -* u B v  establishes the reachability of B.

We now prove that every variable reachable from 5 is eventually added to the set 
REACH. If S  => uAv,  then A  is added to REACH on or before iteration n. The proof is 
by induction on the length of the derivation from S.

The start symbol, the only variable reachable by a derivation of length zero, is added 
to REACH at step 1 of the algorithm. Assume that each variable reachable by a derivation 
of length n or less is inserted into REACH on or before iteration n.
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Let 5 => x A y  =>■ x u B v y  be a derivation in G where the (n 4- l)st rule applied is 
A —*■ uBv.  By the inductive hypothesis, A has been added to REACH by iteration n. B 

is added to REACH on the succeeding iteration. ■

Theorem 4.4.6

Let G =  (V, E , P, 5) be a context-free grammar. There is an algorithm to construct a 

context-free grammar Gy that satisfies

i) L(Gu) =  L(G).

ii) Gy has no useless symbols.

Proof. The removal of useless symbols begins by building G-p from G. Algorithm 4.4.4 is 
used to generate the variables of GT that are reachable from the start symbol. All rules of 
Gt  that reference variables not reachable from 5 are deleted to obtain Gy, defined by

Vu =  REACH,

Pu =  [A - ►  w | A ->■ u; € PT, A e  REACH, and w e  (REACH U £)*}, and 

Eu =  [a € E | a occurs in the right-hand side of a rule in Pu).

To establish the equality of L(G|j) and L(GT), it is sufficient to show that every string 
derivable in G t is also derivable in Gy. Let u; be an element of L(GT). Every variable 
occurring in the derivation of w is reachable and each rule is in Pjj. ■

Example 4.4.2

The grammar Gy is constructed from the grammar GT in Example 4.4.1. The set of reachable 
variables of GT is obtained using Algorithm 4.4.4.

Iteration REACH PREV NEW

0 (5) 0

1 {S, B) (S) (S)
2 {S, B) {S, B 1 fB)

Removing all references to the variables A, E, and F  produces the grammar

Gy: S - *  BS  | B 

B ^ - b .

The grammar Gu is equivalent to the grammar G given at the beginning o f the section. 
Clearly, the language of these grammars is b+. /  □

Removing useless symbols consists of the two-part process outlined in Theorem 4.4.6. 
The first step is the removal of variables that do not generate terminal strings. The resulting
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grammar is then purged of variables that are not derivable from the start symbol. Applying 
these procedures in reverse order may not remove all the useless symbols, as shown in the 

next example.

Example 4.4.3

Let G be the grammar

G:

A -*■ b.

The necessity of applying the transformations in the specified order is exhibited by applying 
the processes in both orders and comparing the results.

Remove variables that do not 
generate terminal strings:

5 —*• a 

A ^ b

Remove unreachable symbols: 

S -*■ a

Remove unreachable symbols: 

S - > a \ A B  

A -*  b

Remove variables that do not 
generate terminal strings: 

S-> a 
A —*• b

The variable A and terminal b are useless, but they remain in the grammar obtained by 
reversing the order of the transformations. □

The transformation of grammars to norma) forms consists of a sequence of algorithmic 
steps, each of which preserves the previous ones. The removal of useless symbols will not 
undo any of the restrictions obtained by the construction of GL or Gc . These transforma
tions only remove rules; they do not alter any other feature of the grammar. However, useless 
symbols may be created by the process of transforming a grammar to an equivalent non
contracting grammar. This phenomenon is illustrated by the transformations in Exercises 8  

and 17.

4.5 Chomsky Normal Form

A normal form is described by a set of conditions that each rule in the grammar must satisfy. 
The Chomsky normal form places restrictions on the length and the composition of the 
right-hand side of a rule.
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Definition 4.5.1

A context-free grammar G =  (V, E , P, S) is in Chomsky norm al form if each rule has 
one of the following forms:

i) A -> BC,

ii) A —* a, or

iii) 5 —►  X,

where B, C e  V — {5}.

Since the maximal number of symbols on the right-hand side of a rule is two, the 
derivation tree associated with a derivation in a Chomsky normal form grammar is a binary 
tree. The application of a rule A —*■ BC  produces a node with children B and C. All other 
rule applications produce a node with a single child. The representation of the derivations as 
binary derivation trees will be used in Chapter 7 to establish repetition properties of strings 
in context-free languages. In the next section, we will use the ability to transform a grammar 
G into Chomsky normal form to obtain a decision procedure for membership o f a string in 
L(G).

The conversion of a grammar to Chomsky normal form continues the sequence of 
modifications presented in the previous sections. We assume that the grammar G to be 
transformed has a nonrecursive start symbol, no X-rules other than 5 -»  X, no chain rules, 
and no useless symbols.

Theorem 4.5.2

Let G =  (V, E , P, S) be a context-free grammar. There is an algorithm to construct a 
grammar G' =  (V', E , P', S') in Chomsky normal form that is equivalent to G.

Proof. After the preceding transformations, a rule has the form 5 -*■ X, A -*■ a,  or A -*■ w, 
where w € ((V U E) — {S})* and length(w)  >  1. The set P' of rules of G ' is built from the 
rules of G.

The only rule of G whose right-hand side has length zero is 5 -*• X. Since G does not 
contain chain rules, the right-hand side of a rule A —»• w is a single terminal whenever the 
length of if is one. In either case, the rules already satisfy the conditions of Chomsky normal 
form and are added to P'.

Let A -> w be a rule with length(w)  greater than one. The string w may contain both 
variables and terminals. The first step is to remove the terminals from the right-hand side of 
all such rules. This is accomplished by adding new variables and rules that simply rename 
each terminal by a variable. For example, the rule

A -*■ bD cF

can be replaced by the three rules

A - ►  B ’DC'F  

B ' - > b  

C' -*■ c.
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After transforming each rule whose right-hand side has length two or more in this manner, 
the right-hand side of a rule consists of the null string, a terminal, or a string of variables. 
Rules of the latter form must be broken into a sequence of rules, each of whose right-hand 
side consists of two variables. The sequential application of these rules should generate the 
right-hand side of the original rule. Continuing with the previous example, we replace the 
A rule by the rules

A -*• S T ,

T, - ►  DT2 

T2 ->• C'F.

The variables T\ and T2 are introduced to link the sequence of rules. Rewriting each rule 
whose right-hand side has length greater than two as a sequence of rules completes the 
transformation to Chomsky normal form. ■

Example 4.5.1

Let G be the grammar

S —y a A B C \ a  

A -* a A \ a  

B -> be B | be 

C -*■ cC  | c.

This grammar already satisfies the conditions placed on the start symbol and A.-rules and 
does not contain chain rules or useless symbols. The equivalent Chomsky normal form 
grammar is constructed by transforming each rule whose right-hand side has length greater 
than two.

G': 5 -*• A %  | a 

A' - y  a

r ,  ^  a t 2

T2 ~* BC  

A —►  A'A  | a 

B -> B'T-i | B'C'

T-i - ►  C'B  

C -»• C 'C  | c 

B' - + b

C' —y c □
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Example 4.5.2

The rules

X  -> a X b  | ab

generate the strings {a'b1 \ i > 1). Adding a start symbol S, the rule 5 —►  X,  and removing 

chain rules produces the grammar

5 -*■ a X b  | ab 

X -*■ a X b  | ab.

The Chomsky normal form

S ->  A T  | AB  

T  -*■ X B  

X  -*■ A T  | AB  

A —*■ a 

B —> b

is obtained by adding the rules A —* a and B —> b that provide aliases for the terminals and 
by reducing the length of the right-hand sides of the S and X  rules. □

4.6 The CYK Algorithm

Given a context-free grammar G and a string u, is u in L(G)? This question is called 
the membership problem for context-free grammars. Using the structure o f the rules in 
a Chomsky normal form grammar, J. Cocke, D. Younger, and T. Kasami independently 
developed an algorithm to answer this question. The CYK algorithm employs a bottom-up 
approach to determine the derivability of a string.

Let h =  X]X2  . . .  x„ be a string to be tested for membership and let x, j  denote the 
substring X j . . .  Xj of u. Note that the substring x is simply xh  the ith symbol in u. The 
strategy of the CYK algorithm is

•  Step 1: For each substring ,■ of u with length one, find the set X,- ,• of all variables A 
with a rule A -* Xj

•  Step 2: For each substring x, , + 1  of u with length two, find the set X, ,+1 of all variables 

that initiate derivations A =>

•  Step 3: For each substring x t i+2 of u with length three, find the set X,- , + 2  o f all variables 

that initiate derivations A => Xj i+2.

•  Step n — 1: For the substrings * i-n_ |, x2 n of u with length n — 1, find the sets

and X 2n of all variables that initiate derivations A jcln _] and A => x2n , respectively.
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•  Step n: For the string „ =  u of length n, find the set X | „ of all variables that initiate 

derivations A => x ln .

If the start symbol S is in X ln , then u is in the language of the grammar. The generation 
of the sets X, j  uses a problem solving technique known as dynamic programming. The 
important feature of dynamic programming is that all the information needed to compute a 
set X j j  at step t has already been obtained in steps 1 through t — 1.

Let’s see why this property is true for derivations using Chomsky normal form gram
mars. Building the sets in step 1 is straightforward; A e  X , , if A -*■ is a rule of the 
grammar.

For step 2, a derivation of the substring x,-I+i has the form

A=* BC

=> XjC 

=>*,*;+ 1-

Since B derives and C derives xi+1, these variables will be in X ,, and X , + 1  j+i- A variable 
A is added to X, , + 1  when there is a rule A —> B C  with B e  X , , and C e  XI+[ ,+1.

Now we consider the generation of the set X, i+, in step t of the algorithm. We wish to 
find all variables that derive the substring Xj l+(. The first rule application of such a derivation 
produces two variables, call them B and C. This is followed by derivations beginning with 
B and C that produce x ii+l. Thus the derivation has the form

A = > S C

^  x i,kC 
*

where B generates x i k and C generates jc(t+1-l+, for some k between / and t — 1. Conse
quently, A derives x,i(+, only if there is a rule A —►  BC  and a number k between /' and t — 1 
such that B e  X, * and C € Xi+ l l+f. All of the sets that need to be examined in checking 
this condition are produced prior to step t.

The sets X t j  may be represented as the upper triangular portion of an n x n matrix.

1 2 3 n -  1 n

1 Xi.i X|,2 X,.3 • x,̂ _, x,.„
2 X2.2 X2.3 X2,„_, X2.„
3 X3.3 • x3.„—, X3.„

- 1 Xn— l,n — ] x„-,.n
n X„.n
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The CYK algorithm constructs the entries in a diagonal by diagonal manner starting with 
the main diagonal and culminating in the upper right comer with X!

We illustrate the CYK algorithm using the grammar from Example 4.5.2 that generates 
{a'b' | i >  1} and the string aaabbb.  Table 4.1 traces the steps of the algorithm and the result 
of the computation is given in the table

1 2 3 4 5 6

1 (A) 0 0 0 0 (S,X }

2 (A) 0 0 (S .X ) ( D

3 (A) IS .* } ( D 0

4 (S) 0 0

5 (£} 0

6 {B}

The sets along the diagonal are obtained from the rules A -*■ a and B -*■ b. Step 2 
generates the entries directly above the diagonal. The construction of a set Xj i + 1  need 
only consider the substrings * ,,  and *l+ i,,+i. For example, a variable is in X 12 if there are 
variables in X | i =  {A} and X2 2  =  M} that make up the right-hand side of a rule. Since AA  
is not the right-hand side of a rule, X 12 =  0. The set X3 4  is generated from X33 =  {A} and 
X4.4 =  (S). The string AS is the right-hand side of S  —►  A B  and X —►  AB.  Consequently, 
S  and X are in X3 4.

At step t, there are t — 1 separate decompositions of a substring *,-,,+, that must be 
checked. The set X , ; , given in the rightmost column of Table 4.1, is the union of variables 
found examining all t — 1 possibilities. For example, computing X3 5  needs to consider the 
two decompositions * 3 3 * 4  , 5 and *3 ,4 *5 , 5  of *35. The variable T  is added to this set since 
S € X3 4, B e X5  5 , and T —* SB  is a rule. The presence of 5 in the set X ) 6  indicates that 
the string aaabbb  is in the language of the grammar.

Utilizing the previously outlined steps, the CYK solution to the membership problem 
is given in Algorithm 4.6.1. The sets along the diagonal are computed in line 2. The variable 
step  indicates the length of the substring being analyzed. In the loop beginning at step 3.1,
1 indicates the starting position of a substring and k indicates the position o f split between 
the first and second components.

Algorithm 4.6.1 

CYK Algorithm

input: context-free grammar G =  (V, £ ,  P, S) 
string u =  x xx 2 . . .  *n € S*
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1. initialize all X, y to 0
2 . for i =  1 to n

for each variable A, if there is a rule A —►  Xj then X, , :=  X,- ,- U {A}
3. for step  =  2 to n

3.1. for i =  1 to n — step  4- 1
3.1.1. fo r k  = i to i +  step — 2

if there are variables B 6  X, k, C  e  Xt+ 1 ,+J(<.p_i, and 

a rule A ►  BC,  then XI ( +siep—l *=  ^  1^1
4 . w e  L(G) if S € X, „

The CYK algorithm, as outlined above, is designed to determine whether a string u is 
derivable in a Chomsky normal form grammar G. The algorithm can be modified to pro
duce derivations of strings in L(G), that is, to be a parser. This can be accomplished by 
recording the justifications for the addition of variables into the sets X,-j .  To demonstrate 
the approach, we will use the trace of the computation in Table 4.1 to produce the deri
vation of the string aaabbb.  The column labeled ‘Sets’ indicates the sets that contain the 
variables matching the right-hand side of the rule. For example, the variable S  is added 
to X 6 6 because the occurrence of A 6  X* j and T  e  X2  6  match the right-hand side of the 
rule S  —*• A T.  Reversing this construction, the rule 5 —>• A T  is used in the derivation of 
aaabbb.

Derivation Sets

S => AT A e X u , T e X2 ,6

=* aT T 6  X2 6

=>aXB X e X2.5, B € X6 .6

=>aATB A € X2,2 t r e x 3.5. B 6  X« 6
=> aaTB T e X xs, B € X 6A
=> aaXBB X € X3.4 , B € X5t5,
=> aaABBB A € X3 3, B e X4.4, B € X5i5, B e  X* , 6

=* aaabbb

The applicability of the CYK algorithm as a parser is limited by the computational 
requirements needed to find a derivation. For an input string of length n, (n 2 +  n ) /2  sets 
need to be constructed to complete the dynamic programming table. Moreover, each of these 
sets may require the consideration of multiple decompositions of the associated substring. In 
Part V of this book we examine grammars and algorithms designed specifically for efficient 
parsing.
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TABLE 4.1 Trace  o f  CYK A lg o r i th m

String x Lj Substrings

-t| 2 =  aa * 1.1. *2 .2 M ) {A} 0

*2 .3  =  aa *2.2. *3,3 M ) {-4} 0

*3 4  =  ab *3.3- *4.4 Ml {*) {5, X}

*4 5 =  bb *4.4. *5.5 {B) IB) 0

*5.6 =  hb *5.5" *6 .6 <B} IB) 0

* 1 3  =  aaa *1,1. *2.3 M ) 0 0

*1.2- *3.3 0 (A) 0

*2 ,4  =  aab *2.2- *3.4 M ) IS, X) 0

*2.3- *4,4 0 IB) 0

*3,5 -  abb *3,3-*4.5 {A) 0 0

*3.4. *5,5 I S . X ] W {r»
*4,6 = bbb *4,4. *5.6 (B) 0 0

*4.5- *6 .6 0 {«) 0

*i4 = aaab ■*1.1" -*2.4 M) 0 0

*1,2. *3.4 0 (S , x ) 0

*1.3. *4.4 0 IB) 0

*2 ,5 = aabb *2,2. *3.5 {A} {T) (S.X)

*2.3> *4.5 0 0 0

*2.4. *5,5 0 IB) 0

*3 .6  =  abbb *3,3" *4,6 (A) 0 0

*3,4. *5,6 IS. X] 0 0

*3.5. *6 .6 m IB) 0

* 1 5  =  aaabb *1,1- *2.5 (-4} I S , X ) 0

*1.2. *3.5 0 IT) 0

*1.3- *4,5 0 0 0

*1.4. *5.5 0 \B) 0

*2 ,6  =  aabbb *2,2- *3.6 Ml 0 0

*2.3’ *4.6 0 0 0

*2.4. *5.6 0 0 0

*2.5. *6 .6 I S . X ) («) m
* 1 6  =  aaabb *l.l> *2 .6 M) {rj fs. *}

*1,2. *3.6 0 0 0

*1.3* *4.6 0 0 0

*1.4. *5.6 0 0 0

*1,5- *6 .6 0 {*} 0
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4.7 Removal of Direct Left Recursion

In a derivation of an arbitrary context-free grammar, rule applications can generate terminal 
symbols in any position and in any order in a derivation. For example, derivations in 
grammar G( generate terminals to the right of the variable, while derivations in G 2  generate 
terminals on both sides.

G]: S —y Aa  G 2 : S —y aAb

A —> A a | b  A —y a A b \ X

The Greibach normal form adds structure to the generation of the terminals in a derivation. 
A string is built in a left-to-right manner with one terminal added on each rule application. 

In a derivation S ^ u A v ,  where A is the leftmost variable, the string u is called the terminal 
prefix of the sentential form. Our objective is to construct a grammar in which the terminal 
prefix increases with each rule application.

The grammar G] provides an example of rules that do the exact opposite of what is 
desired. The variable A remains as the leftmost symbol until the derivation terminates with 
application of the rule A —►  b. Consider the derivation of the string baaa

S => Aa 

=> Aaa 

=> Aaaa 

=>■ baaa.

Applications of the left-recursive rule A -y  Aa  generate a string of a ’s but do not increase 
the length of the terminal prefix. A derivation of this form is called directly left-recursive. 
The prefix grows only when the non-left-recursive rule is applied.

An important component in the transformation to Greibach normal form is the ability 
to remove left-recursive rules from a grammar. The technique for replacing left-recursive 
rules is illustrated by the following examples.

a) A -y Aa \ b b) A ~ y A a \ A b \ b \ c  c) A —>■ AB | BA | a

B —y b \ c

The sets generated by these rules are ba*, (b U c)(a U b)*, and (b U c)*a(b U c)*, respec
tively. The left recursion builds a string to the right of the recursive variable. The recursive 
sequence is terminated by an A rule that is not left-recursive. To build the string in a left- 
to-right manner, the nonrecursive rule is applied first and the remainder of the string is 
constructed by right recursion. The following rules generate the same strings as the previous 
examples without using direct left recursion.

a ) A - y b Z \ b  b) A —y bZ \ cZ \ b \ c c) A -y BAZ \ aZ \ BA \ a 
Z -y aZ  | a Z ^ - a Z \ b Z \ a \ b  Z ^ B Z \ B

B -y b \ c
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The rules in (a) generate ba* with left recursion replaced by right recursion. With these rules, 
the derivation of baaa increases the length of the terminal prefix with each rule application.

A => bZ  

=> baZ  

=> baaZ  

=> baaa

The removal of the direct left recursion requires the addition of a new variable to the 
grammar. This variable introduces a set of right-recursive rules. Direct right recursion causes 
the recursive variable to occur as the rightmost symbol in the derived string.

To remove direct left recursion, the A rules are divided into two categories: the left- 
recursive rules

A —* A u j | A u2 I . . .  I Auj
and the rules

A -> D| I v2 I . . .  I vk,

in which the first symbol of each Vj is not A. A leftmost derivation from these rules consists 
of applications of left-recursive rules followed by the application of a rule A —y vjy which 
ends the direct left recursion. Using the technique illustrated in the previous examples, we 
construct new rules that initially generate u, and then produce the remainder of the string 
using right recursion.

The A rules
A -*• i>i I . . .  | vk | v tZ  | . . .  | vkZ

initially place one of the t, ’s on the left-hand side of the derived string. If the string contains 
a sequence of s, they are generated by the Z rules

Z - > w 1Z | . . . | k ; Z | h , | . . . | w ;

using right recursion.

Example 4.7.1

A set of rules is constructed to generate the same strings as

A -v  Aa  | Aab \ bb \ b

without using direct left recursion. These rules generate (b U bb){a U ab)*. The direct left 
recursion in derivations using the original rules is terminated by applying A —>■ b or A —*■ bb. 
To build these strings in a left-to-right manner, we use the A rules

A  -*• bb | b | bbZ \ bZ

to generate the leftmost symbols of the string. The Z rules generate (a U a b )+ using the 
right-recursive rules

Z —y a Z  | a b Z  | a \ ab. □
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Lemma 4.7.1

Let G =  (V, X, P, 5) be a context-free grammar and let A € V be a directly left- 
recursive variable in G. There is an algorithm to construct an equivalent grammar G' =  
(V', 2 ,  P', 5') in which A is not directly left-recursive.

Proof. We assume that the start symbol of G is nonrecursive, the only A.-rule is S -*■ k, 
and P does not contain the rule A —*■ A. If this is not the case, G can be transformed to 
an equivalent grammar satisfying these conditions. The variables of G' are those of G 
augmented with one additional variable to generate the right-recursive rules. P' is built from 
P using the technique outlined above.

The new A rules cannot be left-recursive since the first symbol of each o f the v, ’s is not 
A. The Z rules are also not left-recursive. The variable Z does not occur in any one of the 
M,’s and the u,'s are nonnull by the restriction on the A rules of G. ■

This technique can be used repeatedly to remove all occurrences of left-recursive rules 
while preserving the language of the grammar. However, a derivation using rules A B u  
and B -*  An can generate the sentential forms

A => Bu 

=> Avu  

=> Buvu  

Avuvu

exhibiting the same lack of growth of the terminal prefix as derivations using direct left 
recursion. The conversion to Greibach normal form will remove all possible occurrences of 
indirect left recursion.

4.8j Greibach Normal Form

In the Greibach normal form, the application of every rule adds one symbol to the terminal 
prefix of the derived string. This ensures that left recursion, direct or indirect, cannot occur. 
It also ensures that the derivation of a string of length n > 0 consists of exactly n rule 
applications.

Definition 4.8.1

A context-free grammar G =  (V, £ ,  P, S) is in Greibach norm al form if each rule has 
one of the following forms:

i) A -* a A xA 2 . . .  A„,

ii) A —►  a , or

iii) 5 —►  A.,

where a e  £  and A, e  V -  {5} for i =  1, 2......... n.



1 32 C h a p te r  4 N o rm a l  F o r m s  fo r  C on tex t-F ree  G r a m m a r s

The conversion of a Chomsky normal form grammar to Greibach normal form uses 
two rule transformation techniques: the rule replacement scheme of Lemma 4.1.3 and the 
transformation that removes left-recursive rules. The procedure begins by ordering the 
variables of the grammar. The start symbol is assigned the number one; the remaining 
variables may be numbered in any order. Different numberings change the transformations 
required to convert the grammar, but any ordering suffices.

The first step of the conversion is to construct a grammar in which every rule has one 
of the following forms:

i) S  ->• k,

ii) A -*■ aw,  or

iii) A -*■ Bw,

where w e  V* and the number assigned to B in the ordering of the variables is greater than 
the number of A. The rules are transformed to satisfy condition (iii) according to the order 
in which the variables are numbered. The conversion of a Chomsky normal form grammar 
to Greibach normal form is illustrated by tracing the transformation of the rules of the 
grammar G:

G: S —*■ A B  \ k  

A -*■ A B  | CB  | a 

B - y  A B \ b  

C -*■ AC  | c.

The variables S, A, B, and C are numbered 1 ,2 ,3 , and 4, respectively.
Since the start symbol of a Chomsky normal form grammar is nonrecursive, the S 

rules already satisfy the three conditions. The process continues by transforming the A 
rules into a set of rules in which the first symbol on the right-hand side is either a terminal 
or a variable assigned a number greater than two. The left-recursive rule A -*■ A B  violates 
these restrictions. Lemma 4.7.1 can be used to remove the direct left recursion, yielding

S  -*■ A B  | k

A -*• C B R i  | a R t \ C B \ a  

B -> A B  | b 

C  -»• AC  | c 

/?,-*• B R { | B.

Now the B rules must be transformed to the appropriate form. The rule B  —> A B  must 
be replaced since the number of B is three, and A,  which occurs as the first symbol on the 
right-hand side, is two. Lemma 4.1.3 permits the leading A in the right-hand side of the rule 
B ► A B  to be replaced by the right-hand side of the A rules, producing
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5 - ►  A B  | X

A -*  C B R x \ a R x \ C B \ a  

B -*  C B R XB | a R xB \ C B B  \ a B \ b  

C - y  AC \c  

/?,->• B R X | B.

Applying the replacement techniques of Lemma 4.1.3 to the C rules creates two left- 
recursive rules.

s —> A B  |X

A -r-y C B R X | a R x \ C B \ a

B -*> C B R xB \ a R xB \ C B B \ a B \ b

C C B R xC \ a R xC \ C B C \ a C  \ c

* 1
-> B R X | B

The left recursion can be removed, introducing the new variable R2.

S -y A B  | X

A -*• C B R X | a R x | CB \ a 

B -y C B R XB | a R xB \ C B B  \ a B \ b  

C —y a R xC | aC  | c \ a R xC R 2 I a C R 2 \ cR 2 

R x -y B R t \ B

R2 -y B R XC R 2 | B C R 2 | B R xC \ BC

The original variables now satisfy the condition that the first symbol of the right-hand 
side of a rule is either a terminal or a variable whose number is greater than the number of 
the variable on the left-hand side. The variable with the highest number, in this case C, must 
have a terminal as the first symbol in each rule. The next variable, B,  can have only C ’s or 
terminals as the first symbol. A B  rule beginning with the variable C can then be replaced 
by a set of rules, each of which begins with a terminal, using the C rules and Lemma 4.1.3. 
Making this transformation, we obtain the rules

S -*  A B  | X

A -e  C B R x \ a R x \ C B \ a

B -> a R xB | ciB | b

- ►  a R xC B R xB | a C B R xB | c B R xB \ a R xC R 2B R xB  | a C R 2B R xB \ c R 2B R xB 

- y  a R xC B B  \ a C B B  \ c B B  \ a R xC R 2B B  \ a C R 2B B  \ cR2BB

C  - ►  a R xC \ a C \ c \  a R xC R 2 \ a C R 2 \ cR 2

R x —y B R x J B

R2 -> B R xC R 2 I B C R 2 | B R XC | BC.
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The second list of B rules is obtained by substituting for C in the rule B -*■ C B R XB and the 
third in the rule B -* C B B .  The S and A rules must also be rewritten to remove variables 
from the initial position of the right-hand side of a rule. The substitutions in the A rules use 
the B and C rules, all of which now begin with a terminal. The A, B,  and C rules can then 

be used to transform the S rules, producing

S X 

-*■ a R xB | aB

- ►  a R xC B R xB \ a C B R xB | c B R xB \ a R xC R 2B R xB \ a C R 2B R xB  | cR2B R xB 

-*  a R \C B B  | a C B B  \ c B B  \ a R \C R 2B B  \ a C R 2B B  \ cR2B B  

A -*■ a R x | a

-»  aR iC B R i  | a C B R x \ c B R x | a R xC R 2B R x \ a C R 2B R x \ cR 2B R x 

—►  aR \C B  | a C B  \ cB  \ qR xC R 2B \ qC R 2B \ cR 2B 

B —*■ a R xB | aB  \ b

—► a R xC B R xB \ a C B R XB  | a R xC R 2B R \B  \ a C R 2B R XB \ cR 2B R XB

-»  a R xC B B  | a C B B  \ c B B  | a R xC R 2B B  | a C R 2B B  \ cR 2BB  

C —* a R xC  | aC \ c \ a R xC R 2 \ a C R 2 \ cR2 

R x-> B R X | B

R2 -> B R xC R 2 | B C R 2 | B R XC  | BC.

Finally, the substitution process must be applied to each of the variables added in the removal 
of direct recursion. Rewriting these rules yields

R x —*■ a R xB R x | a B R x \ b R x

—►  a R xC B R xB R x \ a C B R XB R x \ c B R XB R x \ a R XC R 2B R XB R x | a C R 2B R XB R x | 

cR2B R xB R x

-»• a R xC B B R x \ a C B B R x \ c B B R x \ a R xC R 2B B R x \ a C R 2B B R x \ c R 2B B R x 

R x -*  a R xB \ a B  | b

-»• a R xC B R xB \ a C B R xB \ c B R xB | a R xC R 2B R xB \ a C R 2B R xB \ c R 2B R xB 

-»• a R xC B B  | a C B B  \ c B B  | a R xC R 2B B  \ a C R 2B B  | cR 2BB  

R2 —►  a R xB R xC R 2 \ qB R xC R 2 \ b R xC R 2

-> a R xC B R XB R XC R 2 \ a C B R xB R xC R 2 \ c B R xB R xC R 2 \ a R xC R 2B R xB R xC R 2 \ 

a C R 2B R XB R XC R 2 \ cR2B R XB R XC R 2 

-*• a R xC B B R xC R 2 | a C B B R xC R 2 \ c B B R xC R 2 | a R xC R 2B B R xC R 2 | 

a C R 2B B R XC R 2 | cR 2B B R xC R 2
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R2 - ►  a R xB C R 2 I a B C R 2 | bC R 2

-»■ a R \C B R \ B C R 2 \ a C B R xB C R 2 \ c B R xB C R 2 \ a R xC R 2B R xB C R 2 \ 

a C R 2B R xB C R 2 \ cR2B R xB C R 2 

-+ a R \C B B C R 2 \ a C B B C R 2 \ c B B C R 2 \ a R xC R 2B B C R 2 \ a C R 2B B C R 2 \ 

c R2B BC  R2 

R2 —►  a R xB R xC | a B R xC | b R xC

-> a R xC B R xB R xC \ a C B R xB R xC \ c B R xB R xC \ a R xC R 2B R xB R xC \ 

a C R 2B R xB R xC | cR 2B R xBR \C  

-+ a R xC B B R xC \ a C B B R xC \ c B B R xC \ a R xC R 2B B R xC \ a C R 2B B R xC | 

c R2B B R XC 

R2 —►  a R xBC  | a B C  \ bC

-> a R xC B R xBC  | a C B R xB C  \ c B R xBC  | a R xC R 2B R xBC \ a C R 2B R xBC \ 

cR2B R xBC

-*  a R xC B B C  | a C B B C  \ c B B C  \ a R xC R 2B B C  \ a C R 2B B C  \ cR2BBC.

The resulting grammar in Greibach normal form has lost all the simplicity of the original 
grammar G. Designing a grammar in Greibach normal form is an almost impossible task. 
The construction of grammars should be done using simpler, intuitive rules. As with all 
the preceding transformations, the steps necessary to transform an arbitrary context-free 
grammar to Greibach normal form are algorithmic and can be automatically performed by 
an appropriately designed computer program. The input to such a program consists of the 
rules of an arbitrary context-free grammar, and the result is an equivalent Greibach normal 
form grammar.

It should also be pointed out that useless symbols may be created by the rule replace
ments using Lemma 4.1.3. The variable A is a useful symbol of G, occurring in the derivation

S => A B  aB  => ab.

In the conversion to Griebach normal form, the substitutions removed all occurrences of A 
from the right-hand side of rules. The string ab is generated by

S => a B  => ab

in the equivalent Greibach normal form grammar.

Theorem 4.8.2

Let G be a context-free grammar. There is an algorithm to construct an equivalent context- 
free grammar in Greibach normal form.
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Proof. The operations used in the construction of the Greibach normal form have previ
ously been shown to generate equivalent grammars. All that remains is to show that the rules 
can always be transformed to satisfy the conditions necessary to perform the substitutions. 
These require that each rule have the form

Ak —>■ A jw  with k < j

or

Ak —►  aw,

where the subscript represents the ordering of the variables.
The proof is by induction on the ordering of the variables. The basis is the start symbol, 

the variable numbered one. Since S is nonrecursive, this condition trivially holds. Now 
assume that all variables up to number k satisfy the condition. If there is a rule Ak -> A tw 
with i < k, the substitution can be applied to the variable A, to generate a set of rules, each 
of which has the form Ak —> A jw '  where j  > i. This process can be repeated, k — i times 
if necessary, to produce a set of rules that are either left-recursive or in the correct form. All 
directly left-recursive variables can be transformed using the technique of Lemma 4.7.1.

Example 4.8.1

The Chomsky and Greibach normal forms are constructed for the grammar

S —>■ SaB  | aB  

B ^ b B  | A.

Adding a nonrecursive start symbol S' and removing A. and chain rules yields

S' - ►  SaB \ S a \ a B \ a  

S —* SaB  | Sa | aB  \ a 

B - + b B \ b .

The Chomsky normal form is obtained by transforming the preceding rules. Variables A 
and C are used as aliases for a and b , respectively, and T  represents the string aB.

S' ^  S T  \ SA

S T  | SA

B - + C B 1 b

T  -*• A B

A —* a

C - > b
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The variables are ordered by S', S, B, T, A, and C. Removing the left-recursive S  rules 

produces

S’ -*• S T  | SA  | A B  | a 

S - >  A B Z  | a Z  \ A B \ a  

B —* C B  \ b 

T  —►  AB  

A -* a 

C - + b

Z ^ T Z \ A Z \ T \ A .

These rules satisfy the condition that requires the value of the variable on the left-hand 
side of a rule to be less than that of a variable in the first position of the right-hand side. 
Implementing the substitutions beginning with the A and C rules produces the Greibach 
normal form grammar:

S’ - ►  a B Z T  | a Z T  | a B T  \ a T  \ a B Z A  \ a Z A  \ a B A  \ a A \ a B \ a

S —> a B Z | a Z \ a B \ a

B —>■ b B \ b

T - y a B

A —* a

C - > b

Z  —►  a B Z  | a Z  \ a B  \ a.

The leftmost derivation of the string abaaba  is given in each of the three equivalent 
grammars.

G Chomsky Normal Form Greibach Normal Form

S => SaB S’ => SA S’ => a B Z A

=> SaBaB => ST  A => abZA

=> SaBaBaB => S A T  A =» abaZA
=> aBaBaBaB => A B A T A => abaaBA

=> abBaBaBaB => a B A T A => abaabA
=> abaBaBaB =>abATA => abaaba
=> abaaBaB => abaT A

=> abaabBaB => abaABA

=>abaabaB => abaaBA

=» abaaba => abaabA 

=>■ abaaba
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The derivation in the Chomsky normal form grammar generates six variables. Each 
of these is transformed to a terminal by a rule of the form A —* a. The Greibach normal 
form derivation generates a terminal with each rule application. The derivation is completed 
using only six rule applications. a

Exercises

For Exercises 1 through 5, construct an equivalent essentially noncontracting grammar 
Gl with a nonrecursive start symbol. Give a regular expression for the language of each 
grammar.

G :S  -*■ a S \ b S \ B
B -*■ b b \ C \ \
C -> c C \ X

G :S  -*■ A B C  \ k
A -*■ a A  | a
B -> bB  | A
c  —► cC  | k

G :S  -+ B S A  | A
A —► aA \ k
B -* Bba | k

G :S -> A B | B C S
A -*■ a A \ C
B bbB  | b
C -> cC  | k

G : S - ► A B C | aB C
A —► aA  | BC
B -> bB  | k
C^> cC  1 k

6 . Prove Lemma 4.3.2.

For Exercises 7 through 10, construct an equivalent grammar Gc  that does not contain chain 
rules. Give a regular expression for the language of each grammar. Note that these grammars 
do not contain A.-rules.

7. G: S  - ►  A S  | A
A —y aA \ bB \ C  
B - y  bB \b  
C -*■ cC \ B

8 . G: S -> A | B  | C
A -*• aa | B
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B -* bb\ C
C —* cc | A

G: S —► A | C
A -> aA l«l
B ^ b B 1*
C —► cC k i

G :5-»- AB I c
A -* aA 1 B
B bB 1C
C -*■ cC l«l

11. Eliminate the chain rules from the grammar GL of Exercise 1.

12. Eliminate the chain rules from the grammar GL of Exercise 4.

13. Prove that Algorithm 4.4.2 generates the set of variables that derive terminal strings.

For Exercises 14 through 16, construct an equivalent grammar without useless symbols. 
Trace the generation of the sets of TERM and REACH used to construct GT and Gy. 
Describe the language generated by the grammar.

14. G :S  -> A A \ C D \ b B
A —►  a A \ a  
B —> bB \ bC  
C - + c B  
D -*■ d D  | d

15. G :5 - >  aA \ BD
A -* aA  | aA B  \ aD  
B aB  \a C  \ B F  
C - »  Bb  | a A C  | E 
D —v bD  | bC  | b 
E - > a B \ b C  
F  -*• a F  | aG \ a 
G -> a \b

16. G :S  -*  A C H  | BB
A -> aA  | a F  
B -> C F H  | b 
C -* aC  | D H  
D -*■ aD  | B D  | Ca 
F -*■ bB \b  
H -*■ d H  | d
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17. Show that all the symbols of the grammar

G: S ->  A \C B  

A - > C \ D  

B —*■ bB  | b 

C -*■ cC  | c 

D -*■ d D  | d

are useful. Construct an equivalent grammar Gc by removing the chain rules from G. 
Show that Gc contains useless symbols.

18. Convert the grammar

G: 5 —*■ a A  | ABa  

A —*• A A  | a 

B -> A bB  \ bb

to Chomsky normal form. G already satisfies the conditions on the start symbol S, 
X-rules, useless symbols, and chain rules.

19. Convert the grammar

G: S -*■ aA bB  \ A B C  \a  

A —> a A  | a 

B -*  bBcC  | b 

C —*■ abc

to Chomsky normal form. G already satisfies the conditions on the start symbol S, 
X-rules, useless symbols, and chain rules.

20. Convert the result of Exercise 9 to Chomsky normal form.

21. Convert the result of Exercise 11 to Chomsky normal form.

22. Convert the result of Exercise 12 to Chomsky normal form.

23. Convert the grammar

G: S -> A | ABa \ AbA  

A -*  Aa  | X 

B  -»• Bb  | BC  

C -»• C B \ C A \ b B

to Chomsky normal form.

*24. Let G be a grammar in Chomsky normal form.

a) What is the length of a derivation of a string of length n in L(G)?
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b) What is the maximum depth of a derivation tree for a string of length n in L(G)?

c) What is the minimum depth of a derivation tree for a string of length n in L(G)?

25. Give the upper diagonal matrix produced by the CYK algorithm when run with the 
Chomsky normal form grammar from Example 4.5.2 and the input strings abbb and 
aabbb.

26. Let G be the Chomsky normal form grammar

5 -*  A X  \ A Y  | a 

X -* A X  | a 

Y —*■ B Y  | a 

A —>■ a 

B ^ b .

Give the upper diagonal matrix produced by the CYK algorithm when run with the 
grammar G and the input strings baaa and abaaa.

27. Let G be the grammar

G: A | B

A —y aaB  \ Aab \ Aba  

B - * b B  | Bb \aba.

a) Give a regular expression for L(G).

b) Construct a grammar G' that contains no left-recursive rules and is equivalent to G.

28. Construct a grammar G ' that contains no left-recursive rules and is equivalent to

G: S -»  A | C

A - ►  A a B  | AaC \ B \ a  

B -y  Bb \ Cb 

C —y cC \ c.

Give a leftmost derivation of the string aaccacb  in the grammars G and G'.

29. Construct a grammar G' that contains no left-recursive rules and is equivalent to

G: A | B 

A -* A A A  | a | B 

B -y  B B b  | b.

30. Construct a Greibach normal form grammar equivalent to

S —y a A b \ a  

A —* SS  \ b.
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31. Convert the Chomsky normal form grammar

S -*■ BB  

A -* AA  | a 

B -*■ A A  | B A  | b

to Greibach normal form. Process the variables according to the order 5, A, B.

32. Convert the Chomsky normal form grammar

S - »  A B  | BC  

A —►  A B | a  

B -»  A A  | C B  | b 

C ^ > a \ b

to Greibach normal form. Process the variables according to the order 5 , A, B, C.

33. Convert the Chomsky normal form grammar

S - >  B A  | A B  |X 

A —►  B B | A A | a  

B -> AA  | b

to Greibach normal form. Process the variables according to the order S, A , B.

34. Convert the Chomsky normal form grammar

S —►  AB  

A -> B B  | CC 

B —► A D \ C A  

C -* a 

D ^ b

to Greibach normal form. Process the variables according to the order S, A ,  B, C, D.

* 35. Prove that every context-free language is generated by a grammar in which each of the 
rules has one of the following forms:

i) S —►  X,

ii) A —►  a,

iii) A -v  a B , or

iv) A -*■ aBC,

where A € V, B, C e  V -  {S}, and a e Z .



B ib l io g ra p h ic  N o te s  143

Bibliographic Notes

The constructions for removing X-rules and chain rules were presented in Bar-Hillel, Perles, 
and Shamir [1961]. Chomsky normal form was introduced in Chomsky [1959], The CYK 
algorithm is named for J. Cocke, D. Younger [1967], and T. Kasami who independently 
developed this technique for determining derivability. Variations of this algorithm can 
be used to solve the membership problem for arbitrary context-free grammars without 
requiring the transformation to Chomsky normal form.

Greibach normal form is from Greibach [1965], An alternative transformation to 
Greibach normal form that limits the growth of the number of rules in the resulting gram
mar can be found in Blum and Koch [1999]. There are several variations on the definition 
of Greibach normal form. A common formulation requires a terminal symbol in the first 
position of the string but permits the remainder of the string to contain both variables and 
terminals. Double Greibach normal form, Engelfriet [1992], requires that both the leftmost 
and rightmost symbol on the right-hand of rules be terminals.

A grammar whose rules satisfy the conditions of Exercise 35 is said to be in 2-normal 
form. A proof that 2-normal form grammars generate the entire set of context-free languages 
can be found in Hopcroft and Ullman [1979] and Harrison [1978], Additional normal forms 
for context-free grammars are given in Harrison [1978].



CHAPTER 5

Finite Automata

In this chapter we introduce the family of abstract computing devices known as finite-state 
machines. The computations of a finite-state machine determine whether a string satisfies 
a set of conditions or matches a prescribed pattern. Finite-state machines share properties 
common to many mechanical devices; they process input and generate output. A vending 
machine takes coins as input and returns food or beverages as output. A combination lock 
expects a sequence of numbers and opens the lock if the input sequence is correct. The input 
to a finite-state machine is a string and the result of a computation indicates acceptability 
of the string. The set of strings that are accepted makes up the language of the machine.

The preceding examples of machines exhibit a property that we take for granted in 
mechanical computation, determinism. When the appropriate amount of money is inserted 
into a vending machine, we are upset if nothing is forthcoming. Similarly, we expect the 
combination to open the lock and all other sequences to fail. Initially, we require finite- 
state machines to be deterministic. This condition will be relaxed to examine the effects of 
nondeterminism on the capabilities of finite-state computation.

5.1 A Finite-State Machine

A formal definition of a machine is not concerned with the hardware involved in the 
operation of the machine, but rather with a description of the internal operations as the 
machine processes the input. A vending machine may be built with levers, a combination 
lock with tumblers, and an electronic entry system is controlled by a microchip, but all accept

145
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input and produce an affirmative or negative response. What sort of description encompasses 
the features of each of these seemingly different types of mechanical computation?

A simple newspaper vending machine, similar to those found on many street comers, is 
used to illustrate the components of a finite-state machine. The input to the machine consists 
of nickels, dimes, and quarters. When 30 cents is inserted, the cover of the machine may 
be opened and a paper removed. If the total of the coins exceeds 30 cents, the machine 
graciously accepts the overpayment and does not give change.

The newspaper machine on the street comer has no memory, at least not as we usually 
conceive of memory in a computing machine. However, the machine “knows” that an 
additional 5 cents will unlatch the cover when 25 cents has previously been inserted. This 
knowledge is acquired by the machine’s altering its internal state whenever input is received 
and processed.

A machine state represents the status of an ongoing computation. The internal operation 
of the vending machine can be described by the interactions of the following seven states. 
The names of the states, given in italics, indicate the progress made toward opening the 
cover.

•  Needs 30 cents: The state of the machine before any coins are inserted

•  Needs 25 cents: The state after a nickel has been input

•  Needs 20 cents: The state after two nickels or a dime have been input

•  Needs 15 cents: The state after three nickels or a dime and a nickel have been input

•  Needs 10 cents: The state after four nickels, a dime and two nickels, or two dimes have 
been input

•  Needs 5 cents: The state after a quarter, five nickels, two dimes and a nickel, or one 
dime and three nickels have been input

•  Needs 0 cents: The state that represents having at least 30 cents input

The insertion of a coin causes the machine to alter its state. When 30 cents or more 
is input, the state needs 0 cents is entered and the latch is opened. Such a state is called 
accepting since it indicates the correctness of the input.

The design of the machine must represent each of the components symbolically. Rather 
than a sequence of coins, the input to the abstract machine is a string of symbols. A labeled 
directed graph known as a state diagram  is often used to represent the transformations of 
the internal state of the machine. The nodes of the state diagram are the states described 
above. The needs m cents node is represented simply by m in the state diagram. The state 
of the machine at the beginning of a computation is designated > 0 -  The initial state for the 
newspaper vending machine is the node 30.

The arcs are labeled n, d, or q, representing the input of a nickel, dime, or quarter. An 
arc from node x  to node y  labeled v indicates that processing input v when the machine 
is in state x  causes the machine to enter state y. Figure 5.1 gives the state diagram for the 
newspaper vending machine. The arc labeled d  from node 15 to 5 represents the change of 
state of the machine when 15 cents has previously been processed and a dime is input. The
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cycles of length one from node 0 to itself indicate that any input that increases the total past 

30 cents leaves the latch unlocked.
Input to the machine consists of strings from [n, d, q}*. The sequence o f states entered 

during the processing of an input string can be traced by following the arcs in the state 
diagram. The machine is in its initial state at the beginning of a computation. The arc labeled 
by the first input symbol is traversed, specifying the subsequent machine state. The next 
symbol of the input string is processed by traversing the appropriate arc from the current 
node, the node reached by traversal of the previous arc. This procedure is repeated until the 
entire input string has been processed. The string is accepted if the computation terminates 
in the accepting state. The string dndn  is accepted by the vending machine, while the string 
nndn  is not accepted since the computation terminates in state 5.

5.2 Deterministic Finite Automata

The analysis of the vending machine required separating the fundamentals of the design 
from the implementational details. The implementation-independent description is often 
referred to as an abstract machine. We now introduce a class of abstract machines whose 
computations can be used to determine the acceptability of input strings.

Definition 5.2.1

A deterministic finite autom aton (DFA) is a quintuple M =  (Q, S , 5, q$, F), where Q 
is a finite set of states, E a finite set called the alphabet, q0 e  Q a distinguished state known 
as the start state, F a subset of Q called the final or accepting states, and S a total function 
from Q x £  to Q known as the transition function.

We have referred to a deterministic finite automaton as an abstract machine. To reveal 
its mechanical nature, the operation of a DFA is described in terms of components that are 
present in many familiar computing machines. An automaton can be thought of as a machine 
consisting of five components: a single internal register, a set of values for the register, a 
tape, a tape reader, and an instruction set.

The states of a DFA represent the internal status of the machine and are often denoted 
q0, q\, q2, . . . , q„. The register of the machine, also called the finite control, contains
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one of the states as its value. At the beginning of a computation, the value o f the register is 
q0, the start state of the DFA.

The input is a finite sequence of elements from the alphabet E . The tape stores the input 
until needed by the computation. The tape is divided into squares, each square capable of 
holding one element from the alphabet. Since there is no upper bound to the length of 
an input string, the tape must be of unbounded length. The input to a computation of the 
automaton is placed on an initial segment of the tape.

The tape head reads a single square of the input tape. The body of the machine consists 
of the tape head and the register. The position of the tape head is indicated by placing the 
body of the machine under the tape square being scanned. The current state o f the automaton 
is indicated by the value on the register. The initial configuration of a computation with input 
baba is depicted

A computation of an automaton consists of the execution of a sequence o f instructions. 
The execution of an instruction alters the state of the machine and moves the tape head one 
square to the right. The instruction set is obtained from the transition function of the DFA. 
The machine state and the symbol scanned determine the instruction to be executed. The 
action of a machine in state qt scanning an a is to reset the state to <5(ty,, a). Since S is a 
total function, there is exactly one instruction specified for every combination of state and 
input symbol, hence the deterministic in deterministic finite automaton.

The objective of a computation of an automaton is to determine the acceptability of 
the input string. A computation begins with the tape head scanning the leftmost square of 
the tape and the register containing the state q$. The state and symbol are used to select the 
instruction. The machine then alters its state as prescribed by the instruction, and the tape 
head moves to the right. The transformation of a machine by the execution of an instruction 
cycle is exhibited in Figure 5.2. The instruction cycle is repeated until the tape head scans a 
blank square, at which time the computation terminates. An input string is accepted if the 
computation terminates in an accepting state; otherwise it is rejected. The computation in 
Figure 5.2 exhibits the acceptance of the string aba.

Definition 5.2.2

Let M =  (Q, E , 8, q0, F) be a DFA. The language of M, denoted L(M), is the set of 
strings in E* accepted by M.

A DFA can be considered to be a language acceptor; the language of the machine is 
simply the set of strings accepted by its computations. The language of the machine in 
Figure 5.2 is the set of all strings over {a , b } that end in a.

A DFA is a read-only machine that processes the input in a left-to-right manner; once 
an input symbol has been read, it has no further effect on the computation. At any point 
during the computation, the result depends only on the current state and the unprocessed



5.2 D e te r m in i s t i c  F in i te  A u to m a ta  149

M: Q =  f<?o. <?l) 

£  =  (a, b)

F =  {<7,}

S(4o< « )  =  <?i 

■5(90. fc) = < ?o

i(<?b a) =  <?i 

i(9i. *) =<?o

[l]

ii]

FIGURE 5.2 Computation in a DFA.

input. This combination is called a machine configuration and is represented by the 
ordered pair [<?,-, w], where q, is the current state and w e  E* is the unprocessed input. The 
instruction cycle of a DFA transforms one machine configuration to another. The notation 
[<?,, aw]  Ijj [qj, ui] indicates that configuration [qj, w] is obtained from [qh aw] by the 
execution of one instruction cycle of the machine M. The symbol Ijj, read “yields,” defines 
a function from Q x E + to Q x E * that can be used to trace computations o f the DFA. The 
M is omitted when there is no possible ambiguity.

Definition 5.2.3

The function on Q x E + is defined by

fa/. «»]Im [&(qj,a), iu]

for a € E and w € E*, where S is the transition function of the DFA M.

The notation [qh  h] p- [qj, i>] is used to indicate that configuration [qj, u] can be 
obtained from [<?, , u] by zero or more transitions.
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Example 5.2.1

The DFA M defined below accepts the set of strings over {a, b} that contain the substring 
bb. That is, L(M) =  (a U b)*bb(a U b)*. The states and alphabet of M are

M  : Q  =  {<?o. <7i> $ 2)

Y, =  {a,b]

f  =  {?2}-

The transition function S is given in a tabular form called the transition table. The states are 
listed vertically and the alphabet horizontally. The action of the automaton in state qt with 
input a can be determined by finding the intersection of the row corresponding to <7, and 
the column corresponding to a.

s a b

90 <7o <7l

<7o <72

<72 <?2 42

The computations of M with input strings abba and abab  are traced using the function K

[<?0, abba] 

I- [<70, bba] 

I- [qx, ba]

I" [<?2 - 0 ]

H [<72- X] 

accepts

[<7o, abab] 

[<?o, bab]

H  [ 9 1 .  ab]

H [<7o, b]

H [<7i, X] 

rejects

The string abba is accepted since the computation halts in state q2.

Example 5.2.2

The newspaper vending machine from the previous section can be represented by a DFA 
with the following states, alphabet, and transition function. The start state is the state 30.

Q =  {0 , 5 , 10, 15, 20, 25, 30} S n d q

X = { n , d ,q ) 0 0 0 0

F =  {0} 5 0 0 0
10 5 0 0
15 10 5 0
20 15 10 0
25 20 15 0
30 25 20 5
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The language of the vending machine consists of all strings that represent a sum of 30 cents 
or more. Can you construct a regular expression that defines the language of this machine?

□

The transition function specifies the action of the machine for a given state and element 
from the alphabet. This function can be extended to a function 8 whose input consists of a 
state and a string over the alphabet. The function 8 is constructed by recursively extending 
the domain from elements of X to strings of arbitrary length.

Definition 5.2.4

The extended transition function, 8, of a DFA with transition function 5 is a function from 
Q x E* to Q. The values of S are defined by recursion on the length of the input string.

i) Basis: length(w) =  0. Then w = k  and X) =  qt.

length(w)  =  1. Then w = a ,  for some a 6  E , and 8(qh a ) =  S(g,, a).

ii) Recursive step: Let w be a string of length n > 1. Then w =  ua and 8 (g,, ua) =  
8(8(qh u), a).

The computation of a machine in state q, with string w halts in state 8(qh w). The 
evaluation of the function 8(q0, w)  simulates the repeated applications o f the transition 
function required to process the string w. A string w is accepted if 8(q0, w)  e  F. Using this 
notation, the language of a DFA M is the set L(M) =  {w \ 8(q0, w) e  F}.

5.3 State Diagrams and Examples

The state diagram of a DFA is a labeled directed graph in which the nodes represent the 
states of the machine and the arcs are obtained from the transition function. The graph in 
Figure 5.1 is the state diagram for the newspaper vending machine DFA. Because of the 
intuitive nature of the graphic representation, we will often present the state diagram rather 
than the sets and transition function that constitute the formal definition of a  DFA.

Definition 5.3.1

The state diagram  of a DFA M =  (Q, S , 8, q0, F) is a labeled directed graph G defined 
by the following conditions:

i) The nodes of G are the elements of Q.

ii) The labels on the arcs of G are elements of X.

iii) q0 is the start node, which is depicted >Q-

iv) F is the set of accepting nodes; each accepting node is depicted O -

v) There is an arc from node q{ to q} labeled a, if 8(qh a) =  qj.

vi) For every node qt and symbol o e X ,  there is exactly one arc labeled a leaving qt .
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A transition of a DFA is represented by an arc in the state diagram. Tracing the 
computation of a DFA in the corresponding state diagram constructs a path that begins 
at node q0 and “spells” the input string. Let pu, be a path beginning at q0 that spells w, 
and let qw be the terminal node of p„,. Theorem 5.3.2 proves that there is only one such 
path for every string w € '£*. Moreover, qw is the state of the DFA upon completion of the 
processing of w.

Theorem 5.3.2

Let M =  (Q, X, S, q0, F) be a DFA and let w e  X*. Then w determines a unique path 
in the state diagram of M and S(q0, w)  =  qw.

Proof. The proof is by induction on the length of the string. If the length of w is zero, then 

Hqo< X) =  qo- The corresponding path is the null path that begins and terminates with q0.
Assume that the result holds for all strings of length n or less. Let w =  ua be a string 

of length n +  1. By the inductive hypothesis, there is a unique path p„ that spells u and 
Hqo, u) =  qu. The path is constructed by following the arc labeled a from qu. This is 
the only path from q0 that spells w since p„ is the unique path that spells u and there is only 
one arc leaving qu labeled a. The terminal state of the path pw is determined by the transition 
S(qu, a). From the definition of the extended transition function, S(q0, w) =  S(S(q0, u), a). 
Since S(q0, u) =  qu, qw =  &(qu, a) =  5(5(^0, «), a) = S(q0, w ) as desired. ■

The equivalence of computations of a DFA and paths in the state diagram gives us a 
heuristic method for determining the language of the DFA. The strings accepted in a state 
<?, are precisely those spelled by paths from q0 to qt. We can separate the determination of 
these paths into two parts:

i) First, find regular expressions u , . . . . ,  un for strings on all paths from q0 that reach qt 
the first time.

ii) Find regular expressions v j , . . . ,  vm for all ways to leave qt and return to <?,.

The strings accepted by qt are («, U • • • U u„)(u, U • • • U vm)*.
Consider the DFA

b
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The language of M consists of all strings spelled by paths from qq to either q\ or q^. Using 
the heuristic described previously, the strings on the paths to each of the accepting states are

State Paths to q, Simple Cycles from q, to q. Accepted Strings

q\ a b ab*

<73 ab*aa“b, bb“a bb*a, aa*b (ab'aa U ba)(ab U ba)*

Consequently, L(M) =  ab* U (ab*aa*b U bb*a)(aa*b U bb*a)*. After we have established 
additional properties of finite-state computation, we will present an algorithm that automat
ically produces a regular expression for the language of a finite automaton.

In the remainder of this section we examine a number of DFAs to help develop the 
ability to design automata to check for patterns in strings. The types of conditions that 
we will consider include the number of occurrences and the relative positions of specified 
substrings. In addition, we establish the relationship between a DFA that accepts a language 
L and one that accepts the complement of L.

Example 5.3.1

The state diagram of the DFA in Example 5.2.1 is

The states are used to record the number of consecutive b's processed. The state q2 is 
entered when a substring bb is encountered. Once the machine enters q2, the remainder of 
the input is processed, leaving the state unchanged. The computation of the DFA with input 
ababb and the corresponding path in the state diagram are

Computation Path

too. ababb] 9o.
1-  too- babb] <?o.
1-  toi. abb] <7i.
I" too. bb] ?o.
*- to), b] 9i.
1-  [?2 . X] ? 2

The string ababb  is accepted since the halting state of the computation, which is also the 
terminal state of the path that spells ababb,  is the accepting state q2. □
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Example 5.3.2

The DFA

b a,b

b

accepts (b U ab)*(a U A), the set of strings over {a, b] that do not contain the substring aa.
a

Example 5.3.3

Strings over [a, b} that contain the substring bb or do not contain the substring aa  are 
accepted by the DFA depicted below. This language is the union of the languages of the 
previous examples.

a

The state diagrams for machines that accept the strings with substring bb or without 
substring aa seem simple compared with the machine that accepts the union of those two 
languages. There does not appear to be an intuitive way to combine the state diagrams of 
the constituent DFAs to create the desired composite machine.

The next several examples provide a heuristic for designing DFAs. The first step is to 
produce an interpretation for the states of the DFA. The interpretation of a state describes 
properties of the string that has been processed when the machine is in the state. The 
pertinent properties are determined by the conditions required for a string to be accepted.

Example 5.3.4

A successful computation of a DFA that accepts the strings over [a, b) containing the 
substring aaa must process three a ’s in a row. Four states are required to record the status of 
a computation checking for aaa. The interpretation of the states, along with state names, are
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State Interpretation

q0: No progress toward aaa

q{: Last symbol processed was an a

q2: Last two symbols processed were aa

qy aaa has been found in the string

Prior to reading the first symbol, no progress has been made toward finding aaa. 
Consequently, this condition represents the start state.

Once the states are identified, it is frequently easy to determine the proper transitions. 
When computation in state q\ processes an a, the last two symbols read are aa and q2 is 
entered. On the other hand, if a b is read in q lt the resulting string represents no progress 
toward aaa  and the computation enters q0. Following a similar strategy, the transitions can 
be determined for all states producing the DFA

On processing aaa,  the computation enters <7 3 , reads the remainder of the string, and accepts

Example 5.3.5

Building a machine that accepts strings with exactly two a ’s and an odd number of b’s 
requires checking two conditions: the number of a ’s and the parity of the b's. Seven states 
are required to store the information needed about the string. The interpretation of the states 
describes the number of a ’s read and the parity of the string processed when the computation 
is in the state.

b

the input. □

State Interpretation

q$. No a’s, even number of b’s
q\. Noo’s, odd number of b's

q2: One a, even number of b's

qy One a, odd number of b’s

<j4: Two a ’s, even number of b’s
qs: Two a ’s, odd number of b's

q6: More than two a ’s
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At the beginning of a computation, no a ’s and no b's have been processed and this becomes 
the condition of the start state. A DFA accepting this language is

The horizontal arcs count the number of a ’s in the input string and the vertical pairs of 
arcs record the parity of the b's. The accepting state is q$, since it represents the condition 
required of a string in the language. □

Example 5.3.6

Let E =  {0, 1, 2, 5}. A string in E* is a sequence of integers from E. The DFA

determines whether the sum of integers in an input string is divisible by four. For example, 
the strings 12  3 0 2  and 0 1 3 0  are accepted and 0 1 1 1  rejected by M. The states represent 
the value of the sum of the processed input modulo 4. □

Our definition of DFA allowed only two possible outputs, accept or reject. The defi
nition of output can be extended to have a value associated with each state. The result of 
a computation is the value associated with the state in which the computation terminates. 
A machine of this type is called a Moore machine after E. F. Moore, who introduced this 
type of finite-state computation. Associating the value i with the state imodA , the machine 
in Example 5.3.6 acts as a modulo 4 adder.

The state diagrams for machines in Examples 5.3.1, 5.3.2, and 5.3.3 showed that there 
is no simple method to obtain a DFA that accepts the union of two languages from DFAs
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that accept each of the languages. The next two examples show that this is not the case 
for machines that accept complementary sets of strings. The state diagram for a DFA can 
easily be transformed into the state diagram for another machine that accepts all, and only, 

the strings rejected by the original DFA.

Example 5.3.7

The DFA M accepts the language consisting of all strings over {a, b} that contain an even 
number of a ’s and an odd number of b’s.

At any step of the computation, there are four possibilities for the parities of the input 
symbols processed: ( 1 ) even number of a ’s and even number of b’s, (2 ) even number of a ’s 
and odd number of b’s, (3) odd number of a ’s and even number of b's, (4) odd number of 
a ’s and odd number of b’s. These four states are represented by ordered pairs in which the 
first component indicates the parity of the a ’s and the second component, the parity of the 
b’s that have been processed. Processing a symbol changes one of the parities, designating 
the appropriate transition. □

Example 5.3.8

Let M be the DFA constructed in Example 5.3.7. A DFA M' is constructed that accepts all 
strings over [a, b] that do not contain an even number of a ’s and an odd number of b’s. In 
other words, L(M') =  {a, b)* — L(M). Any string rejected by M is accepted by M' and vice 
versa. A state diagram for the machine M' can be obtained from that of M by interchanging 
the accepting and nonaccepting states.
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The preceding example shows the relationship between DFAs that accept complemen
tary sets of strings. This relationship is formalized by the following result.

Theorem 5.3.3

Let M =  (Q, E , 8, q0, F) be a DFA. Then M' =  (Q, E , 8, q0. Q -  F) is a DFA with 
L(M') =  E* -  L(M).

Proof. Let w e  E* and 8 be the extended transition function constructed from 8. For each 

w € L(M), 8(qo- «>) 6  F. Hence, w £  L(M'). Conversely, if w £  L(M), then 8(q0, w) € 
Q -  F and w e  L(M'). ■

By definition, a DFA must process the entire input even if the result has already 
been established. Example 5.3.9 exhibits a type of determinism, sometimes referred to as 
incomplete determinism; each configuration has at most one action specified. The transitions 
of such a machine are defined by a partial function from Q x E to Q. As soon as it is possible 
to determine that a string is not acceptable, the computation halts. A computation that halts 
before processing the entire input string rejects the input.

Example 5.3.9

The state diagram below defines an incompletely specified DFA that accepts (ab)*c. 
A computation terminates unsuccessfully as soon as the input varies from the desired 
pattern.

The computation with input abcc is rejected since the machine is unable to process the final 
c from state q2. □

Two machines that accept the same language are called equivalent. An incompletely 
specified DFA can easily be transformed into an equivalent DFA. The transformation 
requires the addition of a nonaccepting “error” state. This state is entered whenever the 
incompletely specified machine enters a configuration for which no action is indicated. 
Upon entering the error state, the computation of the DFA reads the remainder of the string 
and halts.
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Example 5.3.10

The DFA

accepts the same language as the incompletely specified DFA in Example 5.3.9. The state 
qe is the error state that ensures the processing of the entire string. □

Example 5.3.11

The incompletely specified DFA defined by the state diagram

accepts the language {a'b 1 \ i <  n }, for a fixed integer n. The states labeled A k count the 
number of a ’s, and then the Bk’s ensure an equal number of b ’s. This technique cannot 
be extended to accept {a'b' | i > 0} since an infinite number of states would be needed. In 
the next chapter we will show that the language (a'b' | i > 0 } is not accepted by any finite 
automaton. □

5.4 Nondeterministic Finite Automata

We now alter our definition of machine to allow nondeterministic computations. In a non
deterministic automaton there may be several instructions that can be executed from a 
given machine configuration. Although this property may seem unnatural for comput
ing machines, the flexibility of nondeterminism often facilitates the design of language 
acceptors.
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A transition in a nondeterministic finite automaton (NFA) has the same effect as one 
in a DFA: to change the state of the machine based upon the current state and the symbol 
being scanned. The transition function must specify all possible states that the machine 
may enter from a given machine configuration. This is accomplished by having the value 
of the transition function be a set of states. The graphic representation of state diagrams is 
used to illustrate the alternatives that can occur in nondeterministic computation. Any finite 
number of transitions may be specified for a given state qn and symbol a. The value of the 
nondeterministic transition function is given below the corresponding diagram.

8  (< 7 „ .a )=  f<7,} 5(q„, a) = 0

Because nondeterministic computation differs significantly from its deterministic coun
terpart, we begin the presentation of nondeterministic machines with an example that 
demonstrates the fundamental differences between the two computational paradigms. In 
addition, we use the example to introduce the features of nondeterministic computation and 
to present an intuitive interpretation of nondeterminism.

Consider the DFA Mj

that accepts (a U b)*abba(a U b)*, the strings over [a, b } that contain the substring abba. 
The states q0, q x, q2, q$ record the progress toward obtaining the substring abba.  The states 
of the machine are

State Interpretation

q0\ When there is no progress toward abba

q\. When the last symbol processed was an a
q2'. When the last two symbols processed were ab

qy. When the last three symbols processed were abb
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Upon processing abba,  state q4 is entered, the remainder of the string is read, and the input 

is accepted.
The deterministic computation must “back up” in the sequence q0, q\, q2, <?3 when the 

current substring is discovered not to have the desired form. If a b is scanned when the 
machine is in state </3, then q0 is entered since the last four symbols processed are abbb and 
the current configuration represents no progress toward finding abba.

A nondeterministic approach to accepting (a U b)*abba(a U b)* is illustrated by the 

machine

There are two possible transitions when M 2  processes an a in state q0. One possibility is 
for M2 to continue reading the string in state qQ. The second option enters the sequence of 
states <7 1 , q2, qs to check if the next three symbols complete the substring abba.

The first thing to observe is that with a nondeterministic machine, there may be multiple 
computations for an input string. For example, M 2 has five different computations for string 
aabbaa.  We will trace the computations using the I- notation introduced in Section 5.2.

lq0, aabbaa] [q0, aabbaa] [</(,, aabbaa] [<7o, aabbaa] [(/(), aabbaa]

h  [<j0, abbaa] h  [g(), abbaa] b  [<?(,, abbaa) H abbaa] \- [<?|, abbaa]

[<70. bbaa] \- [<70, bbaa] h  [(/0. bbaa] 1-  [q\, bbaa]

1-  [<70. baa] h  [</„, baa] b  [<70. baa] 1-  [<7;, baa]

[</()• " " I aa] 1- [<7o. aa] 1-  [ ^ ,  aa]

a) I" [%• « 1 1-  [</|. a] I-  fa-l’

[<?<)• X] H<?i. A] i- [*4. *1

What does it mean for a string to be accepted when there are some computations that halt 
in an accepting state and others that halt in a rejecting state? The answer lies in the use 
of the word check in the preceding paragraph. An NFA is designed to check whether a 
condition is satisfied, in this case, whether the input string has a substring abba.  If one of 
the computations discovers the presence of the substring, the condition is satisfied and the 
string is accepted. As with incompletely specified DFAs, it is necessary to read the entire 
string to receive an affirmative answer. Summing up, a string is accepted by an NFA if there 
is at least one computation that

i) processes the entire string, and

ii) halts in an accepting state.

A string is in the language of a nondeterministic machine if there is a computation that 
accepts it; the existence of other computations that do not accept the string is irrelevant.
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Nondeterministic machines are frequently designed to employ a “guess and check” 
strategy. The transition from to q x in M2  represents the guess that the a being read is the 
first symbol in the substring abba. After the guess, the computation continues to states q |, 
q%, and to check whether the guess is correct. If symbols following the guess are bba, 
the suing is accepted.

If an input string has the substring abba, one of the guesses will cause M 2  to enter 
state q x upon reading the initial a in the substring, and this computation accepts the string. 
Moreover, M 2  enters q^ only upon processing abba. Consequently, the language of M 2  is 
(a U b)*abba(a U b)*. It should be noted that accepting computations are not necessarily 
unique; there are two distinct accepting computations for abbabba in M2.

If this is your first encounter with nondeterminism, it is reasonable to ask about the 
ability of a machine to perform this type of computation. DFAs can be easily implemented 
in either software or hardware. What is the analogous implementation for NFAs? We can 
intuitively imagine nondeterministic computation as a type of multiprocessing. When the 
computation enters a machine configuration for which there are multiple transitions, a new 
process is generated for each alternative. With this interpretation, a computation produces 
a tree of processes running in parallel with the branching generated by the multiple choices 
in the NFA. The tree corresponding to the computation of aabbaa is
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If one of the branches reads the entire string and halts in an accepting state, the input is 
accepted and the entire computation terminates. The input is rejected only when all branches 

terminate without accepting the string.
Having introduced the properties of nondeterministic computation in the preceding 

example, we now present the formal definitions of nondeterministic machines, their state 
diagrams, and their languages. With the exception of the transition function, the components 
of an NFA are identical to those of a DFA.

Definition 5.4.1

A nondeterministic finite autom aton (NFA) is a quintuple M =  (Q, E , <5, q0, F), where 
Q is a finite set of states, E a finite set called the alphabet, q0 €  Q a distinguished state known 
as the start state, F a subset of Q called the final or accepting states, and S a  total function 
from Q x E to T(Q) known as the transition function.

Definition 5.4.2

The language of an NFA M, denoted L(M), is the set of strings accepted by the M. That is, 
L(M) =  {ii> | there is a computation [<?0, tu] p- [<?;, k] with qt € F).

Definition 5.4.3

The state diagram  of an NFA M =  (Q, E , S, qq, F) is a labeled directed graph G defined 
by the following conditions:

i) The nodes of G are elements of Q.

ii) The labels on the arcs of G are elements of E.

iii) q0 is the start node.

iv) F is the set of accepting nodes.

v) There is an arc from node q( to qj  labeled a, if qj  e  S(qh a).

The relationship between DFAs and NFAs is clearly exhibited by comparing the prop
erties of the corresponding state diagrams. Definition 5.4.3 is obtained from Definition 5.3.1 
by omitting condition (vi), which translates the deterministic property of the DFA transition 
function into its graphic representation.

The relationship between DFAs and NFAs can be summarized by the seemingly para
doxical phrase, “Every deterministic finite automaton is nondeterministic.” The transition 
function of a DFA specifies exactly one transition for each combination of state and input 
symbol, while an NFA allows zero, one, or more transitions. By interpreting the transition 
function of a DFA as a function from Q x E to singleton sets of states, the family of DFAs 
may be considered to be a subset of the family of NFAs.

The following example describes an NFA in terms of the components in the formal 
definition. We then construct the corresponding state diagram using the technique outlined 
in Definition 5.4.3.
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Example 5.4.1

The NFA

M  : Q  =  too- <7i- <l2) S a b

2  =  {a, b } <7o too) too. <7i)

f  =  W 2) <7i 0 to2)

<?2 0 0

with start state q$ accepts the language (a U b)*bb. The state diagram of M is

a,b

— - © — ~—

Pictorially, it is clear that a string is accepted if, and only if, it ends with the substring bb.
As noted previously, an NFA may have multiple computations for an input string. The 

three computations for the string ababb  are

[<70, ababb] too. ababb] too. ababb]

too, babb] 1- too- babb] h  too. babb]

h [<?o. ahb} t- [<?|. abb] l- to o . abb]

►-too- 1- too- bb]

H too. b] H to ,, b]

1-  too. x ] 1“  [<?2. X]

The second computation halts after the execution of three instructions since no action is 
specified when the machine is in state q x scanning an a. The first computation processes the 
entire input and halts'in a rejecting state while the final computation halts in an accepting 
state. The third computation demonstrates that ababb  is in the language of machine M. □

Example 5.4.2

The state diagrams M | and M 2  define finite automata that accept (a U b) 'bb(a  U b y .
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M, is the DFA from Example 5.3.1. The path exhibiting the acceptance of strings by M, 
enters when the first substring bb is encountered. M 2 can enter the accepting state upon 

processing any occurrence of bb. D

Example 5.4.3

An NFA that accepts strings over {a, b} with the substring aa or bb can be constructed by 
combining a machine that accepts strings with bb (Example 5.4.2) with a similar machine 
that accepts strings with aa.

a, b

A path exhibiting the acceptance of a string reads the input in state q0 until an occurrence 
of the substring aa or bb is encountered. At this point, the path branches to either q ] or <7 3 , 
depending upon the substring. There are three distinct paths that exhibit the acceptance of 
the string abaaabb. □

The flexibility permitted by the use of nondeterminism does not always simplify the 
problem of constructing a machine that accepts L(M,) U L(M2) from the machines M 1 and 
M2. This can be seen by attempting to construct an NFA that accepts the language of the 
DFA in Example 5.3.3.

5.5 A-Transitions

The transitions from state to state in both deterministic and nondeterministic automata were 
initiated by processing an input symbol. The definition of NFA is now relaxed to allow state 
transitions without requiring input to be processed. A transition of this form is called a 
A-transition. The class of nondeterministic machines that utilize A-transitions is denoted 
NFA-A.

The incorporation of A-transitions into finite state machines represents another step 
away from the deterministic computations of a DFA. They do, however, provide a useful 
tool for the design of machines to accept complex languages.
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Definition 5.5.1

A nondeterministic finite autom aton with X-transitions is a quintuple M =  (Q, 2 ,
S, qo, F), where Q, S, q^, and F are the same as in an NFA. The transition function is 
a function from Q x (2  U {A.}) to CP(Q).

The definition of halting must be extended to include the possibility that a computation 
may continue using X-transitions after the input string has been completely processed. 
Employing the criteria used for acceptance in an NFA, the input is accepted if there is a 
computation that processes the entire string and halts in an accepting state. As before, the 
language of an NFA-X is denoted L(M). The state diagram for an NFA-X is constructed 
according to Definition 5.4.3 with X-transitions represented by arcs labeled by X.

The ability to move between states without processing an input symbol can be used to 
construct complex machines from simpler machines. Let Mi and M 2  be the machines

that accept (a U b)*bb{a U b)* and (b U ab)*(a U X), respectively. Composite machines are 
built by appropriately combining the state diagrams of M, and M2.

Example 5.5.1

The language of the NFA-X M is L ^ )  U L(M2).

A computation in the composite machine M begins by following a X-arc to the start state of 
either M, or M2. If the path p exhibits the acceptance of a string by machine M,-, then that 
string is accepted by the path in M consisting of the X-arc from q0 to qi 0 followed by p in 
the copy of the machine M ,. Since the initial move in each computation does not process an 
input symbol, the language of M is L(M]) U L(M2). Compare the simplicity o f the machine 
obtained by this construction with that of the deterministic state diagram in Example 5.3.3.

□
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Example 5.5.2

An NFA-A that accepts L(M,)L(M2), the concatenation of the languages o f M) and M2, is 
constructed by joining the two machines with a A-arc.

An input string is accepted only if it consists of a string from L(Mj) concatenated with one 
from L(M2). The A-transition allows the computation to enter M2  whenever a prefix of the 
input string is accepted by Mj. □

Example 5.5.3

We will use X-transitions to construct an NFA-A. that accepts all strings of even length over 
[a, b }. We begin by building the state diagram of a machine that accepts strings of length 
two.

To accept the null string, a A-arc is added from q0 to q2. Strings of any positive, even length 
are accepted by following the A-arc from q2 to q0 to repeat the sequence q0, q lt q2.

X

The constructions presented in Examples 5.5.1, 5.5.2, and 5.5.3 can be generalized 
to construct machines that accept the union, concatenation, and Kleene star of languages 
accepted by existing finite-state machines. The first step is to transform the machines into 
an equivalent NFA-A whose form is amenable to these constructions.

Lemma 5.5.2

Let M =  (Q, E , 8, q0, F) be an NFA-A. There is an equivalent NFA-A M ' =  (Q U 
Wo’ 9/1* S', q'Q, {q/}) that satisfies the following conditions:

i) The in-degree of the start state q'0 is zero.

ii) The only accepting state of M' is qf .

iii) The out-degree of the accepting state q f  is zero.
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Proof. The transition function of M/ is constructed from that of M by adding the X- 

transitions

for the new states q'Q and qf . The X-transition from q^ to q0 permits the computation to 
proceed to the original machine M without affecting the input. A computation of M' that 
accepts an input string is identical to that of M followed by a X-transition from the accepting 
state of M to the accepting state q f  of M'. ■

If a machine satisfies the conditions of Lemma 5.5.2, the sole role of the start state is 
to initiate a computation, and the computation terminates as soon as q f  is entered. Such a 
machine can be pictured as

The diagram depicts a machine with three distinct parts: the initial state, the body of the 
machine, and the final state. This can be likened to a railroad car with couplers on either 
end. Indeed, the conditions on the start and final state are designed to allow them to act as 
couplers of finite-state machines.

Theorem 5.5.3

Let M | and M2  be two NFA-Xs. There are NFA-Xs that accept L (M i)U L (M 2), 
L(M ,)L(M 2), and L(M,)*.

Proof. We assume, without loss of generality, that Mi and M2  satisfy the conditions 
of Lemma 5.5.2. The machines constructed to accept the languages L (M i)U L (M 2), 
L(M |)L(M 2), and L(M|)* will also satisfy the conditions of Lemma 5.5.2.

Because of the restrictions on the start and final states, Mi and M2  may be depicted

SWo. *) =  ta0}

8(qh  X) =  {qf \ for every <y, G F



5.5 A -T ransit ions  1 6 9

The language U L(M2) is accepted by

A computation begins by following a X-arc to Mj or M2. If the string is accepted by either 
of these machines, the X-arc can be traversed to reach the accepting state o f the composite 
machine. This construction may be thought of as building a machine that runs M, and M2  

in parallel. The input is accepted if either of the machines successfully processes the string.
Concatenation can be obtained by operating the component machines sequentially. The 

start state of the composite machine is q x 0  and the accepting state is q i j -  The machines 
are joined by connecting the final state of M j to the start state of M2.

When a prefix of the input string is accepted by M (, the computation continues with M2. 
If the remainder of the string is accepted by M2, the processing terminates in g2, / .  the 
accepting state of the composite machine.

A machine that accepts L(Mj)* must be able to cycle through M, any number of times. 
The X-arc from q x j  to q x 0 permits the necessary cycling. Another X-arc is added from q i 0 
to q \ j  to accept the null string. These arcs are added to M | producing

X

The ability to repeatedly connect machines of this form will be used in Chapter 6  to 
establish the equivalence of languages described by regular expressions and accepted by 
finite-state machines.
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5.6 Removing Nondeterminism

Three classes of finite automata have been introduced in the previous sections, each class 
being a generalization of its predecessor. By relaxing the deterministic restriction, have we 
created a more powerful class of machines? More precisely, is there a language accepted by 
an NFA that is not accepted by any DFA? We will show that this is not the case. Moreover, 
an algorithm is presented that converts an NFA-A. to an equivalent DFA.

The state transitions in DFAs and NFAs accompanied the processing of an input symbol. 
To relate the transitions in an NFA-A to the processing of input, we build a modified transition 
function t, called the input transition function, whose value is the set of states that can be 
entered by processing a single input symbol from a given state. The value o f t (q t, a) for 
the diagram in Figure 5.3 is the set {q2, q$, q$, q^}- State qA is omitted since the transition 
from state q\ does not process an input symbol.

Intuitively, the definition of the input transition function t(qit a) can be broken into 
three parts. First, the set of states that can be reached from qt without processing a symbol 
is constructed. This is followed by processing an a from all the states in that set. Finally, 
following X-arcs from the resulting states yields the set t (q, , a).

The function t is defined in terms of the transition function & and the paths in the state 
diagram that spell the null string. A node qj is said to be in the X-closure of if there is a 
path from qt to qj that spells the null string.

Definition 5.6.1

The X-closure of a state qit denoted k-closure(qj),  is defined recursively by

i) Basis: qt € k-closure(,qj).

ii) Recursive step: Let qj be an element of k-closure(qj).  If qk € &(qj, X), then qk e  
k-closure(qj).

iii) Closure: qj is in k-closure(qj) only if it can be obtained from qt by a finite number of 
applications of the recursive step.

The set k-closure(q{) can be constructed following the top-down approach used in 
Algorithm 4.3.1, which determined the chains in a context-free grammar. The input transi
tion function is obtained from the X-closure of the states and the transition function of the 
NFA-X.

Definition 5.6.2

The input transition function / of an NFA-X M is a function from Q x E to !P(Q) defined 
by

t ( q j , a ) =  [ J  k-closure(&(qj, a)),
qj€k-closure(qj)

where S is the transition function of M.
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String
Path Processed

<7|. <?2 a
9b <?2 . <?3 a
<7|. <?4 *

9 l .  9 4 . <75

<?|. <74. 95- <76 a

FICURE 5.3

The input transition function has the same form as the transition function of an NFA. 
That is, it is a function from Q x £  to sets of states. For an NFA without X-transitions, the 
input transition function t is identical to the transition function 5 of the automaton.

Paths with X-transitions.

Example 5.6.1

Transition tables are given for the transition function S and the input transition function t 
of the NFA-X with state diagram M. The language of M is a +c*b*.

s a b c X

<?o (9 o . <7|. <?2> 0 0 0

<7i 0 l<?i) 0 0

<72 0 0 {<?:} (<?.}

t a b c

<7o {<?0. <?|. <?2l 0 0

<?i 0 {<?|} 0

<?2 0 {<7|} {<7i. 92}

The input transition function of an NFA-X is used to construct an equivalent DFA. 
Acceptance in a nondeterministic machine is determined by the existence of a computation 
that processes the entire string and halts in an accepting state. There may be several paths 
in the state diagram of an NFA-X that represent the processing of an input string, while the 
state diagram of a DFA contains exactly one such path. To remove the nondeterminism, the 
DFA must simulate the simultaneous exploration of all possible computations in the NFA-X.

Algorithm 5.6.3 iteratively builds the state diagram of a deterministic machine equiv
alent to an NFA-X M. The nodes of the DFA, called DM for deterministic equivalent o f  M,  
are sets of nodes of M. The start node of DM is the X-closure of the start node of M. The key 
to the algorithm is step 2.1.1, which generates the nodes of the deterministic machine. If X 
is a node in DM, the set Y is constructed that contains all the states that can be entered by 
processing the symbol a from any state in the set X. This relationship is represented in the 
state diagram of DM by an arc from X to Y labeled a. The node X is made deterministic by
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producing an arc from it for every symbol in the alphabet. New nodes generated in step 2.1.1 
are added to the set Q' and the process continues until every node in Q' is deterministic.

Algorithm 5.6.3
Construction o f  DM, a DFA Equivalent to NFA-A. M

input: an NFA-X M =  (Q, E , S, q0, F) 
input transition function / of M

1. initialize Q' to k-closure(qo)
2. repeat

2.1. if  there is a node X 6 Q' and a symbol a € E with no arc 
leaving X labeled a, then

2.1.1. let Y =  (<?,-, a)

2.1.2. if Y £  Q', then set Q' := Q' U {Y)
2.1.3. add an arc from X to Y labeled a 

else done :=  true
until done

3. the set of accepting states of DM is F' =  {X e  Q ' | X contains an element e  F)

The NFA-X from Example 5.6.1 is used to illustrate the construction o f nodes for the 
equivalent DFA. The start node of DM is the singleton set containing the start node of M. 
A transition from qQ processing an a can terminate in q0, q x, or q2. We construct a node 
{<7o. <?i> 92) f°r the DFA and connect it to {g0} by an arc labeled a. The path from {<?0} to 
[q^, q\, q2) in DM represents the three possible ways of processing the symbol a from state 
q0 in M.

Since DM is to be deterministic, the node {<7 0 ) must have arcs labeled b  and c leaving 
it. Arcs from q0 to 0 labeled b and c are added to indicate that there is no action specified 
by the NFA-X when the machine is in state q0 scanning these symbols.

The node (<?0) has the deterministic form; there is exactly one arc leaving it for 
every member of the alphabet. Figure 5.4(a) shows DM at this stage of its construction. 
Two additional nodes, {q0, q x, q2) and 0, have been created. Both of these must be made 
deterministic.

An arc leaving node {q0, q x, q2) terminates in a node consisting of all the states that 
can be reached by processing the input symbol from the states q0, q x, or q2 in M. The 
input transition function t(qj, a) specifies the states reachable by processing an a from 

The arc from {<y0, q h q2] labeled a terminates in the set consisting of the union of the 
t(q0, a), t (q x, a), and t(q2, a). The set obtained from this union is again [qQ, q x, q2). An 
arc from {q0, q x, q2) to itself is added to the diagram designating this transition.

The empty set represents an error state for DM. A computation enters 0 on reading an 
a in state Y only if there is no transition for a for any qt € Y. Once in 0, the computation
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b, c

(a) (b)

FIGURE 5.4 Construction o f  equivalent deterministic automaton.

processes the remainder of the input and rejects the string. This is indicated in the state 
diagram by the arc from 0 to itself labeled by each alphabet symbol.

Figure 5.4(b) gives the completed deterministic equivalent of the M. Computations 
of the nondeterministic machine with input aaa  can terminate in state q0, q h and q2- The 
acceptance of the string is exhibited by the path that terminates in q\. Processing aaa  in DM 
terminates in state {q0, q {, q2). This state is accepting in DM since it contains the accepting 
state q x of M.

The algorithm for constructing the deterministic state diagram consists of repeatedly 
adding arcs to make the nodes in the diagram deterministic. As arcs are constructed, new 
nodes may be created and added to the diagram. The procedure terminates when all the 
nodes are deterministic. Since each node is a subset of Q, at most card(7 (Q ))  nodes can 
be constructed. Algorithm 5.6.3 always terminates since card(‘J>(Q))card(H)  is an upper 
bound on the number of iterations of the repeat-until loop. Theorem 5.6.4 establishes the 
equivalence of M and DM.
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Theorem 5.6.4

Let w 6 2* and Qu, =  {qW[, qW2......... qw.) be the set of states entered upon the completion

of the processing of the string w in M. Processing w in DM terminates in state Qu,.

Proof. The proof is by induction on the length of the string w. A computation of M that 
processes the empty string terminates at a node in \-c losure(q0). This set is the start state 
of DM.

Assume the property holds for all strings of length n and let w =  ua be a string of length 
n +  1. LetQ„ =  {qU[, q„2, . . . ,  qUk} be the terminal states of the paths obtained by processing 
the entire string u in M. By the inductive hypothesis, processing u in DM terminates in Q„. 
Computations processing ua in M terminate in states that can be reached by processing an 
a from a state in Qu. This set, Q^„ can be defined using the input transition function:

k

i=i

This completes the proof since Qu, is the state entered by processing a from state Qu of DM.
■

The acceptance of a string in a nondeterministic automaton depends upon the existence 
of one computation that processes the entire string and terminates in an accepting state. The 
node Qu, contains the terminal states of all the paths generated by computations in M that 
process w. If w is accepted by M, then Qu, contains an accepting state of M. The presence 
of an accepting node makes Qw an accepting state of DM and, by the previous theorem, w 
is accepted by DM.

Conversely, let w be a string accepted by DM. Then Qw contains an accepting state of 
M. The construction of guarantees the existence of a computation in M that processes 
w and terminates in that accepting state. These observations provide the justification for 
Corollary 5.6.5.

Corollary 5.6.5

The finite automata M and DM are equivalent.

Example 5.6.2

The NFA

a b

accepts the language a +b+. The construction of an equivalent DFA is traced in the following 
table.
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State Symbol NFA Transitions Next State

too) a £(9o- a ) — l9o> 9 i) (9o. 9 i)

<9o) b S(9o. b) = 0 0

too. <?i) a S(9o. a) =  (9o. 9 i) 

S(9i. a) =  0
l<7o. 9 i l

(<7o- 9 i) b 5(9o. b) = 0 
i(9 i>  b) =  {91, 92)

(9|. 92)

a &(qh a) =  0 

S(q2, a) =  0

0

(9 l.9 2 l b 5(9,. b) =  {<7i, q2) 

S(q2, b) =  0
(91.92)

Since M is an NFA, the transition function S of M serves as the input transition function 
and the start state of the equivalent DFA is {<7q}. The resulting DFA is

a

□

Example 5.6.3

As seen in the preceding examples, the states of the DFA constructed using Algorithm 5.6.3 
are sets of states of the original nondeterministic machine. If the nondeterministic machine 
has n states, the DFA may have 2" states. The transformation of the NFA

a
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shows that the theoretical upper bound on the number of states may be attained. The start 
state of DM is (<?o) since M does not have X-transitions.

a

□

Example 5.6.4

The machines Mj and M2 accept a(ba)* and a*, respectively.

a

Using X-arcs to connect a new start state to the start states of the original machines creates 
an NFA-X M that accepts a(ba)* U a*.
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The input transition function for M is

t a b

<7o {<72. <?3> 0

<7i {<?2) 0

<72 0 {<7.1

<73 {<73) 0

The equivalent DFA obtained from Algorithm 5.6.3 is

a

a

Algorithm 5.6.3 completes the following cycle describing the relationships between 
the classes of finite automata.

DFA -------  -----  NFA -  X

NFA

The arrows represent inclusion; every DFA can be reformulated as an NFA that is, in turn, 
an NFA-X. The double arrow from NFA-X to DFA indicates the existence o f an equivalent 
deterministic machine.
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5.7 DFA Minimization

The preceding sections established that the family of languages accepted by DFAs is the 
same as that accepted by NFAs and NFA-As. The flexibility of nondeterminism and X- 
transitions aid in the design of machines to accept complex languages. The nondeterministic 
machine can then be transformed into an equivalent deterministic machine using Algorithm
5.6.3. The resulting DFA, however, may not be the minimal DFA that accepts the language. 
This section presents a reduction algorithm that produces the minimal state DFA accepting 
the language L from any DFA that accepts L. To accomplish the reduction, the notion of 
equivalent states in a DFA is introduced.

Definition 5.7.1

Let M = (Q, E , 8, q0, F) be a DFA. States qt and qj  are equivalent if £(</,■, u) e  F if, and 

only if, 8(qj, u) 6 F for every u 6 E*.

Two states that are equivalent are called indistinguishable. The binary relation over 
Q defined by indistinguishability of states is an equivalence relation; that is, the relation 
is reflexive, symmetric, and transitive. Two states that are not equivalent are said to be 
distinquishable. States qj and qj are distinguishable if there is a string u such that 8(qt , u) € 

F and &(qj, u) £  F, or vice versa.
The motivation behind this definition of equivalence is illustrated by the following 

states and transitions;

The unlabeled dotted lines entering q, and qj  indicate that the method of reaching a 
state is irrelevant; equivalence depends only upon computations from the state. The states 
9i and qj  are equivalent since the computation with any string beginning with b from either 
state halts in an accepting state and all other computations halt in the nonaccepting state qk. 
States qm and q„ are also equivalent; all computations beginning in these states end in an 
accepting state.

The intuition behind the transformation is that equivalent states may be merged. Ap
plying this to the preceding example yields
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To reduce the size of a DFA M by merging states, a procedure for identifying equivalent 
states must be developed. In the algorithm to accomplish this, each pair o f states qt and 
<jj, i <  j ,  has associated with it values D[i, j]  and S[i, j], D[i, j]  is set to 1 when it is 
determined that the states </,- and qj are distinguishable. 5[m, si] contains a set of indices. 
Index [/, j ]  is in the set S[m, «] if the distinguishability of q, and qj  follows from that of 
qm and qn.

The algorithm begins by marking each pair of states qt and qj  as distinguishable if 
one is accepting and the other is rejecting. The remainder of the algorithm systematically 
examines each nonmarked pair of states. When two states are shown to be distinguishable, a 
call to a recursive routine DIST sets D[i, j]  to 1. The call D I S T (/, j )  not only marks qt and 
qj as distinguishable, it also marks each pair of states qm and q„ for which [m, n] € S[«, j]  
as distinguishable through a call to D I  ST (m , n).

Algorithm 5.7.2
Determination o f  Equivalent States o f  DFA

input: DFA M = (Q, E , 8, q0, F)

1. (Initialization)
for every pair of states q, and q} , i < j ,  do

1.1. D[i, y ']:= 0
1.2. 5 [ » , ; ] : = 0  

end for
2. for every pair /, j ,  i < j ,  if one of q, or qj is an accepting state and the other is 

not an accepting state, then set D[/, j ]  := 1
3. for every pair i, j ,  i < j ,  with D[i, j]  =  0, do

3.1. if there exists an a € S  such that 8(qh  a ) =  qm, 8(qj, a ) =  q„ and
D[tn, ti] =  1 or D[n, m] =  1, then DIST(i, j )

3.2. else for each a e  E , do: Let 8(qh a ) =  qm and 8(qJy a )  = q„
if m < n  and [i, y] ?£ [m, «], then add [/', j ] to S[m, rt] 

else if m >  n and [i, j ]  [n, m), then add [i, j]  to S[n, m]
end for

DIST(i, j)-  
begin

DU, j] := 1
for all [m, n) € 5[i, j],  DIST(m, n) 

end
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The motivation behind the identification of distinguishable states is illustrated by the 

relationships in the diagram

If qm and qn are already marked as distinguishable when qt and qj  are examined in step 3, 
then D[i, j]  is set to 1 to indicate the distinguishability of qt and qj. If the status of qm 
and qn is not known when qj and qj are examined, then a later determination that qm and 
q„ are distinguishable also provides the answer for qt and qj.  The role of the array S is to 
record this information: [/, j]  e  S[n, m] indicates that the distinguishability o f qm and q„ is 
sufficient to establish the distinguishability of qj and qr  These ideas are formalized in the 
proof of Theorem 5.7.3.

Theorem 5.7.3

States qj and qj are distinguishable if, and only if, D[i, j ]  =  1 at the termination of 
Algorithm 5.7.2.

Proof. First we show that every pair of states q, and qs for which D[i, j]  =  1 is distin
guishable. If D[i, j]  is assigned 1 in the step 2, then qt and qj  are distinguishable by the null 
string. Step 3.1 marks qj and qj as distinguishable only if <5(g,-, a) =  qm and 8(q j , a) =  qn 
for some input a when states qm and q„ have already been determined to be distinguishable 
by the algorithm. Let u be a string that exhibits the distinguishability of qm and q„. Then 
au exhibits the distinguishability of qt and qj.

To complete the proof, it is necessary to show that every pair of distinguishable states 

is designated as such. The proof is by induction on the length of the shortest string that 
demonstrates the distinguishability of a pair of states. The basis consists of all pairs of states 
qi, qj that are distinguishable by a string of length 0. That is, the computations 8(q,, X) =  <?, 

and S(qj, X) =  qj  distinguish qt from qj.  In this case, exactly one of q, or q j  is accepting 
and the position D[i, j ]  is set to 1 in step 2.

Now assume that every pair of states distinguishable by a string of length k or less is 
marked by the algorithm. Let qt and q} be states for which the shortest distinguishing string 
u has length k +  1. Then u can be written av  and the computations with input u have the form 
8(qt, u) =  &(qh av) =  S(qm, v) =  qs and 8(qj, u) = 8(qj , av) = 8(q„, u) =  qt -Exactly one 
of qs and q, is accepting since the preceding computations distinguish qt from qj. Clearly, 
the same computations exhibit the distinguishability of qm from qn by a string of length k. 
By induction, we know that the algorithm will set D[m, n] to 1.

If D[m, n] is marked before the states q, and q^ are examined in step 3, then D[i, j]  
is set to 1 by the call D IS T ( i ,  j ) .  If qt and qj are examined in the loop in step 3.1 and 
D im , n] ^  1 at that time, then [i, 7 ] is added to the set S[m, «]. By the inductive hypothesis, 
D[m, m] will eventually be set to 1. D[i, j]  will also be set to 1 at this time by a recursive 
call from D I S T ( m ,n )  since [/, j]  is in 5[m, /1]. a

a

a
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A new DFA M' can be built from the original DFA M =  (Q, £ ,  <5, <?o- F) an^ the 
indistinguishability relation. The states of M' are the equivalence classes consisting of 
indistinguishable states of M. The start state is [<?0], and [<?,] is a final state if q, € F. 
The transition function S' of M' is defined by £'([?j], a) =  [S(^f, a)]. In Exercise 44, S' 
is shown to be well defined. L(M') consists of all strings whose computations have the form 
c5'([<y0], u) =  [£(<?,, A.)] with qj €  F. These are precisely the strings accepted by M. If M' has 
states that are unreachable by computations from [<y0], these states and all associated arcs 
are deleted.

Example 5.7.1

The minimization process is exhibited using the DFA M

that accepts the language (a U b)(a U b*).

In step 2. D[0, 1], D[0, 2], D[0, 3], D[0. 4], D[0, 5], D[0. 6 ], D [l, 7], D[2, 7], D[3, 7], 
D[4, 7], D[5, 7], and £>[6 , 7] are set to 1. Each index not marked in step 2 is examined in 
step 3. The table shows the action taken for each such index.

Index Action Reason

[0. 7] D[0. 7] =  1 Distinguished by a

[1. 2] £>[1, 2]=  1 Distinguished by a

[1,3] D [1 .3 ]= l Distinguished by a

[1.4] 5[2.5] =  ([1.4]}
5[3. 6] =  {[1.4]}

[1. 51 D [1.5]= 1 Distinguished by a
[1. 6] D[l. 6] =  1 Distinguished by a

[2, 3] D\2. 3 ]=  1 Distinguished by b

(Continued)
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Index Action Reason

[2, 4] D[2, 4 ]=  1 Distinguished by a

[2, 5] No action since 3 (q2,x )  = &(qs, x) for every

[2, 6] D[2, 6] =  1 Distinguished by b

[3, 4] 0[3, 4] =  1 Distinguished by a

[3, 5] P[3, 5] =  1 Distinguished by b

[3, 6]
[4, 5] D[4, 5] =  1 Distinguished by a

[4, 6] D[4, 6] =  1 Distinguished by a

[5, 6] D[5, 6] =  1 Distinguished by b

After each pair of indices is examined, [1, 4], [2, 5], and [3, 6 ] are left as equivalent 
pairs of states. Merging these states produces the minimal state DFA M ' that accepts 
(a U b)(a U b*).

Example 5.7.2

Minimizing the DFA M illustrates the recursive marking of states by the call to DIST. The 
language of M is a(q  U b)* U ba(a U b)* U bba (a U b)*.

C>“

The comparison of accepting states to nonaccepting states assigns 1 to D[0, 4], D[0, 5], 
£»[0, 6 ], D [l, 4], D [l, 5], D [l, 6 ], D[2, 4], D[2, 5], D[2, 6 ], D[3, 4], D[3, 5], and D[3, 6]. 
Tracing the algorithm produces
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Index Action Reason

[0 ,1 ] S[4, 5] =  {[0, 1]) 

5(1. 2 ] = ( [0 ,  1]}

[0, 2] S[4, 6] =  {[0, 2]} 

S[l, 3] =  {[0, 2])

[0, 3] £)[0, 3] =  1 Distinguished by a

[1,2] S[5, 6] =  ([1, 2]( 

S[2, 3] =  ([1, 2]}

(1. 3] 0 [1 , 3 ] =  1 Distinguished by a

£>[0, 2] =  1 Call to DIST (I, 3)

(2, 3] D[2, 3 ] = 1 Distinguished by a

£>[1, 2 ] =  1 Call to DIST (I, 2)

[4, 5] 

[4, 6] 

[5, 6]

£>[0, 1] =  1 Call to DIST(0, 1)

Merging equivalent states q4, q5, and q6 yields

The minimization algorithm completes the sequence of algorithms required for the con
struction of optimal DFAs. Nondeterminism and ^-transitions provide tools for designing 
finite automata to match complicated patterns or to accept complex languages. Algorithm 
5.6.3 can then be used to transform the nondeterministic machine into a DFA, which may not 
be minimal. Algorithm 5.7.2 completes the process by producing the minimal state DFA.

For the moment, we have presented an algorithm for DFA reduction but have not 
established that it produces the minimal DFA. In Section 6.7 we prove the Myhill-Nerode 
Theorem, which characterizes the language accepted by a finite automaton in terms of 
equivalence classes of strings. This characterization will then be used to prove that the 
machine M' produced by Algorithm 5.7.2 is the unique minimal state DFA that accepts L.
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Exercises

1. Let M be the deterministic finite automaton defined by

Q =  too. <?i< <72! i a b

E =  [a, b } <7o <?0 <7l

F={<72}
<7l <72 <7i

<?2 92 <7o

a) Give the state diagram of M.

b) Trace the computations of M that process the strings abaa, bbbabb, bababa, and 
bbbaa.

c) Which of the strings from part (b) are accepted by M?

d) Give a regular expression for L(M).

2. Let M be the deterministic finite automaton

Q =  Wo- <?1. <72) S a b

E =  [a, b } <70 <7i <7o

F =  {<7o) 9l <7i <72

<72 <?i <7o

a) Give the state diagram of M.

b) Trace the computation of M that processes babaab.

c) Give a regular expression for L(M).

d) Give a regular expression for the language accepted if both q0 and q\ are accepting 
states.

3. Let M be the DFA with state diagram

b a

a) Construct the transition table of M.

b) Which of the strings baba , baab, abab, abaaab  are accepted by M?

c) Give a regular expression for L(M).
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* 4. The recursive step in the definition of the extended transition function (Definition 5.2.4) 
may be replaced by S' (<?,-, au)  =  S'(S(qh a), u), for all u e  2*, a € £ ,a n d  qt € Q. Prove 

that 5 =  5'.

For Exercises 5 through 21, build a DFA that accepts the described language.

5. The set of strings over {a, b, c) in which all the a ’s precede the b's, which in turn 
precede the c ’s. It is possible that there are no a ’s, b’s, or c ’s.

6. The set of strings over {a, b\ in which the substring aa  occurs at least twice.

7. The set of strings over {a, b] that do not begin with the substring aaa.

8. The set of strings over {a, b] that do not contain the substring aaa.

9. The set of strings over {a, b, c) that begin with a, contain exactly two b ’s, and end with 
cc.

10. The set of strings over {a, b, c} in which every b is immediately followed by at least 
one c.

11. The set of strings over {a , b) in which the number of a ’s is divisible by three.

12. The set of strings over {a, b} in which every a is either immediately preceded or 
immediately followed by b, for example, baab, aba, and b.

13. The set of strings of odd length over {a, b } that contain the substring bb.

14. The set of strings over [a, b) that have odd length or end with aaa.

15. The set of strings of even length over {a, b, c} that contain exactly one a.

16. The set of strings over [a, b) that have an odd number of occurrences o f the substring 
aa. Note that aaa  has two occurrences of aa.

17. The set of strings over {a, b] that contain an even number of substrings ba.

18. The set of strings over {1, 2, 5} the sum of whose elements is divisible by six.

19. The set of strings over [a, b, c) in which the number of a ’s plus the number of b's plus 
twice the number of c ’s is divisible by six.

20. The set of strings over {a, b} in which every substring of length four has at least one b. 
Note that every substring with length less than four is in this language.

* 21. The set of strings over {a, b, c) in which every substring of length four has exactly one 
b.

22. For each of the following languages, give the state diagram of a DFA that accepts the 
languages.

a) (ab)*ba

b) (ab)*(ba)*

c) aa(a  U b)+bb

d) ((aa)+bb)*

e) (ab*a)*
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b

a) Construct the transition table of M.

b) Trace all computations of the string aaabb  in M.

c) Is aaabb  in L(M)?

d) Give a regular expression for L(M).

24. Let M be the nondeterministic finite automaton

a

a) Construct the transition table of M.

b) Trace all computations of the string aabb  in M.

c) Is aabb  in L(M)?

d) Give a regular expression for L(M).

e) Construct a DFA that accepts L(M).

f ) Give a regular expression for the language accepted if both q0 and q \ are accepting 
states.

25. For each of the following languages, give the state diagram of an NFA that accepts the 
languages.

a) ( a U a b U  aab)*

b) (ab)* U a*

c) (abc)*a*

d) (ba U bb)* U (ab U aa)*

e) (ab+a)+

26. Give a recursive definition of the extended transition function 6 of an NFA-A.. The value 
S(qj( w) is the set of states that can be reached by computations that begin at node q, 
and completely process the string w.
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For Exercises 27 through 34, give the state diagram of an NFA that accepts the given
language. Remember that an NFA may be deterministic, but you should use nondeterminism

whenever it is appropriate.

27. The set of strings over [a, b } that contain either aa and bb as substrings.

28. The set of strings over {a, b } that contain both or neither aa  and bb as substrings.

* 29. The set of strings over {a, b] whose third-to-the-last symbol is b.

30. The set of strings over [a, b) whose third and third-to-last symbols are both b. For 
example, aababaa, abbbbbbbb, and abba are in the language.

31. The set of strings over [a, b) in which every a is followed by b or ab.

32. The set of strings over [a, b} that have a substring of length four that begins and ends 
with the same symbol.

33. The set of strings over {a , b } that contain substrings aaa  and bbb.

34. The set of strings over {a, b, c} that have a substring of length three containing each 
of the symbols exactly once.

35. Construct the state diagram of a DFA that accepts the strings over {a, b) ending with 
the substring abba. Give the state diagram of an NFA with six arcs that accepts the 
same language.

36. Let M be the NFA-X

a) Compute X-closure(qj) for i =  0, 1, 2.

b) Give the input transition function t for M.

c) Use Algorithm 5.6.3 to construct a state diagram of a DFA that is equivalent to M.

d) Give a regular expression for L(M).
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37. Let M be the NFA-X

b

x g

@
b

a

a) Compute \-closure(qj)  for i =  0, 1, 2, 3.

b) Give the input transition function t for M.

c) Use Algorithm 5.6.3 to construct a state diagram of a DFA that is equivalent to M.

d) Give a regular expression for L(M).

38. Use Algorithm 5.6.3 to construct the state diagram of a DFA equivalent to the NFA in 
Example 5.5.2.

39. Use Algorithm 5.6.3 to construct the state diagram of a DFA equivalent to the NFA in 
Exercise 17.

40. For each of the following NFAs, use Algorithm 5.6.3 to construct the state diagram of 
an equivalent DFA.

a) ^
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41. Build an NFA M ( that accepts (ab)* and an NFA M2 that accepts (ba)*. Use X- 
transitions to obtain a machine M that accepts (ab)*(ba)*. Give the input transition 
function of M. Use Algorithm 5.6.3 to construct the state diagram of a DFA that accepts 
L(M).

42. Build an NFA M! that accepts (aba)+ and an NFA M2 that accepts (ab)*. Use X- 
transitions to obtain a machine M that accepts (aba)+ U (ab)*. Give the input transition 
function of M. Use Algorithm 5.6.3 to construct the state diagram of a DFA that accepts 
L(M).

43. Assume that q: and qj  are equivalent states of a DFA M (as in Definition 5.7.1) and 

S(qt , u) =  qm and S(qj, u) =  q„ for a string u € £*. Prove that qm and qn are equivalent.

* 44. Show that the transition function S' obtained in the process of merging equivalent 
states is well defined. That is, show that if.g, and q,  are states with [<?,] =  ■], then 
£'([<?/]. a) =  S'([qj\, a) for every a e  E.

45. For each DFA:

i) Trace the actions of Algorithm 5.7.2 to determine the equivalent states of M. Give 
the values of D[i, j]  and 5[i, j]  computed by the algorithm.

ii) Give the equivalence classes of states.

iii) Give the state diagram of the minimal state DFA that accepts L(M).
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a a

b) b
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CHAPTER 6

Properties of Regular 
Languages

Grammars were introduced as language generators, finite automata as language acceptors, 
and regular expressions as pattern descriptors. This chapter develops the relationship be
tween these three approaches to language definition and explores the limitations of finite 
automata as language acceptors.

6.1 Finite-State Acceptance o f Regular Languages

In this section we show that an NFA-X can be constructed to accept any regular language. 
Regular sets are built recursively from 0, {X}, and singleton sets containing elements 
from the alphabet by applications of union, concatenation, and the Kleene star operation 
(Definition 2.3.2). The construction of an NFA-X that accepts a regular set can be obtained 
following the steps of its recursive generation, but using state diagrams as the building 
blocks rather than sets.

State diagrams for machines that accept 0, {X}, and singleton sets {a) are

191
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Note that each of these machines satisfies the restrictions described in Lemma 5.5.2. That 
is, the machines contain a single accepting state and there are no arcs entering the start state 
or leaving the accepting state.

As shown in Theorem 5.5.3, A-transitions can be used to combine machines of this form 
to produce machines that accept more complex languages. Using repeated applications of 
these techniques, the construction of the regular expression from the basis elements can 
be mimicked by the corresponding machine operations. This process is illustrated in the 
following example.

Example 6.1.1

An NFA-A that accepts (a U b)*ba is constructed following the steps in the recursive 
definition of the regular expression. The language accepted by each intermediate machine 
is indicated by the regular expression above the state diagram.

a b

>Q^O >0^-0
ba

O ^ O K H -O
(au*)

(aub)*

X

X
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(aub)* ba

6.2 Expression Graphs

The construction in the previous section demonstrates that every regular language is rec
ognized by a finite automaton. We will now show that every language accepted by a finite 
automaton is regular by constructing a regular expression for the language o f the machine. 
To accomplish this, we extend the notion of a state diagram.

Definition 6.2.1

An expression graph is a labeled directed graph in which the arcs are labeled by regular 
expressions. An expression graph, like a state diagram, contains a distinguished start node 
and a set of accepting nodes.

The state diagram of a finite automaton with alphabet E is a special case of an 
expression graph; the labels consist of k  and expressions corresponding to the elements of 
E. Paths in expression graphs generate regular expressions. The language o f an expression 
graph is the union of the regular expressions along paths from the start node to an accepting 
node. For example, the expression graphs

ab b+a ba ba bb

accept the languages (ab)*, (b+a)*(a U b)(ba)*, and (ba)*b*(bb U (a+(ba)*b*))*, respec
tively.

Because of the simplicity of the graphs, the expressions for the languages accepted 
by the previous examples were obvious. A procedure is developed to reduce an arbitrary 
expression graph to an expression graph containing at most two nodes. The reduction is 
accomplished by repeatedly removing nodes from the graph in a manner that preserves the 
language of the graph.

The state diagram of a finite automaton may have any number of accepting states. 
Each of these states exhibits the acceptance of a set of strings, the strings whose processing
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successfully terminates in the state. The language of the machine is the union of these sets. 
By Lemma 5.5.2, we can convert an arbitrary finite automaton to an equivalent NFA-X 
with a single accepting set. To simplify the generation of a regular expression from a finite 
automaton, we will assume that the machine has only one accepting state.

The numbering of the states of the NFA-X will be used in the node deletion algorithm 
to identify paths in the state diagram. The label of an arc from state <?, to state qj  is denoted 
Wjj.  If there is no arc from node qf to qj, Wjj =  0.

Algorithm 6.2.2
Construction o f  a Regular Expression from a Finite Automaton

input: state diagram G of a finite automaton with one accepting state

Let q0 be the start state and q, the accepting state of G.
1. repeat

1.1. choose a node qt that is neither q0 nor q,
1.2. delete the node q, from G according to the following procedure:

1.2.1 for every j ,  k not equal to i (this includes j  =  k) do
i) if Wj'jjt 0, w i k ^  0 and u>,-( =  0, then add an arc

from node j  to node k labeled u i j (w ik
ii) if U>i'k^  0 and 0, then add an arc from 

node qj to node qk labeled w j i(wi i)*wi k
iii) if nodes qj and qk have arcs labeled u>j, u>2, . . . , ws

connecting them, then replace the arcs by a single 
arc labeled u>iUu>2 U • • • U ws

1.2.2 remove the node qf and all arcs incident to it in G 
until the only nodes in G are q0 and q,

2. determine the expression accepted by G

The deletion of node is accomplished by finding all paths qj, <?,, qk of length two 
that have q( as the intermediate node. An arc from qj to qk is added, bypassing the node 
q^  If there is no arc from qt to itself, the new arc is labeled by the concatenation of the 
expressions on each of the component arcs. If w, , ^  0, then the arc tu, ,■ can be traversed 
any number of times before following the arc from qj to qk. The label for the new arc is 
wj.i(vui.i)*vui,k- These graph transformations are illustrated as follows:

H 'l. i

Step 2 in the algorithm may appear to be begging the question; the objective of the entire 
algorithm is to determine the expression accepted by G. After the node deletion process is
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completed, the regular expression can easily be obtained from the resulting graph. The 
reduced graph has at most two nodes, the start node and the accepting node. If these are the 

same node, the reduced graph has the form

u

accepting u*. A  graph with distinct start and accepting nodes reduces to

u h>

and accepts the expression u*v(w U xu*v)*. This expression may be simplified if any of 
the arcs in the graph are labeled 0.

Algorithm 6.2.2 can also be used to construct the language of a finite state machine 
with multiple accepting states. For each accepting state, we can produce an expression for 
the strings accepted by that state. The language of the machine is simply the union of the 
regular expressions obtained for each accepting state.

Example 6.2.1

The reduction technique of Algorithm 6.2.2 is used to generate a regular expression for the 
language of the NFA with state diagram

Deleting node q j yields
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The deletion of q\ produced a second path from q$ to q$, which is indicated by the union in 
the expression on the arc from q3  to q$. Removing <72 produces

abba

b v b b

with associated language (abb*a)*(b U bb)(a(abb*a)*(b U bb))'.  □

The results of the previous two sections yield a characterization of regular languages 
originally established by Kleene. The construction outlined in Section 6 .1 can be used to 
build an NFA-A. to accept any regular language. Conversely, Algorithm 6.2.2 produces a 
regular expression for the language accepted by a finite automaton. Using the equivalence 
of deterministic and nondeterministic machines, Kleene’s Theorem can be expressed in 
terms of languages accepted by deterministic finite automata.

Theorem 6.2.3 (Kleene)

A language L is accepted by a DFA with alphabet E if, and only if, L is a regular language 
over E.

6.3 Regular Grammars and Finite Automata

A context-free grammar is called regular (Section 3.3) if each rule is of the form A —*■ 
aB , A —> a, or A -*■ X. A string derivable in a regular grammar contains at most one 
variable which, if present, occurs as the rightmost symbol. A derivation is terminated by 
the application of a rule of the form A -*■ a or A —►  X.

The language a +b+ is generated by the grammar G and accepted by the NFA M

G: S —*■ aS  | aA a b

A - > b A \ b
M:

where the states of M have been named S, A, and Z to simplify the comparison of com
putation and generation. The computation of M that accepts aabb  is given along with the 
derivation that generates the string in G.

String
Derivation Computation Processed

5 => aS [5, aabb] 1- [S, abb] a
=> aaA h  [A, bb] aa
=> aab A )~lA.b] aab
=> aabb h [Z. X] aabb
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A computation in an automaton begins with the input string, sequentially processes 
the leftmost symbol, and halts when the entire string has been analyzed. Generation, on the 
other hand, begins with the start symbol of the grammar and adds terminal symbols to the 
prefix of the derived sentential form. The derivation terminates with the application of a 
X-rule or a rule whose right-hand side is a single terminal.

The example illustrates the correspondence between generating a terminal string with 
a regular grammar and processing the string by a computation of an automaton. The state 
of the automaton is identical to the variable in the derived string. A computation terminates 
when the entire string has been processed, and the result is designated by the final state. 
The accepting state Z, which does not correspond to a variable in the grammar, is added to 
M to represent the completion of the derivation of G.

The state diagram of an NFA M can be constructed directly from the rules of a grammar 
G. The states of the automaton consist of the variables of the grammar and, possibly, an 
additional accepting state. In the previous example, transitions 5(5, a)  =  S, S(S, a) =  A, 
and <5(A, b) =  A of M correspond to the rules S  —► aS, S  —►  a A, and A -*■ bA  of G. The 
left-hand side of the rule represents the current state of the machine. The terminal on the 
right-hand side is the input symbol. The state corresponding to the variable on the right-hand 
side of the rule is entered as a result of the transition.

Since the rule terminating a derivation does not add a variable to the string, the 
consequences of an application of a X-rule or a rule of the form A  -»  a must be incorporated 
into the construction of the corresponding automaton.

Theorem 6.3.1

Let G =  (V, L , P, S) be a regular grammar. Define the NFA M =  (Q, E , S, S, F) as 
follows:

^  q _  |  V U (Z )  where Z  & V, if P contains a rule A —>■ a 
( V otherwise.

ii) &(A, a) =  B whenever A —> aB  € P
5(A, a) =  Z  whenever A —*■ a € P.

j { A |A ^ X e P } U { Z }  if Z e  Q 
( {A | A -*■ X € P} otherwise.

Then L(M) =  L(G).

Proof. The construction of the machine transitions from the rules of the grammar allows 
every derivation of G to be traced by a computation in M. The derivation of a terminal 
string has the form S => X, S =$ wC  => wa, or S =$ wC  => w where the derivation S => wC  
consists of the application of rules of the form A -> aB.  Induction can be used to establish 
the existence of a computation in M that processes the string w and terminates in state C 
whenever wC  is a sentential form of G (Exercise 6).

First we show that every string generated by G is accepted by M. If L(G) contains the 
null string, then S  is an accepting state of M and X e  L(M). The derivation of a nonnull 
string is terminated by the application of a rule C -> a or C X. In a derivation of the 

form S wC  =» wa, the final rule application corresponds to the transition S(C, a) =  Z,
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causing the machine to halt in the accepting state Z. A derivation of the form S  => wC  => w 
is terminated by the application of a X-rule. Since C —►  X is a rule of G, the state C is 
accepting in M. The acceptance of w in M is exhibited by the computation that corresponds

to the derivation S => wC.
Conversely, we must show that L(M) C L(G). Let w  =  ua be a string accepted by M. 

A computation accepting w has the form

[5, w] F- [B, X], where B #  Z,

or

[5, u>] (*■ [A, a] I- [Z, X],

In the former case, B is the left-hand side of a X-rule of G. The string w B  can be derived by 
applying the rules that correspond to transitions in the computation. The generation of w is 
completed by the application of the X-rule. Similarly, a derivation of u A can be constructed 
from the rules corresponding to the transitions in the computation [5, to] F  [A, a]. The 
string w is obtained by terminating this derivation with the rule A —*■ a. Thus every string 
accepted by M is in the language of G. ■

Example 6.3.1

The grammar G generates and the NFA M accepts the language a*(a U b+).

G: S - + a S \ b B  \a  M 

B ->■ bB  | X

The preceding transformation can be reversed to construct a regular grammar from 
an NFA. The transition S(A, a) =  B produces the rule A -> aB.  Since every transition 
results in a new machine state, no rules of the form A —>• a are produced. The rules obtained 
from the transitions generate derivations of the form S => wC  that mimic computations in 
the automaton. Rules must be added to terminate the derivations. When C is an accepting 
state, a computation that terminates in state C exhibits the acceptance of w. Completing the 
derivation S  => wC  with the application of a rule C —►  X generates w in G. The grammar 
is completed by adding X-rules for all accepting states of the automaton. This informal 
argument justifies Theorem 6.3.2. The formal proof is left as an exercise.



6.3 R egular  G r a m m a r s  a n d  F in ite  A u t o m a t a  1 9 9

Theorem 6.3.2

LetM  =  (Q, E , 8, q0, F) be an NFA. Define a regular grammar G =  (V, E , P, q0) as 

follows:

i) V =  Q,

ii) qj —►  e  P whenever S {qt , a) = q j ,

iii) q{ -*• X € P if c?, e  F.

Then L(G) =  L(M).

The constructions outlined in Theorems 6.3.1 and 6.3.2 can be applied sequentially to 
shift from automaton to grammar and back again. Beginning with an NFA M, the sequence 
of transformations would have the form

M ------------------»G------------------►M '.

Since G contains only rules of the form A  -*• a B  or A -*■ X, the NFA M' is identical to M.
A regular grammar G can be converted to an NFA that, in tum, can be reconverted into 

a grammar G':

G ---------------------------------------- »G'.

The grammar G' that results from these conversions can be obtained directly from G by 
adding a single new variable, call it Z, to the grammar and the rule Z -*  k. All rules A-*- a 
are then replaced by A —* a Z .

Example 6.3.2

The regular grammar G ' that accepts L(M) is constructed from the automaton M from 
Example 6.3.1.

G': S ^ a S \ b B  \a Z  

B bB \k  

Z  —y k

The transitions provide the S  rules and the first B rule. The X-rules are added since B and 
Z are accepting states. □

The two conversions allow us to conclude that the languages generated by regular 
grammars are precisely those accepted by finite automata. It follows from Theorems 6.2.3 
and 6.3.1 that the language generated by a regular grammar is a regular set. The conversion 
from automaton to regular grammar guarantees that every regular set is generated by some 
regular grammar. This yields the characterization of regular languages promised in Section 
3.3: the languages generated by regular grammars.
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Example 6.3.3

The language of the regular grammar from Example 3.2.12 is the set of strings over {a, b, c) 
that do not contain the substring abc. Theorem 6.3.1 is used to construct an NFA that accepts 
this language.

b, cS

B

C

bS | cS | a B  | X 

aB  | c S | b C  | X 

a B \ b S \ X

Example 6.3.4

A regular grammar with alphabet [a, b) that generates strings with an even number of a ’s and 
an odd number of b's can be constructed from the DFA in Example 5.3.5. This machine is 
reproduced below with the states [ea, eb], [oa, eb], [ea, ob], and [oa , ob] renamed S, A, B, 
and C, respectively.

The associated grammar is

S - * a A \ b B  

A aS  \ bC 

B —>■ bS  \ aC  | X

C -*■ a B  | bA. □

6.4 Closure Properties o f  Regular Languages

Regular languages have been defined, generated, and accepted. A language over an alphabet 
Z is regular if it is

i) a regular set (expression) over E,

ii) accepted by a DFA, NFA, or NFA-X, or

iii) generated by a regular grammar.
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A family of languages is closed under an operation if the application of the operation to 
members of the family produces a member of the family. Each of the equivalent formula
tions of regularity will be used to demonstrate closure properties of the family of regular 
languages.

The recursive definition of regular sets establishes closure for the unary operation 
Kleene star and the binary operations union and concatenation. This was also proved in 
Theorem 5.5.3 using acceptance by finite-state machines.

Theorem 6.4.1

Let L] and L2  be two regular languages. The languages L | U L2, L]L2, and L , are regular 
languages.

The regular languages are also closed under complementation. If L is regular over the 
alphabet E , then so is L =  X* — L, the set containing all strings in E* that are not in L. 
Theorem 5.3.3 used the properties of DFAs to construct a machine that accepts L from 
one that accepts L. Complementation and union combine to establish the closure of regular 
languages under intersection.

Theorem 6.4.2

Let L be a regular language over E. The language L is regular.

Theorem 6.4.3

Let Lj and L2 be regular languages over E. The language L | O L2 is regular.

Proof. By DeMorgan’s Law

L, H L2 =  (Lj U L2).

The right-hand side of the equality is regular since it is built from L| and L2 using union 
and complementation. ■

Closure properties provide additional tools for establishing the regularity of languages. 
The operations of complementation and intersection, as well as union, concatenation, and 
Kleene star, preserve regularity when combining regular languages.

Example 6.4.1

Let L be the language over {a, b] consisting of all strings that contain the substring 
aa  but do not contain bb. The regular languages L> =  (a U b)*aa(a U fe)* and Lj = 
(a U b)*bb(a U b)* consist of strings containing substrings aa and bb, respectively. Hence, 
L =  L, fl L2 is regular. □
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Example 6.4.2

Let L be any regular language over [a, b). The language

L, =  {u | u € L and u has exactly one a]

is regular. The regular expression b*ab* describes the set of strings with exactly one a. The 
language L! =  L n b*ab* is regular since it is the intersection of regular languages. □

The next example exhibits the robustness of the family of regular languages. Adding or 
removing a small number, in fact any finite number, of strings cannot turn a regular language 
into a nonregular language.

Example 6.4.3

Let Li be a regular language over an alphabet E and let L2  C £* be any finite set of 
strings. Then L[ U L2 and L[ — L 2 are both regular. The critical observation is that any 
finite language is regular. Why? The regularity of L* U L2  and L] — L2 then follows from 
the closure of the regular languages under union and set difference (Exercise 8). □

Example 6.4.4

The set SUF(L) =  {v | uv € L) consists of all suffixes of strings of the langauge L. For 
example, if aabb  e  L, then k, b, bb, abb, and aabb  are in SUF(L). We will show that if 
L is regular, then so is SUF(L). Since L is regular, we know that it is defined by a regular 
expression, accepted by a finite automaton, and generated by a regular grammar. We may 
use any of these categorizations of regularity to show that SUF(L) is regular.

Using the grammatical characterization, we know that L is generated by a regular 
grammar G =  (V, E , P, S). We may assume that G has no useless symbols. If it did, we 
would use the algorithm from Section 4.4 to remove them while preserving the language. 

A suffix of v of G is produced by a derivation of the form

S ^ u A ^  uv.

Intuitively, we would like to add a rule S -* A to G to directly generate the suffix

S =>• A v.

Unfortunately, the resulting grammar would not be regular. To fix that problem, we will use 
grammar transformations from Chapter 4.

We begin by defining a new grammar G '=  (V', E , P', S') by

V' =  V U {5')

P' =  P U {S' -> A | A € V}.
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A derivation in G' uses only one rule not in G. Any string in L is produced by a derivation 

of the form

S' => S±> w, 

while the remaining suffixes are generated by

S' => A => w.

Consequently, L(G) = SUF(L). We can obtain an equivalent regular grammar by removing 
X-rules and chain rules from G'. □

6.5 A Nonregular Language

The incompletely specified DFA

accepts the language {a'b‘ 11 < n). The states A,- count the number of leading a ’s in the 
input string. Upon processing the first b, the machine enters the sequence of states labeled 
Bj .  The accepting state B0 is entered when an equal number of b’s are processed. This 
strategy cannot be extended to accept the language L =  {a'b ' \ i >  0} since it would require 
infinitely many states. However, there may be other strategies and machines that accept L 
that only require finitely many states. We will show that this is not the case, that L is not 
accepted by any DFA and therefore is not a regular language.

The proof of the nonregularity of the language L =  {a 'b ' | / >  0} is by contradiction. 
We assume that there is a DFA that accepts L and show that it must have states that record 
the number of a ’s in the same manner as the states Aj, A2, . . .  in the preceding diagram. It 
follows that the machine must have infinitely many states, which contradicts the requirement 
that a DFA has only finitely many states. The contradiction allows us to conclude that no 
DFA can accept L.

We begin with the assumption that L is accepted by some DFA, call it M. The extended 
transition function 8 is used to show that the automaton M must have an infinite number 
of states. Let A, be the state of the machine entered upon processing the string a ' ; that 
is, 8(q0, a')  =  A,. For all i, j  > 0 with i ^  j ,  a'b ' e  L and a j b‘ £  L. Hence, 8(q0, a 'b ')  ^  
<5(<?o, aj b‘) since the former is an accepting state and the latter rejecting. Now
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and

j ( 9o. a’ V )  = H H q0. « ') .  **) =  * L -

Consequently, S(A,, 6 ')  ^  5(Ay, b'). In a deterministic machine, two computations that 
begin in the same state and process the same string must end in the same state. Since the 
computations l(A ,, b‘) and S(Aj, b')  process the same string but terminate in different 
states, we conclude that A(- ^  Aj.

We have shown that states Aj and A j  are distinct for all values of / ^  j .  Any de
terministic finite-state machine that accepts L must contain an infinite sequence of states
corresponding to A0, A i, A2.......... This violates the restriction that limits a DFA to a finite
number of states. Consequently, there is no DFA that accepts L, or equivalently, L is not 
regular. The preceding argument justifies Theorem 6.5.1.

Theorem 6.5.1

The language {a'b1 | / >  0} is not regular.

The argument establishing Theorem 6.5.1 is an example of a nonexistence proof. We 
have shown that no DFA can be constructed, no matter how clever the designer, to accept the 
language {a'b ' \ i >  0}. Proofs of existence and nonexistence have an essentially different 
flavor. A language can be shown to be regular by constructing an automaton that accepts 
it. A proof of nonregularity requires proving that no machine can accept the language. 
Theorem 6.5.1 can be generalized to establish the nonregularity of a number of languages.

Corollary 6.5.2 (to the proof of Theorem  6.5.1)

Let L be a language over E. If there are sequences of distinct strings Uj e h *  and i/, e  
£* , i >  0, with UjVj € L and u, Vj & L for i ^  j ,  then L is not a regular language.

The proof is identical to that of Theorem 6.5.1, with m, replacing a ' and v, replacing
b‘ .

Example 6.5.1

The set L of palindromes over {a , b) is not regular. By Corollary 6.5.2, it is sufficient to 
discover two sequences of strings m, and u, that satisfy m, t>, 6 L and UjVj g  L for all i ^  j .  
The strings

fulfill these requirements.

Uj = a'b  

Vj =  a'

□
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Example 6.5.2

Grammars were introduced as a formal structure for defining the syntax o f languages. 
Corollary 6.5.2 can be used to show that regular grammars are not a sufficiently powerful 
tool to define programming languages containing arithmetic or Boolean expressions in infix 

form. The grammar AE

AE: S ->  A

A T \ A + T  

T ^ b \ ( A )

generates additive expressions using + , parentheses, and the operand b. For example, (b), 

b +  (b), and ((b)) are in L(AE).
Infix notation permits— in fact, requires— the nesting of parentheses. The derivation

S => T 

=>(A)

= » (D

= > («

exhibits the generation of the string (b) using the rules of AE. Repeated applications of the 
sequence of rules T => (A)  => (T)  before terminating the derivation with the application of
the rule T -*■ b generates the strings ((b)), (((b))).......... The strings ('b and )' satisfy the
requirements of the sequences w, and v, of Corollary 6.5.2. Thus the language defined by 
the grammar AE is not regular. A similar argument can be used to show that programming 
languages such as C, C++, and Java, among others, are not regular. □

Just as the closure properties of regular languages can be used to establish regularity, 
they can also be used to demonstrate the nonregularity of languages.

Example 6.5.3

The language L =  {a'bJ | i, j  > 0 and i ^  j )  is not regular. If L is regular then, by Theo
rems 6.4.2 and 6.4.3, so is L D a*b*. But L fl a*b* =  [a'b' \ i > 0}, which we know is not 
regular. □

6.6 The Pumping Lemma for Regular Languages

The existence of nonregular languages was established in the previous section by demon
strating the impossibility of constructing a DFA to accept the language. In this section a more 
general criterion for establishing nonregularity is developed. The main result, the pumping 
lemma for regular languages, requires strings in a regular language to admit decompositions 
satisfying certain repetition properties.
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Pumping a string refers to constructing new strings by repeating (pumping) substrings 
in the original string. Acceptance in the state diagram of the DFA

illustrates pumping strings. Consider the string z — ababbaaab  in L(M). This string can be 
decomposed into substrings u, v, and w where u = a , v  = bab, w =  baaab, and z =  uvw.  
The strings a(bab)'baaab  are obtained by pumping the substring bab  in ababbaaab.

As usual, processing z in the DFA M corresponds to generating a path in the state 
diagram of M. The decomposition of z into u, v, and w breaks the path in the state diagram 
into three subpaths. The subpaths generated by the computation of substrings u = a and 
w — baaab  are qq, q\ and q j, g3, q2, q$, q\, q-$. Processing the second component of 
the decomposition generates the cycle q^, q3, q2, q\. The pumped strings u v 'w  are also 
accepted by the DFA since the repetition of the substring i> simply adds additional trips 
around the cycle q\, q-$, q2, q\ before the processing of w terminates the computation in 
state q$.

The pumping lemma requires the existence of such a decomposition for all sufficiently 
long strings in the language of a DFA. Two lemmas are presented establishing conditions 
guaranteeing the existence of cycles in paths in the state diagram of a DFA. The proofs 
utilize a simple counting argument known as the pigeonhole principle. This principle is 
based on the observation that given a number of boxes and a greater number of items to be 
distributed among them, at least one of the boxes must receive more than one item.

Lemma 6.6.1

Let G be the state diagram of a DFA with k  states. Any path of length k in G contains a 
cycle.

Proof. A path of length k contains k +  1 nodes. Since there are only k nodes in G, there 
must be a node, call it qh that occurs in at least two positions in the path. The subpath from 
the first occurrence of qt to the second produces the desired cycle. ■

Paths with length greater than k  can be divided into an initial subpath of length k and 
the remainder of the path. Lemma 6.6.1 guarantees the existence of a cycle in the initial 
subpath. The preceding remarks are formalized in Corollary 6.6.2.
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Corollary 6.6.2

Let G be the state diagram of a DFA with k states and let p be a path of length k or more. 
The path p can be decomposed into subpaths q, r, and s where p =  qrs, the length of qr is 

less than or equal to k, and r  is a cycle.

Theorem 6.6.3 (Pum ping Lemma for Regular Languages)

Let L be a regular language that is accepted by a DFA M with k states. Let z be any string in 
L with length(z) > k. Then z can be written uvw  with length(uv) < k, length(v) > 0, and 

uv'w  e  L for all i > 0.

Proof. Let z e  L be a string with length n > k. Processing z in M generates a path of length 
n in the state diagram of M. By Corollary 6.6.2, this path can be broken into subpaths q, 
r, and s, where r  is a cycle in the state diagram. The decomposition of z into u, v, and w 
consists of the strings spelled by the paths q, r, and s. ■

The paths corresponding to the strings uv 'w  begin and end at the same nodes as 
the computation for uvw. The sole difference is the number of trips around the cycle r. 
Consequently, if uvw  is accepted by M, then so is uv'w.

Properties of the particular DFA that accepts the language L are not specifically men
tioned in the proof of the pumping lemma. The argument holds for all such DFAs, including 
the DFA with the minimal number of states. The statement of the theorem could be strength
ened to specify k as the number of states in the minimal DFA accepting L.

The pumping lemma is a powerful tool for proving that languages are not regular. Every 
string of length k or more in a regular language, where k is the value specified by the pumping 

lemma, must have an appropriate decomposition. To show that a language is not regular, 
it suffices to find one string that does not satisfy the conditions of the pumping lemma. 
The use of the pumping lemma to establish nonregularity is illustrated in the following 
examples. The technique consists of choosing a string z in L and showing that there is no 
decomposition uvw  of z for which uv 'w  is in L for all i > 0.

The first two examples show that computations of a finite state machine are not 
sufficiently powerful to determine whether a number is a perfect square or a prime.

Example 6.6.1

Let L =  {z G {ci\* | length(z) is a perfect square}. Assume that L is regular. This implies 
that L is accepted by some DFA. Let k be the number of states of the DFA. By the pumping 
lemma, every string z € L of length k or more can be decomposed into substrings u, v, and 
w such that length(uv) < k, v ^  X, and uv 'w  e  L for all i > 0.

Consider the string z =  ak~ of length k2. Since z is in L and its length is greater than k, z 
can be written z =  uvw  where the u, v, and w satisfy the conditions of the pumping lemma.
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In particular, 0 <  length(v) < k. This observation can be used to place an upper bound on 

the length of u v2w:

length(uv2w) =  length(uvw) +  length(v)

=  k 2 + length(v)

< k 2 + k 

< k 2 + 2 k + \

=  (* +  l)2.

The length of u v2w is greater than k 2 and less than (k +  l)2 and therefore is not a perfect 
square. Thus the string uv2w obtained by pumping v once is not in L. We have shown 
that there is no decomposition of z that satisfies the conditions of the pumping lemma. The 
assumption that L is regular leads to a contradiction, establishing the nonregularity of L.

□

Example 6.6.2

To show that the language L =  {a1 | i is prime } is not regular, we assume that there is a DFA 
with some number k states that accepts it. Let n be a prime greater than k. The pumping 
lemma implies that a" can be decomposed into substrings uvw, v /  X, such that uv 'w  is 
in L for all i > 0. Assume that such a decomposition exists.

If uvn+,w e  L, then its length must be prime. But

length(uvn+lw) =  length(uvvnw )

=  length(uvw) + length(vn)

=  n + n(length(v))

=  «(1 +  length(v)).

Since its length is not prime, h i/i+ ,iu is not in L. Thus there is no division o f an into uvw  
that satisfies the pumping lemma and we conclude that L is not regular. □

In the preceding examples, the constraints on the length of the strings were sufficient 
to prove that the languages were not regular. Often the numeric relationships among the 
elements of a string are used to show that there is no substring that satisfies the conditions 
of the pumping lemma. We will now present another argument, this time using the pumping 
lemma, that demonstrates the nonregularity of {a'b1 | i >  0}.

Example 6.6.3

To show that L = {a'b' \ i > 0} is not regular, we must find a string in L of appropriate length 
that has no pumpable substring. Assume that L is regular and let k be the number specified
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by the pumping lemma. Let z be the string akbk. Any decomposition of uvw  of z satisfying 
the conditions of the pumping lemma must have the form

u v w  
ai a J ak~'~*bk,

where i + j  < k  and j  > 0. Pumping any substring of this form produces u v2w =  
a 'aJaJak~‘~->bk =  aka>bk, which is not in L. Since z € L has no decomposition that satisfies 
the conditions of the pumping lemma, we conclude that L is not regular. □

Example 6.6.4

The language L = {a'bmcn | 0 < /, 0 < m < «} is not regular. Assume that L is accepted by 
a DFA with k states. Then, by the pumping lemma, every string z € L with length k or more 
can be written z =  uvw,  with length(uv) < k, length(v) >  0, and u v 'w  e  L for all i >  0.

Consider the string z =  abkck+i, which is in L. We must show that there is no suitable 
decomposition of z. Any decomposition of z must have one of two forms, and the cases are 
examined separately.

Case 1: A decomposition in which a & v has the form

u v w  
ab' b>

where i +  j  < k — 1 and j  > 0. Pumping v produces u v 2w =  ab'b^b->bk~‘~^ck+l =  
which is not in L.

Case 2: A decomposition of z in which a e  v has the form

u v w 
k  ab* bk- ‘ck+l

where i < k — 1. Pumping v zero times produces uv°w  =  bk~'ck+l, which is not in L since 
it does not contain an a.

Since abk(^+ 1 has no decomposition with a “pumpable” substring, L is not regular. □

The pumping lemma can be used to determine the size of the language accepted by a 
DFA. Pumping a string generates an infinite sequence of strings that are accepted by the 
DFA. To determine whether a regular language is finite or infinite it is only necessary to 
determine if it contains a pumpable string.

Theorem 6.6.4

Let M be a DFA with k states.

i) L(M) is not empty if, and only if, M accepts a string z with length(z) <  k.

ii) L(M) has an infinite number of members if, and only if, M accepts a string z where 
k <  length(z) < 2k.



210 C h a p te r  6 P ro p e r t ie s  o f  R egu lar  L a n g u a g e s

Proof.

i) L(M) is clearly not empty if a string of length less than k is accepted by M.

Now let M be a machine whose language is not empty and let z be the smallest string 
in L(M). Assume that the length of z is greater than k — 1. By the pumping lemma, z can be 
written uvw  where uv'w  e  L. In particular, uv°w  =  uw  is a string smaller than z in L. This 
contradicts the assumption of the minimality of the length of z. Therefore, length(z) < k.

ii) If M accepts a string z with k < length(z) < 2k, then z can be written u vw  where u, v, 
and w satisfy the conditions of the pumping lemma. This implies that the strings uv 'w  are 
in L for all i > 0.

Assume that L(M) is infinite. We must show that there is a string whose length is between 
k and 2/c — 1 in L(M). Since there are only finitely many strings over a finite alphabet with 
length less than k, L(M) must contain strings of length greater than k — 1. Choose a string 
z € L(M) whose length is as small as possible but greater than k — 1. If k < length(z) < 2k, 
there is nothing left to show. Assume that length(z) > 2k. By the pumping lemma, z =  uvw,  
length(v) <  k ,anduv°w  = uw € L(M). But this is a contradiction since uw is a string whose 
length is greater than k — 1 but strictly smaller than the length of z. ■

The preceding result establishes a decision procedure for determining the cardinality 
of the language of a DFA. If k is the number of states and j  the size of the alphabet of the 
automaton, there are ( j k — 1)/( j  — 1) strings having length less than k. By Theorem 6.6.4, 
testing each of these determines whether the language is empty. Testing all strings with 
length between k and 2k — 1 resolves the question of finite or infinite. This, of course, 
is an extremely inefficient procedure. Nevertheless, it is effective, yielding the following 
corollary.

Corollary 6.6.5

Let M be a DFA. There is an algorithm that determines whether L(M) is empty, finite, or 
infinite.

The closure properties of regular language can be combined with Corollary 6.6.5 to 
develop a decision procedure that determines whether two DFAs accept the same language.

Corollary 6.6.6

Let Mi and M2 be two DFAs. There is a decision procedure to determine whether M | and 
M2 are equivalent.

Proof. Let Lj and be the languages accepted by M! and M2. By Theorems 6.4.1,6.4.2, 
and 6.4.3, the language

L =  (L, n  L^) U (Lj n  L2)

is regular. L is empty if, and only if, L, and L2 are identical. By Corollary 6.6.5, there is a 
decision procedure to determine whether L is empty, or equivalently, whether M | and M2 
accept the same language. ■
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6.7 The Myhill-Nerode Theorem

Kleene’s Theorem established the relationship between regular languages and finite au
tomata. In this section regularity is characterized by the existence of an equivalence relation 
on the strings of the language. This characterization provides a method for obtaining the 
minimal state DFA that accepts a regular language and provides the justification for the 
DFA minimization presented in Algorithm 5.7.2.

Definition 6.7.1

Let L be a language over E. Strings u, v € E* are indistinguishable in L if, for every w € E*, 
either uw  and vw  are both in L or neither uw  nor vw  is in L.

Using membership in L as the criterion for differentiating strings, u and v are distin
guishable if there is some string w whose concatenation with u and v produces strings with 
different membership values in L. That is, w distinguishes u and v if one of uw  and vw is 
in L and the other is not.

Indistinguishability in a language L defines a binary relation = l  on E*; u = L v if u 
and v are indistinguishable. It is easy to see that = L is reflexive, symmetric, and transitive. 
These observations provide the basis for Lemma 6.7.2.

Lemma 6.7.2

For any language L, the relation = L is an equivalence relation.

Example 6.7.1

Let L be the regular language a(a  U b)(bb)*. Strings aa  and ab  are indistinguishable since, 
for any w, aaw  and abw  are either both in L or both not in L. The former arises when w 
consists of an even number of b’s and the latter for any other string. The pair o f strings b and 
ba are also indistinguishable in L since bw  and baw  are not in L for any string iu. Strings 
a and ab are distinguishable in L since concatenating bb to a produces abb & L and to ab 
produces abbb  € L.

The equivalence classes of = L are

Representative Element Equivalence Class

X

M - l b(a U b y  U a(a U b)(bbya(a U b ) 'U a (a  U b)(bbyba(a  U b y

M . t a
laa)m L a (aU b)(b by

[aa*]=L a{aU b)b(bby

□
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Example 6.7.2

Let L be the language {a'b1 \ i > Oj. The strings a' and aJ, where i ^  j , are distinguishable 
in L. Concatenating b' produces a 'b ' € L and a^b‘ & L. Thus each string a',  i =  0, 1, , 
is in a different equivalence class. This example shows that the indistinguishability relation 
= L may generate infinitely many equivalence classes. □

The equivalence relation = L defines indistinguishability on the basis of membership 
in the language L. We now define the indistinguishability of strings on the basis of compu
tations of a DFA.

Definition 6.7.3

Let M =  (Q, 2 ,  8, q0, F) be a DFA that accepts L. Strings w, i> € E* are indistinguishable 
by M if 8(q0, u) =  8(q0, u).

Strings u and v are indistinguishable by M if the computation of M with input u halts 
in the same state as the computation with v. It is easy to see that indistinguishability defined 
in this manner is also an equivalence relation over £*. Each state q, of M that is reachable 
by computations of M has an associated equivalence class: the set of all strings whose 
computations halt in <jj. Thus the number of equivalence classes of a DFA M is at most the 
number of states of M. Indistinguishability by a machine M will be denoted = M.

Example 6.7.3

Let M be the DFA

a i? a

D

that accepts the language a*ba*(ba*ba*)*, the set of strings with an odd number of b's. The 
equivalence classes of E* defined by the relation = M are

State Associated Equivalence Class

<?o a*

<7 i a*ba*(ba'ba*Y
qi a* ba’ ba* (ba" ba*)*

Indistinguishability relations can be used to provide additional characterizations of 
regularity. These characterizations use the right-invariance o f  the indistinguishability equiv
alence relations. An equivalence relation =  over E* is said to be right-invariant if u = v 
implies uw = vw  for every w 6 £*. Both = L and = M are right-invariant.
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Theorem 6.7.4 (Myhill-Nerode)

The following are equivalent:

i) L is regular over E.

ii) There is a right-invariant equivalence relation =  on E* with finitely many equivalence 
classes such that L is the union of a subset of the equivalences classes of = .

iii) = L has finitely many equivalence classes.

Proof.

Condition (i) implies condition (ii): Since L is regular, it is accepted by some DFA M =  
(Q, E , S, q0, F). We will show that = M satisfies the conditions of statement (ii). As previ
ously noted, = M has at most as many equivalence classes as M has states. Consequently, 
the number of equivalence classes of = M is finite. Right-invariance follows from the de
terminism of the computations of M, which ensures that uw) = S(q0, vw)  whenever 

Hqo. u) =  S(qo, v).
It remains to show that L is the union of some of the equivalence classes o f = M. For each 

state qf of M, there is an equivalence class consisting of the strings whose computations halt 
in qj. The language L is the union of the equivalence classes associated with the accepting 
states of M.

Condition (ii) implies condition (iii): Let =  be an equivalence relation that satisfies (ii). We 
begin by showing that every =  equivalence class [u]= is a subset of the = L equivalence 
class [«]=L-

Let u and v be any two strings from [n]_; that is, u =  v. By right-invariance, uw = vw  
for any w e  E*. Thus uw  and vw  are in the same =  equivalence class. Since L is the union 
of some set of equivalence classes of = , every string in a particular =  equivalence class has 
the same membership value in L. Consequently, uw  and vw  are either both in L or both not 
in L. It follows that u and i; are in the same equivalence class of = L.

Since [«]„ c  [k]- l  for every string u e  E*, there is at least one =  equivalence class 
in each of the = L equivalence classes. It follows that the number of equivalence classes of 
=L is no greater than the number of equivalence classes of = , which is finite.

Condition (iii) implies condition (i): To prove that L  is regular when s L has only a finite 
number of equivalence classes, we will build a DFA ML that accepts L. The alphabet of 
Ml  consists of the symbols in L and the states are the equivalence classes o f = L. The start 
state is the equivalence class containing X. An equivalence class is an accepting state if it 
contains an element u e  L. All that remains is to define the transition function and show 
that the language of Ml  is L.

For a symbol a  e  E , we define 5(tM]*.L, a) =  [«a]=L. By this definition, the result of 
a transition from state [«]-L with symbol a is the equivalence class [i<a]aEL. We must show 
that the definition of the transition is independent of the choice of a particular element from 
the equivalence class [«]-L-

Let u and u be two strings in that are = L equivalent. For the transition function S to 
be well defined, [«a]=L must be the same equivalence class as [i|a ]Ml , or equivalently,
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ua = L va. To establish this, we need to show that for any string x  6 E*. uax  and vax  are 
either both in L or both not in L. By the definition of = L, uw  and vw  are both in L or both 
not in L for any w €  E*. Letting w = ax  gives the desired result.

All that remains is to show that L(Ml ) =  L. For any string u, 6([X]-L , u) =  [m]= l. If 

u is in L, the computation S([X]„L, u) halts in the accepting state [u]_L. Exercise 25 shows 
that either all of the elements in an equivalence [m]*l  are in L or none of the elements are 
in L. Thus if u <£ L, then [«]-L is not an accepting state. It follows that a string u is accepted 
by M l if, and only if, u e  L.

Note that the equivalence classes of = L are precisely those of = Ml, the indistinguish
ability relation over E* generated by the machine M L. ■

Example 6.7.4

The DFA M from Example 5.7.1 accepts the language (a U b)(a U b*). The eight equiva
lence classes of the relation s M with the associated states of M are

State Equivalence Class State Equivalence Class

9o X 94 b

9 l a 95 ba

92 aa 96 bb+

93 ab+ 97 (aa(a U  b) U  ab+a U  ba(a U  b) U  bb+a)(a U  ft)*

The equivalence relation = L identifies strings u and u as indistinguishable if for any 
w, either both uw  and uw are in L or both are not in L. The = L equivalence classes of the 
language (a U b)(a U b*) aie

= L Equivalence Classes

W - L
X

a U  ft

[ a a ] « L aaUba

[« « ■, ab+ U  ftft+

[ a f t o ] = L (aa(a U  ft) U  ab+a U  ba(a U  ft) U  bb+a)(a U  ft)*

where the string inside the brackets is a representative element of the class. It is easy to 
see that the strings within an equivalence class are indistinguishable and that strings from 
different classes are distinguishable.

If we denote the = M equivalence class of strings whose computations halt in state q, 
by c/mO?;). the relationship between the equivalence classes of = L and = M is
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[a]=L =  c/M(<?l) U clM(q4)

[aa]_L =  clM(q2) U clM(q5)

[ab]m  ̂ =  clM(q3) U cIM(q6) 

[aba]mt =  c/M(<?7).

Using the technique outlined in the Myhill-Nerode Theorem, we can construct a 
DFA Ml accepting L from the equivalence classes of = l- The DFA obtained by this 

construction is

which is identical to the DFA M' in Example 5.7.1 obtained using the minimization tech-

Theorem 6.7.5 shows that the DFA ML obtained from the = L equivalence classes is 
the minimal state DFA that accepts L.

Theorem 6.7.5

Let L be a regular language and = l the indistinguishability relation defined by L. The 
minimal state DFA accepting L is the machine ML defined from the equivalence classes of 
=L 38 specified in Theorem 6.7.4.

Proof. Let M =  (Q, S , S, q0, F) be any DFA that accepts L and let = M be the equiva
lence relation generated by M. By the Myhill-Nerode Theorem, each equivalence class of 
= M is a subset of an equivalence class of = L. Since the equivalence classes o f both = M and 
=L partition E*, = M must have at least as many equivalence classes as = L. Combining the 
preceding observation with the construction of ML from the equivalence classes of = L, we 
see that

b

nique presented in Section 5.7. □

the number of states of M

> the number of equivalence classes of = M

> the number of equivalence classes of = L

=  the number of states of ML.
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Thus a DFA M that accepts L may not have fewer states than ML, and we conclude that M L 

is the minimal state DFA that accepts L. ■

The statement of Theorem 6.7.5 asserts that the ML is the minimal state DFA that 
accepts L. Exercise 31 establishes that all minimal state DFAs accepting L are identical to 
Ml , except possibly for the names assigned to the states.

Theorems 6.7.4 and 6.7.5 establish the existence of a unique minimal state DFA 
Ml that accepts a language L. The minimal state machine can be constructed from the 
equivalence classes of the relation = L. Unfortunately, to this point we have not provided 
a straightforward method to obtain these equivalence classes. Theorem 6.7.6 shows that 
the machine whose states are the = l equivalence classes is the machine produced by the 
minimization algorithm in Section 5.7.

Theorem 6.7.6

Let M be a DFA that accepts L and M' the machine obtained from M by minimization 
construction in Section 5.7. Then M' =  Ml -

Proof. By Theorem 6.7.5 and Exercise 31, M' is the minimal state DFA accepting L if the 
number of states of M' is the same as the number of equivalence classes of = l-  Following 
Definition 6.7.3, there is an equivalence relation = M- that associates a set of strings with , 
each state of M'. The equivalence class of = M> associated with state [q, ] is

I “ ) =  fa.-]} =  ( J  1 u) =  qi^'

where & and 8 are the extended transition functions of M' and M, respectively. By the 
Myhill-Nerode Theorem, c/M-([<?, ]) is a subset of an equivalence class of =m l -

Assume that the number of states of M' is greater than the number of equivalence classes 
of s L. Then there are two states and [qj] of M' such that c/M.([<?,]) and c/M-([^y]) are 
both subsets of the same equivalence class of = L. This implies that there are strings u and 

i> such that 8(qo> “ ) =  <?i> <5(<?0’ v) =  qj, and u = L v.
Since [^ ]  and [qj] are distinct states in M', there is a string w that distinguishes these 

states. That is, either 8(qt , w) is accepting and 8(q j , w) is nonaccepting or vice versa. It 
follows that uw  and vw  have different membership values in L. This is a contradiction 
since » 5 L d implies that uw  and vw  have the same membership value in L  for all strings 
w. Consequently, the assumption that the number of states of M' is greater than the number 
of equivalence classes of = L must be false. ■

The characterization of regularity in the Myhill-Nerode Theorem gives another method 
for establishing the nonregularity of a language. A language L is not regular if the equiva
lence relation = L has infinitely many equivalence classes.
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Example 6.7.5

In Example 6.7.2, it was shown that the language [a'b1 \ i > 0} has infinitely many = l  
equivalence classes and therefore is not regular. □

Example 6.7.6

The Myhill-Nerode Theorem will be used to show that the language L = {a2' \ i > 0} is 

not regular. To accomplish this, we show that a2' and a2' are distinguishable by the = L 

equivalence relation whenever i < j .  Concatenating a 2' with each of these strings produces 

a 2'a2' =  a2'+> e  L and a 2'a 2' #  L. The latter string is not in L since it has length greater than 

2J but less than 2-/+1. Thus, a2' a2' . These strings produce an infinite sequence [a0] = L, 
[a1] = L, [a2] = L, [a4] = L, . . .  of distinct equivalence classes of L. □

Exercises

1. Use the technique from Section 6.2 to build the state diagram of an NFA-X that accepts 
the language (ab)*ba. Compare this with the DFA constructed in Exercise 5.22(a).

2. For each of the state diagrams in Exercise 5.40, use Algorithm 6.2.2 to construct a 
regular expression for the language accepted by the automaton.

3. The language of the DFA M in Example 5.3.4 consists of all strings over {a, b) with 
an even number of a ’s and an odd number of b ’s. Use Algorithm 6.2.2 to construct a 
regular expression for L(M). Exercise 2.38 requested a nonalgorithmic construction of 
a regular expression for this language, which, as you now see, is a formidable task.

4. Let G be the grammar

G: S —> aS  | M  | a 

A —►  aS  | bA  | b.

a) Use Theorem 6.3.1 to build an NFA M that accepts L(G).

b) Using the result of part (a), build a DFA M' that accepts L(G).

c) Construct a regular grammar from M that generates L(M).

d) Construct a regular grammar from M' that generates L(M').

e) Give a regular expression for L(G).

5. Let M be the NFA
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a) Construct a regular grammar from M that generates L(M).

b) Give a regular expression for L(M).

* 6. Let G be a regular grammar and M the NFA obtained from G according to Theo
rem 6.3.1. Prove that if S wC, then there is a computation [S, iy] Is- [C, X] in M.

7. Let L be a regular language over [a, b, c). Show that each of the following sets is 
regular.

a) {w | w e  L and w ends with aa)

b) {u> | w e  L or w contains an a)

c) { w \ w  $  L and w does not contain an a)

d) («v | u G L and u £  L}

8. Prove that the family of regular languages is closed under the operation of set difference.

9. Prove that the family of regular languages is not closed under intersection with context- 
free languages. That is, if L is regular and L! context-free, L fl L[ need not be regular.

10. Is the family of regular languages closed under infinite unions? That is, if Lo, L |, L2, . . .
00

are regular, is Lj necessarily regular? If so, prove it. If not, give a counterexample. 
1= 0

11. Let L be a regular language. Show that the following languages are regular.

a) The set P =  [u | uv  e  L} of prefixes of strings in L.

b) The set L* =  {to* | w e  L} of reversals of strings in L.

c) The set E =  {mu | v e  L} of strings that have a suffix in L.

d) The set SUB =  {u | uvw  e  L) of strings that are substrings of a string in L.

12. Let L be a regular language containing only strings of even length. Let L ' be the 
language (u | uv  € Land length(u) =  lertgih(v)).L' is the set of all strings that contain 
the first half of strings from L. Prove that L' is regular.

13. Use Corollary 6.5.2 to show that each of the following sets is not regular.

a) The set of strings over {a, b) with the same number of a ’s and b’s.

b) The set of palindromes of even length over {a, b).

c) The set of strings over {(,)} in which the parentheses are paired, for example, 
X, ( ) , ( ) ( ) ,  ( ( ) ) ( ) .

d) The language {a’ (ab)> (ca)2* \ i , j  > 0).

14. Use the pumping lemma to show that each of the following sets is not regular.

a) The set of palindromes over {a , b)

b) (anbm \n  < m )

c) {a ' b ^ c 11 >  0, j  > 0}

d) {ww  | io g (a, i>}*}

* e) The set of initial sequences of the infinite string
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abaabaaabaaaab . . .  banban+ib . . .

f) The set of strings over {a , b] in which the number of a ’s is a perfect cube

15. Prove that the set of nonpalindromes over {a , b) is not a regular language.

16. Let L be a regular language and let L | =  {uu | u e. L) be the language L “doubled.” Is 
L] necessarily regular? Prove your answer.

17. Let Li be a nonregular language and L2 an arbitrary finite language.

a) Prove that L! U L2 is nonregular.

b) Prove that L! — L2 is nonregular.

c) Show that the conclusions of parts (a) and (b) are not true if L2 is not assumed to 
be finite.

18. Give examples of languages Lj and L2 over [a, b) that satisfy the following descrip
tions.

a) Li is regular, L2 is nonregular, and L | U L2 is regular.

b) Li is regular, L2 is nonregular, and L] U L2 is nonregular.

c) L| is regular, L2 is nonregular, and Li fl L2 is regular.

d) L[ is nonregular, L2 is nonregular, and Lt U L2 is regular.

e) Lj is nonregular and L* is regular.

19. Let E | and E2 be two alphabets. A string homom orphism is a total function h from 
E f to E£ that preserves concatenation. That is, h satisfies

i) h(k)  =  X

ii) h(uv)  =  h(u)h(v).

a) Let L! c  E* be a regular language. Show that the set [h(w) | u; € L,} is regular over 
E 2. This set is called the homomorphic image of L | under h.

b) Let L2 C E 2 be a regular language. Show that the set {u> e  E* | h(w)  e  L2) is 
regular. This set is called the inverse image of L2 under h.

20. A context-free grammar G =  (V, E , P, 5) is called right-linear if each rule is of the 
form

i) A —*• u, or

ii) A -*• uB,

where A, B  e  V, and u e  E*. Use the techniques from Section 6.3 to show that the 
right-linear grammars generate precisely the regular sets.

21. A context-free grammar G =  (V, E , P, S) is called left-regular if each rule is of the 
form

i) A —> X,

ii) A -»• a, or

iii) A Ba,

where A, B € V, and a € E.
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a) Design an algorithm to construct an NFA that accepts the language of a left-regular 

grammar.

b) Show that the left-regular grammars generate precisely the regular sets.

22. A context-free grammar G =  (V, 2 ,  P, S) is called left-linear if each rule is of the 

form

i) A -»  u, or

ii) A -*■ Bu,

where A, B e  V, and u e  £*. Show that the left-linear grammars generate precisely 

the regular sets.

23. Give a regular language L such that = L has exactly three equivalence classes.

24. Give the = L equivalence classes of the language a +b+.

25. Let [h]Bl be a = l  equivalence class of a language L. Show that if [k]= l contains one 
string v € L, then every string in [w]*L is in L.

26. Prove that = L is right-invariant for any regular language L. That is, if u = L v, then 
ux  = L vx  for any * € 2*, where 2  is the alphabet of the language L.

27. Use the Myhill-Nerode Theorem to prove that the language [a' | i is a perfect square } 
is not regular.

28. Let u e  [ab]„M and v e  [aba]m^  be strings from the equivalence classes of 
(a U b) (a U b*) defined in Example 6.7.4. Show that u and v are distinguishable.

29. Give the equivalence classes defined by the relation = M for the DFA in Example 5.3.1.

30. Give the equivalence classes defined by the relation = M for the DFA in Example 5.3.3. 

*31. Let Ml be the minimal state DFA that accepts a language L defined in Theorems 6.7.4
and 6.7.5. Let M be another DFA that accepts L with the same number of states as 
Ml . Prove that M l and M are identical except (possibly) for the names assigned to the 
states. Two such DFAs are said to be isomorphic.
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CHAPTER 7

Pushdown Automata and 
Context-Free Languages

Regular languages have been characterized as the languages generated by regular grammars 
and accepted by finite automata. This chapter presents a class of machines, the pushdown 
automata, that accepts the context-free languages. A pushdown automaton is a finite-state 
machine augmented with an external stack memory. The addition of a stack provides 
the pushdown automaton with a last-in, first-out memory management capability. The 
combination of stack and states overcomes the memory limitations that prevented the 

acceptance of the language {a'b' \ i >  0) by a deterministic finite automaton.
As with regular languages, a pumping lemma for context-free languages ensures the 

existence of repeatable substrings in strings of a context-free language. The pumping lemma 
provides a technique for showing that many easily definable languages are not context-free.

7.1 Pushdown Automata

Theorem 6.5.1 established that the language {a'b' | / >  0} is not accepted by any finite 
automaton. To accept this language, a machine needs the ability to record the processing of 
any finite number of a ’s. The restriction of having finitely many states does not allow the 
automaton to “remember” the number of leading a ’s in an arbitrary input string. A new type 
of automaton is constructed that augments the state-input transitions of a finite automaton 
with the ability to utilize unlimited memory.

A pushdown stack, or simply a stack, is added to a finite automaton to construct a new 
machine known as a pushdown automaton (PDA). Stack operations affect only the top item 
of the stack; a pop removes the top element from the stack and a push places an element

2 2 1
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on the stack top. Definition 7.1.1 formalizes the concept of a pushdown automaton. The 
components Q, E , q0, and F of a PDA are the same as in a finite automaton.

Definition 7.1.1

A pushdown autom aton is a sextuple (Q, E , r ,  8, <?o> F), where Q is a finite set of states, 
E a finite set called the input alphabet, T a finite set called the stack alphabet, q0 the start 
state, F c  Q a set of final states, and 8 a transition function from Q x (E  U {X}) x ( r  U {X}) 
to subsets of Q x ( r  U {X}).

A PDA has two alphabets: an input alphabet E from which the input strings are built 
and a stack alphabet T whose elements are stored on the stack. The stack is represented as 
a string of stack elements; the element on the top of the stack is the leftmost symbol in the 
string. We will use capital letters to represent stack elements and Greek letters to represent 
strings of stack elements. The notation Aa  represents a stack with A as the top element. An 
empty stack is denoted X. The computation of a PDA begins with the machine in state q0, 
the input on the tape, and the stack empty.

A PDA consults the current state, input symbol, and the symbol on the top of the stack 
to determine the machine transition. The transition function S lists all possible transitions 
for a given state, symbol, and stack top combination. The value of the transition function

indicates that two transitions are possible when the automaton is in state <j, scanning an a 
with A on the top of the stack. The transition

causes the machine to

i) change the state from q, to qj,

ii) process the symbol a (advance the tape head),

iii) remove A from the top of the stack (pop the stack), and

iv) push B  onto the stack.

Since multiple transitions may be specified for a machine configuration, PDAs are nonde
terministic machines.

A pushdown automaton can also be depicted by a state diagram. The labels on the arcs 
indicate both the input and the stack operation. The transition S(qh a. A) =  {[qj, B]} is 
depicted by

S(qt, a. A) =  {{q j , B], [qk, C]}

[qf B] G h{qt, a, A)

\ \
new state 

new stack top
current stack top 

current input symbol 
current state
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( * > ^ ®

The symbol / indicates replacement: A / B  indicates that A is replaced on the top of the stack 
by B.

The domain of the transition function is Q x (E  U {A.}) x ( f  U {A.}), which indicates 
that X may occur in either the input or stack top positions of a transition. A X argument 
specifies that the value of the component should be neither consulted nor acted upon by the 
transition; the applicability of the transition is completely determined by the positions that 
do not contain X.

When X occurs as an argument in the stack position of the transition function, the 
transition is applicable whenever the current state and input symbol match those in the 
transition regardless of the status of the stack. The stack top may contain any symbol or 
the stack may be empty. The transition [qj, f i ] e  8(qh a, X) is applicable whenever a 
machine is in state q: scanning an a ; the application of the transition will cause the machine 
to enter qj and add B to the top of the stack.

The symbol X may also occur in the new stack position of a transition, [qj, X] e  
8(qh a. A). The execution such a transition does not push a symbol onto the stack. We 
will now look at several examples of the effect of X in PDA transitions.

If the input position is X, the transition does not process an input symbol. Thus, 
transition (i) pops and (ii) pushes the stack symbol A without altering the state or the input.

i) [qh  X]e<5(<?,, X, A)

XA/X

ii) [qh A ] e 8 ( q h  X, X)

X X/A

iii) [qj, X ]€ 8 (q ; ,a ,  X)

If the action specified by a transition has X in the new stack top position, [qj, X], no symbol is 
pushed onto the stack. Transition (iii) is the PDA equivalent of a finite automaton transition. 
The applicability is determined only by the state and input symbol; the transition does not 
consult nor does it alter the stack.
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A PDA configuration is represented by the triple [qt, w, or], where q, is the machine 
state, w the unprocessed input, and a  the stack. The notation

[qh w, qtJIm Iqj, v, 0]

indicates that configuration [qj, v, /3] can be obtained from [qt, w, a] by a single transition 
of the PDA M. As before, represents the result of a sequence of transitions. When there 
is no possibility of confusion, the subscript M is omitted. A computation of a PDA is 
a sequence of transitions beginning with the machine in the initial state with an empty 
stack.

We are now ready to construct a PDA M to accept the language {a 'b ' \ i > 0). The 
computation begins with the input string w and an empty stack. Processing input symbol 
a causes A to be pushed onto the stack. Processing b pops the stack, matching the number 
of b's to the number of a ’s. The computation generated by the input string aabb  illustrates 
the actions of M.

M :Q  =  {9o.9 i)  aXM b A a  Ho* aabb, X)

E =  {a, b ) I- [<70, abb. A]

r  =  (A) x ®  bAlX - Q )  h  too. bb, AA)

F =  {<7o. ? i} [<7i. b. A]

&(q0, a , X) =  {[<70, A]) h  [qx, X, X]

8(q0, b. A) =  {[<?,, X])

8(qh b, A) =  {[?,,*]}

The computation of M with input a 'b1 processes the entire string and halts in an 
accepting state with an empty stack. These conditions become our criteria for acceptance.

Definition 7.1.2

Let M =  (Q, E , T, 8, q0, F) be a PDA. A string w e  E* is accepted by M if there is a 
computation

[<70. w. AJP- [?,, A, X] 

where qt 6 F. The language of M, denoted L(M), is the set of strings accepted by M.

A computation that accepts a string is called successful. A  computation that processes 
the entire input string and halts in a nonaccepting configuration is said to be unsuccessful. 
Because of the nondeterministic nature of the transition function, there may be computations 
that cannot complete the processing of the input string. Computations of this form are also 
considered unsuccessful.

Acceptance by a PDA follows the standard pattern for nondeterministic machines; one 
computation that processes the entire string and halts in a final state is sufficient for the
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string to be in the language. The existence of additional unsuccessful computations does 
not affect the acceptance of the string.

Example 7.1.1

The PDA M accepts the language (w cw K | w € (a, ft}*}- The stack is used to record the 
string w as it is processed. Stack symbols A and B represent input a and b, respectively.

M: Q  =  {tfo. <7i} 5(9o. *•) =  U<?0. ^1) bX lB  b  B/^
n l/A a A/X

£  =  {a, b, c) 5(^0, b, X) =  {[q0, B]} aAM

r  =  { A ,£ ) 8(q0, c, X) =  {[q\. A.]) ^ ^ / c X / X  

F =  {?i} 5(</i< a. A) =  {[<?!, X]}

8(q{, b, B)  =  {[^,, X]}

A successful computation records the string w on the stack as it is processed. Once the c 
is encountered, the accepting state q l is entered and the stack contains a string representing 
w K. The computation is completed by matching the remaining input with the elements on 
the stack. The computation of M with input abcba is

[(ft, abcba , X]

I- [q0, bcba, 4 ]

I- [g0, cba, BA]

\- [</], ba, BA] 

h  [qx, a , A]

H91.X.X] □

A PDA is deterministic if there is at most one transition that is applicable for each 
combination of state, input symbol, and stack top. Two transitions [qj, C] €  8(qt, u, A) 
and [qk, D] e  8(qh v, B) are called compatible if any of the following conditions are 
satisfied:

i) u =  u and A = B.

ii) u =  v and A =  X or B  =  X.

iii) A =  B and u =  X or v =  X.

iv) u = X or v =  X and A =  X or B =  X.

Compatible transitions can be applied to the same machine configurations. A PDA is deter
ministic if it does not contain distinct compatible transitions. Both the PDA in Example 7.1.1 
and the machine constructed to accept {a 'b ' | / >  0} are deterministic.
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Example 7.1.2

The language L =  {a ' 11 > 0} U {a'b' \ i >  0} contains strings consisting solely of a ’s or 
an equal number of a ’s and b's. The stack of the PDA M that accepts L maintains a record 
of the number of a ’s processed until a b is encountered or the input string is completely 
processed.

a AM

When scanning an a in state q0, there are two transitions that are applicable. A string 
of the form a'b', i > 0, is accepted by a computation that remains in states q0 and q j. 
If a transition to state q2 follows the processing of the final a in a string a 1, the stack is 
emptied and the input is accepted. Reaching q2 in any other manner results in an unsuccessful 
computation, since no input is processed after q2 is entered.

The A.-transition allows M to enter q2 any time it is in q0. This transition introduces 
nondeterminism into the computations of M. The accepting computation of a string a' 
processes the entire string in q0, transitions to q2, empties the stack, and accepts. □

Example 7.1.3

The even-length palindromes over [a, b } are accepted by the PDA

bk/B h B
aUA aA/x

That is, L(M) =  {u>u)R | w e  {a, b}*). A successful computation remains in state q0 while 
processing the string w and enters state q x upon reading the first symbol in w R. Unlike the 
strings in Example 7.1 1, the strings in L do not contain a middle marker that induces the 
change from state q0 to q (. Nondeterminism allows the machine to guess when the middle of 
the string has been reached. Transitions to q t that do not occur immediately after processing 
the last element of w result in unsuccessful computations. □

In Chapter 5 we showed that deterministic and nondeterministic finite automata ac
cepted the same family of languages. Nondeterminism was a useful design feature but did
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not increase the ability of the machine to accept languages. This is not the case for pushdown 

automata.
There is no deterministic PDA that accepts the language L =  [w w R \ w €  [a, b}*} from 

Example 7.1.3. This can be seen intuitively by considering the properties needed by a PDA 
to accept L. Since the computation of a PDA processes the input in a left-to-right manner, 
the machine is not able to determine when the first half of the input string has been read. For 
the nondeterministic machine M in Example 7.1.3, this poses no problem. The transition 
from q0 to q\ represents a nondeterministic guess that the symbol being scanned is the first 
symbol of the second copy of w. For a string in L, one of the guesses will be correct and 
the resulting computation accepts the input by matching the second half of the string with 

the stack elements.
Consider the possible actions of a deterministic PDA processing the input strings

aabbaa  and aabbbbaa.

When an a or b is read in the first half of a string, the corresponding stack symbol A or 
B must be pushed onto the stack to be compared with the second half of the input. After 
reading the first three symbols, the stack is B A A .  Regardless of which of the two strings is 
being processed, the next symbol is a b. To accept aabbaa, it is necessary to pop the stack 
to begin the matching of aab  with baa. However, to accept the aabbbbaa  the machine 
must push a B onto the stack. A deterministic machine can have only one option for this 
configuration and consequently one of these two strings will not be accepted.

The languages accepted by deterministic pushdown automata include all regular lan
guages and are a proper subset of the context-free languages. This family of languages, 
which is important for programming language definition and parsing, consists of the lan
guages that can be generated by LR(£) grammars. The use of LR(fc) grammars for language 
definition and deterministic parsing will be examined in Chapter 19.

7.2 Variations on the PDA Theme

Pushdown automata are often defined in a manner that differs slightly from Definition 7.1.1. 
In this section we examine several alterations to our definition that preserve the set of 
accepted languages.

Along with changing the state, a transition in a PDA is accompanied by three actions: 
popping the stack, pushing a stack element, and processing an input symbol. A PDA is 
called atomic if each transition causes only one of the three actions to occur. Transitions in 
an atomic PDA have the form

i) [qj, X] € S(qh a, X),

ii) [qj, A]e S(qh X, A), or

iii) [qj. A]e<5(<7,, X, X).
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Clearly, every atomic PDA is a PDA in the sense of Definition 7.1.1. Theorem 7.2.1 
shows that the languages accepted by atomic PDAs are the same as those accepted by PDAs. 
Moreover, it outlines a method to construct an equivalent atomic PDA from an arbitrary 

PDA.

Theorem 7.2.1

Let M be a PDA. Then there is an atomic PDA M' with L(M') =  L(M).

Proof. To construct M', the nonatomic transitions of M are replaced by a sequence of 
atomic transitions. Let [qj, B] € 8(qt , a , A)  be a transition of M. The atomic equivalent 
requires two new states, p\ and p2> ar>d the transitions

[p,, A ]ea(g ,, a , A.)

8(Pi, X, A) = {[p2, X]}

8(p2, X, X) =  {[qj, B ]}

to accomplish the same result as the nonatomic single transition.
In a similar manner, a transition that consists of changing the state and performing two 

additional actions can be replaced with a sequence of two atomic transitions. Replacing all 
nonatomic transitions with a sequence of atomic transitions produces an equivalent atomic 
PDA. ■

An extended transition is an operation on a PDA that pushes a string of elements, rather 
than just a single element, onto the stack. The transition [qj, BCD]  e  &(q,, a. A) pushes 
B C D  onto the stack with B becoming the new stack top. A PDA containing extended 
transitions is called an extended PDA. The apparent generalization does not increase the 
set of languages accepted by pushdown automata. Each extended PDA can be converted 
into an equivalent PDA in the sense of Definition 7.1.1.

To construct a PDA from an extended PDA, extended transitions are transformed into a 
sequence of transitions each of which pushes a single stack element. To achieve the result of 
an extended transition that pushes k elements requires k — 1 additional states. The sequence 
of transitions

[pi, D] e  8(qt, a , A)

8 (p lt X, X) =  { [p a . C ]}

S(P2,  X, X) =  { [ q j ,  5 ] }

pushes the string B C D  onto the stack and leaves the machine in state q j . The sequen
tial execution of these three transitions produces the same result as the single extended 
transition [qj, B C D ] e  8(qh a. A). The preceding argument can be generalized to yield 
Theorem 7.2.2.

Theorem 7.2.2

Let M be an extended PDA. Then there is a PDA M' such that L(M') =  L(M).
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Example 7.2.1

Let L =  {a'b2i | i > 1). A standard PDA, an atomic PDA, and an extended PDA are 
constructed to accept L. The input alphabet [a, b }, stack alphabet {A}, and accepting state 
q\ are the same for each automaton. The states and transitions are

PDA Atomic PDA Extended PDA

Q =  too. <?1.<72) Q =  (<?o. <?!• <72. <?3> <?4) Q =  {<?o. <7l)

8(q0, a, X ) :=  ([<72. A)) 8(q0, a, X) =  {(<73. *1) S(<7o. a>X) = {[?0.

H q  2, X , X ) =  ((<70. -41) 8(q3, X, X) =  {[<72. A]} S(<7o. b. A) = {[<7i. X]}

8(q0. b. A) =  {[<71. A]} S(q2, X, X) =  {[<?«. A]) S(q t, b, A) = {[<71. A]}

H q i , b , A ) =  ([<7.. X]} 8[q0, b. X) =  {[<74. X]}
*(<74. X, A) =  {[<?,. X]}
8(qu h, X) =  {[<74. * ])

As might be expected, the atomic PDA requires more transitions and the extended 
PDA fewer transitions than the equivalent standard PDA. The stack symbol A is used to 
count the number of matching b's required to accept the string. The extended transition 
8(q0, a, X) =  {[<70, AA]} pushes both counters on the stack with a single transition. The 
standard PDA requires two transitions and the atomic PDA three to accomplish the same 
result. □

By Definition 7.1.2, an input string is accepted if there is a computation that processes 
the entire string and terminates in an accepting state with an empty stack. This type of 
acceptance is referred to as acceptance by final state and empty stack. Defining acceptance 
in terms of the final state or the configuration of the stack alone does not change the set of 
languages recognized by pushdown automaton.

A string w is accepted by final state if there is a computation [^0, w, X] p- [qh  X, a], 
where q, is an accepting state and a  e  T*, that is, a computation that processes the input 
and terminates in an accepting state. The contents of the stack at termination are irrelevant 
with acceptance by final state. A language accepted by final state is denoted Lp.

Lemma 7.2.3

Let L be a language accepted by a PDA M =  (Q, E , T, 8, q0, F) with acceptance defined 
by final state. Then there is a PDA that accepts L by final state and empty stack.

Proof. A PDA M' =  (Q U {qf}, E , T, 8’, q0, [q f ) )  is constructed from M by adding a 
state q f  and transitions for q j .  Intuitively, a computation in M' that accepts a string should 
be identical to one in M except for the addition of transitions that empty the stack. The 
transition function 5' is constructed by augmenting 5 with the transitions

8'(qh X, X) =  {[qf, X]} fo ra llg , € F  

8'(qf,  X, A) =  [[qf,  X]} for all A 6 T.
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Let [^q, w, X] (u [<?,, X, a ]  be a computation of M accepting w by final state. In M \ this 
computation is completed by entering the accepting state q f  and emptying the stack

[tfo. w, X] 

fe [<?;. X, a ]

lM'[^/.X,a]

& [<?/, X,X]

showing that w is accepted in M'.
We must also guarantee that the new transitions do not cause M' to accept strings that are 

not in L(M). The sole accepting state of M' is q f , which can be entered only on a transition 
from any accepting state of M. Since the transitions for q j  do not process input, entering 
q f  with unprocessed input results in an unsuccessful computation. Consequently, a string 
ui is accepted by M' only if there is computation in M that processes all of w and halts in 
an accepting state of M. That is, w € L(M') only when w e  L(M) as desired. ■

A string w is said to be accepted by empty stack if there is a computation [q0, w, X] f±- 
[q,-, X, X], No restriction is placed on the halting state <?,. When acceptance is defined by 
empty stack, it is necessary to require at least one transition to permit the acceptance of 
languages that do not contain the null string. The language accepted by empty stack is 
denoted LE(M).

Lemma 7.2.4

Let L be a language accepted by a PDA M =  (Q, E , T, S, q0) with acceptance defined 
by empty stack. Then there is a PDA that accepts L by final state and empty stack.

Proof. Let M '= ( Q U ( ^ ) ,  E , T, S', q ’Q, Q), where S’(qj, x ,  A) =  S(qh x .  A) and 
S'(q'0, x ,  A)  =  S(q0, x ,  A) for every qt e  Q, x  € E U {X}, and A e T U  {X). Every state 
of the original machine M is an accepting state of M'.

The computations of M and M' are identical except that those of M begin in state q0 
and M' in state q'Q. A computation of length one or more in M' that halts with an empty stack 
also halts in a final state. Since q'Q is not accepting, the null string is accepted by M' only if 
it is accepted by M. Thus, L(M ') =  LE(M). ■

Lemmas 7.2.3 and 7.2.4 show that a language accepted by either final state or empty 
stack alone is also accepted by final state and empty stack. Exercises 8 and 9 establish 
that any language accepted by final state and empty stack is accepted by a pushdown 
automaton using the less restrictive forms of acceptance. These observations yield the 
following theorem.

Theorem 7.2.5

The following three conditions are equivalent:.

i) The language L is accepted by some PDA.

ii) There is a PDA M| with LF(M () = L.

iii) There is a PDA M2 with LE(M2) = L.
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We have considered alternatives to the standard PDA model obtained by changing the 
acceptance criteria and the form of the transitions. Another common modification is to 
assume that there is a distinguished element that marks the bottom of the stack. A bottom 
marker can be read but not popped from the stack. Reading the bottom marker allows the 
machine to recognize an empty stack and act accordingly. The following example illustrates 
the role of a bottom marker and shows how it can be simulated in a standard PDA.

Example 7.2.2

The pushdown automaton M defined by the transitions

accepts strings that have the same number of a ’s and b’s. The stack symbol Z  plays the role 
of a bottom marker; it is placed on the stack with the first transition ar.d remains throughout 
the computation.

The stack records the difference in the number of a ’s and b’s that have been read. The 
stack will contain n A’s if the automaton has processed n more a ’s than b’s. Similarly, the 
number of B's  on the stack indicates the number of b ’s in excess of the number of a ’s that 
have been processed. The bottom marker Z is read when the same number of a ’s and b's 
have been processed. The computation

[q^, abba , X]

I- [<7 i, abba, Z ]

I- [q2, bba,  Z]

I- [qx, bba, AZ]  

h  [<7i. ba, Z]

y- t o .  a . z ]

I- [<71, a, BZ)

!-[<7i,X , Z]

I- [<74, X, X]
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exhibits the acceptance of abba. When an a is read with an A or Z on the top of the stack, 
an A is added to the stack by the transitions to q2 and back to q\. If the stack top is a B, the 
stack is popped in q\ since reading the a decreases the difference between the number of 
b's and a ’s that have been processed. A similar strategy is employed when a b is read.

The lone accepting state of the automaton is q4. If the input string has the same number 
of a ’s and b’s, the transition to q4 pops the Z and terminates the computation. □

The variations of pushdown automata that accept the same family of languages illustrate 
the robustness of acceptance using a stack memory. In the next section we show that the 
languages accepted by pushdown automata are precisely those generated by context-free 
grammars.

7.3 Acceptance of Context-Free Languages

In Chapter 6 we showed that the languages generated by regular grammars were precisely 
those accepted by DFAs. In this section we continue the relationship between grammatical 
generation and mechanical acceptance of languages. The characterization of pushdown au
tomata as acceptors of context-free languages is obtained by establishing a correspondence 
between computations of a PDA and derivations in a context-free grammar.

First we prove that every context-free language is accepted by an extended PDA. To 
accomplish this, the rules of the grammar are used to generate the transitions o f an equivalent 
PDA. Let L be a context-free language and G a grammar in Greibach normal form with 
L(G) =  L. The rules of G, except for 5 —»■ X, have the form A —> a A yA 2 ■ ■ ■ A„. In a 
leftmost derivation, the variables A,- must be processed in a left-to-right manner. Pushing 
A \A 2 ■ ■ ■ An onto the stack stores the variables in the order required by the derivation. 
The PDA has two states: a start state q0 and an accepting state q t. An S rule of the form 
S —►  a A xA 2 . • • An generates a transition that processes the terminal symbol a, pushes the 
variables A tA 2 . . .  A„ onto the stack, and enters staje q t. The remainder of the computation 
uses the input symbol and the stack top to determine the appropriate transition.

The Greibach normal form grammar G that accepts (a’b' 11 >  0} is used to illustrate 
the construction of an equivalent PDA.

G: S —* a A B  | aB  

A -*■ a A B  | aB  

B ^  b

The transition function of the equivalent PDA is defined directly from the rules of G.
bB/X

S(q0, a, X) =  {[<?,, AB], [<?,, fi]} a A /B
aA/AB

&(ql, a , A )  =  [[ql,A B ] ,  [qx, B]}

S(qj, b, fi) =  {[<?„ A]}
aX/B  

a X/AB
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The computation obtained by processing aaabbb  exhibits the correspondence between 
derivations in the Greibach normal form grammar and computations in the associated PDA.

5 => aA B [<7o, aaabbb,  X] 1- [̂ i, aabbb, A B ]

=> a a A B B h [q\, abbb, A B B ]

=> a a a B B B 1- lqt, bbb, BBB]

=> aaabB B \ - l q t,bb ,  BB]

=>■ aaabbB H [«i. b, B]

=► aaabbb h [«?„ X, X]

The derivation generates a string consisting of a prefix of terminals followed by a suffix 
of variables. Processing an input symbol corresponds to its generation in the derivation. The 
stack of the PDA contains the variables in the derived string. This strategy for the generation 
of a PDA equivalent to a Greibach normal form grammar is formalized in Theorem 7.3.1 
to show that every context-free language is accepted by a PDA.

Theorem 7.3.1

Let L be a context-free language. Then there is a PDA that accepts L.

Proof. Let G =  (V, E , P, S ) be a grammar in Greibach normal form that generates L. 
The extended PDA M with start state q0 defined by

Q m  =  too- 4 i)

E m =  £  

rM = v -{S}
Fm =  tel)

and transitions

S(qo, a, X) =  {[<71. «>]|| S  ->  aw  e  P}

S(qi, a. A) =  {[<?!. IV] |I A -* aw  e  P and A e  V — {S}}

Hqo. *. X) =  {[<7.. M) i f  5  -»  X e  P

accepts L.

We first show that L c  L(M). Let S ^ u u j b e a  derivation with u e  E + and w e  V*. 
We will prove that there is a computation

[q0, u, X] h=- [qh X, w]

in M. The proof is by induction on the length of the derivation and utilizes the correspon
dence between derivations in G and computations of M.
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The basis consists of derivations S => aw  of length one. The transition generated by 
the rule S —* aw  yields the desired computation. Assume that for all strings uw  generated 

by derivations S => uw  there is a computation

[q0, u, A ]F  [qx. A, w]

in M.
Now let S  = >  mw be a derivation with u =  va e  £ + and w 6 V*. This derivation can 

be written

S => vA w2 => uw,

where w =  WjW2 and A -*■ a w x is a rule in P. The inductive hypothesis and the transition 
fai, w,] e  5(^lt a, A ) combine to produce the computation

to,, va, A] \̂ - [qx, a, A w 2] 

h  [qh X, w ,w2].

For every string u in L of positive length, the acceptance of u is exhibited by the 

computation in M corresponding to the derivation S  => u. If X e  L, then S  -*  X is a rule 
of G and the computation [^0, X, A] b  [qh X, A] accepts the null string.

The opposite inclusion, L(M) c  L, is established by showing that for every computa
tion [<70. u, A] p- [qx. A, w] there is a corresponding derivation 5 => uw  in G. The proof 
is by induction on the number of transitions in a computation and is left as an exercise. ■

To complete the characterization of context-free languages as precisely those accepted 
by pushdown automata, we must show that every language accepted by a PDA is context- 
free. The rules of a context-free grammar are constructed from the transitions of the 
automaton so that the application of a rule corresponds to a transition in the computation in 
the PDA. To simplify the proof, we divide the presentation into four stages:

1. The addition of transitions to the PDA so that each string in the language is accepted
by a computation in which every transition both pops and pushes the stack;

2. The construction of the rules of a grammar from the modified PDA;

3. The presentation of an example that illustrates the correspondence between computa
tions of the PDA and derivations of the grammar;

4. Finally, the formal proof that the language of the grammar and the PDA are the same.

The first two steps are constructive— adding transitions and building rules. The final step 
is accomplished by Lemmas 7.3.3 and 7.3.4, which show that the rules generate exactly 
the strings accepted by the PDA. We start with an arbitrary PDA M and show that L(M) is 
context-free. The proof begins by modifying M so that the transitions can be converted to 
rules.

L e tM = (Q , £ ,  T, 8, qQ, F) be a PDA. An extended PDA M 'with transition function 
8' is obtained from M by augmenting 8 with the transitions
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i) If [q^  X] 6 S(qh u, k),  then [qj, A] €  S'(qh u. A) for every A e  T.

ii) If [qjt B] e u, k),  then [qj, BA]  e  S'(qh u. A)  for every A € I \

The interpretation of these transitions is that a transition of M that does not remove an 
element from the stack can be considered to initially pop the stack and later replace the same 
symbol on the top of the stack. Any string accepted by a computation that utilizes a new 
transition can also be obtained by applying the original transition; hence, L(M) =  L(M').

A grammar G =  (V, L , P, 5) is constructed from the transitions of M '. The alphabet 
of G is the input alphabet of M'. The variables of G consist of a start symbol S  and objects of 
the form (qjt A, qj)  where the ^ ’s are states of M' and A e T U {X}. The variable (<?, , A, qj) 
represents a computation that begins in state qit ends in qj,  and removes the symbol A from 
the stack. The rules of G are constructed as follows:

1. S —> (q0, k ,  qj) for each qj  e  F.

2. Each transition [qj, B ] e  x ,  A),  where A € T U {X}, generates the set of rules

{(<?,, A, qk) - ►  x{qj,  B, qk) | qk 6 Q}.

3. Each transition [qj, BA]  € S'iq,, x ,  A), where A e  T, generates the set of rules

{(<?<• A, qk) - ►  x{qj,  B, qn){qn. A, qk) | qk, q„ € QJ.

4. For each state qk e  Q,

(qk, X, qk) -+ X.

A derivation begins with a rule of type 1 whose right-hand side represents a computation 
that begins in state q0, ends in a final state, and terminates with an empty stack, in other 
words, a successful computation in M'. Rules of types 2 and 3 trace the action of the 
machine. Rules of type 3 correspond to the extended transitions of M'. In a computation, 
these transitions increase the size of the stack. The effect of the corresponding rule is to 
introduce an additional variable into the derivation.

Rules of type 4 are used to terminate derivations. The rule {qk, X, qk) -*■ X represents a 
computation from a state qk to itself that does not alter the stack, that is, the null computation.

Example 7.3.1

A grammar G is constructed from the PDA M. The language of M is the set [ancbn \ n > 0}.

M: Q =  {q0, q x) 8(q0, a , X) =  {[<70. A])

E =  {a,fc,c} *(?0.c .X )  =  {[?1,X]}

r  =  {A} S(ql, b , A )  =  {[qi,k])

F = f< 7 .}
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The transitions S'(qq, a, A) =  {[<?o. AA]} and 8'(qo, c, A) — {[<?i. A]} are added to M 
to construct M'. The rules of the equivalent grammar G and the transition from which they 

were constructed are

Transition Rule

S  -*• (q0, k ,  q x)

8(q0, a, k)  =  {[(ft. 'I]} <<7o. k , q 0) -<• a{q0. A , q0) 

<<7o. k , q ,) -*  a(q0. A, q ,}

8(q0, a, A)  =  {[^0, /M]} (q0, A, q0) -> a(q0. A ,  qo)(qo, A, q0) 

(<7o. A, q x) -*  a(q0, A .  qo){qo< A ,  <?,) 

{q0, A , q0) -*• a{q0. A, q x){qx, A, q0) 

{q0. A , q x) -*  a(q0, A , q , ) (q ,, A, q x)

S(q0, c, k)  =  {fa,, X]) <90 . k,  q0) -*• c(qx, k ,  q0) 

{qQ, k ,  <j|) -*■ c (q h k ,  q x)

8(q0, c, /4 )  =  {[<?|, A ]) {q0. A ,  <?(,) - *  c{qu A. q0) 

too - A, q |> - ►  c{q ,, A, q x)

8(qx, b ,  A )  =  {[<?,, A]} < ? l. A .  qo) ->■ b (q x, k ,  q0) 

(<?!> A , ? i >  -*■  b(qx, k ,  q{j

(qo< k ,  q0) —* k 

{q|, k , q x) -* k

The relationship between computations in a PDA and derivations in the associated 
grammar are demonstrated using the grammar and PDA of Example 7.3.1. The derivation 
begins with the application of an S  rule; the remaining steps correspond to the processing 
of an input symbol in M'. The first component of the leftmost variable contains the state 
of the computation. The third component of the rightmost variable contains the accepting 
state in which the computation will terminate. The stack can be obtained by concatenating 
the second components of the variables.

[<7o. aacbb, X]

I- [<7o. acbb, A]

I- [g0. ebb, A A] 

h  [<7i, bb, AA]  

f- [<?i, b. A]

y- [<?i. x]

*s

S  => {<70, k,  q x)

=>a(q0, A , q x)

=>aa(q0, A, q x){qx, A, q x) 

=> aac(qx, A, q x)(qx, A, q x) 

=> aacb(qx, k ,  q x)(qx, A , q x) 

= ► aacb(qx, A, q x)

=> aacbb(qx, k ,  q x)

=> aacbb
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The variable {q0, A., q ^ ,  obtained by the application of the S rule, indicates that a 
computation from state q0 to state q\ that does not alter the stack is required. The result of 
subsequent rule application signals the need for a computation from q$ to q\ that removes 
an A from the top of the stack. The fourth rule application demonstrates the necessity 
for augmenting the transitions of M when S contains transitions that do not remove a 
symbol from the stack. The application of the rule {q0. A, q\) —* c (qj. A, q j) represents a 
computation that processes c without removing the A from the top of the stack.

We are now ready to prove that a language accepted by a PDA is context-free. This 
result combines with Theorem 7.3.1 to establish the equivalence of string generation using 
context-free rules and string acceptance by pushdown automata.

Theorem 7.3.2

Let M be a PDA. Then there is a context-free grammar G with L(G) =  L(M).

The grammar G is constructed as outlined from the extended PDA M' that is equivalent 

to M. We must show that there is a derivations w if, and only if, [<?0, u), X]p- [qj, X, X]for 
some qj  € F. This follows from Lemmas 7.3.3 and 7.3.4, which establish the correspondence 
of derivations in G to computations in M'.

Lemma 7.3.3

If (qh A , qj) ^  w where i» e Z *  and A €  T U {X}, then [qh w , A] (*- [qj, X, X],

Proof. The proof is by induction on the length of derivations of terminal strings from 
variables of the form (qh A, qj). The basis consists of derivations of strings consisting of 
a single rule application. The null string is the only terminal string derivable with one rule 
application. The derivation has the form {qh  X, q,) => X utilizing a rule of type 4. The null 
computation in state q, yields [qh  X, X] ^  [q,, X, X] as desired.

Assume that there is a computation [qh v, A] p- [qj, X, X] whenever {q,, A, qj)  v. 
Let w be a terminal string derivable from {qh A, qj)  by a derivation of length rt +  1. The 
first step of the derivation consists of the application of a rule of type 2 or 3. A derivation 
initiated by a rule of type 2 can be written

(qh A, qj)  => u (qk, B, qj)

uv = w,

where (qh A, qj) —►  u (qk, B, qj)  is a rule of G. By the inductive hypothesis, there is a 
computation [qk, v, B] p- [qj, X, X] corresponding to the derivation (qk, B, qj)  ^  v.

The rule (qh A, qj)  —»• u (qk, B, qj)  in G is generated by a transition [qk, S] e 
S(qh u. A). Combining this transition with the computation established by the inductive 
hypothesis yields

[qh  uv, A ]\-[qk, v, B]

f5- Iqj. X, X],
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If the first step of the derivation is a rule of type 3, the derivation can be written 

{qh  A, qj)  => u (qk, B, qm)(qm, A, q})

n
=> w.

The corresponding computation is constructed from the transition [qk, B A] € S(qj, u. A) 
and two invocations of the inductive hypothesis. ■

Lemma 7.3.4

If [qh w, A] p- [qj, X, X] where A e T U  {A.}, then there is a derivation (qh A , qj) w.

Proof. The null computation from configuration [qt , X, X] is the only computation of M 
that uses no transitions. The corresponding derivation consists of a single application of the 
rule (qh X, q,) -»• X.

Assume that every computation [qj, u, A] P- [qj, X, X] has a corresponding derivation 

(qh A, qj) v in G. Consider a computation of length n +  1. A computation of the 
prescribed form beginning with a nonextended transition can be written

[<7i. u;, A] 

h  [qk, v, B]

V- [qj, X, X],

where w = uv  and [qk, B] € S(qit u. A). By the inductive hypothesis, there is a derivation 

(qk, B, qj) ^  v. The first transition generates the rule (qh A ,q j )  -*■ u (qk, B, qj)  in G. 
Hence a derivation of w from (qt . A ,  qj)  can be obtained by

{Qh A ,q j ) = > u ( q k, B ,q j )

=> uv.

A computation in M' beginning with an extended transition [qr  BA]  e  S(q,, u. A) has 
the form

[qh w. A] 

h  [qk, v, BA]

^  tom. y - M  

[qj, X, X],

where w = uv  and v =  xy.  The rule (qj, A ,q j )  -+ u (qk, B , q m)(qm, A, q j)  is generated by 
the first transition of the computation. By the inductive hypothesis, G contains derivations

to*. B , q m) ^ x

{qm< A <qj)=>y-
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Combining these derivations with the preceding rule produces a derivation of w from 

(<?(> A, qj).  ■

Proof o f  Theorem 7.3.2. Let w be any string in L(G) with derivation S  => 
(q0, X, qj) => w. By Lemma 7.3.3, there is a computation [<y0. w, X] [qj, X, X] ex
hibiting the acceptance of w by M'.

Conversely, if w e  L(M) =  L(M '), then there is a computation [q0, w, X] F- [qjt  X, X] 
that accepts w. Lemma 7.3.4 establishes the existence of a corresponding derivation 

(q0, X, Qj) ^  w in G. Since qj  is an accepting state, G contains a rule S  —> (qQ, X, qj). 
Initiating the previous derivation with this rule generates w in the grammar G. ■

7.4 The Pumping Lemma for Context-Free Languages

The pumping lemma for regular languages, Theorem 6.6.3, showed that sufficiently long 
strings in a regular language have a substring that can be repeated any number of times 
with the resulting string remaining in the language. In this section we establish a pumping 
lemma for context-free languages. For context-free languages, however, pumping refers to 
simultaneously repeating two substrings. The ability to generate any context-free language 
with a Chomsky normal form grammar provides the structure needed to prove the pumping 
lemma.

There are two milestones in the proof of the pumping lemma. Using the properties 
of derivation trees built using the rules of Chomsky normal form grammars, we obtain a 
number k such that

1. the derivation of any string of length k or more must have a recursive subderivation 

A ^  v A x , with v, x  6 £*, and

2. the strings v and x  can be simultaneously pumped in z with the resulting string 
remaining in the language.

The relationship between the number of leaves and depth of a binary tree is used to achieve 
the first milestone, and the repetition of the recursive subderivation establishes the latter. 
The relationship between string length and depth of a derivation tree for Chomsky normal 
form grammars is obtained in Lemma 7.4.1 and restated in Corollary 7.4.2.

Lemma 7.4.1

Let G be a context-free grammar in Chomsky normal form and A w a  derivation of 
w €  E* with derivation tree T. If the depth of T is n, then length(w) < 2n_1.

Proof. The proof is by induction on the depth of the derivation trees that generate terminal 
strings. Since G is in Chomsky normal form, a derivation tree of depth 1 that represents the 
generation of a terminal string must have one of the following two forms.
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S A

X a

In either case, the length of the derived string is less than or equal to 2° =  1 as required.
Assume that the property holds for all derivation trees of depth n or less. Let A => w be 

a derivation with tree T of depth n + 1. Since the grammar is in Chomsky normal form, 

the derivation can be written A => BC  => uv  where fi => m, C => u, and w =  uv. The 
derivation tree of A => w is constructed from TB and Tc , the derivation trees of B => u 

and C => v.

4

The trees TB and Tc  both have depth n or less. By the inductive hypothesis, 
length(u) <  2n_1 and length(v) <  2"_1. Therefore, length{w) =  length(uv) < 2". ■

Corollary 7.4.2

Let G =  (V, E , P, S) be a context-free grammar in Chomsky normal form and S w a 
derivation of w € L(G). If length(w) >  2”, then the derivation tree has depth at least n -f 1.

Theorem 7.4.3 (Pumping Lemma for Context-Free Languages)

Let L be a context-free language. There is a number k, depending on L, such that any string 
z e L with length(z) > k can be written z =  u vw x y  where

i) length(vwx) < k

ii) length(v) +  length(x) > 0

iii) u v 'w x 'y  €  L, for i > 0.

Proof. LetG  =  (V, E , P, S) be a Chomsky normal form grammar that generates L and 
let k =  2" with n = card(\) .  We show that all strings in L with length k or greater can be 
decomposed to satisfy the conditions of the pumping lemma. Let z e  L(G) be such a string 
and let 5 ^  z be a derivation in G. By Corollary 7.4.2, there is a path o f length at least 
n +  1 =  card(V) +  1 in the derivation tree of S z.

Let p be a path of maximal length from the root 5 to a leaf of the derivation tree. 
Then p must contain at least n + 2 nodes, all of which are labeled by variables except the
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leaf node, which is labeled by a terminal symbol. The pigeonhole principle guarantees that 
some variable A must occur twice in the final n + 2 nodes of this path. Although A may 
appear more than twice in the path, we will be concerned only with its last and next to last 

occurrence in p.
Translating the properties of a path in the derivation tree to subderivations, the deriva

tion of z can be depicted

where z =  uvw xy .  The derivation S => r\Ar2 produces the next to last occurrence of the 
variable A. The subderivation A => vA x  may be omitted or repeated any number of times 
before applying A w to halt the recursion. The resulting derivations generate the strings 
u v 'w x 'y  e  L(G) =  L.

We now show that conditions (i) and (ii) in the pumping lemma are satisfied by this 
decomposition. The subderivation A vAx  must begin with a rule of the form A -*■ BC.  
The second occurrence of the variable A is derived from either B or C. If it is derived from 
B, the derivation can be written

A => BC

=> uAsC

=> vAst  

= vAx.

The string t is nonnull since it is obtained by a derivation from a variable in a Chomsky 
normal form grammar that is not the start symbol of the grammar. It follows that x  is also 
nonnull. If the second occurrence of A is derived from the variable C, a similar argument 
shows that v must be nonnull.

The subpath between the final two occurrences of A in the path p must be of length at 
most n + 2. The derivation tree generated by the derivation A => vw x  has depth of at most 
n +  1. It follows from Lemma 7.4.1 that the string vw x  obtained from this derivation has 
length k =  2" or less. ■

Like its counterpart for regular languages, the pumping lemma provides a tool for 
demonstrating that languages are not context-free. By the pumping lemma, every suffi
ciently long string in a context-free grammar must have pumpable substrings. Thus we can 
show that a language is not context-free by finding a string that has no decomposition u vw xy  
that satisfies the requirement of Theorem 7.4.3.
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Example 7.4.1

The language L =  {a 'b 'c ' | / >  0) is not context-free. Assume L is context-free. By Theo
rem 7.4.1, the string z =  akbkck, where k is the number specified by the pumping lemma, 
can be decomposed into substrings uv w x y  that satisfy the repetition properties. Consider 
the possibilities for the substrings v and x.  If either of these contains more than one type of 
terminal symbol, then uv2w x2y  contains a b preceding an a or a c preceding a b. In either 
case, the resulting string is not in L.

By the previous observation, v and x  must be substrings of one of ak, bk, or ck. Since 
at most one of the strings v and x  is null, uv2w x2y  increases the number of at least one, 
maybe two, but not all three types of terminal symbols. This implies that u v2w x 2y  £  L. 
Thus there is no decomposition of akbkck satisfying the conditions of the pumping lemma; 
consequently, L is not context-free. □

Example 7.4.2

The language L =  {a'b1 a ‘bJ \ i, j  > 0} is not context-free. Let k be the number specified by 
the pumping lemma and z =  akbkakbk. Assume there is a decomposition u v w x y  of z that 
satisfies the conditions of the pumping lemma. Condition (ii) requires the length of vw x  to 
be at most k. This implies that vw x  is a string containing only one type o f terminal or the 
concatenation of two such strings. That is,

i) vw x  € a* or utu* e  b*, or

ii) vw x  6 a*b* or vw x  e  b*a*.

By an argument similar to that in Example 7.4.1, the substrings v and x  must contain only 
one type of terminal. Pumping v and x  increases the number of a ’s or b ’s in only one of 
the substrings in z. Since there is no decomposition of z satisfying the conditions of the 
pumping lemma, we conclude that L is not context-free. □

Example 7.4.3

The language L =  {w e  a* | length(w) is prime} is not context-free. Assume L is context- 
free and n a prime greater than k, the constant of Theorem 7.4.3. The string a" must 
have a decomposition uvw xy  that satisfies the conditions of the pumping lemma. Let m =  
length(u) + length(w) +  length(y). The length of any string u v 'w x 'y  is m +  i(n  -  m).

In particular, length(wvn+lw xn+,y ) — m + (n + 1)(« -  m)  =  n(n — m  +  1). Both of 
the terms in the preceding product are natural numbers greater than 1. Consequently, the 
length of uv',+1u;x',+1y is not prime and the string is not in L. Thus, L is not context-free.
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7.5 Closure Properties of Context-Free Languages

The flexibility of the rules of context-free grammars is used to establish closure results for 
the set of context-free languages. Operations that preserve context-free languages provide 
another tool for proving that languages are context-free. These operations, combined with 
the pumping lemma, can also be used to show that certain languages are not context-free.

Theorem 7.5.1

The family of context-free languages is closed under the operations union, concatenation, 
and Kleene star.

Proof. Let L | and L2 be context-free languages generated by G] =  (V^ £ ] ,  P |, Sj) and 

=  (V2, E 2, P2, S2), respectively. The sets V, and V2 of variables are assumed to be 
disjoint. Since we may rename variables, this assumption imposes no restriction on the 
grammars.

A context-free grammar will be constructed from G ( and G2 that establishes the desired 
closure property.

Union: Define G = (V! U V2 U {5}, U £ 2, P! U P2 U {5 -*  S\ | S2}, 5). A string w is 

in L(G) if, and only if, there is a derivation S  = ► S,- => w for i =  1 or 2. Thus w is in L[ 

or L^. On the other hand, any derivation S* w can be initialized with the rule S  —►  S, to 
generate w in G. '

Concafena«on:DefineG = (V1U V 2 U{5}, E iU E 2, P[ U P2 U {5 -*  S ^ } ,  S ).Thestart 
symbol initiates derivations in both Gi and G2. A leftmost derivation of a terminal string 

in G has the form S => 5)52 => uS2 => uv,  where u € L! and v g L 2■ The derivation of u 
uses only rules from Pj and v rules from P2. Hence L(G) c  L]L2. The opposite inclusion 
is established by observing that every string w in L(L2 can be written uv  with m € L] and 

v G L^. The derivations Sj => u and S2 => v, along with the S rule of G, generate w in G. 

Kleene star: Define G = (V,, S), P, U {5 -> S\S \ X), S). The S rule of G generates any 
number of copies of Sj. Each of these, in tum, initiates the derivation of a string in Lj. The 
concatenation of any number of strings from L| yields L*. ■

Theorem 7.5.1 presented positive closure results for the set of context-free languages. 
A simple example is given to show that the context-free languages are not closed under 
intersection. Finally, we combine the closure properties of union and intersection to obtain 
a similar negative result for complementation.

Theorem 7.5.2

The set of context-free languages is not closed under intersection or complementation. 

Proof.

Intersection: Let Li =  [a'b'c-i \ i, j  > 0} and L2 =  [aJb'c' | i, j  > 0}. L] and L2 are both 
context-free since they are generated by G! and G2, respectively.
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G,: S->  BC  G2: S ->  AB  

B -*■ aB b  | X A ^  flA | X

C - ►  cC | X B -» bBc | X

The intersection of L | and L2 is the set {a'b 'c ' 11 > 0} , which is not context-free by 
Example 7.4.1.

Complementation: Let L[ and L2 be any two context-free languages. If the context-free 
languages are closed under complementation, then by Theorem 7.5.1, the language

L =  L | U L2
t

is context-free. By DeMorgan’s Law, L = Ljfl L2 . This implies that the context-free 
languages are closed under intersection, contradicting the result of part (i). ■

Exercise 9 of Chapter 6 showed that the intersection of a regular and context-free lan
guage need not be regular. The correspondence between languages and pushdown automata 
is used to establish a positive closure property for the intersection of regular and context-free 
languages.

Let R be a regular language accepted by a DFA N and L a context-free language 
accepted by PDA M. We show that R fl L is context-free by constructing a single PDA 
that simulates the operation of both N and M. The states of this composite machine are 
ordered pairs consisting of a state from M and one from N.

Theorem 7.5.3

Let R be a regular language and L a context-free language. Then the language R fl L is 
context-free.

Proof. LetN =  (QN, E N, SN, q0, FN) be a DFA that accepts Rand let M =  (QM, S M, T, 
^M' P0' Fm) a PDA that accepts L. The machines N and M are combined to construct a 
PDA

=  (Qm x Qn- F, S, [po- <?<)]' Fm x Fn)

that accepts R n  L. The transition function of M' is defined to “run the machines M and N 
in parallel.” The first component of the ordered pair traces the sequence of states entered by 
the machine M and the second component by N. The transition function of M ' is defined by

i) S([p, q], a , A) =  {[[/>', q ’], B] \ [p \  B] e  SM(p, a. A)  and SN(<?, a) =  <?')

ii) S([p, q], X, A) =  {[[/>', q]. B) | [/>', B] e  SM(p,  X, A)).

Every transition of a DFA processes an input symbol, whereas a PDA may contain tran
sitions that do not process input. The transitions introduced by condition (ii) simulate the 
action of a PDA transition that does not process an input symbol.

A string w is accepted by M' if there is a computation

[[Po- P- H P ,. <7>]. H

where p, and qj are final states of M and N, respectively.
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The inclusion L(N) n  L(M) C L(M') is established by showing that there is a compu
tation

[[Po- 9ol. u>, X] [[ph u, a]

whenever

[p0, w,  and [<70, u>] [qj, w]

are computations in M and N. The proof is by induction on the number of transitions in the 
PDA M.

The basis consists of the null computation in M. This computation terminates with pj =  
Pq, u =  w , and M containing an empty stack. The only computation in N that terminates with 
the original string is the null computation; thus, qj =  q0. The corresponding computation 
in the composite machine is the null computation in M'.

Assume the result holds for all computations of M having length n. Let

[Po, X] lS '[P /,w ,a ]  and [^0. w] & Iqj, «]

be computations in the PDA and DFA, respectively. The computation in M can be written

[Po> «>. *1 

F  [Pk. 0]

I~ [ P i ,u ,a ] ,

where either v =  u or v =  au. To show that there is a computation [[p0, <70], w,  A.] Ifr 
[[/>,-, qj], u, a], we consider each of the possibilities for v separately.

Case 1: u =  u. In this case, the final transition of the computation in M does not process 
an input symbol. The computation in M is completed by a transition of the form [ph B] e  
$M(Pk’ A). This transition generates [[/>,-, qj], B] € S([pk, q}], X, A)  in M'. The compu
tation

[[Po- ?ol. w• W ft [[/>*, q j l  v, 0]

Kp,. <?>]. v, a ]

is obtained from the inductive hypothesis and the preceding transition of M'.

Case 2: v =  au. The computation in N that reduces w to u can be written

[<7o. «>]

& fern. ”1

In [qj, «].

where the final step utilizes a transition <5N(<?m, a ) =  qj.  The DFA and PDA transitions 
for input symbol a combine to generate the transition [[ph qj], B] e &([pk , qm], a, /4) in
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M'. Applying this transition to the result of the computation established by the inductive 

hypothesis produces

[[po. 9ol- w < *•] Kf 4m l  V,

Im [Ip«. 4 j l  “ 1-

The opposite inclusion, L(M') C L(N) n  L(M), is proved using induction on the length 
of computations in M'. The proof is left as an exercise. ■

Theorem 7.5.2 used DeMorgan’s Law to show that the family of context-free languages 
is not closed under complementation. The next example gives a grammar that explicitly 

demonstrates this property.

Example 7.5.1

The language L =  {ww \ w e  {a, b}*} is not context-free, but L is. First we show that L 
is not context-free using a proof by contradiction. Assume L is context-free. Then, by 
Theorem 7.5.3,

L n  a*b*a*b* =  [ a W a W  \ i , j  > 0}

is context-free. However, this language was shown not to be context-free in Example 7.4.2, 
contradicting our assumption.

To show that L is context-free, we construct two context-free grammars Gj and G2 with 
L(G,) U L(G2) = L.

G,: S - ►  a A \ bA  | a \ b G2: S —►  A B  \ BA  

A - * a S \ b S  A ^ * Z A Z \ a

B - +  Z B Z  | b 

Z —*■ a \ b

The grammar G, generates the strings of odd length over [a, b], all of which are in L. G2 
generates the set of even length string in L. Such a string may be written u lx v iu 2yv2, where 
x ,  y  € E and x  ^  y; u\, w2, U), i>2 € E* with length(ux) =  length(u2) and length(tij) =  
length(v2). That is, x  and y  are different symbols that occur in the same position in the 
substrings that make up the first half and the second half of u lx v lu2y v 2. Since the u ’s 
and u’s are arbitrary strings in Z*, this characterization can be rewritten u tx p q y v 2, where 
length(p) =  length(ui) and length(q) =  length(v2). The recursive variables of G2 generate 
precisely this set of strings. □
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Exercises

1. Let M be the PDA defined by

Q =  Wo. 0i. ft}  s (9o. «■ *) =  {[<70.

E =  {a, *>} «(9o. X, X) =  {[*„ X]}

T =  {A} «(«„. *. A)  =  [[?2. X])

F =  {ft, ft}  S (ft, X, A) =  {[?i, X]}

S(q2, b, A) =  {[q2, X]} 

&(q2, X, A) =  {[<7 2 , X]}.

a) Describe the language accepted by M.

b) Give the state diagram of M.

c) Trace all computations of the strings aab, abb, aba  in M.

d) Show that aabb, aaab  € L(M).

2. Let M be the PDA in Example 7.1.3.

a) Give the transition table of M.

b) Trace all computations of the strings ab, abb, abbb  in M.

c) Show that a a a a ,  baab  €  L(M).

d) Show that aaa, ab & L(M).

3. Construct PDAs that accept each of the following languages.

a) {a'b> | 0 <  i < j )

b) {a'c-'fc' | i, j  > 0}

c) {a'b-'c* 11 +  k =  j }

d) {id | u; e  {a, b}* and w has twice as many a ’s as b 's}

e) {a'b1 | i >  0} U a* U b*

f) {a'fc-'c* | / =  j  or j  =  <:}

g) {a'b* | i ?£ j )

h) [a'bi | 0 <  i < j  < 2/)

i) {a '+ib 'c i  | i, j  > 0}

j) The set of palindromes over {a, b)

4. Construct a PDA with only two stack elements that accepts the language

{w dw R | w €  {a, b, c}*}.
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5. Give the state diagram of a PDA M that accepts {a2,b,+j  | 0 < j  <  i] with acceptance 
by empty stack. Explain the role of the stack symbols in the computation of M. Trace 
the computations of M with input aabb  and aaaabb.

6. The machine M

accepts the language L = {a‘b‘ 11 >  0} by final state and empty stack.

a) Give the state diagram of a PDA that accepts L by empty stack.

b) Give the state diagram of a PDA that accepts L by final state.

7. Let L be the language {u> e  {a, b}* \ w has a prefix containing more b ’s than a ’s}. For 
example, baa, abba, abbaaa  € L, but aab, aabbab  L.

a) Construct a PDA that accepts L by final state.

b) Construct a PDA that accepts L by empty stack.

8 . Let M = (Q, S , T, S, q0, F) be a PDA that accepts L by final state and empty stack. 
Prove that there is a PDA that accepts L by final state alone.

9. Let M = (Q, S , T, 5, q0, F) be a PDA that accepts L by final state and empty stack. 
Prove that there is a PDA that accepts L by empty stack alone.

10. Let L =  {a2ib‘ | / >  0}.

a) Construct a PDA M 1 with L(Mj) = L.

b) Construct an atomic PDA M 2  with L(M2) = L.

c) Construct an extended PDA M 3 with L(M3) = L that has fewer transitions than M (.

d) Trace the computation that accepts the string aab  in each of the automata con
structed in parts (a), (b), and (c).

11. Let L =  [a2ib*  | i > 0}.

a) Construct a PDA with L(M|) = L.

b) Construct an atomic PDA M 2  with L(M2) = L.

c) Construct an extended PDA M 3 with L(M3) = L that has fewer transitions than M[.

d) Trace the computation that accepts the string aabbb  in each of the automata con
structed in parts (a), (b), and (c).

12. Use the technique of Theorem 7.3.1 to construct a PDA that accepts the language of 
the Greibach normal form grammar

a AM bA! A

S -*■ a A B A  | a B B  

A -*■ b A \ b  

B ^ > c B \ c .
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13. Let G be a grammar in Greibach normal form and M the PDA constructed from G. 
Prove that if [qQ, u, X] \=- [qh X, w] in M, then there is a derivation S uw  in G. 

This completes the proof of Theorem 7.3.1.

14. Let M be the PDA

Q =  (<?o> <7t> f t )  s (<7o> *) =  (too. Al>

a) Give the state diagram of M.

b) Give a set-theoretic definition of L(M).

c) Using the technique from Theorem 7.3.2, build a context-free grammar G that 
generates L(M).

d) Trace the computation of aabbbb  in M.

e) Give the derivation of aabbbb  in G.

15. Let M be the PDA in Example 7.1.1.

a) Trace the computation in M that accepts bbcbb.

b) Use the technique from Theorem 7.3.2 to construct a grammar G that accepts L(M).

c) Give the derivation of bbcbb in G.

* 16. Theorem 7.3.2 presented a technique for constructing a grammar that generates the 
language accepted by an extended PDA. The transitions of the PDA pushed at most two 
variables onto the stack. Generalize this construction to build grammars from arbitrary 
extended PDAs. Prove that the resulting grammar generates the language of the PDA.

17. Use the pumping lemma to prove that each of the following languages is not context- 
free.

a) {ak | k is a perfect square)

b) {a 'b ic 'd i  \ i , j  > 0}

c) {a'fc2V  11 > 0}

d) (a'fc-'c* | 0 < i < j  < k < zi]

e) {wwKw | w €  {a, b}*}

f) The set of finite-length prefixes of the infinite string

E =  {a , b) 

r  = {A]

F =  (ft}

S(q0, b , A) =  {[<?„ X]} 

S(qu b , X) =  {[<?2 , A.]} 

S(q2, b , A) =  {[<?„ X]}.

abaabaaabaaaab . . . ba"ban+]b

18. a) Prove that the language L[ =  {a:b2,c^ | «, j  >  0} is context-free.

b) Prove that the language L2  =  {a^b'c1' \ i, j  > 0} is context-free.

c) Prove that L ^  L2  is not context-free.



250 Chapter 7 Pushdown Automata and Context-Free Languages

19. a) Prove that the language L, =  {a‘b‘cJd^ \ i, j  > 0) is context-free.

b) Prove that the language L2 =  {aJb 'c 'dk \ i, j y k > 0} is context-free.

c) Prove that LjO L2 is not context-free.

20. Let L be the language consisting of all strings over {a, b] with the same number of a ’s 
and b’s. Show that the pumping lemma is satisfied for L. That is, show that every string 
z of length k or more has a decomposition that satisfies the conditions o f  the pumping 
lemma.

21. Let M be a PDA. Prove that there is a decision procedure to determine whether

a) L(M) is empty.

b) L(M) is finite.

c) L(M) is infinite.

* 22. A grammar G = (V, E , P, S) is called linear if every rule has the form

A —* u 

A  —►  u B v

where u, v e  E* and A, B g V. A language is called linear if it is generated by a linear 
grammar. Prove the following pumping lemma for linear languages.

Let L be a linear language. Then there is a constant k such that for all z e  L with 
length(z) > k . z  can be written z =  u vw x y  with

i) length(uvxy) < k,

ii) length(vx) > 0, and

iii) u v 'w x 'y  € L, for i > 0.

23. a) Construct a DFA N that accepts all strings in {a, b}* with an odd number of a ’s.

b) Construct a PDA M that accepts {a3‘b‘ | i > 0}.

c) Use the technique from Theorem 7.5.3 to construct a PDA M' that accepts 
L(N) n  L(M).

d) Trace the computations that accept aaab  in N, M, and M'.

24. Let G =  (V, E , P, S) be a context-free grammar. Define an extended PDA M as 
follows:

Q =  Wo) S(<?o. X, X) =  {[.ft, S]}

E =  E g &(q0, A, A) (too, w] | A w e  P}

r  =  EG U V 5(<?o>«.«) =  {[<7o.*]l«eE}.

F  =  {<?„}

Prove that L(M) =  L(G).

25. Complete the proof of Theorem 7.5.3.
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* 27. Let L be a context-free language over 2  and a e  2 .  Define era(L) to be the set obtained 
by removing all occurrences of a from strings of L. The language era(L) is the language 
L with a erased. For example, if abab, bacb, aa 6 L, then bb, bcb, and X € era(L). 
Prove that era(L) is context-free. Hint: Convert the grammar that generates L to one 
that generates era(L).

*28. The notion of a string homomorphism was introduced in Exercise 6.19. Let L be a 
context-free language over 2  and let h : 2* -*  2* be a homomorphism.

a) Prove that /i(L) =  {h(w) | w e  L} is context-free, that is, that the context-free 
languages are closed under homomorphisms.

b) Use the result of part (a) to show that era(L) is context-free.

c) Give an example to show that the homomorphic image of a noncontext-free language 
may be context-free.

29. Let h : 2* -+ 2* be a homomorphism and L a context-free language over 2 .  Prove that 
{w | h(w)  e  L} is context-free. In other words, the family of context-free languages is 
closed under inverse homomorphic images.

30. Use closure under homomorphic images and inverse images to show that the following 
languages are not context-free.

a) {a'b’c 'd i  | i, j  >  0}

b) {a‘b2,c3l | / >  0}

c) {(aby(bcy'(cay  11 > 0}

26. Prove that the set of context-free languages is closed under reversal.
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PART III

Computability

W e now begin our exploration of the capabilities and limitations of algorithmic compu
tation. The term effective procedure is used to describe processes that we intuitively 

understand as computable. An effective procedure consists of a finite set of instructions 
and a specification, based on the input, of the order of execution of the instructions. The 
execution of an instruction is mechanical; it requires no cleverness or ingenuity on the part 
of the machine or person doing the computation. A computation produced by an effective 
procedure executes a finite number of instructions and terminates. The preceding properties 
can be summarized as follows: An effective procedure is a deterministic discrete process 
that halts for all possible inputs.

In 1936 British mathematician Alan Turing designed a family of abstract machines 
for performing effective computation. The Turing machine represents the culmination 
of a series of increasingly powerful abstract computing devices that include finite and 
pushdown automata. As with a finite automaton, the applicable Turing machine instruction 
is determined by the state of the machine and the symbol being read. A Turing machine 
may read its input multiple times and an instruction may write information to memory. The 
ability to perform multiple reads and writes increases the computational power of the Turing 
machine and provides a theoretical prototype for the modem computer.

The Church-Turing Thesis, proposed by logician Alonzo Church in 1936, asserts that 
any effective computation in any algorithmic system can be accomplished using a Turing 
machine. The Church-Turing Thesis should not be considered as providing a definition of 
algorithmic computation— this would be an extremely limiting viewpoint. Many systems 
have been designed to perform effective computations. Moreover, who can predict the 
formalisms and techniques that will be developed in the future? The Church-Turing Thesis 
does not claim that these other systems do not perform algorithmic computation. It does, 
however, assert that a computation performed in any such system can be accomplished 
by a suitably designed Turing machine. Perhaps the strongest evidence supporting the 
Church-Turing Thesis is that after 70 years, no counterexamples have been discovered. The 
formulation of this thesis and its implications for computability are discussed in Chapter 11.



The correspondence between the generation of languages by grammars and their recog
nition by machines extends to the languages of Turing machines. If Turing machines repre
sent the ultimate in string recognition machines, it seems reasonable to expect the associated 
family of grammars to be the most general string transformation systems. This is indeed the 
case; the grammars that correspond to Turing machines are called unrestricted grammars 
because there are no restrictions on the form or the applicability of their rules. To establish 
the correspondence between recognition by a Turing machine and generation by an unre
stricted grammar, we show that a computation of a Turing machine can be simulated by a 
derivation in an unrestricted grammar.

With the acceptance of the Church-Turing Thesis, the extent of algorithmic problem 
solving can be identified with the capabilities of Turing machine computations. Conse
quently, to prove a problem to be unsolvable, it suffices to show that there is no Turing 
machine solution to the problem. Using this approach, we show that the Halting Problem 
for Turing machines is undecidable. That is, there is no algorithm that can determine, for 
an arbitrary Turing machine M and string w, whether M will halt when run with w. We 
will then use problem reduction to establish undecidability of additional questions about 
the results of Turing machine computations, of the existence of derivations using the rules 
of a grammar, and of properties of context-free languages.



CHAPTER 8

Turing Machines

The Turing machine, introduced by Alan Turing in 1936, represents another step in the 
development of finite-state computing machines. Turing machines were originally proposed 
for the study of effective computation and exhibit many of the features commonly associated 
with a modem computer. This is no accident; the Turing machine provided a model for the 
design and development of the stored-program computer. Utilizing a sequence of elementary 
operations, a Turing machine may access and alter any memory position. A Turing machine, 
unlike a computer, has no limitation on the amount of time or memory available for a 
computation.

The Church-Turing Thesis, which will be discussed in detail in Chapter 11, asserts 
that any effective procedure can be realized by a suitably designed Turing machine. The 
variations of Turing machine architectures and applications presented in the next two 
chapters indicate the robustness and the versatility of Turing machine computation.

8.1 The Standard Turing Machine

A Turing machine is a finite-state machine in which a transition prints a symbol on the tape. 
The tape head may move in either direction, allowing the machine to read and manipulate 
the input as many times as desired. The structure of a Turing machine is similar to that of 
a finite automaton, with the transition function incorporating these additional features.

255
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Definition 8.1.1

A TUring machine is a quintuple M =  (Q, E , T, <5, qo) where Q is a finite set of states, 
T is a finite set called the tape alphabet, T contains a special symbol B that represents a 
blank, E is a subset of T -  {B) called the input alphabet, S is a partial function from Q x T  
toQ  x T x {L, R) called the transition function, and qo e  Q is a distinguished state called 

the start state.

The tape of a Turing machine has a left boundary and extends indefinitely to the right. 
Tape positions are numbered by the natural numbers, with the leftmost position numbered 
zero. Each tape position contains one element from the tape alphabet.

0 1 2 3 4 5
| a | b b a

0

A computation begins with the machine in state q0 and the tape head scanning the leftmost 
position. The input, a string from E*, is written on the tape beginning at position one. 
Position zero and the remainder of the tape are blank. The diagram shows the initial 
configuration of a Turing machine with input abba. The tape alphabet provides additional 
symbols that may be used during a computation.

A transition consists of three actions: changing the state, writing a symbol on the square 
scanned by the tape head, and moving the tape head. The direction of the movement is 
specified by the final component of the transition. An L indicates a move of one tape position 
to the left and R one position to the right. The machine configuration

and transition 8(qh x)  =  [qj, y, L ] combine to produce the new configuration

y

The transition changed the state from to qs, replaced the tape symbol x  with y,  and moved 
the tape head one square to the left. The ability of the machine to move in both directions 
and process blanks introduces the possibility of a computation continuing indefinitely.
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A computation halts when it encounters a state, symbol pair for which no transition is 
defined. A transition from tape position zero may specify a move to the left o f the boundary 
of the tape. When this occurs, the computation is said to terminate abnormally. When we 
say that a computation halts, we mean that it terminates in a normal fashion.

The Turing machine presented in Definition 8.1.1 is deterministic, that is, at most 
one transition is specified for every combination of state and tape symbol. The one-tape 
deterministic Turing machine, with initial conditions as described above, is referred to as the 
standard  Turing machine. The first two examples demonstrate the use of Turing machines 
to manipulate strings. After developing a facility with Turing machine computations, we 
will use Turing machines to accept languages and to compute functions.

Example 8.1.1

The tabular representation of the transition function of a standard Turing machine with input 
alphabet [a, b) is given in the table below.

s B a b

<?o q t. B, R

<?i ?2> B. L 9l> b, R q\, a, R

<?2 q2, a, L q2, b. L

The transition from state q0 moves the tape head to position one to read the input. The 
transitions in state q i read the input string and interchange the symbols a and b. The 
transitions in q2 return the machine to the initial position.

A Turing machine can be graphically represented by a state diagram. The transition 
8(qi, x )  =  [qj, y, d], d  e  {L, R\  is depicted by an arc from qt to qt labeled x / y  d. The 
state diagram

alb R a/a L
b/a R bib L

x g  mR Q  mL .Q

represents the Turing machine defined in the preceding transition table. a

A machine configuration consists of the state, the tape, and the position of the tape 
head. At any step in a computation of a standard Turing machine, only a finite segment of 
the tape is nonblank. A configuration is denoted uq,vB,  where all tape positions to the right 
of the B are blank and uv  is the string spelled by the symbols on the tape from the left- 
hand boundary to the B. Blanks may occur in the string uv,  the only requirement is that the
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entire nonblank portion of the tape be included in uv. The notation uqjvB  indicates that the 
machine is in state qt scanning the first symbol of v and the entire tape to the right of uvB  

is blank.
This representation of machine configurations can be used to trace the computations 

of a Turing machine. The notation uqtvB xq}y B  indicates that the configuration xq^yB  
is obtained from uqjVB by a single transition of M. Following the standard conventions, 
uqjVB In x q p B  signifies that x q j y B  can be obtained from uqtvB  by a finite number, 
possibly zero, of transitions. The reference to the machine is omitted when there is no 
possible ambiguity.

The Turing machine in Example 8.1.1 interchanges the a ’s and b’s in the input string. 
Tracing the computation generated by the input string abab  yields

q0BababB  

I- B q iababB  

\- Bbq\babB  

I- Bbaq^abB  

t- Bbabq^bB  

Bbabaq\B  

I- Bbabq2aB  

h  Bbaq2baB  

b  Bbq2obaB  

I- BqjbabaB  

h  q2BbabaB.

The Turing machine from Example 8.1.1 made two passes through the input string. 
Moving left to right, the first pass interchanged the a ’s and b ’s. The second pass, going 
right to left, simply returned the tape head to the leftmost tape position. The next example 
shows how Turing machine transitions can be used to make a copy of a string. The ability 
to copy data is an important component in many algorithmic processes. When copies are 
needed, the strategy employed be this machine can by modified to suit the type of data 
considered in the particular problem.

Example 8.1.2

The Turing machine COPY with input alphabet {a, b } produces a copy of the input string. 
That is, a computation that begins with the tape having the form B uB  terminates with tape 
BuBuB.
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XIX R 
Y/YR

YlbL

The computation copies the input string one symbol at a time beginning with the leftmost 
symbol in the input. Tape symbols X  and Y record the portion of the input that has been 
copied. The first unmarked symbol in the string specifies the arc to be taken from state 
q\. The cycle q\, q2, <7 3 , q4, q\ replaces an a with X  and adds an a to the string being 
constructed. Similarly, the lower branch copies a b using Y to mark the input string. After 
the entire string has been copied, the transitions in state q-j change the X’s and Y's  to a ’s 
and b's and return the tape head to the initial position. □

8.2 Turing Machines as Language Acceptors

Turing machines have been introduced as a paradigm for effective computation. A Turing 
machine computation consists of a sequence of elementary operations determined from the 
machine state and the symbol being read by the tape head. The machines constructed in the 
previous section were designed to illustrate the features of Turing machine computations. 
The computations read and manipulated the symbols on the tape; no interpretation was given 
to the result of a computation. Turing machines can be designed to accept languages and to 
compute functions. The result of a computation can be defined in terms of the state in which 
the computation terminates or the configuration of the tape at the end of the computation.

In this section we consider the use of Turing machines as language acceptors; a 
computation accepts or rejects the input string. Initially, acceptance is defined by the final 
state of the computation. This is similar to the technique used by finite-state and pushdown 
automata to accept strings. Unlike finite-state and pushdown automata, a Turing machine 
need not read the entire input string to accept the string. A Turing machine augmented with 
final states is a sextuple (Q, E , T, <5, q0, F), where F C Q is the set of final states.
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Definition 8.2.1

Let M =  (Q, Z , T, 8, q0, F) be a Turing machine. A string u € S* is accepted by final 
state if the computation of M with input u halts in a final state. A computation that terminates 
abnormally rejects the input regardless of the state in which the machine halts. The language 
of M, denoted L(M), is the set of all strings accepted by M.

A language accepted by a Turing machine is called a recursively enum erable lan
guage. The ability of a Turing machine to move in both directions and process blanks 
introduces the possibility that the machine may not halt for a particular input. Thus there are 
three possible outcomes for a Turing machine computation: It may halt and accept the input 
string; halt and reject the string; or it may not halt at all. Because of the last possibility, we 
will sometimes say that a machine M recognizes L if it accepts L but does not necessarily 
halt for all input strings. The computations of M identify the strings L but may not provide 
answers for strings not in L.

A language accepted by a Turing machine that halts for all input strings is said to be 
recursive. Membership in a recursive language is decidable; the computations of a Turing 
machine that halts for all inputs provide a procedure for determining whether a string is 
in the language. A Turing machine of this type is sometimes said to decide the language. 
Being recursive is a property of a language, not of a Turing machine that accepts it. There 
are multiple Turing machines that accept a particular language; some may halt for all input, 
whereas others may not. The existence of one Turing machine that halts for all inputs is 
sufficient to show that the membership in the language is decidable and the language is 
recursive.

In Chapter 12 we will show that there are languages that are recognized by a Turing 
machine but are not decided by any Turing machine. It follows that the set of recursive 
languages is a proper subset of the recursively enumerable languages. The terms recursive 
and recursively enumerable have their origins in the functional interpretation of Turing 
computability that will be presented in Chapter 13.

Example 8.2.1

The Turing machine M

b/bR

BIBR a! a R

b/bR



8.2 Turing Machines as Language Acceptors 261

accepts the language (a U b)*aa(a U b)*. The computation

q0BaabbB  

h  Bq\aabbB  

h  Baq2abbB  

I- Baaq-jbbB

examines only the first half of the input before accepting the string aabb. The language 
(a U b)*aa(a U b)* is recursive; the computations of M halt for every input string. A suc
cessful computation terminates when a substring aa is encountered. All other computations 
halt upon reading the first blank following the input. □

Example 8.2.2

The language L =  {a'b 'c ' | « > 0} is accepted by the Turing machine

b/bL
Y/YL
Z/ZL

The tape symbols X, Y, and Z mark the a ’s, b's, and c ’s as they are matched. A computation 
successfully terminates when all the symbols in the input string have been transformed to 
the appropriate tape symbol. The transition from q i to q6 accepts the null string.
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The Turing machine M shows that L is recursive. The computations for strings in L 
halt in q$. For strings not in L, the computations halt in a nonaccepting state as soon as 
it is discovered that the input string does not match the pattern a 'b 'c ' . For example, the 
computation with input bca halts in q\ and with input abb  in qy  □

8.3 Alternative Acceptance Criteria

Using Definition 8.2.1, the acceptance of a string by a Turing machine is determined by 
the state of the machine when the computation halts. Alternative approaches to defining 
acceptance are presented in this section.

The first alternative is acceptance by halting. In a Turing machine that is designed to 
accept by halting, an input string is accepted if the computation initiated with the string 
halts. Computations for which the machine terminates abnormally reject the string. When 
acceptance is defined by halting, the machine is defined by the quintuple (Q, E , T, 5, q0). 
The final states are omitted since they play no role in the determination of the language of 
the machine.

Definition 8.3.1

Let M =  (Q, E , T, S, q0) be a Turing machine. A string u e  E* is accepted by halting 
if the computation of M with input u halts (normally).

Turing machines designed for acceptance by halting are used for language recognition. 
The computation for any input not in the language will not terminate. Theorem 8.3.2 shows 
that any language recognized by a machine that accepts by halting is also accepted by a 
machine that accepts by final state.

Theorem 8.3.2

The following statements are equivalent:

i) The language L is accepted by a Turing machine that accepts by final state.

ii) The language L is accepted by a Turing machine that accepts by halting.

Proof. Let M =  (Q, E , f ,  8, q0) be a Turing machine that accepts L by halting. The 

machine M '=  (Q, E , F, 8, qQ, Q), in which every state is a final state, accepts L by final 
state.

Conversely, let M =  (Q, E , T, 8, q0, F) be a Turing machine that accepts the lan
guage L by final state. Define the machine M' =  (Q U [qe], E , T, 8 \  q0) that accepts by 
halting as follows:

i) If 8(qj, x)  is defined, then 8 \ q h x )  =  8(q,, x).

ii) For each state qt e Q -  F, if 8(qn x)  is undefined, then <$'(</,, x)  =  [qe, x ,  R\.

iii) For each x € f ,  8 \q e, x)  =  [qe, x , /?].
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Computations that accept strings in M and M' are identical. An unsuccessful computation 
in M may halt in a rejecting state, terminate abnormally, or fail to terminate. When an 
unsuccessful computation in M halts, the computation in M' enters the state qe. Upon 
entering qe, the machine moves indefinitely to the right. The only computations that halt in 
M' are those that are generated by computations of M that halt in an accepting state. Thus 
L(M') =  L(M). ■

Example 8.3.1

The Turing machine from Example 8.2.1 is altered to accept (a U b)*aa(a U b)* by halting. 
The machine below is constructed as specified by Theorem 8.3.2. A computation enters qe 
when the entire input string has been read and no aa has been encountered.

b/bR

b/bR
B/BR

The machine obtained by deleting the arcs from q0 to qe and those from qe to qe labeled 
a /a  R and b/b  R also accepts (a U b)*aa(a U b)* by halting. □

In Exercise 7 a type of acceptance, referred to as acceptance by entering, is introduced 
that uses final states but does not require the accepting computations to terminate. A string 
is accepted if the computation ever enters a final state; after entering a final state, the 
remainder of the computation is irrelevant to the acceptance of the string. As with acceptance 
by halting, any Turing machine designed to accept by entering can be transformed into a 
machine that accepts the same language by final state.

Unless noted otherwise, Turing machines will accept by final state as in Definition 8.2.1. 
The alternative definitions are equivalent in the sense that machines designed in this manner 
accept the same family of languages as those accepted by standard Turing machines.

8.4 Multitrack Machines

The remainder of the chapter is dedicated to examining variations of the standard Turing 
machine model. Each of the variations appears to increase the capability o f the machine.
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We prove that the languages accepted by these generalized machines are precisely those 
accepted by the standard Turing machines. Additional variations will be presented in the 

exercises.
A multitrack tape is one in which the tape is divided into tracks. A tape position in an 

n -track tape contains n symbols from the tape alphabet. The diagram depicts a two-track 
tape with the tape head scanning the second position.

Track 2 

Track 1

A
The machine reads an entire tape position. Multiple tracks increase the amount of informa
tion that can be considered when determining the appropriate transition. A tape position in 
a two-track machine is represented by the ordered pair [x, >'], where x  is the symbol in track
1 and y  is in track 2.

The states, input alphabet, tape alphabet, initial state, and final states of a two- 
track machine are the same as in the standard Turing machine. A two-track transition 
reads and rewrites the entire tape position. A transition of a two-track machine is written 
8(qj. [jt, y]) =  [qjt [z, w], d], where d  e  {L, /?}.

The input to a two-track machine is placed in the standard input position in track 1. All 
the positions in track 2 are initially blank. Acceptance in multitrack machines is by final 
state.

We will show that the languages accepted by two-track machines are precisely the 
recursively enumerable languages. The argument easily generalizes to n-track machines.

Theorem 8.4.1

A language L is accepted by a two-track Turing machine if, and only if, it is accepted by a 
standard Turing machine.

Proof. Clearly, if L is accepted by a standard Turing machine, it is accepted by a two-track 
machine. The equivalent two-track machine simply ignores the presence of the second track.

Let M =  (Q, E, T, 8, q0, F) be a two-track machine. A one-track machine will be 
constructed in which a single tape square contains the same information as a tape position 
in the two-track tape. The representation of a two-track tape position as an ordered pair 
indicates how this can be accomplished. The tape alphabet of the equivalent one-track 
machine M' consists of ordered pairs of tape elements of M. The input to the two-track 
machine consists of ordered pairs whose second component is blank. The input symbol a 
of M is identified with the ordered pair [a, B ] of M'. The one-track machine

M' =  (Q, E x {B }, T x T, &',q0, F)
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£'(<?,. [x, ?]) =  8{qt , [at, y))

accepts L(M).

with transition function

8.5 Two-Way Tape Machines

A Turing machine with a two-way tape is identical to the standard model except that the 
tape extends indefinitely in both directions. Since a two-way tape has no left boundary, the 
input can be placed anywhere on the tape. All other tape positions are assumed to be blank. 
The tape head is initially positioned on the blank to the immediate left of the input string. 
The advantage of a two-way tape is that the Turing machine designer need not worry about 
crossing the left boundary of the tape.

A machine with a two-way tape can be constructed to simulate the actions of a standard 
machine by placing a special symbol on the tape to represent the left boundary of the one
way tape. The symbol #, which is assumed not to be an element of the tape alphabet of 
the standard machine, is used to simulate the boundary of the tape. A computation in the 
equivalent machine with two-way tape begins by writing # to the immediate left of the initial 
tape head position. The remainder of a computation in the two-way machine is identical 
to that of the one-way machine except when the computation of the one-way machine 
terminates abnormally. When the one-way computation attempts to move to the left of the 
tape boundary, the two-way machine reads the symbol # and enters a nonaccepting state 
that terminates the computation.

The standard Turing machine M

a/a R

M: BIB R blbL
a/a L 
B IBL

a!a L 
B IB L

a! a L 
B IB L

will be used to demonstrate the conversion of a machine with a one-way tape to an equivalent 
two-way machine. All the states of M other than q0 are accepting. When the first b is 
encountered, the tape head moves four positions to the left, if possible. Acceptance is 
completely determined by the boundary of the tape. A string is rejected by M whenever 
the tape head attempts to cross the left-hand boundary. All computations that remain within 
the bounds of the tape accept the input. Thus the language of M consists of all strings over 
{a, b) in which the first b, if present, is preceded by at least three a ’s.

A machine M' with a two-way tape can be obtained from M by the addition of three 
states qs, q„ and qr. The transitions from states qs and q, insert the simulated endmarker 
to the left of the initial position of the tape head of M', the two-way machine that accepts 
L(M). After writing the simulated boundary, the computation enters a copy o f the one-way
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machine M. The error state qe is entered in M' when a computation in M attempts to move 
to the left of the tape boundary.

We will now show that a language accepted by a machine with a two-way tape is 
accepted by a standard Turing machine. The argument utilizes Theorem 8.4.1, which 
establishes the interdefinability of two-track and standard machines. The tape positions 
of the two-way tape can be numbered by the complete set of integers. The initial position 
of the tape head is numbered zero, and the input begins at position one.

-5 -4  -3  -2 -1 0 1 2 3 4 5

Imagine taking the two-way infinite tape and folding it so that position — i sits directly 
above position i . Adding an unnumbered tape square over position zero produces a two- 
track tape. The symbol in tape position /' of the two-way tape is stored in the corresponding 
position of the one-way, two-track tape. A computation on a two-way infinite tape can be 
simulated on this one-way, two-track tape.

_1 -2 -3 -4  -5

0 1 2 3 4 5

Let M =  (Q, E , T, 8, q0, F) be a Turing machine with a two-way tape. Using 
the correspondence between a two-way tape and a two-track tape, we construct a Turing 
machine M' with a two-track, one-way tape to accept L(M). A transition of M is specified by 
the state and the symbol scanned. M', scanning a two-track tape, reads two symbols at each
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tape position. Symbols U (up) and D (down) are included in the states of M to designate 
which of the two tracks should be used to determine the transition.

The components of M' are constructed from those of M and the symbols U and D:

Q' =  (Q U  {qs,q ,})  x [U, D)

S '=  2  

r '  =  r u  {#}

F' =  {[<?,, U l  [<?,, D] | € F).

The initial state of M' is a pair [qs, D). The transition from this state writes the marker # on 
the upper track in the leftmost tape position.

A transition from [q„ D ] returns the tape head to its original position to begin the 
simulation of a computation of M. During the remainder of a computation, the # on track 2 
is used to indicate when the tape head is reading position zero and to trigger changes from 
U to D  in the state. The transitions of M' are defined as follows:

1. S'([qs, D], [B, B ]) =  Hq„ D], [fi, #], R].

2. For every x € I \  B'([q,, D], [x, B]) =  [[<70. D], [■*. 5].

3. F o re v e ry ze T  — (#} andd  e  [L, /?}, &'([qj,D], [jc, z]) =  [ [ ^ ,  D], [y, z], d]when- 
ever S(qt, x)  =  [qj, y,  d] is a transition of M.

4. Forevery* e T — {#} and*/ e {L, R), S'([qj,U], [z, jc]) =  [[^y, C/], [z ,y ], d']when
ever &(qh x) =  lqj, y, d] is a transition of M, where d' is the opposite direction of d.

5. 5'([<?;, D], [x, #]) =  [[qj, U\, [y, #], /?] whenever S(qj, x)  =  [qj, y,  L] is a transition 
of M.

6. &\[qj,D\,  [x, #]) =  [[qt , D], [y, #], K] whenever S(<?,, x)  =  [oj, y,  ft] is a transition 
of M.

7. &'([qj, U], [jt, #]) =  [[qj, D ], [>\ #], R] whenever S(qit x)  =  [qj, y,  /?] is a transition 
of M.

8. S'([qj,U], [x, #]) =  [[q} , U \  [>’, #], /?] whenever S(qit x)  =  [qj, y,  L]  is a transition 
of M.

A transition generated by schema 3 simulates a transition of M in which the tape head 
begins and ends in positions labeled with nonnegative values. In the simulation, this is 
represented by writing on the lower track of the tape. Transitions defined in schema 4 use 
only the upper track of the two-track tape. These correspond to transitions o f M that occur 
to the left of position zero on the two-way infinite tape.

The remaining transitions simulate the transitions of M from position zero on the two- 
way tape. Regardless of the U or D  in the state, transitions from position zero are determined 
by the tape symbol on track 1. When the track is specified by D, the transition is defined 
by schema 5 or 6. Transitions defined in 7 and 8 are applied when the state is [qit U \

The preceding informal arguments outline the proof of the equivalence of one-way and 
two-way Turing machines.
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Theorem 8.5.1

A language L is accepted by a Turing machine with a two-way tape if, and only if, it is 

accepted by a standard Turing machine.

8.6 Multitape Machines

A it-tape machine has k tapes and k independent tape heads. The states and alphabets of a 
multitape machine are the same as in a standard Turing machine. The machine reads the 
tapes simultaneously but has only one state. This is depicted by connecting each of the 
independent tape heads to a single control indicating the current state.

Tape 3

Tape 2

Tape 1

A transition is determined by the state and the symbols scanned by each of the tape 
heads. A transition in a multitape machine may

i) change the state,

ii) write a symbol on each of the tapes,

iii) independently reposition each of the tape heads.

The repositioning consists of moving the tape head one square to the left or one square to 
the right or leaving it at its current position. A transition of a two-tape machine scanning 
x\  on tape 1 and x 2 on tape 2 is written S(qh x t, x 2) =  [qf, y\, d x\ y 2, d2], where yt e  T 
and dj € [L, R,  5). This transition causes the machine to write y, on tape The symbol dt 
specifies the direction of the movement of tape head i : L  signifies a move to the left, R a 
move to the right, and S means the head remains stationary. Any tape head attempting to 
move to the left of the boundary of its tape terminates the computation abnormally.

The input to a multitape machine is placed in the standard position on tape 1. All the 
other tapes are assumed to be blank. The tape heads originally scan the leftmost position 
of each tape. A multitape machine can be represented by a state diagram in which the 
label on an arc specifies the action for each tape. For example, the transition 5(<?, , X|, x 2) =  
[qy, >!, </,; y2, d2] will be represented by an arc from q, to qj  labeled [xl/ y i d h x2/ y 2 d2]. 

Two advantages of multitape machines are the ability to copy data between tapes and 
to compare strings on different tapes. Both of these features will be demonstrated in the 
following example.



8 .6  Multitape Machines 269

Example 8.6.1

The machine

[a/a R, B /a  /?] [a/a R, a/a L]

[B/B R, B/B  /?] V ~V  [b/b R, B /B  L] [B/B R, B /B  R]X g )

accepts the language {a'ba' | /' > 0). A computation with input string a'ba' copies the 
leading a ’s to tape 2 in state q x. When the b is read on tape 1, the computation enters state 
q 2 to compare the a ’s on tape 2 with the a ’s after the b on tape 1. If the same number of a ’s 
precede and follow the b, the computation halts in q3  and accepts the input. The computation 
for strings without a b halt in q x and strings with more than one b in q 2. The computations 
for strings with with one b and an unequal number of leading and trailing a ’s also halt 
in q 2. Since every computation halts, M provides a decision procedure for membership in 
{a'ba' 1 1 > 0 } and consequently the language is recursive. □

A standard Turing machine is a multitape Turing machine with a single tape. Conse
quently, every recursively enumerable language is accepted by a multitape machine. We will 
show that the computations of a two-tape machine can be simulated by computations of a 
five-track machine. The argument can be generalized to show that any language accepted 
by a fc-tape machine is accepted by a 2k +  1-track machine. The equivalence of acceptance 
by multitrack and standard machines then allows us to conclude the following.

Theorem 8.6.1

A language L is accepted by a multitape Turing machine if, and only if, it is accepted by a 
standard Turing machine.

LetM  =  (Q, E , T, 5, q 0, F) be a two-tape machine. During a computation, the tape 
heads of a multitape machine are independently positioned on the two tapes.

Tape 2 

Tape 1

a b b c c

b a 1c

■7
Vi

The single tape head of a multitrack machine reads all the tracks of a fixed position. The 
five-track machine M' is constructed to simulate the computations of M. Tracks 1 and 3 
maintain the information stored on tapes 1 and 2 of the two-tape machine. Tracks 2 and 
4 have a single nonblank square indicating the position of the tape heads o f the multitape 
machine.
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Track 5 

Track 4 

Track 3 

Track 2 

Track 1

The initial action of the simulation in the multitrack machine is to write # in the leftmost 
position of track 5 and X  in the leftmost positions of tracks 2 and 4. The remainder of the 
computation of the multitrack machine consists of a sequence of actions that simulate the 
transitions of the two-tape machine.

A transition of the two-tape machine is determined by the two symbols being scanned 
and the machine state. The simulation in the five-track machine records the symbols marked 
by each of the X ’s. The states are 8-tuples of the form [j , qn x {, x2. >’|, y2, d h d2\, where 
qi € Q; xh yt e  £  U {I/}; and d, e  {L, R, S, U ). The element s represents the status of the 
simulation of the transition of M. The symbol U, added to the tape alphabet and the set of 
directions, indicates that this item is unknown.

Let S(qit jcj, x 2) =  [qy  >'|, d x\ y2, d2] be the applicable two-tape transition of M. 
M 'begins the simulation of the transition in the state [ /1 , qn U, U, U, U , U, U]. The 
following five actions simulate the transition of M in the multitrack machine.

1. / I  (find first symbol): M' moves to the right until it reads the X  on track 2. State 
[ / l ,  q,, X!, U, U, U, U, U] is entered, where jcj is the symbol in track 1 under the 
X.  After recording the symbol on track 1 in the state, M' returns to the initial position. 
The # on track 5 is used to reposition the tape head.

2. / 2  (find second symbol): The same sequence of actions records the symbol beneath the 
X  on track 4. M' enters state [ /2 ,  qt, x it x 2, U, U, U, U], where x 2 is the symbol 
in track 3 under the X. The tape head is then returned to the initial position.

3. M' enters the state [p l, qr  x t, x 2, Vj, y2, d\, d2], where the values qj, y |, y2, d\, 
and d2 are obtained from the transition&(qh  JC|, x 2). This state contains the information 
needed to simulate the transition of the M.

4. p  1 (print first symbol): M' moves to the right to the X  in track 2 and writes the symbol
on track 1. The X  on track 2 is moved in the direction designated by d x. The machine 

then returns to the initial position.

5. p2  (print second symbol): M' moves to the right to the X  in track 4  and writes the 
symbol y2 on track 3. The X  on track 4 is moved in the direction designated by d2.

6. The simulation of the transition S(qh  jcj, x 2) =  [qy, y x, d\, y2, d2] terminates by return
ing the tape head to the initial position to process the subsequent transition.

If S(q,-, Jt|, x2) is undefined in the two-tape machine, the simulation halts after returning to 
the initial position following step 2. A state [ /2 ,  q,, x t, y lt U, U, U, U] is an accepting 
state of the multitrack machine M' whenever qt is an accepting state of M.

X

a b b c c

X

b a c
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The next two examples illustrate the use of the additional tapes to store and manipulate 

data in a computation.

Example 8.6.2

The set [ak | it is a perfect square} is a recursively enumerable language. The design of a 
three-tape machine that accepts this language is presented. Tape 1 contains the input string. 
The input is compared with a string of X’s on tape 2 whose length is a perfect square. Tape 3 
holds a string whose length is the square root of the string on tape 2. The initial configuration 
for a computation with input aaaaa  is

Tape 3 —  k

Tape 2 —  k2

Tape 1 — input a a a a a

t
<30

The values of k and k2 are incremented until the length of the string on tape 2 is greater 
than or equal to the length of the input. A machine to perform these comparisons consists 
of the following actions.

1. If the input is the null string, the computation halts in an accepting state. If not, tapes 2 
and 3 are initialized by writing X  in position one. The three tape heads are then moved 
to position one.

2. Tape 3 now contains a sequence of k X ’s and tape 2 contains k 2 X ’s. Simultaneously, 
the heads on tapes 1 and 2 move to the right while both heads scan nonblank squares. 
The head reading tape 3 remains at position one.

a) If both heads simultaneously read a blank, the computation halts and the string is 
accepted.

b) If tape head 1 reads a blank and tape head 2 an X,  the computation halts and the 
string is rejected.

3. If neither of the halting conditions occur, the tapes are reconfigured for comparison 
with the next perfect square.

a) An X  is added to the right end of the string of X 's  on tape 2.

b) Two copies of the string on tape 3 are added to the right end of the string on tape 2. 
This constructs a sequence of (k +  l)2 X ’s on tape 2.
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c) An X is added to the right end of the string of X ’s on tape 3. This constructs a 
sequence of A: +  1 X ’s on tape 3.

d) The tape heads are then repositioned at position one of their respective tapes.

4. The computation continues with step 2.

Tracing the computation for the input string aaaaa,  step 1 produces the configuration

Tape 3 — 1

Tape 2 — K

Tape 1 — input a a a a a

\ t

The simultaneous left-to-right movement of tape heads 1 and 2 halts when tape head 2 
scans the blank in position two.

Tape 3 — 1 

Tape 2 — l2 

Tape 1 — input
L

Part (c) of step 3 reformats tapes 2 and 3 so that the input string can be compared with 
the next perfect square.

Tape 3 — 2 

Tape 2 — 22 

Tape 1 — input
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Another iteration of step 2 halts and rejects the input.

A machine that performs the preceding computation is defined by the following transitions:

S(qo, fl, B, B ) =  [<?!; B, R\ fl, R; B , /?] (initialize the tape)

S(q{, a, B, B) =  [q2; a, S; X , S; X, S ]

S(q2, a,  X, X) =  [q2, a, R ; X, R; X,  5]

S(q2, fl, fl, X) =  [q3; B, S; B, S; X, S]

&(q2, a , B, X) =  [q4; a, S ; X , R \ X ,  5]

(compare strings on tapes 1 and 2) 

(accept)

(rewrite tapes 2 and 3)5(94, a, B , X) =  [<?5; a, S; X, R; X, 5]

<S(<?4 , a, B , B )  =  lq6;a, L; B, L \ X ,  L)

S(q5, a , fl, X) =  [^4;a ,  5; X, R ; X, /?]

5(<?6- a . X, X) =  [g6; a, L \ X ,  L; X, L\  (reposition tape heads)

S(q6, a , X, fl) =  [96;a ,  L; X, L; B, 5]

«(<?6, a , fl, fl) =  [<76;a ,  L; fl, S; fl, S]

S(q6, fl, X, fl) =  fe6; fl, 5; X, L; fl, 5]

S(<?6, fl, fl, fl) =  [q2, fl, /?; fl, /{; fl, /?]. (repeat comparison cycle)

The accepting states are q\ and qy  The null string is accepted in q x, and strings ak, where 
k is a perfect square greater than zero, are accepted in q}.

Since the machine designed above halts for all input strings, we have shown that the 
language {a* | k is a perfect square} is not only recursively enumerable but also recursive.
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Example 8.6.3

The two-tape Turing machine

[x/xR, B/xR]

accepts the language {uu | « € {a, b}*}. The symbols x  and y  on the labels of the arcs 
represent an arbitrary input symbol.

The computation begins by making a copy of the input on tape 2. When this is complete, 
both tape heads are to the immediate right of the input. The tape heads now move back to 
the left, with tape head 1 moving two squares for every one square that tape head 2 moves. 
If the computation halts in q3, the input string has odd length and is rejected. The loop in 
q4 compares the first half of the input with the second; if they match, the string is accepted 
in state q5. □

8.7 Nondeterministic Turing Machines

A nondeterministic Turing machine may specify any finite number of transitions for a given 
configuration. The components of a nondeterministic machine, with the exception of the 
transition function, are identical to those of the standard Turing machine. Transitions in 
a nondeterministic machine are defined by a function from Q x T to subsets of Q x T x 
{£-,/?}.

Whenever the transition function indicates that more than one action is possible, a 
computation arbitrarily chooses one of the transitions. An input string is accepted by a 
nondeterministic machine if there is at least one computation that terminates in an accepting 
state. The existence of other computations that halt in nonaccepting states or fail to halt 
altogether is irrelevant. As usual, the language of a machine is the set of strings accepted 
by the machine.
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Example 8.7.1

The nondeterministic Turing machine

a!a R 
b/bR 
c/c R

x§> B/BR b/bR

c/c L

accepts strings containing a c preceded or followed by ab. The machine processes the input 
in state q x until a c is encountered. When this occurs, the computation may continue in state 
q |, enter state q2 to determine if the c is followed by ab, or enter q$ to determine if the c is 
preceded by ab. In the language of nondeterminism, the computation chooses a c and then 
chooses one of the conditions to check. □

The machine constructed in Example 8.7.1 accepts strings by final state. As with 
standard machines, acceptance in nondeterministic Turing machines can be defined by final 
state or by halting alone. A nondeterministic machine accepts a string u by halting if there 
is at least one computation that halts normally when run with u. Exercise 24 establishes that 
these alternative approaches accept the same languages.

Nondeterminism does not increase the capabilities of Turing computation; the lan
guages accepted by nondeterministic machines are precisely those accepted by deterministic 
machines. To accomplish the transformation of a nondeterministic Turing machine to an 
equivalent deterministic machine, we show that the multiple computations for a single input 
string can by sequentially generated and examined.

A nondeterministic Turing machine may produce multiple computations for a single 
input string. The computations can be systematically produced by ordering the alternative 
transitions for a state, symbol pair. Let n be the maximum number of transitions defined for 
any combination of state and tape symbol. The numbering assumes that S(qit x ) defines n, 
not necessarily distinct, transitions for every state qt and tape symbol x  with S(qit x )  ^  0. 
If the transition function defines fewer than n transitions, one transition is assigned several 
numbers to complete the ordering.

A sequence (m(, . . . ,  mit . . . .  mk), where each m, is a number from 1 to n, defines a 
unique computation in the nondeterministic machine. The computation associated with this 
sequence consists of k  or fewer transitions. The j th  transition is determined by the state, the 
tape symbol scanned, and my, the y'th number in the sequence. Assume the j  — 1st transition 
leaves the machine in state q, scanning x.  I f &(qh  .*) =  0, the computation halts. Otherwise, 
the machine executes the transition in 8(qh x)  numbered m r
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TABLE 8.1 Ordering of Transitions

State Symbol Transition State Symbol Transition

<?o B 1<?i, B, R 
2qh B, R 

3<?|, B, R

?2 a 1^3, a , R 

2q3, a, R 

3^3, a , R

<?i a 1<7i, a, R 
2<?|, a, R 

3<?|, a, R

<?3 b 1?4, b, R 
2^4, b, R 

3^4, b, R

<?i b lqi,b, R 

2qt,b, R 

3q\, b, R

<?5 b 1?6. b, L 
2q6, b, L 
3<?6, b, L

4i c 1<?I, c, R

2q2, c, R

3<7s, c. l

96 a lqlt a , L 

2qlt a, L 

3^7, a, L

The transitions of the nondeterministic machine in Example 8.7.1 can be ordered as 
shown in Table 8.7.1. The computations defined by the input string acab  and the sequences 
(1, 1, 1, 1, 1), (1, 1, 2, 1, 1), and (2, 2, 3, 3, 1) are

q0BacabB 1 

I- Bq^acabB 1 
I- BaqtcabB 1 

b  Bacq^abB 1 

I- Bacaq^bB 1 
I- BacabqlB

q0BacabB 1 

I- Bq\acabB 1 

I- BaqicabB 2 
b Bacq2abB 1 

b  Bacaq^bB 1 

b  BacabqlB

q0BacabB 2 

Bq^acabB 2 
-  BaqicabB 3 

*- BqsacabB.

The number on the right designates the transition used to obtain the subsequent configu
ration. The third computation terminates prematurely since no transition is defined when 
the machine is in state q5 scanning an a. The string acab  is accepted since the computation 
defined by (1, 1,2, 1, 1) terminates in state q4.

Using the ability to sequentially produce the computations of a nondeterministic ma
chine, we will now show that every nondeterministic Turing machine can be transformed 
into an equivalent deterministic machine. Let M =  (Q, L , T, S, q0) be a nondetermin
istic machine that accepts strings by halting. We choose acceptance by halting because 
this reduces the number of potential outcomes of a computation from three to two—a
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computation halts (and accepts) or does not halt. Thus we have fewer cases to consider in 
the proof. Assume that the transitions of M have been numbered according to the previous 
scheme, with n the maximum number of transitions for a state, symbol pair. A deterministic 
three-tape machine M' is constructed to accept the language of M. Acceptance in M' is also 
defined by halting.

The machine M' is built to simulate the computations of M. The correspondence be
tween sequences (mj, . . . ,  m k) and computations of M' ensures that all possible computa
tions are examined. The role of the three tapes of M' are

Tape 1: stores the input string;

Tape 2: simulates the tape of M;

Tape 3: holds sequences of the form (m l......... mk) to guide the simulation.

A computation in M' consists of the actions:

1. A sequence of integers (mi, , mk) from 1 to n is written on tape 3.
*

2. The input string on tape 1 is copied to the standard input position on tape 2.

3. The computation of M defined by the sequence on tape 3 is simulated on tape 2.

4. If the simulation halts prior to executing k transitions, the computation o f M' halts and 
accepts the input.

5. If the computation did not halt in step 3, the next sequence is generated on tape 3 and 
the computation continues at step 2.

The simulation is guided by the sequence of values on tape 3. The deterministic Turing 
machine in Figure 8.1 generates all finite-length sequences of integers from 1 to n, where 
the symbols 1,2, . . .  , n  are individual tape symbols. Sequences of length 1 are generated 
in numeric order, followed by sequences of length 2, length 3, and so on. A computation 
begins in state q0 at position zero. When the tape head returns to position zero the tape
contains the next sequence of values. The notation i / i  abbreviates 1/1, 2/2.......... n /n .

Using the exhaustive generation of numeric sequences, we now construct a determinis
tic three-tape machine M' that accepts L(M). A computation of the machine M ' interweaves 
the generation of the sequences on tape 3 with the simulation of M on tape 2. M' halts when 
the sequence on tape 3 defines a computation that halts in M. Recall that both M and M' 
accept by halting.

Let E and T be the input and tape alphabets of M. The alphabets of M' are

EM' =  E

r M' =  I*. I x  6 n  U [1......... n }.

Symbols of the form #x  represent tape symbol x  and are used to mark the leftmost square 
on tape 2 during the simulation of the computation of M. The transitions of M ' are naturally 
grouped by their function. States labeled qs j  are used in the generation of a sequence on tape
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(Rollover) 
1/1 R

(Find end of sequence)

FICURE 8.1 Turing machine generating {7, 2, . . . , n}+.

3. These transitions are obtained from the machine in Figure 8.1. The tape heads reading 
tapes 1 and 2 remain stationary during this operation.

5 (^ ,0, B, B, B) =  fa,.,; B, 5; B, S; B, ft]

$(&,,. B, B, t) =  f a , ,; B, S\ B, S; i, ft] t =  1 , . . . ,  n

S(qs.i , B , B, B ) =  faJ>2; B, 5; B, S; B, L]

8(q,t2, B, B, n ) =  faJi2; B, S; B, 5; 1, L]

&(4s,2’ B, B , t  — 1) =  [qs4 \ B, S; B, S ; t ,  L] t =  1, . . . ,  n — 1 

S(qtt2, B, B, B) =  [q,_3; B, 5; B , S; B, ft]

5(^.3 , B, B, 7) =  faJ-3; B, S; B, 5; 1, ft]

<5(^.3, B, B, B) =  faJ>4; B, S; B, S; 7, L]

B, B, 0  =  faM ; B , S ; B , S , t , L ]  t -  1..........n

5(^,4 , B, B, B) =  [qC'0- B, 5; B, 5; B, S ]

The next step is to make a copy of the input on tape 2. The symbol #B  is written in 
position zero to designate the left boundary of the tape.
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8(qCi0, B, B , B) = [qcA; B, R ;#B ,  R; B , S]

8(qc \, x ,  B, B ) =  [«7C>1; x, R \x ,  R \ B , S] for all x € T -  {B}

8(qcA, B, B, B) = [qC'2; B , L; B, L; B, S]

8(qC'i, x ,  x ,  B) = [qc. i \ x ,  L ;x ,  L; B, 5] for all x  e  T

8(qC2> B , #B, B) =  [^0; 5; #B, S; B, /?]

The transitions that simulate the computation of M on tape 2 of M' are obtained directly 
from the transitions of M. If &(qh x)  =  [qjt  y,  d] is a transition of M assigned the number 

/ in the ordering, then

8(qit B, x, 0  =  [q j ; B, S \ y , d \ t ,  R]

8{qh  B, #x, t) =  [qy, B, S \# y ,  d ; t ,

are the corresponding transitions of M'.
If the sequence on tape 3 consists of k numbers, the simulation processes at most k 

transitions. The computation of M' halts if the computation of M specified by the sequence 
on tape 3 halts. When a blank is read on tape 3, the simulation has processed all of the 
transitions designated by the current sequence. Before the next sequence is processed, 
the result of the simulated computation must be erased from tape 2. To accomplish this, 
the tape heads on tapes 2 and 3 are repositioned at the leftmost position in state qe q and 
qe h  respectively. The head on tape 2 then moves to the right, erasing the tape.

8(qj, B, x ,  B ) =  [<jv,o; B, S; x ,  5; B, 5] for all x  e  T

8(q,-, B, #x,  B) =  B, S ,# x ,  S; B, 5] for all j e T

8(qe 0, B, x, B) =  [qe>0; B, S , x ,  L, B, S] for all x  €  T

8(qe o, B, #x, B)  =  [qe \, B, S; B, S ; B, L ] for alLc e  T

B, B, t ) =  [qe j; B, S; B, S ; t ,  L] t =  l , . . . , n  

8(qeA, B, B, B) =  lqea ; B, 5; B, /?; B, /?]

8{qet2i B, x , /) =  2; B, 5; B, i, fl] for all x  e  T and / =  1 , . . . ,  n 

8(qe_2, B, B, B) =  [qe£, B, 5; B, L; B, L]

5(^,3 , B, B, /) =  3; B, S; B, L; r, L] t =  1...........n

8(qe -$, B, B, B) =  [<7Ji0; B, 5; B, S; B, 5]

When a blank is read on tape 3, the entire segment of the tape that may have been 
accessed during the simulated computation has been erased. M' then returns the tape heads to 
their initial position and enters qs 0 to generate the next sequence and continue the simulation 
of computations.



280 Chapter 8 Turing Machines

The process of simulating computations of M, steps 2 through 5 of the algorithm, con
tinues until a sequence of numbers is generated on tape 3 that defines a halting computation. 
The simulation of this computation causes M' to halt, accepting the input. If the input string 
is not in L(M), the cycle of sequence generation and computation simulation in M' will 

continue indefinitely.
The actions of the deterministic machine constructed following the preceding strategy 

are illustrated using the nondeterministic machine from Example 8.7.1 and the numbering 
of the transitions in Table 8.7.1. The first three transitions of the computation M defined by 
the sequence (1, 3, 3, 2, 1) and input string accb  are

q0BaccbB  1 

h  Bq^accbB  3 

I- BaqiCcbB 3 

I- Bq^accbB.

The sequence 1, 3, 3, 2,1  that designates the particular computation of M is written on tape 
3 of M'. The configuration of the three-tape machine M' prior to the execution of the third 
transition of M is

Transition 3 from state q x with M scanning a c causes the machine to print c, enter state q$, 
and move to the left. This transition is simulated in M' by the transition 8'(q lt B, c , 3) = 
[<75; B, S; c, L;3, R]. The transition of M' alters tape 2 as prescribed by the transition of M 
and moves the head on tape 3 to designate the number of the subsequent transition.

Nondeterministic Turing machines can be defined with a multitrack tape, two-way tape, 
or multiple tapes. Machines defined using these alternative configurations can also be shown 
to accept precisely the recursively enumerable languages.
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Like their deterministic counterparts, nondeterministic machines that accept by final 
state can be used to show that a language is recursive. If every computation in the nondeter
ministic machine halts, so will every computation in the equivalent deterministic machine 

(Exerecise 23).

Example 8.7.2

The two-tape nondeterministic machine

accepts the set of strings over [a, b) with a b in the middle. The transition from state q\ to 
q2 on reading a b  on tape 1 represents a guess that the b is in the middle o f the input. The 
loop in state <y2 compares the number of symbols following the b to the number preceding 
it. If a string is in L(M), one computation will enter upon reading the middle b and accept 
the input. The computations for strings with no b’s halt in q t, and strings that do not have 
a b in the middle halt in either q t or q2■ Since M halts for all inputs, L(M) is recursive. □

The next example illustrates the flexibility afforded by the combination of multitape 
machines and the guess and check strategy of nondeterminism.

Example 8.7.3

Let M =  (Q, E , T, 8, q0, F) be a standard Turing machine that accepts a language L. 
We will design a two-tape nondeterministic machine M' that accepts strings over £* that 
have a substring of length two or more in L. That is, L(M') =  [u \ u =  x y z ,  length(y) >
2 and y  e  L). A computation of M' with input u consists of the following steps:

1. Reading the input on tape 1 and nondeterministically choosing a position in the string 
to begin copying to tape 2;

2. Copying from tape 1 to tape 2 and nondeterministically choosing a position to stop 
copying;

3. Simulating the computation of M on tape 2.

The first two steps constitute the nondeterministic guess of a substring of u  and the third 
checks whether the substring is in L.

The states of M' are Q U [qs, qb, qc, qd, qe) with start state qs. The alphabets and final 
states are the same as those of M. The transitions for steps 1 and 2 use states qs, qb, qc, qd, 
and qe.

[a/aR, B/XR] 
[b/bR, B/XR)

[a/aR, X/XL) 
[b/b R, X/X L]
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S \q „  B , B )  =  { [qb\ B, R ; B, «]}

S \q b, x , B) =  { [qh\ x , R\ B, S], [qc\ x, R ;x ,  «]} for all x e  2  

S \q c, x ,  B) =  { [qc\ x ,  R \ x ,  R], [qd\x ,  R \ x, /?]} for all x € £

&'(qd, x, B) =  { [qd;x ,  R\ B, S]} for all x e  £

S'(qd, B , B )  =  { [qe\ B, 5; B, L]J

S'(qe, 5 ,  x) =  { [qe\ B, 5; x, L]) for all x € £

s \q e, B , B )  =  { [q0; B, S ; S , 5]}

The transition from qb to qc initiates the copying of a substring of u onto tape 2. The second 
transition in qc completes the selection of the substring. The tape head on tape 1 is moved 
to the blank following the input in qd, and the head on tape 2 is returned to position zero 
in qe.

After the nondeterministic selection of a substring, the transitions of M are run on 
tape 2 to check whether the “guessed” substring is in L. The transitions for this part of the 
computation are obtained directly from 5, the transition function of M:

S'(qh B,  x) =  { [qy, B, S; y, d}) whenever S(q,-, x )  =  [qj, y,  d] is a transition of M. 

The tape head reading tape 1 remains stationary while the computation of M is run on tape 2.
□

S.8 Turing Machines as Language Enumerators

In the preceding sections Turing machines have been formulated as language acceptors: A 
machine is provided with an input string, and the result of the computation indicates the 
acceptability of the input. Turing machines may also be designed to enumerate a language. 
The computation of such a machine sequentially produces an exhaustive listing of the 
elements of the language. An enumerating machine has no input; its computation continues 
until it has generated every string in the language.

Like Turing machines that accept languages, there are a number of equivalent ways to 
define an enumerating machine. We will use a jfc-tape deterministic machine, k > 2 ,  as the 
underlying Turing machine model in the definition of enumerating machines. The first tape 
is the output tape and the remaining tapes are work tapes. A special tape symbol # is used 
on the output tape to separate the elements of the language that are generated during the 
computation.

The machines considered in this section perform two distinct tasks, acceptance and 
enumeration. To distinguish them, a machine that accepts a language will be denoted M 
while an enumerating machine will be denoted E.
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Definition 8.8.1

A jfc-tape Turing machine E = (Q, E , T, <5, q0) enum erates the language L if

i) the computation begins with all tapes blank;

ii) with each transition, the tape head on tape 1 (the output tape) remains stationary or 
moves to the right;

iii) at any point in the computation, the nonblank portion of tape 1 has the form

S#mi#m2# . . .  #«*# or • • • #uk#v,

where ut G L and i> € £*;

iv) a string u will be written on tape 1 preceded and followed by # if, and only if, u G L.

The last condition indicates that the computation of a machine E that enumerates L 
eventually writes every string in L on the output tape. Since all of the elements of a language 
must be produced, a computation enumerating an infinite language will never halt. The 
definition does not require a machine to halt even if it is enumerating a finite language. 
Such a machine may continue indefinitely after writing the last element on the output tape.

Example 8.8.1

The machine E enumerates the language L 
this language was given in Example 8.2.2.

[B/B R, B/B R]  ̂ q  [BW R, B/a S]

The computation of E begins by writing ## on the output tape, indicating that A e  L. 
Simultaneously, an a is written in position one of tape 2, with the head returning to tape

=  [a'b'c' | i > 0). A Turing machine accepting 

[B/aR, a/aR)
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position zero. At this point, E enters the nonterminating loop described by the following 

actions.

1. The tape heads move to the right, writing an a on the output tape for every a on the 

work tape.

2. The head on the work tape then moves right to left through the a's and a b is written 

on the output tape for each a.

3. The tape heads move to the right, writing a c on the output tape for every a on the work 

tape.

4. An a is added to the end of the work tape and the head is moved to position one.

5. A # is written on the output tape.

After a string is completed on the output tape, the work tape contains the information 
required to construct the next string in the enumeration. □

The definition of enumeration requires that each string in the language appear on the 
output tape but permits a string to appear multiple times. Theorem 8.8.2 shows that any 
language that is enumerated by a Turing machine can be enumerated by one in which each 
string is written only once on the output tape.

Theorem 8.8.2

Let L be a language enumerated by a Turing machine E. Then there is a Turing machine E' 
that enumerates L and each string in L appears only once on the output tape of E'.

Proof. Assume E is a k -tape machine enumerating L. A (.k +  l)-tape machine E' that 
satisfies the “single output" requirement can be built from the enumerating machine E. 
Intuitively, E is a submachine of E' that produces strings to be considered for output by E'. 
The output tape of E' is the additional tape added to E, while the output tape of E becomes 
a work tape for E'. For convenience, we call tape 1 the output tape of E'. Tapes 2, 3, . . .  , 
k +  1 are used to simulate E, with tape 2 being the output tape of the simulation. The actions 
of E' consist of the following sequence of steps:

1. The computation begins by simulating the actions of E on tapes 2, 3, . . . , k +  1.

2. When the simulation of E writes #w# on tape 2, E' initiates a search procedure to see 
if u already occurs on tape 2.

3. If u is not on tape 2, it is added to the output tape of E'.

4. The simulation of E is restarted to produce the next string.

Searching for another occurrence of u requires the tape head to examine the entire nonblank 
portion of tape 2. Since tape 2 is not the output tape of E', the restriction that the tape head 
on the output tape never move to the left is not violated. ■

Theorem 8.8.2 justifies the selection of the term enumerate to describe this type 
of computation. The computation sequentially and exhaustively lists the strings in the
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language. The order in which the strings are produced defines a mapping from an initial 
sequence of the natural numbers onto L. Thus we can talk about the zeroth string in L, the 
first string in L, and so on. This ordering is machine-specific; another enumerating machine 
may produce a completely different ordering.

Turing machine computations now have two distinct ways of defining a language: by 
acceptance and by enumeration. We show that these two approaches produce the same 

languages.

Lemma 8.8.3

If L is enumerated by a Turing machine, then L is recursively enumerable.

Proof. Assume that L is enumerated by a fc-tape Turing machine E . A ( k +  l)-tape machine 
M accepting L can be constructed from E. The additional tape of M is the input tape; the 
remaining k tapes allow M to simulate the computation of E. The computation of M begins 
with a string u on its input tape. Next M simulates the computation of E. When the simulation 
of E writes #, a string i » e L  has been generated. M then compares u with w and accepts u 
if u = w. Otherwise, the simulation of E is used to generate another string from L and the 
comparison cycle is repeated. If u e  L, it will eventually be produced by E and consequently 
accepted by M. ■

The proof that any recursively enumerable language L can be enumerated is compli
cated by the fact that a Turing machine M that accepts L need not halt for every input string. 
A straightforward approach to enumerating L would be to build an enumerating machine 
that simulates the computations of M to determine whether a string should be written on 
the output tape. The actions of such a machine would be to

1. Generate a string u e  E*.

2. Simulate the computation of M with input u.

3. If M accepts, write u on the output tape.

4. Continue at step 1 until all strings in S* have been tested.

The generate-and-test approach requires the ability to generate the entire set o f strings over 
£  for testing. This presents no difficulty, as we will see later. However, step 2 of this naive 
approach causes it to fail. It is possible to produce a string u for which the computation 
of M does not terminate. In this case, no strings after u will be generated and tested for 
membership in L.

To construct an enumerating machine, we first introduce the lexicographical ordering 
of the input strings and provide a strategy to ensure that the enumerating machine E will 
check every string in £*. The lexicographical ordering of the set of strings over a nonempty 
alphabet E defines a one-to-one correspondence between the natural numbers and the strings 
in £*.
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Definition 8.8.4

Let £  =  {a , , . . . ,  a„) be an alphabet. The lexicographical ordering lo o f £*  is defined 

recursively as follows:

i) Basis: lo(k) =  0, /o(a,) =  i for / =  1, 2 , . . . ,  n.

ii) Recursive step: lo(a,u) = lo(u) +  i ■ nUng'hiu).

The values assigned by the function lo  define a total ordering on the set E*. Strings 
u and v are said to satisfy u < v, u =  v, and u > u if lo(u) < lo(v), lo(u)  =  lo(v), and 
lo(u) > lo(v), respectively.

Example 8.8.2

Let £  =  {a , b, c} and let a, b, and c be assigned the values 1, 2, and 3, respectively. The 
lexicographical ordering produces

lo(k)  =  0 lo(a) =  1 lo(aa) =  4 lo(ba)  =  7 lo(ca) =  10 lo(aaa)  =  13 
lo(b) =  2 lo(ab) = 5 lo(bb) = & lo(cb) =  11 lo(aab)  =  14 
lo(c) =  3 lo(ac) =  6 lo (bc )=  9 lo(cc) =  12 lo(aac)  =  15. □

Lemma 8.8.5

For any alphabet £ ,  there is a Turing machine Ee . that enumerates £* in lexicographical 
order.

The construction of a machine that enumerates the set of strings over the alphabet {0 ,1 } 
is left as an exercise.

The lexicographical ordering and a dovetailing technique are used to show that a 
recursively enumerable language L can be enumerated by a Turing machine. Let M be 
a Turing machine that accepts L. Recall that M need not halt for all input strings. The 
lexicographical ordering produces a listing uQ =  k, u x, u2, u3, . . .  of the strings of E*. A 
two-dimensional table is constructed whose columns are labeled by the strings of E* and 
rows by the natural numbers.

[X.3] [«,.3] [«,,3]

[X.2J l«r 2]

Ik, I] [«,,H [«2.1]

[X.,0] [«,,0] l“2.0]

X "i “ 2



The [i, j ]  entry in this table is interpreted to mean “run machine M on input m, for j  
steps." Using the technique presented in Example 1.4.2, the ordered pairs in the table can 
be enumerated in a “diagonal by diagonal" manner (Exercise 33).

The machine E built to enumerate L interleaves the enumeration of the ordered pairs 
with the computations of M. The computation of E is a loop that consists of the following 

steps:

1. Generate an ordered pair [i, j].

2. Run a simulation of M with input u, for j  transitions or until the simulation halts.

3. If M accepts, write m, on the output tape.

4. Continue with step 1.

If Uj e  L, then the computation of M with input u, halts and accepts after k transitions, for 
some number k. Thus Uj will be written to the output tape of E when the ordered pair [/, fc] 
is processed. The second element in an ordered pair [i, j]  ensures that the simulation M is 
terminated after j  steps. Consequently, no nonterminating computations are allowed and 
each string in £* is examined.

Combining the preceding argument with Lemma 8.8.3 yields

Theorem 8.8.6

A language is recursively enumerable if, and only if, it can be enumerated by a Turing 
machine.

A Turing machine that accepts a recursively enumerable language halts and accepts 
every string in the language but is not required to halt when an input is a string that is not

i in the language. A language L is recursive if it is accepted by a machine that halts for all 
input. Since every computation halts, such a machine provides a decision procedure for 
determining membership in L. The family of recursive languages can also be defined by 
enumerating Turing machines.

The definition of an enumerating Turing machine does not impose any restrictions 
on the order in which the strings of the language are generated. Requiring the strings to 
be generated in a predetermined computable order provides the additional information 
needed to obtain negative answers to the membership question. Intuitively, the strategy 
to determine whether a string u is in the language is to begin the enumerating machine and 
compare u with each string that is produced. Eventually either u is output, in which case it 
is accepted, or some string beyond u in the ordering is generated. Since the output strings 
are produced according to the ordering, u has been passed and is not in the language. Thus 
we are able to decide membership, and the language is recursive. Theorem 8.8.7 shows that 
recursive languages may be characterized as the family of languages whose elements can 
be enumerated in order.

Theorem 8.8.7

L is recursive if, and only if, L can be enumerated in lexicographical order.

8.8 Turing Machines as Language Enumerators 287



288 Chapter 8 Turing Machines

Proof. We first show that every recursive language can be enumerated in lexicographical 
order. Let L be a recursive language over an alphabet E . Then it is accepted by some machine 
M that halts for all input strings. A machine E that enumerates L in lexicographical order can 
be constructed from M and the machine E j .  that enumerates E* in lexicographical order. 
The machine E is a hybrid, interleaving the computations of M and E^.. The computation 

of E consists of the following loop:

1. The machine Ee . is run, producing a string u € E*.

2. M is run with input u.

3. If M accepts u, u is written on the output tape of E.

4. The generate-and-test loop continues with step 1.

Since M halts for all inputs, E cannot enter a nonterminating computation in step 2. Thus 
each string u €  E* will be generated and tested for membership in L.

Now we show that any language L that can be enumerated in lexicographical order is 
recursive. This proof is divided into two cases based on the cardinality of L.

Case 1: L is finite. Then L is recursive since every finite language is recursive.

Case 2: L is infinite. The argument is similar to that given in Theorem 8.8.2 except that 
the ordering is used to terminate the computation. As before, a (k +  l)-tape machinc M 
accepting L can be constructed from a fc-tape machine E that enumerates L in lexicographical 
order. The additional tape of M is the input tape; the remaining k  tapes allow M to simulate 
the computations of E. The ordering of the strings produced by E provides the information 
needed to halt M when the input is not in the language. The computation of M begins with 
a string u on its input tape. Next M simulates the computation of E. When the simulation 
produces a string w ,  M compares u with w.  If u =  w,  then M halts and accepts. If w  is 
greater than u in the ordering, M halts rejecting the input. Finally, if w is less than u in 
the ordering, then the simulation of E is restarted to produce another element of L and the 
comparison cycle is repeated. ■

Exercises

1. Let M be the Turing machine defined by

s B a b c

?o <?l, B. R

<?i <72. B, L q \ ,a .  R <7i, c, R <7i. c. R

?2 <72. c, L <?2. b, L

a) Trace the computation for the input string a a b c a .

b) Trace the computation for the input string bcbc.
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c) Give the state diagram of M.

d) Describe the result of a computation in M.

2. Let M be the Turing machine defined by

s B a b c

90 <?i, B, R

<7i 9i. B, R qu a, R q\,b , R <72. c. L

<?2 <?2’ b, L <72' a» £

a) Trace the computation for the input string abcab.

b) Trace the first six transitions of the computation for the input string abab.

c) Give the state diagram of M.

d) Describe the result of a computation in M.

3. Construct a Turing machine with input alphabet {a , b] to perform each of the following 
operations. Note that the tape head is scanning position zero in state q f  whenever a 
computation terminates.

a) Move the input one space to the right. Input configuration q0BuB,  result q jB B u B .

b) Concatenate a copy of the reversed input string to the input. Input configuration 
qoBuB,  result qj B uur B.

* c) Insert a blank between each of the input symbols. For example, input configuration 
q0BabaB,  result q jB a B b B a B .

d) Erase the b's from the input. For example, input configuration q0BbabaababB,  

result qf BaaaaB.

4. Construct a Turing machine with input alphabet {a, b, c} that accepts strings in which 
the first c is preceded by the substring aaa. A string must contain a c to be accepted 
by the machine.

5. Construct a Turing machine with input alphabet {a, b) to accept each o f the following 
languages by final state.

a) {a'bJ 11 > 0, j  >  i]

b) {a'bja'b-i \ i , j  > 0)

c) Strings with the same number of a ’s and b's

d) {uuR |« € { a ,  b)*)

e) {m m  | u 6 [a ,b }*}

6. Modify your solution to Exercise 5(a) to obtain a Turing machine that accepts the 
language {a'b> \ i > 0, j  > i) by halting.

7. An alternative method of acceptance by final state can be defined as follows: A string 
u is accepted by a Turing machine M if the computation of M with input u enters
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(but does not necessarily terminate in) a final state. With this definition, a string may 
be accepted even though the computation of the machine does not terminate. Prove 
that the languages accepted by this definition are precisely the recursively enumerable 
languages.

8. The transitions of a one-tape deterministic Turing machine may be defined by a partial 
function from Q x T to Q x T x [L, R, 5}, where 5 indicates that the tape head 
remains stationary. Prove that machines defined in this manner accept precisely the 
recursively enumerable languages.

9. An atomic Turing machine is one in which every transition consists o f a change of 
state and one other action. The transition may write on the tape or move the tape head, 
but not both. Prove that the atomic Turing machines accept precisely the recursively 
enumerable languages.

* 10. A context-sensitive Turing machine is one in which the applicability o f a transition is 
determined not only by the symbol scanned but also by the symbol in the tape square 
to the right of the tape head. A transition has the form

S(qh xy )  = [qjt z, d ] x , y , z e T ;  d e  {L,  R }.

When the machine is in state qt scanning an x,  the transition may be applied only when 
the tape position to the immediate right of the tape head contains a y. In this case the 
x  is replaced by z, the machine enters state qj,  and the tape head moves in direction d.

a) Let M be a standard Turing machine. Define a context-sensitive Turing machine M' 
that accepts L(M). Hint: Define the transition function of M' from that of M.

b) Let &(qh xy)  =  [qj, z, d] be a context-sensitive transition. Show that the result of 
the application of this transition can be obtained by a sequence of standard Turing 
machine transitions. You must consider the case both when transition 6(^,, xy)  is 
applicable and when it isn’t.

c) Use parts (a) and (b) to conclude that context-sensitive machines accept precisely 
the recursively enumerable languages.

11. Prove that every recursively enumerable language is accepted by a Turing machine with 
a single accepting state.

12. Construct a Turing machine with two-way tape and input alphabet [a] that halts if 
the tape contains a nonblank square. The symbol a may be anywhere on the tape, not 
necessarily to the immediate right of the tape head.

13. A two-dimensional Turing machine is one in which the tape consists of a two- 
dimensional array of tape squares.
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A transition consists of rewriting a square and moving the head to any one of the four 
adjacent squares. A computation begins with the tape head reading the comer position. 
The transitions of the two-dimensional machine are written 8(qh  x) =  [qj, y, d], where 
d  is U (up), D (down), L  (left), or R (right). Design a two-dimensional Turing machine 
with input alphabet {a} that halts if the tape contains a nonblank square.

14. Let L be the set of palindromes over [a, b}.

a) Build a standard Turing machine that accepts L.

b) Build a two-tape machine that accepts L in which the computation with input u 
should take no more than 3 length(u) -I- 4 transitions.

15. Construct a two-tape Turing machine with input alphabet {a, b) that accepts the lan
guage {a 'b2| | j >  0} in which the tape head on the input tape only moves from left to 
right.

16. Construct a two-tape Turing machine with input alphabet [a, b, c) that accepts the 
language {a'b 'c1 | i > 0}.

17. Construct a two-tape Turing machine with input alphabet {a, b} that accepts strings 
with the same number of a ’s and b's. The computation with input u should take no 
more than 2 length(u) +  3 transitions.

18. Construct a two-tape Turing machine that accepts strings in which each a is followed 
by an increasing number of b's ; that is, the strings are of the form

abn'ab"2 . . .  ab"k, k >  0,

where n | <  n2 < ■ ■ ■ < n*.

19. Construct a nondeterministic Turing machine whose language is the set of strings over 
{a, b] that contain a substring u satisfying the following two properties:

i) length(u) > 3;

ii) u contains the same number of a ’s and b's.

20. Construct a two-tape nondeterministic Turing machine that accepts L = [uvuw  | u e  
[a, />}5 , v, w € {a, 6}*). A string is in L if it contains two nonoverlapping identical
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substrings of length 5. Every computation with input w should terminate after at most

2 length(w) + 2 transitions.

21. Construct a two-tape nondeterministic Turing machine that accepts L = {uu \ u e  
{a, b)*}. Every computation with input w should terminate after at most 2 length(w) +
2 transitions. Using the deterministic machine from Example 8.6.2 that accepts L, what 
is the maximum number of transitions required for a computation with an input of length 
n?

22. Let M =  (Q, E , T, 8, q0, F) be a standard Turing machine that accepts a language 
L. Design a Turing machine M' (of any variety) that accepts a string w  € E* if, and 
only if, there is a substring of w in L.

23. Let L be a language accepted by a nondeterministic Turing machine in which every 
computation terminates. Prove that L is recursive.

24. Prove the equivalent of Theorem 8.3.2 for nondeterministic Turing machines.

25. Prove that every finite language is recursive.

26. Prove that a language L is recursive if, and only if, L and L are recursively enumerable.

27. Prove that the recursive languages are closed under union, intersection, and comple
ment.

28. A machine that generates all sequences made up of integers from 1 to n was given in 
Figure 8.1. Trace the first seven cycles of the machine for n =  3. A cycle consists of 
the tape head returning to the initial position in state q0.

29. Build a Turing machine that enumerates the set of even length strings over {a}.

30. Build a Turing machine that enumerates the set {a'bj  | 0 <  / <  j ) .

31. Build a Turing machine that enumerates the set {a2" | n > 0}.

32. Build a Turing machine Ee » that enumerates 2* where E =  {0, /}. Note: This machine 
may be thought of as enumerating all finite-length bit strings.

* 33. Build a machine that enumerates the ordered pairs N x N. Represent a number n by a 
string of n + 1 / ’s. The output for ordered pair [i, j]  should consist of the representation 
of the number i followed by a blank followed by the representation of j . The markers
# should surround the entire ordered pair.

34. In Theorem 8.8.7, the proof that every recursive language can be enumerated in 
lexicographical order considered the cases of finite and infinite languages separately. 
The argument for an infinite language may not be sufficient for a finite language. Why?

35. Define the components of a two-track nondeterministic Turing machine. Prove that 
these machines accept precisely the recursively enumerable languages.

36. Prove that every context-free language is recursive. Hint: Construct a two-tape nonde
terministic Turing machine that simulates the computation of a pushdown automaton.
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Bibliographic Notes

The Turing machine was introduced by Turing [1936] as a model for algorithmic compu
tation. Turing’s original machine was deterministic, consisting of a two-way tape and a 
single tape head. Independently, Post [1936] introduced a family of abstract machines with 
the same computational capabilities as Turing machines.

The use of Turing machines for the computation of functions is presented in Chapter 9. 
The capabilities and limitations of Turing machines as language acceptors are examined in 
Chapters 10 and 11. The books by Kleene [1952], Minsky [1967], Brainerd and Landweber 
[1974], and Hennie [1977] give an introduction to computability and Turing machines.



CHAPTER 9

Turing Computable Functions

In the preceding chapter Turing machines provided the computational framework for ac
cepting languages. The result of a computation was determined by final state or by halting. 
In either case there are only two possible outcomes: accept or reject. The result of a Turing 
machine computation can also be defined in terms of the symbols written on the tape when 
the computation terminates. Defining the result in terms of the halting tape configuration 
permits an infinite number of possible outcomes. In this manner, the computations of a Tur
ing machine produce a mapping between input strings and output strings; that is, the Turing 
machine computes a function. When the strings are interpreted as natural numbers, Turing 
machines can be used to compute number-theoretic functions. We will show that several im
portant number-theoretic functions are Turing computable and that computability is closed 
under the composition of functions. In Chapter 13 we will categorize the entire family of 
functions that can be computed by Turing machines.

The current chapter ends by outlining how a high-level programming language could 
be defined using the Turing machine architecture. This brings Turing machine computations 
closer to the computational paradigm with which we are most familiar—the modern-day 
computer.

9.1 Computation o f Functions

A function /  : X —» Y is a mapping that assigns at most one value from the set Y to each 
element of the domain X. Adopting a computational viewpoint, we refer to the variables of 
/  as the input of the function. The definition of a function does not specify how to obtain

295
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f ( x ) ,  the value assigned to * by the function / ,  from the input x. Turing machines will be 
designed to compute the values of functions. The domain and range of a function computed 
by a Turing machine consist of strings over the input alphabet of the machine.

A Turing machine that computes a function has two distinguished states: the initial 
state q0 and the halting state qf . A computation begins with a transition from state q0 that 
positions the tape head at the beginning of the input string. The state q0 is never reentered; 
its sole purpose is to initiate the computation. All computations that terminate do so in 
state q j  with the value of the function written on the tape beginning at position one. These 
conditions are formalized in Definition 9.1.1.

Definition 9.1.1

A deterministic one-tape Turing machine M =  (Q, E , T, 8, q$% q j )  computes the unary 
function /  : E* —»• E* if

i) there is only one transition from the state q0 and it has the form 8(q0, B )  =  [qh B,  fl];

ii) there are no transitions of the form 8(qt , x )  =  [q0, y,  d] for any qt € Q, x,  y e  f \  and 
d  € {L, fl);

iii) there are no transitions of the form 8(q f ,  B)\

iv) the computation with input u halts in the configuration q j B v B  whenever f ( u )  =  v, 
and

v) the computation continues indefinitely whenever / ( « )  t-

A function is said to be Turing computable if there is a Turing machine that computes 
it. A Turing machine that computes a function /  may fail to halt for an input string u. In 
this case, /  is undefined for u. Thus Turing machines can compute both total and partial 
functions.

An arbitrary function need not have the same domain and range. Turing machines can be 
designed to compute functions from E* to a specific set R by designating an input alphabet 
E and a range R. Condition (iv) is then interpreted as requiring the string v to be an element 
of R.

To highlight the distinguished states qQ and q f ,  a Turing machine M that computes a 
function is depicted by the diagram

Intuitively, the computation remains inside the box labeled M until termination. This 
diagram is somewhat simplistic since Definition 9.1.1 permits multiple transitions to state q f  
and transitions from q f .  However, condition (iii) ensures that there are no transitions from 
q f  when the machine is scanning a blank. When this occurs, the computation terminates 
with the result written on the tape.

M
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Example 9.1.1

The Turing machine

M:

b /b R
B /B R

ata R 
b /b R

a /B L
b /B L

X§>
B/B R a! a R B IBL

computes the partial function /  from [a, b}* to {a , b}* defined by

/ ( « )  =
X if u contains an a 
t  otherwise.

The function /  is undefined if the input does not contain an a. In this case the machine 
moves indefinitely to the right in state q |. When an a is encountered, the machine enters 
state qi and reads the remainder of the input. The computation is completed by erasing the 
input while returning to the initial position. A computation that terminates produces the 
configuration q j B B  designating the null string as the result. □

The machine M in Example 9.1.1 was designed to compute the unary function / .  It 
should be neither surprising nor alarming that computations of M do not satisfy the require
ments of Definition 9.1.1 when the input does not have the anticipated form. A computation 
of M initiated with input B b B b B a B  terminates in the configuration B b B b q fB .  In this halt
ing configuration, the tape does not contain a single value and the tape head is not in the 
correct position. This is just another manifestation of the time-honored “garbage in, garbage 
out” principle of computer science.

Functions with more than one argument are computed in a similar manner. The input 
is placed on the tape with the arguments separated by blanks. The initial configuration of a 
computation of a ternary function /  with input aba, bbb, and bab is

b b b b a b

\h i

If f  {aba, bbb, bab) is defined, the computation terminates with the configuration 
q / B f  (aba, bbb, bab)B. The initial configuration for the computation of / (aa, X, bb) is

a a b b

0

The consecutive blanks in tape positions three and four indicate that the second argument 
is the null string.
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Example 9.1.2

The Turing machine

B/BR

a/a R 
b/bR

B/BR

B/B

B/B

computes the binary function of concatenation of strings over [a, b}. The initial configura
tion of a computation with input strings u and v has the form q0B u B vB .  Either or both of 
the input strings may be null.

The initial string is read in state q x. The cycle formed by states q2, q-}, <7 5 , q2 translate5 

an a one position to the left. Similarly, q2, q4, q$, q2 shift a b to the left. These cycles 
are repeated until the entire second argument has been translated one position to the left, 
producing the configuration q ^ B u vB .  □

Turing machines that compute functions can also be used to accept languages. The 
characteristic function of a language L is a function x l  : E* {0, 1} defined by

A language L is recursive if there is a Turing machine M that computes the characteristic 
function xl- The results of the computations of M indicate the acceptability of strings. A 
machine that computes the partial characteristic function

shows that L is recursively enumerable. Exercises 2, 3, and 4 establish the equivalence 
between acceptance of a language by a Turing machine and the computability o f its char
acteristic function.

1 i f w e L  
0 if u & L.

1 if u e  L
0 or t  if u & L
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9.2 Numeric Computation

We have seen that Turing machines can be used to compute the values of functions whose 
domain and range consist of strings over the input alphabet. In this section we turn our atten
tion to numeric computation, in particular the computation of number-theoretic functions. 
A number-theoretic function is a function of the form / : N x N x - - - x N - > N .  The do
main consists of natural numbers or n-tuples of natural numbers. The function sq  : N -*  N 
defined by sq(n)  =  n2 is a unary number-theoretic function. The standard operations of 
addition and multiplication are binary number-theoretic functions.

The transition from symbolic to numeric computation requires only a change of per
spective since numbers are represented by strings of symbols. The input alphabet of the 
Turing machine is determined by the representation of the natural numbers used in the 
computation. We will represent the natural number n by the string l n+l. The number zero 
is represented by the string 1, the number one by 11, and so on. This notational scheme is 
known as the unary representation of the natural numbers. The unary representation of a 
natural number n is denoted n. When numbers are encoded using the unary representation, 
the input alphabet for a machine that computes a number-theoretic function is the singleton 
set {7}.

The computation of / ( 2 ,  0, 3) in a Turing machine that computes a ternary number- 
theoretic function /  begins with the machine configuration

%

If / ( 2 ,  0, 3) =  4, the computation terminates with the configuration

1 1 1 1 1

A ^-variable total number-theoretic function r : N x N x • ■ ■ x N -> {0, 1} defines a 
k-ary relation R on the domain of the function. The relation is defined by

[«!, n2, . . . , « * ]  e  R if r ( n t, n2, . . . , » * )  =  1 

[«!. «2......... "*] £ R  if n2...........nk) = 0 .

The function r is called the characteristic function of the relation R. A relation is Turing 
computable if its characteristic function is Turing computable.

We will now construct Turing machines that compute several simple, but important, 
number-theoretic functions. The functions are denoted by lowercase letters and the corre
sponding machines by capital letters.
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The successor function:

S:

The zero function: z(n) =  I

Z: X & H —

The empty function: e ( n ) '

E:

The machine that computes the successor simply adds a 1 to the right end of the input 
string. The zero function is computed by erasing the input and writing 1 in tape position 
one. The empty function is undefined for all arguments; the machine moves indefinitely to 
the right in state q x.

The zero function is also computed by the machine

1/B R BIB L

That two machines compute the same function illustrates the difference between functions 
and algorithms. A function is a mapping from elements in the domain to elements in the 
range. A Turing machine mechanically computes the value of the function whenever the 
function is defined. The difference is that of definition and computation. In Section 9.5 we 
will see that there are number-theoretic functions that cannot be computed by any Turing 
machine.

The value of the ^-variable projection function is defined as the /' th argument 

of the input, p*** (« |, n2, nk) =  The superscript k  specifies the number of
arguments and the subscript designates the argument that defines the result of the projection. 
The superscript is placed in parentheses so that it is not mistaken for an exponent. The 
machine that computes p*** leaves the first argument unchanged and erases the remaining 
arguments.

1/1R 1/BR 1/BR B/BL 111 L

o m p u t a b l e  F u n c t io n s

1) = n  +  1

1/1R 1/IP

X§>
B /B R V r v  B H L

111 R 1/B L

B /B R  
1/1 R

Xg) b/sR
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The function maps a single input to itself. This function is also called the identity 

function and is denoted id.  Machines P1** that compute p{f  will be designed in Exam

ple 9.3.1.

Example 9.2.1

The Turing machine A computes the binary function defined by the addition of natural 
numbers.

1/1R 1/1R 111 L

A:

The unary representations of natural numbers n and m are 7n+l and /m+l. The sum of these 
numbers is represented by ]n+m+t. This string is generated by replacing the blank between 
the arguments with a 1 and erasing two l ’s from the right end of the second argument. □

Example 9.2.2

The predecessor function

. . .  |  0 if n =  0 
pred(n)  =  {

( n — 1 otherwise

is computed by the machine D (decrement):

111 R

For input greater than zero, the computation erases the rightmost 1 on the tape. □

9.3 Sequential Operation ofTuring Machines

Turing machines designed to accomplish a single task can be combined to construct ma
chines that perform complex computations. Intuitively, the combination is obtained by 
running the machines sequentially. The result of one computation becomes the input for 
the succeeding machine. A machine that computes the constant function c(n)  =  1 can be
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constructed by combining the machines that compute the zero and the successor functions. 
Regardless of the input, a computation of the machine Z terminates with the value zero on 
the tape. Running the machine S on this tape configuration produces the number one.

The computation of Z terminates with the tape head in position zero scanning a blank. 
These are precisely the input conditions for the machine S. The initiation and termination 
conditions of Definition 9.1.1 were introduced to facilitate this coupling of machines. The 
handoff between machines is accomplished by identifying the final state of Z with the initial 
state of S. Except for this handoff, the states of the two machines are assumed to be distinct. 
This can be ensured by subscripting each state of the composite machine with the name of 
the original machine.

1/1R 1/BL

The sequential combination of two machines is represented by the diagram

The state names are omitted from the initial and final nodes in the diagram since they may 
be inferred from the constituent machines.

There are certain sequences of actions that frequently occur in a computation of a 
Turing machine. Machines can be constructed to perform these recurring tasks. These 
machines are designed in a manner that allows them to be used as components in more 
complicated machines. Borrowing terminology from assembly language programming, we 
call a machine constructed to perform a single simple task a macro.

The computations of a macro adhere to several of the restrictions introduced in Def
inition 9.1.1. The initial state q0 is used strictly to initiate the computation. Since these 
machines are combined to construct more complex machines, we do not assume that a com
putation must begin with the tape head at position zero. We do assume, however, that each 
computation begins with the machine scanning a blank. Depending upon the operation, the
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segment of the tape to the immediate right or left of the tape head will be examined by the 
computation. A macro may contain several states in which a computation may terminate. 
As with machines that compute functions, a macro is not permitted to contain a transition 
of the form 8(q f ,  B) from any halting state q f .

A family of macros is often described by a schema. The macro MR, moves the tape 
head to the right through i consecutive natural members (sequences of 1's) on the tape. MR! 
is defined by the machine

111 R

MR* is constructed by adding states to move the tape head through the sequence of k natural 
numbers.

1/1R 111 R 1/1R IU R

The move macros do not affect the tape to the left of the initial position of the tape head. A 
computation of MR2 that begins with the configuration B n iq0Bn2B n )B n4B  terminates in 
the configuration BniBii2B n3q f B n 4B.

Macros, like Turing machines that compute functions, expect to be run with the input 
having a specified form. The move right macro MR, requires a sequence of at least i natural 
numbers to the immediate right of the tape at the initiation of a computation. The design 
of a composite machine must ensure that the appropriate input configuration is provided to 
each macro.

Several families of macros are defined by describing the results of a computation of the 
machine. The computation of each macro remains within the segment of the tape indicated 
by the initial and final blank in the description. The application of the macro will neither 
access nor alter any portion of tape outside of these bounds. The location of the tape head 
is indicated by the underscore. The double arrows indicate identical tape positions in the 
before and after configurations.

ML* (move left):

B n xB n 2B . . .  BrtkB k > 0

:  i  
B n lBrt2B . . .  BnkB



304 C h a p t e r  9  Tur ing  C o m p u ta b l e  F u n c t io n s

FL (find left):

Ek (erase):

CPY* (copy):

FR (find right):

B B 'n B  i > 0

:  I

B ‘BnB

B n B 'B  i >  0

I  I

BnB ' B

B n \B n iB  . . .  B nkB k >  1

I  I
B B  . . .  BB

Bn^BriiB . . .  BnkB B B  . . .  B B  k >  1

:  :  :
K n\B n2B . . .  BnkBti\Bn2B . .  . B n kB

CPY*, (copy through i numbers):

B n xB n 2B . . .  BnkB nk+\ . . .  B nk+jB B  . . .  B B  k >  1

t i l l  

Bn^BriiB . . .  BnkB nk+ i. . .  B n ^ B n x B ^ B  . . .  BnkB

T (translate):

B_B'nB i >  0

I  I

BnB' B

The find macros move the tape head into a position to process the first natural number to 
the right or left of the current position. Et  erases a sequence of k natural numbers and halts 
with the tape head in its original position.

The copy machines produce a copy of the designated number of integers. The segment 
of the tape on which the copy is produced is assumed to be blank. CPY* , expects a sequence
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of it +  «' numbers followed by a blank segment large enough to hold a copy of the first k 
numbers. The translate macro changes the location of the first natural number to the right 
of the tape head. A computation terminates with the head in the position it occupied at the 
beginning of the computation with the translated string to its immediate right.

The BRN (branch on zero) macro has two possible terminating states. The input to the 
macro BRN, a single natural number, is used to select the halting state of the macro. The 

branch macro is depicted

The computation of BRN does not alter the tape nor change the position of the tape head. 
Consequently, it may be run in any configuration BnB.  The branch macro is often used 
in the construction of loops in composite machines and in the selection of alternative 
computations.

Additional macros can be created using those already defined. The machine

X *)^ |cPY , , E, T MR, T - ►(* )-* ' ML

interchanges the order of two numbers. The tape configurations for this macro are 

INT (interchange):

E n B m B B n+xB

i  :

BmB7iBBn+lB

In Exercise 6, you are asked to construct a Turing machine for the macro INT that does not 
leave the tape segment BnBm B.

Example 9.3.1

The computation of a machine that evaluates the projection function p*** consists of three 
distinct actions: erasing the initial i — 1 arguments, translating the ith argument to tape 
position one, and erasing the remainder of the input. A machine to compute p{k)  can be 
designed using the macros FR, FL, E,, MR,, and T.

X*)*| Ej-, [* Q * | T f * Q * | MR1 f* Q * | FR \~&*\ E*- rc- f* Q
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Turing machines defined to compute functions can be used like macros in the design 
of composite machines. Unlike the computations of the macros, there is no a priori bound 
on the amount of tape required by a computation of such a machine. Consequently, these 
machines should be run only when the input is followed by a completely blank tape.

Example 9.3.2

The macros and previously constructed machines can be used to design a Turing machine 
that computes the function f ( n )  = 3n.

X*>*- CPY, -*(*}* ■  MR, -* -0 -*>C PY , -*<*}*■ A -* < * > ► ML, - * ( * ) *  A

The machine A, constructed in Example 9.2.1, adds two natural numbers. The computation 
of / ( « )  combines the copy macro with A to add three copies of rt. A computation with input 
rt generates the following sequence of tape configurations.

Machine Configuration

CPY,
BnB

BnBnB

MR, Bn BnB

CPY, Bn BnBnB

A Bn Bn +nB

ML, Bn B n + nB

A Bn + n + nB

Note that the addition machine A is run only when its arguments are the two rightmost 
encoded numbers on the tape. □

Example 9.3.3

The one-variable constant function zero defined by z(rt) =  0, for all n e N ,  can be built from 
the BRN macro and the machine D that computes the predecessor function.
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Example 9.3.4

A Turing machine MULT is constructed to compute the multiplication of natural numbers. 
Macros can be mixed with standard Turing machine transitions when designing a composite 
machine. The conditions on the initial state of a macro permit the submachine to be entered 
upon the processing of a blank from any state. The identification of the start state of a macro 
with a state is depicted

(*>
B/BR

M

Since the macro is entered only upon the processing of a blank, transitions may also be 
defined for state g,- with the tape head scanning nonblank tape symbols.
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If the first argument is zero, the computation erases the second argument, returns to 
the initial position, and halts. Otherwise, a computation of MULT adds m to itself n times. 
The addition is performed by copying m and then adding the copy to the previous total. The 
number of iterations is recorded by replacing a 1 in the first argument with an X  when a 

copy is made. n

9.4 Composition of Functions

Using the interpretation of a function as a mapping from its domain to its range, we can 
represent the unary number-theoretic functions g and h by the diagrams

A mapping from N to N can be obtained by identifying the range of g  with the domain of 
h and sequentially traversing the arrows in the diagrams.

0 -

The function obtained by this combination is called the composition of h with g. The 
composition of unary functions is formally defined in Definition 9.4.1. Definition 9.4.2 
extends the notion to n -variable functions.

Definition 9.4.1

Let g and h be unary number-theoretic functions. The composition of h with g is the unary 
function /  : N —>• N defined by

f ( x )  =

The composite function is denoted /  =  h o g.

t  if g(x)  t  
t  if g(x)  =  y  and h(y)  f  
h(y)  if g(.r) =  y  and h(y) i .

The value of the composite function /  =  h o g for input x  is written / (x) =  h(g(x)).  
The latter expression is read “h of g of jr.” The value h(g(x))  is defined whenever g(x) is 
defined and h is defined for the value g(x).  Consequently, the composition of total functions 
produces a total function.

From a computational viewpoint, the composition h o g  consists of the sequential 
evaluation of functions g and h . The computation of g provides the input for the computation 
of h:
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_L
evaluation 

of g

x

_ _ L

evaluation 
of h

Result h(g(x))

The composite function is defined only when the preceding sequence of computations can 
be successfully completed.

Definition 9.4.2

Let Si. 82< ■ ■ ■ ’ Sn be ^-variable number-theoretic functions and let h be an « -variable 
number-theoretic function. The fc-variable function /  defined by

/ ( *  1......... **) =  h( gi ( xl t xk) , g „ ( x l y------ x k))

is called the composition of h with g |, g2, ■ . . , g n and written f  =  h o (gu  . . . ,  gn). The 
function / ( * [ ......... x k) is undefined if either

i) £ ,- (* ! , . . . ,  xk) |  for some 1 <  i <  n, or

ii) gi(x i......... xk) =  y, for 1 < i < n and h ( y x...........y„) f .

The general definition of composition of functions also admits a computational inter
pretation. The input is provided to each of the functions g, . These functions generate the 
arguments of h.

Example 9.4.1

Consider the mapping defined by the composite function

add  o , add  o (p ^ * , p 1̂ ) ) ,  

where add(n, m) = n + m  and c '^  is the three-variable constant function defined by
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c<2> (” i» ” 2- " 3 ) =  2- The; composite is a three-variable function since the innermost func
tions of the composition, the functions that directly utilize the input, require three arguments. 
The function adds the sum of the first and third arguments to the constant 2. The result for 
input 1, 0, 3 is

add  o  (c°J ,a d d  o  ( p l* \  p (^ » ( l ,  0 ,  3 )

= a d d o  (c(*>(l, 0, 3), add  o (p(f , p ^ ) ( l ,  0, 3))

= a dd(2, add(p™{  1, 0, 3), 1, 0, 3)))

= a dd(2 ,  a < M ( l ,  3 ) )

=  add(2,  4)

=  6. □

A function obtained by composing Turing computable functions is itself Turing com
putable. The argument is constructive; a machine can be designed to compute the composite 
function by combining the machines that compute the constituent functions and the macros 
developed in the previous section.

Let gi and g2 be three-variable Turing computable functions and let h be a Turing 
computable two-variable function. Since g,, g2, and h are computable, there are machines 
G], G2, and H that compute them. The actions of a machine that computes the composite 
function h o (g,, g2) are traced for input h ,, n2, and n3.

Machine Configuration

BnlBn2Bn3B

c p y 3 Bn]Bn2Bn3Bn1Bn2Bn3B
m r 3 Bn\Bn2Bn3BniBn2Brt3B

G, BnlBn2Bn3Bj;i(nl, n2, n3)B

ML3 BnxBn2Bn3Bgf(nu ”2> n3)B
c p y 3.. Bri\Bn1Bn-sBg\{nx, n2, n3)Bn\B7i2Bn3B

m r4 BnxBn2Bn3Bgx(n{, n2, n3)BnxBn2Bn3B

g2 Bn1Bn2Bn3Bgi(nl, n2, n3)Bg2(n,, n2, n3)B

ML, n2, n3)Bg2(n,, n2, n3)B

H BTi\Bn2Bn3Bh(g\(nu n2, n3), g2(nu n2, n3))B

ML3 BnxBn2Bn3Bh(gx(n\, n2, n3), g2(n{, n2, n3))B

e 3 BB . . .  B/i(g,(n,, n2, n3), g2(nlt n2, n3))B

T Bh(gi(n i< «2. n3). «2(”|. "2. ”3))B
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The computation copies the input and computes the value of g\ using the newly created copy 
as the arguments. Since the machine G] does not move to the left of its starting position, 
the original input remains unchanged. If n2, ” 3) ‘s undefined, the computation of 
G! continues indefinitely. In this case the entire computation fails to terminate, correctly 
indicating that /i(#i(«i, n 3), g2(nx, n2< ” 3 )) ’s undefined. Upon the termination of Gj, 
the input is copied and G2  is run on the new copy.

If both gi(/ii, rt2, n3) and g2(n 1, n2, n3) are defined, C 2 terminates with the input 
for H on the tape preceded by the original input. The machine H is run computing 
h(g t(nh n2, «3), g2(n j, n2, n3)). When the computation of H terminates, the result is trans
lated to the correct position.

The preceding construction easily generalizes to the composition of functions of any 
number of variables, yielding Theorem 9.4.3.

Theorem 9.4.3

The Turing computable functions are closed under the operation of composition.

Theorem 9.4.3 can be used to show that a function /  is Turing computable without 
explicitly constructing a machine that computes it. If /  can be defined as the composition 
of Turing computable functions then, by Theorem 9.4.3, /  is also Turing computable.

Example 9.4.2

The ^-variable constant functions c*** whose values are given by (/jt..........nk) =  1 are

Turing computable. The function c*** can be defined by

c<‘ > =  s o s o • • • o s oz o p .

1 times

The projection function accepts the ^-variable input and passes the first value to the zero 
function. The composition of i successor functions produces the desired value. Since each 
of the functions in the composition is Turing computable, the function is T\iring 
computable by Theorem 9.4.3. □

Example 9.4.3

The binary function smsq(n, m) =  n2 + m 2 is Turing computable. The sum-of-squares 
function can be written as the composition of functions

smsq = a d d  o (sq o p(2), sq  o p(2)).
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where sq  is defined by sq(n)  =  n2. The function add  is computed by the machine con
structed in Example 9.2.1 and sq  by

> © - CPY, < z> MULT

9.5 Uncomputable Functions

A function is Turing computable only if there is a Turing machine that computes it. The 
existence of number-theoretic functions that are not Turing computable can be demonstrated 
by a simple counting argument. We begin by showing that the set of computable functions 
is countably infinite.

A Turing machine is completely defined by its transition function. The states and tape 
alphabet used in computations of the machine can be extracted from the transitions. Consider 
the machines Mj and M2 defined by

IIB R BIB L

Mr

I IB R BIB L

Both M, and M2 compute the unary constant function c( j*. The two machines differ only in 
the names given to the states and the markers used during the computation. These symbols 
have no effect on the result of a computation and hence the function computed by the 
machine.

Since the names of the states and tape symbols other than B and 1 are immaterial, 
we adopt the following conventions concerning the naming of the components of a Turing 
machine:

i) The set of states is a finite subset of Q0 =  {q, | i >0}.

ii) The input alphabet is {/}.

iii) The tape alphabet is a finite subset of the set r 0 =  [B, I, X,- | i > 0}.

iv) The initial state is q0.

The transitions of a Turing machine have been specified using functional notation; the 
transition defined for state qj and tape symbol x  is represented by S(qt , x )  =  [qj, y , d]. 
This information can also be represented by the quintuple

Bll  L
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[<?,, *. >'. d, </y].

Milcurrent state 

symbol scanned 

symbol to write

direction 

new state

With the preceding naming conventions, a transition of a Turing machine is an element of 
the set T =  Q0 x T0 x r 0 x {L, /?} x Q0. The set T is countable since it is the Cartesian 

product of countable sets.
The transitions of a deterministic Turing machine form a finite subset o f T in which the 

first two components of every element are distinct. There are only a countable number 
of such subsets. It follows that the number of Turing computable functions is at most 
countably infinite. On the other hand, the number of Turing computable functions is at 
least countably infinite since there are countably many constant functions, all of which are 
Turing computable by Example 9.4.2. These observations yield

Theorem 9.5.1

The set of Turing computable number-theoretic functions is countably infinite.

In Section 1.4, the diagonalization technique was used to prove that there are uncount
ably many total unary number-theoretic functions. Combining this with Theorem 9.5.1, we 
obtain Corollary 9.5.2.

Corollary 9.5.2

There is a total unary number-theoretic function that is not Turing computable.

Corollary 9.5.2 vastly understates the relationship between computable and uncom- 
putable functions. The former constitute a countable set and the latter an uncountable set.

9.6 Toward a Programming Language

High-level programming languages are the most commonly employed type of computa
tional system. A program defines a mechanistic and deterministic process, the hallmark of 
algorithmic computation. The intuitive argument that the computation of a program written 
in a programming language and executed on a computer can be simulated by a Turing ma
chine rests in the fact that a machine (computer) instruction simply changes the bits in some 
location of memory. This is precisely the type of action performed by a Turing machine, 
writing O' s and 1' s in memory. Although it may take a large number ofTuring machine tran
sitions to accomplish the task, it is not at all difficult to envision a sequence of transitions 
that will access the correct position and rewrite the memory.
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B v t B v2 B  . . b ^ . b .vm  b  ■ Bv B B B B

input
variables

local
variables

registers and 
work space

home
position

FIGURE 9.1 Turing machine architecture for high-level computation.

In this section we will explore the possibility of using the Turing machine architecture as 
the underlying framework for high-level programming. The development of a programming 
language based on the Turing machine architecture further demonstrates the power of the 
Turing machine model. In describing our assembly language, we use Turing machines and 
macros to define the operations. The objective of this section is not to create a functional 
assembly language, but rather to demonstrate further the universality of the Turing machine 
architecture.

The standard Turing machine provides the computational framework used throughout 
this section. We will design an assembly language TM to bridge the gap between the Turing 
machine architecture and programming languages. The first objective of the assembly 
language is to provide a sequential description of the actions of the Turing machine. The 
“program flow" of a Turing machine is determined by the arcs in the state diagram of the 
machine. The flow of an assembly language program consists of the sequential execution 
of the instructions unless this pattern is specifically altered by an instruction that redirects 
the flow. In assembly language, branch and goto instructions are used to alter sequential 
program flow. The second objective of the assembly language is to provide instructions that 
simplify memory management.

The underlying architecture of the Turing machine used to evaluate an assembly 
language program is pictured in Figure 9.1. The input values are assigned to variables
i>!.......... vk, and .............vn are the local variables used in the program. The values
of the variables are stored sequentially and separated by blanks. The input variables are 
in the standard input position for a Turing machine evaluating a function. A TM program 
begins by declaring the local variables used in the program. Each local variable is initialized 
to 0 at the start of a computation.

When the initialization is complete, the tape head is stationed at the blank separating 
the variables from the remainder of the tape. This will be referred to as the home position. 
Between the evaluation of instructions, the tape head returns to the home position. To the 
right of the home position is the Turing machine version of registers. The first value to 
the right is considered to be in register 1, the second value in register 2, and so on. The 
registers must be assigned sequentially; that is, register i may be written to or read from
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TABLE 9.1 TM Instructions

TM Instruction Interpretation

INIT i>, Initialize local variable u, to 0.

HOME/ Move the tape head to the home position when / variables are allocated.

LOAD vit t Load value of variable u,- into register /.

STOR V, ,  t Store value in register / into location of u,-.

RETURN Vj Erase the variables and leave the value of v,- in the output position.

CLEAR / Erase value in register /.

BRN L, / Branch to instruction labeled L if value in register / is 0.

GOTOL Execute instruction labeled L.

NOP No operation (used in conjunction with GOTO commands).

INC/ Increment the value of register /.

DEC/ Decrement the value of register /.

ZERO / Replace value in register / with 0.

only if registers 1, 2, . . . ,  i — 1 are assigned values. The instructions of the language TM 
are given in Table 9.1.

The tape initialization is accomplished using the INIT and HOME commands. INIT i>, 
reserves the location for local variable u, and initializes the value to 0. Since variables 
are stored sequentially on the tape, local variables must be initialized in order at the 
beginning of a TM program. Upon completion of the initialization of the local variables, the 
HOME instruction moves the tape head to the home position. These instructions are defined 
by

Instruction Definition

INIT v, MR,_,
ZR

ML,-,
HOME/ MR,

where ZR is the macro that writes the value 0 to the immediate right of the tape head position 
(Exercise 6). The initialization phase of a program with one input and two local variables 
would produce the following sequence of Turing machine configurations:
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Instruction Configuration

INIT2 

INIT3 

HOME 3

BiB

BlBOB

BlBQBOB

BlBOBOB

where i is the value of the input to the computation. The position of the tape head is indicated 
by the underscore.

In TM, the LOAD and STOR instructions are used to access and store the values of the 
variables. The objective of these instructions is to make the details of memory management 
transparent to the user. In Turing machines there is no upper bound to the amount of tape that 
may be required to store the value of a variable. The lack of a preassigned limit to the amount 
of tape allotted to each variable complicates the memory management of a Turing machine. 
This omission, however, is intentional, allowing maximum flexibility in Turing machine 
computations. Assigning a fixed amount of memory to a variable, the standard approach 
used by conventional compilers, causes an overflow error when the memory required to 
store a value exceeds the preassigned allocation.

The STOR command takes the value from register / and stores it in the specified variable 
location. The command may be used only when t is the largest register that has an assigned 
value. In storing the value of register f in  a variable v,, the proper spacing is maintained 
for all the variables. The Turing machine implementation of the store command utilizes 
the macro INT to move the value in the register to the proper position. The macro INT is 
assumed to stay within the tape segment E x B y B  (Exercise 6).

The STOR command is defined by

Instruction Definition In s tru c ts  Definition

STOR vh 1
STOR vh t MR,_2 

INT

MR
ER,

MR,
ER,

M L,_,
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where t >  1 and n is the total number of input and local variables. The exponents n — i +  1 
and n — /' indicate repetition of the sequence of macros. After the value of register t is stored, 

the register is erased.
The configurations of a Turing machine obtained by the execution of the instruction 

STOR i>2 , 1 are traced to show the role of the macros in TM memory management. Prior to 
the execution of the instruction, the tape head is at the home position.

Machine Configuration

BJT^Bv^Bv^B? B

ML, BvlBv^By^BrB

INT BWiBvlBr Bv^B

ML, BVjBy^BrBvjB

INT Bv\BrBv2Bv}B

MR, BvlBrByiBv^B

INT Bv]BrBv^Bv^B

MR, B~v\Br BvlBy^B

E, Bv]B7BU}B^B

The Turing machine implementation of the LOAD instruction simply copies the value 
of variable d,- to the specified register.

Instruction Definition

LOAD V,-, t  ML„_,+)

CPYi n_,+i+,

As previously mentioned, to load a value into register t requires registers 1, 2 , .  . . , t — 1 
to be filled. Thus the Turing machine must be in configuration

fiv, B v2 B . . .  Bvk B vm  B . . . B v n B7, B72 B . . .  B r B

for the instruction LOAD v,-, t to be executed.
The instructions RETURN and CLEAR reconfigure the tape to return the result of 

the computation. When the instruction RETURN t>,- is run with the tape head in the home 
position and no registers allocated, the tape is rewritten placing the value of u, in the Turing 
machine output position. CLEAR simply erases the value in the register.
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Instruction Definition

RETURN Vi M L„

E,_,

T

M R,

FR

En-i+l
FL

C L E A R / M R ,.,

E,
M L,_ ,

Arithmetic operations alter the values in the registers. INC, DEC, and ZERO are defined 
by the machines computing the successor, predecessor, and zero functions. Additional 
arithmetic operations may be defined for our assembly language by creating a Turing 
machine that computes the operation. For example, an assembly language instruction ADD 
could be defined using the Turing machine implementation of addition given by the machine 
A in Example 9.2.1. The resulting instruction ADD would add the values in registers 1 and
2 and store the result in register 1. While we could greatly increase the number of assembly 
language instructions by adding additional arithmetic operations, INC, DEC, and ZERO 
will be sufficient for purposes of developing our language.

The execution of assembly language instructions consists of the sequential operation 
of the Turing machines and macros that define each of the instructions. The BRN and 
GOTO instructions interrupt the sequential evaluation by explicitly specifying the next 
instruction to be executed. GOTO L indicates that the instruction labeled L is the next 
to be executed. BRN L,t tests register t before indicating the subsequent instruction. If the 
register is nonzero, the instruction immediately following the branch is executed. Otherwise, 
the statement labeled by L is executed. The Turing machine implementation of the branch 
is illustrated by

BRN L,1 

“instruction 1”

L “instruction 2”
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The value is tested, the register erased, and the machines that define the appropriate 

instruction are then executed.

Example 9.6.1

The TM program with one input variable and two local variables defined below computes 
the function f ( n )  =  2n +  1. The input variable is u, and the computation uses local variables 

i>2 and 113.

INIT v2 
INIT v,

HOME 3 

LOAD V],l 

STOR v2, 1 

LI LOADv2,l
BRNL2.1 

LOAD U|,l 

INC
STOR vt, 1 

LOAD u2, 1 

DEC

STOR v2, 1 
GOTO LI 

L2 LOAD I/,, 1

INC

STOR u,, 1 
RETURN v,

The variable v2 is used as a counter, which is decremented each time through the loop 
defined by the label LI and the GOTO instruction. In each iteration, the value of Vj is 
incremented. The loop is exited after rt iterations, where n is the input. Upon exiting the 
loop, the value is incremented again and the result 2v j +  1 i\Ie ft on the tape. □

The objective of constructing the TM assembly language is to show that instructions of 
Turing machines, like those of conventional machines, can be formulated as commands in a 
higher-level language. Utilizing the standard approach to programming language definition 
and compilation, the commands of a high-level language may be defined by a sequence of 
the assembly language instructions. This would bring Turing machine computations even 
closer in form to the algorithmic systems most familiar to many of us.
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Exercises

1. Construct Turing machines with input alphabet {a, b} that compute the specified func
tions. The symbols u and v represent arbitrary strings over {a , b}*.

a) / ( “ ) =  oaa

, .  - [ a  if length(u)  is even
b)/<“l = U
c) f ( u )  =  u R

d) y (Wi J,) _  ( « if length(u) > length(v)
|  v otherwise

2. Let M =  (Q, £ ,  T, S, q0, q f )  be a Turing machine that computes the partial char
acteristic function of the language L. Use M to build a standard Turing machine that 
accepts L.

3. Let M =  (Q, £ ,  T, <5, q0, F) be a standard Turing machine that accepts a language 
L. Construct a machine M' that computes the partial characteristic function of L. Recall 
that the tape of M' must have the form qfBO B  or q f B I B  upon the completion of a 

computation of x l -

4. Let L be a language over E and let

be the characteristic function of L.

a) If Xl *s Turing computable, prove that L is recursive.

b) If L is recursive, prove that there is a Turing machine that computes xl-

5. Construct Turing machines that compute the following number-theoretic functions and 
relations. Do not use macros in the design of these machines.

a) / ( « )  =  2n +  3

b) half(n)  =  [n/2J where |x j  is the greatest integer less than or equal to x

c) / ( n i ,  n2, n3) =  n, +  n2 + n}

1 if w e  L 
0 otherwise

d) even(n)  =
1 if n is even
0 otherwise

e) eq (rt, m) =
1 if n =  m
0 otherwise

1 if rt <  m
0 otherwise
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. [ n — m if n > m2) n — m =  { „ , — .
( 0 otherwise

6. Construct Turing machines that perform the actions specified by the following macros. 
The computation should not leave the segment of the tape specified in the input 

configuration.

a) ZR; input BBB, output BOB

b) FL; input BnB' B^ output BnB' B

c) E2; input B n B m B ,  output BB”+m+3B

d) T; input B B 'nB , output B n B 'B

e) BRN; input BnB,  output BnB

f) INT; input B n B m B ,  output B m B n B

7. Use the macros and machines constructed in Sections 9.2 through 9.4 to design ma
chines that compute the following functions:

a) f ( n )  =  2« +  3

b) / ( n )  =  n2 +  2/i +  2

c) / ( / i i ,  n2, /J3) =  «i +  n2 + «3

d) f ( n , m ) = m 3

e) f ( n l, n 2, n 3) = n 2 + 2n3

8. Design machines that compute the following relations. You may use the macros and 
machines constructed in Sections 9.2 through 9.4 and the machines constructed in 
Exercise 5.

1 if n > m

>) g , <" - ” ) = | 0  otherwise

b) pers („) — j  * if /i is a perfect square
J 0 otherwise

c) divides(n, m) =  I 1 if " > « , / « >  0, and m divides n
I 0 otherwise

9. Trace the actions of the machine MULT for computations with input

a) n =  0, m =  4

b) n =  1, m =  0

c) n =  2, m =  2.

10. Describe the mapping defined by each of the following composite functions:

a) add o (mult  o (id, id), add  o (id, id))

b) p ' f  o ( s o / / f  , e o p ® )

c) mult o ( c ^ , add  o , s o p^ ))

d) mult  o (mult  o (p'J1, p 'J ') , p'J*).
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11. Give examples of total unary number-theoretic functions that satisfy the following 
conditions:

a) g is not id and h is not id  but g o h =  id.

b) g is not a constant function and h is not a constant function but g o h is a constant 
function.

12. Give examples of unary number-theoretic functions that satisfy the following condi
tions:

a) g is not one-to-one, h is not total, h o g is total.

b) gi=-e, h e, h o g =  e, where e is the empty function.

c) g £  id , h ^ i d ,  h o  g =  id,  where id  is the identity function.

d) g is total, h is not one-to-one, h o g  — id.

* 13. Let F be a Turing machine that computes a total unary number-theoretic function
/ .  Design a machine that returns the first natural number n such that f ( n )  = 0 .  A 
computation should continue indefinitely if no such n exists. What will happen if the 
function computed by F is not total?

14. Let F be a Turing machine that computes a total unary number-theoretic function / .  
Design a machine that computes the function

n

8(n) = ]T /(f)-
/=o

15. Let F and G be Turing machines that compute total unary number-theoretic functions 
/  and g, respectively. Design a Turing machine that computes the function

n
h(n) = Y ^ e q ( f ( i ) ,  g(i)). 

i= 0

That is, h(n)  is the number of values in the range 0 to n for which the functions /  and 
g assume the same value.

16. A unary relation R over N is Turing computable if its characteristic function is com
putable. Prove that every computable unary relation over N defines a recursive lan
guage. Hint: Construct a machine that accepts R from the machine that computes its 
characteristic function.

* 17. Let R C {7j+ be a recursive language. Prove that R defines a computable unary relation
over N.

18. Prove that there are unary relations over N that are not Turing computable.

19. Let F be the set consisting of all total unary number-theoretic functions that satisfy 
/ ( / )  =  i for every even natural number Prove that there are functions in F that are 
not Turing computable.
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20. Let U|, v2, 1)3 , u4  be a listing of the variables used in a TM program and assume register
1 contains a value. Trace the action of the instruction STOR u j.l. To trace the actions, 
use the technique in Example 9.3.2.

21. Give a TM program that computes the function / ( u j ,  v2) =  t>i — v2.

Bibliographic Notes

The Turing machine assembly language provides an architecture that resembles another 
family of abstract computing devices known as random access machines [Cook and Reck- 
how, 1973]. Random access machines consist of an infinite number of memory locations 
and a finite number of registers, each of which is capable of storing a single integer. The 
instructions of a random access machine manipulate the registers and memory and perform 
arithmetic operations. These machines provide an abstraction of the standard von Neumann 
computer architecture. An introduction to random access machines and their equivalence 
to Turing machines can be found in Aho, Hopcroft, and Ullman [1974].



CHAPTER 1 0

%

The Chomsky Hierarchy

In Chapter 3, regular and context-free grammars were introduced as rule-based systems 
for generating the strings of language. A rule defines a string transformation, and a sen
tence of the language is obtained by a sequence of permissible transformations. The regular 
and context-free grammars are subsets of the more general class of phrase-structure gram
mars. Phrase-structure grammars were proposed as syntactic models of natural language by 
Noam Chomksy. In this chapter we will consider two additional families of phrase-structure 
grammars, unrestricted grammars and context-sensitive grammars. The four families of 
grammars, regular, context-free, context-sensitive, and unrestricted, make up the Chom
sky hierarchy of phrase-structure grammars, with each successive family in the hierarchy 
permitting additional flexibility in the definition of a rule.

Automata were designed to mechanically recognize regular and context-free languages; 
deterministic finite automata accept the languages generated by regular grammars and push
down automata accept the languages generated by context-free grammars. The relationship 
between grammatical generation and mechanical acceptance is extended to the new families 
of grammars. Turing machines are shown to accept the languages generated by unrestricted 
grammars. A class of machines obtained by limiting the memory available to a Turing 
machine accepts the languages generated by context-sensitive grammars.

10.1 Unrestricted Grammars

Phrase-structure grammars were designed to provide formal models of the syntax of natural 
language. The name, phrase-structure, is based on the proposition that the sentences of

325
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language may have several different syntactic patterns. The sentences themselves are made 
up of phrases: noun phrases, verb phrases, and the like, that are arranged as specified by one 
of the sentence patterns. The rules of the grammar define the structure of both the sentences 

and the phrases. ,
The components of a phrase-structure grammar are the same as those o f the regular 

and context-free grammars studied in Chapter 3. A phrase-structure grammar consists of a 
finite set V of variables, an alphabet E , a start variable, and a set of rules. A rule has the 
form u —* v, where u and v can be any combination of variables and terminals, and defines 
a permissible string transformation. The application of a rule to a string z is a two-step 

process that consists of

i) matching the left-hand side of the rule to a substring of z, and

ii) replacing the left-hand side with the right-hand side.

The application of the rule u —> v to the string xuy ,  written x u y  => xvy ,  produces the string 

xvy.  A string q is derivable from p, p=> q, if there is a sequence of rule applications that 
transforms p t o q .  The language of G, denoted L(G), is the set of terminal strings derivable 

from the start symbol S. Symbolically, L(G) =  {u; G E* | S => u;}.
A family of grammars is defined by the restrictions placed on the form of the rules. A 

context-free grammar is a phrase-structure grammar in which the left-hand side of every rule 
is a single variable. The right-hand side can be any combination of variables and terminals. 
Each rule of a regular grammar is required to have one of the following forms:

i) A -> aB,

ii) A —►  a, or

iii) A k,

where A, B € V, and a e  E.
The unrestricted grammars are the largest class of phrase-structure grammars. There 

are no constraints on a rule other than requiring that the left-hand side must not be null.

Definition 10.1.1

An unrestricted gram m ar is a quadruple (V, E , P, S), where V is a finite set of variables; 
E (the alphabet) is a finite set of terminal symbols; P is a set of rules; and 5 is a distin
guished element of V. A production of an unrestricted grammar has the form u -> v, where 
u e  (V U E )+ and u e ( V U  £)*. The sets V and E are assumed to be disjoint.

Two examples are given that illustrate the generative power of unrestricted grammars. 
Example 10.1.1 shows that the language {a'b'c1 \ i > 0), which we know is not derivable by 
any context-free grammar, can be generated by an unrestricted grammar with six rules. The 
second example shows how unrestricted rules can be used to generate copies of a string.
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Example 10.1.1

The unrestricted grammar

V =  {S, A , C )  S -*■ aAbc \ X 

£  =  [a, b , c } A —*■ aAbC  \ X 

Cb -*■ bC  

Cc —* cc

with start symbol S generates the language {a'b'c1 1i >0}. The string a 'b 'c ' ,  i >  0, is 
generated by a derivation that begins

S  = >  aAbc

a*A(bC y~xbc

= = ► a ' ( b C y ~ lbc,

using the rule A —►  a A B C  to generate the i leading a ’s. The rule Cb —*■ bC  allows the 
final C to pass through the b's that separate it from the c ’s at the end of the string. Upon 
reaching the leftmost c, the variable C is replaced with c. This process is repeated until each 
occurrence of the variable C is moved to the right of all the b's and transformed into a c.

a

Example 10.1.2

The unrestricted grammar with terminal alphabet [a, b, [, ]} defined by the productions

S - m n a l l W M m

n - »  a T [ A \ b T [ B  \ [

Aa  —*• aA  

Ab —> bA  

Ba —*• aB  

Bb  —>• bB

A ]—*, a]

B ]-> b]

generates the language {«[«] | u e  {a, Z>}*}.
The addition of an a or b to the left of the variable T  is accompanied by the generation 

of the variable A or B after T[. Using the rules that interchange the position o f a variable and 
a terminal, the derivation progresses by passing the variable through the copy of the string 
enclosed in the brackets. When the variable is adjacent to the symbol ], the appropriate 
terminal is added to the second string. The entire process may be repeated to generate
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additional terminal symbols or be terminated by the application of the rule T[—* [. The 

derivation

S=*aT[a]

=> aaT[Aa]

=> aaT [aA ]

=> aaT[aa]

=> aabT [B aa ]

^  aabT[aBa]

=>• aabT[aaB]

=> aabT[aab]

=> aab[aab]

exhibits the roles of the variables in a derivation. □

In the grammars in the two preceding examples, the left-hand side of each rule contained 
a variable. This is not required by the definition of unrestricted grammar. However, the 
imposition of the restriction that the left-hand side of a rule contain a variable does not 
reduce the set of languages that can be generated (Exercise 3).

Throughout our study of formal languages, we have demonstrated a correspondence 
between the generation of a language by a grammar and its acceptance by a finite-state 
machine. Regular languages are accepted by finite automata and context-free languages 
by pushdown automata. Unrestricted grammars provide the most flexible type of string 
transformation; there are no conditions on the matching substring, nor on the replacement. It 
would seem reasonable that generation by a unrestricted grammar corresponds to acceptance 
by the most powerful type of abstract machine. This is indeed the case. The next two 
theorems show that a language is generated by an unrestricted grammar if, and only if, 
it is accepted by a Turing machine.

Theorem 10.1.2

LetG  =  (V, E , P, S) be an unrestricted grammar. Then L(G) is a recursively enumerable 
language.

Proof. We will sketch the design of a three-tape nondeterministic Turing machine M that 
accepts L(G). We will design M so that its computations simulate derivations o f the grammar 
G. Tape 1 holds an input string p  from £*. A representation of the rules of G  is written on 
tape 2. A rule u -> v is represented by the string u#v,  where # is a tape symbol reserved for 
this purpose. Rules are separated by two consecutive # ’s. The derivations of G are simulated 
on tape 3.

A computation of the machine M that accepts L(G) consists of the following actions:

1. S is written on position one of tape 3.

2. The rules of G are written on tape 2.
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3. A rule u#v  is chosen from tape 2.

4. An instance of the string u is chosen on tape 3, if one exists. Otherwise, the computation 

halts in a rejecting state.

5. The string u is replaced by v on tape 3.

6. If the strings on tape 3 and tape 1 match, the computation halts in an accepting state.

7. The computation continues with step 3 to simulate another rule application.

Since the length of u and v may differ, the simulation of a rule application x u y  => x v y  may 
require shifting the position of the string y.

For any string p  6 L(G), there is a sequence of rule applications that derives p. This 
derivation will be examined by one of the nondeterministic computations of the machine M, 
and M will accept p. Conversely, the actions of M on tape 3 generate precisely the strings 
derivable from S  in G. The only strings accepted by M are terminal strings in L(G). Thus, 
L(M) =  L(G). ■

Example 10.1.3

The language L =  {a'b 'c ' 11 >  0} is generated by the rules

S —*■ aAbc  | k  

A -*• aAbC  | A.

Cb -*■ bC  

Cc -*■ cc.

Computations of the machine that accepts L simulate derivations of the grammar. The rules 
of the grammar are represented on tape 2 by

BS#aAfcc##S###A#aAfcC##A###C/>#Z>C##Cc#ccB.

The rule S  —►  k  is represented by the string S###. The first # separates the left-hand side 
of the rule from the right-hand side. The right-hand side of the rule, the null string in this 
case, is followed by the string ##. □

Theorem 10.1.3

Let L be a recursively enumerable language. Then there is an unrestricted grammar G with 
L(G) =  L.

Proof. Since L is recursively enumerable, it is accepted by a deterministic Turing machine 
M =  (Q, £ ,  T, 8, <7o> F). An unrestricted grammarG =  (V, £ ,  P, 5) is designed whose 
derivations simulate the computations of M. Using the representation of a Turing machine 
configuration as a string, the effect of a Turing machine transition 8(qh x)  =  [qj, y ,  /?] 
on the configuration uq,xvB  can be represented by the string transformation u q ,xvB  => 
uyqjvB.
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The derivation of a terminal string in G consists of three distinct subderivations:

i) the generation of a string u[q0Bu] where u € E*,

ii) the simulation of a computation of M on the string [q0Bu], and

iii) if M accepts u, the removal of the simulation substring.

The grammar G contains a variable A,- for each terminal symbol a/ e  E . These vari
ables, along with 5, T,  [, and ], are used in the generation of the string u[qaB u \  The 
simulation of a computation uses variables corresponding to the states of M. The variables 
E R and E L are used in the third phase of a derivation. The terminal symbols o f the grammar 
are the elements of the input alphabet of M. Thus the alphabets of G are

£  =  {«1. <*2......... an)

V =  {5, T, E r , E l , [, ], A,, A2, . . . ,  A„} U Q.

The rules for each of the three parts of a derivation are given separately. A derivation 
begins by generating u[q0Bu], where u is an arbitrary string in E*. The strategy used for 
generating strings of this form was presented in Example 10.1.2.

1. S —►  a ; r [a ,]  | [<7qS] for 1 < i < n

2. r[-»- a,T[A, | [q0B fo r i < i  < n

3. Ajdj —*■ cijAj for 1 <  i, j  <  n

4. A,] -*■ a,-] for 1 < i <  n

The computation of the Turing machine with input u is simulated on the string [q0Bu], 
The rules are obtained by rewriting the transitions of M as string transformations.

5. qtx y  —> zq jy  whenever S(qh  x)  =  [qj, z, /?] and y  e  T

6. qtx] —► zqjB]  whenever <5(qt , x) =  [q j ,z ,  /?]

7. yqjX -*■ q jy z  whenever 5( ^ , x)  =  [qj, z, L] and y  € T

If the computation of M halts in an accepting state, the derivation erases the string 
within the brackets. The variable E R erases the string to the right of the halting position of 
the tape head. Upon reaching the endmarker ], the variable E L (erase left) is generated.

8. qtx  - ►  E R whenever 8(qh x)  is undefined and qt e  F

9. E rx - ►  E r for x  €  T

10. £/?]->• e l

11. x E l -+ E l for x  e  f

12. [El ^ X

The derivation that begins by generating u[q0Bu] terminates with u whenever u e  L(M). I f  
u L(M), the brackets enclosing the simulation of the computation are never erased and 
the derivation does not produce a terminal string. ■
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Example 10.1.4

The construction of a grammar that generates the language accepted by a Turing machine 

is demonstrated using the machine M

a/aR
B/BR

that accepts a*b(a U b)*. When the first b is encountered, M halts and accepts in state q {. 
The variables and terminals of G are 

£  =  [a, b]

V =  {5, T, E r , E l , [, ], A, X } U {<?(,, <7il- 

The rules are given in three sets.

Input-generating rules:

5 aT[d\  | bT[b] \ [q0B ]

T[~* aT [A  | bT [X  \ [q0B 

Aa —*■ aA  

Ab -*■ bA  

A] —> a]

X o  —►  o X  

X b ^ - b X  

X) -+b]

Simulation rules:

Transition Rules

% o . B) =  [?l. B, R] 9o Ba -*■ Bq<fl

q0Bb -*• B q xb

9o B B -»• B q tB

9o B] -*■ Bq,B]

i(9 |. a) ■■= [q\ ,a ,  /f] 9i aa —*■ aq^a

q tab - ►  a q xb

q\aB -*■ aq\B

9 i“ l -*• a q xB\

«(?!. B ) =  [9 i. B,  /?] q ,B a -»  B<7,a

9 i Bb -*•
q , B B -*• Bq^B

9 i B] -*  B q tB]
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Erasure rules:

E r

E rO - ►  E r a E L ->■ E l

E Rb  -*  E r b E L ->  E l

E r B -*  E r b e l ->  E l

E r ]^> E L [ El ^ \

The computation that accepts the string a b  in M and the corresponding derivation in 

the grammar G that accepts ab  are

q0BabB S = > a n a ]

Bq\abB =>abT[Xa]

Baq\bB =►  ab[q0BXa]

=>• ab[q0BaX]

=►  ab[q0B ab]

=►  ab[Bqtab]

=> ab[Baq\b)

=►  a b[B aE R]

=> ab[BaEL

^  a b [B E i

=>ab[EL

=> ab.

Properties of unrestricted grammars can be used to establish closure results for recur
sively enumerable languages. The proofs, similar to those presented in Theorem 7.5.1 for 
context-free languages, are left as exercises.

Theorem 10.1.4

The set of recursively enumerable languages is closed under union, concatenation, and 
Kleene star.

10.2 Context-Sensitive Grammars

The context-sensitive grammars represent an intermediate step between the context-free and 
the unrestricted grammars. No restrictions are placed on the left-hand side o f a production, 
but the length of the right-hand side is required to be at least that of the left.



10.2 C on te x t -S e n s i t iv e  G r a m m a r s  333

Definition 10.2.1

A phrase-structure grammar G =  (V, 2 ,  P, 5) is called context-sensitive if each rule has 
the form u -*■ v, where u € (V U £ ) + , v € (V U £ )+ , and length(u) < length(v).

A rule that satisfies the conditions of Definition 10.2.1 is called monotonic. With each 
application of a monotonic rule, the length of the derived string either remains the same or 
increases. The language generated by a context-sensitive grammar is called, not surprisingly, 

a context-sensitive language.
Context-sensitive grammars were originally defined as phrase-structure grammars in 

which each rule has the form uA v  —» uwv,  where A € V, w € (V U E )+ , and u, v € 
( VUE) * .  The preceding rule indicates that the variable A can be replaced by w  only when it 
appears in the context of being preceded by u and followed by u. Clearly, every rule defined 
in this manner is monotonic. On the other hand, a transformation defined by a monotonic 
rule can be generated by a set of rules of the form u Av  —> uwv  (Exercises 10 and 11).

The monotonic property of the rules guarantees that the null string is not an element of a 
context-sensitive language. Removing the ruIeS —► X from the grammar in Example 10.1.1, 
we obtain the unrestricted grammar

S —>• aAbc  

A -»  aAbC  | A 

Cb -*  bC  

Cc -*■ cc

that generates the language [a'b'c1 11 >0}. The X-rule violates the monotonicity property 
of context-sensitive rules. Replacing the 5 and A rules with

S -*■ aAbc  | abc 

A —> a A b C |a b C

produces an equivalent context-sensitive grammar.
A nondeterministic Turing machine, similar to the machine in Theorem 10.1.2, is 

designed to accept a context-sensitive language. The noncontracting nature of the rules 
permits the length of the input string to be used to terminate the simulation of an unsuccessful 
derivation. When the length of the derived string surpasses that of the input, the computation 
halts and rejects the string.

Theorem 10.2.2

Every context-sensitive language is recursive.

Proof. Following the approach developed in Theorem 10.1.2, derivations of the context- 
sensitive grammar are simulated on a three-tape nondeterministic Turing machine M. The 
entire derivation, rather than just the result, is recorded on tape 3. When a rule u -*■ v is
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applied to the string xu y  on tape 3, the string x v y  is written on the tape following xuy#.  
The symbol # is used to separate the derived strings.

A computation of M with input string p  performs the following sequence of actions:

1. 5# is written beginning at position one of tape 3.

2. The rules of G are written on tape 2.

3. A rule u#v  is chosen from tape 2.

4. Let q#  be the most recent string written on tape 3:

a) An instance of the string u in q is chosen, if one exists. In this case, q  can be written 
xuy.

b) Otherwise, the computation halts in a nonaccepting state.

5. x v y # is written on tape 3 immediately following q#.

6. a) If x v y  = p,  the computation halts in an accepting state.

b) If x v y  occurs at another position on tape 3, the computation halts in a nonaccepting 
state.

c) If length(xvy) > length(p), the computation halts in a nonaccepting state.

7. The computation continues with step 3 to simulate another rule application.

There are only a finite number of strings in ( V U E ) *  with length less than or equal 
to length(p). This implies that every derivation eventually halts, enters a cycle, or derives 
a string of length greater than length(p). A computation halts at step 4 when the rule that 

has been selected cannot be applied to the current string. Cyclic derivations, S  =̂> w w, 
are terminated in step 6(b). The length bound is used in step 6(c) to terminate all other 
unsuccessful derivations.

Every string in L(G) is generated by a noncyclic derivation. The simulation of such 
a derivation causes M to accept the string. Since every computation of M halts, L(G) is 
recursive (Exercise 8.23). ■

10.3 Linear-Bounded Automata

We have examined several modifications of the standard Turing machine that do not alter 
the set of languages accepted by the machines. Restricting the amount of the tape decreases 
the capabilities of a Turing machine computation. A linear-bounded automaton is a Turing 
machine in which the amount of available tape is determined by the length of the input 
string. The input alphabet contains two symbols, ( and ), that designate the left and right 
boundaries of the tape.

Definition 10.3.1

A linear-bounded autom aton (LBA) is a structure M =  (Q, E , T, S, q0, (, ), F), where 
Q, E , T, 8, q0, and F are the same as for a nondeterministic Turing machine. The symbols 
( an d ) are distinguished elements of E.
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The initial configuration of a computation is qo(w), requiring length(w) -I- 2 tape 
positions. The endmarkers ( and ) are written on the tape but not considered part of the 
input. A computation remains within the boundaries specified by ( and ). The endmarkers 
may be read by the machine but cannot be erased. Transitions scanning { must designate 
a move to the right and those reading > a move to the left. A string w € ( £  — {(,)})* is 
accepted by an LBA if a computation with input (w) halts in an accepting state.

We will show that every context-sensitive language is accepted by a linear-bounded 
automaton. An LBA is constructed to simulate the derivations of the context-sensitive 
grammar. The Turing machine constructed to simulate the derivations of an unrestricted 
grammar begins by writing the rules of the grammar on one of the tapes. The restriction on 
the amount of tape available to an LBA prohibits this approach. Instead, states and transitions 
of the LBA are used to encode the rules.

The diagram in Figure 10.1 shows how transitions can simulate the application of the 
rule Sa —►  a AS.  The application of the rule generates a string transformation uSav  => 
uaASv.  The first two transitions in the diagram verify that the string on the tape beginning 
at the position of the tape head matches Sa. Before Sa is replaced with a AS,  the string i; is 
traversed to determine whether the derived string fits on the segment of the tape available 
to the computation. If the > is read, the computation terminates. Otherwise, the string v is 
shifted one position to the right and Sa is replaced by aAS.

B/BL
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Theorem 10.3.2

Let L be a context-sensitive language. Then there is a linear-bounded automaton M with 

L(M) =  L.

Proof. Since L is a context-sensitive language, L =  L(G) for some context-sensitive 
grammar G =  (V, £ ,  P, S). An LBA M with a two-track tape is constructed to simulate 
the derivations of G. The first track contains the input, including the endmarkers. The second 
track holds the string generated by the simulated derivation.

Each rule of G is encoded in a submachine of M. A computation of M with input (p) 
consists of the following sequence of actions:

1. S is written on track 2 in position one.

2. The tape head is moved into a position in which it scans a symbol of the string on track 
2.

3. A rule u ->■ u is nondeterministically selected, and the computation attempts to apply 
the rule.

4. a) If a substring on track 2 beginning at the position of the tape head does not match
u, the computation halts in a nonaccepting state.

b) If the tape head is scanning u but the string obtained by replacing u by v is greater 
than length(p), then the computation halts in a nonaccepting state.

c) Otherwise, u is replaced by v on track 2.

5. If track 2 contains the string p, the computation halts in an accepting state.

6. The computation continues with step 2 to simulate another rule application.

The machine M has been defined to accept the language L. Every string in L is generated 
by a derivation of G, and the simulation of the derivation causes M to accept the string. 
Thus, L C L(M). Conversely, a computation of M with input (p) that halts in an accepting 
state consists of a sequence of string transformations generated by steps 2 and 3. These 
transformations define a derivation of p  in G and L(M) C L . ■

To complete the characterization of context-sensitive languages as the set of languages 
accepted by linear-bounded automata, we show that any language accepted by such an 
automaton is generated by a context-sensitive grammar. The rules of the grammar are 
constructed directly from the transitions of the automaton.

Theorem 10.3.3

Let L be a language accepted by a linear-bounded automaton. Then L — {A.} is a context- 
sensitive language.

Proof. Let M =  (Q, E M, F, 5, <?0, (, ), F) be an LBA that accepts L. A context- 
sensitive grammar G is designed to generate L(M). Employing the approach presented 
in Theorem 10.1.3, a computation of M that accepts the input string p  is simulated by a 
derivation of p  in G. The techniques used to construct an unrestricted grammar that simulates
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a Turing machine computation cannot be employed since the rules that erase the simulation 
do not satisfy the monotonicity restrictions of a context-sensitive grammar. The inability 
to erase symbols in the derivation of a context-sensitive grammar restricts the length of 
a derived string to that of the input. The simulation is accomplished by using composite 

objects as variables.
The terminal alphabet of G is obtained from the input alphabet of M by deleting the 

endmarkers. Ordered pairs are used as variables. The first component of an ordered pair is 
a terminal symbol. The second is a string consisting of a combination of a tape symbol and 
possibly a state and endmarker(s).

E g =  s m - ( ( ,  >} =  {«,, «2.........

V =  {5, A,  [a,, x], [a,, (x], [a,-, x>], [a,, <x>], [ah qkx], [«,, ?*{x],

[a,, (qkx], [a,, qkx)], [a,-, xqk)], [a,, <?*(x>], [a,-, (qkx)], [a,, (x ^ )]) ,

where a, e  2 G, x e  T, and qk € Q.
The S and A rules generate ordered pairs whose components represent the input string 

and the initial configuration of a computation of M.

1. S —►  [a,-, q0(ai]A

-*  [a,-. <?o(«;}]
for every a, €

2. A —► [a;, a,]A

-*■ [a/. «i>]
for every a, e  Eg

Derivations using the S and A rules generate sequences of ordered pairs of the form 

[Of. ?o<«/>]• or

K ’ 4o(«,,] [«i2. ah ] . . .  [a,n, a,n>].

The string obtained by concatenating the elements in the first components of the ordered 
pairs, a ^ a , , . . .  ain, represents the input string to a computation of M. The second compo
nents produce qo(,a^ai2 . . .  a^),  the initial configuration of the LBA.

The rules that simulate a computation are obtained by rewriting the transitions of M as 
transformations that alter the second components of the ordered pairs. Note that the second 
components do not produce the string q0( ); the computation with the null string as input is 
not simulated by the grammar. The techniques presented in Theorem 10.1.3 can be modified 
to produce the rules needed to simulate the computations of M. The details are left as an 
exercise.

Upon the completion of a successful computation, the derivation must generate the 
original input string. When an accepting configuration is generated, the variable with the 
accepting state in the second component of the ordered pair is transformed into the terminal 
symbol contained in the first component.
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3. [a,-, </*<*]-> a,
[a,, qk{x)]-> a(
whenever &(qk, <) =  0 and qk G F 

[af, *<?*}]-»■ a,

whenever 5 (<7*, )) =  0 and ^  e  F

K ,  <7*x] -+ a,
[a,-, <?**}] -> «,
[a, , (?**] - ►  a,

[«i> -»■ «.
whenever 8(qk, x)  =  0 and qk G F

The derivation is completed by transforming the remaining variables to the terminal 
contained in the first component.

4. [a;, u]aj - ►  a ,a , " 
a ; [a,, u] -y  flyfl,-
for every fly G E q and [a,-, «] G V ■

10.4 The Chomsky Hierarchy

Chomsky numbered the four families of grammars (and languages) that make up the 
hierarchy. Unrestricted, context-sensitive, context-free, and regular grammars are referred 
to as type 0, type 1, type 2, and type 3 grammars, respectively. The restrictions placed on 
the rules increase with the number of the grammar. The nesting of the families of grammars 
of the Chomsky hierarchy induces a nesting of the corresponding languages. Every context- 
free language containing the null string is generated by a context-free grammar in which 
S -*■ X is the only X-rule (Theorem 4.2.3). Removing this single A.-rule produces a context- 
sensitive grammar that generates L — {A.}. Thus, the language L — {X} is context-sensitive 
whenever L is context-free. Ignoring the complications presented by the null string in 
context-sensitive languages, every type i language is also type (i — 1).

The preceding inclusions are proper. The set {a'b ' | i > 0} is context-free but not 
regular (Theorem 6.5.1). Similarly, {a'b 'c1 | i >  0} is context-sensitive but not context- 
free (Example 7.4.1). In Chapter 11, the language of the Halting Problem is shown to 
be recursively enumerable but not recursive. Combining this result with Theorem 10.2.2 
establishes the proper inclusion of context-sensitive languages in the set of recursively 
enumerable languages.

Each class of languages in the Chomsky hierarchy has been characterized as the lan
guages generated by a family of grammars and accepted by a type of machine. The rela
tionships developed between generation and recognition are summarized in the following 
table.
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Grammars Languages Accepting Machines

Type 0 grammars, 
phrase-structure grammars, 
unrestricted grammars

Recursively enumerable Turing machine, 
nondeterministic 
Turing machine

Type 1 grammars, 
context-sensitive grammars,

Context-sensitive Linear-bounded
automata

Type 2 grammars, 
context-free grammars

Context-free Pushdown automata

Type 3 grammars, 
regular grammars, 
left-linear grammars, 
right-linear grammars

Regular Deterministic finite 
automata,
nondeterministic finite 
automata

Exercises

1. Design unrestricted grammars to generate the following languages:

a) [a 'bia 'bi \ i, j  >  0}

b) {a'fc'c'd1 | i > 0}

c) {w w w  | w €  [a, b}*}

2. Prove that every terminal string generated by the grammar

has the form a 'b’c1 for some i >  0.

* 3. Prove that every recursively enumerable language is generated by a grammar in which 
each rule has the form u v where u e  V+ and v e  (V U £)*.

4. Prove that the recursively enumerable languages are closed under the following oper
ations:

a) union

b) intersection

c) concatenation

d) Kleene star

e) homomorphic images

S  -»  aAbc  | k 

A —*■ aAbC  | X 

Cb —y bC 

Cc -*■ cc
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5. Let M be the Turing machine

a/aR

a) Give a regular expression for L(M).

b) Using the techniques from Theorem 10.1.3, give the rules of an unrestricted gram
mar G that accepts L(M).

c) Trace the computation of M when run with input bab  and give the corresponding 
derivation in G.

6. Let G be the context-sensitive grammar

G: S - * S B A \ a  

BA  -> AB  

aA  -* aaB  

B ^ - b .

a) Give a derivation of aabb.

b) What is L(G)?

c) Construct a context-free grammar that generates L(G).

7. Let L be the language [a'b2‘a‘ \ i >0}.

a) Use the pumping lemma for context-free languages to show that L is not context- 
free.

b) Construct a context-sensitive grammar G that generates L.

c) Give the derivation of aabbbbaa in G.

d) Construct an LBA M that accepts L.

e) Trace the computation of M with input aabbbbaa.

* 8. Let L = {a'i-'c* | 0 < i < j  < k}.

a) L is not context-free. Can this be proved using the pumping lemma for context- 
free languages? If so, do so. If not, show that the pumping lemma is incapable of 
establishing that L is not context-free.

b) Give a context-sensitive grammar that generates L.

9. Let M be an LBA with alphabet E . Outline a general approach to construct monotonic 
rules that simulate the computation of M. The rules of the grammar should consist of 
variables in the set

{[«i.*]. [«;.(*]. [«;.*)]. [a,-. {*>], [a,, qkx], [ah qk{x], [a,-, (qkx\ .  [ah qkx ) \  

K -  xqk)], [a,-, qk(x)], [«,-, {qkx)], [a,, {xqk)]\,

where a,- e  E , x  e  T, and qt € Q. This completes the construction of the grammar in 
Theorem 10.3.3.
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10. Let u -*■ u be a monotonic rule. Construct a sequence of monotonic rules, each of whose 
right-hand side has length two or less, that defines the same transformation as u -*■ v.

11. Construct a sequence of context-sensitive rules uA v  -*• uw v  that define the same 
transformation as the monotonic rule A B  —* CD. Hint: A sequence of three rules, 
each of whose left-hand side and right-hand side is of length two, suffices.

12. Use the results from Exercises 10 and 11 to prove that every context-sensitive language 
is generated by a grammar in which each rule has the form uA v —*■ uwv,  where 
w e  (V U £ ) + and u, v € (V U £)*.

13. Let T be a full binary tree. A path through T is a sequence of left-down ( L), right-down 
(R), or up (U) moves. Thus paths may be identified with strings over £  =  {L, R, U). 
Consider the language L = [w e  £*  | w describes a path from the root back to the 
root}. For example, A, LU, L R U U L U  € L, and U, L R U  L. Establish L’s place in 
the Chomsky hierarchy.

14. Prove that the context-sensitive languages are not closed under arbitrary homomor- 
phisms. A homomorphism is X-free if h(u) =  \  implies u = X. Prove that the context- 
sensitive grammars are closed under A-free homomorphisms.

15. Let L be a recursively enumerable language over £  and c a terminal symbol not in 
£ .  Show that there is a context-sensitive language L' over £  U {c} such that for every 
w 6  £*, w e  L if, and only if, wc' e  L' for some i > 0.

16. Prove that every recursively enumerable language is the homomorphic image of a 
context-sensitive language. Hint: Use Exercise 15.

17. A grammar is said to be context-sensitive with erasing if every rule has the form 
uA v -*■ uvw,  where A e  V and u, u , i » 6 ( V U  £)*. Prove that this family of grammars 
generates the recursively enumerable languages.

18. A linear-bounded automaton is deterministic if at most one transition is specified for 
each state and tape symbol. Prove that every context-free language is accepted by a 
deterministic LBA.

19. Let L be a context-sensitive language that is accepted by a deterministic LBA. Prove 
that L is context-sensitive. Recall that a computation in an arbitrary deterministic LBA 
need not halt.
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CHAPTER 11

Decision Problems and 
the Church-Turing Thesis

In the preceding chapters Turing machines were used to detect patterns in strings, to 
recognize languages, and to compute functions. Many interesting problems, however, are 
posed at a higher level than string recognition or manipulation. For example, we may be 
interested in determining answers to questions of the form: “Is a natural number a perfect 
square?” Or “Does a graph have a cycle?” Or “Does the computation of a Turing machine 
halt before the 20th transition?” Each of these general questions describes a decision 
problem.

Formally, a decision problem P is a set of related questions each of which has a yes 
or no answer. The decision problem of determining if a natural number is a  perfect square 
consists of the following questions:

p0: Is 0 a perfect square?

P \ .  Is 1 a perfect square?

Pi- Is 2 a perfect square?

Each individual question is referred to as an instance of the problem. A solution to a decision 
problem P is an algorithm that determines the appropriate answer to every question p  e  P. 
A decision problem is said to be decidable if it has a solution.

Since the solution to a decision problem is an algorithm, a review o f  our intuitive 
notion of algorithmic computation may be beneficial. We have not defined, and probably 
cannot precisely define, the term algorithm. This notion falls into the category of “I can’t 
describe it but I know one when I see one.” We can, however, list several properties that

343
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seem fundamental to the concept of algorithm. An algorithm that solves a decision problem 

should be

•  Complete: It produces the correct answer for each problem instance.

•  Mechanistic: It consists of a finite sequence of instructions, each of which can be carried 
out without requiring insight, ingenuity, or guesswork.

•  Deterministic: When presented with identical input, it always performs the same 

computation.

A procedure that satisfies the preceding properties is often called effective.
The computations of a standard Turing machine are clearly mechanistic and determin

istic. A Turing machine solution that halts for every input string is also complete. Because 
of the intuitive effectiveness of their computations, we will use Turing machines as the 
framework for solving decision problems. The transformation of problem instances into 
input strings for a Turing machine constitutes the representation of the decision problem. 
A problem instance is answered affirmatively if the corresponding input string is accepted 
by the Turing machine and negatively if it is rejected.

The Church-Turing Thesis for decision problems asserts that a Turing machine can be 
designed to solve any decision problem that is solvable by any effective procedure. A more 
general interpretation of the Church-Turing Thesis is that any procedure or process that 
can be algorithmically computed can be realized by a suitably designed Turing machine. 
This chapter begins by establishing the relationship between decision problems, Turing 
machines, and recursive languages. The remainder of the chapter presents the Church- 
Turing Thesis and discusses the importance and implications of the assertion.

11.1 Representation of Decision Problems

The first step in a Turing machine solution of a decision problem is to express the problem 
in terms of the acceptance of strings. This requires constructing a representation of the 
problem. Recall the newspaper vending machine described at the beginning of Chapter 5. 
Thirty cents in nickels, dimes, and quarters is required to open the latch. If more than 30 
cents is inserted, the machine keeps the entire amount. Now consider the problem of a miser 
who wants to buy a newspaper but refuses to pay more than the minimum. A solution to 
this problem is an effective procedure that determines whether a set of coins contains a 
combination that totals exactly 30 cents.

A Turing machine representation of the miser’s problem transforms an instance of the 
problem from its natural domain of coins into an equivalent problem of accepting a string. 
This can be accomplished by representing a set of coins as an element of {n, d, q ) ’ where 
n, d, and q designate a nickel, a dime, and a quarter, respectively. Using this representation, 
a Turing machine that solves the miser’s problem accepts strings qnnn , nddnd  and rejects 
nnnd  and qdqdqqq.  In Exercise 1 you are asked to build a Turing machine that solves this 
problem.
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Problem Turing Machine Answer
Instances Input

Pl ----------------------------------- »- w, — --------------------------------- yes/no

p2 ----------------------------------- ■- w2 ------------------------------- -— yes/no

p3 ———---------------------------- *- w3 ------------------------------------•- yes/no

Representation Turing machine
computation

Pi ----------------------------------- »- wj ------------------------------------yes/no

FIGURE 11.1 Solution to decision problem.

Constructing a Turing machine solution to a decision problem follows the two-step 
process outlined in Figure 11.1. The first step is the selection of an alphabet and a string 
representation of the problem instances. The properties of the representation are then utilized 
in the design of the Turing machine that solves the problem. We illustrate the impact of the 
representation by considering the problem of determining whether a natural number is even. 
Two common representations of natural numbers are the unary and binary representations. 
The alphabet of the unary representation is {7} and the number n is represented by the string 
7"+ l. The alphabet {0, 7) is used by the standard binary representation of natural numbers. 

The Turing machine

B/B R 1 /1 R  .  ^
X v )-----------------K g . J 7 - —

1/1R ^

solves the even number problem for the unary representation. The states q\  and q2 record 
whether an even or odd number of 7’s have been processed. In the unary representation, a 
string of odd length represents an even number. Thus the language of M | is {7' | i is odd).

The binary representation of an even number has 0 in the rightmost position. The Turing 
machine

0/0  R 

1/1 R

X§>
B/B R B/B L 0/0  R

accepts precisely these strings. The strategies employed by M| and M2 illustrate the depen
dence of the Turing machine on the choice of the representation.
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There are many different ways to represent the instances of a decision problem as 
strings. A decision problem has a Turing machine solution if there is at least one combination 
of representation and Turing machine that solves the problem. There may, o f course, be 

many.

11.2 Decision Problems and Recursive Languages

We have chosen the standard Turing machine as a formal system for solving decision 
problems. Once a string representation of the problem instances is selected, the remainder of 
the solution consists of the analysis of the input by a Turing machine. Since the completeness 
property requires the computation of the Turing machine to terminate for every input string, 
the language accepted by the machine is recursive. Thus every Turing machine solution of 
a decision problem defines a recursive language. Conversely, every recursive language L 
can be considered to be the solution of a decision problem. The decision problem, called 
the membership problem for L, consists of the questions “Is the string w in L?” for every 
string w over the alphabet of L.

The duality between solvable decision problems and recursive languages can be ex
ploited to broaden the techniques available for establishing the decidability of a decision 
problem. Since computations of deterministic multitrack and multitape machines can be 
simulated by a standard Turing machine, solutions using these machines also establish the 
decidability of a problem.

Example 11.2.1

The decision problem of determining whether a natural number is a perfect square is 
decidable. The three-tape Turing machine from Example 8.6.2 solves the perfect square 
problem with the natural number n represented by the string a". □

Determinism is one of the fundamental properties of algorithms. However, it is often 
easier to design a nondeterministic Turing machine than a deterministic one to accept a 
language. In Section 8.7 it was shown that every language accepted by a nondeterministic 
Turing machine is also accepted by a deterministic one. A solution to a decision problem 
requires more than a machine that accepts the appropriate strings; it also demands that all 
computations terminate. A nondeterministic machine in which every computation termi
nates can be used to establish the existence of a decision procedure. The languages of such 
machines are recursive (Exercise 8.23), ensuring the existence of a complete deterministic 
solution.

Example 11.2.2

We will use nondeterminism to show that the problem of determining whether there is a 
path from a node vt to a node Vj in a directed graph is decidable. A directed graph consists
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of a set of nodes N = {u)......... u„} and arcs A C N x N. To represent a graph as a string
over [0, 1), node vk is encoded as l k+l using the unary representation of the subscript of the 
node. An arc [u5, u(] is represented by the string en(vs)Oen(v,), where en(vs) and en(v,) 
are the encodings of nodes vs and v,. The string 00  is used to separate arcs.

The input to the machine consists of a representation of the graph followed by the 
encoding of nodes v, and vj.  Three O's separate en(Vj) and en(vj)  from the representation 
of the graph. The directed graph

N =  {v,, v2, v3)

A =  {[W|, v2], [i>i, i>i], [V2> [^3. v2]J

is represented by the string 110111001101100111011110011110111. A computation to 
determine whether there is a path from u3 to Uj in this graph begins with the input 
1101110011011001110111100111101110001111011.

A nondeterministic two-tape Turing machine M is designed to solve the path problem. 
The actions of M are summarized as follows:

1. The input is checked to determine if its format is that of a representation of a directed 
graph followed by the encoding of two nodes. If not, M halts and rejects the string.

2. The input is now assumed to have the form R(G)000en(Vj)0en(Vj),  where R(G)  is the 
representation of a directed graph G. If u, =  V j ,  M halts in an accepting state.

3. The encoding of node Vj followed by 0 is written on tape 2.

4. Let vs be the rightmost node encoded on tape 2. An arc from vs to v, is nondetermin- 
istically chosen from R(G). If no such arc exists or v, is already on the path encoded 
on tape 2, M halts in a rejecting state.

5. If v, =  Vj, then M halts in an accepting state. Otherwise, en(v,)0  is written at the end 
of the string on tape 2 and the computation continues with step 4.

Steps 4 and 5 generate paths beginning with node v, on tape 2. Since step 4 guarantees that 
only noncyclic paths are written on tape 2, every computation of M terminates. It follows 
that L(M) is recursive and the problem is decidable. O

A decision problem will frequently be defined by describing its instances and the 
condition that must be satisfied to obtain a positive answer. Using this method of problem 
definition, the path problem of Example 11.2.2 can be written

Path Problem for Directed Graphs 
Input: Directed graph G = (N, A), nodes vf, Vj 6 N 
Output: yes; if there is a path from u, to vj in G 

no; otherwise.
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With the correspondence between solvable decision problems and recursive languages, 
should we speak of problems or languages? We will use the terminology of decision prob
lems when the problem statement is given using high-level concepts and a representation 
is required to transform the problem instances into strings. When a problem is specified 
in terms of the acceptance of strings, we will use the terminology of recursive languages. 
In either case, a decision problem or a language is decidable if there is an algorithm that 
produces the correct answer for each problem instance or the correct membership value for 
each string, respectively.

113 Problem Reduction

Reduction is a problem-solving technique commonly employed to avoid “reinventing the 
wheel” when encountering a new problem. The objective of a reduction is to transform the 
instances of the new problem into those of a problem that we already know how to solve. 
Reduction is an important tool for establishing the decidability of problems and, as we will 
see in Chapter 12, also for showing that certain problems do not have algorithmic solutions.

We will examine the mappings and requirements needed for problem reduction both on 
the level of languages and on the level of decision problems. We begin with the definition 
of reduction for membership in languages.

Definition 11.3.1

Let L be a language over Z , and Q a language over S 2- L is many-to-one reducible to 
Q if there is a Turing computable function r : £ [  —►  ££ such that w € L if, and only if, 
r ( w ) e Q .

If a language L is reducible to a decidable language Q by a function r, then L is also 
decidable. Let R be the Turing machine that computes the reduction and M the machine that 
accepts Q. The sequential execution of R and M on strings from £* constitutes a solution 
to the membership problem for L.

Note that the reduction machine R does not determine membership in either L or Q; it simply 
transforms strings from £* to ££• Membership in Q is determined by M and membership 
in L by the combination of R and M.

To illustrate the reduction of one language to another, we will show that L =  [x 'y 'zk |
• > 0, k >  0} is reducible to Q =  {a'b1 | / >  0). A reduction of L to Q may be described in 
the tabular form
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L =  {jt'/z* 11 > 0, k > 0} w € [ x , y ,  z}* u; 6 L
to I  r if, and only if,

Q =  {a'b' 11 > 0} u e {a, fe)* r(w) € Q

A string w e  [x, y, z}* is transformed to the string r(w)  e  [a, b}* as follows:

i) If w has no x ’s or y ’s occurring after a z, replace each x  with an a , each y  with a b, 
and erase the z ’s.

ii) If w has an x  or y  occurring after a z, erase the entire string and write a single a in the 
input position.

The following table gives the result of the transformation of several strings in E*.

Reduction Input Condition

w € £* InL? r(u>) € E* InQ?

xx yy yes aabb yes
xxyyzzz yes aabb yes
yxxyz no baab no
xxzyy no a no
zyzx no a no
k yes X yes
zzz yes A yes

The examples show why the transformation is called a many-to-one reduction; multiple 
strings in E* can map to the same string in EJ- 

The Turing machine

y/B L 
z/BL
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performs the reduction of L to Q. Strings that have the form (x U y)*z* are identified in 
states <?! and q2 and transformed in state qf . Strings in which a z precedes an x  or y  are 
erased in state <74 and an a is written on the tape in the transition to q f .

Example 11.3.1

Consider the problem of accepting strings in the language L =  [uu | u =  a'b 'c'  for some
1 > 0}. The machine M in Example 8.2.2 accepts the language [a’b’c' \ i > 0}. We will 
sketch a reduction of the membership problem of L to that of recognizing a single instance 
of a 'b 'c ' . The original problem can then be solved using the reduction and the machine M. 
The reduction is obtained as follows:

1. The input string w is copied. The copy of w is used to determine whether w = uu for 
some string u e  [a, b, c}*.

2. If w ^  uu, then the tape is erased and a single a is written in the input position.

3. If w = uu, then the copy and the second u in the input string are erased leaving u in 
the input position.

If the input string w has the form uu, then w e  L if, and only if, u =  a'b'c' for some /'. The 
reduction does not check the number or the order of the a ’s, b’s, and c ’s; the machine M 
has been designed to perform that task.

If a string w does not have the form uu, the reduction produces the string a. This string 
is subsequently rejected by M, indicating that the input w is not in L. □

A decision problem P is many-to-one reducible to a problem Q if there is a transfor
mation of problem instances of P into instances of the Q that preserves the affirmative and 
negative answers. Formally, a reduction transforms the string representations of the problem 
instances. Frequently, we will define a reduction directly on the problem instances, with the 
assumption that the modifications could be performed at the string level if  we so desire. 
This technique, along with the implications for the string representations, is illustrated in 
the following example.

Example 11.3.2

We will show that the path problem for directed graphs, which was introduced in Example
1 1 .2 .2 , is reducible to the problem:

Cycle with Fixed Node (CFN) Problem 

Input: Directed graph G = (N, A), node vk € N 

Output: yes; if there is a cycle containing vk in G 

no; otherwise.

The reduction requires constructing a graph G' from G so that the existence of a path from 
Vj to vj in G is equivalent to G' having a cycle containing the node vk. The first step in the
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reduction is to identify the node v* in the CFN problem to the initial node v,- of the path 
problem. With the selection of i;, as the node in the CFN problem, the reduction becomes

Reduction Instances Condition

Path Problem Graph G, nodes v,-, Vj G has a path from v,- to Vj

to 4■ r  if, and only if,

CFN Problem Graph G', node u, G ' has a cycle containing t),

The graph G' is obtained by modifying G as follows:

i) Deleting all afcs [i>,, u, ] that enter v,-.

ii) Adding an arc [i>; , u,].

If there is a path from v,- to Vj in G, then there is a path in which u, occurs only as the first 
node; cycles in the path that reenter i>,- may be removed without changing either the initial 
or terminal node. Consequently, the deletion of the arcs [t;,, v,] does not affect the presence 
or absence of a path from v, to Vj. After the arc deletion in step (i), there are no cycles that 
contain v,- since there are no arcs that enter u, .

The addition of the arc [vj, u,] in step (ii) will produce a cycle in G' if, and only if, there 
is a path from v,- to Vj in the original graph G. Thus the modification of G is a reduction of 
the path problem to the CFN problem.

The reduction of instance G, i>3, t), of the path problem, where G is the graph from 
Example 11.2.2, produces

Since there is no path from v3 to Uj in G, G' has no cycle containing v3.
On the Turing machine level, an instance of the CFN problem consisting of a graph G' 

and n o d e m a y  be represented by the string R(G')000en(vi ). The reduction of the instance 
G, v3, V) of the path problem to the instance G', v3 of the CFN problem changes

R(G)OOOen(v3)en(v{) = 1101110011011001110111100111101110001111011

to

R(G')000en(v3) =  110111001101100111011110011110110001111.

A Turing machine that performs the reduction must delete the representations of the arcs 
entering i>,-, add the representation of the arc from Vj to i>,, and erase vj from the end of the 
input. □
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As with languages, reducing a decision problem P to a decidable problem Q shows that 
P is also decidable. A solution to P can be obtained by sequentially combining the reduction 

with the algorithm that solves Q.

11.4 The Church-Turing Thesis

The notion of algorithmic computation is not new. In fact, the word algorithm comes 
from the name of the 9th-century Arabian mathematician Abu Ja’far Muhammad ibn Musa 
al-Khwarizmi. In what is generally considered the first book on algebra, Al-Khwarizmi 
presented a set of rules for solving linear and quadratic equations. Step-by-step mechanistic 
procedures have been employed for centuries to describe calculations, processes, and 
mathematical derivations. This informal usage matured in the early 20th century when 
mathematicians sought to precisely determine the meaning, capabilities, and limitations 

of algorithmic computation.
The investigation into the properties of computability led to a number of approaches 

and formalisms for performing algorithmic computation. Effective procedures have been 
defined by rules that transform strings, by the evaluation of functions, by the computations 
of abstract machines, and more recently, by programs in high-level programming languages. 
Examples of each of these types of systems include

•  String Transformations: Post systems [Post, 1936], Markov systems [Markov, 1961], 
unrestricted grammars

•  Evaluation of Functions: partial and n -recursive functions [Godel, 1931; Kleene, 
1936], lambda calculus [Church, 1941]

•  Abstract Computing Machines: Register Machines [Shepherdson, 1963], Turing ma
chines

•  Programming languages: while-programs [Kfoury et al., 1982], TM from Chapter 9

While-programs, listed in a final category, are programs that can be written in a minimal pro
gramming language that consists of assignment, conditional, for, and while statements. Hav
ing a small number of statements facilitates the analysis of programs, but while-programs 
have the same computational ability as programs in standard programming languages such 
as C, C++, Java, and so on.

We have used Turing machines as the computational framework for solving decision 
problems. However, any of the other algorithmic systems could just as well have been 
selected. Would this in any way have changed our ability to solve problems? Ideally the 
answer should be no— the existence of a solution to a problem should be an inherent feature 
of the problem itself and not an artifact of our choice of an algorithmic system. The Church- 
Turing Thesis validates this intuition.

What do all of the previously mentioned algorithmic systems have in common? It has 
been shown that they are all capable of performing precisely the same computations. This 
claim may seem remarkable, since these systems were designed to perform different types 
of operations on different types of data. However, you have already seen one example of
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the equivalence and will see another in Chapter 13. In Section 10.1 we proved that the 
computation of a Turing machine can be simulated by the rules of an unrestricted grammar. 
Conversely, any language generated by an unrestricted grammar is accepted by a Turing 
machine. Consequently, the power of Turing machines for recognizing languages is identical 
to that of unrestricted grammars for generating languages. In Chapter 13 we will show that 
the algorithmic approach to the definition and evaluation of number-theoretic functions 
introduced by Godel and Kleene produces exactly the functions that can be computed by 
Turing machines.

The realization that the various approaches to effective computation produced systems 
that have the same computational power led to the belief that the capabilities o f these systems 
define the bounds of algorithmic computation. There is no single definition of algorithm 
and no single system for performing effective computation. However, there is a well- 
defined bound on what can be accomplished in any of these systems. The Church-Turing 
Thesis formalizes this belief in a general statement about the capabilities and limitations 
of algorithmic computation. We will present three variations, one corresponding to each 
of the types of computations that we have studied. We begin with the interpretation of the 
Church-Turing Thesis for decision problems.

The Church-Turing Thesis for Decision Problems There is an effective procedure to solve 
a decision problem if, and only if, there is a Turing machine that halts for all input strings 
and solves the problem.

A solution to a decision problem requires the computation to return an answer for every 
instance of the problem. Relaxing this restriction, we obtain the notion of a partial solution. 
A partial solution to a decision problem P is a not necessarily complete but otherwise 
effective procedure that returns an affirmative response for every problem instance p  e  P 

whose answer is yes. If the answer to p  is negative, however, the procedure may return no 
or fail to produce an answer. That is, the computation recognizes affirmative instances.

Just as a solution to a decision problem can be formulated as a question of member
ship in a recursive language, a partial solution to a decision problem is equivalent to the 
question of membership in a recursively enumerable language. The Church-Turing Thesis 
encompasses algorithms that recognize languages as well as those that decide languages.

The Church-Turing Thesis for Recognition Problems A decision problem P is partially 
solvable if, and only if, there is a Turing machine that accepts precisely the instances of P 
whose answer is yes.

Turing machines compute functions using the symbols on the tape when the machine 
halts to define the result of a computation. A functional approach to solving decision prob
lems uses the computed values one and zero to designate affirmative and negative responses. 
The method of specifying the answer does not affect the set problems that have Turing ma
chine solutions (Exercise 9.4). Thus the formulation of the Church-Turing Thesis in terms 
of computable functions subsumes and extends the two previous versions o f the thesis.

The Church-Turing Thesis for Computable Functions A function /  is effectively com
putable if, and only if, there is a Turing machine that computes / .
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After establishing the equivalence of Turing computable functions and /^-recursive 
functions in Chapter 13, we will give a more concise version of the Church-Turing Thesis 
and present a natural generalization from computable number-theoretic functions to com

putable functions on arbitrary sets.
To appreciate the content of the Church-Turing Thesis, it is necessary to understand 

the nature of the assertion. The Church-Turing Thesis is not a mathematical theorem; it 
cannot be proved. This would require a formal definition of the intuitive notion of an 
effective procedure. The claim could, however, be disproved. This could be accomplished 
by discovering an effective procedure that cannot be computed by a Turing machine. The 
equivalence of Turing machines to other algorithmic systems, the robustness of the Turing 
machine architecture, and the lack of a counterexample highlight an impressive pool of 
evidence that suggests that such a procedure will not be found.

A proof by the Church-Turing Thesis is a shortcut often taken in establishing the 
existence of a decision algorithm. Rather than constructing a Turing machine solution to a 
decision problem, we describe an intuitively effective procedure that solves the problem. 
The Church-Turing Thesis guarantees that a Turing machine can be designed to solve the 
problem. We have tacitly been using the Church-Turing Thesis in this manner throughout 
the presentation of Turing computability. For complicated machines, we simply gave a 
description of the actions of a computation of the machine. We assumed that the complete 
machine could then be explicitly constructed, if desired.

11.5 A Universal Machine

One of the most significant advances in computer design occurred in the m id-1940s with the 
development of the stored program model of computation. Early computers were designed 
to perform a single task; the input could vary, but the same program would be executed for 
each input. Making a change to the instructions would frequently require reconfiguration 
of the hardware. In the stored program model, the instructions are electronically loaded 
into memory along with the data. A computation in a stored program computer is a cycle 
consisting of the retrieval of an instruction from memory followed by its execution.

The Turing machines in the preceding chapters, like the early computers, were designed 
to execute a single set of instructions. The Turing machine architecture has its own version of 
the stored program concept, which preceded the first stored program computer by a decade. 
A universal Turing machine is designed to simulate the computations of an arbitrary Turing 
machine M. To do so, the input to the universal machine must contain a representation of 
the machine M and the string w to be processed by M. For simplicity, we will assume that 
M is a standard Turing machine that accepts by halting. The action of a universal machine 
U is depicted by

Universal
machine

U

M halts with w

K(M)w

M does not halt 
with input w

accept

loop
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where /?(M) is the representation of the machine M. The output labeled loop indicates that 
the computation of U does not terminate. If M halts and accepts input w, U does the same. 
If M does not halt with w, neither does U. The machine U is called universal since the 
computation of any Turing machine M can be simulated by U.

The first step in the construction of a universal machine is to design the string represen
tation of a Turing machine. Because of the ability to encode arbitrary symbols as strings over 
{0 ,1), we consider Turing machines with input alphabet {0,1} and tape alphabet {0,1, B}. 
The states of a Turing machine are assumed to be named {^0. <7 |. • ■ ■ .  q„), with q0 the start 
state.

A Turing machine M is defined by its transition function. A transition of a standard 
Turing machine has the form S(qh x)  =  [q j , y, d], where qh qj € Q; x,  y  e  T; and d  € 
{L, 7?}. We encode the elements of M using strings of l's:

Symbol Encoding

0 1

1 11

B 111

Qo 1

?i 11

Qn jn+i

L 1

R 11

Let en(z) denote the encoding of a symbol z. A transition S(q,, x ) =  [qj, y ,  d] is encoded 
by the string

en (qj)Oen (x)Oen (qj)Oen (y)Oen (d).

The O's separate the components of the transition. A representation of the machine is con
structed from the encoded transitions. Two consecutive 0 ’s are used to separate transitions. 
The beginning and end of the representation are designated by three 0 ’s.

Example 11.5.1

The computation of the Turing machine

0/0 L
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halts for the null string and strings that begin with 1, and does not terminate for strings 
beginning with 0. The encoded transitions of M are given in the following table.

Transition Encoding

&{q0, B) = [<j|, B, fl] lO lU O im ilO U

H q i, 0) =  [<?,,. 0. L ) 1101010101

S(qh 1) =  [<?2- A 110110111011011

S(q2, 1) =  [<70. 1, L) 1110110101101

The machine M is represented by the string

00010111011011101100110101010100110110111011011001110110101101000. □

A Turing machine can be constructed to determine whether an arbitrary string u € 
{0, 1}* is the encoding of a deterministic Turing machine. The computation examines u to 
see if it consists of a prefix 000 followed by a finite sequence of encoded transitions separated 
by 00 's followed by 000. A string that satisfies these conditions is the representation of some 
Turing machine M. The machine M is deterministic if the combination of the state and input 
symbol in every encoded transition is distinct.

We will now outline the design of a three-tape, deterministic universal machine U. A 
computation of U begins with the input on tape 1. If the input string has the form R(M)w,  
the computation of M with input w is simulated on tape 3. A computation o f U consists of 
the following actions:

1. If the input string does not have the form R(M )w  for a deterministic Turing machine 

M and string w, U moves to the right forever.

2. The string w is written on tape 3 beginning at position one. The tape head is then 
repositioned at the leftmost square of the tape. The configuration of tape 3 is the initial 
configuration of a computation of M with input w.

3. A single 1, the encoding of state q0, is written on tape 2.

4. A transition of M is simulated on tape 3. The transition of M is determined by the 
symbol scanned on tape 3 and the state encoded on tape 2. Let x  be the symbol from 
tape 3 and qt the state encoded on tape 2.

a) Tape 1 is scanned for a transition whose first two components match en(qi) and 
ert(x). If there is no such transition, U halts accepting the input.

b) If tape 1 contains an encoded transition en(qt)0en(x)0en(qj)0en(y)0en(d),  then
i) en(qt) is replaced by en(qj)  on tape 2.

ii) The symbol y  is written on tape 3.

iii) The tape head of tape 3 is moved in the direction specified by d.

5. The computation continues with step 4 to simulate the next transition o f M.
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Theorem 11.5.1

The language LH =  {7?(M)u> | M halts with input to} is recursively enumerable.

Proof. The universal machine accepts strings of the form /?(M)u> where /?(M) is the 
representation of a Turing machine and M halts when run with input w. For all other strings, 
the computation of U does not terminate. Thus the language of U is LH. ■

The language is known as the language of the Halting Problem. A string is in Lg if 
it is the combination of the representation of a Turing M and a string w such that M halts 

when run with w.
The computation of the universal machine U with input /?(M)u> simulates the compu

tation M with input w. The ability to obtain the results of one machine via the computations 
of another facilitates the design of complicated Turing machines. When we say that a Turing 
machine M' “runs machine M with input u>" we mean that M' is supplied with 7?(M) and 
w and simulates the computation of M in the manner of the universal machine.

Example 11.5.2

A solution to the decision problem

Halts on n ’th  Transition Problem 

Input: Turing machine M, string w. integer n 

Output: yes; if the computation of M with input w performs 

exactly n transitions before halting 

no; otherwise.

can be obtained by simulating the computations of M. Intuitively, a solution “runs M with 
input w"  and counts the transitions of M.

A machine U' that solves this problem can be constructed by adding a fourth tape 
to the universal machine to record the number of transitions in a computation of M. A 
problem instance will be represented by a string of the form R (M)u)00O/"+1 with the unary 
representation of n separated from /?(M)w by three zeroes. The computation of U' with 
input string u consists of the following actions:

1. If the input string u does not end with 0001n+ \  U' halts rejecting the input.

2. The string ln is written on tape 4 beginning in position one; 0007"+l is erased from the 
end of the string on tape 1; and the tape head on tape 4 moves to position one.

3. If the string remaining on tape 1 does not have the form R (M )w , U' halts rejecting the 
input.

4. The string w is copied to tape 3 and the encoding of state q0 is written on tape 2.

5. Following the strategy of the universal machine, tape 1 is searched for a transition that 
matches the symbol x  scanned on tape 3 and the state q, encoded on tape 2.
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a) If there is no transition for q x  and a 1 is read on tape 4, then U' halts rejecting the 

input.

b) If there is no transition for qt, x  and a blank is read on tape 4, then U' halts accepting 

the input.

c) If there is a transition , x)  encoded on tape 1 and a blank is read on tape 4, then 

U' halts rejecting the input.

d) If there is a transition &(qiy x)  encoded on tape 1 and a 1 is read on tape 4, then the 
transition is simulated on tapes 2 and 3 and the tape head on tape 4  is moved one 
square to the right.

6. The computation continues with step 5 to examine the next transition o f M.

If M halts prior to the nth transition, R(M)w0001n+l is rejected in step 5 (a). After the 
simulation of n transitions of M, the counter on tape 4 reads a blank. If M has no applicable 
transition at this point, U' accepts. Otherwise, the input is rejected in step 5 (c). □

Exercises

1. Give a state diagram of a Turing machine M that solves the miser problem from Section
11.1. A set of coins is represented as an element of [rt, d, q}* where n, d,  and q designate 
a nickel, a dime, and a quarter, respectively.

In Exercises 2 through 7, describe a Turing machine that solves the specified decision 
problem. Use Example 11.2.2 as a model for defining the actions of a computation of the 
machine. You need not explicitly construct the transition function nor the state diagram 
of your solution. You may use multitape Turing machines and nondeterminism in your 
solutions.

2. Design a two-tape Turing machine that determines whether two strings u and v over 
{0,1} are identical. The computation begins with B u B v B  on the tape and should require 
no more than 3(length(u)  +  1) transitions.

3. Using the unary representation of the natural numbers, design a Turing machine whose 
computations decide whether a natural number is prime.

4. Using the unary representation of the natural numbers, design a Turing machine that 
solves the “2"” problem. Hint: The input is the representation of a natural number i 
and the output is yes if i =  2" for some n, no otherwise.

5. A directed graph is said to be cyclic if it contains at least one cycle. Using the rep
resentation of a directed graph from Section 11.2, design a Turing machine whose 
computations decide whether a directed graph is cyclic.
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6. A tour in a directed graph is a path p0, p \ ......... pn in which

>) Po =  Pn-

ii) For 0 < i, j  < n, i ^  j  implies p, ^  pj.

iii) Every node in the graph occurs in the path.

That is, a tour visits every node exactly once and ends where it begins. Design a Turing 
machine that decides whether a directed graph contains a tour. Use the representation 
of a directed graph given in Section 11.2.

*7. LetG  =  (V, E , P, S) be a regular grammar.

a) Construct a representation for the grammar G over {0 , /}.

b) Design a Turing machine that decides whether a string w e  S* is in L(G). The use 
of nondeterminism facilitates the construction of the desired machine.

8. Construct a Turing machine that reduces the language L to Q. In each case the alphabet 
of L is {jt, y} and the alphabet of Q is {a, b}.

a) L = (xy)* Q = (aa)*
b) L = x +y* Q = a+b

c) L =  {x,y +1 1 i >  0} Q= \ i >0}

d) L =  {x 'V z' 1 i > 0, ;  > 0} Q =  W »  1i >0}

e) L =  {-*•' (>'>')'! | « > 0 } Q= {a'b‘ \ i >0}

f) L =  [xiy ‘x i 11 > 0} Q= W #  | i >0}

9. Let M be the Turing machine

M: X § ) -----

a) What is L(M)?

b) Give the representation of M using the encoding from Section 11.5.

10. Construct a Turing machine that decides whether a string over {0, ])* is the encoding 
of a nondeterministic Turing machine. What would be required to change this to a 
machine that decides whether the input is the representation of a deterministic Turing 
machine?

11. Design a Turing machine with input alphabet {0 ,1} that accepts an input string u if

i) u = R(M)w  for some Turing machine M and input string w, and

ii) when M is run with input w , there is a transition in the computation that prints a J. 

Your machine need not halt for all inputs.

0/0 R
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12. Given an arbitrary Turing machine M and input string w, will the computation of M 
with input w halt in fewer than 100 transitions? Describe a Turing machine that solves 

this decision problem.

13. Show that the decision problem

Input: Turing machine M
Output: yes; if the third transition of M prints a blank when run 

with a blank tape 

no; otherwise.

is decidable. The answer for a Turing machine M is no if M halts prior to its third 
transition.

* 14. Show that the decision problem

Input: Turing machine M

Output: yes; if there is some string id € E* for which the computation 
of M takes more than 10 transitions 

no; otherwise.

is decidable.

IS. The universal machine introduced in Section 11.5 was designed to simulate the actions 
of Turing machines that accept by halting. Consequently, the representation scheme 
R(M)  did not encode accepting states.

a) Extend the representation 7?(M) of a Turing machine M to explicitly encode the 
accepting states of M.

b) Design a universal machine U f  that accepts input of the form /?(M)tu if the machine 
M accepts input w by final state.

Bibliographic Notes

Turing [1936] envisioned the theoretical computing machine he designed to be capable 
of performing all effective computations. This viewpoint, now known as the Church- 
Turing Thesis, was formalized by Church [1936]. Turing’s 1936 paper also included the 
design of a universal machine. The original plans for the development of a stored program 
computer were reported by von Neumann [von Neumann, 1945], and the first working 
models appeared in 1949.

In our construction of the universal machine, we limited the input and tape alphabets 
of the Turing machines to {0, 7} and {0 , 7, fi), respectively. A proof that an arbitrary Turing 
machine can be simulated by a machine with these alphabets can be found in Hopcroft and 
Ullman [1979].
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Undecidability

The Church-Turing Thesis asserts that a Turing machine can be designed to solve any 
decision problem that is solvable by any effective procedure. A Turing machine computation 
is not encumbered by the physical restrictions that are inherent in any “real” computing 
device. Thus the existence of a Turing machine solution to a decision problem depends 
entirely on the nature of the problem itself and not on the availability of memory or central 
processor time. The Church-Turing Thesis also has consequences for undecidability. If 
a problem cannot be solved by a Turing machine, it cannot be solved by any effective 
procedure. A decision problem that has no algorithmic solution is said to be undecidable.

In Section 9.5 it was shown that there are only countably many Turing machines. 
The number of languages over a nonempty alphabet, however, is uncountable. It follows 
that there are languages whose membership problem is undecidable. The comparison of 
cardinalities ensures us of the existence of undecidable decision problems but gives us 
no idea of what such a problem might look like. In this chapter we show that some 
particular decision problems concerning the computational capabilities of Turing machines, 
derivations in grammars, and even playing a game with dominoes are undecidable.

The first problem that we consider is the Halting Problem for Turing Machines. To 
appreciate the significance of the Halting Problem, we will describe it in terms of C programs 
rather than Turing machines. The Halting Problem for C Programs can be stated as

Halting Problem for C Programs 
Input: C program Prog,

input file inpt for Prog 

Output: yes; if Prog halts when run with input inpt 
no; otherwise.

361
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If the Halting Problem for C Programs were decidable, a bane of all programmers— the 
infinite loop— would be a thing of the past. The execution of a program would become a 

two-step process:

1. running the algorithm that solves the Halting Problem on Prog and inpt;

2. if the algorithm indicates Prog will halt, then running Prog with inpt.

A solution to the Halting Problem does not tell us the result of the computation, only that a 
result will be produced. After receiving an affirmative response from the halting algorithm, 
the result could be obtained by running Prog with the input file inpt. Unfortunately, the 
Halting Problem for C Programs, like its counterpart for Turing machines, is undecidable.

Throughout the first four sections of this chapter, we will consider Turing machines with 
input alphabet {0, /} and tape alphabet {0 , 1, B). The restriction on the alphabets imposes 
no limitation on the computational capabilities of Turing machines since the computation 
of an arbitrary Turing machine M can be simulated by a machine with these restricted 
alphabets. The simulation requires encoding the symbols of M as strings over {0, 1). This 
is precisely the approach employed by digital computers, which use the ASCII (American 
Standard Code for Information Interchange), EBCDIC (Extended Binary Coded Decimal 
Interchange Code), or Unicode encodings to represent characters as binary strings.

12.1 The Halting Problem for Turing Machines

The most famous of the undecidable problems is concerned with the properties of Turing 
machines themselves. The Halting Problem may be formulated as follows: Given an arbi
trary Turing machine M with input alphabet E and a string w e  E*, will the computation 
of M with input w halt? We will show that there is no algorithm that solves the Halting 
Problem. The undecidability of the Halting Problem is one of the fundamental results in the 
theory of computer science.

It is important to understand the statement of the problem. We may be able to determine 
that a particular Turing machine will halt for a given string. In fact, the exact set of strings for 
which a Turing machine halts may be known. For example, the machine in Example 8.3.1 
halts for all and only the strings that contain aa as a substring. A solution to the Halting 
Problem, however, requires a general algorithm that answers the halting question for every 
possible combination of Turing machine and input string.

Since the Halting Problem asks a question about a Turing machine, the input must 
contain a Turing machine, or more precisely the representation of a Turing machine. We will 
use the Turing machine representation developed in Section 11.5, which encodes a Turing 
machine with input alphabet {0, 1} as a string over {0, 1). The proof of the undecidability 
of the Halting Problem does not depend upon the features of this particular encoding-. The 
argument is valid for any representation that encodes a Turing machine as a string over its 
input alphabet. As before, the representation of a machine M is denoted A’(M).



12.1 The Halting Problem for Turing Machines 363

The proof of the undecidability of the Halting Problem is by contradiction. We assume 
that there is a Turing machine H that solves the Halting Problem. We then make several 
simple modifications to H to obtain a new machine D that produces a self-referential 
contradiction; an impossible situation occurs when the machine D is run with its own 
representation as input. Since the assumption of the existence of a machine H that solves 
the Halting Problem produces a contradiction, the Halting Problem is not solvable.

»

Theorem 12.1.1

The Halting Problem for Turing Machines is undecidable.

Proof. Assume that the Turing machine H solves the Halting Problem. A string z e  {0, 1} 
is accepted by H if

i) z consists of the representation of a Turing machine M followed by a string w and

ii) the computation of M with input w halts.

If either of these conditions is not satisfied, H rejects the input. The operation of the machine 
H is depicted by the diagram

/?(M)w

M halts with input w

M does not halt with input w

accept

reject

The machine H is modified to construct a new Turing machine H'. The computations of 
H' are the same as H except H' continues when H halts in an accepting state. At that point, 
H' moves to the right forever. The transition function of H' is obtained from that of H by 
adding transitions that cause H' to move indefinitely to the right upon entering an accepting 
configuration of H. The action of H' may be depicted by

M halts with input w
R(M)w--------- ► H'

M does not halt with input w

halt
loop

From this point on in the proof, we are concerned only with whether a computation halts 
or continues indefinitely. The latter case is denoted by the word loop in the diagrams.

The machine H' is combined with a copy machine to construct another Turing machine 
D. The input to D is a Turing machine representation /?(M). A computation o f D begins by 
creating the string /?(M)/?(M) from the input /?(M). The computation continues by running 
H' on fl(M)/?(M).
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D- M halts with

with input R(M)

The input to the machine D may be the representation of any Turing machine with 
alphabet {0, 1, B}. In particular, D itself is such a machine. Consider a computation of D 
with input /?(D). Rewriting the previous diagram with M replaced by D and /?(M) by /?(D), 

we get

D halts with

with input R(D)

loop

halt

Examining the diagram, we see that D halts with input /?(D) if, and only if, D does not halt 
with input /?(D). This is obviously impossible. However, the machine D can be constructed 
directly from a machine H that solves the Halting Problem. The assumption that the Halting 
Problem is decidable produces the preceding contradiction. Therefore, we conclude that the 
Halting Problem is undecidable. ■

The contradiction in the preceding proof uses self-reference and diagonalization. To 
obtain the standard relational table for a diagonalization argument, we consider every string 

v e  {0 , /}* to represent a Turing machine; if v does not have the form the one-state 
Turing machine with no transitions is assigned to t). Thus the Turing machines can be listed
M0, Mj, M2, M3, M4, . . .  corresponding to strings k, 0,1, 00,01 .........Now consider a table
that lists the Turing machines along the horizontal and vertical axes. The j \h  entry of the 
table is

1 if M,- halts when run with R(Mj)
0 if M, does not halt when run with fl(My).

The diagonal of the table represents the answers to the self-referential question, “Does M,- 
halt when run on itself?" The machine D was constructed to produce a contradiction in 
response to that question.

A similar argument can be used to establish the undecidability of the Halting Problem 
for Turing Machines with arbitrary alphabets. The essential feature of this approach is the 
ability to encode the transitions of a Turing machine as a string over its own input alphabet. 
Ttoo symbols are sufficient to construct such an encoding.

The undecidability of the Halting Problem and the ability of the universal machine to 
simulate computations of Turing machines combine to show that the recursive languages are
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a proper subset of the recursively enumerable languages. Corollary 12.1.2 is the restatement 
of the undecidability of the Halting Problem in the terminology of recursive languages.

Corollary 12.1.2

The language LH =  {/?(M)u> | /?(M) is the representation of a Turing machine M and M 
halts with input iu) over [0, 1}* is not recursive.

Corollary 12.1.3

The recursive languages are a proper subset of the recursively enumerable languages.

Proof. The universal machine U accepts LH; a string is accepted by U only if it is of the 
form /?(M)u> and M halts when run with input w. The acceptance of LH by the universal 
machine demonstrates that Lh is recursively enumerable, while Corollary 12.1.2 established 
that L H is not recursive. ■

In Exercise 8.26 it was shown that a language L is recursive if both L and L are 
recursively enumerable. Combining this with Corollary 12.1.2 yields

Corollary 12.1.4

The language LH is not recursively enumerable.

Corollary 12.1.4 tells us that there is no algorithm that can either accept or recognize the 
strings of the language Lh- From a pattern recognition perspective, machines are designed 
to detect patterns that are common to all elements in a set of strings. When a language is 
not recursively enumerable, any common pattern among the elements of the language is too 
complex to be detected algorithmically.

12.2 Problem Reduction and Undecidability

Reduction was introduced in Chapter 11 as a tool for constructing solutions to decision 
problems. A decision problem P is reducible to Q if there is a Turing computable function 
r that transforms instances of P into instances of Q, and the transformation preserves the 
answer to the problem instance of P. As in Chapter 11, we will use a table o f the form

Reduction Input Condition

P instances p0, p\, . . .

i  r
instances q0, q |, . . .

the answer to p, is yes 

if, and only if, 

the answer to r(pt) is yes

to

Q

to describe the components and conditions of a reduction of P to Q.
Reduction has important implications for undecidability as well for decidability. If P  

is undecidable and reducible to a problem Q, then Q must also be undecidable. If Q were
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decidable, combining the reduction of P to Q with the algorithm that solves Q produces a 
decision procedure for P  as follows: For an input p t to P

i) Use the reduction to transform to r (/>,).

ii) Use the algorithm for Q to determine the answer for r(p,).

Since r is a reduction, the answer to the decision problem P for input p, is the same as the 
answer to r(pj)  for problem Q. The sequential execution of the reduction and the algorithm 
that solves Q produces a solution to P. This is a contradiction since P was known to be 
undecidable. Consequently, our assumption that Q is decidable must be false.

The Blank Tape Problem is the problem of deciding whether a Turing machine halts 
when a computation is initiated with a blank tape. The Blank Tape Problem is a special 
case of the Halting Problem since it is concerned only with the question o f halting when 
the input is the null string. We will show that the Halting Problem is reducible to the Blank 
Tape Problem and, consequently, that the Blank Tape Problem is undecidable.

Theorem 12.2.1

There is no algorithm that determines whether an arbitrary Turing machine halts when a 
computation is initiated with a blank tape.

Proof. Assume that there is a machine B that solves the Blank Tape Problem. Such a 
machine can be represented

M halts with input X 
--------------------------------►  accept

--------------------------------►  reject
M loops with input A.

The reduction of the Halting Problem to the Blank Tape Problem is accomplished by a 
machine R. The input to R is the representation of a Turing machine M followed by an 
input string w. The result of a computation of R is the representation of a machine M' that

1. writes w o n a  blank tape,

2. returns the tape head to the initial position with the machine in the start state of M, and

3. runs M.

/?(M') is obtained by adding encoded transitions to R(M)  and suitably renaming the start 
state of M. The machine M' has been constructed so that it halts when run with a blank tape 
if, and only if, M halts with input w.

A new machine is constructed by adding R as a preprocessor to B. Sequentially running 
the machines R and B produces the composite machine

fl(M)
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Halting Problem

Tracing a computation, we see that the composite machine solves the Halting Problem. Since 
the preprocessor R reduces the Halting Problem to the Blank Tape Problem, the Blank Tape 
Problem is undecidable. ■

The preprocessor R, which performs the reduction of the Halting Problem to the 
Blank Tape Problem, modifies the representation of a Turing machine M to construct the 
representation of a Turing machine M'. Example 12.2.1 shows the result of a transformation 
performed by the preprocessor R.

Example 12.2.1

Let M be the Turing machine

B/BR 
1/1 R

M:

that halts whenever the input string contains 0. The encoding /?(M) of M is

0001011101101110110011011101101110110011011011011011000 .

With input R(M)01, the preprocessor R constructs the encoding of the Turing machine
M'.

1/1L
0/0 L M
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When run with a blank tape, the first five states of M' are used to write 01 in the input position. 
A copy of the machine M is then run with tape B01B. It is clear from the construction that 
M halts with input 01 if, and only if, M' halts when run with a blank tape. □

Since the Blank Tape Problem is a subproblem of the Halting Problem, this is an ideal 
time to consider the relationship between problems, subproblems, and undecidability. Each 
of following problems is obtained by fixing one of the inputs of the Halting Problem:

Subproblem Input Decidable?

Blank Tape Problem /?(M), (input string fixed) Undecidable

Halting of the universal machine U (machine fixed), R(M)w Undecidable

Halting of M from Example 8.3.1 (machine fixed), w Decidable

The Halting Problem for the universal machine asks if U will halt with input /?(M)u>. 
A solution to this problem would determine if an arbitrary Turing machine M halts with 
input w and thus provide a solution to the Halting Problem. The preceding table shows that 
subproblems of an undecidable problem may or may not be undecidable depending upon 
which features of the problem are retained. On the other hand, if Q is a subproblem of a 
decision problem P and Q is undecidable, then P is necessarily undecidable; any algorithm 
that solves P is automatically a solution to all of its subproblems.

The reduction of the Halting Problem to the Blank Tape Problem was accomplished 
by a Turing computable function r that transformed strings of the form /?(M)u; to a string 
/f(M'). Theorem 12.2.1 and Example 12.2.1 showed how the Turing machine representation 
7?(M) is modified to produce /?(M'). In the remainder of examples, we will give a high- 
level explanation of the reduction and omit the details of the manipulation of the string 
representations.

12.3 Additional Halting Problem Reductions

We have shown that there is no algorithm that determines whether a Turing machine 
computation will halt, either with an arbitrary string or with a blank tape. There are many 
other questions that we could ask about Turing machines: “Does a computation enter a 
particular state?” Or “Does a computation print a particular symbol on its final transition?” 
And so on. Many such questions can also be shown to be undecidable using reduction and 
the undecidability of the Halting Problem.

We will demonstrate the general strategy for establishing the undecidability of such 
questions by considering the problem of whether a Turing machine computation reenters 
its start state. A computation that reenters the start state begins q0B w B  p- uq0vB.  The 
computation need not halt in the start state or even halt at all; all that is required is that 
the machine returns to state q0 at some point after the start of the computation.
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to it. The reduction has the form
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Reduction Input Condition

Halting Problem Turing machine M, string w M halts with input w

to I if, and only if,

Reenter Problem Turing machine M', suing w M' reenters its start state

when run with w

As indicated, we will use the same string w as the input for the machine M in the Halting 
Problem and the machine M' in the Reenter Problem.

LetM =  (Q, L,  T, <5, q0, F) and w be an instance of the Halting Problem. We must 
construct a machine M' that reenters its start state when run with w if, and only if, M 
halts when run with w. First we note that, in an arbitrary Turing machine, the halting of a 
computation is in no way connected to whether the computation reenters the start state. In 
designing the reduction, it is our task to connect them.

The idea behind the construction of the machine M' is to start with M, add a new start 
state q'0 that has the same transitions as q0, and add a transition to q'Q for every halting 
configuration of M. Formally, M' is defined from the components of M:

Q' =  (Q U {<?q}), £ ' = E ,  r '  =  T, F' =  F

S'(qh x)  =  S(q, , x)  if <5(4,, x)  is defined

S'(q'0, x)  =  8(q0, *) for all x  € T

8\qj ,  at) =  [<7q, x ,  /?] if 8(qh  *) is undefined

with q'Q the start state of M'. If the computation of M halts with input w, the corresponding 
computation of M' takes one additional transition and reenters q'Q. If M does not halt, a 
transition to q'Q is never taken and M' does not reenter its start state. The construction 
transforms the question of whether M halts with input w to the question of whether 
M' reenters its start state when run with w. It follows that the Reenter Problem is also 
undecidable.

Example 12.3.1

A proof by contradiction is used to show that the problem of determining whether an 
arbitrary Turing machine halts for all input strings is undecidable. Assume that there is 
a Turing machine A that solves this problem. The input to such a machine is a string 
v € {0, ]}*. The input is accepted if v =  /?(M) for some Turing machine M that halts for all 
input strings. The input is rejected if either v is not the representation of a Turing machine 
or it is the representation of a machine that does not halt for some input string.
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The computation of machine A can be depicted by

R(M)

M halts for all strings

A otherwise
accept

reject

Problem reduction is used to create a solution to the Halting Problem from the machine A. 
It follows that the ‘halts for all strings’ problem is undecidable.

The language of the Halting Problem consists of strings of the form where the
machine M halts when run with input w. The reduction is accomplished by a machine R. 
The first action of R is to determine whether the input string has the expected format of the 
representation of some Turing machine M followed by a string w. If the input does not have 
this form, R erases the input, leaving the tape blank.

When the input has the form R(M)w,  the computation of R constructs the encoding of 
a machine M' that, when run with any input string y,

1. erases y  from the tape,

2. writes w on the tape, and

3. runs M on w.

R(M') is obtained from /?(M) by adding the encoding of two sets of transitions: one set 
that erases the input that is initially on the tape and another set that then writes the w in the 
input position. The machine M' has been constructed to completely ignore its input. Every 
computation of M' halts if, and only if, the computation of M with input w halts.

The machine consisting of the combination of R and A

accept
reject

.................. Halting Problem ....................

provides a solution to the Halting Problem. If the input does not have the form /?(M)u>, the 
null string is produced by R and subsequently rejected by A. Otherwise R generates 
Tracing the sequential operation of the machines, the input is accepted if, and only if, it is 
the representation of a Turing machine M that halts when run with w.

Since the Halting Problem is undecidable and the reduction machine R is constructible, 
we conclude that there is no machine A that solves the 'halts for all strings’ problem. □

The relationship between Turing machines and unrestricted grammars developed in 
Section 10.1 can be used to convert undecidability results from the domain of machines to the 
domain of grammars. Consider the problem of deciding whether a string w is generated by
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an unrestricted grammar G. A reduction that establishes the undecidability of the derivability 

problem has the form

Reduction Input Condition

Halting Problem Turing machine M, string w M halts with input w
to I  if, and only if,

Derivability Problem unrestricted grammar G, string w there is a derivation

S w in G

Let M be a Turing machine and w an input string for M. The first step in the reduction 
is to modify M to obtain a machine M' that accepts every string for which M halts. This 
is accomplished by making every state of M an accepting state in M'. In M ', halting and 
accepting are synonymous.

Using Theorem 10.1.3, we can construct a grammar GM' with L(GM-) =  L(M'). An 
algorithm that decides whether w e  L(GM0 also determines whether the computation of M' 
(and M) halts. Thus no such algorithm is possible.

12.4 Rice’s Theorem

In the preceding sections we have shown that it is impossible to construct an algorithm 
to answer certain questions about a computation of an arbitrary Turing machine. The first 
example of this was the Halting Problem, which posed the question, “Will a Turing machine 
M halt when run with input wT'  Problem reduction allowed us to establish that there is no 
algorithm that answers the question, “Will a Turing machine M halt when run with a blank 
tape?” In each of these problems, the input contained a Turing machine and the decision 
problem was concerned with determining the result of the computation of the machine.

Rather than asking about the computation of a Turing machine with a particular input 
string, we will now focus on determining whether the language accepted by a Turing 
machine satisfies a prescribed property. For example, we might be interested in the existence 
of an algorithm that, when given a Turing machine M as input, produces an answer to 
questions of the form

i) Is k  in L(M)?

ii) Is L(M) =  0?

iii) Is L(M) a regular language?

iv) Is L(M) =  £*?

The ability to encode Turing machines as strings over {0 , 1} permits us to transform 
the preceding questions into questions about membership in a language. Employing the 
encoding, a set of Turing machines defines a language over {0 , 7} and the question of 
whether the set of strings accepted by a Turing machine M satisfies a property can be posed
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as a question of membership /?(M) in the appropriate language. For example, the question, 
“Is L(M) =  0?" can be rephrased in terms of membership as, “Is /?(M) € L^?” Using this 
approach, the languages associated with the previous questions are

i) L* =  {*(M) | X e  L(M)J

ii) L0 =  {/?(M) | L(M) =  0}

iii) Lreg =  {/?(M) | L(M) is regular}

iv) L s . =  {/?(M) |L(M)  =  £*}.

Example 12.3.1 showed that the question of membership in LE. is undecidable. That is, 
there is no algorithm that decides whether a Turing machine halts for all (and accepts) input 
strings.

The reduction strategy employed in Example 12.3.1 can be generalized to show that 
many languages consisting of representations of Turing machines are not recursive. A 
property P  of recursively enumerable languages describes a condition that a recursively 
enumerable language may satisfy. For example, P  may be “The language contains the null 
string”; “The language is the empty set”; ‘T he language is regular”; or “The language 
contains all strings.” The language of a property P  is defined by LP =  {/?(M) | L(M) satisfies 
P}. Thus Ltf, the language associated with the property ‘The language is the empty set” 
consists of the representations of all Turing machines that do not accept any strings.

A property P  of recursively enumerable languages is called trivial if there are no 
recursively enumerable languages that satisfy P  or if every recursively enumerable language 
satisfies P. For a trivial property, Lp is either the empty set or consists of all representations 
of Turing machines. Membership in both of these languages is decidable. Rice’s Theorem 
shows that any property that is satisfied by some, but not all, recursively enumerable 
languages is undecidable.

Theorem 12.4.1 (Rice’s Theorem)

If P is a nontrivial property of recursively enumerable languages, then Lp is not recursive.

Proof. Let P  be a nontrivial property that is not satisfied by the empty language. We will 
show that Lp =  {/?(M) | L(M) satisfies P} is not recursive.

Since LP is nontrivial, there is at least one language L € LP. Moreover, L is not 0 by 
the assumption that the empty language does not satisfy P. Let ML be a Turing machine 
that accepts L.

The reducibility of the Halting Problem to Lp will be used to show that Lp is not recur
sive. As in Example 12.3.1, a preprocessor R will be designed to transform input /?(M)w 
into the encoding of a machine M'. The action of M' when run with input y  is to

1. write w to the right of y, producing B yB w B ;

2. run the transitions of M on w, and

3. if M halts when run with w, then run ML with input y.

The role of the machine M and the string w is that of a gatekeeper. The processing of the 
input string y  by ML is allowed only if M halts with input w.
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If the computation of M halts when run with w, then M l is allowed to process input 
y. In this case the result of a computation of M' with an input string y  is exactly that of 
the computation of ML with y. Consequently, L(M') = L(Ml ) = L and L(M') satisfies P. If 
the computation of M does not halt when run with w, then M' never halts regardless of the 
input string y. Thus no string is accepted by M' and L(M') =  0, which does not satisfy P.

The machine M' accepts 0 when M does not halt with input w, and M' accepts L when 
M halts with w. Since L satisfies P  and 0 does not, L(M') satisfies P  if, and only if, M halts 
when run with input w.

Now assume that Lp is recursive. Then there is a machine Mp that decides membership 
in Lp. The machines R and Mj> combine to produce a solution to the Halting Problem.

accept
reject

.................. Halting Problem....................

Consequently, the property P  is not decidable.
Originally, we assumed that P  was not satisfied by the empty set. If 0 e  Lp, the pre

ceding argument can be used to show that LP is not recursive. It follows from Exercise 8.26 
that Lp must also be nonrecursive. ■

Rice’s Theorem makes it easy to demonstrate the undecidability of many questions 
about properties of languages accepted by Turing machines, as is seen in the following 
example.

Example 12.4.1

The problem of determining whether the language accepted by a Turing machine is context- 
free is undecidable. By Rice’s Theorem, all that is necessary is to show that the property 
“is context-free” is a nontrivial property of recursively enumerable languages. This is 
accomplished by finding one recursively enumerable language that is context-free and 
another that is not. The languages 0 and [a'b'c' \ i > 0} are both recursively enumerable; 
the former is context-free, and the latter is not (Example 7.4.1). □

12.5 An Unsolvable Word Problem

Semi-Thue Systems, named after their originator Norwegian mathematician Axel Thue, are 
a special type of grammar consisting of a single alphabet £  and a set P of rules. A rule has the 
form u -> u, where u € E + and v e  E*. There is no division of the symbols into variables 
and terminals, nor is there a designated start symbol. The Word Problem for Semi-Thue
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Systems is the problem of determining, for an arbitrary Semi-Thue System S =  (E , P) and 
strings u, u € E*, whether v is derivable from u in S. We will show that the Halting Problem 
is reducible to the Word Problem. The reduction is obtained by establishing a relationship 
between Turing machine computations and derivations in appropriately designed Semi- 

Thue Systems.
L e t M = ( Q ,  E,  T, <5, q0, F) be a deterministic Turing machine. Using a modification 

of the construction presented in Theorem 10.1.3, we can construct a Semi-Thue System 
SM =  (Ej^. Pm) whose derivations simulate the computations of M. The alphabet of S ^  is 
the s e t Q u r u { [ ,  ] ,q f , qR, qL). The set PM of rules of SM is defined by

1. q(xy  -> zqsy  whenever&(qh x ) =  [qj, z, fl] and y  € T

2. q,x] -*■ zqjB]  whenever S(qh x)  =  [q} , z, fl]

3. yq tx —* q jy z  whenever S(q,, x)  =  [q j , z, L] and y  € T

4. qtx -*■ qR if 5(q/, x) is undefined

5. qRx  -*■ qR fo r*  € T

6- <7r] tfd

7. xqL —►  qL for x  € T

8- lqL ~*- [Qf-

The rules that generate the string [qaBw] in Theorem 10.1.3 are omitted since the Word 
Problem for a Semi-Thue System is concerned with derivability of a string t> from another 
string u, not from a distinguished starting configuration. The erasing rules (5 through 8) 
have been modified to generate the string [qy] whenever the computation o f M with input 
w halts.

The simulation of a computation of M in SM manipulates strings of the form [uqv] 
with u, v e  T*, and q € Q U { q f , q R, qi\ -  Lemma 12.5.1 lists several important properties 
of derivations of SM that simulate a computation of M.

Lemma 12.5.1

Let M be a deterministic Turing machine, SM be the Semi-Thue System constructed from 
M, and w = [uqv] be a string with u, v e  T*, and q € Q U {qf,  qR, qL).

i) There is at most one string z such that w =$ z.
SM

ii) If there is such a z, then z also has the form [u' q' i/] with u', v' €  T*. and q' €

Q U  [qf , qR, qL).

Proof. The application of a rule replaces one instance of an element of Q  U [qf,  q R, qL) 
with another. The determinism of M guarantees that there is at most one rule in PM that can 
be applied to [uqv] whenever q e  Q. If q =  qR there is a unique rule that can be applied to 
[uqRv]. This rule is determined by the first symbol in the string u]. Similarly, there is only
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one rule that can be applied to [uqL\. Finally, there are no rules in PM that can be applied 
to a string containing q f .

Condition (ii) follows immediately from the form of the rules of Pm - ■

A computation of M that halts with input w  produces a derivation

[q0Bu>B] =>
SM

The erasure rules transform this string to [ q These properties are combined to yield 
Lemma 12.5.2.

Lemma 12.5.2

A deterministic Turing machine M halts with input w if, and only if, [q0B w B ]  =̂> [q
SM

The relationship between a computation of a Turing machine and a derivation in the 
corresponding Semi-Thue System is illustrated in the following example.

Example 12.5.1

The language of the Turing machine

010 R

u ) ©  * "*  -w  » ©

is 0*1(0 U 1)*. The rules of the corresponding Semi-Thue System SM are

Qq BB —► Bq^B qfiB  -*■ Oq^B q{lB  -*• lq2B
q$B0 Bq\0 q\00 -* ■ 0qt0 q\10 - *  lq20
q0Bl Bq\l q f i l  ->  Oq^l q \ H —* iq2i
q0B]-> BqtB] q\0] —>• OqtB] q\l] - *  lq2B]

qoO -*• qK <IrB -»■ qR BqL -*■ qL
<1r qR0 -* ■ qR OqL 4l

q\B -+  qR QrI -*■ qR lU  -»■ <?£.
- *  qR 1 r ] -* ■ <?£.) f<7/. “*■ [<?/

q20 - ►  qR

<?21 <1r
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The computation of M that accepts Oil  is given with the associated derivation of [qf ] 

from [q^BOl IB] in the Semi-Thue System Sf^.

q0B011B [q0B011B]

h  Bq\011B = ► [B q f i l lB ]

h  BOq^llB =>[B0qil lB ]

h  BOlqilB => [B01q2lB]

= ► [B01qRB]

=> [B01qR]

=> [B01qL]

=> [B0qL]

=> lBqL]

=> ta d

=>[«/ ]

The ability to simulate the computations of a Turing machine with derivations of a Semi- 
Thue System provides the basis for establishing the undecidability of the Word Problem for 
Semi-Thue Systems.

Theorem 12.5.3

The Word Problem for Semi-Thue Systems is undecidable.

Proof. The preceding lemmas sketch the reduction of the Halting Problem to the Word 

Problem. For a Turing machine M and corresponding Semi-Thue System Sm, the compu
tation of M with input w halting is equivalent to the derivability of [qf] from [q0BwB]  in 
SM. An algorithm that solves the Word Problem could also be used to solve the Halting 
Problem. ■

By Theorem 12.5.3, there is no algorithm that solves the Word Problem for an arbitrary 
Semi-Thue System S =  (L , P) and pair of strings in S*. The relationship between the 
computations of a Turing machine M and derivations of SM developed in Lemma 12.5.2 
can be used to prove that there are particular Semi-Thue Systems whose word problems are 
undecidable.

Theorem 12.5.4

Let M be a deterministic Turing machine that accepts a nonrecursive language. The Word 
Problem for the Semi-Thue System SM is undecidable.

Proof. Since M recognizes a nonrecursive language, the Halting Problem for M is unde- 
cidable (Exercise 3). The correspondence between computations of M and derivations of 
SM yields the undecidability of the Word Problem for this system. ■
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12.6 The Post Correspondence Problem

The undecidable problems examined in the preceding sections have been concerned with 
the properties of Turing machines or mathematical systems that simulate Turing machines. 
The Post Correspondence Problem is a combinatorial question that can be described as a 
simple game of manipulating dominoes. A domino consists of two nonnull strings from a 
fixed alphabet, one on the top half of the domino and the other on the bottom.

aba

bbaba

A Post correspondence system can be thought of as defining a finite set of domino types.
The game begins with one of the dominoes being placed on a table. Another domino 

is then placed to the immediate right of the domino on the table. This process is repeated, 
producing a sequence of adjacent dominoes. We assume that there is an unlimited number 
of dominoes of each type; playing a domino does not limit the number of future moves.

A string is obtained by concatenating the strings in the top halves o f a sequence of 
dominoes. We refer to this as the top string. Similarly, a sequence of dominoes defines a 
bottom string. The object of the game is to find a finite sequence of plays that produces 
identical top and bottom strings. Consider the Post correspondence system defined by 
dominoes

a c ba acb

ac ba a b

The sequence

a c ba
\

a acb

ac ba a ac b

spells acbaaacb  in both the top and bottom strings.
Formally, a Post correspondence system consists of an alphabet E and a finite set of 

ordered pairs [«,, u,], / =  1, 2 , . . . ,  n, where v,- e  £ + . A solution to a Post correspon
dence system is a sequence i l t i2, . . .  , ik such that

The problem of determining whether a Post correspondence system has a solution is the 
Post Correspondence Problem.
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Example 12.6.1

The Post correspondence system with alphabet {a, b } and ordered pairs [aaa, aa], 

[baa, abaaa] has a solution

aaa baa aaa

aa abaaa aa □

Example 12.6.2

Consider the Post correspondence system with alphabet {a, b } and ordered pairs [ab, aba], 
[bba, aa], [aba, bab]. A solution must begin with the domino

ab

aba

since this is the only domino in which prefixes on the top and bottom agree. The string in 
the top half of the next domino must begin with a. There are two possibilities:

ab ab

aba aba

ab aba

aba bab

(a) (b)

The fourth elements of the strings in (a) do not match. The only possible way of constructing 
a solution is to extend (b). Employing the same reasoning as before, we see that the first 
element in the top of the next domino must be b. This lone possibility produces

ab aba bba

aba bab aa

which cannot be the initial subsequence of a solution since the seventh elements in the top 
and bottom differ. We have shown that there is no way of “playing the dominoes” in which 
the top and bottom strings are identical. Hence, this Post correspondence system has no 
solution. □

We will show that the Post Correspondence Problem is undecidable by associating 
derivations in a Semi-Thue System with sequences of dominoes. By Theorem 12.5.4 we 
know that there is a Semi-Thue System S =  (E , P) whose word problem is undecidable;
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that is, there is no algorithm that determines whether a string v is derivable from a string u 
using the rules in P. The components of the reduction are

Reduction Input Condition

Derivability in S =  (S, P) strings u, v t  is derivable from u

to |  if, and only if,

Post Correspondence set of dominoes the Post correspondence system
Problem C„ „ C„ „ has a solution

The reduction consists of producing dominoes from the rules of P and the strings u and v in, 
a manner that playing the dominoes corresponds to derivations in the Semi-Thue System.

Theorem 12.6.1

There is no algorithm that determines whether an arbitrary Post correspondence system has 
a solution.

Proof. Let S =  (E , P) be a Semi-Thue System with alphabet {0,1)  whose word problem
is unsolvable. For each pair of strings u, v e  £*, we will construct a Post correspondence
system Cu „ that has a solution if, and only if, m u. Since the latter problem is undecidable,

there can be no general algorithm that solves the Post Correspondence Problem.
We begin by augmenting the set of productions of S with the rules 0 —> 0 and 1 —*■ 1.

Derivations in the resulting system are identical to those in S except for the possible addition
of rule applications that do not transform the string. The application of such a rule, however,

guarantees that whenever u v, v may be obtained from u by a derivation of even length, 
s

By abuse of notation, the augmented system is also denoted S.
Now let u and v be strings over {0,1)*. A Post correspondence system C„ „ is con

structed from u, v, and S. The alphabet of Cu u consists of 0, 0, 1, 1, [, ], *, and *. A 
string w consisting entirely of “barred” symbols is denoted uJ.

Each production Xj —* yh i =  1, 2 , . . . ,  n, of S (including 0 —* 0 and 1 —*■ 1) defines 
two dominoes

y, y>

x, $

The system is completed by the dominoes

[•<» * ♦ ]

[ ♦ * *v]
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The dominoes

0 0 1 I

0 0 T 1

can be combined to form sequences of dominoes that spell

w w

w w

for any string w e  {0, 7)*. We will feel free to use these composite dominoes when con
structing a solution to a Post correspondence system CIIV.

First we show that Cu „ has a solution whenever u => v. Let

U = U 0 =>Ui=>---=*Uji =$V

be a derivation of even length. The rules 0 —* 0  and 1 -*■ 1 ensure that there is derivation of 
even length whenever v is derivable from u. The ith step of the derivation can be written

i =  Pi-\Xj._{qi_x => f t - 4. - 1 =

where u, is obtained from by an application of the rule x j  —» The string 

[«o * u{*u2 * S 3 * ■ • • * 

is a solution to Cu v. This solution can be constructed as follows:

1. Initially play

[u*

[

2. To obtain a match, dominoes spelling the string u =  u0 on the bottom are played, 
producing

[U* h % *

[ Po X % *

The dominoes spelling p0 and q0 are composite dominoes. The middle domino is 
generated by the rule x jo -*■ >>jQ.



12.6 T h e  P o s t  C o r r e s p o n d e n c e  P r o b le m  381

3. Since p0yj0q0 =  uj, the top string can be written [u0 * u | and the bottom [u0. Repeating 
the previous strategy, dominoes must be played to spell u [ on the bottom

[«* Po % * P\ <7. *

[ Po \ % * p 1 Xh <7. *

producing [«0 * u t*u2* on the top.

4. This process is continued for steps 2, 3, . . . .  k — 1 of the derivation, producing

Pt- i V ,

Pt-1 V i 9 * - .

[m* Po \ % * P\ yJ>
*

[ Po \ % * Pl x'h «l *

5. Completing the sequence with the domino

1

iv]

produces the string [«0 * u\*u2 * ■ • • * in both the top and the bottom, solving
the correspondence system.

We will now show that a derivation u =» w can be constructed from a solution to the Post 
correspondence system Cu v . A solution to Cu v must begin with

[k *

[

since this is the only domino whose strings begin with the same symbol. By the same 
argument, a solution must end with

]

*v]

Thus the string spelled by a solution has the form [« * uj*u]. If w contains ], then the solution 
can be written [u * at* v]y*t>]. Since ] occurs in only one domino and is the rightmost symbol 
on both the top and the bottom of that domino, the string [u * **i>] is also a solution of Cu 

In light of the previous observation, let [u * • • ■ *v] be a string that is a solution of 
the Post correspondence system Cu „ in which ] occurs only as the rightmost symbol. The
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information provided by the dominoes at the ends of a solution determines the structure of 
the entire solution. The solution begins with

[u*

[

A sequence of dominoes that spell u on the bottom must be played in order to match the 
string already generated on the top. Let u = x ^ x i2. . .  x ik be bottom strings in the dominoes 
that spell u in the solution. Then the solution has the form

Xk *

*

[u* y<i

[ x,i X>2 Xi>

Since each domino represents a derivation *,■ =>■ , we combine these to obtain the 
derivation u => u It where u t =  y,- y,- . . .  yik. The prefix of the top string o f the dominoes 
that make up the solution has the form [u * u{*, and the prefix of the bottom string is [«*. 
Repeating this process, we see that a solution defines a sequence of strings

[U * «|*«2 * • • •

[u * i7]*«2 * “ 3* • • ■ *v]

[« * Mi* « 2  * uy*u4 * . . .  *i>]

[u * Uj*U2 * « 3 *M4  * . . .

where m, => ui+l with u0 = u and uk =  u. Combining these produces a derivation u v.
The preceding two arguments constitute a reduction of the Word Problem for the Semi- 

Thue System S to the Post Correspondence Problem. It follows that the Post Correspondence 
Problem is undecidable. ■

1X7 Undecidable Problems in Context-Free Grammars

Context-free grammars provide an important tool for defining the syntax o f programming 
languages. The undecidability of the Post Correspondence Problem can be used to establish 
the undecidability of several important questions concerning the languages generated by 
context-free grammars. To establish a link between Post correspondence systems and 
context-free grammars, the dominoes of a Post correspondence system are used to define 
the rules of two context-free grammars.
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Let C =  (E c , {[«,, u,], [u2, v2], . . . .  [un, u„]}) be a Post correspondence system. 
Two context-free grammars Gy and GL are constructed from the ordered pairs of C as 

follows:

Gu: Vy =  {Sul

S jj — U {1, 2, . . . ,  /i}

Pu =  {Su —> UjS\ji, S[j —*■ Uji 11 =  1, 2, . . . .  n}

Gl : Vl =  {SL}

E L =  EC U{1, 2......... n)

pL =  ($L -> VjSLi, 5l -> Vji | / =  1, 2 , . . . ,

Determining whether a Post correspondence system C has a solution reduces to deciding 
the answers to certain questions concerning derivability in corresponding grammars Gy and 
Gl . The grammar GLi generates the strings that can appear in the upper half of a sequence 
of dominoes. The digits in the rule record the sequence of dominoes that generate the string 
(in reverse order). Similarly, GL generates the strings that can be obtained from the lower 
half of a sequence of dominoes.

The Post correspondence system C has a solution if there is a sequence i\i2 . . .  /*_ji* 
such that

In this case, Gjj and Gl contain derivations

Su => ■ • • h ‘ i

SL =>v,{v,2 . . . v ik_lv,kikik_ l . . . i 2h,

where . . .  u,k l uiiikik_ l . . .  /2i, =  vh vh . . .  « / * _ , •  • • h ‘i- Hence, the inter
section of L(Gjj) and L(Gl ) is not empty.

Conversely, assume that w e  L(G,j) O L(Gl ). Then w consists of a string w' € 
followed by a sequence /**'*_,... i2i\. The string w' =  u(|z<,2 . . .  uik [u ik =  v , - ^  . . .  v,t_, vik 
is a solution to C.

Example 12.7.1

The grammars Gy and GL are constructed from the Post correspondence system [aaa, aa], 
[baa, abaaaa] from Example 12.6.1.

Gu: S \ j -*■ a a a S \} l \a a a l  GL: 5 l  —> a a 5 Ll | a a l

—» baaS\j2 | baa2 —*■ abaaaS]2 \ abaaa2



384 C h a p te r  12 U ndecidab i l i ty

Derivations that exhibit the solution to the correspondence problem are

Sl = > aaS [J

= ► aaabaaaS\2\  

=> aaabaaaaa  121. □
The relationship between solutions to a Post correspondence system and derivations in 

the associated grammars Gy and GL is used to demonstrate the undecidability of several 
questions about the languages generated by context-free grammars.

Theorem 12.7.1

There is no algorithm that determines whether the languages of two context-free grammars 
are disjoint.

Proof. Assume there is such an algorithm. Then the Post Correspondence Problem could 
be solved as follows:

1. For an arbitrary Post correspondence system C, construct the grammars Gy and GL 
from the ordered pairs of C.

2. Use the algorithm to determine if L(G(j) and L(Gl ) are disjoint.

3. C has a solution if, and only if, L(Gu) fl L(Gl ) is nonempty.

Step 1 reduces the Post Correspondence Problem to the problem of determining whether 
two context-free languages are disjoint. Since the Post Correspondence Problem has already 
been shown to be undecidable, we conclude that the question of the intersection of context- 
free languages is also undecidable. ■

Theorem 12.7.2

There is no algorithm that determines whether an arbitrary context-free grammar is am
biguous.

Proof. A context-free grammar is ambiguous if it contains a string that can be generated by 
two distinct leftmost derivations. As before, we begin with an arbitrary Post correspondence 
system C and construct G(j and GL. These grammars are combined to obtain the grammar

with start symbol 5 that generates L(Gu) U L(Gl ).
Clearly, all derivations of G are leftmost; every sentential form contains at most 

one variable. A derivation of G consists of the application of an 5 rule followed by a 
derivation of Gjj or GL- The grammars Gy and GL are unambiguous; distinct derivations 
generate distinct suffixes of integers. This implies that G is ambiguous if, and only if, 
L(Gu) fl L(Gl ) ^  0. But this condition is equivalent to the existence of a solution to the

G : L  =  { 5 , S u , S l }

£  =  £ u

P =  P jj U  PL U  {5  —> S\j, S —> S l}
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original Post correspondence system C. Since the Post Correspondence Problem is reducible 
to the problem of determining whether a context-free grammar is ambiguous, the latter 

problem is also undecidable. ■

In Section 7.5 we saw that the family of context-free languages is not closed under 
complementation. However, for an arbitrary Post correspondence system C, the languages 
L(Gu) and L(Gl ) are context-free (Exercise 20). We will use this property to establish the 
undecidability of the problem of determining whether an arbitrary context-free grammar 
generates all strings over its alphabet and whether two context-free grammars generate the 
same language.

Theorem 12.7.3

There is no algorithm that determines whether the language of a context-free grammar 
G =  (L, E , P, S) is E*.

Proof. First, note that L =  E* is equivalent to L =  0. We will show that there is no 

algorithm that determines whether L(G) is empty for an arbitrary context-free grammar 
G.

Let C be a Post correspondence system with associated grammars Gy and GL. A 
context-free grammar G' that generates L(G(j) U L(Gl ) can be obtained directly from the 
context-free grammars that generate L(G,j) and L(Gl ). By DeMorgan’s Law, L(G') =
L(Gu) fl L(Gl ). ____

An algorithm that determines whether L(G) =  0 for an arbitrary context-free grammar 
G can be used to solve the Post Correspondence Problem as follows:

1. For a Post correspondence system C, construct the grammars Gy and G L.

2. Construct the grammars that generate L(G,j) and L(Gl ).

3. Construct G' from the grammars that generate L(Gu) and L(Gl ).

4. Use the decision algorithm to determine whether L(G') =  0.

5. L(G') =  0 if, and only if, L(G,j) and L(Gl ) are disjoint, if and only if, C has a solution.

Thus there can be no algorithm that decides whether L(G) =  0 or, equivalently, whether 
L(G) =  E*. ■

Theorem 12.7.4

There is no algorithm that determines whether the languages of two context-free grammars 
are identical.

Proof. Let C be a Post correspondence system with associated grammars Gy and GL. As 
in the proof of Theorem 12.7.3, a context-free grammar G i can be constructed that generates 
L(Gu) U L(Gl ) =  L(Gu) fl L(Gl ). The second context-free grammar G2  generates all 
strings over Ey.

The language LfGj) contains all strings in that are not solutions of the Post 
correspondence system C. Thus L(G|) = L(G2 ) if, and only if, C does not have a solution.
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Consequently, an algorithm that determines whether two grammars generate the same 
language can be used to determine whether a Post correspondence system has a solution.

Exercises

1. Prove that the Halting Problem for the universal machine is undecidable. That is, there 
is no Turing machine that can determine whether the computation of U with an arbitrary 

input string will halt.

2. Explain the fundamental difference between the Halts on n ’th Transition Problem from 
Example 11.5.2 and the Halting Problem that makes the former decidable and the latter 
undecidable.

3. Let M be any deterministic Turing machine that accepts a nonrecursive language. Prove 
that the Halting Problem for M is undecidable. That is, there is no Turing machine that 
takes input w and determines whether the computation of M halts with input w.

For Exercises 4 through 8, use reduction to establish the undecidability of the each of the
decision problems.

4. Prove that there is no algorithm that determines whether an arbitrary Turing machine 
halts when run with the input string 101.

5. Prove that there is no algorithm that determines whether an arbitrary Turing machine 
halts for at least one input string.

6. Prove that there is no algorithm with input consisting of a Turing machine M =  
(Q, E , T, 5, qQ, F), a state q: e  Q, and a string w s E ’ that determines whether 
the computation of M with input w enters state qt .

7. Prove that there is no algorithm that determines whether an arbitrary Turing machine 
prints a 7 on its final transition.

8. Prove that there is no algorithm that determines whether an arbitrary Turing machine 
prints the symbol 1 on three consecutive transitions when run with a blank tape.

9. Why can’t we successfully argue that the Blank Tape Problem is undecidable as follows: 
The Blank Tape Problem is a subproblem of the Halting Problem, which is undecidable 
and therefore must be undecidable itself.

10. Show that the problem of deciding whether a string over E =  {7} has even length is 
reducible to the Blank Tape Problem. Why is it incorrect to conclude from this that the 
problem of determining whether a string has even length is undecidable?

11. Give an example of a property of languages that is not satisfied by any recursively 
enumerable language.
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12. Use Rice’s Theorem to show that the following properties of recursively enumerable 
languages are undecidable. To establish the undecidability, all you need do is show that 

the property is nontrivial.

a) L contains a particular string w.

b) L is finite.

c) L is regular.

d) L is  {0, /}*.

13. Let L =  [R(M) | M halts when run with /?(M)}.

a) Show that L is not recursive.

b) Show that L is recursively enumerable.

* 14. Let L^g =  {/?(M) | L(M) is nonempty}.

a) Show that is not recursive.

b) Show that L ^  is recursively enumerable.

15. Let M be the Turing machine

a) Give the rules of the Semi-Thue System SM that simulate the computations of M.

b) Trace the computation of M with input 01 and give the corresponding derivation in

16. Find a solution for each of the following Post correspondence systems.

a) [a, aa], [bb, b], [a, bb]

b) [a, aaa], [aab, b], [abaa, ab]

c) [aa, aab], [bb, ba], [abb, b]

d) [a, ab], [ba, aba], [b, aba], [bba, b]

17. Show that the following Post correspondence systems have no solutions.

a) [b, ba], [aa, b], [bab, aa], [ab, ba]

b) [ab, a], [ba, bab], [b, aa], [ba, ab]

c) [ab, aba], [baa, aa], [aba, baa]

d) [ab, bb], [aa, ba], [ab, abb], [bb, bab]

e) [abb, ab], [aba, ba], [aab, abab]

* 18. Prove that the Post Correspondence Problem for systems with a one-symbol alphabet 
is decidable.

Ill  R

0/0 R
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19. Let P be the Post correspondence system defined by [b, bbb], [babbb, ba], [bab, aab], 

[ba, a],

a) Give a solution to P.

b) Construct the grammars Gy and GL from P.

c) Give the derivations in Gy and GL corresponding to the solution in (a).

20. Build the context-free grammars Gy and GL that are constructed from the Post corre
spondence system [b, bb], [aa, baa], [ab, a]. Is L(Gu)fl L(Gl ) =  0?

* 21. Let C be a Post correspondence system. Construct a context-free grammar that gener
ates L(Gu).

* 22. Prove that there is no algorithm that determines whether the intersection of the lan
guages of two context-free grammars contains infinitely many elements.

23. Prove that there is no algorithm that determines whether the complement of the lan
guage of a context-free grammar contains infinitely many elements.

* 24. Prove that there is no algorithm that determines whether the languages o f two arbitrary
context-free grammars G] and G2 satisfy L(Gj) C L(G2).
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CHAPTER 1 3

Mu-Recursive Functions

In Chapter 9 we introduced computable functions from a mechanical perspective; the 
transitions of a Turing machine produced the values of a function. The Church-Turing Thesis 
asserts that every algorithmically computable function can be realized in this manner, but 
exactly what functions are Turing computable? In this chapter we will provide an answer 
to this question and, in doing so, obtain further support for the Church-Turing Thesis.

We now consider computable functions from a macroscopic viewpoint. Rather than fo
cusing on elementary Turing machine operations, functions themselves are the fundamental 
objects of study. We introduce two families of functions, the primitive recursive functions 
and the (i-recursive functions. The primitive recursive functions are built from a set of intu
itively computable functions using the operations of composition and primitive recursion. 
The /^-recursive functions are obtained by adding unbounded minimalization, a functional 
representation of sequential search, to the function building operations.

The computability of the primitive and n -recursive functions is demonstrated by outlin
ing an effective method for producing the values of the functions. The analysis of effective 
computation is completed by showing the equivalence of the notions ofTuring computabil
ity and /x-recursivity. This answers the question posed in the opening paragraph— the func
tions computable by a Turing machine are exactly the /^-recursive functions.

13.1 Primitive Recursive Functions

A family of intuitively computable number-theoretic functions, known as the primitive 
recursive functions, is obtained from the basic functions

389
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i) the successor function s: s(x)  =  x  +  1

ii) the zero function z: z(x)  =  0

iii) the projection functions p'"*: p("} (xl t . . . ,  x„) =  x,, 1 < i < n

using operations that construct new functions from functions already in the family. The sim
plicity of the basic functions supports their intuitive computability. The successor function 
requires only the ability to add one to a natural number. Computing the zero function is 
even less complex; the value of the function is zero for every argument. The value of the 
projection function p'"* is simply its ith argument.

The primitive recursive functions are constructed from the basic functions by appli
cations of two operations that preserve computability. The first operation is functional 
composition (Definition 9.4.2). Let /  be defined by the composition of the n-variable
function h with the ^-variable functions g |, g2...........g„. If each of the components of
the composition is computable, then the value of /( jc j, . . . ,  xk) can be obtained from h

and £ i t x | , . . . ,  xk), g2(*i. • ■ ■ ,  **). ■ • • , g„(x\......... xk). The computability of /  follows
from the computability of its constituent functions. The second operation for producing new 
functions is primitive recursion.

Definition 13.1.1

Let g and h be total number-theoretic functions with n and n + 2 variables, respectively. 
The n +  1-variable function /  defined by

i) f ( x u 0 ) = 2 (x,----- , x n)

ii) / ( * , ,  y +  1) =  h(x  i, . . . ,  xn, y, f ( x h . . . , x „ ,  y)) 

is said to be obtained from g and h by primitive recursion.

The Xj’s are called the parameters of a definition by primitive recursion. The variable y  is 
the recursive variable.

The operation of primitive recursion provides its own algorithm for computing the 
value of / ( * ! ,  y) whenever g and h are computable. For a fixed set o f parameters 
X\............x„, f  (•*■]...........xn, 0) is obtained directly from the function g:

f ( x , ......... xn, 0) =  g(Xi...........xn).

The value / (jtj......... x„, y  +  1) is obtained from the computable function h using

i) the parameters jcj, . . . , x„,

ii) y,  the previous value of the recursive variable, and

iii) f i x  i, . . . ,  xn, y) ,  the previous value of the function.
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/C *i......... *„• 0) =  S(*i...........xn)

f ( x . . . ,  1) =  h (x x, . . . ,  xn, 0, / ( * , ,  0)) 

f ( x ..............  2) =  h (x x......... xn, 1, ... ...............x„, 1))

f ( x  i......... y +  1) =  h (x t, . . . , x „ , y ,  f ( x x, . . . ,  x„, y)).

Since h is computable, this iterative process can be used to determine / ( * ] ......... x„, y  +  1)
for any value of the recursive variable y.

Definition 13.1.2

A function is primitive recursive if it can be obtained from the successor, zero, and projec
tion functions by a finite number of applications of composition and primitive recursion.

A function defined by composition or primitive recursion from total functions is itself 
total. This is an immediate consequence of the definitions of the operations and is left as an 
exercise. Since the basic primitive recursive functions are total and the operations preserve 
totality, it follows that all primitive recursive functions are total.

Taken together, composition and primitive recursion provide powerful tools for the 
construction of functions. The following examples show that arbitrary constant functions, 
addition, multiplication, and factorial are primitive recursive functions.

For example, f ( x \ ............ xn, y + 1) is obtained by the sequence of computations

Example 13.1.1

The constant functions c ' " *  ( j c j ,  . . . , * „ )  =  i are primitive recursive. Example 9.4.2 defines 
the constant functions as the composition of the successor, zero, and projection functions.

□

Example 13.1.2

Let add  be the function defined by primitive recursion from the functions g(x)  =  x  and 
h(x, y, z) =  z +  1. Then

add(x,  0) =  g(x) =  x

add(x ,  y  +  1) =  h(x,  y, add(x ,  y)) =  add(x ,  y) +  1.

The function add  computes the sum of two natural numbers. The definition of add(x,  0) 
indicates that the sum of any number with zero is the number itself. The latter condition 
defines the sum of x  and y +  1 as the sum of x  and y  (the result of add  for the previous 
value of the recursive variable) incremented by one.
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The preceding definition establishes that addition is primitive recursive. Both g and 
h, the components of the definition by primitive recursion, are primitive recursive since 

g =  p1}* and h — s o  .
The result of the addition of two natural numbers can be obtained from the prim

itive recursive definition of add  by repeatedly applying the condition a d d ( x , y  +  1) =  
add(x,  y)  +  1 to reduce the value of the recursive variable. For example,

add(2, 4) =  add(2, 3) +  1

=  (add(2, 2) +  1) +  1 

=  ((add(  2, 1) +  1) +  1) +  1 

=  (((add(2, 0) +  1) +  1) +  1) +  1 

=  (((2 +  1) +  1) +  1) +  1 

=  6.

When the recursive variable is zero, the function g is used to initiate the evaluation of the 
expression. □

Example 13.1.3

Let g and h be the primitive functions g = z and h =  add  o (p*^, p(^ ) .  Multiplication can 
be defined by primitive recursion from g and h as follows:

mult(x ,  0) =  g(x) =  0

mult(x ,  y  +  1) =  h(x, y, m u lt(x ,  >>)) =  mult(x ,  y)  +  x.

The infix expression corresponding to the primitive recursive definition is the identity 
x • (y +  1) =  x  • y  +  x,  which follows from the distributive property of addition and multi
plication. □

Adopting the convention that a zero-variable function is a constant, we can use Defi
nition 13.1.1 to define one-variable functions using primitive recursion and a two-variable 
function h . The definition of such a function /  has the form

i) / ( 0 )  =  n0, where n0 G N

ii) f ( y +  1 ) =  h(y, f ( y ) ) .

Example 13.1.4

The one-variable factorial function defined by

1 i fy  =  0
fact(y) =

f l  i otherwise 
i=i
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is primitive recursive. Let h(x,  y ) =  mult  o ( p ^ \  s o p ^ )  =  y • (x +  1). The factorial 
function is defined using primitive recursion from h by

fact(0) -  1

fac t(y  +  1) =  h (y , fa c t (y )) =fact(y )  • (y +  1).

Note that the definition uses y  +  1, the value of the recursive variable. This is obtained by 
applying the successor function to y,  the value provided to the function h.

The evaluation of the function fact  for the first five input values illustrates how the 
primitive recursive definition generates the factorial function.

fact(  0) =  1

fac t( l)  =  fact(0) • (0 +  1) =  1 

fact(2) = fac t ( l )  • (1 +  1) =  2 

factO) =fact(2)  • (2 +  1) =  6 

fact(4) =  factO)  • (3 +  1) =  24 

The factorial function is usually denoted f a c t ( x )  = x \ .  □

The primitive recursive functions were defined as a family of intuitively computable 
functions. The Church-Turing Thesis asserts that these functions must also be computable 
using our Turing machine approach to functional computation. The Theorem 13.1.3 shows 
that this is indeed the case.

Theorem 13.1.3

Every primitive recursive function is Turing computable.

Proof. Turing machines that compute the basic functions were constructed in Section 9.2. 
To complete the proof, it suffices to prove that the Turing computable functions are closed 
under composition and primitive recursion. The former was established in Section 9.4. All 
that remains is to show that the Turing computable functions are closed under primitive 
recursion; that is, if /  is defined by primitive recursion from Turing computable functions 
g and h, then /  is Turing computable.

Let g and h be Turing computable functions and let /  be the function

/ ( * l......... 0) =  « ( * , , . . . ,  *„)

f i x ,......... x„, y  +  1) = h (x x------ - xn, y,  / ( * , , . . . ,  xn, y))

defined from g and h by primitive recursion. Since g and h are Turing computable, there 
are standard Turing machines G and H that compute them. A composite machine F is 
constructed to compute / .  The computation of f ( x x, x2, , x„, y)  begins with tape 
configuration B x tB x 2B . . .  B x nByB .

1. A counter, initially set to 0, is written to the immediate right of the input. The counter 
is used to record the value of the recursive variable for the current computation.
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The parameters are then written to the right of the counter, producing the tape con

figuration

B x xB x 2B . . .  B x„ B yB Q B xiB x 2B ..  . Bx„B.

2. The machine G is run on the final n values of the tape, producing

B x xB x 2B . . . B x nByB Q B g(xx, x 2, . . . ,  x„)B.

The computation of G generates g (x lt x 2, . . . ,  xn) =  f ( x h x 2......... x„, 0).

3. The tape now has the form

B x xB x 2B . . .  B x nB y B i B  f ( x h x2......... x„, i)B.

If the counter i is equal to y,  the computation of / (jci, x2......... ■*„, y)  is completed by
erasing the initial n + 2 numbers on the tape and translating the result to tape position 
one.

4. If /' <  y, the tape is configured to compute the next value of / .

B x xB x 2B . , .  B x nB y B i  +  \ B x xB x 2B . . .  B x „ B iB / ( jcj, x 2, . . . ,  x n, i)B

The machine H is run on the final n + 2 values on the tape, producing

B x xB x 2B . . .  B x„ B yB i + lB h (x x, x2, . . . ,  x„, i, f ( x \ ,  x 2, . . . ,  x„, i))B,

where the rightmost value on the tape is f ( x i, x2......... x„, i +  1). The computation
continues with the comparison in step 3. ■

13.2 Some Primitive Recursive Functions

A function is primitive recursive if it can be constructed from the zero, successor, and pro
jection functions by a finite number of applications of composition and primitive recursion. 
Composition permits g and h, the functions used in a primitive recursive definition, to utilize 
any function that has previously been shown to be primitive recursive.

Primitive recursive definitions are constructed for several common arithmetic functions. 
Rather than explicitly detailing the functions g and h, a definition by primitive recursion 
is given in terms o f the parameters, the recursive variable, the previous value of the 
function, and other primitive recursive functions. Note that the definitions of addition and 
multiplication are identical to the formal definitions given in Examples 13.1.2 and 13.1.3, 
with the intermediate step omitted.

Because of the compatibility with the operations of composition and primitive recur
sion, the definitions in Tables 13.1 and 13.2 are given using the functional notation. The 
standard infix representations of the binary arithmetic functions, given below the function
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TABLE 13.1 Pr im itive  R ecu rs ive  A r i th m et ic  F u n c t io n s

Description Function Definition

Addition add(x, y) 

x +  y

add(x, 0) =  x

add(x, y + 1) =  add{x, y) + 1

Multiplication mult(x, y) 
x • y

mult(x, 0) =  0
mult(x, y +  1) =  mult(x, y) + x

Predecessor pred(y) pred(0 )=  0 

pred(y +  1) =  y

Proper subtraction sub(x, y) 

x - y

sub(x, 0) =  x

sub(x, y +  1) =  pred(sub(x, y))

Exponentation exp(x, y ) 

x>

exp(x, 0) =  1

exp(x, y +  1) =  exp(x, y) • x

names, are used in the arithmetic expressions throughout the chapter. The notation “+  1” 
denotes the successor operator.

A primitive recursive predicate is a primitive recursive function whose range is the set 
{0, 1}. Zero and one are interpreted as false and true, respectively. The first two predicates 
in Table 13.2, the sign predicates, specify the sign of the argument. The function sg is true 
when the argument is positive. The complement of sg, denoted cosg, is true when the input 
is zero. Binary predicates that compare the input can be constructed from the arithmetic 
functions and the sign predicates using composition.

TABLE 13.2 Primitive Recursive Predicates

Description Predicate Definition

Sign s g M i*(0) =  0 

*giy +  l) =  l

Sign complement cosg(x) cosg(0) =  1 

cosg(y +  1) =  0

Less than lt(x, y) s g ( y - x )

Greater than gt(x, y) sg(x -  y)

Equal to eq(x, y) cosg(lt(x, y) +gt(x,  y))

Not equal to ne(x, y) cosg(eq(x, y))
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Predicates are functions that exhibit the truth or falsity of a proposition. The logical 
operations negation, conjunction, and disjunction can be constructed using the arithmetic 
functions and the sign predicates. Let p\  and p i  be two primitive recursive predicates. 
Logical operations on p\  and p j  can be defined as follows:

Predicate Interpretation

c o s g ( P i )  not p t

Pi • Pi Pi and Pi

sgiPi +  Pi) Pi or p2

Applying cosg to the result of a predicate interchanges the values, yielding the negation 
of the predicate. This technique was used to define the predicate ne from the predicate eq. 
Determining the value of a disjunction begins by adding the truth values of the component 
predicates. Since the sum is 2 when both of the predicates are true, the disjunction is obtained 
by composing the addition with sg. The resulting predicates are primitive recursive since 
the components of the composition are primitive recursive.

Example 13.2.1

The equality predicates can be used to explicitly specify the value of a function for a finite 
set of arguments. For example, /  is the identity function for all input values other than 0,
1, and 2:

2

©IIHJt! f ( x )  = eqix,  0) • 2
5 i f x =  1 +  eqix,  1) • 5
4 if*  =  2 +  eq{x, 2) 4
X otherwise + g t ix ,  2 ) . X .

The function /  is primitive recursive since it can be written as the composition of primitive 
recursive functions eq, gt,  •, and + . The four predicates in /  are exhaustive and mutually 
exclusive; that is, one and only one of them is true for any natural number. The value of /  
is determined by the single predicate that holds for the input. □

The technique presented in the previous example, constructing a function from exhaus
tive and mutually exclusive primitive recursive predicates, is used to establish the following 
theorem.

Theorem 13.2.1

Let g be a primitive recursive function and /  a total function that is identical to g for all but 
a finite number of input values. Then /  is primitive recursive.
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Proof. Let g be primitive recursive and let /  be defined by

yi if x  =  n |

P
if x  = n2

yt if x  =  nk

g(x) otherwise,

The equality predicate is used to specify the values of /  for input nj, For all other
input values, / ( x ) =  g(x).  The predicate obtained by the product

ne(x,  nj) • ne(x, n2) ......... ne(x, nk)

is true whenever the value of /  is determined by g. Using these predicates, /  can be written

f ( x )  =  eq(x,  /I,) • y, +  eq(x, n2) • y2 + ----- 1- eq(x, nk) - yk

+ ne(x,  « |)  • ne(x , n2) ..........ne{x , nk) • g{x).

Thus /  is also primitive recursive. ■

The order of the variables is an essential feature of a definition by primitive recursion. 
The initial variables are the parameters and the final variable is the recursive variable. 
Combining composition and the projection functions permits a great deal of flexibility 
in specifying the number and order of variables in a primitive recursive function. This 
flexibility is demonstrated by considering alterations to the variables in a two-variable 
function.

Theorem 13.2.2

Let g(x, y)  be a primitive recursive function. Then the functions obtained by

i) (adding dummy variables) / Qt, y, z2, . . . ,  z„) = g(x,  y)

ii) (permuting variables) / ( x,  y)  =  g(y, x)

iii) (identifying variables) f ( x )  =  g ( x , x )  

are primitive recursive.

Proof. Each of the functions is primitive recursive since it can be obtained from g and the 
projections by composition as follows:

o  / = * o o>(r 2v r 2))

ii) f = g ° ( p a2 , P{f )

iii) /  =  £ ° ( p lj \  P*!*). ■

Dummy variables are used to make functions with different numbers of variables 
compatible for composition. The definition of the composition h o (g,, g2) requires that g t
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and £ 2  have the same number of variables. Consider the two-variable function /  defined by 
f ( x ,  y) =  (jc • y) + x\. The constituents of the addition are obtained from a multiplication 
and a factorial operation. The former function has two variables and the latter has one. 
Adding a dummy variable to the function fact  produces a two-variable function fact' 
satisfying/acr'Cx, y) =fact(x )  =  *!. Finally, we note that /  =  add  o (mult,  fact')  so that 
/  is also primitive recursive.

13.3 Bounded Operators

The sum of a sequence of natural numbers can be obtained by repeated applications of 
the binary operation of addition. Addition and projection can be combined to construct 
a function that adds a fixed number of arguments. For example, the primitive recursive 
function

add  o (p*'}*, add  o ( p ^ , add  o ( p ^ , p ^ ) ) )

returns the sum of its four arguments. This approach cannot be used when the number of 
summands is variable. Consider the function

y

f ( y )  = 5 2  *(*) =  *<°> +  * 0 )  +  • • • +  g(y)-
i=0

The number of additions is determined by the input variable y. The function /  is called 
the bounded sum of g. The variable i is the index of the summation. Computing a bounded 
sum consists of three actions: the generation of the summands, binary addition, and the 
comparison of the index with the input y.

We will prove that the bounded sum of a primitive recursive function is primitive 
recursive. The technique presented can be used to show that repeated applications of any 
binary primitive recursive operation is also primitive recursive.

Theorem 13.3.1

Let g(jr,, y) be a primitive recursive function. Then the functions

y
I ) (bounded sum) / ( * , ......... x„, y) =  £  ... ............... ... i)

i=0
>•

I I ) (bounded product) / ( * , , . . . ,  x„, y)  =  f [  S (*i......... x„, i)
1=0

are primitive recursive.

Proof. The sum

y

H  «(*i. ••••■*„.  0
1=0
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is obtained by adding g(xl t . . . ,  x„, y)  to

y - i

52 2(JC*.......i)-
i=0

Translating this into the language of primitive recursion, we get 

f ( x \ ......... xn, 0 )  =  g(jc,...........*n, 0)

f ( x  i ...........x„, y  +  1) =  / ( a t , ...........x„, y )  +  g (x t, . . . , x „ , y + l ) .  ■

The bounded operations just introduced begin with index zero and terminate when the 
index reaches the value specified by the argument y. Bounded operations can be generalized 
by having the range of the index variable determined by two computable functions. The 
functions I and u are used to determine the lower and upper bounds of the index.

Theorem 13.3.2

Let g be an n +  1-variable primitive recursive function and let I and u be n-variable primitive 
recursive functions. Then the functions

M(*l....*n)
>) / ( *  1......... x„) =  £  g(*,, . . . , X „ ,  «)

i=/U|....jt„)
....■**)

ii) f i x  i......... x„ )=  n  8(xi, . . . , x „ ,  /)
i=IU i.....x„)

are primitive recursive.

Proof. Since the lower and upper bounds of the summation are determined by the functions 
/ and u, it is possible that the lower bound may be greater than the upper bound. When this 
occurs, the result of the summation is assigned the default value zero. The predicate

g t( l (x lt . . . ,  x„), u (x t......... *„))

is true in precisely these instances.
If the lower bound is less than or equal to the upper bound, the summation begins with

index /(* |......... x„) and terminates when the index reaches u(x i ...........x„). Let g’ be the
primitive recursive function defined by

g'iX 1.....>0 =  g(*|......... X„, y +  1(X|, .... AT„)).

The values of g' are obtained from those of g and I (xh . . . ,  x„):

g ’i x i......... x„, 0) =  g(*,, . . . ,  x„, /(at,...........x n))

g \ x h . . . , x n, l ) ~  g(x  i......... x„, 1 +  /(at,------ - x„))

g’ix i ..........x n, y ) =  ^( a :,........... x „ ,y  +  / ( a t , ........... x„)).
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By Theorem 13.3.1, the function

y

/ '(* ! ,  . . . , x „ , y )  = Y ^  * '(* l. • • • - 0  
1=0

y+Hx i.....x„)

l = f ( * | ...... X „ )

is primitive recursive. The generalized bounded sum can be obtained by composing / '  with 
the functions u and I:

«Ui.....x„)

f ' ( x ..............  1..........xn) - l { x x...........* „ ) ) )=  g (x t, . . . ,  x„, i).
i=K x i.... x„)

Multiplying this function by the predicate that compares the upper and lower bounds ensures 
that the bounded sum returns the default value whenever the lower bound exceeds the upper 
bound. Thus

f ( x , ----- - x„) =  cosg(,gt(l(xx......... x„), u{xx------ - *„)))

• / ' ( * i......... xn, («(* ,...........x „ ) ~  l ( x x...........^ „ )» .

Since each of the constituent functions is primitive recursive, it follows that /  is also 
primitive recursive.

A similar argument can be used to show that the generalized bounded product is 
primitive recursive. When the lower bound is greater than the upper, the bounded product 
defaults to one. ■

The value returned by a predicate p  designates whether the input satisfies the property 
represented by p. For fixed values j t i , . . . ,  xn,

f iz[p{xu . . . , x „ ,  z)]

is defined to be the smallest natural number z such that p ( x x......... xn, z) =  1. The notation
n z[p (x x, . . . ,  x„, z)] is read “the least z satisfying p ( x {, . . .  ,x„,  z).” This construction is 
called the minimalization of p,  and /xz is called the //-operator. The minimalization of an 
n +  1-variable predicate defines an n -variable function

/ ( o r , , . . . ,  xn) = f iz[p(x i ......... z)].

An intuitive interpretation of minimalization is that it performs a search over the natural 
numbers. Initially, the variable z is set to zero. The search sequentially examines the natural 
numbers until a value of z for which p ( x x, . . . ,  x„, z) =  1 is encountered.
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Unfortunately, the function obtained by the minimalization of a primitive recursive 
predicate need not be primitive recursive. In fact, such a function may not even be total. 

Consider the function

f i x )  = p.z[eq{x, z • z)J.

Using the characterization of minimalization as search, /  searches for the first z  such that 
z2 =  x.  If x  is a perfect square, then f i x )  returns the square root of x.  Otherwise, /  is 

undefined.
By restricting the range over which the minimalization occurs, we obtain a bounded 

minimalization operator. An n +  1-variable predicate defines an n +  1-variable function

f i x  i......... x„ ,y )  = /lz lp ix \ ,  ■ ■ ■ ,  xn, z)]

z if p {xh . . . ,  x„, i) =  0 for 0 < i' <  z <  y  
and p i x i , . . . ,  x„, z) =  1 

y  +  1 otherwise.

The bounded p.-operator returns the first natural number z less than or equal to y for which
p ix  i.........x n, z) =  1. If no such value exists, the default value of y  +  1 is assigned. Limiting
the search to the range of natural numbers between zero and y  ensures the totality of the 
function

/ ( * , ,  . . . , x „ , y )  = / l z [p (xh . . . , x n, z)J.

In fact, the bounded minimalization operator defines a primitive recursive function when
ever the predicate is primitive recursive.

Theorem 13.3.3

Let p ( x | , . . . ,  x„, y)  be a primitive recursive predicate. Then the function 

f i x  i......... x„ ,y )  =  i l z lp ix f------- xn, z)]

is primitive recursive.

Proof. The proof is given for a two-variable predicate p ix ,  y) and easily generalizes to 
w-variable predicates. We begin by defining an auxiliary predicate

* < * • » = ( !  i f£ < * • / > = 0 f o r 0 * f ^  
( 0 otherwise

y
= n  cosg ip ix ,  o ) .

1=0

This predicate is primitive recursive since it is a bounded product of the primitive recursive 
predicate cosg o p.
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The bounded sum of the predicate g produces the bounded p.-operator. To illustrate the 
use of g in constructing the minimalization operator, consider a two-variable predicate p 
with argument n whose values are given in the left column:

0

p(n,  0) =  0 g(n, 0) =  1 ^  g(n, i ) =  1
i=0

1
p(n,  1) =  0 g(n,  1) =  1 ^ g ( n , 0  =  2

1=0

2

p(n,  2 ) = 0  g(n,  2) =  1 ^ g ( n , i ' )  =  3
i'= 0

3
p(n,  3) =  1 g(n, 3 ) = 0  ^ g ( n , « ' )  =  3

1=0

4
p(n,  4) =  0 g ( n , 4 ) = 0  ^  g(n,  Q =  3

1= 0

5
p( n , 5)  =  l g ( n , 5 ) = 0  ^ g ( w , / )  =  3

1=0

The value of g is one until the first number z with p(n , z) =  1 is encountered. All subsequent 
values of g are zero. The bounded sum adds the results generated by g. Thus

i f z > y  
otherwise.

The first condition also includes the possibility that there is no z satisfying p(n ,  z) =  1. In 
this case the default value is returned regardless of the specified range.

By the preceding argument, we see that the bounded minimalization o f a primitive 
recursive predicate p  is given by the function

y
f ( x , y ) =  f l z [p (x , z)] =  ^  g (x t o ,  

i = 0

and consequently is primitive recursive. ■

y
Bounded minimalization f ( y ) =  p.z[p(x,  z)] can be thought of as a search for the first 

value of z in the range 0 to y  that makes p  true. Example 13.3.1 shows that minimalization 
can also be used to find first value in a subrange or the largest value z in a specified range 
that satisfies p.
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Example 13.3.1

Let p(x,  z) be a primitive recursive predicate. Then the functions

i) / i (* .  yo< y ) =  first value in the range [y0, y] for which p(x ,  z) is true,

ii) / 2(jr, y) =  the second value in the range [0, y] for which p(x,  z ) is true, and

iii) fo(x,  y)  =  the largest value in the range [0, y] for which p(x,  z) is true

are also primitive recursive. For each of these functions, the default is y  +  1 if there is no 
value of z that satisfies the specified condition.

To show that f \  is primitive recursive, the primitive recursive function ge,  greater than 
or equal to, is used to enforce a lower bound on the value of the function. The predicate 
p(x,  z) • ge(z, yg) is true whenever p(x ,  z) is true and z is greater than or equal to y$. The 
bounded minimalization

f \ ( x ,  yo, y) =  d z lp ( x ,  z) • ge(z, y0)],

returns the first value in the range [y0, y] for which p(x ,  z) is true.

The minimalization uz '[p(x ,  z ')] is the first value in [0, }>] for which p(x ,  z) is true.y
The second value that makes p(x ,  z) true is the first value greater than ixz'[p(x,  z')] that 
satisfies p. Using the preceding technique, the function

f l i x ,  y) =  £z[p{x ,  z) ■ s '( z ,  l*z'[p(x, z ')])]

returns the second value in the range [0, >>] for which p  is true.
A search for the largest value in the range [0, y] must sequentially examine y, y — 1,

y
y  — 2 , . . . ,  1, 0. The bounded minimalization f iz[p(x, y — z)] examines the values in the 
desired order; when z =  0, p(x ,  y)  is tested, when z =  1, p(x,  y — 1) is tested, and so on.

y
The function f ' ( x ,  y) — y  — f.tz[p(x, y — z)] returns the largest value less than or equal to 
y  that satisfies p. However, the result of / '  is y — (>> +  1) =  0 when no such value exists. A 
comparison is used to produce the proper default value. The first condition in the function

h i x ,  y) =  eq(y + 1, / Iz[p(x , z)]) • ( > + ! ) +  neq(y  +  1, f lz[p(x,  z)]) • / ' ( * ,  y))

returns the default y  +  1 if there is no value in [0, y] that satisfies p. Otherwise, the largest 
such value is returned. □

Bounded minimalization can be generalized by computing the upper bound of the 
search with a function u. If u is primitive recursive, so is the resulting function. The proof 
is similar to that of Theorem 13.3.2 and is left as an exercise.
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Theorem 13.3.4

Let p  be an n +  1-variable primitive recursive predicate and let u be an ^-variable primitive 
recursive function. Then the function

H ( X | . . . . . . X „ )

f ( x  1......... X„)= f lZ  [p(xx...........x„ ,z)  ]

is primitive recursive.

13.4 Division Functions

The fundamental operation of integer division, div, is not total. The function d iv (x ,  y)  
returns the quotient, the integer part of the division of x  by y,  when the second argument is 
nonzero. The function is undefined when y  is zero. Since all primitive recursive functions 
are total, it follows that div  is not primitive recursive. A primitive recursive division function 
quo  is defined by assigning a default value when the denominator is zero:

/ . J 0  if  jy =  o
quo x , y  |  y  ̂ otherwise.

The division function quo  is constructed using the primitive recursive operation of mul
tiplication. For values of y  other than zero, quo(x, y) =  z implies that z satisfies z • y < 
x  < (z +  1) • y. That is, quo{x , y)  is the smallest natural number z such that (z 4- 1) • y  is 
greater than x.  The search for the value of z that satisfies the inequality succeeds before z 
reaches x  since (x +  1) • y  is greater than x.  The function

l l z [g t ( (z+  l)-;y,  *)]

determines the quotient of x  and y  whenever the division is defined. The default value is 
obtained by multiplying the minimalization by sg()>). Thus

quo(x, y)  =  sg(y) • ilz[gt((z +  1) • y,  *)],

where the bound is determined by the primitive recursive function . The previous 
definition demonstrates that quo  is primitive recursive since it has the form prescribed by 
Theorem 13.3.4.

The quotient function can be used to define a number of division-related functions and 
predicates including those given in Table 13.3. The function rem returns the remainder of 
the division of x  by y  whenever the division is defined. Otherwise, rem (x , 0) =  x.  The 
predicate divides defined by

divides(x, y) =  I 1 if * >  ° ’ y  > ° ’ and y  is a divisor of x
I 0 otherwise

is true whenever y  divides x.  By convention, zero is not considered to be divisible by any 
number. The multiplication by sg(x)  in the definition of divides in Table 13.3 enforces this 
condition. The default value of the remainder function guarantees that divides(x, 0) =  0.
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TABLE 13.3  Pr im itive  R ecu rs ive  D iv is ion  F u n c t io n s

Description Function Definition

Quotient quo(x, y) sg(y) ■ixz[gt(.(z+ 1) • y. *)]

Remainder rem(x, y) x -  (y-quote,  >>))

Divides divides(x, y) eq(rem(x, y), 0) •

Number of divisors ndivisors(x, y)
X

£  divides(x, i) 
i=0

Prime prime(x) eq(ndivisors(x), 2)

The generalized bounded sum can be used to count the number of divisors of a number. 
The upper bound of the sum is obtained from the input by the primitive recursive function 
p']*. This bound is satisfactory since no number greater than at is a divisor of x.  A prime 
number is a number whose only divisors are 1 and itself. The predicate prime simply checks 
if the number of divisors is two.

The predicate prime and bounded minimalization can be used to construct a primitive 
recursive function pn  that enumerates the primes. The value of pn(i)  is the /th  prime. Thus, 
pn(0) =  2, prt(l) =  3, pn(2) =  5, p n(3) =  7, . . .  . The x  +  1st prime is the first prime 
number greater than prt(x). Bounded minimalization is ideally suited for performing this 
type of search. To employ the bounded ^i-operator, we must determine an upper bound 
for the minimalization. By Theorem 13.3.4, the bound may be calculated using the input 
value x.

Lemma 13.4.1

Let pn(x)  denote the jcth prime. Then pn(x  +  1) <  pn(x)\  +  1.

Proof. Each of the primes pn(i),  i =  0, 1, . . . , x,  divides pn(x)\.  Since a  prime cannot 
divide two consecutive numbers, either pn (x ) ! +  1 is prime or its prime decomposition con
tains a prime other than pn  (0), pn(  1), . . . , pn(x).  In either case, pn(x  +  1) < pn(x: ) !+  1.

■

The bound provided by the preceding lemma is computed by the primitive recursive 
function fact(x)  +  1. The *th prime function is obtained by primitive recursion as follows:

pn  (0) =  2

/ac7(/wr(.r))+l
pn(x  +  1) =  fiz [prime(z)  * g t ( z , pn(x))].

Let us take a moment to reflect on the consequences of the relationship between the 
family of primitive recursive functions and Turing computability. By Theorem 13.1.3, every
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primitive recursive function is Turing computable. Designing Turing machines that explic
itly compute functions such as pn  or ndivisors would require a large number of states and 
a complicated transition function. Using the macroscopic approach to computation, these 
functions are easily shown to be computable. Without the tedium inherent in constructing 
complicated Turing machines, we have shown that many useful functions and predicates 

are Turing computable.

13.5 Godel Numbering and Course-of-Values Recursion

Many common computations involving natural numbers are not number-theoretic functions. 
Sorting a sequence of numbers returns a sequence, not a single number. However, there are 
many sorting algorithms that we consider effective procedures. We now introduce primitive 
recursive constructions that allow us to perform this type of operation. The essential feature 
is the ability to encode a sequence of numbers in a single value. The coding scheme utilizes 
the unique decomposition of a natural number into a product of primes. Such codes are 
called Godel numberings after German logician Kurt Godel, who developed the technique. 

A sequence x0, x \ , . . .  , xn_ t of n natural numbers is encoded by

pn(0)*0+1 • /?n(l)*l+ I ..........pn(n)x"+i =  2x°+l • 3*l+1........... pn(n)x”+1.

Since our numbering begins with zero, the elements of a sequence of length n are numbered 
0, 1 ,. . . , n — 1. Examples of the Godel numbering of several sequences are

Sequence Encoding

1,2 2233 =  108

0,1,3 2'3254 =  11,250

0, 1,0, 1 2'325'72 =4,410

An encoded sequence of length n is a product of powers of the first n primes. The choice 
of the exponent x t +  1 guarantees that pn(i)  occurs in the encoding even when Xj  is zero.

The definition of a function that encodes a fixed number of inputs can be obtained 
directly from the definition of the Godel numbering. We let

n
gn„(xo......... xn) = pn(0)*0 + l...........pn(n)x"+l =  ]"[ pn(i)x<+'

i=0

be the n +  1-variable function that encodes a sequence Xq, . . . , x„. The function gn„_i 
can be used to encode the components of an ordered n -tuple. The Godel number associated 
with the ordered pair [*0, *,] is g/ii(.x0, *i).
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A decoding function is constructed to retrieve the components of an encoded sequence. 

The function

dec(i, x)  =  ixz[cosg(divides(x, pn(/')2+1))] -  1

returns the i th element of the sequence encoded in the Godel number x .  The bounded 
^-operator is used to find the power of pn(i)  in the prime decomposition of x.  The 
minimalization returns the first value of z for which pn(i)z+l does not divide x.  The * th 
element in an encoded sequence is one less than the power of pn(i)  in the encoding. The 
decoding function dec(x, i ) returns zero for every prime pn(i)  that does not occur in the 
prime decomposition of x.

When a computation requires n previously computed values, the Godel encoding 
function gn„_i  can be used to encode the values. The encoded values can be retrieved 
when they are needed by the computation.

Example 13.5.1

The Fibonacci numbers are defined as the sequence 0, 1, 1, 2, 3, 5, 8, 13, . . .  , where an 
element in the sequence is the sum of its two predecessors. The function

/ ( 0 ) = 0  

/ ( l )  =  1

f ( y  +  1) =  f ( y )  + f ( y  -  1) for y  >  1

generates the Fibonacci numbers. This is not a definition by primitive recursion since the 
computation of f ( y  +  1) utilizes both /(> ’) and f ( y  — 1). To show that the Fibonacci 
numbers are generated by a primitive recursive function, the Godel numbering function 
gn ] is used to store the two values as a single number. An auxiliary function h encodes the 
ordered pair with first component f ( y  — 1) and second component / (y):

h(0) =  g n l(0, 1) =  2*32 =  18

h{y  +  1) =  g n x(dec( \ , h(y)),  dec(0, h(y)) + d e c (  1, h(y))) .

The initial value of h is the encoded pair [ /(0 ) ,  / ( l ) ] .  The calculation of h{y +  1) begins 
by producing the components of the subsequent ordered pair

[dec( 1, /i(;y)), dec(0, h(y))  +  dec(  1, h(y))] =  [ f ( y ) ,  f ( y  -  1) +  f (y )] .

Encoding the pair with g n { completes the evaluation of h(y  +  1). This process constructs
the sequence of Godel numbers of the pairs [ /(0 ) ,  / ( l ) ] ,  [ / ( l ) ,  /(2 )] ,  [ / (2 ) ,  / (3 ) ] ..........
The primitive recursive function / (y) =  dec(0, h (y)) extracts the Fibonacci numbers from 
the first components of the ordered pairs. □

The Godel numbering functions gn, encode a fixed number of arguments. A Godel 
numbering function can be constructed in which the number of elements to be encoded
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is computed from the arguments of the function. The approach is similar to that taken in 
constructing the bounded sum and product operations. The values of a one-variable primitive 
recursive function /  with input 0, 1, . . . , n define a sequence / ( 0 ) ,  / ( l ) ,  . . . , f ( n )  of 
length n +  1. Using the bounded product, the Godel numbering function

y
g n f (xx----- - x„ ,y )  =  n pn( i) fU)+l

i=0

encodes the first y  +  1 values of / .  The relationship between a function /  and its encoding 
function gny is established in Theorem 13.5.1.

Theorem 13.5.1

Let f  be an n +  1-variable function and gn y the encoding function defined from / .  Then 
/  is primitive recursive if, and only if, gn y is primitive recursive.

Proof. If / (jct......... xn, y )  is primitive recursive, then the bounded product

y

gn f (xx. . . . ,  x„, y)  =  ]""[ p n( i) /(x '....
i = 0

computes the Godel encoding function. On the other hand, the decoding function can be 
used to recover the values of /  from the Godel number generated by gn f .

f ( x x, . . . , x „ , y ) =  dec (y , gn f (xx......... x „, >>)).

Thus f  is primitive recursive whenever gny is. ■

The primitive recursive functions have been introduced because of their intuitive com
putability. In a definition by primitive recursion, the computation is permitted to use the 
result of the function with the previous value of the recursive variable. Consider the function 
defined by

/( 0 ) =  1

/ ( l ) =  / ( 0 ) • 1 = 1

/ ( 2 ) =  / (  0) •2  + / ( l ) •1 =  3

/(3 ) =  / ( 0 ) •3 + / ( l )  •■ 2 +  / ( 2 )  -1 =  8

/ ( 4 ) =  / ( 0 ) •4  + / ( ! ) ■ ■ 3 +  / ( 2 )  • 2 +  /(3 )

The function /  can be written as

/ ( 0 )  =  1

y

f ( y  + 1) =  5 2  f {i) • O' +  1 -  ')•  
i=0
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The definition, as formulated, is not primitive recursive since the computation of 
f ( y  +  1) utilizes all of the previously computed values. The function, however, is intu
itively computable; the definition itself outlines an algorithm by which any value can be 
calculated.

When the result of a function with recursive variable y  +  1 is defined in terms of 
/ ( 0 ) ,  / ( l ) ,  . . . , /(> ’), the function /  is said to be defined by course-of-values recursion. 
Determining the result of a function defined by course-of-values recursion appears to utilize 
a different number of inputs for each value of the recursive variable. In the preceding 
example, / ( 2 )  requires only / ( 0 )  and / ( l ) ,  while / ( 4 )  requires / ( 0 ) ,  / ( l ) ,  / ( 2 ) ,  and 
/(3 ) .  No single function can be used to compute both / ( 2 )  and / ( 4 )  directly from the 
preceding values since a function is required to have a fixed number of arguments.

Regardless of the value of the recursive variable y +  1, the preceding results can be 
encoded in the Godel number gn f ( y ) .  This observation provides the framework for a formal 
definition of course-of-values recursion.

Definition 13.5.2

Let g and h be n +  2-variable total number-theoretic functions, respectively. The 
n +  1-variable function /  defined by

i) / ( * , ,  . . . ,  x„, 0) =  g (x ,......... x„)

») / ( *  i......... xn, y +  1) =  h(xh . . . , x „ , y ,  gn f (x .......... .. xn, y))

is said to be obtained from g and h by course-of-values recursion.

Theorem 13.5.3

Let /  be an n +  1-variable function defined by course-of-values recursion from primitive 
recursive functions g and h. Then /  is primitive recursive.

Proof. We begin by defining g n y by primitive recursion directly from the primitive 
recursive functions g and h.

gn f (xx......... x„, 0) =  2f u '..... *»-0)+1

=  2*(;ti....*»>+1

gn f (xh . . . ,  xn, y  +  1) =  gn f (xx, . . . ,  x„, y)  • p n(y  +  l)/(*'....•r->’+ 1>+1

=  g n f (xx, . . . , x „ , y ) -  p n (y  +  1)A<*...... i.... -w » + i

The evaluation of gn f (xx, . . . ,  xn, y +  1) uses only

i) the parameters x0, . . . , x„,

ii) y,  the previous value of the recursive variable,

iii) gn f ( x x, . . . ,  x„, y),  the previous value of gn y, and

iv) the primitive recursive functions h, pn,  •, + ,  and exponentiation.

Thus, the function gn f  is primitive recursive. By Theorem 13.5.1, it follows that /  is also 
primitive recursive. ■
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In mechanical terms, the Godel numbering gives computation the equivalent of unlim
ited memory. A single Godel number is capable of storing any number of preliminary re
sults. The Godel numbering encodes the values / ( xQ, 0), / (x0..........x„, 1), . . . ,
f ( x 0, . . . ,  x„, y)  that are required for the computation of f ( x 0......... x „ , y +  1). The decod
ing function provides the connection between the memory and the computation. Whenever 
a stored value is needed by the computation, the decoding function makes it available.

Example 13.5.2

Let h be the primitive recursive function

X

h(x,  y)  =  ^ 2  dec(i, y) • (x +  1 -  /'). 
i = 0

The function / ,  which was defined earlier to introduce course-of-values computation, can 
be defined by course-of-values recursion from h.

/ ( 0 )  =  1

/ O ' +  1) =  h(y,  gn f (y)) =  ^  dec(i, gn f (y)) • (y  +  1 -  i) 
i = 0  

y

=  /(*') • 0> +  1 -  0  □  
;=0

13.6 Computable Partial Functions

The primitive recursive functions were defined as a family of intuitively computable func
tions. We have established that all primitive recursive functions are total. Conversely, are all 
computable total functions primitive recursive? Moreover, should we restrict our analysis 
of computability to total functions? In this section we will present arguments for a negative 
response to both of these questions.

We will use a diagonalization argument to establish the existence of a total computable 
function that is not primitive recursive. The first step is to show that the syntactic structure 
of the primitive recursive functions allows them to be effectively enumerated. The ability 
to list the primitive recursive functions permits the construction of a computable function 
that differs from every function in the list.

Theorem 13.6.1

The set of primitive recursive functions is a proper subset of the set of effectively computable 
total number-theoretic functions.

Proof. The primitive recursive functions can be represented as strings over the alphabet 

L =  {s, p, z, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ( , ) ,  o, :, (,)}. The basic functions s,  z, and p(0
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are represented by (s), (z), and (p i ( j )). The composition h o (g(, . . . ,  g„) is encoded 
((h) o ( (g , ) , . . . .  {#„»), where (/i) and (g,) are the representations of the constituent 
functions. A function defined by primitive recursion from functions g and h is represented 

by {(g) : </>»•
The strings in £* can be generated by length: first the null string, followed by strings of

length one, length two, and so on. A straightforward mechanical process can be designed to
determine whether a string represents a correctly formed primitive recursive function. The
enumeration of the primitive recursive functions is accomplished by repeatedly generating
a string and determining if it is a syntactically correct representation of a function. The first
correctly formed string is denoted / 0, the next f x, and so on. In the same manner, we can
enumerate the one-variable primitive recursive functions. This is accomplished by deleting
all n-variable functions, n > 1, from the previously generated list. This sequence is denoted 
/<i) f(i) #<i)
/  0 * j  \ ' j  2 ' • • • •

The total one-variable function

g (o  = f ! ) (o  + 1

is effectively computable. The effective enumeration of the one-variable primitive recursive 
functions establishes the computability of g. The value g(i)  is obtained by

i) determining the i th one-variable primitive recursive function /*'*,

ii) computing / ^ O  ), and

iii) adding one to / <)) (/).

Since each of these steps is effective, we conclude that g is computable. By the familiar 
diagonalization argument,

for any i . Consequently, g is total and computable but not primitive recursive. ■

Theorem 13.6.1 used diagonalization to demonstrate the existence of computable func
tions that are not primitive recursive. This can also be accomplished directly by constructing 
a computable function that is not primitive recursive. The two-variable number-theoretic 
function, known as Ackermann's function, defined by

i) /1(0, y) = y +  1

ii) A(x  +  1, 0) =  A{x,  1)

iii) A(x  +  1, y +  1) =  A(x,  A(x  +  1, y))

is one such function. The values of A are defined recursively with the basis given in condition 
(i). A proof by induction on x  establishes that A is uniquely defined for every pair of input 
values (Exercise 22). The computations in Example 13.6.1 illustrate the computability of 
Ackermann’s function.
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Example 13.6.1

The values A( 1, 1) and A(3, 0) are constructed from the definition of Ackermann’s function. 
The column on the right gives the justification for the substitution.

a) A (l, 1) =  A(0, A (1.0)) (iii)

=  A(0, A(0, 1)) (ii)

=  A(0, 2) (i)

=  3

b) A(2, 1) =  A(l ,  A(2, 0)) (iii)

=  A(l ,  A(l ,  1)) (ii)

=  A(l ,  3) (a)

=  A(0, A(1, 2) )  (iii)

=  A(0, A(0, A(l ,  1))) (iii)

=  A(0, A(0, 3)) (a)

=  A(0, 4) (i)

=  5 (i) □

The values of Ackermann’s function exhibit a remarkable rate of growth. By fixing the 
first variable, Ackermann’s function generates the one-variable functions

A(l ,  y ) = y  + 2 

A (2, y) =  2y + 3 

A(3, y)  =  2y+3 -  3

2I0

A(4, y) =  22 -  3.

The number of 2’s in the exponential chain in A(4, y)  is y.  For example, A(4, 0) =  16 — 3, 

A(4, 1) =  2 16 — 3, and A(4, 2) =  22'6 — 3. The first variable of Ackermann’s function 
determines the rate of growth of the function values. We state, without proof, the following 
theorem that compares the rate of growth of Ackermann’s function with that of the primitive 
recursive functions.

Theorem 13.6.2

For every one-variable primitive recursive function / ,  there is some i € N such that 
/O ') <  A(i, i).

Clearly, the one-variable function A(i, i) obtained by identifying the variables of A is 
not primitive recursive. It follows that Ackermann’s function is not primitive recursive. If it
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were, then A(i, /'), which can be obtained by the composition A o (p*}*, p*}*), would also 
be primitive recursive.

Is it possible to increase the set of primitive recursive functions, possibly by adding 
some new basic functions or additional operations, to include all total computable functions? 
Unfortunately, the answer is no. Regardless of the set of total functions that we consider 
computable, the diagonalization argument in the proof of Theorem 13.6.1 can be used to 
show that there is no effective enumeration of all total computable functions. Therefore, we 
must conclude that the computable functions cannot be effectively generated or that there 
are computable nontotal functions. If we accept the latter proposition, the contradiction 
from the diagonalization disappears. The reason we can claim that g is not one of the / , ’s 

is that g(i)  ^  f*? (i). If / <!, (i) t .  then g(i) =  /*'* (0  +  1 is also undefined. If we wish to 
be able to effectively enumerate the computable functions, it is necessary to include partial 
functions in the enumeration.

We now consider the computability of partial functions. Since composition and prim
itive recursion preserve totality, an additional operation is needed to construct partial func
tions from the basic functions. Minimalization has been informally described as a search 
procedure. Placing a bound on the range of the natural numbers to be examined ensures that 
the bounded minimalization operation produces total functions. Unbounded minimalization 
is obtained by performing the search without an upper limit on the set of natural numbers 
to be considered. The function

f ( x )  = f i z [ e q ( x z  • 2 )]

defined by unbounded minimalization returns the square root of x  whenever x  is a perfect 
square. Otherwise, the search for the first natural number satisfying the predicate continues 
ad infinitum. Although eq is a total function, the resulting function /  is not. For example, 
/(3 )  'f. A function defined by unbounded minimalization is undefined for input x  whenever 
the search fails to return a value.

The introduction of partial functions forces us to reexamine the operations of compo
sition and primitive recursion. The possibility of undefined values was considered in the 
definition of composition. The function h o (g), . . . ,  gn) is undefined for input x x, . . . , xk 
if either

') gi(x b • ■ •. •**) t  f°r some 1 < 1 <  n; or

») 8i(* 1......... xk) 4. for all 1 <  1 < n and h(gx(xx, . . . ,  x k), . . . g„(xx, xk)) f .

An undefined value propagates from any of the g, ’s to the composite function.
The operation of primitive recursion required both of the defining functions g and h to 

be total. This restriction is relaxed to permit definitions by primitive recursion using partial 
functions. Let /  be defined by primitive recursion from partial functions g and h.

f ( x \ ......... A:„,0 ) = g ( j r , ------ ,x„)

f ( x x, . . . ,  xn, y  + l) = h (x x......... x „ ,y ,  f ( x x...........xn, y))
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Determining the value of a function defined by primitive recursion is an iterative process. 
The function /  is defined for recursive variable y  only if the following conditions are 

satisfied:

i) f { x \ ......... 0) |  if gO*,................. x„) I

ii) f i x .............. y  +  1) I  if / ( * , ......... x„, i ) 4- for 0 < i <  y
and ................. ... y, f i x t......... xn, y)) J. .

An undefined value for the recursive variable causes /  to be undefined for all the subsequent 
values of the recursive variable.

With the conventions established for definitions with partial functions, a family of 
computable partial functions can be defined using the operations composition, primitive 
recursion, and unbounded minimalization.

Definition 13.6.3

The family of /x-recursive functions is defined as follows:

i) The successor, zero, and projection functions are /x-recursive.

ii) If h is an n-variable //-recursive function and g j......... gn are ^-variable /x-recursive
functions, then /  =  h o ( g , , . . . ,  g„) is /x-recursive.

iii) If g and h are n and n + 2-variable /x-recursive functions, then the function /  defined 
from g and h by primitive recursion is /x-recursive.

iv) If p{x\ ......... x„, y) is a total /x-recursive predicate, then /  =  f iz[p(x \ ...........x„, z)] is
/x-recursive.

v) A function is /x-recursive only if it can be obtained from condition (i) by a finite number 
of applications of the rules in (ii), (iii), and (iv).

Conditions (i), (ii), and (iii) imply that all primitive recursive functions are /x-recursive. 
Notice that unbounded minimalization is not defined for all predicates, but only for total 
/x-recursive predicates.

The notion of Turing computability encompasses partial functions in a natural way. A 
Turing machine computes a partial number-theoretic function /  if

i) the computation terminates with result / Q t , , . . . ,  xn) whenever / ( * , , .  . . ,  x„) 4, and

ii) the computation does not terminate whenever / Qtj, . . . , * „ )  t-

The Turing machine computes the value of the function whenever possible. Otherwise, the 
computation continues indefinitely.

We will now establish the relationship between the /x-recursive and Turing computable 
functions. The first step is to show that every /x-recursive function is Turing computable. 
This is not a surprising result; it simply extends Theorem 13.1.3 to partial functions.

Theorem 13.6.4

Every /x-recursive function is Turing computable.
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Proof. Since the basic functions are known to be Turing computable, the proof consists of 
showing that the Turing computable partial functions are closed under operations of com
position, primitive recursion, and unbounded minimalization. The techniques developed in 
Theorems 9.4.3 and 13.1.3 demonstrate the closure ofTuring computable total functions 
under composition and primitive recursion, respectively. These machines also establish the 
closure for partial functions. An undefined value in one of the constituent computations 
causes the entire computation to continue indefinitely.

The proof is completed by showing that the unbounded minimalization o f a Turing com
putable total predicate is Turing computable. Let / ( jrt, . . . ,  x„) =  i i z [p (x \ ......... y)]
where p ( x ) , . . . ,  xn, y)  is a total Turing computable predicate. A Turing machine to com
pute /  can be constructed from P, the machine that computes the predicate p. The initial 
configuration of the tape is B x \ B x 2B . . .  Bx„B.

1. The representation of the number zero is added to the right of the input. The search 
specified by the minimalization operator begins with the tape configuration

B x \ B x 2B . . .  B x nB0B.

The number to the right of the input, call it j ,  is the index for the minimalization 
operator.

2. A working copy of the parameters and j  is made, producing the tape configuration

B x xB x 2B . . . B x „ B j B x xB x 2B . .  . B x„ B jB .

3. The machine P is run with the input consisting of the copy of the parameters and j ,  
producing

B x xB x 2B . . . B x „ B j B p ( x h x2, . . . ,  xn, j ) B .

4. If p{x\, x 2......... xn, j ) =  1, the value of the minimalization of p  is j .  Otherwise, the
p ( x i, x2......... xn, j ) is erased, j  is incremented, and the computation continues with
step 2.

A computation terminates at step 4 when the first j  for which p ( x |, . . .  , xn, j )  =  1 is 
encountered. If no such value exists, the computation loops indefinitely, indicating that 
the function /  is undefined. ■

13.7 Turing Computability and Mu-Recursive Functions

It has already been established that every ^-recursive function can be computed by a Turing 
machine. We now turn our attention to the opposite inclusion, that every Turing computable 
function is //-recursive. To show this, a number-theoretic function is designed to simulate 
the computations of a Turing machine. The construction of the simulating function requires 
moving from the domain of machines to the domain of natural numbers. The process of
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translating machine computations to functions is known as the arithmetization of Turing 

machines.
The arithmetization begins by assigning a number to a Turing machine configuration. 

LetM  =  (Q, Z , T, 8, q0, qn) be a standard Turing machine that computes a one-variable 
number-theoretic function / .  We will construct a /^.-recursive function to numerically 
simulate the computations of M. The construction easily generalizes to functions of more 
than one variable.

A configuration of the Turing machine M consists of the state, the position of the tape 
head, and the segment of the tape from the left boundary to the rightmost nonblank symbol. 
Each of these components must be represented by a natural number. We will denote the 
states and tape alphabet by

Q  =  {<7o. <7i.......... qn)

T =  {B = a 0, /  =  ai, a2........ ak)

and the numbering will be obtained from the subscripts. Using this numbering, the tape 
symbols B and 1 are assigned zero and one, respectively. The location of the tape head can 
be encoded using the numbering of the tape positions.

0 1 2 3 4 5

The symbols on the tape to the rightmost nonblank square form a string over E*. Encoding 
the tape uses the numeric representation of the elements of the tape alphabet. The string
a,0a ( | . . .  ain is encoded by the Godel number associated with the sequence i0, /j, . . . , i„. 
The number representing the nonblank tape segment is called the tape number.

The tape number of the nonblank segment of the machine configuration

0 1 2 3 4 5 

| /  | /  |

iii
is 2*3252 =  450. Explicitly encoding the blank in position three produces 2 I32527I =  3150, 
another tape number representing the tape. Any number of blanks to the right of the 
rightmost nonblank square may be included in the tape number.

Representing the blank by the number zero permits the correct decoding of any tape 
position regardless of the segment of the tape encoded in the tape number. If dec(i, z) =  0 
and pn(i)  divides z, then the blank is specifically encoded in the tape number z. On the 
other hand, if dec(i, z) =  0 and prt(i) does not divide z, then position i is to the right of the 
encoded segment of the tape. Since the tape number encodes the entire nonblank segment 
of the tape, it follows that position i must be blank.
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A Turing machine configuration is defined by the state number, tape head position, and 
tape number. The configuration number incorporates these values into the single number

gn2(state number, tape head position, tape number),

where g n i  is the Godel numbering function that encodes ordered triples.

Example 13.7.1

The Turing machine S computes the successor function.

Ill R HI L

S:

The configuration numbers are given for each configuration produced by the computation 
of the successor of 1. Recall that the tape symbols B  and 1 are assigned the numbers zero 
and one, respectively.

State Position Tape Number Configuration Number

q0Bl IB 0 0 2'3252 =  450 g«2(0, 0, 450)

h Bq\llB 1 1 2'3252 =  450 g*2(l, 1, 450)

h Blq,lB 1 2 2'3252 =  450 gn2(\, 2, 450)

h B l lq lB 1 3 2'32527i =  3150 gn2(l, 3, 3150)
h Blq2llB 2 2 21325272111 =  242550 gn2(2, 2, 242550)

h Bq2lUB 2 1 2'325272111 =  242550 gn2(2, 1, 242550)

h q 2BlUB 2 0 2'325272111 =  242550 gn2(2, 0, 242550)

A transition of a standard Turing machine need not alter the tape or the state, but it 
must move the tape head. The change in the tape head position and the uniqueness of the 
Godel numbering ensure that no two consecutive configuration numbers of a computation 
are identical.

A function trM is constructed to trace the computations of a Turing machine M. Tracing 
a computation means generating the sequence of configuration numbers that correspond to 
the machine configurations produced by the computation. The value of trM(x, i) is the 
number of the configuration after i transitions when M is run with input x. Since the initial 
configuration of M is q0B xB ,

JC + 1
trM(x t 0) -  gn2(0y 0 , 2 ‘ . n  p n( i)2).

i = i
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The value of rrM(jt, y  +  1) is obtained by manipulating the configuration number trM(x, y) 
to construct the encoding of the subsequent machine configuration.

The state and symbol in the position scanned by the tape head determine the transition 
to be applied by the machine M. The primitive recursive functions

cs(z) =  dec(0, z)

ctp(z)  =  dec(  1, z)

c ts (z) = dec(ctp(z), dec(2, z))

return the state number, tape head position, and the number of the symbol scanned by the 
tape head from a configuration number z. The position of the tape head is obtained by a 
direct decoding of the configuration number. The numeric representation o f the scanned 
symbol is encoded as the ctp(z) th element of the tape number. The c ’s in cs, ctp, and cts 
stand for the components of the current configuration: current state, current tape position, 
and current tape symbol.

A transition specifies the alterations to the machine configuration and, hence, the 
configuration number. A transition of M is written

5(4/. b) =  [q j , c, d],

where qt , qj  €  Q; b, c € T; and d  € [R , L). Functions are defined to simulate the effects of 
a transition of M. We begin by listing the transitions of M:

b o) =  [<7;0- Co- d o\

S(qir  bi) =  [qj r  c,, dfi

S(qim, bm) = [qjm, c„, dm].

The determinism of the machine ensures that the arguments of the transitions are distinct. 
The “new state" function

j 0 if cs(z) =  i'0 and c ts (z) =  n(b0) 
j \  if cs(z) =  i] and cts(z)  =  n(bx)

j m if cs(z) =  im and cts(z)  =  n(bm) 
cs(z) otherwise

ns(z)  =

returns the number of the state entered by a transition from a configuration with config
uration number z. The conditions on the right indicate the appropriate transition. Letting 
n(b)  denote the number of the tape symbol b, the first condition can be interpreted, “If the 
number of the current state is /0 (state q,Q) and the current tape symbol is b0 (number n(b0)), 
then the new state number has number j 0 (state q;o) ” This is a direct translation of the initial 
transition into the numeric representation. Each transition of M defines one condition in ns.
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The final condition indicates that the new state is the same as the current state if there is no 
transition that matches the state and input symbol, that is, if M halts. The conditions define 
a set of exhaustive and mutually exclusive primitive recursive predicates. Thus, ns(z)  is 
primitive recursive. A function nts  that computes the number of the new tape symbol can 

be defined in a completely analogous manner.
A function that computes the new tape head position alters the number of the current 

position as specified by the direction in the transition. The transitions designate the direc
tions as L (left) or R (right). A movement to the left subtracts one from the current position 
number and a movement to the right adds one. To numerically represent the direction we 
use the notation

. . .  JO  i f  d = L 
"W) = | 2 t t d - R .

The new tape position is computed by

ntp(z) =

ctp(z) + n(d0) — 1 if cs(z) =  i0 and cts(z) = n(b0)
ctp(z)  +  n(d |) — 1 if cs(z) =  ij and crs(z) =  n(b i)

ctp(z)  +  n(dm) -  1 if cs(z) =  im and cts(z) =  n(bm)
ctp(z)  otherwise.

The addition of n(dj) — 1 to the current position number increments the value by one when 
the transition moves the tape head to the right. Similarly, one is subtracted on a move to the 
left.

We have almost completed the construction of the components of the trace function. 
Given a machine configuration, the functions ns and ntp  compute the state number and tape 
head position of the new configuration. All that remains is to compute the new tape number.

A transition replaces the tape symbol occupying the position scanned by the tape head. 
In our functional approach, the location of the tape head is obtained from the configuration 
number z by the function ctp. The tape symbol to be written at position ctp(z)  is repre
sented numerically by nts(z). The new tape number is obtained by changing the power of 
pn (ctp(z)) in the current tape number. Before the transition, the decomposition of z contains 
pn(cfp(z))c' I(2,+l, encoding the value of the current tape symbol at position ctp(z).  Af
ter the transition, position ctp(z)  contains the symbol represented by nts(z). The primitive 
recursive function

ntn(z) = quo(c tn(z) ,  pn(ctp(z))c,s(2)+l) • pn(ctp(z))n's^ +l

makes the desired substitution. The division removes the factor that encodes the current 
symbol at position ctp(z)  from the tape number ctn(z). The result is then multiplied by 
pn(ctp(z))" 'sfz>+\  encoding the new tape symbol.

The trace function trM is defined by primitive recursion from the functions that simulate 
the effects of a transition of M on the components of the configuration. As noted previously,
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M is in state qo, the tape head is at position zero, and the tape has l's  in positions one to 
x  +  1 at the start of a computation with input x. This machine configuration is encoded in 

frM(x, 0):

x+i

/ r M(x, 0) =  gn2(0, 0, 2 1 • f [  pn 
i=l

The subsequent machine configurations are obtained using the new state, new tape position, 
and new tape number functions with the previous configuration as input:

y +  1) =  >0). ntp(trM(x, y)), ntn(trM(x,  y))).

Since each of the functions in trM has been shown to be primitive recursive, we conclude 
that the trM is not only f i -recursive but also primitive recursive. The trace function, however, 
is not the culmination of our functional simulation of a Turing machine; it does not return 
the result of a computation but rather a sequence of configuration numbers.

The result of the computation of the Turing machine M that computes the number- 
theoretic function /  with input x  may be obtained from the function frM. We first note 
that the computation of M may never terminate; f ( x )  may be undefined. The question 
of termination can be determined from the values of frM. If M specifies a transition for 
configuration trM(x, i), then rrM(x, i)  ^  trM(x, i +  1) since the movement of the head 
changes the Godel number. On the other hand, if M halts after transition i, then (*, /') =  
trM(x, i +  1) since the functions nts, ntp, and ntn return the preceding value when the 
configuration number represents a halting configuration. Consequently, the machine halts 
after the zth transition, where z is the first number that satisfies tru (x, z) =  f rM(jc, z +  1).

Since no bound can be placed on the number of transitions that occur before an 
arbitrary Turing machine computation terminates, unbounded minimalization is required 
to determine this value. The /^-recursive function

term(x)  = fiz[eq(trM(x, z), trM(x, z  +  1))]

computes the number of the transition after which the computation of M with input x  
terminates. When a computation terminates, the halting configuration of the machine is 
encoded in the value trM(x, term(x)).  Upon termination, the tape has the form B f ( x ) B .  
The terminal tape number, ttn ,  is obtained from the terminal configuration number by

t tn (x)  =  dec(2, rrM(x, term(x))).

The result of the computation is obtained by counting the number of 7’s on the tape or, 
equivalently, determining the number of primes that are raised to the power of 2 in the 
terminal tape number. The latter computation is performed by the bounded sum
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where y  is the length of the tape segment encoded in the terminal tape number. The bound y  is 
computed by the primitive recursive function gdln(t tn (x))  (Exercise 17). One is subtracted 
from the bounded sum since the tape contains the unary representation of f  (*).

Whenever /  is defined for input x,  the computation of M and the simulation of M 
both compute the f ( x ) .  If f i x )  is undefined, the unbounded minimalization fails to return 
a value and s im M(x ) is undefined. The construction of s im M completes the proof of the 
following theorem.

Theorem 13.7.1

Every Turing computable function is //.-recursive.

Theorems 13.6.4 and 13.7.1 establish the equivalence of the microscopic and macro
scopic approaches to computation.

Corollary 13.7.2

A function is Turing computable if, and only if, it is /x-recursive.

13.8 The Church-Turing Thesis Revisited

In its functional form, the Church-Turing Thesis associates the effective computation of 
functions with Turing computability. Utilizing Theorem 13.7.2, the Church-Turing Thesis 
can be restated in terms of /x-recursive functions.

The Church-Turing Thesis (Revisited) A number-theoretic function is computable if, and 
only if, it is /t-recursive.

As before, no proof can be put forward for the Church-Turing Thesis. It is accepted 
by the community of mathematicians and computer scientists because of the accumulation 
of evidence supporting the claim. Accepting the Church-Turing Thesis is tantamount to 
bestowing the title “most general computing device” on the Turing machine. The thesis 
implies that any number-theoretic function that can be effectively computed by any machine 
or technique can also be computed by a Turing machine. This contention extends to 
nonnumeric computation as well.

We begin by observing that the computation of any digital computer can be interpreted 
as a numeric computation. Character strings are often used to communicate with the com
puter, but this is only a convenience to facilitate the input of the data and the interpretation of 
the output. The input is immediately translated to a string over {0 ,1 } using either the ASCII 
or EBCDIC encoding schemes. After the translation, the input string can be considered the 
binary representation of a natural number. The computation progresses, generating another 
sequence of 0 ’s and / ’s, again a binary natural number. The output is then translated back to 
character data because of our inability to interpret and appreciate the output in its internal 
representation.
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Following this example, we can design effective procedures that transform a string 
computation to a number-theoretic computation. The Godel encoding can be used to trans
late strings to numbers. Let E =  {a0, a„] be an alphabet and /  be a function from 
E* to E*. The generation of a Godel number from a string begins by assigning a unique 
number to each element in the alphabet. For simplicity we will define the numbering of the 
elements of E by their subscripts. The encoding of a string ■ ■ - ai„ *s generated by the 
bounded product

y
pn(0)'°+1 • p n ( lY '+ l ........../w (n)'"+l =  J“ [ p n O )i' +1,

7=0

where y  is the length of the string to be encoded.
The decoding function retrieves the exponent of each prime in the prime decomposition 

of the Godel number. A string can be reconstructed using the decoding function and the 
numbering of the alphabet. If x  is the encoding of a string . . .  ain over E , then 
dec(j ,  x )  =  ij.  The original string can be obtained by concatenating the results of the 
decoding. Once the elements of the alphabet have been identified with natural numbers, 
the encoding and decoding are primitive recursive and therefore Turing computable.

The transformation of a string function /  to a numeric function is obtained using 
character to number encoding and number to character decoding:

»€l* /(u)gl*

encoding decoding

JteN -/'(•*) € N

With the help of the Church-Turing Thesis, we will argue that a string function /  is 
algorithmically computable if, and only if, the associated numeric function / '  is Turing 
computable. We begin by noting that there is an effective procedure to obtain the values of 
/  whenever / '  is Turing computable. An algorithm to compute f  consists of three steps:

i) encoding the input string u to a number x,

ii) computing / '( * ) ,  and

iii) decoding f ( x )  to produce f ( u ) ,

each of which can be performed by a Turing machine.
Now assume that there is an effective procedure to compute / .  Using the reversibility of 

the encoding and decoding functions, we will outline an effective procedure to compute / ' .
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ue I

decoding encoding

at€ N --------* - / W e N

The value f ' ( x )  can be generated by transforming the input x  into a string u, computing 
f ( u ) ,  and then transforming / (m) to obtain / '( * ) .  Since there is an effective procedure to 
compute / ' ,  the Church-Turing Thesis allows us to conclude that / '  is Turing computable.

The preceding argument shows that the implications of the Church-Turing Thesis and 
universality of Turing machine computation are not limited to numeric computation or 
decision problems. A string function is computable only if it can be realized by a suitably 
defined Turing machine combined with a Turing computable encoding and decoding. 
Example 13.8.1 exhibits the correspondence between string and numeric functions.

Example 13.8.1

Let L be the alphabet [a, b). Consider the function /  : L* -> L* that interchanges the 
a ’s and the b’s in the input string. A number-theoretic function / '  is constructed which, 
when combined with the functions that encode and decode strings over E , computes / .  
The elements of the alphabet are numbered by the function n: n(a) =  0 and n(b)  =  1. A 
string u =  u0u\ . . .  u„ is encoded as the number

/,„ ( 0 )n<“°)+1. p n (l)n<“i>+1......... pn(n)n{u")+l.

The power of pn(i)  in the encoding is one or two depending upon whether the ith element 
of the string is a or b, respectively.

Let x  be the encoding of a string u over £ .  Recall that gdln(x)  returns the length of 
the sequence encoded by x.  The bounded product

gdln(x)

f i x )  =  f l  *). °) • Pn (0  • />«(*) +  eq(dec(i, x) ,  1) • pn(i))
i—0

generates the encoding of a string of the same length as the string u. When eq(dec(i, x) ,  0) 
=  1, the i th symbol in u is a. This is represented by p n ( i ) 1 in the encoding of u. The product

eq(dec(i, x) ,  0) • pn{i)  • pn(i)

contributes the factor pn(i)2 to f ' ( x ) .  Similarly, the power of pn  (i) in / 'Q t)  is one whenever 
the ith element of u is b. Thus / '  constructs a number whose prime decomposition can be 
obtained from that of x  by interchanging the exponents 1 and 2. The translation of f ( x )  to 
a string generates / (« )•  □



424 C h a p t e r  13 M u -R ec u rs iv e  F u n c t io n s

Exercises

1. Let g(x)  =  x 2 and h(x, y,  z) =  x  +  y  +  z, and let / (jc, y)  be the function defined 
from g and /  by primitive recursion. Compute the values / ( l ,  0), / ( l ,  1), / ( l ,  2) and

2. Using only the basic functions, composition, and primitive recursion, show that the 
following functions are primitive recursive. When using primitive recursion, give the 
functions g and h.

b) pred

c) f ( x )  =  2x + 2

3. The functions below were defined by primitive recursion in Table 13.1. Explicitly, give 
the functions g and h that constitute the definition by primitive recursion.

a) sg

b) sub

c) exp

4. a) Prove that a function /  defined by the composition of total functions h and g], . . . ,
g„ is total.

b) Prove that a function /  defined by primitive recursion from total functions g and h 
is total.

c) Conclude that all primitive recursive functions are total.

5. Let g = id, h =  + p ^ , and let /  be defined from g and h by primitive recursion.

a) Compute the values / ( 3 ,  0), / ( 3 ,  1), and / ( 3 ,  2).

b) Give a closed-form (nonrecursive) definition of the function / .

6. Let g(x, y ,  z) be a primitive recursive function. Show that each of the following 
functions is primitive recursive.

a) f ( x , y ) = g ( x , y , x )

b) f ( x ,  y ,  z, w ) = g ( x ,  y,  x)

c) / ( * )  =  g (l, 2, x)

7. Let /  be the function

/ ( 5 ,  0), / ( 5 ,  1), / ( 5 ,  2).

a)

x  i f x > 2  
0 otherwise.

a) Give the state diagram of a Turing machine that computes / .

b) Show that /  is primitive recursive.
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8. Show that the following functions are primitive recursive. You may use the functions 
and predicates from Tables 13.1 and 13.2. Do not use the bounded operations.

e) half(x)  =  d iv (x ,  2)

*f) sqrt(x) =  L ^ J

9. Show that the following predicates are primitive recursive. You may use the functions 
and predicates from Tables 13.1 and 13.2 and Exercise 8. Do not use the bounded 
operators.

10. Let r be a two-variable primitive recursive function and define /  as follows:

Explicitly give the functions g and h that define /  by primitive recursion.

11. Let g and h be primitive recursive functions. Use bounded operators to show that the 
following functions are primitive recursive. You may use any functions and predicates 
that have been shown to be primitive recursive.

a) max(x, y)  =

x  if x  < y  and x  < z
c) min${x, y , z ) =  y  if y  <  x  and y  < z  

z if z < x  and z < y

d) even(x) =
1 if jc is even
0 otherwise

c) btw(x, y,  z) —
1 if y  < x  < z

0 otherwise

d) prsq(x)  =
1 if x  is a perfect square
0 otherwise

f  (x, 0) =  t(x ,  0)

f ( x ,  >>+!) =  f ( x ,  y) + t(x ,  y  +  1)

a) y) _  [ 1 if g(i)  < g(x)  for all 0 <  i <  y 
I 0 otherwise
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M ft* if 2(,) =  x for SOme 0 -  ' -  yo )  J ( x , y )  Q otherwise

_ I 1 if
1 |  0 oi

f t \A  -  l * if S ( 0  =  h ( j )  for some 0 < i , j < y  
' n otherwise

d) f<v) =  ! 1 if g (,)  <  g(i +  for a110 - '  - y  
I 0 otherwise

f) th rd (x ,  y)  =

e) n t(x ,  y) =  the number of times g(i)  =  x  in the range 0 <  i < y

0 if g(i)  does not assume the value x  at least 
three times in the range 0 <  / <  y  

j  if j  is the third integer in the range 0 < i < y  
for which g(i)  =  x

g) lrg(x,  y)  =  the largest value in the range 0 < i < y  for which g(i)  =  x

12. Show that the following functions are primitive recursive.

a) gcd(x ,  y)  =  the greatest common divisor of x  and y

b) lcm(x,  y)  =  the least common multiple of x  and y 

1 if x  =  2" for some n
c) pw 2(x)  =

1 0 otherwise

d) tw o  r(x) — I * if * is the product of exactly two primes 
{ 0 otherwise

* 13. Let g be a one-variable primitive recursive function. Prove that the function

f ( x )  =  min(g(/))
1=0

=  min{g(0),. . . ,  g(*)}

is primitive recursive.

14. Prove that the function

M < J C i . . . . . . X „ )

f i x  i ......... x„ )=  hz  [p( ... ........... ... ... z)]

is primitive recursive whenever p  and u are primitive recursive.

15. Compute the Godel number for the following sequence:

a) 3 ,0

b) 0 ,0 , 1

c) 1,0, 1,2

d) 0, 1, 1 ,2 ,0
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16. Determine the sequences encoded by the following Godel numbers:

a) 18,000

b) 131,072

c) 2,286,900

d) 510,510

17. Prove that the following functions are primitive recursive:

. . .  [ 1 if  x  is the Godel number o f some sequence
a) gdn(x)  =  ( o otherwise

. .  , [ n if  jc is the Godel number o f a sequence o f length n
b > « < " « ( * > - 1 0  0 1 h e r w l s e

. . . 1 1 if jc is a Godel number and y occurs in the sequence encoded in x
c) g(x,  y) =  { n •( 0 otherwise

18. Construct a primitive recursive function whose input is an encoded ordered pair and 

whose output is the encoding o f an ordered pair in which the positions o f  the elements 
have been swapped. For example, if  the input is the encoding o f [jc, y], then the output 

is the encoding of [y, jc].

19. Let /  be the function defined by

if jc =  0 

if jc =  1 

ifjc =  2 

3) +  / ( jc — 1) otherwise.

Give the values / ( 4 ) ,  /  (5), and /  (6). Prove that /  is primitive recursive.

* 20. Let and g2 be one-variable primitive recursive functions. Also let h , and h 2 be four- 

variable primitive recursive functions. The two functions / ,  and f 2 defined by

/ , ( jc, 0) = g ,( j f )  

f 2(x , 0) =  g2(x)

/,(jc, y +  1) =  h i(x,  y, / , (* ,  y), f 2(x,  y)) 

f 2(x, y +  1) =  h2(x, y, /,(jc, y), f 2(x,  y))

are said to be constructed by simultaneous recursion from g it g2, h | ,  and h2. The 

values f \ {x ,  y +  1) and f 2(x, y  +  1) are defined in terms o f the previous values o f 
both o f the functions. Prove that f \  and f 2 are primitive recursive.

/ ( * )  =

1
2
3
f i x
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21. Let /  be the function defined by

/ ( 0 )  =  1

y

/(>• + 1) =  E  
i= 0

a) Compute / ( l ) , / ( 2 ) ,  and /(3 ) .

b) Use course-of-values recursion to show that /  is primitive recursive.

22. Let A be Ackermann’s function (see Section 13.6).

a) Compute A(2, 2).

b) Prove that A( x ,  y)  has a unique value for every i j e N .

c) Prove that A(l ,  y) — y  + 2.

d) Prove that A (2, y)  =  2y +  3.

23. Prove that the following functions are p.-recursive. The functions g and h are assumed 
to be primitive recursive.

„ , . . [ 1 if x  is a perfect cube
a) cube(x)  =  { ,  . .

[ t  otherwise

b) root(cQ, C], c2) =  the smallest natural number root of the quadratic polynomial 

c 2  * x 2 +  C 1 -  X  +  C 0

1 if g(i)  =  g(i +  x)  for some i > 0 
t  otherwise

c) r(jt) =

d) l(x) =  •

e) f i x )  =

f) / ( * )  =

t  if g(i)  -  h(i)  <  x  for all i > 0
0 otherwise

1 if g(i) + h ( j )  =  x  for some i, j  € N
t  otherwise

1 if g(y)  =  h(z)  for some y > x, z >  x  
t  otherwise.

' 24. The unbounded /n-operator can be defined for partial predicates as follows:

j  if p ( x i , . . . ,  x„, i )  =  0 for 0 <  i  < j

and p( jt,......... xn, j ) =  1
t  otherwise.

That is, the value is undefined if p ( x x, . . . ,  x„, i )  t  for some i occurring before the first 
value j  for which p ( x |, . . . ,  x„, j )  =  1. Prove that the family of functions obtained 
by replacing the unbounded minimalization operator in Definition 13.6.3 with the 
preceding h -operator is the family of Turing computable functions.
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25. Construct the functions ns, ntp, and nts for the Turing machine S given in Exam

ple 13.7.1.

26. Let M be the machine

a) What unary number-theoretic function does M compute?

b) Give the tape numbers for each configuration that occurs in the computation of M 
with input 0.

c) Give the tape numbers for each configuration that occurs in the computation of M 
with input 2.

27. Let /  be the function defined by

a) Give the state diagram of a Turing machine M that computes / .

b) Trace the computation of your machine for input 1 (B1 IB). Give the tape number 
for each configuration in the computation. Give the value of frM(l, i) for each step 
in the computation.

c) Show that /  is primitive recursive. You may use the functions from the text that 
have been shown to be primitive recursive in Sections 13.1, 13.2, and 13.4.

* 28. Let M be a Turing machine and trM the trace function of M.

a) Show that the function

1/1L

1/1 R

I/I R

x  +  1 if x  even 
x  — 1 otherwise.

1 if the yth transition of M with input x  prints 
pr t(x , y)  =  a blank

0 otherwise

is primitive recursive.
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b) Show that the function

lprt(x) =

if the final transition of M 
with input x  that prints a 1 
otherwise

is /x-recursive.

c) In light of undecidability of the printing problem (Exercise 12.7), explain why Iprt 
cannot be primitive recursive.

29. Give an example of a function that is not /x-recursive. Hint: Consider a language that 
is not recursively enumerable.

30. Let /  be the function from {a, b }* to [a, b)* defined by / (u) =  u R. Construct the 
primitive recursive function / '  that, along with the encoding and decoding functions, 
computes / .

31. A number-theoretic function is said to be macro-computable if it can be computed 
by a Turing machine defined using only the machines S and D that compute the 
successor and predecessor functions and the macros from Section 9.3. Prove that every 
/x-recursive function is macro-computable. To do this you must show that

i) The successor, zero, and projection functions are macro-computable.

ii) The macro-computable functions are closed under composition, primitive recur
sion, and unbounded minimimalization.

32. Prove that the programming language TM defined in Section 9.6 computes the entire 
set of /x-recursive functions.
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PART IV

Computational 
Complexity

The objective of the preceding chapters was to characterize the set of solvable problems 
and computable functions. We now turn our attention from exhibiting the existence of 

algorithmic solutions of problems to analyzing their complexity, where the complexity is 
measured by the resources required in determining the solution. Thus we begin a formal 
analysis of the question how much first posed in the Introduction.

Complexity theory attempts to distinguish problems that are solvable in practice from 
those that are solvable in principle only. A problem that is theoretically solvable may 
not have a practical solution; there may be no algorithm that solves the problem without 
requiring an extraordinary amount of time or memory. Problems for which there are no 
efficient algorithms are said to be intractable.

Since it is the inherent complexity of a problem that is of interest to us, the analysis 
should be independent of any particular implementation. To isolate the features of a problem 
from those of the implementation, a single algorithmic system must be chosen for analyzing 
computational complexity. The choice should not place any unnecessary restrictions, such 
as limiting the time or memory available, upon the computation since these limitations 
are properties of the implementation and not of the algorithm itself. The standard Turing 
machine, which fulfills all of these requirements, provides the underlying computational 
framework for the analysis of problem complexity. Moreover, the Church-Turing Thesis 
assures us that any effective procedure can be implemented on such a machine.

The time and space complexities of a Turing machine measure the number o f transitions 
and the amount of tape required in a computation, respectively. The class 7  of problems 
solvable in polynomial time by a deterministic Turing machine is generally considered to 
contain all efficiently solvable problems. Another class of problems, NT, consists of all 
decision problems that can be solved by a nondeterministic Turing machine in polynomial 
time. Clearly, T is a subset of NT. It is currently unknown if these two classes of problems 
are identical.



Using the guess-and-check strategy of nondeterministic solutions, the class N T consists 
of all problems for which solutions can be verified in polynomial time. Answering the 
T  =  N T question is equivalent to deciding whether constructing a solution to a problem 
is inherently more difficult than checking whether a single possibility is a solution. While 
it seems that this should be the case, as of yet it has not been formally proved.

A problem is NP-complete if every problem in the class N T can be reduced to it 
in polynomial time. Finding a polynomial time solution to one NP-complete problem is 
sufficient to establish that T  =  NT, but no such algorithm has been discovered at this time. 
Moreover, the majority of computer scientists and mathematicians do not believe that such 
an algorithm exists. The examination of NP-completeness begins with showing that the 
Satisfiability Problem is NP-complete by explicitly constructing a reduction of any problem 
in N T to it. Polynomial-time reductions are then used to show that a number of additional 
problems are NP-complete.

Problems from many disciplines including pattern recognition, scheduling, decision 
analysis, combinatorics, network design, and graph theory have been shown to be NP- 
complete. Determining that a problem is NP-complete does not mean that solutions are no, 
longer needed, only that it is quite unlikely that there is a polynomial-time algorithm that 
produces them. For NP-complete optimization problems, approximation algorithms are fre
quently used to produce near optimal solutions efficiently. To demonstrate the strategies 
employ in obtaining approximate solutions, we will examine algorithms that produce ap
proximations within a predetermined accuracy bound for several well-known NP-complete 
problems.



CHAPTER 1 4

Time Complexity

We begin the study of computational complexity with the analysis of the time complexity 
of a deterministic Turing machine, where time is measured by the number of transitions 
in a computation. Because of the variation in the number of transitions in computations 
initiated with strings of the same length, rates of growth are frequently used to describe 
time complexity. We will show that the time complexity of algorithms implemented on 
deterministic multitrack and multitape Turing machines differs only polynomially from 
their implementation on a standard Turing machine.

The time complexity of a language is determined by those of the machines that accept 
the language. Several important properties of the complexities of languages are established. 
First, we will see that there is no best Turing machine, in terms of time complexity, that 
accepts a language. A machine that accepts a language can be “sped up” to produce another 
machine whose complexity is reduced by any desired linear factor. The speedup theorem 
produces a faster machine but one whose time complexity has the same rate o f growth as the 
original machine. We will also show that there is a language for which no Turing machine has 
minimal asymptotic time complexity. From any machine that accepts this language, we will 
be able to construct another that has a time complexity with a strictly smaller rate of growth. 
Finally, we will see that there is no upper bound on the time complexity of languages; for 
any computable function, there is a language whose complexity is not bounded by the values 
of the function.

The Church-Turing Thesis assures us that any problem solvable using a modem com
puter is solvable with a Turing machine, but this statement does not relate the complexity 
between computations in the two systems. We will show that the computation of a com
puter can be simulated by a Turing machine in which the number of transitions of the Turing

433
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machine grows only polynomially with the number of instructions executed by the com
puter. Consequently, the resource bounds established for Turing machines provide practical 
information about the complexity of algorithms and computer programs.

14.1 Measurement o f  Complexity

Two main topics in the study of computational complexity are the assessment of algorithms 
that solve a particular problem and the comparison of the inherent difficulty of different 
problems. The focus of this presentation is the latter, but the comparison o f problem com
plexity requires the ability to analyze the algorithms that solve each of the problems. To 
appreciate the issues involved in the analysis of algorithms, we will consider the measure
ment of the time complexity of the following four familiar problems:

Sort an Array of Integers 

Input: Array A[l..n]
Output: Array A'[\..n] with elements in sorted order 

Square a Matrix

Input: Ann x n matrix B with integral entries 

Output: Matrix C = B2

Path Problem for Directed Graphs 

Input: Graph G = (N, A), nodes v,, Vj € N 
Output: yes; if there is a path from v, to Vj in G 

no; otherwise.

Acceptance by Turing Machine M (that halts for all inputs)
Input: string w 
Output: yes; if M accepts w 

no; otherwise.

Algorithms that perform the computations described in the first two problems compute 
functions. The sorting problem maps arrays to arrays and the squaring problem maps 
matrices to matrices. The path and acceptance problems are decision problems, with the 
result being either a yes or no response.

A complexity function describes the resources required or the number of steps involved 
in the solution of the problem. The items measured may vary based on the problem: number 
of data movements, number of arithmetic operations performed, number o f instructions 
executed, the amount of space used, and so forth. The goal is not to calculate the exact 
resource requirement for every possible input but rather provide information that can be 
used to assure sufficient resources are available for each input.
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TABLE 14.1 C o m p o n e n t s  o f  C om plex ity  F u n c t io n s

Problem Input Complexity Resource Usage Measured

Sort Size of array Number of data movements

Square Dimension of matrix Number of scalar multiplications

Path Number of nodes in the graph Number of nodes visited in search

Acceptance Length of input string Number of transitions in a computation

The analysis of the complexity of an algorithm requires three items: the identification of 
the resources to be considered, a partition of the input instances based upon their complexity, 
and the construction of a function that relates input complexity to the resource utilization.

After identifying the resources to be measured, the next step is to partition the set of 
input instances. Each set in the partition contains instances with similar characteristics and 
has an associated natural number that characterizes the complexity of the instances in the 
set. Table 14.1 gives standard partitions of the input domains of our four sample problems. 
For example, the input instances of the sorting problem are grouped by the size of the array. 
The resulting partition consists of sets A0, A,, A2, . . . ,  where A, contains all arrays of size 
/. The number i is the input complexity associated with the instances in the set A, .

Let P be a problem whose input instances are partitioned into complexity classes Iq, 
I], I j , . . . ,  where the subscript represents the numeric complexity assigned to each class. 
The complexity function for a solution to P  specifies the maximum resource usage for 
any problem instance in a class I,. That is, a complexity function is a mapping from the 
natural numbers (the complexity measure of the input) to the natural numbers (the resource 
utilization) that provides an upper bound on resource usage for each problem instance in 
the class I„.

When comparing algorithms that solve the same problem, the input complexity and re
sources examined are frequently given in problem-specific terms. For example, the analysis 
of sorting algorithms uses measures similar to those in Table 14.1. Bubble sort, merge sort, 
and insertion sort all take an array as input and, in one manner or another, move data. Con
sequently, it is reasonable to use the number of data movements to compare the efficiency 
of the algorithms.

Problem-specific measures do not make sense when comparing algorithms that solve 
different problems. What is the relationship between the number of data movements of a 
sort algorithm and the number of nodes visited in a graph traversal? Even if we know the 
complexity functions of each algorithm, we are in no position to compare the efficiency of 
the algorithms or the relative difficulty of the problems. The assessment of input complexity 
is even more problematic; there is no reason to believe that the resources required for sorting 
an array of size n should in any way be related to those required for searching a graph with
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n nodes. However, this is the information given by complexity functions defined in terms 

of the high-level components in these problems.
To be able to compare problems, the solutions must be implemented in a common al

gorithmic system so that the complexity can be analyzed in terms of the same input measure 
and resource utilization. The Turing machine provides the ideal algorithmic system for the 
study of problem complexity. A Turing machine has no artificial limitations on the memory 
or time available for a computation. Moreover, the Church-Turing Thesis assures us that any 
effective procedure can be implemented on a Turing machine. The common input measure 
for all problems is the length of the input string. The time and space complexity of the Turing 
machine describe the number of transitions and tape squares needed by a computation.

14.2 Rates o f Growth

Obtaining the exact relationship between input complexity and resource utilization is some
times quite difficult and almost always provides more information than we require. For this 
reason, time complexity is often represented by the rate of growth of the complexity function 
rather than by the function itself. Before continuing with our evaluation of the complexity of 
algorithms, we detour for a brief review of the mathematical analysis of the rate of growth 
of functions.

The rate of growth of a function measures the asymptotic performance o f the function 
as the input gets arbitrarily large. Intuitively, the rate of growth is determined by the most 
significant contributor to the growth of the function. The contribution of the individual 
terms to the values of a function can be seen by examining the growth of the functions n2 
and n 2 +  2n + 5 in Table 14.2. The contribution of n2 to n2 + 2n +  5 is measured by the 
ratio of the function values in the bottom row. The linear and constant terms of the function 
n2 + 2n +  5 are called the lower-order terms. Lower-order terms may exert undue influence 
on the initial values of the functions. As n gets large, it is clear that the lower-order terms 
do not significantly contribute to the growth of the function values. The order of a function 
and the “big oh” notation are introduced to describe the asymptotic growth of the values of 
a function.

Definition 14.2.1

Let /  : N -»  N and g : N -»• N be one-variable number-theoretic functions.

i) The function /  is said to be of order g if there is a positive constant c  and a natural 
number n0 such that f ( n )  <  c • g(n)  for all n > n0.

ii) The set of all functions of order g is denoted O (g) =  { /  | /  is of order g) and called 
“big oh of g."

A function /  is of order g if the values of /  are bounded by a constant multiple of the 
values of g. Because of the influence of the lower-order terms, the inequality f  (n) < c  • g(n)
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TABLE 14 .2  G ro w th  o f  F u n c t io n s

n 0 5 10 25 50 100 1,000

n2 0 25 100 625 2,500 10,000 1,000,000

n2 + 2n + 5 5 40 125 680 2,605 10,205 1,002,005

n 2/ ( n 2 + 2/1 +  5) 0 0.625 0.800 0.919 0.960 0.980 0.998

is required to hold only for input values greater than some specified number. When /  is of 
order g, we say that g provides an asymptotic upper bound on / .

Traditionally, the notation /  =  O (g) is used to indicate that /  is o f order g. Since 
O (g) is a set, it is more mathematically precise to write /  e  O(g). The rationale for the 
unconventional use of “= ” is that O (g) is frequently used in an expression to denote an 
arbitrary element from the set. For example, a function may be written / ( n ) =  n2 +  O(n) 
to indicate that /  consists of n 2 plus some lower-order terms that are asymptotically bounded 
by n, without specifically indicating the lower-order terms. We will write /  e  0 (g )  to 
indicate that /  is of order g. This is frequently read “/  is big oh of g."

Example 14.2.1

Let f ( n )  =  n2 and g(n)  =  n 3. Then /  e  O(g) and g g  O ( / ) .  Clearly, n2 e  0(w3) since 
n2 < w3 for all natural numbers.

Let us suppose that w3 e  0 ( n 2). Then there are constants c and n0 such that

n3 < c  • n2 for all n > n0.

Choose n , to be the maximum of n0 +  1 and c +  1. Then n^ =  n t • n j > c - n] and n ! > /i0, 

contradicting the inequality. Thus our assumption is false and n3 £  O (n2). □

Two functions /  and g are said to have the same rate of growth if  /  6 0 (g )  and 
g e  O ( / ) .  When /  and g have the same rate of growth, Definition 14.2.1 provides the 
two inequalities

/ ( ” ) < c , - g ( n )  forn  > n t 

g(n) < c 2 - f ( n )  for n >  n2,

where Cj and c2 are positive constants. Combining these inequalities, we see that each of 
these functions is bounded above and below by constant multiples of the other:

f ( n ) / c \  <  g(n)  <  c2 • f ( n )  

g(n)/c2 <  f ( n )  < C] • g(n).

These relationships hold for all n greater than the maximum of n, and n2. Because of these 
bounds, it is clear that neither /  nor g can grow faster than the other.
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Example 14.2.2

Let / ( « )  =  n2 + 2n +  5 and g(n)  =  n2. Then /  e  O(g) and g 6 0 ( / ) .  Since

n2 <  n2 +  2n +  5

for all natural numbers, setting c to 1 and n0 to 0 satisfies the conditions ofDefinition 14.2.1. 

Consequently, g e  0 ( / ) .
To establish the opposite relationship, we begin by noting that 2n < 2n 2 and 5 < 5n2 

for all n > 1. Then

f ( n )  =  n2 +  2n +  5

<  n2 + 2n2 +  5n2 

=  8 n2 

=  8 • g(n)

whenever n >  1. In the big oh terminology, the preceding inequality shows that n2 + 2n + 

5 6 O (n2). □

If /  has the same rate of growth as g, g is said to be an asymptotically tight bound on 
/ .  The set

©(g) =  { /  I /  e  0 (g )  and g g 0 ( / ) }

consists of all functions for which g provides an asymptotically tight bound. Employing 
the same notation as used for the big oh, we write /  e  © (g) to indicate that g is an 
asymptotically tight bound for / .

A polynomial with integral coefficients is a function of the form

/ ( n )  =  cr • nr +  cr_i • nr~ l H------- 1- c, • n +  c0,

where the c0, c )t . . . , cr_ i are arbitrary integers, cr is a nonzero integer, and r is a positive 
integer. The constants q  are the coefficients of / ,  and r is the degree of the polynomial. A 
polynomial with integral coefficients defines a function from the natural numbers into the 
integers. The presence of negative coefficients may produce negative values. For example, if 
/ (n) =  n2 — 3/i — 4, then / ( 0 )  =  —4, / ( l )  =  —6, / ( 2 )  =  —6, and /( 3 )  =  —4. The values 
of the polynomial g(n) =  —n2 — 1 are negative for all natural numbers n.

The rate of growth has been defined only for number-theoretic functions. The absolute 
value function can be used to transform an arbitrary polynomial into a number-theoretic 
function. The absolute value of an integer i is the nonnegative integer defined by

... j  i if i >  0 
|  —i otherwise.
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Composing a polynomial /  with the absolute value produces a number-theoretic function 
| / | .  The rate of growth of a polynomial /  is defined to be that of | / | .

The techniques presented in Examples 14.2.1 and 14.2.2 can be used to establish a 
general relationship between the degree of a polynomial and its rate of growth.

Theorem 14.2.2

Let /  be a polynomial of degree r. Then

i) /  € ®{nr)

ii) /  e  0(n*) for all k >  r

iii) /  £  O (nk) for all k <  r.

One of the consequences of Theorem 14.2.2 is that the rate of growth o f any polynomial 
can be characterized by a function of the form nr. The first condition shows that a polynomial 
of degree r has the same rate of growth as nr. Moreover, by conditions (ii) and (iii), its growth 
is not the same as that of nk for any k other than r .

Other important functions used in measuring the performance of algorithms are the 
logarithmic, exponential, and factorial functions. A number-theoretic logarithmic function 
with base a is defined by

f i n )  =  |k>g0(n)J.

Changing the base of a logarithmic function alters the value by a constant multiple. More 
precisely,

l°ga (n) =  logfl(fc)logfe(n).

This identity indicates that the rate of growth of the logarithmic functions is independent 
of the base.

Examples 14.2.1 and 14.2.2 used the definition of big oh to compare the rates of growth 
of polynomial functions. When the functions are more complicated, it is frequently easier 
to use limits to determine the asymptotic complexity of two functions. Let /  and g be two 
number-theoretic functions, then

1. If lim £$-1 =  o, then /  e  O(g) and g & O( / ) .
"-*■«> gin)

f  (n\
2. If lim ------ =  c with 0 <  c < oo, then /  € 0 ( p ) and g e  ©( f ) .

/l->00 g ( „ )  J s '■*

3. If lim =  oo, then /  £ O (g) and g e  0 ( f ) .
n-oo g („)

The determination of the rate of growth of a function in this manner often requires the 
application of 1’Hospital’s Rule to obtain the limit.
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The version of l’Hospital’s Rule used in complexity analysis asserts that if  /  and g are 
functions from R + to R + that are continuous and differentiable as n approaches infinity, then

f i n )  / ' ( « )
lim ------=  lim -------- ,

n-»oo g ( n )  n~*oo g ' (n )

where f  and g’ are the derivatives of f  and g, respectively. Example 14.2.3 uses limits 
and l’Hospital’s Rule to show that n loga (n) G 0 ( n 2) for the logarithmic function with any 
base a.

Example 14.2.3

Let f { n )  =  n loga (n) and g(n)  =  n2. Two applications of l’Hospital’s Rule to the ratio 
f{ .n)/g(n)  produce

n log„(n)
lim lim

n—►oo
loga («) +  «(loga (c)/n )

In

lim
loga (n)

lim
loga (e)

n—*oo In ^-►00 2 n

lim
log a(e)/n

+  0
n—nX) 2

lim
loga (e)

n—*>00 2 n -

0,

where e is the base of the natural logarithm. Since the limit is 0, /  e  0 (g ). □

Theorem 14.2.3 compares the growth of logarithmic, exponential, and factorial func
tions with each other and the polynomials. The proofs are left as exercises.

Theorem 14.2.3

Let r be a natural number and let a and b be real numbers greater than 1. Then

i) logfl(rt) G O(n)

ii) n $  0(loga (n))

iii) nr G O (bn)

iv) bn 0 (n r)

v) b” gO («!)

vi) n\ ? 0 ( b n).

A function /  is said to polynomially bounded if /  G O (nr) for some natural number 
r. Although not a polynomial, it follows from Example 14.2.3 that n log2(w) is bounded by 
the polynomial n2. The polynomially bounded functions, which include the polynomials,
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TABLE 14.3 A Big O h  H ie ra rc h y

Big Oh Asymptotic Upper Bound

0(1) Constant

0(loga (n)) Logarithmic

O(M) Linear

O(n log0 (rt)) n log n

0(n2) Quadratic

0 (n3) Cubic

O(n') Polynomial r > 0

O (V) Exponential b > 1

O(nl) Factorial

TABLE 14.4 Growth o f Several Common Functions

rt log2 (n) n n2 n3 2" n!

5 2 5 25 125 32 120
10 3 10 100 1,000 1,024 3,628,800

20 4 20 400 8,000 1,048,576 2.4-1018

30 4 30 900 27,000 1.0 -109 2 .6 -1032

40 5 40 1.600 64,000 1.1 -1012 8.1 -1047

50 5 50 2,500 125,000 1.1 -1015 3 .0 -1064

100 6 100 10,000 1,000,000 1.2-1030 > 10'57

200 7 200 40,000 8,000,000 1.6 -1060 > 10374

constitute an important family of functions that will be associated with the time complexity 
of efficient algorithms. Conditions (iv) and (vi) show that the exponential and factorial 
functions are not polynomially bounded. The big oh hierarchy in Table 14.3, which lists 
functions in increasing order of their rates of growth, is obtained from the relationships 
outlined in Theorems 14.2.2 and 14.2.3. It is standard practice to refer to a function /  for 
which 2" e  O( / )  as having exponential growth. With this convention, nn and n \ are both 
said to exhibit exponential growth.

The efficiency of an algorithm is commonly characterized by its rate of growth. A 
polynomial algorithm is one whose complexity is polynomially bounded. That is, c(ri) 6 
Q(nr) for some r €  N. The distinction between polynomial and nonpolynomial algorithms 
is apparent when considering the growth of these functions as the size of the input increases. 
Table 14.4 illustrates the enormous resources required by an algorithm whose complexity 
is not polynomial.
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14.3 Time Complexity o f a Turing Machine

The time complexity of a computation measures the amount of work expended by the 
computation. The time of a computation of a Turing machine is quantified by the number 
of transitions processed. The issues involved in determining the time complexity of a 
Turing machine are presented by analyzing the computations of the machine M that accepts 
palindromes over the alphabet [a, b}.

a/aR
b/bR

A computation of M consists of a loop that compares the first nonblank symbol on the 
tape with the last. The first symbol is recorded and replaced with a blank by the transition 
from state q x. Depending upon the path taken from q t, the final nonblank symbol is checked 
for a match in state qA or q1. The machine then moves to the left through the nonblank 
segment of the tape and the comparison cycle is repeated. When a blank is read in states 
<?2 or qs, the string is an odd-length palindrome and is accepted in state q9. Even-length 
palindromes are accepted in state q t.

The computations of M are symmetric with respect to the symbols a and b. The upper 
path from q t to qs is traversed when processing an a and the lower path when processing a
b. The computations in Table 14.5 contain all significant combinations of symbols in strings 
of length 0, 1,2, and 3.

As expected, the computations show that the number of transitions in a computation 
depends upon the particular input string. Indeed, the amount of work may differ radically 
for strings of the same length. Rather than attempting to determine the exact number of 
transitions for each input string, the time complexity of a Turing machine measures the 
maximum amount of work required by the strings of a fixed length.



14.3 T im e  C om plex ity  o f  a T ur ing  M a c h in e  443

TABLE 14.5 C o m p u ta t io n s  o f  M

Length 0 Length 1 Length 2 Length 3

q0B B q0B aB q0B aaB q0BabB q0BabaB q0BaabB

h  Bq\B 1- B q ta B 1- B q taaB 1- Bq\abB 1- Bq^abaB h  Bq\aabB

I-  B B q 2B b  B B q 2a B B B q 2bB 1- B B q 2baB h  B B q 2abB

h  B BBqgB 1- B B a q 3B h  B B b q 3B \- B B b q y iB \- BBaqybB

\- B B q 4aB h  BBq^bB h  BBbaq i B b  BBabq^B

h  B q ^B B B 1- BBbq^aB h  B B a q 4bB

1- B B q xB B 1- B B q ^b B B  

h  Bq%B b B B  

B B q f i B B  

h  B B B q 5B B  

h  B B B B q 9B

Definition 14.3.1

Let M be a standard Turing machine. The time complexity of M is the function tcM : 
N -*  N such that rcM(n) is the maximum number of transitions processed by a computation 
of M when initiated with an input string of length n.

When evaluating the time complexity of a Turing machine, we assume that the compu
tations terminate for every input string. It makes no sense to attempt to discuss the efficiency, 
or more accurately the complete inefficiency, of a computation that continues indefinitely.

Definition 14.3.1 serves equally well for machines that accept languages and compute 
functions. The time complexity of deterministic multitrack and multitape machines is 
defined in a similar manner. The complexity of nondeterministic machines will be discussed 
in the next chapter.

Our definition of time complexity measures the worst-case performance of the Tur
ing machine. In analyzing an algorithm, we choose the worst-case performance for two 
reasons. The first is that we are considering the limitations of algorithmic computation. 
The value tcM(n) specifies the minimum resources required to guarantee that the compu
tation of M terminates when initiated with any input string of length n. The other reason is 
strictly pragmatic; the worst-case performance is often easier to evaluate than the average 
performance.

The computations of the machine M that accepts the palindromes over {a, b] is used to 
demonstrate the process of determining the time complexity. A computation of M terminates 
when the entire input string has been replaced with blanks or the first nonmatching pair of 
symbols is discovered. Since the time complexity measures the worst-case performance, we 
need only concern ourselves with the strings whose computations cause the machine to do 
the largest possible number of match-and-erase cycles. For the machine M, this condition 
is satisfied when the input is accepted.
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Using these observations, we can obtain the initial values of the function tcm from the 

computations in Table 14.5.
*cM(0) =  1 

fcM( 1) =  3 

tcM( 2) =  6 

fcM(3) =  10

Determining the remainder of the values of tcM requires a detailed analysis of the com
putations of M. Consider the actions of M when processing an even-length input string. 
The computation alternates between sequences of right and left movements o f the machine. 
Initially, the tape head is positioned to the immediate left of the nonblank segment of the 
tape.

•  Rightward movement: The tape head moves to the right, erasing the leftmost nonblank 
symbol. The remainder of the string is read and the machine enters state q4 or q-j. This 
requires k +  1 transitions, where k is the length of the nonblank portion o f the tape.

•  Leftward movement: M moves left, erasing the matching symbol, and continues through 
the nonblank portion of the tape. This requires k transitions.

The preceding actions reduce the length of the nonblank portion of the tape by two. 
The cycle of comparisons and erasures is repeated until the tape is completely blank. As 
previously noted, the worst-case performance for an even-length string occurs when M 
accepts the input. A computation accepting a string of length n requires n /2  iterations of 
the preceding loop.

Iteration Direction Transitions

1 Right n +  l
Left n

2 Right n -  1
Left n - 2

3 Right n — 3
Left n -  4

n/2 Right 1

The total number of transitions of a computation can be obtained by adding those of each 
iteration. As indicated by the preceding table, the maximum number of transitions in a 
computation of a string of even length n is the sum of the first n +  1 natural numbers. An 
analysis of odd-length strings produces the same result. Consequently, the time complexity 
of M is given by the function

n+1
Icm(«) =  ^ 2  i =  (n + 2)(n +  l) /2  € 0 ( n 2). 

i=i
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Example 14.3.1

The two-tape machine M'

[a/a R. B/a /?] [B/B S, a/a L\ [a/a L, a/a /?]
[b/b R. B/b R] [B/B S, b/b L] [b/b L  b/b R]

M': X § >
[B/BR, B/BR] [B/B S, B/B L]

Q -
[B/B L. B/B R] [B/BR, B/BR],

also accepts the set of palindromes over [a, b). A computation of M' traverses the input, 
making a copy on tape 2. The head on tape 2 is then moved back to tape position 0. At this 
point, the heads move across the input, tape 1 right to left and tape 2 left to right, comparing 
the symbols on tape 1 and tape 2. If the tape heads ever encounter different symbols, the 
input is not a palindrome and the computation halts and rejects the string. When the input 
is a palindrome, the computation halts and accepts when blanks are simultaneously read on 
tapes 1 and 2.

For an input of length n, the maximum number of transitions occurs when the string 
is a palindrome. An accepting computation requires three complete passes: the copy, the 
rewind, and the comparison. Counting the number of transitions in each pass, we see that 
the time complexity of M' is rcM-(n) =  3(n +  1) +  1. □

A transition of the two-tape machine utilizes more information and performs a more 
complicated operation than that of a one-tape machine. There is a trade-off between the 
complexity of a transition and the number that must be processed, as illustrated by the 
complexities of the machines M and M' that accept the palindromes. The precise relationship 
between the time complexity of one-tape and multitape Turing machines is established in 
Section 14.4.

The first step in determining the time complexity of a Turing machine is the identifi
cation of the strings that exhibit the worst-case behavior. In the machines that accepted the 
palindromes, these were the strings in the language. This is not always the case, as illustrated 
by the following example.

Example 14.3.2

Let M be the two-tape Turing machine

where the symbols x  and y  can be any symbol in [a, b, c } and x  ^  y. The language of M 
consists of all strings over {a , b, c} in which there is at least one value k such that the Xrth 
and the kth to last position of the string have the same symbol. For example, abaa, abcccc, 
abcbbc, and all odd length strings are in L(M).

[x/x R, B/x R] [x/x L  B/B 5] [x/x R. y/y L]

X5>
[B/B R, B/B R] [B/B L, B/B S] [B/B R, B/B L] [B/B R, B/B L]
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A computation of M employs the same strategy as the machine in Example 14.3.1. The 
input string is copied to tape 2 and the head on tape 1 is returned to the initial position. The 
symbols on tapes 1 and 2 are compared with tape head 1 moving left to right and tape head
2 moving right to left. The computation halts and accepts when the two heads scan identical 

symbols.
The worst-case performance for an odd-length string occurs when no match is dis

covered prior to the middle position. In this case the computation for a string of length n 
requires |( n  +  1) transitions. The worst-case performance for an even length string occurs 
when the string is rejected by M. In a rejecting computation, tape head 1 scans the entire 
input three times. Thus

i _  { |( n  +  1) if n is odd
I 3(n +  1) if n is even.

The acceptance of an even-length string takes at most §« +  2 transitions, which is always 
less than the worst-case performance. □

14.4 Complexity and Turing Machine Variations

Several variations on the Turing machine model were presented in Chapter 8 to facilitate 
the design of machines that perform complex computations. In the study of decidability, 
the selection of the Turing machine model was irrelevant. We proved that any problem 
solvable using one Turing machine architecture was solvable using any of the others. In 
complexity theory, however, the choice matters. The machines in Section 14.3 that accept 
the palindromes over [a, b ) exhibit the potential differences in computational resources 
required by one-tape and two-tape machines. In this section we examine the relationship 
between the complexity of computations in various Turing machine models.

Theorem 14.4.1

Let L be the language accepted by a fc-track deterministic Turing machine M with time com
plexity tcM(n). Then L is accepted by a standard Turing machine M' with time complexity 

= tcM(n).

Proof. This follows directly from the construction of a one-track Turing machine M' from 
a fc-track machine in Section 8.4. The alphabet of the one-track machine consists of fc-tuples 
of symbols from the tape alphabet of M. A transition of M has the form S(<?, . . . . ,  xk),
where x x...........x k are the symbols on track 1, track 2........... track it. The associated transition
of M' has the form & (qt, [jtj......... **]), where the fc-tuple is the single alphabet symbol of
M'. Thus the number of transitions processed by M and M' are identical for every input 
string and icM =  rcM.. B
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Theorem 14.4.2

Let L be the language accepted by a A:-tape deterministic Turing machine M with time 
complexity tcM(n) =  f ( n ) .  Then L is accepted by a standard Turing machine N with time 

complexity tcN(n) e  O ( f ( n ) 2).

Proof. The construction of an equivalent one-tape machine from a fc-tape machine uses a 
2k +  1-track machine M' as an intermediary. By Theorem 14.4.1, all that is required is to 
show that tcM' e  O( / (n)2).

The argument follows the construction of the multitrack machine M' that simulates the 
actions of a multitape machine described in Section 8.6. We begin by analyzing the number 
of transitions of M' that are required to simulate a single transition of M.

Assume that we are simulating the /th transition of M. The farthest right that a tape 
head of M may be at this time is tape position t. The first step in the simulation records the 
symbols on the odd-numbered tapes marked by the X ’s on the even-numbered tapes. This 
consists of the following sequence of transitions of M':

Find X on second track

and return to tape position 0 2t 
Find X on fourth track

and return to tape position 0 2/

Find X on 2*th track

and return to tape position 0 21

After finding the symbol under each X , M' uses one transition to record the action taken 
by M. The simulation of the transition of M is completed by

Action
Maximum Number of 
Transitions of M'

Action
Maximum Number of 
Transitions of M'

Write symbol on track 1, reposition X on track 2, 

and return to tape position 0 

Write symbol on track 3, reposition X on track 4, 
and return to tape position 0

2(/ +  1)

2(/ +  1)

Write symbol on track 2k — 1, reposition X on track 2k, 
and return to tape position 0 2 ( /  +  1)



448 C h a p te r  14 T im e  C om plex ity

Consequently, the simulation of the t th transition of M requires at most 4kt + 2k + \ 
transitions of M'. The computation of M' begins with a single transition that places the 
markers on the even-numbered tracks and the # on track 2k +  1. The remainder of the 
computation consists of the simulation of the transitions of M. An upper bound on 
the number of transitions of M' needed to simulate the computation of M with input of 

length n is

f in)

tcw (n) <  1 +  J 2 (4kt +  2k +  1) e  ■
t = I

14.5 Linear Speedup

The time complexity function /cm(«) of a Turing machine M gives the maximum number 
of transitions required for a computation with an input string of length n. In this section we 
show that a machine that accepts a language L can be “sped up” to produce another machine 
that accepts L in time that is faster by an arbitrary multiplicative constant.

LetM  = (Q, E , T, S, q0, F) be a it-tape Turing machine, k > 1, that accepts a language 
L. The underlying strategy involved in the speedup is to construct a machine N that accepts 
L in which a block of six transitions of N simulates m transitions of M, where the value of m 
is determined by the desired degree of speedup. For example, selecting tm =  12 reduces the 
number of transitions by approximately one-half since six transitions of N achieve the same 
result as 12 of M. The word approximately is included in the previous sentence because of 
some initial overhead required by N prior to the simulation of the computation of M.

Since the machines M and N accept the same language, the input alphabet of N is also 
E. The tape alphabet of N includes that of M, as well as the symbol # and all ordered 
m -tuples of symbols of T. A computation of N consists of two phases, initialization and 
simulation. The initialization translates the input into a sequence of m-tuples. The remainder 
of the computation of N simulates the computation of M.

During the simulation of M, a tape symbol of N is an m -tuple of symbols of M, and 
the states of N are used to record the portion of the tapes of M that may be affected by the 
next m transitions of M. In this phase of the computation of N, a state of N consists of

i) the state of M;

ii) for « =  1 to k, the m -tuple currently scanned on tape i of N and the M-tuples to the 
immediate right and left; and

iii) an ordered Ar-tuple [f(......... /*], where ij  is the position of the symbol on tape j  being
scanncd by M in the m-tuple being scanned by N.

A sequence of six transitions of N uses the information in the state to simulate m transitions 
of M.

The process will be demonstrated using the two-tape machine M' from Example 14.3.1 
with m = 3 and input abbabba. The input configuration of N is exactly that o f  M', with the 
input string on tape 1 and tape 2 entirely blank. The first action of N is to encode the input



14.5 Linear S p e e d u p  449

string into ^-tuples. The process begins by writing # on position zero of both tapes. For 
every three consecutive symbols on tape 1, an ordered triple is written on tape 2. The final 
ordered triple written on tape 2 is padded with blanks since the length of Babbabba is not 
evenly divisible by three. The tape heads of N are repositioned at tape position one and the 
original input string is erased from tape 1. For the remainder of the computation, tape 2 of 
N will simulate tape 1 of M \ and tape 1 of N will simulate tape 2 of M'.

The next diagram shows the initial configuration of M' with input abbabba  and the 

configuration of N after the encoding.

M ' N # | [Bab] | [bab] [baB] B

t  t
a b b a b b a # | [BBB] | [BBB] [BBB] B

After the initialization, each blank on the tape of N will be considered to represent an 
encoded triple [BBB]  of blanks of M'. To illustrate the difference in the diagrams, the 
blanks of N will be written B. After the encoding of the input, N will enter the state

(.ft; ?, [BBB], ?; ?, [Bab], ?; [1, 1]).

The m -tuples [BBB] and [Bab] are those currently scanned by N on tapes I and 2, respec
tively. The ordered pair [1,1] indicates that the computation of M' is scanning the symbol 
that occurs in the first position in each of the triples [BBB] and [Bab] in the state of N. 
The symbol ? is a placeholder; subsequent transitions will cause N to enter states in which 
each ? is replaced with information concerning the triples to the left and right of the position 
currently being scanned.

The simulation of m moves of M' is demonstrated by considering the configurations of 
M' and N

M ' b b a b b a N # [Bah] [bab] [bBB] B

t 1
a b b a b b # [BBb] [bab] [baB] B

I f
that would be obtained during the processing of abbabba. Upon entering this configuration, 
the state of N is

(q3\ ?, [BBb], ?; ?, [bBB], ?; [3, 1]).
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The ordered pair [3, 1] in the state indicates that the computation of M' is reading the b in 
the triple [BBb] on tape 1 and the b in the triple [bBB] on tape 2.

The machine N then makes a move to the left on each tape, scans the squares, and enters

state

(q3; #, [BBb], ?; [bab], [bBB], ?; [3, 1]),

which records the triples to the left of the originally scanned squares in the state. The role 
of the marker # is to ensure that N will not cross a left-hand tape boundary in this phase of 
the simulation. Two moves to the right leaves N in state

(q i ; #, [BBb], [bab]; [bab], [bBB], [BBS]; [3, 1]),

recording the triple to the right of the originally scanned positions. N then moves its tape 
heads left to return to the original position. After these transitions, the state o f N contains a 
copy of the segment of the tape of M' that can be altered by three transitions.

At this point, N rewrites its tapes to match the configuration that M' will enter after 
three transitions

M' N # [Bab] [bBB] [BBB] B

a b b

and enters state

# [BBB] [BBb] [baB] B

(qy, ?, [BBb], ?; ?, [bBB], ?; [3,1])

to begin the simulation of the next three transitions of M'. Since each tape square of N has 
three symbols of M', the portion of the tape of M' that can be altered by three transitions 
is contained in the tape square currently being scanned by N and either the square to the 
immediate right or immediate left of the square being scanned, but not both. Consequently, 
at most two transitions of N are required to update its tape and prepare for the continuation 
of the simulation of M'. The simulation of transitions of M' continues until M' halts, in 
which case N will halt and return the same indication of membership as M'.

Theorem 14.5.1

Let M be a fc-tape Turing machine, k > 1, that accepts L with tcM(n) =  / (n). For any 
constant c > 0, there is a fc-tape machine N that accepts L with tcN(n) <  \ c f  (w)l +  2n +  3.

Proof. The construction of the machine N has just been described. Encoding an input 
string of length n as m -tuples and repositioning the tape heads require 2n +  3 transitions.
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The remainder of the computation of N consists of the simulation of the computation 
of M. To obtain and record the information needed to simulate m transitions of M, machine 
N takes one move to the left, two to the right, and one to reposition the head at the original 
position. At most two transitions are then required to reconfigure the tapes of N. Thus six 
transitions of N are sufficient to produce the same result as m of the machine M. Choosing 
m > 6/c  produces

tCtf(n) =  f(6/m)f(n)~l +  2n +  3

< |c / ( » ) l  + 2 n  + 3,

as desired. ■

Corollary 14.5.2

Let M be a one-tape Turing machine that accepts L with tcM(n) =  f ( n ) .  For any constant 
c > 0, there is a two-tape machine N that accepts L with /cN(«) < [c/(m)1 +  2n +  3.

Proof. In the standard manner, the one-tape machine M can be considered to be a two-tape 
machine in which the second tape is not referenced in the computation. Theorem 14.5.1 can 
then be used to speed up the two-tape machine. ■

The speedup in Theorem 14.5.1 was obtained at the expense of creating a larger tape 
alphabet and vastly increasing the number of states. The exact determination of the size of 
these sets is left as an exercise.

14.6 Properties of Time Complexity of Languages

The definition of the time complexity function rcM is predicated on the computations of the 
machine M and not on the underlying language accepted by the machine. We know that many 
different machines can be constructed to accept the same language, each with a possibly 
different time complexity. We say that a language L is accepted in deterministic time / ( n ) 
if there is a standard (one-tape deterministic) Turing machine M with tcM(n) e  O ( /(« ) ) .  
Using the results from the preceding section, we know that a language L is 0 ( / (n)2) 
whenever there is a multitape Turing machine that accepts L with time complexity 0 ( / («)).

In this section we establish two interesting results on the bounds of the time complexity 
of languages. First, we show that for any computable total function f{n ) ,  there is a language 
whose time complexity is not bounded by f ( n ) .  We then show that there are languages for 
which no “best” accepting Turing machine exists. Theorem 14.5.1 has already demonstrated 
that a machine accepting a language can be sped up linearly. That process, however, does 
not change the rate of growth of the accepting machine. We will now show that there are 
languages which, when accepted by any machine, are also accepted by a machine whose 
time complexity grows at a strictly smaller rate than the original machine.
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Both of these results utilize the ability to encode and enumerate all multitape Turing 
machines. An encoding of one-tape machines as strings over {0, 1} was outlined in Sec
tion 11.5. This approach can be extended to an encoding of all multitape machines with input
alphabet {0, /}. The tape alphabet is assumed to consist of elements { 0 ,1, B , x y.........
The tape symbols are encoded as follows:

Symbol Encoding

0 1

I 11

B 111

1111

y / j + 3

As before, a number is encoded by its unary representation and a transition by its 
encoded components separated by O's; encoded transitions are separated by 00. With these 
conventions, a k -tape machine may be encoded

000k000ert(acccp\mg states)000en(transitions)O00,

where k is the unary representation of k and en denotes the encoding of the items in 
parentheses.

With this representation, every string u € (0, /}* can be considered to be the encoding 
of some multitape Turing machine. If u does not satisfy the syntactic conditions for the 
encoding of a multitape Turing machine, the string is interpreted as the representation of 
the one-tape, one-state Turing machine with no transitions.

In Exercise 8.32 a Turing machine E that enumerated all strings over {0,1}  was con
structed. Since every such string also represents a multitape Turing machine, the machine 
E can be equally well thought of as enumerating all Turing machines with input alphabet 
{0, /}. The strings enumerated by E will be written u0, u t, u2, . . . and the corresponding
machines by M0, M,, M2..........

We will now show that there is no upper bound on the time complexity of languages. 
More precisely, for any computable function /  we will build a recursive language L such 
that no Turing machine M with fcM(n) <  f(rt)  accepts L. The proof uses diagonalization 
to obtain a contradiction from the assumption of the existence of such a machine.

Theorem 14.6.1

Let /  be a total computable function. Then there is a language L such that tcM is not bounded 
by /  for any deterministic Turing machine M that accepts L.

Proof. Let F be a Turing machine that computes the function / .  Consider the language 
L = {m, | M, does not accept m, in f ( n )  or fewer moves, where n =  length(Uj)}. First, we
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show that L is recursive and then that the number of transitions of any machine that accepts 

L is not bounded by f ( n ) .
A machine M that accepts L is described below. The input to M is a string m, in [0, ]}*. 

Recall that the string m, represents the encoding of the Turing machine M, in the enumeration 

of all multitape Turing machines. A computation of M

1. determines the length of m(, say, length(Uj) =  n;

2. simulates the computation of F to determine / ( « ) ;

3. simulates M, on «, until M; either halts or completes f  (ti) transitions, whichever comes 
first; and

4. M accepts m, if either M, halted without accepting m, or M, did not halt in the first /  (n) 
transitions. Otherwise, ut is rejected by M.

Clearly, the language L(M) is recursive, since step 3 ensures that each computation will 
terminate.

The language L has been designed so that diagonalization and self-reference can be 
used to produce a contradiction to the claim that L is accepted by a Turing machine with 
time complexity bounded by / ( n ) .  Let M be any Turing machine that accepts L. Then M 
occurs somewhere in the enumeration of Turing machines, say M = My. The self-reference 
is obtained by considering the membership of uj  in L. Since L(My) = L, M; accepts Uj if, 
and only if, M; halts without accepting Uj in / (n) or fewer transitions or My does not halt 
in the first f ( n )  transitions.

The proof that My is not bounded by /  is by contradiction. Assume that the time 
complexity of My is bounded by /  and let n =  length(Uj). There are two cases to consider: 
either uj e  L or uj £  L.

If Uj € L, then My accepts uj  in / ( « )  or fewer transitions (since the computations of 
My are assumed to be bounded by / ) .  But, as previously noted, My accepts iij if, and only 
if. My halts without accepting Uj or M; does not halt in the first / ( n ) transitions.

If uj <jL L, then the computation of My halts within the bound of /  (n) steps and does 
not accept Uj. In this case, uj  e  L by the definition of L.

In either case, the assumption that the number of transitions of M; is bounded by /  
leads to a contradiction. Consequently, we conclude that time complexity of any machine 
that accepts L is not bounded by / .  ■

Next we show that there is a language that has no fastest accepting machine. To illustrate 
how this might occur, consider a sequence of machines N0, N b . . . that all accept the same 
language over 0*. The argument uses the function t that is defined recursively by

i) r( 1) =  2

ii) /(n ) =  2 '(" - 1).

Thus f (2) =  22, t ( 3) =  22\  and t(n)  is a series of n 2’s as a sequence of exponents. The 
number of transitions of machine N, when ran with input 0j  is given in the [j, y]th position
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TABLE 14 .6  M a c h in e s  N,- a n d  T h e ir  C o m p u ta t io n s

A. 0 00 o3 O4 O5 O6

N0 * 2 4 f(3) r(4) K5) t(6)

N, * * 2 4 f(3) t{ 4) 1(5)

n 2 * * * 2 4 f(3) K 4)

n 3 * * * * 2 4 K 3)
n4 * * ♦ * * 2 4

of Table 14.6. A * in the [i, y']th position indicates that the number of transitions of this 
computation is irrelevant.

If such a sequence of machines exists, then

t c ^ n )  =  log2(/cNi_1(n))

for all n > i +  1. Consequently, we have a sequence of machines that accept the same 
language in which each machine has a strictly smaller rate of growth than its predecessor. 
A language that exhibits the “this can always be accepted more efficiently” property is 
constructed in Theorem 14.6.2.

The speedup in both the motivating discussion and in the construction in Theo
rem 14.6.2 uses the property that rates of growth measure the performance o f the function as 
the input gets arbitrarily large. From the pattern in Table 14.6, we see that the computations 
of machines N, and N,+1 are compared only on input strings of length i +  2 or greater.

Theorem 14.6.2

There is a language L such that, for any machine M that accepts L, there is another machine 
M' that accepts L with tcM-(n) e  0 (log2(/cM(«»).

Let t be the function defined recursively by r (1) =  2 and t(n)  =  2,(n-1) for n >  1 
as before. A recursive language L c  {0}* is constructed that satisfies the following two 
conditions:

1. If M; accepts L, then tcM.(n) > t ( n — i ) for all n greater than some n,.

2. For each k, there is a Turing machine My with L(M; ) = L and tcM .(n) < t (n  - k )  for 
all n greater than some nk.

Assume that L has been constructed to satisfy the preceding conditions. For every 
machine M, that accepts L there is an M; that also accepts L with

rcMy( n )€ 0 ( lo g 2(/cM (n))),
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as desired. To see this, set k = i +  1. By condition 2, there is a machine My that accepts L 
and tcM.(n) < t(n -  i -  1) for all n > nk. However, by condition 1,

fcM (n) > t(n — i) for all n > n, .

Combining the two inequalities with the definition of t yields

/cM,(n) > t(n -  0  =  2,<"_' _1) > 2,CM/ n) for all n > max{n(, nk}.

That is, tcM (n) < log2 (/cM.(n)) for all n >  max{/ij, nk}.
We now define the construction of the language L. Sequentially, we determine whether

strings 0”, n =  0, 1 ,2 .......... are in L. During this construction, Turing machines in the
enumeration M0, M,, M2, . . .  are marked as cancelled. In determining whether 0" e  L, we 
examine a machine M?(n) where g(n)  is the least value j  in the range 0...........n such that

i) My has not been previously cancelled, and

ii) tcM.(n) < t ( n  -  j ) .

It is possible that no such value j  may exist, in which case g(«) is undefined. The string 
0" e  L if, and only if, g(n) is defined and Mg(n) does not accept 0”. If g(n)  is defined, then 
Mg(„) is marked as cancelled. The definition of L ensures that a cancelled machine cannot 
accept L. If Mg(n) is cancelled, then 0" € L if, and only if, 0" is not accepted by M^(n). 
Consequently, L(M^(n)) L.

The proof of Theorem 14.6.2 consists of establishing the following three lemmas. The 
first shows that the language L is recursive. The final two demonstrate that conditions 1 and
2 stated earlier are satisfied by L.

Lemma 14.6.3

The language L is recursive.

Proof. The definition of L provides a method for deciding whether 0" e  L. The decision 
process for 0" begins by determining the index g(n),  if it exists, of the first machine in the 
sequence M0, . . . , M„ that satisfies conditions 1 and 2. To accomplish this, it is necessary
to determine the machines in the sequence Mq, M j...........M „_( that have been cancelled in
the analysis of input X, 0, . . . , 0 n~ i. This requires comparing the value of the complexity 
functions in Table 14.7 with the appropriate value of t. The input alphabet consists of the 
single character 0, therefore /cM (m) can be determined by simulating the computation of 
M, with input ff”.

After the machines that have been cancelled are recorded, the computations with input 
0" are used to determine g(n). Beginning with j  =  0, if My has not previously been 
cancelled, then t(n  — j )  is computed and the computation of My on 0" is simulated. If 
,CM; (” ) < t ( n — j ) ,  then g(n)  =  j .  If not, j  is incremented and the comparison is repeated 
until g(n)  is found or until all the machines M0, . . . , M„ have been tested.

If g (n) exists, Mg(n) is run with input 0 The result of this computation determines 
the membership of 0" in L: 0" e  L if, and only if, Mg(n) does not accept it. The preceding



456 C h a p te r  14 T im e  C om plex ity

TABLE 14.7  C o m p u ta t io n s  t o  D e te r m in e  C an c e l le d  M ac h in e s

Input m Comparison rcM.(m) < t(m — i)

X 0 tcMo( 0 ) < t ( 0 - 0 )  = t(0)

0 1 tcMo( l ) < t ( l - 0 )  = t(l) 

fcM, ( l ) < / ( l - l )  =  f(0)

00 2 »cMo( 2 ) < r ( 2 - 0 )  =  r(2) 

fcMl( 2 ) < / ( 2 -  1) =  /(1)
fcM2(2) < /(2 — 2) =  f(0)

0»-l n -  1 t c ^ i n  -  1) < I(n -  1 -  0) =  t(n -  1)

-  1) < — 1 -  1) = l(n ~  2) 
fCM2(n -  1) < t(n -  1 -  2) =  /(n -  3)

-  1) < t(n -  1 -  (n -  1)) =  /(0)

process describes a decision procedure that determines the membership of any string 0" in 
L; hence, L is recursive. ■

Lemma 14.6.4

L satisfies condition 1.

Proof. Assume M, accepts L. First note that there is some integer p t such that if a machine
M0, M j...........M, .is ever cancelled, it is cancelled prior to examination o f the string 0Pi.

Since the number of machines in the sequence M0, Mj, . . . , that are cancelled is finite, 
at some point in the generation of L all of those that are cancelled will be so marked. We 
may not know for what value of p, this occurs, but it must occur sometime and that is all 
that we require.

For any 0" with n greater than the maximum of p t and i, no M* with k < i can be 
cancelled. Suppose tcM,(n) < t(n — i). Then M, would be cancelled in the examination of 
0". However, a Turing machine that is cancelled cannot accept L. It follows that tcMXn) > 
t(n — i) for all n >  max{p,, i }. ■

Lemma 14.6.5

L satisfies condition 2.

Proof. We must prove, for any integer k, that there is a machine M that accepts L and 
tcM(n) < t ( n  — k)  for all n greater than some value nk. We begin with the machine M 
that accepts L described in Lemma 14.6.3. To decide if 0" is in L, machine M determines 
the value g(n)  and simulates Mg(n) on Of'. To establish g(n), M must determine which of 

the M ,’s, i < n, have been cancelled during the analysis of strings X, 0, 00, . . . , 0n~ i.
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Unfortunately, a straightforward evaluation of these cases as illustrated in Table 14.7 may 
require more than t(n — k) transitions.

As noted in Lemma 14.6.4, any Turing machine M, , i < k, that is ever cancelled is 
cancelled when considering some initial sequence X, 0, 00, . . . , 0Pk of input strings. 
This value pk can be used to reduce the complexity of the preceding computation. For 
each m <  pk, the information on whether f f” is accepted is stored in states o f the machine 
M that accepts L.

The computation of machine M with input 0" then can be split into two cases.

Case 1: n < pk. The membership of 0" in L is determined solely using the information 
recorded in the states of M.

Case 2: n > pk. The first step is to determine g(n). This is accomplished by simulating the
computation of Turing machines M,, i =  k +  1, . . . , n on inputs CT, m = k  + \ ...........n
to see if M, is cancelled on or before 0". We only need to check machines in the range 
M*+1, . . . , M„ since no machine M0, . . . , M k will be cancelled by an input of length 
greater than pk.

The ability to skip the simulations of machines M0, . . . , M* reduces the number of 
transitions needed to evaluate an input string 0" with n > pk. The number o f simulations 
indicated in Table 14.7 is reduced to

Input m Comparison tcM (m) < t(m — i)

0 t  +  ! k -)- 1 tCMl+l(k + 1) < t(k + 1 -  (k + 1)) := 1(0)

0 * + 2 k + 2 fcM4+1(^ + 2) < t(k + 2 — (k + 1)) 
tcMk̂ ( k  + 2) < t(k + 2 — (k +  2))

=  /( 1) 
=  f(0)

or ft , c m » + 1 ( " )  £ ' ( ”  -  ( *  +  1)) 
, c M 1 + 2 ( " )  £ ' ( "  -  ( *  +  2))

tC M jn )< f ( n -n )  = t(0)

Checking whether machine M, is cancelled with input 0m requires at most t(m — i) 
transitions. The maximum number of transitions required for any computation in the pre
ceding sequence is t(n  — k  — 1), which occurs for i =  it +  1 and m = n .

The machine M must perform each of the indicated comparisons. At most 
t(n — k — 1) transitions are required to simulate the computation of M, on O'". Erasing 
the tape after the simulation and preparing the subsequent simulation can be accomplished 
in an additional 2t(n — k — 1) transitions. The simulation and comparison cycle must be 
repeated for each machine M,, i =  k +  1, . . . , n, and input 0™, m =  k +  1, . . . , n. Thus
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the process of simulation is repeated at most (n — k)(n — k +  l) /2  times. Consequently, 
the number of transitions required by M is less than 3(n — k)(n  — k +  l)r(” — k — l)/2. 

That is,

fcM(n) < 3(n -  k)(n -  k + l)t(n -  k -  l)/2 .

However, the rate of growth of 3(n — k)(n — k +  \)t(n — k — l) /2  is less than that of 
t(n — k) =  2,(" - * - |>. Consequently, tcM(n) < t ( n - k ) for all n greater than some nk. ■

The preceding proof demonstrated that for any machine M accepting L, there is a 
machine M' that accepts L more efficiently than M. Now, M' accepts L so, again by 
Theorem 14.6.2, there is a more efficient machine M" that accepts L. This process can 
continue indefinitely, producing a sequence of machines each of which accepts L with 
strictly smaller rate of growth than its predecessor.

Theorem 14.6.2 reveals a rather nonintuiti ve property of algorithmic computation; there 
are decision problems that have no best solution. Given any algorithmic solution to such a 
problem, there is another solution that is significantly more efficient.

14.7 Simulation of Computer Computations

Our study of the complexity of an algorithm is based on the number of transitions in the 
computations of a Turing machine implementation of the algorithm. However, the vast 
majority of the computational work that we do is usually not done on a Turing machine 
but rather on a computer. To illustrate the practical application of the analysis of Turing 
machine computations, we will compare the time complexity of an algorithm run on a 
standard computer with the complexity of running the same algorithm on a Turing machine, 
where the time complexity of a computation on a computer is measured by the number of 
machine instructions executed during the computation.

We will not produce a theorem that precisely relates the number of- instructions to 
the number of transitions. This is impossible since different computers have different 
architectures, instruction sets, memory sizes, and computational capabilities. What we will 
do, however, is define a general type of machine instruction that subsumes those of standard 
machine or assembly languages. In fact, the flexibility and computational power that we give 
to our instructions far surpass that found in typical computer architectures.

The first thing to note is that we are interested in comparing a real computer, not a 
theoretical machine, with a Turing machine. Thus our machine must have a finite memory. 
The memory can be as large as desired, but finite. The machine memory is divided into 
fixed-length addressable words. In practice, a word usually consists of 32 or 64 bits, but we 
will allow the length of the words in our machine to be of any fixed finite length. The sole 
restriction on the length of a word is that it be large enough to hold our machine instructions. 
Each word has an associated numeric address that is used to retrieve and store data.



14 .7  S im u la t io n  of C o m p u te r  C o m p u t a t i o n s  459

A machine instruction consists of an operation code, which indicates the operation to 
be performed, followed by operands. An instruction may move data, perform arithmetic 
or Boolean calculations, adjust the program flow, or allocate additional memory. Memory 
allocation may be required for temporary calculations or to dynamically increase the amount 
of memory available during a computation. We will assume that there is a maximum amount 
of memory, say, ma words, that can be allocated by the execution of a single instruction. 
The number ma, of course, can be as large as we wish.

The operands designate locations from which to retrieve data, locations in which to 
store the results, or other addresses to be used in the operation. An instruction usually has 
one or two operands, but we will allow every instruction to have up to a fixed number t 
of operands. Since t is the maximal number of addresses that can be explicitly given in an 
instruction, we assume that the result of a single instruction can change at most t words in 
the memory. Our final restriction, if it can be called a restriction, is that the instruction set 
must be finite.

Summarizing these conditions, we will be considering the time complexity of a com
puter whose architecture and instruction set satisfy the following conditions:

Component Conditions

Memory: Finite
Word size: Fixed word length, each word containing mw bits
Instruction set: Finite
Instruction: Operation code and at most t operands.

fits within a single word
Operation: Changes at most t words.

allocates at most ma words of memory

It should be clear that most, if not all, standard computer architectures and instruction sets 
satisfy these rudimentary limitations. The details of how memory is accessed, an instruction 
is performed, and program flow is maintained in a particular computer architecture are not 
of interest to us. We are only concerned with the number of instructions that are executed.

We will now design a Turing machine to simulate a computation consisting of a 
sequence of instructions. We will use the 4 +  r-tape Turing machine model depicted in 
Figure 14.1, where t is the number of operands in an instruction. The program and input 
are stored on tape 1. Like the computer memory, we will consider tape 1 to be divided into 
words: tape positions 0 to m w — 1 constitute word 0, m w to 2m w — 1 constitute word 1, and 
so on. Our memory allocation scheme is simple: Memory is allocated sequentially and once 
allocated it is never freed. The memory counter contains the address of the next free word 
of memory on tape 1.

The program counter contains the location of the next instruction to be executed. Pro
gram control is sequential unless an instruction specifies the location of the next instruction 
as the value of one of its operands. The input counter contains two addresses, the location
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>• t Register tapes

Work tape

Input counter

Program counter

| | I | | _ Input tape

FICURE 14.1 Turing machine architecture for computer simulation.

of the beginning of the input and the location of the next word to be read. There is an ad
ditional counter tape used in locating addresses on tape 1. Finally, there are t work tapes, 
one associated with each operand of an instruction. These tapes may be considered to be 
the Turing machine equivalent of registers; operations on data are performed only when the 
pertinent data have been moved to these tapes. Figure 14.1 shows the configuration of our 
Turing machine.

We now want to produce an upper bound on the number of transitions that are required 
for the Turing machine to simulate the execution of the klh instruction of a computation. 
An instruction may fetch data, store data, allocate memory, and perform a calculation. The 
simulation of an instruction by our Turing machine consists of the following actions:

i) loading the data specified by operand i onto its associated tape (for each operand 
required by the operation),

ii) performing the indicated operation, and

iii) storing the result in the position indicated by operand i (for each operand required by 
the operation).

In the first step, the data to be processed may be in the instruction itself or the instruction 
may contain the address of the desired data.

To obtain an upper bound on the number of transitions needed to simulate the execution 
of an instruction, we will unrealistically assume that each instruction does the maximal 
amount of each type of action. That is, we will calculate the number of transitions as if each 
instruction fetches t words, performs an operation, stores t words, and allocates ma words 
of memory. Thus we need to determine the number of transitions required for each of these 
actions.



Since there are only a finite number of instructions and each instruction uses at most t 
operands with the data in known locations on the register tapes, we can find the maximum 
number of transitions needed to perform any operation. This number, which we will call 
tg, depends solely on the instruction set and is independent of the input, the data, and the 

number of instructions in a computation.
The number of transitions needed to load the operands and store the results depends 

upon the amount of memory that is being used by the Turing machine. We let m p be the 
number of bits used to store the instructions, m(- be the number of bits to store the input, and 
m k the total memory “allocated" by the Turing machine at the beginning of the simulation 
of instruction k. Thus

mk — m p +  m i +  k ■ ma

is the maximum amount of memory allocated by the Turing machine prior to the simulation 
of the &th transition.

During the simulation of the fcth transition, the Turing machine can locate any address 
in m k transitions. To find the beginning of a word, the address is loaded onto the counter 
tape. While the address is not 0, the program tape head moves m w squares to the right and the 
counter tape is decremented. This process halts when the counter tape is 0, in which case the 
program tape head is reading the first bit in the desired word. Copying the address requires 
fewer than m w transitions. Finding the address requires fewer than m k — inw transitions 
since the bits in the last word will not be read in this process.

An upper bound on the number of transitions required to simulate the execution of the 
kth instruction is
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Action Transitions

Find the instruction mk
Load the operands t mk

Return the register tape heads 1 mk

Perform the operation

Store the information

Return the register tape heads ‘ ■ "U+i

Since the operation may allocate additional memory, the storing operation may access 
>nk+\ tape squares. Adding the transitions associated with each step in the simulation of 
an instruction produces an upper bound of

(21 +  1 )mk + 2 tm k+1 + t0 

=  (21 +  l)(mp + m, + k ■ ma) +  2 t(m p + ntj +  k ■ ma + ma) +  t0 

=  (4/ +  1 )mp +  (4/ +  1 )m, + 2 1 ■ ma + t0 +  (41 + 1)* ■ ma
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transitions to simulate the Jtth instruction. The values m p, ma, and t0 are constants indepen
dent of the input. If a computation of the computer with input length m, =  n requires / (n) 
steps, the simulation on our Turing machine requires

/(")
F  ((4f +  1 )mp +  (4/ -I- l)n + 21 m a + t 0 +  (4/ +  1)* ■ ma)
k=I

f in)

= f(n ) ( (4 t  +  l)mp +  (41 +  l)n +  2t ma + ta) +  £ ] ( 4 r  -I- 1 )k ■ n.
k=l

/r>

=  /(n )( (4 /  +  1 )mp +  (41 +  l)n +  2t ■ ma +  tQ) +  (4/ t- l)ma k.
k= 1

Thus the rate of growth is the larger of O (n f  («)) or O ( / (n)2). The transition from computer 
to Turing machine simulation increases the order of the time complexity at most polyno
mially. In particular, any algorithm that runs in polynomial time on a computer can be 
simulated on a Turing machine in polynomial time.

Exercises

1. For each of the functions below, choose the “best” big Oh from Table 14.3 that describes”̂  
the rate of growth of the function.

a) 6n2 +  500

b) 2n2 +  n2 log2(n)

c) L(” 3 +  2n)(n +  5 ) /n 2J

d) n2 • 2" +  n!

e) 25 • n - sqrt(n)  +  5n2 +  23

2. Let /  be a polynomial of degree r. Prove that /  and nr have the same rate of growth.

3. Use Definition 14.2.1 or the limit rule to establish the following relationships.

a) n • sqr t(n)  € 0 ( n 2)

b) log2(n) log2(n) e  O (n)

c) nr e  0(2")

d) 2” jf 0 ( n r)

e) 2" € 0 ( n !)

f) n \ £  0 (2")

4. Is 3" 6 0 (2")?  Prove your answer.
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5. Let a be a natural number greater than 1 and c be a constant greater than 0. Is 
logu(n +  c) e  0(logu(n))? Prove your answer.

6. L e t / ( n )  =  Mlo*2<n>.

a) Show that f ( n )  £ 0 (nr) for any r  >  0. That is, f ( n )  is not in bounded by a 
polynomial.

b) Show that 2" £  O( / (n)). That is, / ( n ) is not exponential.

7. Let /  and g be two unary functions such that /  € Q (nr) and g € © (« ')■ Give the 
polynomial “big theta” that has the same rate of growth as the following functions. 
Prove your answer.

a) f  + g

b) f g

c) f 2

d) f o g

8. Determine the time complexity of the following Turing machines.

a) Example 8.2.1, page 260

b) Example 8.6.3, page 274

c) Example 9.1.2, page 298

d) Example 9.2.1, page 301

9. Let M be the Turing machine

b/bL

a) Trace the computation of M with input X, a, and abb.

b) Describe the string of length n for which the computation of M requires the maxi
mum number of transitions.

c) Give the function rcM.
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10. Let M be the Turing machine

at a R 
c/c R a/a L

M: > (§ }
B/BR

Q -
b/bL B/BR

<s)

a) Trace the computation of M with input abc, aab,  and cab.

b) Describe the string of length n for which the computation of M requires the maxi
mum number of transitions.

c) Give a regular expression for L(M).

d) Give the function

11. Let L be the language over [a, b) that contains a string u if it satisfies one of the 
following conditions:

i) u =  a'b' and length(u) < 100, or

ii) length(u) > 100.

a) Design a standard Turing machine M that accepts L.

b) Give the function tcM.

c) What is the best polynomial rate of growth that describes the time complexity 
function /cM?

12. Let M = (Q, E , T, 8, q0, F) be a two-tape Turing machine that accepts a language 
L, and let N be the machine constructed following Theorem 14.4.2 with m =  12. 
Determine the size of the tape alphabet and the number of states of N.

* 13. Design a standard Turing machine M that accepts the language {a'b' \ i > 0( with time 
complexity tcM e  0 (/i log2(n» . Hint: On each pass through the data, mark half of the 
a ’s and half of the b’s that have not been previously marked.
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CHAPTER 1 5

T ,  and Cook’s Theorem

Computability theory is concerned with establishing whether decision problems are theo
retically decidable. In complexity theory we further subdivide the solvable problems into 
those that have practical solutions and those' that are solvable in principle only. A problem 
that is theoretically solvable may not have a practical solution; there may be no algorithm 
that solves the problem without requiring an extraordinary amount of time or memory. Prob
lems for which there is no efficient algorithm are said to be intractable. Because of the rate 
of growth of the time complexity, nonpolynomial algorithms are not considered feasible for 
all but the simplest cases of the problem. The division of the class of solvable decision prob
lems into polynomial and nonpolynomial problems is generally considered to distinguish 
the efficiently solvable problems from the intractable problems.

There are many famous problems that have polynomial-time nondeterministic solutions 
for which there are no known polynomial-time deterministic solutions. In this chapter 
we explore the relationship between solvability using deterministic and nondeterministic 
polynomial-time algorithms. Whether every problem that can be solved in polynomial time 
by a nondeterministic algorithm can also be solved deterministically in polynomial time is 
currently the outstanding open question of theoretical computer science.

The duality between solvable decision problems and recursive languages allows us to 
define complexity classes in terms of recursive languages. Because time complexity relates 
the length of an input string to the number of transitions, the selection of the representation 
of the instances of a decision problem may alter the complexity of the algorithm. To separate 
the effect of the representation from the inherent difficulty of the problem, we will impose 
some simple constraints on the representations so that a change in representation only 
polynomially affects the complexity of the solution.

465
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15.1 Time Complexity o f Nondeterministic Turing Machines

Nondeterministic computations are fundamentally different from their deterministic coun
terparts. A deterministic machine often generates and examines multiple possibilities in 
its search for a solution, while a nondeterministic machine employing a guess-and-check 
strategy need only determine if one of the possibilities provides the solution. Consider the 
problem of deciding whether a natural number k is a composite (not a prime). A construc
tive, deterministic solution can be obtained by sequentially examining every number in the 
interval from 2 to to see if it is a factor of k. If a factor is discovered, then k is a 
composite. A nondeterministic computation begins by arbitrarily choosing a value in the 
designated range. A single division determines if the guess is a factor. If k is a composite, 
one of the nondeterministic choices will produce a factor and that computation returns the 
affirmative response.

A string is accepted by a nondeterministic machine if at least one computation termi
nates in an accepting state. The acceptance of the string is unaffected by the existence of 
other computations that halt in nonaccepting states or do not halt at all. The worst-case 
performance of the algorithm, however, measures the efficiency over all computations.

Definition 15.1.1

Let M be a nondeterministic Turing machine. The time complexity of M is the function 
tcM :N  —*■ N such that fcM(/i) is the maximum number of transitions processed by a 
computation, employing any choice of transitions, of an input string of length n.

The preceding definition is identical to that of the time complexity of a deterministic 
machine. It is included to emphasize that the nondeterministic analysis must consider all 
possible computations for an input string. As in the case of deterministic machines, our 
definition of time complexity assumes that every computation of M terminates.

Nondeterministic computations utilizing a guess-and-check strategy are generally sim
pler than their deterministic counterparts. The simplicity reduces the number of transitions 
required for a single computation. Employing this strategy, we can construct a nondeter
ministic machine to accept the palindromes over [a, b}.

Example 15.1.1

The two-tape nondeterministic machine M

[a/a R, B/a /?] 
[b/b R, B/b /?)

[a/a R, a/a L] 
[b/b R, b/b L]

[a/a S, B/B L] 
[b/b S, B/B L] 
[B/B S. B/B L)
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accepts the palindromes over [a, b}. Both tape heads move to the right with the input being 
copied on tape 2. The transition from state q\ “guesses" the center of the string. A transition 
from q\ that moves the tape head on tape 1 to the right and tape 2 to the left is checking 
for an odd-length palindrome, while a transition that leaves the head on tape 1 in the same 
location is checking for an even-length palindrome. The maximum number of transitions 
occurs in an accepting computation, which halts when a blank is simultaneously read by 
tape heads 1 and 2. The time complexity

reflects the additional transition required for the acceptance of an even-length string. □

The strategy employed in the transformation of a nondeterministic machine to an 
equivalent deterministic machine given in Section 8.7 does not preserve polynomial time 
solvability. It does, however, provide an upper bound on the time complexity needed by a 
deterministic machine to accept the language of the original nondeterministic machine.

Theorem 15.1.2

Let L be the language accepted by a one-tape nondeterministic Turing machine M with time 
complexity r c ^ n )  = f  («). Then L is accepted by a deterministic Turing machine M' with 
time complexity tcM'(n) €  O ( f  (n)c^{n)), where c is the maximum number of transitions 
for any state, symbol pair of M.

Proof. Let M =  (Q, E , T, S, q0) be a one-tape nondeterministic Turing machine that 
halts for all inputs, and let c be the maximum number of distinct transitions for any state, 
symbol pair of M. The transformation from nondeterminism to determinism is obtained .by 
associating a unique computation of M with a sequence (/w1, . . . ,  m„), where 1 < m, < c. 
The value m, indicates which of the c possible transitions of M should be executed on the
i th step of the computation.

In Section 8.7, a three-tape deterministic machine M' was described whose computation 
with input w iteratively simulated all possible computations of M with input w. We will 
analyze the number of transitions required by the machine M' to simulate all computations 
of M. For an input of length n, the maximum number of transitions of any computation of 
M is at most / ( « ) ■  To simulate a single computation of M, machine M'

1. generates a sequence of integers ( / « , , . . . ,  m„) with 1 < mt < c;

2. simulates the computation of M specified by the sequence (»i|, . . . ,  m„); and

3. if the computation does not accept the string, the computation of M' continues with

In the worst case, c^ (n) sequences need to be examined. The simulation of a single 
computation of M can be performed using O ( /(« ) )  transitions of M'. Thus, the time 
complexity of M' i s  0 ( / ( n ) c ^ <n)). ■

The time complexity O ( f ( n ) c f{n)) produced in Theorem 15.1.2 is an artifact of the 
particular construction used to produce M' from M. Other approaches considering the

step 1.
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properties of the particular language in question may be used to design deterministic 
machines with time complexity significantly lower than the upper bound indicated by 
Theorem 15.1.2. For example, the nondeterministic machine in Example 8.7.1 that accepts 
(a U b U c)*(abc U cab)(a U fc U c) ' uses at most n +  3 transitions when processing an 
input string of length n. The construction used in Theorem 15.1.2 produces a deterministic 
machine that accepts the language with time complexity 0 ( n  • 3"). However, this language 
is also accepted by a standard Turing machine with time complexity n + 1.

In the next several sections we will explore the relationship between the class of 
problems that can be solved deterministically in polynomial time and the class of problems 
that can be solved nondeterministically in polynomial time.

15.2 The Classes CP and NT

A language L over £  is decidable in polynomial time, or simply polynomial, if there is an 
algorithm that determines membership in L for which the growth in the time required by a 
computation increases at most polynomially with the length of the input string. The notion 
of polynomial time decidability is formally defined using transitions of the standard Turing 
machine to measure the time of a computation.

Definition 15.2.1

A language L is decidable in polynomial time if there is a standard Turing machine M that 
accepts L with fcM e  0 ( n r), where r is a natural number independent of n. The family of 
languages decidable in polynomial time is denoted CP.

The class CP is defined in terms of the time complexity of an implementation of an al
gorithm on a standard Turing machine. We could just as easily have chosen a multitrack, 
multitape, or two-way deterministic machine as the computational model on which algo
rithms are evaluated. The class CP of polynomially decidable languages or solvable decision 
problems is invariant under the choice of the deterministic Turing machine model chosen for 
the analysis. In Section 14.4 it was shown that a language accepted by a multi track machine 
in time O (nr) is also accepted by a standard Turing machine in time 0 ( n r). The transi
tion from multitape to standard machine also preserves polynomial solutions. A language 
accepted in time O(nr) by a multitape machine is accepted in 0 ( n 2r) time by a standard 
machine.

The relationship between the complexity of running a program on a computer and its 
simulation on a Turing machine was analyzed in Section 14.7. The number of transitions in 
the Turing machine simulation increases only polynomially with the number of instructions 
executed by the computer. A consequence of this is that any problem that we would consider 
polynomially solvable on a standard computer is in CP. The robustness of the class CP under 
changes of machines and architectures provides support for its selection as defining the 
border between tractable and intractable problems.



The computation of a nondeterministic machine that solves a decision problem exam
ines one of the possible solutions to the problem. The ability to nondeterministically select 
a single potential solution, rather than systematically examining all possible solutions, re
duces the complexity of the computation of the nondeterministic machine. In a manner 
completely analogous to the definition of the class T, we can define the family of languages 
accepted by nondeterministic Turing machines in polynomial time.

Definition 15.2.2

A language L is said to be accepted in nondeterministic polynomial tim e if there is a 
nondeterministic Turing machine M that accepts L with /cM € 0 ( n r), where r is a natural 
number independent of n. The family of languages accepted in nondeterministic polynomial 

time is denoted NT.

The family N T is a subset of the recursive languages; the polynomial bound on the 
number of transitions ensures that all computations of M eventually terminate. Since every 
deterministic machine is also a nondeterministic machine, T  c  NT. The status of the reverse 
inclusion is the topic of the remainder of this chapter.
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15.3 Problem Representation and Complexity

The development of a Turing machine solution to a decision problem consists of two steps: 
the representation of the problem instances as strings, followed by the design of the machine 
that analyzes the resulting strings and solves the problem. In the study of decidability, the 
sole concern was the discovery of an algorithm to solve a problem and the resources required 
by a computation were not considered. Since the time complexity of a Turing machine 
relates the length of the input to the number of transitions in the computations, the selection 
of the representation may have important consequences for the amount of work required by 
a computation.

In Chapter 11 we designed two simple Turing machines to solve the problem of deciding 
whether a natural number is even. The input to machine Mi uses the unary representation 
of the natural numbers and M 2 the binary representation:
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The time complexities of both of these machines is linear and the difference in representation 
does not significantly affect the complexity. Unfortunately, this is not always the case. A 
modification to the machine M! will have a considerable impact on the complexity.

A Turing machine T can be built to transform a natural number represented in binary 
to its unary representation (Exercise 6). The sequential operation of T with M) produces

which is another solution to the even number problem. Let us examine the complexity of 
this solution. The following table shows the increase in string length that results from the 
conversion of a binary to a unary representation. The second column gives the maximal 
binary number for the string length given in column one, and the final column has the 
corresponding unary representation.

String
Length

Maximal Binary 
Number

Decimal
Value

Unary
Representation

1 I 1 11= I2

2 11 3 1111 = I4

3 111 7 111111111 = Is

i r 2' -  1 F

The time complexity of M3 is determined by the complexities of T and M,. For an input 
of length i, the string V requires the maximum number of transitions of M3. The time 
complexity of M3 is

=  tCf(n) +  rcM|(2")

=  /cT(n) +  2(2") +  2,

which is exponential even without adding the work required for the transformation. The 
strategy employed by M] for answering the problem is unchanged; the increase in time 
complexity occurs because of the decrease in the length of the input string using the binary 
representation.

The following hypothetical situation further illustrates the importance o f the represen
tation in assessing the time complexity of a decision problem. Imagine a problem P whose 
instances are represented by strings over an alphabet E that is solved by a Turing machine 
M with time complexity tcM(n) =  2". We can construct another representation for P as fol
lows: a new symbol # is added to the alphabet and a problem instance that is represented by a 
string w of length rt in the original representation is now represented by w#2"~n. A machine 
M' that solves P  can be trivially obtained from M. The computations of M' are identical to 
those of M, except M' treats # in the same manner that M treats a blank. Because of the 
increase in the length of the input string, = n.
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The preceding example provides a method for manipulating the time complexity func
tion to artificially make inefficient algorithms appear efficient. If the length of the input 
strings can be increased without changing the underlying computation, there will be a cor
responding decrease in the time complexity function.

The dependence of the time complexity on the size of the representation shows that 
not every representation should be acceptable for complexity analysis. Using the smallest 
representation would avoid the possibility of the length of the representation affecting the 
complexity. Such a requirement, however, would be both too restrictive and unnecessary. We 
introduce the notion of a polynomial time transformation of representations to informally 
describe conditions for the suitability of a representation for complexity analysis.

A representation of a decision problem P with instances p0, p h p 2, . . . i s a  mapping rep 
from problem instances to strings over an alphabet £ ,  where rep(pj)  is the representation 
of p j. Let repi and rep2 be two representations of P over alphabets E [ and Z 2, respectively. 
Representation rep t is polynomial-time transformable to rep2 if there is a function r : L f —>• 
££ such that

i) t ( r e p \ ( p j ) )  =  r e p 2( p j )  for all i;

ii) if u € E* is not the representation of a problem instance, then t ( u )  is not the represen
tation of a problem instance in ar)d

iii) t is computable in polynomial time by a standard Turing machine T.

If r e p | is transformable to r e p 2 in polynomial time, the length of the string t i r e p ^ p j ) )  

cannot increase more than polynomially with respect to the length of r e p \ ( p t )\ the number 
of symbols that can be added to the representation is necessarily less than the number of 
transitions of T.

Now, assume that P is solvable in polynomial time by a Turing machine M using 
representation rep2. The serial combination of T and P

produces a polynomial-time solution using representation r e p Thus differences in the 
length of representations that differ only polynomially do not affect the tractability of 
the problem. Most reasonable representations of a problem differ only polynomially in 
length from the smallest representation. An obvious exception to this is the use of the unary 
representation of natural numbers, in which case the length of the input strings increases 
exponentially from their length in binary representation. For this reason, in complexity 
analysis the natural numbers will always be represented in binary. From this point on, the 
notation i will be used to denote the binary representation of the number i.

Following the guidelines described, a decision problem that has a polynomial solution 
using the unary representation of natural numbers but no polynomial solution using the 
binary representation is not considered to be solvable in polynomial time. A problem with 
this property is sometimes called pseudo-polynomial because the solution with the unary 
representation appears to be a polynomial-time solution to someone not aware of the impact 
of the representation in the analysis of decision problem complexity.
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15.4 Decision Problems and Complexity Classes

In this section we list several decision problems from 7  and NT. We will not describe details 
of algorithms that solve these problems since solutions have previously been presented or 
will be examined in detail in the next several chapters. The objective of this listing is to 
provide examples of familiar problems in each class in an attempt to identify properties 
shared by algorithms that solve the problems within a class.

Acceptance of Palindromes 
Input: String u over alphabet £

Output: yes; u is a palindrome 

no; otherwise.
Complexity: in O’—yes

Path Problem for Directed Graphs 

Input: Graph G = (N, A), nodes v,, vj e N 
Output: yes; if there is a path from v, to in G 

no; otherwise.

Complexity: in T—yes

Derivability in Chomsky Normal Form Grammar 
Input: Chomsky normal forhi grammar G, string w 

Output: yes; if there is a derivation 5 => w 

no; otherwise.

Complexity: in 7 —yes

Each of the preceding problems has polynomial-time solutions. The palindromes are 
accepted by a standard Turing machine with time complexity O (n2) as demonstrated in 
Section 14.3. Dijkstra’s algorithm can be used to discover if there is a path between two 
nodes in a directed graph in time 0 ( n 2), where n is the number of nodes in the graph. The 
CYK algorithm in Section 4.6 determines membership in a language defined by a Chomsky 
normal form grammar using 0 ( /i3) steps to complete the dynamic programming table.

Satisfiability

Input: Boolean formula u in conjunctive normal form 
Output: yes; there is a truth assignment that satisfies u 

no; otherwise.

Complexity: in J*—unknown 
in ~N7—yes
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Hamiltonian Circuit Problem
Input: Directed graph G = (N, A)
Output: yes; if there is a simple cycle that visits all vertices of G exactly once 

no; otherwise.

Complexity: in 7 —unknown 
in NCP—yes

Subset Sum Problem
Input: Set S, value function u : S ->■ N, number k
Output: yes; if there is a subset S' of S whose total value is k 

no; otherwise.

Complexity: in T—unknown 
in NT—yes

Each of these problems can easily be solved nondeterministically using a guess-and- 
check strategy. The guess for the Satisfiability Problem is a single truth assignment. The 
verification of whether a particular truth assignment satisfies a conjunctive normal form 
formula can be accomplished in time polynomially related to the length of the formula. The 
guess for the Hamiltonian Circuit Problem produces a sequence of n +  1 vertices and the 
verification checks if the sequence defines a tour of the graph. Similarly, a guess for the 
Subset-Sum Problem is a subset and the check simply adds the values of the items in 
the subset.

For problems not known to be in T, deterministic solutions often do not provide insight 
into the nature of the problem but rather have the flavor of an exhaustive search. This will be 
demonstrated in the next section where we present both a deterministic and nondeterministic 
solution to the Hamiltonian Circuit Problem.

We add one problem that is outside of the complexity classes that have been introduced. 
The problem considers the determination of the language described by a regular expression 
that can contain u2 as an abbreviation of uu. For example, (a 2)*b(a U b)* represents all 
strings that have an even number of a ’s occurring before the first b.

Regular Expressions with Squaring
Input: Regular expression a  over an alphabet Y.

Output: yes; if a /  E* 

no; otherwise.
Complexity: in 7 —no 

in tMCP—no

After introducing space complexity, we will show that any solution to this problem 
requires space and time that grows exponentially with the length of the regular expression.
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15.5 The Hamiltonian Circuit Problem

The Hamiltonian Circuit Problem is used to demonstrate the difference in both the strategy 
and the complexity of deterministic and nondeterministic solutions of decision problems. 
We begin by presenting a more detailed description of the problem than given in the 

preceding section.
Let G be a directed graph with n vertices numbered 1 to n. A Hamiltonian circuit is a 

path i0, «'| ...........i„ in G that satisfies

i) *'o =  in
ii) ij ^  ij  whenever i j  and 0 <  i, j  < n.

That is, a Hamiltonian circuit is a path that visits every vertex exactly once and terminates at 
its starting point. A Hamiltonian circuit is frequently called a tour. For example, the graph 
G] has a tour V|, v2, v5, v4, v3, ti,, and G 2  does not have a tour.

The Hamiltonian Circuit Problem is to determine whether a directed graph has a tour. Since 
each vertex is contained in a tour, we may assume that every tour begins and ends at vertex 1.

The deterministic solution in Example 15.5.1 performs an exhaustive search of se
quences of vertices to determine if one is a tour. The sequences are systematically generated 

and tested until a tour is found or until all possibilities have been examined. The nondeter- 
ministic solution is obtained by eliminating the generate portion of the generate-and-test 
cycle. A nondeterministic guess produces a sequence of vertices, which is subsequently 
checked using the same procedure employed in the deterministic computation.

Example 15.5.1

We will describe the actions of a four-tape deterministic Turing machine that solves the 
Hamiltonian Circuit Problem. The first step is to design a representation for a directed graph 
with vertices numbered 1 to n. The alphabet of the representation is {0, 1, #} and a vertex 
of the graph is denoted by its binary representation. A graph with n vertices and m arcs is 
represented by the input string

J ,# y ,## . . .  ##Jm#ym###n,

where [jc,-, y,] are the arcs of the graph and x  denotes the binary representation of the 
number*.
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Throughout the computation, tape 1 maintains the representation of the arcs. The 
computation generates and examines sequences of n +  1 vertices 1, i (, • - ■ . |, 1 to 
determine if they form a tour. The sequences are generated in numeric order on tape 2. 
The representation of the sequence 1, n, . . . , n, 1 is written on tape 4 and used to trigger 
the halting condition. The techniques employed by the machine in Figure 8.1 can be used 
to generate the sequences on tape 2.

A computation is a loop that

1. generates a sequence B~\Bi\Bi2B . .  . Bi„_\B~\B on tape 2,

2. halts if tapes 2 and 4 are identical, and

3. examines the sequence 1, i | ...........*n-i> * an£l halts if it is a tour of the graph.

If the computation halts in step 2, all sequences have been examined and the graph does not 
contain a Hamiltonian circuit.

The analysis in step 3 begins with the machine configuration

Tape 4 B \(B n )n~ xB \B

Tape 3 B lB

Tape 2 B~\Bi\B . . .  B in_\B~\B

Tape 1 ,## . . .  ##3rm# y m B m t n B .

Sequentially, the vertices i]...........in_ i are examined. Vertex ij  is added to the sequence on
tape 3 if

i) i j  *  i;
ii) ij ^  ik for 1 < k < j  — 1; and

iii) there is an arc [«;_i, ij] represented on tape 1.

That is, ij  is added if 1, i j...........ij  is an acyclic path in the graph. If every vertex ij ,
j  =  i .......... n — 1, in the sequence on tape 2 is added to tape 3 and there is an arc from
i„_ i to 1, the path on tape 2 is a tour and the computation accepts the input.

A computation examines and rejects each sequence 1, i'j, i2, ■ ■ ■ , j, 1 when the 
input graph does not contain a tour. For a graph with n vertices, there are nn~ l such 
sequences. Disregarding the computations involved in checking a sequence, the number of 
sequences grows exponentially with the number of vertices of the graph. Since the binary 
representation is used to encode the vertices, increasing the number of vertices to 2n (but 
adding no arcs to the graph) increases the length of the input string by a single character. 
Consequently, incrementing the length of the input causes an exponential increase in the 
number of possible sequences that must be examined. □

We have shown that the Hamiltonian Circuit Problem is solvable in exponential time. It 
does not follow that the problem cannot be solved in polynomial time. So far, no polynomial 
algorithm has been discovered. This may be because no such solution exists or maybe
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we have just not been clever enough to find one! The likelihood and ramifications of the 
discovery of a polynomial-time solution are the topics of the remainder of the chapter.

Nondeterministic computations utilizing a guess-and-check strategy are generally sim
pler than their deterministic counterparts. The simplicity reduces the number of transitions 
required for a single computation. A nondeterministic machine employing this strategy is 
constructed that solves the Hamiltonian Circuit Problem in polynomial time.

Example 15.5.2

A three-tape nondeterministic machine that solves the Hamiltonian Circuit Problem in 
polynomial time is obtained by altering the deterministic machine from Example 15.5.1. 
The fourth tape, which is used to terminate the computation when the graph does not contain 
a tour, is not required in the nondeterministic machine. The computation

1. halts and rejects the input if the graph has fewer than n +  1 arcs,

2. nondeterministically generates a sequence 1, i' i, . . . , i„_ i, 1 on tape 2, and

3. uses tapes 1 and 3 to determine whether the sequence on tape 2 defines a tour.

To show that the nondeterministic machine is polynomial, we construct an upper 
bound to the number of transitions in a computation. The maximum number of transitions 
occurs when the sequence of vertices defines a tour. Otherwise, the computation terminates 
examining fewer than n +  1 arcs on tape 2. Since the nodes are represented in binary, the 
maximum amount of tape needed to encode any node is flog2(n)1 -I- 1.

The worst-case performance occurs for graphs with more than n +  1 arcs. The compu
tations for graphs with fewer arcs halts in step 1 and avoids the transitions required by the 
check in step 3. Thus the length of the input for the worst-case performance o f the algorithm 
depends upon the number of arcs in the graph. Let k be the number of arcs. We will show 
that the rate of growth of the number of transitions is polynomial in k. Since the length of 
the input cannot grow more slowly than k (each arc requires at least three tape positions), 
it follows that the time complexity is polynomial.

Rejecting the input in step 1 requires the computation to compare the number of 
arcs in the input with the number of nodes. This can be accomplished in time that grows 
polynomially with the number of arcs.

If the computation does not halt in step 1, we know that the number of arcs is greater ‘ 
than the number of nodes. Generating the guess on tape 2 and repositioning the tape head 
processes O (n log2(n)) transitions. Now assume that tape 3 contains the initial subsequence 
B l#i )# . . .  #/ y_ i of the sequence on tape 2. The remainder of the computation consists of 
a loop that

1. moves tape heads 2 and 3 to the position of the first blank on tape 3 (O (n log2(n)) 
transitions),

2. checks if the encoded vertex on tape 2 is already on tape 3 (0(n  log2 («)) transitions),
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3. checks if there is an arc from ij to is (0 (k  log2(«)) transitions examining all arcs and 
repositioning the tape head), and

4. writes i j  on tape 3 and repositions the tape heads (0(n  log2(w)) transitions).

A computation consists of the generation of the sequence on tape 2 followed by 
examination of the sequence. The loop that checks the sequence is repeated for each vertex
1 1.......... i„_i on tape 2. The repetition of step 3 causes the number of transitions of the entire
computation to grow at the rate 0 ( k 2 log2(fc)).

The rate of growth of the time complexity of the nondeterministic machine is deter
mined by the portion of the computation that searches for the presence of a particular arc 
in the arc list. This differs from the deterministic machine in which the exhaustive search 
of the entire set of sequences of n vertices dominates the rate of growth. □

15.6 Polynomial-Time Reduction

A reduction of a language L to a language Q transforms the question of membership in 
L to that of membership in Q. Reduction played an important role in establishing the 
decidability of languages and will play an equally important role in classifying problems by 
their tractability. Let r  be a reduction of L to Q computed by a machine R. If  Q is accepted 
by a machine M, then L is accepted by a machine that

i) runs R on an input string w e  E*, and

ii) runs M on r(w).

The string r(w)  is accepted by M if, and only if, w e  L. In complexity analysis, the time 
complexity of the composite solution to the question of membership in L includes both the 
time required to transform the instances of L and the time required by the solution to Q. 
Since we are equating efficiently solvable problems with polynomial time complexity, it 
seems reasonable to place the same conditions on the time complexity of a reduction.

Definition 15.6.1

Let L and Q be languages over alphabets E j and E 2, respectively. We say that L  is reducible 
in polynomial time to Q if there is a polynomial-time computable function r : EJ —►  E 2 
such that w € L if, and only if, r(w)  e  Q.

Polynomial-time reductions are important because the bound on the number of transi
tions of the reduction limits the length of the string that is input to the subsequent machine. 
This property guarantees that the combination of a polynomial-time reduction and polyno
mial algorithm produces another polynomial algorithm.

Theorem 15.6.2

Let L be reducible to Q in polynomial time and let Q e  7.  Then L e  7.



478 C h a p te r  IS  J>, WtP, a n d  C o o k ’s  T h e o r e m

Proof. As before, we let R denote the machine that computes the reduction of L to Q and 
M the machine that decides Q. L is accepted by a machine that sequentially runs R and M. 
The time complexities tcR and tcj^ combine to produce an upper bound on the number of 
transitions of a computation of the composite machine. The computation o f R with input 
string w generates the string r(w)  e  which is the input to M. The function tcR can be 
used to establish a bound on the length of r(w). If the input string u> to R has length n, then 
the length of r(w)  cannot exceed the maximum of n and tcR(n).

A computation of M processes at most tcj^(k) transitions, where k is the length of its 
input string. The number of transitions of the composite machine is bounded by the sum of 
the estimates of the two separate computations. If rcR e  0 (n J) and tcM e  O («'), then

tcK(n) + tcM(tcR(n)) e  0 (n sl). ■

Example 15.6.1

The Turing machine R

z/BL

y / B L

z / B L

reduces the language L =  [x 'y 'zk | i > 0, k > 0} to Q =  {a'b' \ i >0}. The motivation for 
this reduction was given in Section 11.3; here we are concerned with analyzing its time 
complexity.

For strings of length 0 and 1, /cR(0) =  2 and /cR(l) =  4. The worst-case computation 
for the remainder of the strings occurs when an x  or y  follows a z. In this case, the input 
string is read in states q x, q2, and and erased in state q4. The computation is completed 
by writing an a in the input position. The time complexity is tcR(n) =  2n +  4, for n > 1. 

Consider the combination R with the machine M
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that accepts Q with time complexity tCf^(n) =  (n2 +  3n +  4)/2 . The worst-case perfor
mance for the composite machine occurs for strings x n/2y nf2 if n is even and * <«+»/2 ^ («-1 ) /2  

if n is odd. The complexity of the resulting solution to the membership problem of L is

tcR(n) + tcM(tcR(n)) =  2n +  2 +  (n2 + 3n +  4)/2 , 

which is within the upper bound 0 ( n 3) given in the proof of Theorem 15.6.2. □

Problem reduction gives us the basis for a comparison of the relative difficulty of two 
problems. We begin by noting that we will consider two problems to be of equal difficulty if 
the time complexity of their solutions differs only polynomially. It may be pointed out, and 
correctly so, that (~)(n2) algorithms are preferred to 0 ( « 3) algorithms and that considerable 
time and ingenuity has been spent to reduce the complexity of many algorithms. That is 
true (and a worthwhile endeavor), but our emphasis is on distinguishing between tractable 
and intractable problems. In this regard, polynomial differences between the complexity of 
algorithms are not significant.

If L is reducible to Q in polynomial time, then Q may be thought of as being at least 
as hard of a problem as L. Finding a solution to Q automatically yields a solution to L; the 
solution obtained by sequentially performing the reduction followed by the solution to Q. 
Moreover, the complexity of the composition of the reduction and the solution to Q shows 
that if Q is tractable, so is L. The relation between reduction and the relative hardness of 
languages can be extended to classes of languages.

Definition 15.6.3

Let e  be a class of languages. A language Q is hard for the class C if every language in C 
is reducible to Q in polynomial time.

If Q is hard for a class e  and is solvable in polynomial time, then every problem in e  
is solvable in polynomial time and e c j > .

15.7 ?  =

A language accepted in polynomial time by a deterministic multitrack or multitape machine 
is in 7 . The construction of an equivalent standard Turing machine from one o f these alter
natives preserves polynomial-time complexity. A technique for constructing an equivalent 
deterministic machine from the transitions of a nondeterministic machine was presented in 
Section 8.7. Unfortunately, this construction does not preserve polynomial-time complexity 
as shown in Theorem 15.1.2.

The two solutions to the Hamiltonian Circuit Problem dramatically illustrate the dif
ference between deterministic and nondeterministic computations. To obtain an answer, 
the deterministic solution generates sequences of vertices in an attempt to discover a tour. 
In the worst case, this process requires the examination of all possible sequences of ver
tices that may constitute a tour of the graph. The nondeterministic machine avoided this
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by “guessing” a single sequence of vertices and determining if this sequence forms a tour. 
The philosophic interpretation of the T =  N T question is whether constructing a solution 
to a problem is inherently more difficult than checking to see if a single possibility satisfies 
the conditions of the problem. Because of the additional complexity of currently known 
deterministic solutions over nondeterministic solutions across a wide range of important 
problems, it is generally believed that 7  ^  NT. The 7  =  N T question is, however, a pre
cisely formulated mathematical problem and will be resolved only when the equality of the 
two classes or the proper inclusion of 7  in N T is proved.

One approach for determining whether T =  NT is to examine the properties of each 
language or decision problem on an individual basis. For example, considerable effort has 
been expended attempting to develop a deterministic polynomial algorithm to solve the 
Hamiltonian Circuit Problem. On the face of it, finding such a solution would resolve 
the question for only one language. What is needed is a universal approach that resolves the 
issue of deterministic polynomial solvability for all languages in NT at once. The notion of a 
language being hard for the class N T allows us to transform the question of polynomial-time 
solvability for all problems in N T to that of a single problem.

Definition 15.7.1

A language Q is called N P-hard if for every L € NT, L is reducible to Q  in polynomial 
time. An NP-hard language that is also in N T  is called NP-complete.

One can consider an NP-complete language as a universal language in the class NT. 
The discovery of a polynomial-time machine that accepts an NP-complete language can 
be used to construct machines to accept every language in N T in deterministic polynomial 
time. This, in turn, yields an affirmative answer to the T =  N T question.

Theorem 15.7.2

If there is an NP-complete language that is also in T, then T =  NT.

Proof. Assume that Q is an NP-complete language that is accepted in polynomial time by 
a deterministic Turing machine. Let L be any language in NT. Since Q is NP-hard, there is 
a polynomial time reduction of L to Q. Now, by Theorem 15.6.2, L is also in T. ■

The definition of NP-completeness utilized the terminology of recursive languages 
and Turing computable functions because of the precision afforded by the concepts and 
notation of Turing computability. The duality between recursive languages and solvable 
decision problems permits us to speak of NP-hard and NP-complete decision problems. It 
is worthwhile to reexamine these definitions in the context of decision problems.

Reducibility of languages using Turing computable functions is a formalization of the 
notion of reduction of decision problems that was developed in Chapter 11. A decision 
problem is NP-hard or NP-complete whenever the language accepted by a machine that 
solves the problem is. Utilizing the universal reducibility of problems in N T  to an NP-hard 
problem P, we can obtain a solution to any N T problem by combining the reduction with 
the machine that solves P.
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Regardless of whether we approach NP-completeness from the perspective of lan
guages or decision problems, it is clear that this is an important class of problems. Unfor
tunately, we have not yet shown that such a universal problem exists. Although it requires 
a substantial amount of work, this omission is remedied in the next section.

15.8 The Satisfiability Problem

The Satisfiability Problem, which is concerned with the truth values of formulas in prepo
sitional logic, was the first decision problem shown to be NP-complete. The truth value of 
a formula is obtained from those of the elementary propositions occurring in the formula. 
The objective of the Satisfiability Problem is to determine whether there is an assignment of 
truth values to propositions that makes the formula true. Before demonstrating that the Sat
isfiability Problem is NP-complete, we will briefly review the fundamentals of propositional 
logic.

A Boolean variable is a variable that takes on values 0 and 1. Boolean variables are 
considered to be propositions, the elementary objects of propositional logic. The value of 
the variable specifies the truth or falsity of the proposition. The proposition x  is true when 
the Boolean variable is assigned the value 1. The value 0 designates a false proposition. A 
truth assignment is a function that assigns a value 0 or 1 to every Boolean variable.

The logical connectives A  (and), v  (or), and -« (not) are used to construct propositions 
known as well-formed formulas from a set of Boolean variables. We will use the symbols 
x ,  y,  and z to denote Boolean variables an d u, v, and w to represent well-formed formulas.

Definition 15.S.1

Let V be a set of Boolean variables.

i) If x  € V, then jc is a well-formed formula.

ii) If u, v are well-formed formulas, then (u), (-•«), (u a  v ) ,  and (u v  v ) are well- 
formed formulas.

iii) An expression is a well-formed formula over V only if it can be obtained from the 
Boolean variables in the set V by a finite number of applications of the operations in 
(ii).

The expressions ((-■(* v  >>)) a  z), (((* a  y)  v  z) v  “ ■(*)), and ( ( ( - a )  v  y) a  (x v  
z)) are well-formed formulas over the Boolean variables x, y,  and z. The number of 
parentheses in a well-formed formula can be reduced by defining a precedence relation 
on the logical operators. Negation is considered the most binding operation, followed 
by conjunction and then disjunction. Additionally, the associativity of conjunction and 
disjunction permits the parentheses in sequences of these operations to be omitted. Utilizing 
these conventions, we can rewrite the preceding formulas as ->(* v  y)  a  z, x  a  y  v  z v  ->x, 
and (->* v  y) a  ( x  v  z).
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The truth values of the variables are obtained directly from the truth assignment. The 
standard interpretation of the logical operations can be used to extend truth values from 
variables to the well-formed formulas. The truth values of formulas ->«, u a  v ,  and u  v  v  

are obtained from the values of u  and v according to the rules given in the following tables.

u —•u u V U A l l u V u  V  V

0 1 0 0 0 0 0 0

1 0 0 1 0 0 1 1

1 0 0 1 0 1

1 1 1 1 1 1

A formula u  is satisfied by a truth assignment if the values of the variables cause u  to assume 
the value 1. TWo well-formed formulas are equivalent if they are satisfied by the same truth 
assignments.

A c la u s e  is a well-formed formula that consists of a disjunction of variables or the 
negation of variables. An unnegated variable is called a p o s i t iv e  li te ra l  and a negated 
variable a n e g a t iv e  l i te ra l .  Using this terminology, a clause is a d is ju n c t io n  o f  li te ra ls .  

The formulas x  v  ->y, -<x v  z  v  ->y, and x  v  z  v  - a  are clauses over the set of Boolean 
variables {*, y, z }. A formula is in conjunctive normal form if it has the form

U] A  « 2  A  • • • A  U „ ,

where each u, is a clause. A classical theofem of propositional logic asserts that every 
well-formed formula can be transformed into an equivalent formula in conjunctive normal 
form.

Stated precisely, the Satisfiability Problem is the problem of deciding if  a formula in 
conjunctive normal form is satisfied by some truth assignment. The formulas

u =  (x v  y)  a  (~>y V  z )  

u  =  (x V  - y  V  - - z )  A ( x V z ) A  ( —>jc V  ->y) 

built from the variables {x, y, z] are satisfied by the truth assignment

t

X 1

y 0

z 0

The first clause in u is satisfied by x  and the second by —>y. The first clause o f v is satisfied 
by all three variables, the second by x ,  and the third by -■>>. The formula

I f  =  - 'X  A  ( x  V  y )  A  (->y  V  X)
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is not satisfied by t. Moreover, it is not difficult to see that w is not satisfied by any truth 
assignment.

A deterministic solution to the Satisfiability Problem can be obtained by checking 
every truth assignment. The number of possible truth assignments is 2", where n is the 
number of Boolean variables. An implementation of this strategy is essentially a mechanical 
method of constructing the complete truth table for the formula. Clearly, the complexity of 
this exhaustive approach is exponential. The work expended in checking a particular truth 
assignment, however, grows polynomially with the number of variables and the length of 
the formula. This observation provides the insight needed for designing a polynomial-time 
nondeterministic machine that solves the Satisfiability Problem.

Theorem 15.8.2

The Satisfiability Problem is in NT.

Proof. We begin by developing a representation for the well-formed formulas over a set 
of Boolean variables {xj, A variable is encoded by the binary representation of its
subscript. The encoding of a literal consists of the encoded variable followed by #7 if the 
literal is positive and #0 if it is negative.

Literal Encoding

Xj i#I

-'Xi i#0

The number following the encoding of the variable specifies the Boolean value that satisfies 
the literal.

A well-formed formula is encoded by concatenating the literals with the symbols 
representing disjunction and conjunction. The conjunctive normal form formula

(x, v  ->x2) a  (->*, v  x3)

is encoded as

7# 7 v  10#0 A  ]#0 v  77#7.

Finally, the input to the machine consists of the encoding of the variables in the formula 
followed by ## and then the encoding of the formula itself. The input string representing 
the preceding formula is

/ # 7 0 # / / # # 7 # / v 7 0 # o a 7 # o v 7 7 # 7  

L  variables -I I---------------- fo rm ula------------------ 1

The representation of an instance of the Satisfiability Problem is a string over the 
alphabet £  =  {0, 7, A ,  v , #}. The language LSAT consists of all strings over E that represent 
satisfiable conjunctive normal form formulas.
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A two-tape nondeterministic machine M that solves the Satisfiability Problem is de
scribed below. M employs the guess-and-check strategy; the guess nondeterministically 
generates a truth assignment. Configurations corresponding to the computation initiated 
with the input string representing the formula (jct v  - a j )  a  ( - '* 1 v  jr3) are given to illustrate 
the actions of the machine. The initial configuration of the tape contains the representation 
of the formula on tape 1 with tape 2 blank:

Tape 2 BB

Tape 1 B1#10#11M1#1  v  1 (MO a  1#0 v  1W1B

1. If the input does not have the anticipated form, the computation halts and rejects the 
string.

2. The encoding of the first variable on tape 1 is copied onto tape 2. This is followed 
by printing # and nondeterministically writing 0 or 1. If this is not the last variable, 
## is written and the procedure is repeated for the next variable. Nondeterministically 
choosing a value for each variable defines a truth assignment t. The value assigned to 
variable x t is denoted r(Xj). Using this notation, the tapes have the form

Tape 2 Bl#t(xi)##10#t(x2)## l]# t(x3)B 

Tape 1 B1#10#11M1#1 v  10#0 a  J#0 v  11MB

The tape head on tape 2 is repositioned at the leftmost position. The head on tape 1 is 
moved past ## into a position to read the first variable of the formula.

The generation of the truth assignment is the only instance of nondeterminism of 
M. The remainder of the computation checks whether the formula is satisfied by the 
nondeterministically selected truth assignment.

3. Assume that the encoding of the variable is scanned on tape 1. The encoding of
is found on tape 2. The subsequent actions of the machine are determined by the result 
of comparing the value /(*, ) on tape 2 with the Boolean value following *, on tape 1.

4. If the values do not match, the current literal is not satisfied by the truth assignment. 
If the symbol following the literal is a B or a , every literal in the current clause has 
been examined and failed. When this occurs, the truth assignment does not satisfy the 
formula and the computation halts in a nonaccepting state. If v  is read, the tape heads 
are positioned to examine the next literal in the clause (step 3).

5. If the values do match, the literal and current clause are satisfied by the truth assignment. 
The head on tape 1 moves to the right to the next A  or B. If a B is encountered, the 
computation halts and accepts the input. Otherwise, the next clause is processed by 
returning to step 3.

The matching procedure in step 3 determines the rate of growth of the time complexity 
of the computations. In the worst case, the matching requires comparing the variable on 
tape 1 with each of the variables on tape 2 to discover the match. This can be accomplished 
in O (k • n2) time, where n is the number of variables and k the number of literals in the 
input. ■
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We now must show that Ljat *s NP-hard, that is, that every language in NO5 is 
polynomial-time reducible to Ljat- At the outset, this may seem like an impossible task. 
There are infinitely many languages in NT, and they appear to have little in common. 
They are not even restricted to having the same alphabet. The lone universal feature of 
the languages in NCP is that they are all accepted by a polynomial-time-bounded nonde
terministic Turing machine. Fortunately, this is enough. Rather than concentrating on the 
languages, the proof will exploit the properties of the machines that accept the languages. In 
this manner, a general procedure is developed that can be used to reduce any language in NT

t 0  L s a t -

Theorem 15.8.3 (Cook’s Theorem)

The Satisfiability Problem is NP-hard.

Proof. Let L be a language accepted by a nondeterministic Turing machine M whose 
computations are bounded by a polynomial p. The reduction of L to the Satisfiability 
Problem is achieved by transforming the computations of M with an input string u into a 
conjunctive normal form formula / (w) so that u € L(M) if, and only if, / ( « )  is satisfiable. 
We then must show that the construction of / (u) requires time that grows only polynomially 
with the length of u.

Without loss of generality, we assume that all computations of M halt in one of two 
states. All accepting computations terminate in state qA and rejecting computations in qR. 
Moreover, we assume that there are no transitions leaving these states. An arbitrary machine 
can be transformed into an equivalent one satisfying these restrictions by adding transitions 
from every accepting configuration to qA and from every rejecting configuration to qR. This 
alteration adds a single transition to every computation of the original machine. The trans
formation from computation to well-formed formula assumes that all computations with 
input of length n contain p(n)  configurations. The terminating configuration is repeated, if 
necessary, to ensure that the correct number of configurations are present.

The states, final state, and alphabets of M are denoted

..  ... .....................Qm)

r  =  {B = a 0, a {, aJ+1......... a,) 

£  =  K + i ,  as+2, . . . .  a,}

F =  {<?„,).

The blank is assumed to be the tape symbol numbered 0. The input alphabet consists of the 
elements of the tape alphabet numbered s +  1 to t. The lone accepting state is qm and the 
rejecting state is qm-\.  .

Let u €  E* be a string of length n. Our goal is to define a formula / (u) that encodes the 
computations of M with input u. The length of / (u) depends on p(n), the maximum number 
of transitions in a computation of M with input of length n. The encoding is designed so 
that there is a truth assignment satisfying / ( u ) if, and only if, u e  L(M). The formulas are
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Variable Interpretation (when satisfied)

Q..* 0 < i < m M is in state qj at time k.

0 < k < p(n)

0 < j <  p(n) M is scanning position j  at time k.

0 < k < p(n)

S}.r,k

£XVIVI
©

Tape position j  contains symbol

0 < r < t a, at time k.

0 < * <  p(n)

The set of variables V is the union of the three sets defined in the table. A computation of 
M defines a truth assignment on V. For example, if tape position 3 initially contains symbol
a,-, then S3 j 0 is true. Necessarily, S3 ; 0 must be false for all / ^  j .  A truth assignment 
obtained in this manner specifies the state, position of the tape head, and the symbols on the 
tape for each time k in the range 0 < k < p(n). This is precisely the information contained 
in the sequence of configurations produced by the computation.

An arbitrary assignment of truth values to the variables in V need not correspond to a 
computation of M. Assigning 1 to both P0 0  and P 1>0 indicates that the tape head is at two 
distinct positions at time 0. Similarly, a truth assignment might specify that the machine is 
in several states at a given time or might designate the presence of multiple symbols in a 
single position.

The formula / ( « )  should impose restrictions on the variables to ensure that the in
terpretations of the variables are identical with those generated by the truth assignment 
obtained from a computation. Eight sets of formulas are defined from the input string u and 
the transitions of M. Seven of the eight families of formulas are given directly in clause 
form. The clauses are accompanied by a brief description of their interpretation in terms of 
Turing machine configurations and computations. The notation

k k 

A V< V V‘
i = l  i' = i

represents the conjunction and disjunction of the literals vlf y2, . . . , vk, respectively.
A truth assignment that satisfies the set of clauses defined in (i) in the following 

table indicates that the machine is in a unique state at each time. Satisfying the first 
disjunction guarantees that at least one of the variables Q, k holds. The pairwise negations 
specify that no two states are satisfied at the same time. This is most easily seen using the 
tautological equivalence of the disjunction -•A v  B to the implication A=>B to transform 
the clauses - Q a  v  - > Q * into implications. Writing -Q , *. v  --Qr  k as an implication 
produces Qi k => - ■ Q w h i c h  can be interpreted as asserting that if the machine is in state 
qt at time k, then it is not also in qt' for any i '  ^  i.
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Conditions Interpretation (when satisfied)

i) State

\/Qi.k 
i=0

”’Qi.k v  “’Qi'.k

ii) Tape head position 
pin)

Vpy.*
>=0

-Vj.k V  -P ;

iii) Symbols on tape 
/

V s ■/>•*
<•=0

~'Sj.r.k V - S ;>U

iv) Initial conditions for input 

string u =  ar|a,2 . . .  ar/| 

Qo.o 

Po.o 
So,o.o

Sl.r,.0

S2.I-2.0

0 < k <  p(n)

0 < i < i’ < m 
0 < k < p(n)

0 < k <  p(n)

0 < j < j ' <  p(n) 
0 < k < p(n)

0 <  7 <  P(«)
0 < k < p ( n )

0  < j  < p ( n )  

0 < r < r ’ < t 

0 <k < p ( n )

For each time it, M is in at 
least one state.

M is in at most one state 

(not two different states 

at the same time).

For each time k, the tape head 

is in at least one position.

At most one position.

For each time k and position j ,  
position j  contains at least 

one symbol.

At most one symbol.

The computation begins reading 

the leftmost blank.

The string u is in the input 
position at time 0.

5p(n). 0,0

v) Accepting condition 

Qm,p(n)

The remainder of the tape is 

blank at time 0.

The halting state of the 

computations is qm.
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Since the computation of M with input of length n cannot access the tape beyond 
position p(n), a machine configuration is completely defined by the state, position of the 
tape head, and the contents of the initial p{n) positions of the tape. A truth assignment 
that satisfies the clauses in (i), (ii), and (iii) defines a machine configuration for each time 
between 0 and p(n).  The conjunction of the clauses (i) and (ii) indicates that the machine 
is in a unique state scanning a single tape position at each time. The clauses in (iii) ensure 
that the tape is well-defined; that is, the tape contains precisely one symbol in each position 
that may be referenced during the computation.

A computation does not consist of a sequence of unrelated configurations but rather a 
sequence in which each configuration differs from its predecessor by the result of a single 
transition. We must add clauses whose satisfaction specifies the configuration at time 0 and 
links consecutive configurations. Initially, the machine is in state q0, the tape head scanning 
the leftmost position, the input on tape positions 1 to n, and the remaining tape squares blank. 
The satisfaction of the p(n)  +  2 clauses in (iv) ensures the correct machine configuration 
at time 0.

Each subsequent configuration must be obtained from its successor by the application of 
a transition. Assume that the machine is in state qh scanning symbol ar in position j  at time 
k. The final three sets of formulas are introduced to generate the permissible configurations 
at time k +  1 based on the transitions of M and the variables that define the configuration 
at time k.

The effect of a transition on the tape is to rewrite the position scanned by the tape head. 
With the possible exception of position Pj  k, every tape position at time k +  1 contains the 
same symbol as at time k. Clauses must be added to the formula to ensure that the remainder 
of the tape is unaffected by a transition.

Clause Conditions Interpretation (when satisfied)

vi)Tape consistency

" • S  j .r .k  V  P J.k V  S  j.r ,k+ l 0 < j <  p ( n )  Symbols not at the position of
0 < r < t the tape head are unchanged.
0 < k < p(n)

This clause is not satisfied if a change occurs to a tape position other than the one 
scanned by the tape head. This can be seen by noting that

v  P M  V S j ^ t+l

is equivalent to

~^j.k ̂  ^j.r.k ̂  Sj,r,k+1)>

which clearly indicates that if the tape head is not at position j  at time A:, then the symbol 
at position j  is the same at time k +  1 as it was at time k.
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Now assume that for a given time k, the machine is in state qt scanning symbol ar in 
position j .  These features of a configuration are designated by the assignment of 1 to the 
Boolean variables Q, Pj k, and Sy- r The clause

a) —'Q/,* v ~*Pj  k v ~ 'S j  r h v
is satisfied only when Q,<,*+i is true. In terms of the computation, this signifies that M has 
entered state at time k 4- 1. Similarly, the symbol in position j  at time k +  1 and the tape 
head position are specified by the clauses

h) —’Qi,* V - 'Pj,/c v  ~'Sj rj c V S j y  and 

c) -Qi.k  V - ,Pj.k V - ’Sy,r,* V ?j+n(d).k+l< 

where n(L)  =  —1 and n(R)  =  1. The conjunction of clauses of (a), (b), and (c) is satisfied 
only if the configuration at time k +  1 is obtained from the configuration at time k by the 
application of the transition [qy, ar’, d] € S(qh ar).

The clausal representation of transitions is used to construct a formula whose satis
faction guarantees that the time k +  1 variables define a configuration obtained from the 
configuration defined by the time k variables by the application of a transition of M. Except 
for states qm and qm- \ ,  the restrictions on M ensure that at least one transition is defined 
for every state, symbol pair.

The conjunctive normal form formula

(“ •Qi,k v  - ,P v  - ’Sy-r,* v  Q ,'jt+ |) (new state)

A (-’Q/,k v  - ’Pj,k v  ~'Sj,r,k v  Py+nwj.t+i) (new taPe head position)

M-'Qi.k v  “ ’P;,* v  "'Sj.r.k v  $j,r’.k+1) (new symbol at position r) 

is constructed for every

0 <  k <  p(n) (time)

0 <  i < m — 1 (nonhalting state)

0 < j  < p(n) (tape head position)

0 < r < t (tape symbol)

where [<?,-, ar-, d] e  <5(qh ar) except when the position is 0 and the direction L is specified 
by the transition. The exception occurs when the application of a transition would cause the 
tape head to cross the left-hand boundary of the tape. In clausal form, this is represented 
by having the succeeding configuration contain the rejecting state qm-\.  This special case 
is encoded by the formulas

(~'Qi.k v  - ,P<u v  - ’s o.r.k v  Q m -u + i)  (entering the rejecting state)

a (- ,Q/,* v  “ ’Po,* v  “ 'So.r.i v  P0,*+i) (same tape head position)

A(~‘Q/.jt v  “ 'Po.t v  - ,So.r.k v  ^o.r.k+i) (same symbol at position r) 

for all transitions [<?,/, a rS L] e  S(qh ar).
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Since M is nondeterministic, there may be several transitions that can be applied to a 
given configuration. The result of the application of any of these alternatives is a permissible 
succeeding configuration in a computation. Let trans(i, j ,  r, k)  denote disjunction of the 
conjunctive normal form formulas that represent the alternative transitions for a configura
tion at time k in state qiy tape head position /  and tape symbol r. The formula trans{i, j ,  r , k ) 
is satisfied only if the values of the variables encoding the configuration at time k -I- 1 rep
resent a legitimate successor to the configuration encoded in the variables with time k.

Formula Interpretation (when satisfied)

vii) Generation of successor configuration Configuration k +  1 follows from configuration k 
transit, j ,  r, k) by the application of a transition.

The formulas trans(i, j ,  r, k) do not specify the actions to be taken when the machine
is in state qm or qm_ t, the halting states of the machine. In this case the subsequent 
configuration is identical to its predecessor.

Clause Interpretation (when satisfied)

viii) Halted computation

- ’Qi.t v  ^ P j * v  v  Q, *+ l (same state)

“ ’Q i.t v  “ ’P /.*  v  ~'Sj,r,k  v  P j./t+ i (same tape head position)
- ’Qi.* v  - ’P j.k  v  “ ’•Sy.r,* v  Sj,r,k+ i (same symbol at position r)

These clauses are built for all j ,  r, k in the appropriate ranges and i =  qm_ j, qm.
Let / '( « )  be the conjunction of the formulas constructed in (i) through (viii). When 

f '{u)  is satisfied by a truth assignment on V, the variables define the configurations of a 
computation of M that accepts the input string u. The clauses in condition (iv) specify that 
the configuration at time 0 is the initial configuration of a computation of M with input u. 
Each subsequent configuration is obtained from its successor by the result of the application 
of a transition. The string u is accepted by M since the satisfaction of condition (v) indicates 
that the final configuration contains the accepting state qm.

A conjunctive normal form formula f { u )  can be obtained from f ' ( u )  by converting 
each formula trans(i, j ,  r, k ) into conjunctive normal form using the technique presented 
in Lemma 15.8.4 that follows. All that remains is to show that the transformation of a string 
u € E* to / (u) can be done in polynomial time.

The transformation of u to f ( u )  consists of the construction of the clauses and the 
conversion of trans to conjunctive normal form. The number of clauses is a function of

i) the number of states m and the number of tape symbols t,

ii) the length n of the input string u, and

iii) the bound p(n ) on the length of the computation of M.
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The values m and t obtained from the Turing machine M are independent of the input string. 
From the range of the subscripts, we see that the number of clauses is polynomial in pin). 
The development of f  (u) is completed with the transformation into conjunctive normal 
form which, by Lemma 15.8.4, is polynomial in the number of clauses in the formulas 
trans(i, j ,  r, k).

We have shown that the conjunctive normal form formula can be constructed in a 
number of steps that grows polynomially with the length of the input string. What is really 
needed is the representation of the formula that serves as input to a Turing machine that 
solves the Satisfiability Problem. Any reasonable encoding, including the one developed in 
Theorem 15.8.2, requires only polynomial time to convert the high-level representation to 
the machine representation. ■

The one step missing in the preceding proof is the conversion of the formulas 
trans(i, j ,  r, k) to conjunctive normal form. The following lemma will show that any dis
junction of conjunctive normal form formulas can be converted to conjunctive normal form 
in polynomial time.

Lemma 15.8.4

Let u — W \V  w2 v  • • • v  wn be the disjunction of conjunctive normal form formulas
wj, w2.........w„ over the set of Boolean variables V. Also let V' = V U {jy,, y2, . . . ,  ;yn_|}
where the variables y, are not in V. The formula u can be transformed into a formula u' over 
V' such that

i) u' is in conjunctive normal form;

ii) u' is satisfiable over V' if, and only if, u is satisfiable over V; and

iii) the transformation can be accomplished in O (m • n2), where m is the number of clauses 
in the w ’s.

Proof. The transformation of the disjunction of two conjunctive normal form formulas is 
presented. This technique may be repeated n — 1 times to transform the disjunction of n 
formulas. Let u =  v  w2 be the disjunction of two conjunctive normal form formulas. 
Then and w2 can be written
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where r, is the number of clauses in w,, Sj is the number of literals in the y th clause of u>j, 
and tj is the number of literals in the y th clause of w2. Define

r\ /  si \  n  /  'i

«'=A (>v V vj *  )A AI v V 
i=\ \ k=i  /  j=i  \  *=i

The formula u' is obtained by disjoining y  to each clause in u)! and ->y to each clause in 

W2-
We now show tha t« ' is satisfiable whenever u is. Assume that Wj is satisfied by a truth 

assignment t over V. Then the truth assignment t'

, \  t (x)  if at e  V
i 0 if jc  =  y

satisfies u'. When w2 is satisfied by f, the truth assignment t'  may be obtained by extending 
t by setting t '(y)  =  1.

Conversely, assume that u' is satisfied by the truth assignment Then the restriction 
of t' to V satisfies u. If t '(y)  =  0, then w t must be true. On the other hand, if t '(y )  =  1, then 
w2 is true.

The transformation of

u =  w t v  w 2 v  . . .  v  wn

requires n — 1 iterations of the preceding process. The repetition adds n — 1 literals to each 
clause in u>i and w2, ft — 2 literals to each clause in u>3, n — 3 literals to each clause in w4, 
and so on. The transformation requires fewer than m ■ n 2 steps, where m is the total number 
of clauses in the formulas W], w2...........w„. ■

15.9 Complexity Class Relations

We end this chapter with two diagrams that illustrate the possible relationships between the 
classes that have been introduced. The class consisting of all NP-complete problems, which 
the Satisfiability Problem ensures us is nonempty, is denoted N7C.
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If CP 5̂  NO5, then T and NTC are nonempty, disjoint subsets of NT. This scenario is believed 
to be true by most mathematicians and computer scientists. In the unlikely case that T  does 
equal NT, the sets collapse to a single class. Exercise 17 asks you to identify the set of 
NP-complete problems in this eventuality.

Exercises

1. Let M be the Turing machine

a) Trace all computations of M with input k, a, and aa.

b) Describe the computation of M with input a" that requires the maximum number 
of transitions.

c) Give the function /c^-

2. Let M be the Turing machine

where x  represents either a or b.

a) Trace the computations of M with input bbabb.

b) Give a set-theoretic definition of the language of M.

c) What strings of length n require the maximum number of transitions? Why?

d) Give the function tcM.

3. Show that the class T is closed under union, concatenation, and complementation.

4. Show that the class N T is closed under union, concatenation, and the Kleene star
operation.

*5. Let L = {/f(M)iy | M accepts w using at most 2lenglh<w) transitions}.

a) Prove that L is not in T. Hint: Use the closure of 7  under complementation to 
conclude that if L is in 7 ,  then there is a Turing machine M' that accepts all 
representations /?(M) of machines M that do not accept their own representations 
in transitions. Then use self-reference to obtain a contradiction.

b) Prove that L is not in NT.

a/a R a /aL a/a R

M: X 5 >
B/BR a/aL a!a R

Q

[x/x R, B /x  R] [x/xR, B/BS] [x/x L  x/x L]

M :X§>
[B/B R, B /B  R] [a/#R, B /BS] [B/B L, B /B  L] [ m s ,  B/BS]
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6. Design a two-tape Turing machine that transforms unary numbers to binary numbers. 
Determine the time complexity of your machine.

7. Design a two-tape Turing machine that transforms binary numbers to unary numbers. 
Explain why this transformation cannot be accomplished in polynomial time.

8. Let P  be a decision problem whose input consists of a single natural number and let M 
be a Turing machine that solves P using the binary representation in polynomial time. 
Design a machine, using M, that solves P using the base 3 representation of natural 
numbers. Show that this solution is also polynomial.

* 9. Let M be a nondeterministic machine and p  a polynomial. Assume that every string of 
length n in L(M) is accepted by at least one computation of p(n) or fewer transitions. 
Note this makes no claim about the length of nonaccepting computations or other 
accepting computations. Prove that L(M) is in NT.

10. Construct a deterministic Turing machine that reduces the language L to Q in poly
nomial time. Using the big oh notation, give the time complexity of the machine that 
computes the reduction.

a) L =  {a W  11 > 0, j  > 0} Q =  {a'c' | / > 0}

b) L =  [a^bby \ i > 0} Q =  {a'ZV 11 >  0}

c) L =  {a'fcV 11 >  0} Q =  { cV  | i > 0}

11. The machine R performs a polynomial-time reduction of the language L =aa(a U b)* 
to the language Q=ccc(e U d)*.

a /cR
b/dR

b /dR  d /d L

a) Trace the computation of R with the input strings aabb  and abbb.

b) What strings of length n will cause R to require the maximum number o f transitions? 
Why?

c) Give the time complexity function tcR(n).
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12. The machine R

a /c  L 
b /d L

computes a function from {a, b\* to (c, d)*.

a) Use the I- notation to trace the computation o f R with input string abba.

b) W hat string of length n will cause R to use the greatest number o f transitions? Why?

c) Give /c R(n). Give both a formula and an explanation o f why your form ula is correct.

d) Does the machine R reduce the language L =abb(a  U b)* to the language Q =  
(c U d)cdd*l  If  yes, prove that the function computed by R is a reduction. If no, 

give a string that demonstrates that the mapping is not a reduction.

13. For each o f the formulas that follow, give a truth assignment that satisfies the formula.

a) (x V  y  V  -•z) A (~,jc V  y )  A (->* V ->y V  ->z)

b) (-rx V y  V -•z) A (x V ->y) A (y  V ->z) A (->* V -<y V z)

c) (.* V y)  A (->x V ->y V z) A (x V -iz) A (->y V ->z)

14. Show that the formula (x  v  ->y) A (->jc v  z) a  (y v  ->z) a  (-vx v  ->y) a  (y  v  z) is 

not satisfiable.

15. Construct four clauses over {x, y ,  z} such that the conjunction o f any three is satisfiable 
but the conjunction of all four is unsatisfiable.

16. Prove that the formula u' is satisfiable if, and only if, u is satisfiable.

a) u =  v, u ' =  (v V y  V  z) A  (v V ->y V z) A  (v V  y  V  -<z) A (v V ->y V ->z)

b) u =  v V  w, u ' =  (v V  ui V  y) A (v V  w V  ->y)

17. Assume that 7  — X T.

a) Let L be a language in N T  with L  £  0  and L ^  0. Prove that L is NP-complete.

b) Why is NTC a proper subset o f N T ?
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CHAPTER 1 6

NP-Complete Problems

The Satisfiability Problem was shown to be NP-complete by associating Turing machine 
computations with conjunctive normal form formulas. If every proof of NP-completeness 
required the ingenuity of this transformation, the number of problems known to be NP- 
complete would not be very large. Fortunately, problem reduction provides an alternative 
and frequently simpler method for demonstrating that problems are NP-complete. Reducing 
an NP-complete problem to another problem in N T proves that the latter is also NP- 
complete. Using this technique we will obtain NP-completeness results for problems from 
a number of disciplines. We also extend the notion of NP-completeness to optimization 
problems.

Once a problem is shown to be NP-complete, attempting to discover a polynomial
time solution will most likely be unsuccessful. Instead of looking for efficient algorithms 
to solve the problem, it may be more profitable to adopt a different strategy when an NP- 
complete problem is encountered. One alternative is to design algorithms that have a good 
average time complexity, but have some cases that exhibit exponential performance. In 
optimization problems, accepting a near optimal solution may reduce the time complexity of 
the problem. In the final section we consider alternatives to be considered when confronting 
an NP-complete problem.

16.1 Reduction and NP-Complete Problems

Two conditions are required for a language to be NP-complete: the problem must be in 
NT and it must be NP-hard. The most common way of satisfying the former condition is 
simply to design a nondeterministic algorithm that solves the problem in polynomial time.

497
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To prove that a language L is NP-hard, it is necessary to show that every language in NT 
is reducible to L in polynomial time. Rather than directly producing reductions to L, a 
known NP-complete problem can be used as an intermediate step. Theorem 16.1.1 shows 
that employing an intermediate step decreases the number of reductions needed to prove 
that a language is NP-hard from infinitely many to one.

Theorem 16.1.1

Let Q be an NP-complete language. If Q is reducible to L in polynomial time, then L is 
NP-hard.

Proof. Let r be the computable function that reduces Q to L in polynomial time and let 
Q i be any language in N T . Since Q  is NP-complete, there is a computable function g, that 
reduces Q, to Q. The composite function r o g, is a reduction of Q, to L. A polynomial 
time-bound to the reduction can be obtained from the bounds on r and g; . ■

The composition used to establish that a language is NP-hard by reduction can be 
represented pictorially as a two-step process:

Q, Q2 • • • Q, • • NP languages

The first level shows the polynomial-time reducibility of any language Q, in N T to Q via 
a function g,. Following the arrows from Q,• to L illustrates the reducibility of any NT 
language to L. If the time complexity of the machines that compute g,- and r are 0 ( n s) and 
O(n'), respectively, the time complexity of the composite function r o g,- is 0 ( n st) and the 
reduction of Q, to L is accomplished in polynomial time. In the next three sections we will 
use Theorem 16.1.1 to show that several additional problems are NP-complete.

The 3-Satisfiability Problem is a subproblem of the Satisfiability Problem that is NP- 
complete in its own right. A formula is said to be in 3-conjunctive normal form if it is 
in conjunctive normal form and each clause contains precisely three literals. The objective 
of the 3-Satisfiability Problem is to determine whether a 3-conjunctive normal form formula 
is satisfiable.

NP-complete language

r

L

16.2 The 3-Satisfiability Problem
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Using the description of reductions introduced in Chapter 11, the condition needed to 
establish that the 3-Satisfiability Problem is NT-hard can be written

Reduction Input Condition

Satisfiability conjunctive normal form formula u u is satisfiable
to 4 if, and only if,

3-Satisfiability 3-conjunctive normal form formula u' u' is satisfiable.

That is, the reduction must transform an arbitrary conjunctive normal form formula into a 
3-conjunctive normal form formula that satisfies the prescribed condition. In addition, the 
construction of u' must be accomplished in time that is polynomial in the length of u.

Theorem 16.2.1

The 3-Satisfiability Problem is NP-complete.

Proof. Clearly, the 3-Satisfiability Problem is in NT. The machine that solves the Satisfia
bility Problem for arbitrary conjunctive normal form formulas also solves it for the subclass 
of 3-conjunctive normal form formulas.

We must show that every conjunctive normal form formula u =  v  ■ ■ ■ v  wm can be 
transformed to a 3-conjunctive normal form formula u' such that u is satisfiable if, and only 
if, u' is satisfiable. The construction of u is accomplished by independently transforming 
each clause w, in u into a 3-conjunctive normal form formula w'. The formula u' is the 
conjunction of the resulting 3-conjunctive normal form formulas. The transformation must 
be designed to ensure that w' is satisfiable if, and only if, there is a truth assignment that 
satisfies the original clause w,-. The variables added in the transformation of a clause are 
assumed not to occur elsewhere in

If w, has three literals, then no transformation is required and w' =  u j , . Let w be a 
clause of u that does not have three literals. The transformation of w into a 3-conjunctive 
normal form formula is based on the number of literals in w.

Length 1: w =  vt

w ' = (i>i V  y  V  z )  A  (i> | V  ->y v z )  A  (i>i V  y  V  -> z )  A  ( u L V  ->y V  -> z )  

Length 2: w =  t>] v  u2

w' =  (U ] V  l»2 V  y )  A  (l>! V  l>2 V  - i y )

Length n >3: w =  vt v  v2 V • ■ ■ v  v„

w ’ =  ( l ) ,  V  v2 v > , )  A  (V 3 V  —ij! ,  V  y2) A  • • • A  (Vj V  ->yj_2 V  y ; _ , )  A  • • •

A  (vn_2 V  - y „ _ 4 V  yn _ 3)  A  V I ) ,  V  - % _ 3)

Establishing the relationship between the satisfiability of clauses of length one and 
two and their transformations is left as an exercise. Let V be the variables in the clause
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u j  =  D | v  d 2  v  ■ ■ ■ v  and let t be a truth assignment that satisfies w. Since w is satisfied 
by r, there is at least one literal satisfied by t. Let vj  be the first such literal. Then the truth 
assignment

/'(x) =
t (x)  i f x e V

1 i fx =  y i......... y j - 2

0 if x =  y„_3

satisfies w'. The first j  — 2 clauses are satisfied by literals y j - 2- The final n — j  +  1
clauses are satisfied by - ,y /_ i......... - ,y#i-3 - The remaining clause, Vj v  ->),y_ 2  v  Vj-\< *s
satisfied by Vj.

Conversely, let t ’ be a truth assignment that satisfies w'. The truth assignment t obtained 
by restricting / ' to V satisfies w. The proof is by contradiction. Assume that t does not 
satisfy w. Then no literal Vj, 1 <  j  < n, is satisfied by t. Since the first clause of w' has 
the value 1, it follows that t'(yt) =  1. Now, t '(y2) =  1 since the second clause also has the 
value 1. Employing the same reasoning, we conclude that t'(yk) =  1 for all 1 <  k < n — 3. 
This implies that the final clause of w' has value 0, a contradiction since r' was assumed to 
satisfy u'.

The transformation of each clause into a 3-conjunctive normal form formula is clearly 
polynomial in the number of literals in the clause. The work required for the construction 
of the 3-conjunctive normal form formula is the sum of the work of the transformation of 
the individual clauses. Thus, the construction is polynomial in the number of clauses in the 
original form. ■

It is not the case that a subproblem of an NP-complete problem is automatically 
NP-complete. The 2-Satisfiability Problem, determining whether conjunctive normal form 
formulas with clauses containing exactly two literals, has a deterministic polynomial-time 

solution (Exercise 1). Thus 2-satisfiability is not NP-complete unless 7  =  NO3.

16.3 Reductions from 3-Satisfiability

The two problems that we have shown to be NP-complete are both concerned with the 
satisfaction of logical formulas. In this section we expand the scope of our set of NP- 
complete problems to include questions about covering sets, paths in graphs, and the 
accumulation of values. The structure of 3-conjunctive normal form formulas makes them 
well suited for designing reductions to problems in other domains. In the remainder of 
this chapter, reductions will be described using high-level representations o f  the problem 
instances.

The first problem that we consider is the Vertex Cover Problem. A vertex cover of an 
undirected graph G =  (N, A) is a subset VC of N such that for every arc [u, u] in A at least 
one of m or v is in the set VC. The Vertex Cover Problem can be stated as follows: For 
an undirected graph G and an integer k, is there a vertex cover of G containing k or fewer
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vertices? Example 16.3.1 shows that the size of a vertex cover is not necessarily related to 

the number of nodes or arcs in the graph.

Example 16.3.1

The arcs of the graph Gj are covered by the single vertex vj. The smallest vertex cover of 
G2 requires n /2  vertices, one for each arc in the graph.

Theorem 16.3.1

The Vertex Cover Problem is NP-complete.

Proof. The Vertex Cover Problem can easily be seen to be in 'N'P. The nondeterministic 
solution strategy consists of choosing a set of k vertices and determining whether they cover 
the arcs of the graph. We show that the Vertex Cover Problem is NP-hard by reducing the
3-Satisfiability Problem to it:

Reduction Input Condition

3-Satisfiability 3-conjunctive normal form formula u u is satisfiable
to I  if, and only if.

Vertex Cover Problem undirected graph G = (N, A), integer k G has a vertex cover of size k

That is, for any 3-conjunctive normal form formula u, we must construct a graph G so that 
G has a vertex cover of some predetermined size k if, and only if, u is satisfiable.

be a 3-conjunctive normal form formula where each Ujj, l < i < m  and 1 <  j  < 3, is a literal 
over the set V =  { jc j,  . . . ,  jc „ }  of Boolean variables. The symbol U j  j  is used to indicate the 
position of a literal in a 3-conjunctive normal form formula; the first subscript indicates 
the clause and the second subscript the position of the literal in the clause. The reduction 
consists of constructing a graph G from the 3-conjunctive normal form formula in which the 
satisfiability of u is equivalent to the existence of a cover of G containing n + 2m vertices.

□

Let

U = (hu  V u u2 v U, 3) a  • • • A («v, V Mm 2 V Um,3)
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To transform the question of the existence of a satisfying truth assignment into a 
question of a vertex cover, we must represent truth assignments and formulas as graphs. 
Three sets of arcs are introduced to build a graph from a 3-conjunctive normal form formula: 
the set T of truth setting arcs model truth assignments, the clausal graphs Ck represent the 
clauses of u, and the linking arcs L* link the clause graphs with truth values.

The vertices of G consist of the sets

i) {*,, | 1 <  « < «}, and 

>i) Wij I 1 < < £  m, 1 <  j  < 3}.

The set of arcs of G is the union of the truth setting arcs, clausal arcs, and linking arcs:

T = { [*„-* ,]  I l < i  <«}

c* =  {[«<u> “k . i l  K . 2 . “ *,iB for l < k <  m

L* =  [uk 2, vk 2], [m*-3, t>*,3]} for 1 <  k < m,

where vkj  is the literal from {jc; , ->jc,• | 1 <  i < n } that occurs in position uk j  o f  the formula. 
We begin by considering the form of the graphs defined by T and Ck and the size of sets 
needed to cover them.

An arc in T connects a positive literal jc( to its corresponding negative literal

A vertex cover must include one vertex from each pair jc, , ->jc,- . At least n vertices are needed 
to cover the arcs in T. A vertex cover of T with n vertices selects exactly one of x t or —>jc,- . 

This, in turn, can be considered to define a truth assignment on V.
Each clause Ujtl v  u j 2 v  uj  3 generates a subgraph C; of the form

The subgraph Cj connects the literals u;1 , uj 2, and 3. A set of vertices that covers Cy 
must contain at least two vertices. Thus a cover of the arcs in the set T and the Ck’s must 
contain at least n + 2m vertices.

The arcs in L; link the symbols u, j  that indicate the positions of the literals to the 
corresponding literal xk or ~'xk in the formula. Figure 16.1 gives the graph obtained from 
the formula ( * 1  v  ->jc2 v  jc3) A  ( - > * 1  v  jc2 v  ->jr4). It is easy to see that the construction 
of the graph is polynomially dependent upon the number of variables and clauses in the 
formula. All that remains is to show that the formula u is satisfiable if, and only if, the 
associated graph has a cover of size n + 2m.
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FIGURE 16.1 Graph representing reduction o f  ( * |  v  -> *2  v  x3) a  ( —>JC| v  x 2 v  ~'Xi ).

First, we show that a cover VC of size n +  2m defines a truth assignment on V that 
satisfies the formula u. By the previous remarks, we know that every cover must contain 
at least n +  2m vertices. Consequently, exactly one vertex from each arc —•jc, ] and two 
vertices from each subgraph C y are in VC. A  truth assignment is obtained from VC by

That is, the literal from the pair x t or - ’Xi in the vertex cover is assigned truth value 1 by /.
To see that t satisfies each clause, consider the covering of the subgraph C y . Only two 

of the vertices u j t, u j 2, and 3 can be in V C . Assume uj k  is not in V C .  Then the arc 
[My *, tiy *] must be covered by V jk in V C . This implies that t (u j  k) =  1 and the clause is 
satisfied.

Now assume that / :  V —> {0, 1} is a truth assignment that satisfies u. A vertex cover 
VC of the associated graph can be constructed from the truth assignment. VC contains the 
vertex x, if /(*,•) =  1 and - a ,  if t(x,)  =  0. Let u j k be a literal in clause j  that is satisfied 
by t. The arc [« y ,* , Vj k] is covered by Vj k. Adding the two other vertices o f C y completes 
the cover. Clearly, card{VC) =  n +  2m, as desired. ■

We now return to our old friend, the Hamiltonian Circuit Problem. This problem 
has already been shown to be solvable in exponential time by a deterministic machine 
(Example 15.5.1) and in polynomial time by a nondeterministic machine (Example 15.5.2). 
A reduction of the form

t
0 otherwise.
1 if Xj € VC

Reduction Input Condition

3-Satisfiability

to

Hamiltonian Circuit Problem

3-conjunctive normal form formula u

4-
directed graph G = (N, A)

u is satisfiable 

if, and only if, 

G has a tour
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establishes that the Hamiltonian Circuit Problem is NP-complete. Since the satisfiability 
of a formula is determined by examining possible truth assignments, the reduction must 
represent truth assignments as graphs. The proof begins by defining subgraphs in which 
tours correspond to truth assignments.

Theorem 16.3.2

The Hamiltonian Circuit Problem is NP-complete.

Proof. The reduction of the 3-Satisfiability Problem to the Hamiltonian Circuit Problem 
is accomplished by constructing a directed graph G(«) from a 3-conjunctive normal form 
formula u. The construction is designed so that the presence of a Hamiltonian circuit in 
G(u) is equivalent to the satisfiability of u. Let u =  Wj A w2 A • • • A wm be a 3-conjunctive
normal form formula and V =  {*[, x2......... x„) be the set of variables occurring in u. The
j th  clause of u is denoted uj { v  u j 2 v  Uj 3 , where each Uj k is a literal over V.

For each variable xh  let r, be the larger of the number of occurrences of in u or 
the number of occurrences of -a,- in u. A graph V,- is constructed for each variable jc, as 
illustrated in Figure 16.2(a). Node et is considered the entrance to V, and o, the exit. There 
are precisely two paths through V, that begin with e,, end with o,, and visit each vertex 
once. These are depicted in Figure 16.2(b) and (c). The arc from e, to ti 0 or / l 0  determines 
the remainder of the path through V, .

The subgraphs V, are joined to construct the graph G' depicted in Figure 16.2(d). The 
two paths through each V, combine to generate 2" Hamiltonian circuits through the graph G'. 
A Hamiltonian circuit in G' represents a truth assignment on V. The value o f x, is specified 
by the arc from e ,. An arc from e, to f, 0  designates a truth assignment of 1 for x t . Otherwise, 
X j  is assigned 0. The graph constructed from the formula

( * 1  V I 2  V ->*3 ) A ( - t f - ,  V X 2 V ->*4 ) A ( * !  V -ix2 V x4) A ( - ■ * ,  V x 3 V * 4 )

is given in Figure 16.3. The tour highlighted by bold arcs in the graph defines the truth 
assignment t(xj)  =  1, t ( x 2) =  0, t ( x 3 ) =  0, and / (jc4) =  1. The Hamiltonian circuits of G' 
encode the possible truth assignments of V. We now augment G' with subgraphs that encode 
the clauses of the 3-conjunctive form formula.

For each clause Wj, we construct a subgraph Cj that has the form shown i n Figure 16.4. 
The graph G(u) is constructed by connecting these subgraphs to G ' as follows:

i) If Xj is a literal in Wj, then pick some f ik  that has not previously been connected to a 
graph C. Add an arc from f ik  to a vertex inJm of Cj that has not already been connected 
to G'. Then add an arc from outj m to ^ t+1.

ii) If ->Xj is a literal in Wj, then pick some ti k that has not previously been connected to a 
graph C. Add an arc from to a vertex in j m of Cj that has not already been connected 
to G'. Then add an arc from outj  m to /;.*+1.

The graph in Figure 16.5 is obtained by connecting the subgraph representing the clause 
(*! v  x 2 v  - a 3) to the graph G' from Figure 16.3.
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r

(a) (b) (c)

FICURE 16.2 Subgraph for each variable x,.

(d)

A truth assignment is represented by a Hamiltonian circuit in the graph G'. If x, is a 
positive literal in the clause wj,  then there is an arc from some vertex / ,*  to one of the in 
vertices of Cj.  Similarly, if ~'Xi is in Wj, then there is an arc from some vertex ti k to one of 
the in vertices of Cj.  These arcs are used to extend the Hamiltonian circuit in G' to a tour 
of G(«) when the associated truth assignment satisfies u.
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FIGURE 16.3 Truth assignm ent by Hamiltonian circuit.
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FIGURE 16.4 Subgraph representing clause wj.

Let t be a truth assignment on V that satisfies u. We will construct a Hamiltonian circuit 
through G(u) based on the values of t . We begin with the tour through the V, ’s that represents 
t. We now detour the path through the subgraphs that encode the clauses. An arc f i k \ 
in the path V,- indicates that the value of the truth assignment t(Xj) =  1. If the path reaches 
a node f ik  by an arc [ti k, f i k], f i k is not already connected to a clause graph, and f i k 
contains an arc to a subgraph C ;  that is not already in the path, then connect C y  to the tour 
in G' as follows:

i) Detour to C y via the arc from f i k to in jm  in C y .

ii) Visit each vertex of C y once.

iii) Return to V,- via the arc from outj m to f,■,*+!•

The presence of a detour to Cy indicates that the truth assignment encoded in G' satisfies 
the clause Wj.

On the other hand, a clause can also be satisfied by the presence of a negative literal -<xi 
for which t (xt) =  0. A similar detour can be constructed from a vertex ti k . Since f (*,-) =  0, 
the vertices ti k are entered by an arc [/, *, ti k]. Choose a tl k that has not already been 
connected to one of the subgraphs Cy. Construct the detour as follows:

i) Detour to C y  via the arc from ti k to irij m in C y .

ii) Visit each vertex in C y once.

iii) Return to V,- via the arc from outj m to fi,k+\-

Since each clause is satisfied by the truth assignment, a detour from G' can be constructed 
that visits each subgraph Cy. In this manner, the Hamiltonian cycle of G ' defined by a 
satisfying truth assignment can be extended to a tour of G(u).

Now assume that a graph G (u) contains a Hamiltonian circuit. We must show that u is 
satisfiable. The Hamiltonian circuit defines a truth assignment as follows:

1 if the arc [e, , 0] *s *n the tour
0 if the arc [e, , f i 0] is in the tour.
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FICURE 16.5 Connection o f C| to G'.
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If / ( jc,-) =  1, then all of the arcs [/,*, f uk] are in the tour. On the other hand, the tour contains 
the arcs [ / ,* ,  /, *.] whenever t ( jc, ) =  0.

Before proving that / satisfies u, we examine several properties of a tour that enters 
the subgraph Cj.  Upon entering at the vertex i t i j  m, the path may visit two, four, or all 
six vertices in Cj.  A path that exits C; at any position other than outJm cannot be a 
subpath of a tour. Assume that Cj is entered at i n  j  f, the following paths in Cj are not 
subpaths of a tour because the vertices listed cannot be reached without visiting some vertex 
twice.

Path Unreachable Vertices

i n j . l[» OUtj, 3 o u t j .  2 o u t j . ,

i n j . !• i n i.-21. ‘ " j . 3. o u t J 3 ,, OUtj,2 o u t j ,  1

l n J. !• l n i . l!. o u t j . 2 o u t j , ,

l n J. I- l n j .:!, OUt j,2, o u t j 1. ° u t j , 3 3

Thus the only paths entering C;- at in ] X that are subpaths of tours must exit at outj \. The 
same property holds for in j  2  and in j  3.

Each of the Cj's  must be entered by the tour. If Cy is entered at vertex in j  m by an arc 
from a vertex f i k , then the tour exits Cj  via the arc from outj m to /,-,*+[. The presence of 
the arc [ /  t , in j  m] in G(u) indicates that wj,  the clause encoded by Cj,  contains the literal 
Xj. Moreover, when Cj is entered by an arc [ / ,* ,  in j m], the vertex f ik  must be entered by 
the arc [/,*, / ,  *]. Otherwise, the vertex tlk  is not in the tour. Since [/,*, f i k ] is in the tour, 
we conclude that /( jc,-) =  1. Thus, Wj is satisfied by t. Similarly, if Cj is entered by an arc 
[/,-*, in j  m], then ->jc,- is in wj and / (jc,) =  0.

Combining the previous observations, we see that the truth assignment generated by a 
Hamiltonian circuit through G(u) satisfies each of the clauses of u and hence u itself. All 
that remains is to show that the construction of G(k) is polynomial in the number of literals 
in the formula u. The number of vertices and arcs in a subgraph V,- increases linearly with 
the number of occurrences of the variable jc,- in u. For each clause, the construction of Cj 
adds 6 vertices and 15 arcs to G(u). m

Many problems associate numeric values with objects: costs, weights, worth, and so 
forth. The final problem that we consider in this section shows that problems dealing with the 
accumulation or assessment of a set of numeric values can be NP-complete. A whimsical 
example of such a problem is posed by a person who goes on shopping spree with the 
intention of spending every cent that he has. The question: Is there a set of objects whose 
total cost will be exactly the amount of money in his possession? The Subset-Sum Problem 
formalizes the preceding example. An instance of the Subset-Sum Problem consists of a set
S, a value function v : S —> N, and an integer k. The answer is positive if there is a subset
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S' C S such that the sum of the values of all the elements in S' is k. For simplicity, we will 
let v(A)  denote the total of the values of the elements in a set A.

The Subset-Sum Problem clearly is in XP. A nondeterministic guess selects a subset of
S. The remainder of the computation adds the values of the items in the subset and compares 
the total with the value k given in the problem definition. All that remains is to show that 
the Subset-Sum Problem is NP-hard.

Theorem 16.3.3

The Subset-Sum Problem is NP-complete.

Proof. A reduction of the 3-Satisfiability Problem to the Subset-Sum Problem has the form

Reduction Input Condition

3-Satisfiability 3-conjunctive normal form formula u u is satisfiable

We need to construct a set S, a value function v on S, and an integer k from a 3-conjunctive 
normal form formula u such that S has a subset with total value k if, and only if, u is 
satisfiable. As in the previous problems, we let u =  u>| a  w 2  a  • • • a  wm be a 3-conjunctive 
normal form formula with V =  {*,, x2, . . . ,  x„) the set of variables in u.

The set S consists of the items

i) x h i =  1 , . . . ,  n,

ii) ->Xj, i =  l ......... n,

iii) yj,  j  =  1 , . . . ,  m, and

iv) y'p )  =  1......... m.

Thus S has 2n +  2m objects. We must now assign a value to every object in S. Each value 
will be an integer with n + m  digits. The rules for assigning the values are

x t : the / th digit from the right is 3,
if Xj is in clause Wj, then the n +  ; th  digit from the right is 1, 
all other digits are 0,

the same construction as jr,-,

yy. the n +  _/th digit from the right is 1, 
all other digits are 0,

-•yy. the same as Wj.

to

Subset-Sum Problem
I

set S, function v : S -*■ N, integer k
if, and only if, 

there is a subset S' C S 

with d(S') =  k



16.3 R e d u c t io n s  f ro m  3-Satisfiabil ity  511

The integer k has m +  n digits all of which are 3. The Subset-Sum Problem obtained in this 
manner from a 3-conjunctive form formula u will be called S(«).

To appreciate the motivation behind this construction we consider the digits in the 
values assigned to the objects to be entries in a 2n +  2m by m + n table:

w, Xn x2 Xl

Xl . . 0 0 3

-* l - . 0 0 3

*2 - . 0 3 0

“*2 - . 0 3 0

. . 3 0 0

'*n - . 3 0 0

yi 0 1 0 0 0

y\ 0 1 0 0 0

yi 1 0 0 0 0

*2 1 0 0 0 0

The m + n positions in each value correspond to the n + m columns of the table. The entries 
in the first 2n rows contain the values assigned to the literals. The rightmost n columns are 
used to describe truth assignments. The leftmost m columns indicate whether a literal occurs 
in a clause.

When Xj occurs in a clause wj and ->*,■ does not, the rows of the table associated with 
the literals jc, and —>jc, have the form

w m ■ ■ ■  V j  ■ ■ ■  «J|  Xn . . .  Xj  . . .  X,

: - ... 1 . ..  0 0 . ..  3 . . .  0 
-•Xj  : - ... 0 ... 0 0 ... 3 . . .  0

The occurrence of the 1 in the column associated with clause Wj and row corresponding to 
Xj indicates that x{ occurs in the clause and, consequently, that Wj is satisfied if /(*,-) =  1. 
The 0 in the Wj position indicates that -a,- does not occur in Wj.

Before proving that the preceding construction is a reduction of the 3-Satisfiability 
Problem to the Subset-Sum Problem, we will consider the instance of the Subset-Sum 
Problem generated from the 3-conjunctive normal form formula

U =  Ui! A  W 2 =  ( J t i  V  X 2 V  ->X3)  A  ( —>JC| V  Jf3 v  —*JC4 ) .
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The corresponding set S is { jC |, jc2 ,  x 3 , x 4 ,  ->*lt - \ x 2 ,  - ,x$, - ,x4, y\, y[, y2, y2) and the values 
assigned to each of the objects of S, given in tabular form, are

w2 u>, * 4 * 3 *2 * i
Values

*1 0 1 0 0 0 3 u ( j C | )  =  010003

1 0 0 0 0 3 ■>(-*,) =  100003

*2 0 1 0 0 3 0 u ( jc2 )  =  010030

“■•*2 0 0 0 0 3 0 u(-’*2) =  000030

* 3 i 0 0 3 0 0 v(x3) -  100300

~ ’* 3 0 1 0 3 0 0 v ( - x 3) =  010300

* 4 0 0 3 0 0 0 v(x4) -  003000

- * 4 l 0 3 0 0 0 w(-«4) =  103000

yi 0 1 0 0 0 0 u(y,) =  010000

y; 0 1 0 0 0 0 i)(yj)= 010000

yi l 0 0 0 0 0 IIrs

>2 l 0 0 0 0 0

ii/*“«N
«. 

<N

By our definition of S(w), k =  333333.
The formula u is satisfied by the truth assignment r ( jc | ) =  1, t ( x2) =  1, r (jcj) =  0, and 

t (jc4) =  0. The literals satisfied by the truth assignment, jc(, x2, -•x3, and ~,x4, along with y2 
and y'v  form a subset that affirmatively answers the Subset-Sum Problem. That is, the sum 
of the values of these elements is k. The example exhibits the role of the y,-’s and y"s in the 
set S. When a clause wj  is satisfied by only one or two of its literals, these objects can be 
added to the set to bring the sum of the column associated with Wj to 3.

The values in the table show that the sum of the digits in a column labeled by a clause is 
five and in a column labeled by a variable is six. Thus there are no carries and no interaction 
between columns when adding the values of the objects in any subset of S.

First, we show that if a 3-conjunctive normal form formula u is satisfiable, then S(n) 
has a subset whose objects have a total value of k. Let t : V —> {0, 1} be a truth assignment 
that satisfies u. We will build the subset S' from the truth assignment. Initially, S' contains 
one of Xj or for each variable Xj; jc,- if t ( jc,- ) =  1 and ->x,- if t (jc,- ) =  0. Since each jc,- occurs 
exactly once in this set, either as a positive or a negative literal, the rightmost n digits in the 
sum of the values of these objects are all 3.

Each clause Wj must be satisfied by some literal. This literal has a 1 in the column 
associated with w j . Thus the sum of the digits in the w y column from the rows corresponding 
to literals in the truth assignment is at least 1 and at most 3. If the sum is 1, we add y j  and 
y'j to S'. If the sum is 2, we simply add v' to S'. After the potential addition of yj  and y'., 
the sum of the digits in the Wj column becomes 3, as desired.

Now let S(u) be an instance of the Subset-Sum Problem obtained by the preceding 
construction that has a subset S' whose sum is k. We must show that u is satisfiable. First 
note that one, but not both, of jc,- or ->jc,- is in S'. If neither are in the set, the sum of the values
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of the objects in S' has a 0 in the i th position from the right digit. If both x ,  and ~ 'x i are in 
the set, the sum has a 6 in that position. Thus the occurrences of the literals in S' define a 
truth assignment:

t ( x  ) =  1 1 if € S 
' I 0 otherwise.

For each clause Wj, the sum of the values of the objects in S' in the Wj column is three. This 
total can include a maximum of two from yj  and y'.. Thus there must be a literal that has a
1 in the Wj column and this literal satisfies the clause Wj.

The construction of S(w) is clearly polynomial in the length of u since each variable 
and each clause generate two objects of S. ■

16.4 Reduction and Subproblems

Each of the reductions in the previous section transformed problems from one domain to 
an unrelated domain: 3-conjunctive form formulas to vertex covers, to path generation, 
and to the analysis of the values of sets of objects. A reduction between domains requires 
the ability to reconfigure problems from the first domain as equivalent problems in the 
second. Such a transformation is not always obvious or straightforward. Fortunately, the vast 
majority of NP-completeness proofs do not require a change in domains. We have already 
seen one example of a reduction between problems in the same domain— satisfiability to 3- 
satisfiability. The domain of both of these problems is the satisfaction of Boolean formulas 
and the reduction simply transformed formulas to formulas.

The most common technique for showing that a problem is NP-complete is to find a 
similar problem among the thousands of known NP-complete problems. The rule of thumb is 
that the more similar the problems, the less work that is likely to be involved in the reduction. 
Ideally we show that a problem P is NP-hard by finding an NP-complete problem Q that 
is a subproblem of P or one in which the instances of Q can easily be transformed into 
instances of P. This strategy will be demonstrated using reductions from problems that we 
have previously shown to be NP-complete. The proofs will include neither the design of 
a nondeterministic algorithm that solves the problem in polynomial time nor an argument 
that the reduction can be accomplished in polynomial time. The satisfaction o f both of these 
essential components of an NP-completeness proof will be obvious from the definition of 
the problem and the transformation involved in the reduction.

The Partition Problem

Partition Problem

Input: Set A, value function v : A -> N
Output: yes; if there is a subset A' of A such that v(A') =  u(A -  A') 

no; otherwise
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asks if the elements of a set can be divided into two disjoint subsets of equal value. The 
result of both the Partition Problem and the Subset-Sum Problem are determined by the 
existence of a set of objects with a predetermined total value. Using this similarity, we 
will show that the Partition Problem is NP-complete by reducing the Subset-Sum Problem 

to it.

Theorem 16.4.1

The Partition Problem is NP-complete.

Proof. A reduction of the Subset-Sum Problem to the Partition Problem

Reduction Input Condition

Subset-Sum Problem set S, function t : S -»  N, integer k there is a subset S 'C S

with u(S') =  k

to I if, and only if.

Partition Problem set A, function i /  : A -> N there is a subset A' C A

with u'(A') =  i/(A  — A')

requires the construction of a set A and a value function v' from the components S, v, and 
k of an instance of the Subset-Sum Problem. The set A and value function v' are defined 
by

A =  S U {y, z}

v'(x) =  2v(x)  for all x  € S

i/(y ) = 3t - 2 k

t/(z) =  t +  2k,

where t =  v(S) is the sum of the values of all the elements in the set S. The sole reason for 
the multiplication of u(at) by two is to ensure that the total value of the set A is even and 
consequently a partition is possible. The total value of all the elements in the set A, using 
the value function v', is 2t +  (3/ -  2k) +  (r +  2k) =  6 1.

First, we show that we can construct a solution to the Partition Problem from a solution 
S' to the Subset-Sum Problem. Since S' is a solution, we know that

l>(S') =  £  !>(*)=*.
* € S '
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v'(A') =  v'(a  ̂
a €  A '

=  v'(y) + ^ 2  v'(x)
xeS’

= 3 t - 2 k  + 2k 

=  31,

which is one-half of the total value of A. Thus A' is a solution to the Partition Problem.
Now assume that A and v' are obtained by a reduction from S, v, and k and that A has 

partitioning subsets X and Y with d'(X) =  r '(Y ) =  3t. We must show that there is a subset 
S' whose elements have total value k.

The elements y  and z cannot belong to the same set in the partition of A, since the value 
+  t;'(z) =  41 is greater than half of the total value of A. The element y  is in one of the 

sets, assume that it is X. Then

u'(X -  {>}) =  v'(X) -  v'OO 

=  3/ -  (3t -  2k)

=  2k.

Now X — {y} is a subset of S and its value v(X  — {>() =  k. Thus X — {>} is a solution to 
the Subset-Sum Problem. ■

Consider the dilemma of a school principal who wants to form a council with a 
representative of every club in the school. There are 15 clubs and a student may belong 
to any number of clubs. The principal wants the council to have only 10 members. Can he 
form a council that satisfies his requirements? This question is an example of the Hitting 
Set Problem. Formally, an instance of the Hitting Set Problem consists of a set S, a finite
collection C =  {Cj......... C„} of subsets of S, and an integer k. A set C is a hitting set of G
if C fl C, ^  0 for each C,. That is, every set C, is hit by an element of C. The problem has 
an affirmative answer if there is a hitting set of size k or less.

Instead of an element of C hitting a set C,-, we may think of the element as covering C,-. 
This interpretation reveals the similarity between the Vertex Cover and Hitting Set problems. 
We will reduce the Vertex Cover Problem to the Hitting Set Problem and conclude that the 
latter is NP-complete.

Theorem 16.4.2

The Hitting Set Problem is NP-complete.

Proof. An instance of the Hitting Set Problem can be obtained from an instance G = (N, 
A), k of the Vertex Cover Problem in the following manner. The elements of S are the nodes 
of G. Each arc [nf, nj] defines a two element set {n(, nj}. The class e  consists of all of the

Defining A' to be the set S' U (y), we get
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two element sets obtained from the arcs of G. Finally, the integer k is the same for both 
problems. Now we show that G has a vertex cover of size k if, and only if, there is a hitting 
set of the associated class C of size k or less.

Assume that there is a vertex cover VC of size k. This set is a hitting set of C of the 
appropriate size. Conversely, assume that e  has a hitting set C of size k or less. Then each 
set {«,, rij] e  e  is hit by an element of C. In terms of the graph G, every arc [«,, rij] is 
covered by a vertex from C. Thus C is a vertex cover of size at most k. ■

With the interpretation of arcs as two element sets and covering as hitting, the Vertex 
Cover Problem becomes a subproblem of the Hitting Set Problem. The ability to interpret 
a known NP-complete problem as a subproblem of the problem under consideration often 
makes the ensuing NP-completeness proof almost trivial. The Bin-Packing Problem

Bin Packing Problem

Input: Set A, a size function s : A -» N, positive integers k and m
Output: yes; if there is a partition A|, Aj , . . . .  A* of A such that j(A,-) < m for 1 < i < k

provides another example of this phenomenon. We show that the Partition Problem can be 
easily transformed into a subproblem of bin packing.

Theorem 16.4.3

The Bin Packing Problem is NP-complete.

Proof. The reduction has the form

Reduction Input Condition

Partition Problem set A, function v : A -*• N there is a subset A ' c A

As indicated in the description of the reduction, the same set and function are used for both 
problems. What remains is to select integers k and m for the Bin Packing Problem. Since the 
Partition Problem attempts to divide A into two equally valued subsets, we let k =  2. The 
reduction is complete by setting m =  s(  A )/2, one half of the total value of all the elements 
in A.

This reduction identifies the Partition Problem as bin packing limited to two bins with 
maximum capacity s(  A )/2. If a set A ' C A  satisfies the Partition Problem, then A' and 
A — A' constitute a partition that satisfies the Bin Packing Problem. Conversely, a solution 
A lt A2 to the Bin Packing Problem with capacity bound s(A )/2  is a solution to the Partition 
Problem. ■

no; otherwise

to
Bin Packing Problem

i
set A, function s =  v 

integers k and m

with d(A') =  v(A — A') 

if, and only if, 
there is a partition A), A2, . . . .  A* 

with s(Aj) < m for all i
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16.5 Optimization Problems

There are many problems in which the goal is not just to determine whether a solution exists, 
but to find an optimal solution. An optimal solution may minimize the cost, maximize 
the value, most efficiently utilize resources, and so forth. Since the result is not a yes or 
no answer, an optimization problem does not match our definition of a decision problem. 
However, the complexity issues that we have considered for decision problems are equally 
pertinent to optimization problems.

We will use the Traveling Salesman Problem to illustrate the technique employed for 
establishing the NP-completeness of an optimization problem. The Traveling Salesman 
Problem is a generalization of the Hamiltonian Circuit Problem that seeks to find the 
minimal cost tour of a weighted directed graph, where the cost of a path is the sum of 
the weights of the arcs in the path. The name of the problem describes the situation of a 
salesman who wishes to visit every town on his route exactly once, and do so while traveling 
the shortest distance possible.

The Traveling Salesman Problem can be converted to a decision problem by adding a 
distance bound to the problem instances:

Traveling Salesman Decision Problem 

Input: Weighted directed graph G = (N, A, u j ) ,  integer k 
Output: yes; if G has a tour of cost less than or equal to k 

no; otherwise.

Placing the bound k on the cost of the tour changes the desired answer from a path to a yes 
or no response.

A solution to the decision problem can be iteratively employed to produce a solution 
to the original optimization problem. Let n be the number of nodes of G, I be the sum of 
the cost of the n arcs with the least cost, and u the sum of the n highest cost arcs. The cost 
of any tour of G must be between / and u. The cost of the least-cost tour can be obtained 
by iteratively solving the sequence of decision problems

G = (N, A, w), k =1 
G = (N, A, ui), k =  / +  1 
G = (N, A, u j ), k =  / +  2

G = (N, A, w),k = u

until an affirmative answer is produced or all the problem instances have returned negative 
responses. In the latter case, there is no tour of the graph.

Theorem 16.5.1

The Traveling Salesman Problem is NP-complete.
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Proof. The Hamiltonian Circuit Problem can be considered to be a subproblem of the 
Traveling Salesman Problem. Let G = (N, A) be an instance of the Hamiltonian Circuit 
Problem. To obtain an instance of the Traveling Salesman Problem we need only define a 
weight function w and bound k for G. Let w assign the value 1 to each arc and let k be the 
number of nodes of G. The graph G has a tour if, and only if, the corresponding weighted 
directed graph (N, A, ui) has a tour of cost k. ■

The Knapsack Problem is a classic optimization problem concerned with selecting a 
set of objects of maximal value subject to a size constraint. The most colorful description 
of this problem describes the plight of a burglar who must decide which items to put in 
his knapsack. His objective is to maximize the value of the objects, but his selection is 
constrained by the size of the knapsack. The decision problem version of the Knapsack 
Problem is

Knapsack Decision Problem
Input: Set S, size function s : S -*■ N, value function u : S -*■ N, 

size bound b, minimal value m 
Output: yes; if there is a subset of S' C S with i(S') < b and u(S') > m, 

no; otherwise.

Theorem 16.5.2

The Knapsack Problem is NP-complete.

Proof. The reduction

Reduction Input Condition

Partition Problem set A, function v : A —*■ N there is a subset A ' C A

with v(A') =  v(A — A')

to I if, and only if,
Knapsack Problem set A, function s = v, v. there is a subset A ' with

integers b and m s(A') < b, v(A') > m

creates a Knapsack Problem with the same domain as the Partition Problem. The value 
and size functions of the Knapsack Problem are both set to the value function of the 
Partition Problem. The reduction is completed by defining b and m as s(A )/2 . Because 
of the identification of the size and value functions of the Knapsack Problem with the size 
function of the Partition Problem, a set A' satisfies the requirement of the Partition Problem 
if, and only if, it satisfies the requirements of the corresponding Knapsack Problem. ■
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16.6 Approximation Algorithms

The significance of the class ~N7 is not theoretical, but practical. NP-complete problems 
arise naturally in many areas including pattern recognition, scheduling, decision analysis, 
combinatorics, network design, and graph theory. Determining that a problem is NP- 
complete does not mean that solutions are no longer needed, only that it is quite unlikely 
that a polynomial-time algorithm will be found to produce them.

We will consider the process of dealing with a problem that is NP-complete through 
the deliberations of a salesman who wishes to automate the process by which he determines 
his route. The cities and roads are represented by the nodes and arcs of a weighted directed 
graph G = (N, A, w), and the weight function w(x, y) gives the distance of the road from 
city x  to city y. The cities that the salesman must visit are subject to change, at which 
time he must produce a new route. His objective, of course, is to visit every city exactly 
once and return home while spending as little time traveling as possible. Knowing that 
the Traveling Salesman Problem is NP-complete, how should the salesman approach the 
problem of determining his route?

The first step is to decide whether the NP-completeness of the problem is relevant for 
his particular situation. If the route contains only a few cities, the asymptotic performance of 
algorithms that solve the problem is immaterial. The number of nodes that constitute a small 
problem instance depends upon the computational resources available and the frequency of 
the application of the algorithm.

If the algorithm is used frequently, even with a relatively small number of nodes, it may 
be worthwhile to investigate the use of techniques from the theory of algorithms to refine 
the search technique. Exhaustive testing of all sequences of nodes, the strategy employed 
by the Turing machine in Example 15.5.1 that solves the Hamiltonian Circuit Problem, 
requires examining nn~ l potential paths where n is the number of cities. Branch-and-bound 
algorithms can be used to prune the search tree and reduce the number of paths that need 
to be considered. A dynamic programming algorithm produces minimum-distance tours in 
0 (n 2 n) time. Although still exponential, this is a considerable reduction in complexity from 
the exhaustive search strategy.

The next step, if needed, is for the salesman to consider reformulating the problem as 
another problem that can be solved in polynomial time. The solutions to the new problem 
may not be optimal tours, but they may be acceptable for his purposes. Following this 
approach, the salesman marks all the cities that he must visit on a map and decides to design 
a route that begins with the farthest east city and goes to the farthest west city traveling solely 
in an east-to-west direction. The tour is completed by returning to the original city using a 
strictly west-to-east route.

The motivation for an east-to-west strategy is that a short route from the two cities 
should not contain legs that move away from the goal. While this method often produces 
good approximations. Figure 16.6 gives a graph in which the optimal tour has distance 82, 
but the two-directional solution has distance 140. The pattern in the graph formed by nodes 
a4 to a i2 can be continued by adding more “switchbacks" to get from a4 to a 12. This will
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FIGURE 16.6 Solution to two-directignal Traveling Salesman Problem.

not increase the minimal-cost tour, but the cost of the least-cost two-directional tour can be 
made as large as desired.

Realizing that his two-direction strategy may produce excessively long tours, the 
salesman asks the following two questions:

1. Is there a polynomial-time algorithm that solves the two-direction problem without the 
tour becoming arbitrarily longer than the optimal tour?

2. If the answer to the preceding question is no, what other conditions could be added to 
obtain an approximate solution in polynomial time?

These questions will be answered after introducing measures to characterize the perfor
mance of an approximation algorithm.

The solution to an optimization problem includes a numeric value that we will gener- 
ically refer to as the cost of the solution. For example, the solution to an instance of the 
Traveling Salesman Problem consists a tour with the total distance being the cost of the 
tour. A solution to the Knapsack Problem consists of a set of objects and the associated cost 
is the total value of the objects in the set. An approximation algorithm produces a solution 
that may not have the optimal cost. The error of an approximation is the difference between 
the costs of the optimal and approximate solutions.

Let c(pi)  denote the cost of the solution produced by an approximation algorithm 
and c*(pi) be the optimal cost for a problem instance p t of an optimization problem P. 
The quality of an approximation algorithm is measured by a comparison of the cost of the 
approximate solution to that of an optimal solution.

Definition 16.6.1

An algorithm that produces approximate solutions to an optimization problem P is said to 
be an a-approxim ation algorithm if

i) the problem is a minimization problem and c ( p t ) < a • c * (p t),  or

ii) the problem is a maximization problem and c*(p j)  <  a  • c ( p t) 

for a constant a  > 1 and all instances p, of P.
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A 2-approximation algorithm for a minimization problem produces solutions that have 
a cost at most twice that of an optimal solution. For a maximization problem, the cost of 
the 2-approximate solution is at least half of the optimal cost.

The salesman’s questions can now be restated as: “Is there a polynomial-time a- 
approximation algorithm for the Traveling Salesman Problem?” and “What changes in 
the problem are necessary to obtain a polynomial-time a-approximation algorithm?” The 
answer to the first question is no unless 7  =  NT. One answer to the second is that a 2- 
approximation algorithm can be obtained if the graph is totally connected and the distances 
satisfy the triangle inequality.

Theorem 16.6.2

If 7  N 7 , there is no polynomial-time a-approximation algorithm for the Traveling 
Salesman Problem.

Proof. We will prove that a polynomial-time a-approximation algorithm to the Traveling 
Salesman Problem can be used to solve the Hamiltonian Circuit Problem in polynomial time. 
Since the latter cannot be done if 7  ^  NCP, it follows that there can be no such approximation 
algorithm under the same assumption.

We begin by defining a transformation of instances of the Hamiltonian Circuit Problem 
to instances of the Traveling Salesman Problem. Let G = (N, A) be an instance of the 
Hamiltonian Circuit Problem with n =  card(N).  The corresponding Traveling Salesman 
Problem is a totally connected graph G' = (N, A', w), where w is defined by

w ( x ,y )  = \ 1 , i f [*’ ^ € A  
( a  • n +  1 otherwise.

Clearly, the construction of G' from G can be accomplished in time polynomial with the 
length of a representation of G.

If G has a tour, the corresponding tour in G' has cost n. If G does not have a tour, every 
tour of G' has cost greater than a  - n since it must contain at least one arc that is not in A. In 
the former case, running an a-approximation algorithm on G' must produce a tour of cost 
n because all other tours exceed the approximation bound. Consequently, G has a tour if, 
and only if, the a-approximation algorithm returns a tour of cost n.

The preceding equivalence describes a solution to the Hamiltonian Circuit Problem: 
Construct G' from G and obtain a tour of G' using the approximation algorithm. By the 
preceding observation, the tour returned by the approximation algorithm has length n if, 
and only if, G has a tour. If the a-approximation algorithm is computable in polynomial 
time, so is the corresponding solution to the Hamiltonian Circuit Problem. ■

We can easily produce a 2-approximation algorithm for the Traveling Salesman Prob
lem when the graph G = (N, A, w) is totally connected and the distance function is com
mutative and satisfies the triangle inequality. That is,

w(x, y)  =  w(y, x)  and,

y) < w(x, z) +  w (z , y)
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for all x, y, z e  N. The Traveling Salesman Problem with these added conditions is some
times called the Euclidean Traveling Salesman Problem.

The approximation algorithm first constructs a minimum cost spanning tree of G. A 
spanning tree of an undirected connected graph is a connected acyclic subgraph that contains 
all nodes of the graph. The cost of a spanning tree is the sum of the weights o f the arcs in 
the tree. A weighted directed graph G that is totally connected with a commutative distance 
function can be considered to be an undirected graph. For each arc [x, y], there is an arc 

[>>, x] with the same weight.
With the interpretation of G as a undirected graph, Prim’s algorithm can be used to 

generate a minimum cost spanning tree in time 0 ( n 2), where n is the number of nodes of G. 
The following four-step procedure defines a 2-approximation algorithm for the Euclidean 
Traveling Salesman Problem:

1. Select a node x  € N to be the root of the spanning tree.

2. Build the minimum-cost spanning tree of G.

3. Construct the sequence of nodes visited by a preorder traversal of the spanning tree.

4. Delete nodes that occur more than once in the sequence.

Figure 16.7 illustrates the process of obtaining a tour from a spanning tree. A preorder 
traversal begins with the root c, visits all nodes (many, several times), and finishes at c. To 
obtain a tour from the path produced by the traversal, we sequentially delete multiple visits 
to the same node. In the sequence in Figure 16.7, the node c is revisited after a and before 
d. Deleting this occurrence of c may be thought of as taking a direct road from a to d  that 
bypasses c. The total connectivity of the graph assures us of the presence of an arc from a 
to d, and the triangle inequality guarantees that the alternative route is no longer than the 
original.

This process can be repeated to remove multiple occurrences of all nodes except for 
the occurrence of the root at the beginning and ending of the path. The resulting path is a 
tour. To analyze the cost of the tour, we let /*, m*, p, and t be the costs of the minimum-cost 
tour, the minimum-cost spanning tree, the path generated by the preorder traversal, and the 
tour obtained using the node removal strategy, respectively.

We can obtain a spanning tree by deleting any single arc from a minimal-cost tour 
of the graph. The cost of the resulting spanning tree is an upper bound on the cost of the 
minimum-cost spanning tree M. Consequently,

m* < t*.

The path generated by the preorder traversal contains each arc of the spanning tree 
twice, so

p =  2m*
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The cost of the tour produced by the algorithm is bounded by the cost of the preorder path, 
since the node deletion process cannot increase the cost of the resulting path. Combining 
the inequalities,

t  <  p  <  I t * ,

yields the 2-approximation bound on the tours constructed in this manner.
In this section we outlined a strategy for constructing solutions when confronted with 

an NP-complete problem. The steps employed by our mythical salesman were

a) determine whether the asymptotic complexity is relevant to the problem,

b) reformulate the problem into an efficiently solvable problem, or

c) develop algorithms that produce approximate solutions.

These steps provide a good starting place for obtaining suitable solutions to NP-complete 
optimization problems.

16.7 Approximation Schemes

An ideal system for approximating an NP-complete problem would allow the user to 
specify the degree of error that is permissible for a particular application. For problems 
in which extremely high accuracy is critical, an error bound would be selected to achieve 
the necessary precision. For problems that do not require a high degree of precision, less 
accurate approximate solutions could be produced in a more efficient manner. For a number 
of NP-complete problems, this ideal can be realized.
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An approximation scheme is an algorithm in which an input parameter is used to specify 
the acceptable error bound. An approximation scheme with parameter k for a minimization 
problem generates approximating algorithms that satisfy

C*(Pi) < c(Pi) < • C*(Pj)
k

for all problem instances p( . For a maximization problem, the bounds become

— 7 -  •  C*(Pj)  <  c (Pi )  < C*(Pi). 
k +  1

In either case, increasing the value of k increases the precision of the approximations. A 
polynomial-time approximation scheme is an approximation scheme in which the time 
complexity is polynomial for all values of the parameter k.

We will use the Knapsack Problem to demonstrate the properties of an approximation 
scheme. The simplest approximation scheme for the Knapsack Problem initially places a 
number of items in the knapsack and completes the selection using a greedy algorithm. 
An instance of the optimization version of the Knapsack Problem consists of a set S
=  {fl|......... a„), size function s : S —> N, value function v : S —»• N, and size bound b. We
let c* denote the optimal value of a solution of a Knapsack Problem and c the value of an 
approximation, respectively.

A greedy strategy for the Knapsack Problem is to select the item a, with highest relative 
value v(ai)/s{a i) that fits into the knapsack. The process is repeated until no additional 
items can be put into the knapsack. Unfortunately, there is no bound on the error that may 
be produced using this approach (Exercise 14).

The approximation scheme with parameter k selects a set in the following manner:

1. All subsets I,- C S of cardinality k or less are generated.

2. For each subset with size s(I,-) <  b, a set G, is generated using the greedy algorithm on 
the set S — I, with the original value and size functions and bound b — s ( I,). The sets
I, and G, are combined to produce the set T, =  I, U G, .

3. The result is a set T; that has maximum value.

Generating all subsets with k or fewer elements and testing to determine if they satisfy the 
size bound produces a family of initial sets I, . Each initial set is completed by producing a 
set G, using the greedy algorithm. The total set T, for the initial set I, is the union I, U G,. 
We need to show that, for every problem instance and every k > l ,  (he algorithm produces 
an approximation that satisfies

Assume that an optimal solution is given by a set T with j  elements. We consider two cases: 
j  <  k and j  > k.
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Case 1: j  < k. The set T is one of the initial sets generated in step 1, and an optimal solution 

is produced by the algorithm.

Case 2: j  >  k. The optimal solution T can be split into two sets I =  {fl!, . . . ,  ak) and
R =  {ak+l......... aj] where I contains the k highest valued items of T and R contains the
remaining items listed in the order of their relative value:

” (‘5 / t + i ) M « * + i )  >  v(ak+2)/s(ak+2) >  • • • >  v(aj) /s(aj) .

First we note that for each a, € R, v(a,) < c*/(k +  1). Each a, € I has value greater than a„ 
so t>(I) > k • t>(a,). Thus

c* =  v(T) =  t>(I) +  i»(R) >  k • v(a,) +  v(a,) > (k + l)v(a,)

and the inequality follows.
Consider the approximate solution generated from the set I using the greedy algorithm. 

If the greedy algorithm selects all the items in the optimal solution R, then the algorithm 
produces an optimal solution.

If not, let G be the extension of I produced by the greedy algorithm and let am be the 
first item in the set R that is not selected by the greedy algorithm. This occurs only if there is 
insufficient space remaining in the knapsack when am is considered. Now, let Gm be the set 
of objects that have been selected by the greedy algorithm at the time when am is not taken.
This set contains ak+x, ak+2......... from R and other items with relative value greater
than am. We now use Gm to produce an upper bound on the value of the set R. The elements 
in Gm have greater relative value than the initial items in R whose size totals s(Gm). This 
follows since Gm contains all the objects of relative value greater than v(am)/s(am) that 
are in R. All the other objects in Gm have relative value greater than v(am)/s (am), whereas 
all other elements in R have relative value less than v(am)/s(am). Note that the size of the 
items in R need not add exactly to s(Gm). We may consider dividing an item to obtain a 
subset of R of size s(Gm).

The maximum possible value that can be added to Gm to fill the knapsack is less than 
v(am), since less than s(a„,) space remains and the greedy algorithm has already passed am 
in its relative value ordered search. This is also an upper bound on the value of filling the
remaining space in R since the items am......... in R all have relative values of at most
v(am)/s{am). Putting these observations together, we see that

c* =  u(I) +  tKR) <  t>(I) +  v(Gm) +  v(am) < i>(I) +  v(G) +  v(am).

Using the inequality v(am) < c*/(k +  1), we get

c* < v(I) +  u(G) +  v(am) <  c + c*/(k  +  1)

or

as desired.
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We also need to show that the approximating algorithm produced for every value k >  1 
is polynomial in the size of the instance of the Knapsack Problem. Letting C ( n , «) be the 
number of combinations of n things taken i at a time, the number of subsets of cardinality 
at most A: of a set of n objects is

1=0 i = l

< i + E

k
< 1 +  nk

1=1

=  1 + k - n k.

Extending each of these with the greedy algorithm requires time 0(n).  Thus the time 
complexity is O (k • n*+1).

Although the preceding approximation algorithm is polynomial for each k, the time 
complexity grows exponentially with the parameter k. Thus decreasing the error is ac
companied by an exponential growth in the time needed to produce approximations. An 
approximation scheme that is polynomial in both n and k is called fully polynomial. There 
is an O (k • n2) fully polynomial approximation scheme for the Knapsack Problem that com
bines the greedy algorithm with dynamic programming to reduce the time complexity.

Exercises

* 1. A formula is in 2-conjunctive normal form if it is the conjunction of clauses consisting 
of the disjunction of two literals. Prove that the Satisfiability Problem for 2-conjunctive 
normal form formulas is in IP.

2. A formula is in 4-conjunctive normal form if it is the conjunction of clauses consisting 
of the disjunction of four literals. Prove that the Satisfiability Problem for 4-conjunctive 
normal form formulas is NP-complete.

3. Design a string representation for the Subset-Sum Problem and describe the compu
tations of a nondeterministic Turing machine that solves the problem in polynomial 
time.

4. Design a polynomial-time reduction of the Partition Problem to the Subset-Sum Prob
lem. A polynomial-time reduction of the Subset-Sum Problem to the Partition Problem 
was given in Theorem 16.4.1.

5. A clique in an undirected graph G is a subgraph of G in which every two vertices are 
connected by an arc. The Clique Problem is to determine, for an arbitrary graph G
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and integer k, whether G has a clique of size k. Prove that the Clique Problem is NP- 
complete. Hint: To show that the Clique Problem is NP-hard, establish a relationship 
between cliques in a graph G and vertex covers in the complement graph G. There is 
an arc between vertices x  and y  in G if, and only if, there is no arc connecting these 

vertices in G.

* 6. Let e  =  (C|, . . . .  C„} be a collection of subsets of a set S. A subcollection C  c  G is
said to cover S if

s =  U  C-'
c.ee'

The Minimum Cover Problem asks whether a collection C has a subcollection of size 
k or less that covers S. Prove that the Minimum Cover Problem is NP-complete.

7. Let e  be a collection of finite sets and k an integer less than or equal to the cardinality 
of e . Prove that the problem of determining whether C contains k disjoint sets is NP- 
complete.

* 8. An instance of the Longest Path Problem is a graph G = (N, A) and an integer k < |A|.
Show that the problem of determining whether G has an acyclic path with k or more 
edges is NP-complete.

* 9. The input to the Multiprocessor Scheduling Problem consists of a set A of tasks, a
length function / :  A —» N that describes the running time of each task, and the number
k of available processers. The objective is to find a partition A b A2.........A k of A
that minimizes the time needed to complete the all the tasks, that is, that minimizes 
max{/(Ai) 11 =  1 , . . . ,  n) over all partitions.

a) Formulate the Multiprocessor Scheduling Problem as a decision problem.

b) Show that the associated decision problem is NP-complete.

10. The Integer Linear Programming Problem is: Given an n by m  matrix A and a column 
vector b of length n, does there exist a column vector x such that Ax >  b? Use a 
reduction of 3-satisfiability to prove that the integer linear programming problem is 
NP-hard. (The Integer Linear Programming Problem is also in.?sfCP; the proof requires 
knowledge of some of the elementary properties of linear algebra.)

11. Show that the Traveling Salesman Decision Problem for undirected graphs is NP- 
complete.

12. The objective of the optimization version of the Vertex Cover Problem is to find a 
minimum size vertex cover of an undirected graph G. An approximation strategy 
constructs a cover VC by selecting an arbitrary arc [*, >’] from G and adding it for 
VC, removing [x, y] and all arcs incident to [*, y] from G, and repeating the selection 
and deletion cycle until VC covers the original graph. Prove that this strategy yields a 
polynomial-time 2-approximation algorithm for the Vertex Cover Problem.

13. The input to the optimization version of the Bin Packing Problem consists of a set A, a 
size function s : A  —> N, and a bin size n greater than the maximum size of any object.
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The objective is to determine the minimum number of bins needed to store the objects 
in A, where the bin size n is an upper bound on the total size of the objects that can be 
placed in a single bin. A first-fit algorithm takes an object and places it in the first bin 
in which it fits. If it does not fit in any of the current bins, the object is placed in a new 
bin. This process is repeated until all the objects have been stored. Show that the first- 
fit strategy produces a polynomial-time 2-approximation algorithm for the Bin Packing 

Problem.

14. A greedy strategy for the Knapsack Problem is to select the item a with highest relative 
value v(a)/s(a)  that fits into the knapsack. The process is repeated until no additional 
items can fit into the knapsack. Show that there is no upper bound on the possible error 
using the greedy choice strategy.

* 15. An approximation algorithm for the Knapsack Problem can be obtained by modifying 
the greedy strategy as follows: The algorithm returns either the solution produced by 
the greedy algorithm or the solution that consists of the single item with largest value 
that fits into the knapsack. Prove that the modification produces a 2-approximation 
algorithm for the Knapsack Problem.
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mation algorithms can be found in the previously mentioned book by Garey and Johnson and 
in Papadimitriou and Steiglitz [1982] and Hochbaum [1997], Christofides [1976] designed 
a polynomial-time 1.5-approximation algorithm for the classic Traveling Salesman Prob
lem. The approximation scheme for the Knapsack Problem given in Section 16.6 is from 
Sahni [1975], Ibbara and Kim [1975] used dynamic programming to develop an 0 (k  • n2) 
fully polynomial approximation scheme for the Knapsack Problem.

There are a number of excellent books on the general theory of algorithms including 
Cormen, Leiserson, Rivest, and Stein [2001], Levitin [2003], and Brassard and Bratley 
[1996]. In addition to NP-complete problems and approximation algorithms, these books 
cover the graph algorithms, greedy algorithms, and dynamic programming strategies used 
in the approximation algorithms mentioned in this chapter.



CHAPTER 1 7

Additional Complexity Classes

Complexity theory is concerned with assessing the resources required to determine mem
bership in a language, to solve a decision problem, or to compute a function. The study of 
time complexity has identified the class T  of problems that can be solved by polynomial
time algorithms as comprising the efficiently solvable problems. We begin this chapter by 
examining the properties of several complexity classes that can be derived from the classes 7  
and NT. This is followed by developing relationships between the amount of time and space 
required for a computation. Finally, properties of space complexity are used to demonstrate 
the existence of problems that are not solvable by any polynomial-time or polynomial-space 
algorithm.

17.1 Derivative Complexity Classes

Our study of tractability introduced the class 7  of languages decidable deterministically in 
polynomial time and the class N T of languages decidable in polynomial time by nonde
terministic computations. The question of whether these classes are identical is currently 
unknown. We now consider several additional classes of languages that provide insight into 
the 7  =  N T question. Interestingly enough, properties of these classes are often dependent 
upon the relationship between T  and NT. The majority of the following discussion will pro
ceed under the assumption that T ^  NT. However, this condition will be explicitly stated 
in any results that utilize the assumption.

The classes T  and N T e  are both nonempty subsets of NT, but what is the relationship 
between these two classes? By Theorem 15.6.2, if T  fl N T e is nonempty, then T =  NT.

529
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Consequently, under the assumption IP ^  NIP, IP and NIPC must be disjoint. The diagram 
in Section 15.9 shows the inclusions of IP and NIPC in NIP if IP 5^ NIP. One question 
immediately arises when looking at this diagram: Are there languages in NIP that are not in 

either IP or NIPG?
We define the family of languages NIPD, where the letter 0 represents intermediate, 

to consist of all languages that are in NIP but in neither NIPC nor IP. The use of the word 
intermediate in this context is best explained in terms of solving decision problems. A 
problem in NIPD is not NP-hard and therefore not considered to be as difficult as the problems 
in NIPC. On the other hand, since it is not in IP, it is considered to be more difficult than 
problems in that class. The term intermediate comes from this interpretation of problems 
in NIPO being harder than the problems in IP and not as hard as problems in NIPe.

If IP =  NO5, the class NIP3 is empty. Theorem 17.1.1, stated without proof, guarantees 
the existence of intermediate problems if IP ^  NIP.

Theorem 17.1.1

If 05 ^  NO5, then NPU is not empty.

Recall that the complement of a language L over an alphabet E , denoted L, consists 
of all strings not in L; that is, L =  E* — L. A family of languages J  is closed under com
plementation if L e  J  whenever L e J .  The family 05 is closed under complementation; 
a deterministic Turing machine that accepts a language in polynomial time can be trans
formed to accept the complement with the same polynomial bound. The transformation 
simply consists of interchanging the accepting and rejecting states of the Turing machine.

The asymmetry of nondeterminism has a dramatic impact on the complexity of ma
chines that accept a language and those that accept its complement. To obtain an affirmative 
answer, a single nondeterministic “guess" that can verify the affirmative answer is all that 
is required. A negative answer is obtained only if all possible guesses fail. The Satisfiabil
ity Problem is used to demonstrate the asymmetry of the complexity of nondeterministic 
acceptance of a language and its complement.

The input to the Satisfiability Problem is a conjunctive normal form formula u over a 
set of Boolean variables V, and the output is yes if u is satisfiable and no otherwise. Theo
rem 15.5.2 described the computation of a nondeterministic machine that solves the Satisfi
ability Problem in polynomial time. This was accomplished by guessing a truth assignment 
on V. Checking whether a truth assignment satisfies a formula u is a straightforward process 
that can be accomplished in time polynomial in the length of u.

The complement of the Satisfiability Problem is to determine whether a conjunctive 
normal form formula is unsatisfiable; that is, it is not satisfied by any truth assignment. An 
affirmative answer is obtained for a formula u if u is false for every possible truth assignment. 
A nondeterministic strategy to solve the “unsatisfiability problem” requires a guess that 
can verify the unsatisfiability of u. The guess cannot be a single truth assignment since 
discovering that one truth assignment does not satisfy u is not sufficient to conclude that 
u is unsatisfiable. Intuitively, the truth values of u under all possible truth assignments are 
required. If card  (V) =  n, there are 2" truth assignments to be examined. It seems reasonable
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to conclude that this problem is not in NtP. Note the use of the terms intuitively and it seems 
reasonable in the previous sentences. These hedges have been included because it is not 
known whether the unsatisfiability problem is in NT.

Rather than considering only the complement of the Satisfiability Problem, we will 
examine the family of languages consisting of the complements of all languages in NT. 

The family co-NT =  {L | L G NT}.

Theorem 17.1.2

If N T 5* co-NT, then T #  NT.

Proof. As noted previously, T  is closed under complementation. If N T is not closed under 
complementation, the two classes of languages cannot be identical. ■

Theorem 17.1.2 provides another method for answering the T =  NT question. It is 
sufficient to find a language L e  NT with L £  NT. Proving that N T =  co-NT does not 
answer the question of the identity of T and NT. At this time, it is unknown whether 
N T =  co-NT. Just as it is generally believed that T ^  NT, it is also the consensus of 
theoretical computer scientists that N T ^  co-NT. However, the majority does not rule in 
deciding mathematical properties and the search for a proof of these inequalities continues. 
Theorem 17.1.3 provides one approach for establishing the equality of N T and co-NT.

Theorem 17.1.3

If there is an NP-complete language L with L € NT, then NT =  co-NT.

Proof. Assume that L is a language that satisfies the above conditions. We first show that, 
under these conditions, the complement of any language Q in NT is also in NT. Since L is 
NP-complete, there is a polynomial-time reduction of Q to L. This reduction also serves as 
a reduction of Q to L.

By our assumption that L e  NT, L is accepted in polynomial time by a nondeterministic 
Turing machine. Combining the machine that performs the reduction of Q  to L with the 
machine that accepts L produces a nondeterministic machine that accepts Q in polynomial 
time. Thus, co-NT c  NT.

To complete the proof that N T =  co-NT, it is necessary to establish the opposite 
inclusion. Let Q be any language in NT. By the preceding argument, Q  is also in NT. 
The complement of Q, which is Q itself, is then in co-NT. ■

The Satisfiability Problem and its complement were used to initiate the examination 
of the family co-NT. At that point we said that it seems reasonable to believe that the 
complement of the Satisfiability Problem is not in NT. By Theorem 17.1.2, LSAT is in NT 
if, and only if, N T =  co-NT. The presumed relationships between T, NT, N T e , and co-NT 
are shown in Figure 17.1.
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FICURE 17.1 Inclusions if 7  j= T<7 and K 7 £  co-N(P.

17.2 Space Complexity

The focus of the preceding chapters has been the time complexity of Turing machines and 
decision problems. We could have equally as well chosen to analyze the space required by 
a computation. In high-level algorithmic problem solving, the amount of time and memory 
required by a program are often related. We will show that the time complexity of a Turing 
machine provides an upper bound on the space required and vice versa. Unless otherwise 
stated, the properties of space complexity that we present hold for both deterministic 
and nondeterministic Turing machines. The effect of limiting the space available for a 
computation on the acceptance of languages will be examined in Section 17.3.

The Turing machine architecture depicted in Figure 17.2 is used for measuring the space 
required by a computation. Tape 1, which contains the input, is read-only. With an input 
string of length n, the head on the input tape must remain within tape positions 0 through 
n +  1. The Turing machine reads the input tape but performs its work on the remaining 
tapes. Providing a read-only input tape separates the amount of space required for the input 
from the work space needed by the computation. The space complexity provides an upper 
bound on the amount of space used on the work tapes. A Turing machine that satisfies the 
preceding conditions is sometimes referred to as an off-line Turing machine, since the input 
may be considered to be provided off-line prior to the computation and is not included 
in the assessment of resource utilization. Unless otherwise specified, for the remainder 
of the chapter all Turing machines are assumed to be designed for the analysis of space 
complexity.

Definition 17.2.1

The space complexity of a k +  1-tape Turing machine M is the function 5cM : N -*■ N such 
that scM(n) is the maximum number of tape squares read on any work tape by a computation 
of M when initiated with an input string of length n.

This definition serves equally well for deterministic and nondeterministic Turing ma
chines. For nondeterministic machines, the maximum is taken over every possible com
putation for each string of length n. Unlike time complexity, we do not assume that the 
computations of a Turing machine terminate for every input. The tape heads of a machine
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Tape k

Tape k- 1 Work tapes

Tape 2

Tape 1 Input tape

FICURE 17.2 Turing machine architecture for space complexity.

may remain within a finite length initial segment of the tape even though computation never 
terminates.

The space complexity is always greater than 0. Even if a Turing machine does not 
take any transitions, the leftmost position on the work tapes must be read to make this 
determination. Since space complexity measures only the work tapes, it is possible that 
scM(rt) < ” • That is, the space needed for computation may be less than the length of the 
input. In Example 17.2.1 we design yet another machine that accepts the palindromes to 
demonstrate computations with space complexity 0(log2(n)).

Example 17.2.1

A two-tape Turing machine that accepts the palindromes over {a, b) was constructed in 
Example 14.3.1. This machine conforms to the specifications of a machine designed for 
space complexity analysis. The input tape is read-only and the tape head reads only the 
input string and the blanks on either side of the input. The space complexity of M' is n +  2; 
a computation reproduces the input on tape 2 and compares the strings on tapes 1 and 2 by 
reading the strings in opposite directions.

We now design a three-tape machine M that accepts the palindromes with sc^ (n )  =  
0(log2(n)). The work tapes are used as counters and hold the binary representation of a 
natural number. The strategy is to use the counters to identify and compare the i th element 
of the string with the / th element from the right. If they match, the counter is incremented 
and the i +  1st elements are compared. This process continues until a pair of elements is 
discovered that do not match or until all elements have been compared. In the former case 
the string is rejected, and in the latter it is accepted.

A computation of M with input u of length n consists of the following steps:

1. A single 1 is written in tape position 1 on tape 3.

2. Tape 3 is copied to tape 2.

3. The input tape head is positioned at the leftmost square.
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Let i be the integer whose binary representation is on tapes 2 and 3.

4. While the number on tape 2 is not 0,

a) Move the tape head on the input tape one square to the right.

b) Decrement the value on tape 2.

5. If the symbol read on the input tape is a blank, halt and accept.

6. The ith symbol of the input is recorded using machine states.

7. The input tape head is moved to the immediate right of the input (tape position n +  1).

8. Tape 3 is copied to tape 2.

9. While the number on tape 2 is not 0,

a) Move the tape head of the input tape one square to the left.

b) Decrement the value on tape 2.

10. If the ( / i—« +  l)st symbol matches the ith symbol, the value on tape 3 is incremented, 
the tape heads are returned at their initial positions, and the computation continues with 
step 2. Otherwise the computation rejects the input.

The operations on tapes 2 and 3 increment and decrement the binary representation of 
a natural number. Since n +  1 is the largest number written on either of these tapes, each 
tape uses at most flog2 (w +  1 ) 1 + 2  tape squares. □

An off-line Turing machine is said to be s(n) space-bounded if the maximum number 
of tape squares used on a work tape during a computation with an input of length n is at most 
max{ 1, j(n)}. The space complexity function scM(n) specifies the maximum space actually 
required by a computation of M with input n, while a space bound provides an upper bound 
that may not be achieved. As previously noted about space complexity, a Turing machine 
may be space-bounded even though it has computations that do not terminate.

The computations of a k +  1-tape Turing machine M with space bound s ( n ) > n  can 
be simulated by a machine with one work tape that is also s(n)  space-bounded. This differs 
from measurement of time complexity where a reduction in the number of tapes produces 
an increase in the time complexity. The proof utilizes the construction of a 2k +  1-track 
machine from a A:-tape Turing machine presented in Section 8.6. The number of tape 
squares scanned by the resulting multitrack machine is exactly the maximum number read 
on any work tape of the original multitape machine. This observation is summarized in the 
following theorem.

Theorem 17.2.2

Let L be a language accepted by a k +  1-tape Turing machine M with space bound s(n) > n. 
Then L is accepted by an s(n) space-bounded Turing machine with one work tape.

As in Theorem 17.2.2, we will frequently use the assumption that a Turing machine has 
space complexity scM(«) >  n or has a space bound s(n) > n. These conditions are added 
to the statement of a theorem to ensure the availability of at least n tape squares. The first
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condition implies the second, since the space complexity function is itself a space bound. 
The reverse is not true. The Turing machine M described in Example 17.2.1 is s(n) = rt + 2 
space-bounded, but its space complexity does not satisfy scM(rt) > rt.

Although our definition of space complexity is based on the computations of multitape 
off-line Turing machines, the notion of a space bound is also applicable to one-tape Turing 
machines. A one-tape Turing machine is s(n) space-bounded if the maximum number of 
tape squares used is at most max{n +  1, s(n)}. With only one tape, the space required to 
store the input is included in the bound.

With the assumption that a machine is s(n) > n space-bounded and Theorem 17.2.2 
we can, when convenient, restrict our attention to machines with a single work tape. In 
fact, any language that is accepted with a space bound s(n) > n is accepted by a one-tape 
deterministic Turing machine that satisfies the same space bound (Exercise 9). The argument 
uses the same reduction from multitrack to single-track machine.

The reason for the selection of the off-line Turing machine for studying space complex
ity is to have a single Turing machine model suitable for the analysis of all space bounds. 
Many interesting languages are accepted by machines with space bounds less than the length 
of the input. In particular, the class of languages accepted by log2(w) space-bounded Turing 
machines has been extensively studied. Our attention, however, has focused on problems 
that may require a significant amount of resources and a restriction that the available space 
be at least the size of the input is reasonable for these problems.

17.3 Relations between Space and Time Complexity

The time complexity of a Turing machine can be used to obtain an upper bound on the 
space complexity. The number of tape squares that a single tape head can read during a 
computation is limited by the number of transitions in the computation.

Theorem 17.3.1

Let M be a +  1-tape Turing machine with time complexity rcM(n) =  f ( n ) .  Then ,scM(rt) <

/ ( « )  +  I-

Proof. The maximum amount of tape is used when each transition of M moves the heads 
on the work tapes to the right on each transition. In this case the maximum number of tape 
squares read on any work tape is f ( n )  + 1 .  ■

Obtaining the restriction on time complexity imposed by a known space bound is more 
complicated since a machine may read a particular segment of the tape multiple times. A 
two-tape machine M is used to demonstrate the bound on the time of a computation of a 
deterministic machine that can be obtained from the space complexity of the machine. We 
assume that M halts for all input strings since this is a requirement of time complexity. The 
generalization from two-tape to k +  1-tape machines is straightforward.
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Theorem 17.3.2

Let M be a two-tape deterministic Turing machine that halts for all inputs with space bound 
s(n). Then fcM(n) < m • s(n) • (n +  2) • fI(n), where m is the number of states and t the 

number of tape symbols of M.

Proof. Le t M =  (Q, E,  T, 5, q0, F) be a two-tape Turing machine with m =  card (Q) 
and t =  card (T). For an input of length n, the space bound restricts the computation of M 
to at most s(n) positions on tape 2. Limiting the computation to a finite length segment of 
the tape allows us to count the number of distinct machine configurations that M may enter.

The work tape may have any of the t symbols in each position, yielding tsin> possible 
configurations. The head on tape 1 may read any of the first n +  2 positions, while the head 
on tape 2 may read positions 0 through s(n) — 1. Thus there are s(n) • (n +  2) • possible 
combinations of tape configurations and head positions. For any of these, the machine may 
be in one of m states, producing a total of m • s(n ) • (w +  2) • r*<n) distinct configurations.

The repetition of a configuration by a deterministic machine indicates that the machine 
has entered an infinite loop. Since M halts for all computations, the computation must halt 
prior to m • s(n) • (n + 2) ■ tsM  transitions. ■

For a nondeterministic machine, a terminating computation may have more transitions 
than the number of possible configurations. When a configuration is repeated, the compu
tation may select a different transition. In Corollary 17.3.3 we use the limit on the number 
of configurations to produce an exponential bound on the number of transitions required 
for the acceptance of a string by any space-bounded Turing machine. The bound is given 
in exponential form to facilitate the comparison of the amount of space required by deter
ministic and nondeterministic computations in the next section. By Theorem 17.2.2, it is 
sufficient to consider Turing machines with one work tape.

Corollary 17.3.3

Let M be a Turing machine with space bound s(n)  >  n. There is a constant c that depends 
on number of states and tape symbols of M such that any string of length n accepted by M 
is accepted by a computation with at most cJ(n) transitions.

Proof. Again we let M =  (Q, E , F, S, q0, F) be a two-tape Turing machine with 
m = card(Q) and t =  card(T).  By the argument in Theorem 17.3.2, there are m • s(n)- 
(n +  2) • t sin) possible configurations for a computation with input of length rt. The deriva
tion of an exponential bound on the number of machine configurations uses the inequality

(n +  2)s(n) <  3*(n),

which holds whenever n <  s(n)  and s(n)  >  0. The exponential bound on the number of 
transitions is obtained by replacing the terms in m • s(n) • (n +  2) • rs(n) with functions that 
have s(n) as an exponent:
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m  • j(n )  • (« +  2) ■ ts M < m sM  ■ a(n) • (« +  2) • tsM

< msM  • 3i(n) • / J(n)

=  (3 m t)s(n)

= csM

and the constant c is obtained directly from the number of states and tape symbols of the 

Turing machine M.
Any computation of M that has more than cs(n> transitions must repeat a configuration. 

A computation of this form that accepts a string w can be written

q0 : .BxvB, .BB  

Is- qt : B u .v B , x.y  

I3- <7( : Bu.vB , x .y  

F- qj : B u . v B ,  x'.y',

where the first string after the semicolon represents tape 1, the second string represents tape
2, and the dot indicates that the tape head is reading the symbol to the immediate right. 
Removing the portion of the computation between the repeating configuration produces 
another accepting computation

<7o: .Bw B , .BB  

f1- qt : Bu.vB , x .y  

F- qj : B u . v B ,  x '.y '

of strictly smaller length. This process can be repeated until a computation of length less 
than cI(n) is produced. ■

The upper bound on the number of transitions needed by a Turing machine M to accept 
a string can be used to construct a machine that accepts the same language as M, has the 
same space complexity, and halts for all input strings. The idea is to add another tape to 
M that is used to count the number of transitions. The counter tape is initialized to the 
bound provided by Corollary 17.3.3. With each transition, the counter is decremented. The 
computation halts and rejects the input if the counter reaches zero. The sole concern with 
this construction is to ensure that the counter tape uses no more tape than permitted by the 
space bound of M. This can be accomplished by selecting a suitable base b and representing 
the numbers on the counter tape in the base b system.

Corollary 17.3.4

Let L be a language accepted by a Turing machine with space bound s(n)  >  n. Then L is 
accepted by a Turing machine M' with space bound s(n)  that halts for all inputs.
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A space bound s(n) is fully space constructible if there is a Turing machine M for 
which the computation of every string of length n accesses exactly s(/i) tape squares. If 
M is a Turing machine with space complexity scm(n) = s(n) >  n, then s(n ) is fully space 
constructible (Exercise 5). The set of fully space constructible functions includes nr, 2", 
and n\ and most common number-theoretic functions. In addition, if 5j(n) and s2(n) are 
functions that are fully space constructible, so are s t(n)s2(n), and s2(n)Sl<n>. The
preceding observations allow us to conclude that the function

.2"

s(n) =  22'

is fully space constructible for any number of 2’s in the exponential chain. Thus there is no 
limit on the amount of space required for Turing machine computations. Theorem 17.3.5 
gives conditions under which increasing the space available for a computation increases the 
family of languages that can be accepted.

Theorem 17.3.5

Let J |(n ) >  n and s2{n) > n be functions from N to N such that

"-*•<» s2(n)

and 5 2  is fully space constructible. Then there is a language L accepted by an s2(n) space- 
bounded Turing machine that is not accepted by any Sf(n) space-bounded Turing machine.

Proof. We will construct a five-tape s2(n) space-bounded Turing machine M whose lan
guage is not accepted by any Jj(n) space-bounded machine. The input to M is a string over 
{0 ,1 )  and the computation uses the interpretation of such a string as a two-tape Turing 
machine. The computation of M when run with an input string w consists of the simulation 
of a computation of two Turing machines. The first configures a tape of M to enforce the 
s2(n) space bound. The second simulates the computation of the machine encoded by the 
string w, which we will call M „, when run with input w. A diagonalization argument is 
given to show that the language of M is not accepted by any Ji(n) space-bounded Turing 
machine.

We use the encoding of multitape Turing machines described in Section 14.6, but 
we allow any number of 7’s to precede the string 000 that begins the encoding. Thus if 
w e  {0, /}* is the encoding of a Turing machine, the strings Iw, U w , l l l w ,  . . .  are 
encodings of the same machine. With this modification, an enumeration of the strings in 
{0,1)* contains an infinite number of encodings of each Turing machine. Any string w that 
does not satisfy the requirements for an encoding of a two-tape machine is considered to 
represent the two-tape, one-state machine with no transitions.

The computation of M with input w begins by marking the s2(n) — 1st position of 
tape 5 with a 1. Since s2(n) is fully space constructible, there is a Turing machine that will 
use exactly s2(n) squares when run with input w. The computation of this machine with
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input w can be simulated on tapes 2 through 4 and the furthest right square accessed in the 

computation is recorded on tape 5.
After establishing the tape bound, M simulates the computation of the machine M„, 

with input w on tapes 2 through 4. At the beginning of this phase, the machine M can be 

pictured as

s 2 (n )  -  1
Space bound 

State

Work tape S- Simulation 
of

Input

Input

During the simulation of M B, the heads on tapes 3 and 5 move synchronously. If the tape 
heads attempt to move to the right of the marker on tape 5, the computation of M halts and 
rejects the input. Thus M is guaranteed to be s2(n) space-bounded. The machine M accepts 
the string input w only if the computation is not terminated by the space bound and Mu, 
halts without accepting w.

We now show that L(M) cannot be accepted by any ^ (n )  space-bounded Turing 
machine. The proof is by contradiction.

Assume that L(M) is accepted by an Si(«) space-bounded Turing machine M'. By 
Corollary 17.3.4 we may assume that M' halts for all inputs. Recall that the encoding of 
M' occurs an infinite number of times in the enumeration of {0, ])*. Since

5,(n)
inf

n-*oo s2(n)
= 0,

there is some rt > length(w)  such that i](«) <  s2(n). The string w can be padded with 
leading 1's to produce an encoding w' of M' with length exactly n.

Now consider the computation of M when run with input w'. Since S|(n) <  s2(n), M 
has sufficient space to simulate the computation of M'. Thus M accepts w' if, and only if, 
M' does not. Consequently, L(M) ^  L(M'). It follows that there is no si(n) space-bounded 
machine that can accept L(M). ■

The space constructibility of 2" and 22" combine with Theorem 17.3.5 to guarantee 
the existence of a language L that is not accepted by any machine with space bound 2". 
The latter bound has a rate of growth greater than any polynomial. Thus there is no Turing 
machine with polynomial space complexity that accepts L. Since space complexity provides 
a lower bound for time complexity, L cannot be accepted in polynomial time. Consequently, 
the membership problem for the language L is intractable.
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The preceding argument establishes the existence of intractable languages without 
identifying a particular language whose space or time complexity is not polynomially 
bounded. In Section 17.5 we will show that a question concerning the language described 
by a regular expression requires exponential space.

17.4 T-Space, !NT-Space, and Savitch’s Theorem

The classes T  and X T contain the languages that can be accepted in polynomial time by 
deterministic and nondeterministic Turing machines, respectively. In a similar manner, we 
can define classes of languages that are accepted by Turing machines in which the amount 
of space required for a computation grows only polynomially with the length of the input.

Definition 17.4.1

A language L is decidable in polynomial space if there is a Turing machine M that accepts 
L with 5CM e  0 (/ir ), where r is a natural number independent of/i. The family of languages 
decidable in polynomial space by a deterministic Turing machine is denoted T-Space. 
Similarly, the family of languages decidable in polynomial space by a nondeterministic 
Turing machine is denoted XT-Space.

There are some obvious inclusions concerning these new complexity classes. Clearly, 
T-Space C XT-Space. Moreover, by Theorem 17.3.1, T c  T-Space and X T  c  XT-Space. 
The surprising relation is that between T-Space and XT-Space. Whether T is a proper 
subset of XT is an open question that has defied all attempts at a solution since it was 
posed in the 1960s. The answer to the analogous question for space complexity is known, 
T-Space= XT-Space. The fundamental difference between time and space complexity is 
that space can be reused during a computation.

We will show that every language accepted by a nondeterministic s(n) space-bounded 
Turing machine is accepted deterministically with an 0(.s(«)2) space bound. It follows 
immediately that a language accepted in polynomial space by a nondeterministic Turing 
machine is also accepted in polynomial space by a deterministic machine. As usual, we 
will limit ourselves to the consideration of two-tape machines.

The construction of an equivalent deterministic machine from a nondeterministic Tur
ing machine must specify a method for systematically examining all alternative com
putations of the nondeterministic machine. We begin by considering the potential space 
requirements of a standard approach for constructing the alternative computations of a non
deterministic Turing machine for an input string to. The critical feature for the space analysis 
of this approach is the need to store each machine configuration in the current computa
tion to be able to generate successive computations. The configurations are maintained and 
accessed through a stack, producing a depth-first analysis of the nondeterministic compu
tations.
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L etM  =  (Q, £ ,  T, 8, q0, F) be a two-tape Turing machine with space bound s(n).  

A computation of M with input w has the form

q0 : .Bw B , .BB  

I1- : Bu.vB , x .y  

I- qj : B u . v B , x ' . y .

If there is no transition for machine configuration q j : Bu'.v'B, x '.y ' and qj  is not an accept
ing state, or all applicable transitions have already been examined, the computation must 
“back up" to <7, : Bu.vB , x .y  to try alternative transitions. A stack of machine configura
tions provides the last-in first-out strategy needed to test all the alternative computations. 
Two questions must be answered to determine the space complexity of this strategy: “How 
much space is required for the representation of a machine configuration?" and “What is 
the maximum number of configurations that may be stored?"

The representation of a configuration of a two-tape Turing machine with space bound 
s(n) requires encoding the state of the machine, the location of the tape head on the read
only tape, the location of the tape head on the work tape, and the first s ( n )  tape squares 
on the work tape. For an input string of length n ,  the space required is Pog2 (car<7(Q))] 
squares for the state, ["log2(« -I- 2 ) 1  squares for the input tape head position, flog2 (s(/i))l 
squares for the work tape head position, and s ( n )  squares for the work tape. Thus the entire 
configuration can be encoded in O ( s ( n ) )  space.

The answer to the second question shows that this straightforward approach to trans
forming a nondeterministic machine into a deterministic machine will not produce the de
sired bound on the space complexity of the deterministic computation. By Theorem 17.3.2, 
the number of configurations that need to be stored on the stack may grow exponentially 
with s ( n ) .  Another approach is needed.

The critical observation for effectively reusing space is that a computation of k tran
sitions,

<7o : .B w B , .BB  

I1- qj : Bu.vB , x . y ,

can be broken into two computations

q0 : .B w B , .BB  

^  qj : Bu'.v 'B, x '.y '  

t1- qt : Bu .vB , x .y ,

each with k /2  transitions. If the two computations are done sequentially, the space used in 
the first computation will be available for the second.

We will employ this memory reuse strategy to determine if a string w is accepted by 
a two-tape nondeterministic Turing machine M =  (Q, £ ,  f ,  8, q0, F) with space bound
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s(n). Let c f h c f2, . . c f  p be a listing of all possible machine configurations with w on the 
input tape, where c f i is the representation of the initial configuration q0 : .B w B , .BB. The 
space bound s(n) ensures us that the number of configurations is finite (Theorem 17.3.2).

The algorithm uses a divide-and-conquer technique to determine if a configuration c f 2 
is derivable from a configuration e/} in k or fewer transitions. To answer this question, it 
suffices to find a configuration c / (, such that

1. c f  p- c/l, in k /2  transitions or fewer, and

2. cfi I1- cfj2 in k /2  transitions or fewer.

Similarly, to discover if cfj p- c/i, in k /2  transitions or fewer, it suffices to find configuration 
c f  such that

1. cfj p- c/;4 in k / 4 transitions or fewer, and

2. c f  p- c f  in k / 4 transitions or fewer.

The procedure Derive in Algorithm 17.4.4 uses recursion to perform this search. The 
recursion tree associated with a call to D erive(cfj, c f i2, k) is pictured in Figure 17.3. The 
node [m , m] represents a call to determine if cfj is derivable from cfj . As illustrated in the 
figure, the evaluation of Derive(cf , c f t , k) has at most flog2(fc)l nested recursive calls. 
The preceding observations are now used to produce a space bound for the deterministic 
algorithm that accepts the language defined by a nondeterministic machine.

Theorem 17.4.2 (Savitch’s Theorem)

Let M be a two-tape nondeterministic Turing machine with space bound s(n). Then L(M) 
is accepted by a deterministic Turing machine with space bound 0 (s (n )2).

Proof. Algorithm 17.4.4 describes a recursive search for a derivation o f string w. By 
Corollary 17.3.3, every string w € L(M) is accepted by a computation with at most cJ(n) 
transitions. The machine configurations are sequentially examined and the recursive search 
procedure Derive is called for each accepting configuration of M in step 3.2. The parameters 
in the call are the initial configuration of M, an accepting configuration, and the transition 
bound cs(n>. If one of the calls to Derive discovers a derivation, the algorithm halts and 
accepts the string. If all of the calls fail, then w is not derivable and the string is rejected.

All that remains is to determine the amount of memory required for this approach. On 
a recursive call, the calling procedure Derive stores an activation record that contains the 
values of its parameters and local variables. When the call is completed, activation record 
is used to restore the values. The activation record for Derive consists of the two machine 
configurations and the integral valued transition bound.

A Turing machine implementation of this algorithm must store the activation records 
on a tape. As previously noted, a machine configuration requires only 0 ( j( / i) )  tape squares 
and consequently the space required by an activation record is also 0(s(n)).  The maximum 
number of nested calls is

riog2(cJ(">)l =  [j (h) log2(c)l € 0 (j (/i)).

Thus the total space for the 0 (s(n )) activation records is 0 (s (n )2).
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Size of 
Computation

[1.2] k

[1.4] [4,3] [3,5] [5,2] k/4

[1,6] [6,4] [4,7] [7,3] [3,8] [8,5] [5.9] [9,2] k/8

[1, (k/2) + 2] 1 

FICURE 17.3 Recursion tree for Deriveicf^, cfi2, k).

The bound on the space complexity in Theorem 17.4.2 can be used to show that T-Space 
=  JvflP-Space.

Corollary 17.4.3

If L is in XP-Space, then L is in T-Space.

Proof. If L is in KT-Space, it is accepted by a nondeterministic Turing machine with a 
polynomial space bound p(n). By Theorem 17.4.2, L is accepted by a deterministic Turing 
machine with space bound O (p(n)2) and consequently is in 9-Space. ■

Algorithm 17.4.4
Recursive Simulation o f  Nondeterministic Turing Machine

input: Turing Machine M = (Q, E , T, S, qo,F) 
string w € E*
configurations c f x, c f2, . . c f p of M 
constant c =  3 • card{Q) • card(T)  
space bound s(n)

1. fo u n d  =  false
2. / =  1
3. while not fo u n d  and i <  p  do (check all accepting configurations)

3.1 i :=  / +  1
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FIGURE 17.4 Relation of CP-Space to other complexity classes.

3.2 if cfj is an accepting configuration of M 
then f o u n d  = Derive(cf |, cfj, csM ) 

end while
4. if f o u n d  then accept else reject

Derive(cfs, cfe, k)\ 
begin

Derive = false
if k =  0 and cfs =  cfe then Derive = true 
if k =  1 and cfs I- cfe then Derive = true 
if k > 1 then do 

i =  1
while not Derive and i <  p  do (check all intermediate configurations)

i i +  1
Derive = Derive(cfs, c fj, |7:/2D) and Derive(cfj, cfe, [k/2 \ )) 

end while 
end if 

end.

Figure 17.4 shows the relationships between T-Space and the other complexity classes. 
It is not known whether T-Space =  N T or T-Space =  T. However, it is believed that all of 
the inclusions in Figure 17.4 are proper.

17.5 IP-Space Completeness

The notion of T-Space completeness is introduced to characterize the universal problems of 
the class T-Space and to provide a method for determining which, if any, o f the inclusions 
y  C T-Space or XT c  T-Space are equalities.
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A language Q is called T-Space hard  if for every L e  T-Space, L is reducible to Q in 
polynomial time. A T-Space hard language that is also in T-Space is called T-Space 

complete.

Note that the reductions in the definition of T-Space completeness have polynomial 
time, not space constraints. This requirement ensures that the discovery of a polynomial
time solution to a T-Space complete problem implies T-Space = T.

Theorem 17.5.2

Let Q be a T-Space complete language. Then

i) If Q is in T, T-Space =  T.

ii) If Q is in X T, T-Space =  XT.

The proof of Theorem 17.5.2 follows from the reducibility of all languages in T-Space 
to a T-Space complete language and the now familiar process of obtaining a polynomial
time bound on the sequential execution of two machines with polynomial-time bounds. 
Theorem 17.5.2 shows that finding a T-Space complete language in either T or X T answers 
the question of the proper inclusion of these classes in T-Space.

The remainder of this section is devoted to showing that the decision problem defined
by

Input: Regular expression a  over an alphabet E 

Output: yes; if a  ^  Z* 

no; otherwise

is T-Space complete. Two steps are required to prove that this problem is T-Space complete. 
First, we must design a string representation for regular expressions and a Turing machine 
that solves the problem in polynomial space. That is, the Turing machine accepts a string if, 
and only if, it is the representation of a regular expression whose language does not consist 
of all strings over its alphabet. This step is done at the level of the acceptance of strings and 
is left as an exercise. The language consisting of representations of regular expressions that 
do not describe all strings will be denoted Lreq.

The second step is to show that every language in T-Space is reducible to LREG in 
polynomial time. The proof employs the strategy utilized in the proof of NP-completeness 
of the Satisfiability Problem. To show that a language L in T-Space is reducible to L ^ ,  we 
transform computations of a space-bounded Turing machine M that accepts L into regular 
expressions. For each string w € EjJ,, we construct a regular expression a w such that M 
accepts w if, and only if, a w does not contain all strings over its alphabet.

Let M =  (Q, £ m, r M , S, q0, F) be a one-tape deterministic Turing machine with 
space bound s(n). The alphabets of M are subscripted to differentiate them from the alphabet 
of the regular expression that we will build from M and w. Without loss o f generality, we 
assume that there are no transitions from the accepting states of M.

Definition 17.5.1
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First, we define an alphabet E that allows us to represent computations o f M as strings 
over E . The alphabet contains ordered pairs of the form [<?, , a] and [*, a] for each e  Qand 
a € Tm. In addition to the ordered pairs, E contains the symbol K  Intuitively, an ordered 
pair [qj,  a ]  represents a tape position containing an a  that is being scanned by the tape head. 
The asterisk in the first position, [*, a], indicates that the tape head is not scanning this 
symbol. A sequence of s{n) symbols can be used to represent any machine configuration 
of a computation of the machine M with an input of length n.

The initial configuration of M with input w =  a x . . .  a„ is represented by the string

[<?o- #][*> a2l ■ ■ ■ [*•

where the exponent represents the concatenation of s(n) — n — 1 copies o f [*, B}. The 
addition of the blanks following the input produces a representation of s(n)  tape squares, 
which is an upper bound on the space required by a computation. We will represent every 
configuration with exactly s(n) symbols. The representation of a computation of M consists 
of a sequence of machine configurations separated by the symbol K

Now we design a regular expression a w that contains all strings over E  that are not the 
representation of a computation that accepts w. If we are successful in constructing such a 
regular expression,

a w ^  £*  if, and only if, there is a computation of M that accepts w 

if, and only if, w € L(M) 

if, and only if, u ie L .

Consequently, an algorithm that decides LREG will be able to determine whether a string w 
is in L. The construction of a w utilizes the space bound on the computation of M.

Three conditions must be satisfied for a string over E to be the representation of an 
accepting computation of w:

1. The first s(n) symbols must represent the initial configuration of M with input w.

2. The symbol h  separates configurations and each configuration must follow from the 
preceding configuration by a transition of M.

3. The final configuration must have an accepting state.

For each of the preceding conditions, we construct a regular expression that contains strings 
over E that do not satisfy the condition. The union of these expressions defines the set of 
all strings that are not the representation of an accepting computation of M with input w.

A  string does not satisfy the first condition if its first symbol is not [q0, B], or if its 
first symbol matches [q0, B] but its second symbol is not [*, aj], or if its first two symbols 
match but its third is not [*, a2], and so on. Exactly s(n) statements of the preceding form 
describe the strings that do not match the initial configuration. The language of the regular 
expression
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«l =  ( E - { [ 9 0.

U fo0, 5 ](E  -  {[*, fl,]})E*

U [q0,

u  [<?(>' S J[*’ a l i  - ■ ■ [*• a n - l K S  "  {[*' a J ) ) £ *  

u  [<?0- «2] • • ■ [*- «/■-][*. -  {[*, B]})S*

U [q& o2] . . . [*, «„-][*> aj[*> B f (B)_n-2(S  -  {[*, B]))£*

generates these strings. The notation (S  — A) is used as an abbreviation of the regular 
expression for the subset of the alphabet obtained by deleting the elements in A.

The regular expression

a 3  =  (E  — {[<?,-, a] | a G TM, qt £ F})’

generates every string that does not contain a symbol with an accepting state.
The second condition requires that successive configurations be obtained as prescribed 

by a transition of M. Since each machine configuration has exactly s(n) symbols, we 
construct a regular expression a 2 in which symbols s(n) +  1 tape positions apart do not 
agree with the result of a transition. A transition S(q,-, a) =  [b, qj,  /?] that specifies a move 
to the right produces a substring in the representation

••• [* , x][<7 ,, «][=*=, x] ■ ■ ■ I------ [*, *][*, b][qj, x] ■ ■ ■ ,

in which [qh a\ and [*, b] are separated by exactly s(n) symbols.
For each transition S(qh a) =  [b, q j , /?], the regular expression

( J  E*[<7,, a][*. X) ( E J<n>(E  -  [qp  x])E* U E I<n- ,)(E  -  [*, J>])E*) 
jr€rM

generates strings that differ from the result of the transition. A string produced by this 
expression has an occurrence of [qh  a][*. x] and symbols other than [*, b][q; , x] s(n) +  1 

positions later. Consequently, a string matching this condition cannot be the representation 
of a computation of M. In a similar manner, a regular expression is obtained for each 
transition that specifies a move to the left. The regular expression a 3  is the union of the 
expressions for each transition.

The transformation from space-bounded standard Turing machine to regular expression 
is used to show that L req is T-Space complete. Let L be any language in T-Space. Then 
L is accepted by a standard Turing machine M with a polynomial-space bound p(n) with 
no transitions from the accepting states (Exercise 10). For a string w of length «, we must 
show that the size of the resulting regular expression grows polynomially in n. The regular 
expression ct\ is the union of p in )  subexpressions, each of size O (p(n)). The size of the 
subexpressions in a 2 is also Q(p(n))  and the number of subexpressions is independent of
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the length of the input. Finally, the size of <*3 is a constant determined by the number of states 
and tape symbols of M. Thus the size of a  =  ctx U a 2 U grows only polynomially with the 
length of a string w. The preceding argument demonstrates that L req is hard for the class 
T-Space. Combining this with a polynomial-space decision procedure for membership in 

Lreg> we conclude:

Theorem 17.5.3

The language LreG is T-Space complete.

Because of the inclusion of N T in (P-Space, every T-Space complete problem is also 
NP-hard. Thus Lr£G is an example of an NP-hard problem for which there is no known 
nondeterministic polynomial-time solution.

17.6 An Intractable Problem

One measure of the importance of the class of NP-complete problems is the frequency with 
which they are encountered in diverse problem domains and applications. Even though there 
is no known polynomial-time algorithm that solves these problems, we cannot conclude 
that they are not in T. Generally speaking, showing that a language or a problem is in a 
complexity class is more easily accomplished than showing that it is outside of a class. 
Consider the ease in which we have been able to use a “guess-and-check" strategy to 
demonstrate that the Satisfiability Problem, the Hamiltonian Circuit Problem, and the Vertex 
Cover Problem are in NT. As of this time, no one has been able to prove that any of these 
problems are not in the class T.

The reason for the difference in difficulty is that producing one algorithm is sufficient 
to show that a problem is in 3* or or (P-Space. Proving that a problem is not in one 
of these classes requires producing a lower bound on the time or space complexity of all 
algorithms that solve the problem. In this section we will see that a variation o f the problem 
of recognizing LREG is intractable, that is, that it is provably outside of "P. In fact, we show 
that it is outside of T-Space and consequently not in either 7  or NT.

The family of regular expressions with squaring adds one more construction to the 
standard definition of regular expression given in Chapter 2. The regular expressions with 
squaring over an alphabet E are defined recursively from 0, X, and a, for every a e  £ . If 
u and v are regular expressions with squaring over E , then so are (u U v), (uv), (u*), and 
(u2). As before, we can use associativity and operator precedence to reduce the number of 
parentheses.

Since the expression u2 designates the same language as uu, the addition of squaring 
does not increase the languages that can be represented by regular expressions. However, 
the availability of the squaring operator reduces the length of expressions needed to describe 
a language. The squaring operation allows us to write an expression for the concatenation 
of 2" copies of a regular expression u in O(n) symbols,

(• • • ((«)2)2) • • -)2,
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applying the squaring operation n times. Since complexity relates input length to time and 
space, a more compact representation of input may be accompanied by an increase in the 

complexity measures.
We will show that the problem of deciding whether the language of a regular expression 

with squaring does not contain all strings over its alphabet is not in CP-Space. This is the 
same problem considered in the previous section; the sole difference is the presence of 
the squaring operator in regular expressions. The proof uses the representation of Turing 
machine computations as regular expressions, this time with squaring, developed in the 
preceding section.

Let L be a language accepted by a Turing machine with space bound 2" but not by 
any Turing machine with space bound 2n^ .  Theorem 17.5.3 assures us of the existence of 
such a language. Let M be a one-tape deterministic Turing machine with space complexity 
ic M(«) == 2" that accepts L. As in the previous section, the computations of M can be 
represented as regular expressions over the alphabet £  =  {[<?,•, a], [*, a]. I- | e  Q, a € T}.

For each string u> =  a i . . .  an in ££,, we define a regular expression a w whose language 
is all strings that do not represent a computation of M that accepts w. The construction of 
a w uses the same approach as in Section 17.5, but we now use squaring to ensure that the 
length of a w grows linearly with the length of w.

In Section 17.5, each machine configuration encoded in a w had s(n)  tape squares where 
s(n) was the space bound of the machine M. Here we choose 2" 4- n +  1 tape positions 
for the simplicity of the numeric manipulation. The string representation of the initial 
configuration of the computation of M with input w consists of

[?o . # ] [ * .  « iK * .  a2] • • ■ [* ,  a„]

followed by 2" copies of [*, B}. The squaring operation lets us describe this string with a 
regular expression of length O(n). By examination, we see that subexpressions a ], a 2, and 
a j  require only O(n) space when squaring is used to represent the exponential repetition of 
[*, fl] and £ .  Consequently, the length of a w is O(n).

Let LR E G 2  denote the set of all regular expressions with squaring of the form a w such 
that the language of a w £*.

Theorem 17.6.1

The language L r£ G 2 is intractable.

Proof. Assume that membership in LR £ G 2  *s decided by a polynomially space-bounded 
Turing machine M'. Combining the construction of a w with the computation o f M' produces 
the following sequence operations:

1. Input: a string w e  DjJ, of length n

2. Transformation: construction of the regular expression a w

3. Computation of M': determination if a w ^  E*

4. Result: w e  L if, and only if, a w is accepted by M'.
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The entire process is completed in polynomial space and accepts the language L(M). This 
is a contradiction since L(M) is not accepted by any Turing machine with space complexity 
less than 2"/2. ■

The language L reG2 is clearly decidable. A simple strategy is to expand the occurrences 
of the squares in a w to produce a standard regular expression for the same language. 
By Exercise 13, the question for the resulting expression can be answered in space that 
is polynomial to its length. Unfortunately, the space of the latter expression may grow 
exponentially with the length of w.

Exercises

1. Let Q  be a language reducible to a language L in polynomial time. Prove that Q  is 
reducible to L in polynomial time.

2. Design a two-tape Turing machine with space complexity 0(log2(n)) that accepts 
{a'b1 | i >  0}.

3. Let L be a language that is accepted by a Turing machine M whose computations 
with input of length n require at most s(n) space. Note that we do not require that 
all computations of M terminate. Prove that L is recursive.

4. Show that T-Space is closed under union and complementation.

5. For each space bound, design a Turing machine that shows that the function is fully 
space constructible:

a) s(n) = n

b) s(n) =  3n

c) s(n) =  n2

d) s(n) =  2"

6. Let M be a Turing machine with space complexity acM(n) =  f ( n ) > n .  Recall that 
this means that there is some input of length n  for which M uses exactly s c m ( m ) tape 
squares. Show that f ( n )  is fully space constructible.

*7. Design a one-tape deterministic Turing machine with input alphabet {7} that uses 
exactly 2" tape squares for input of length n >  1.

8. Let s(n) be a fully space-constructible function with s ( n ) > n  and s(0) >  0. Show that 
there is a one-tape Turing machine that uses s(n ) tape squares for any input of length 
n.

9. Let M be an s(n) space-bounded Turing machine with s(n) > n. Prove that there is a 
one-tape s(n) space-bounded Turing machine that accepts L(M).
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10. Let L be a language in T-Space. Prove that there is a one-tape Turing machine with 
no transitions from the accepting states that accepts L whose computations have a 
polynomial-space bound.

11. Prove that the set of languages accepted by Turing machines with an s(n) =  log2(n) 
space bound is a proper subset of languages accepted with an s(n) =  n space bound.

* 12. Is the set of languages accepted by Turing machines with an s(n)  =  nr space bound 
a proper subset of languages accepted with a s(n)  =  2nr space bound? Prove your 
answer.

13. Show that the language L req  is in T-Space. Hint: Use the equivalence of T-Space and 
XT-Space and design a nondeterministic polynomial space-bounded Turing machine 
that decides membership in Lreq.

14. Prove Theorem 17.5.2.

15. Show that any T-Space complete language is NP-hard.
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PART V

Deterministic Parsing

P rogramming language definition and program compilation provide a direct link be
tween the theory of formal languages and computer science applications. Compiling a 

program is a multistep process in which source code written in a high-level programming 
language is analyzed and transformed into executable machine or assembly language code. 
The two initial steps of the process, lexical analysis and parsing, check the syntactic cor
rectness of the source code. Lexical analysis reads the characters in the source code and 
constructs a sequence of tokens (reserved word, identifiers, special symbols, and the like) 
of the programming language. A parser then determines whether the resulting token string 
satisfies the syntactic requirements specified in the programming language definition.

In 1960, ALGOL 60 became the first programming language to have its syntax formally 
defined using the rules of a grammar. Since that time, grammars have been the primary 
tool for defining the syntax of programming languages. The Backus-Naur form grammar 
for the programming language Java given in Appendix III defines the set o f syntactically 
correct Java programs, but how can we determine whether a sequence of Java source code 
constitutes a syntactically correct program? The syntax is correct if the source code is 
derivable from the variable (CompilationUnit) using the rules of the grammar. To answer 
a question about the syntactic correctness of a Java program, or that of a program written 
in any language defined by a context-free grammar, parsing algorithms must be designed 
to generate derivations for strings in the language of a grammar. When a string is not in the 
language, these procedures should discover that no derivation exists.

In Chapter 18 we demonstrate the feasibility of algorithmic syntax checking. Both top- 
down and bottom-up parsing are introduced via searching a graph of possible derivations. 
The parsers perform an exhaustive search; the top-down parser examines all permissible 
rule applications and the bottom-up parser performs all possible reductions. In either case, 
the algorithms have the potential of examining many extraneous derivations. While these 
algorithms demonstrate the feasibility of algorithmic syntax analysis, their inefficiency 
makes them unacceptable for commercial compilers or interpreters.

In Chapters 19 and 20, we introduce two families of context-free grammars that can be 
parsed efficiently. To ensure the selection of the appropriate action, the parsers “look ahead”



in the string being analyzed. A parser is deterministic if at each step there is at most one rule 
that can successfully extend the current derivation. LL(fc) grammars permit deterministic 
top-down parsing with a k symbol lookahead. LR(fc) parsers use a finite automaton and k 
symbol lookahead to select a reduction or a shift in a bottom-up parse. The syntax of most 
modem programming languages is defined by LL or LR grammars, or variations of these, 
to permit efficient parsing. Throughout the introduction to parsing, we will assume that 
the grammars are unambiguous. This is a reasonable assumption for any grammar used to 
define a programming language.



CHAPTER 1 8

Parsing: An Introduction

In this chapter we introduce two simple parsing algorithms to demonstrate the properties of 
top-down and bottom-up parsing. These algorithms are based on a breadth-first search of 
a graph whose paths represent derivations of the grammar. The input to a parser is a string 
over the alphabet of the grammar and the desired result is a derivation of the input string, 
if the string is in the language of the grammar. If not, the parser should indicate this by 
determining that no derivation is possible.

Top-down parsing begins with the start symbol of the grammar and systematically 

applies rules in an attempt to generate the input string. Bottom-up parsing reverses the 
procedure; it begins with the string itself and applies rules “backwards" in an attempt to 
produce the start symbol. These simple algorithms demonstrate the potential effect of the 
form of the rules on parsing. With an arbitrary grammar, the searches may not terminate. 
However, using a Greibach normal form grammar ensures that the top-down algorithm will 
halt and a noncontracting grammar without chain rules is sufficient to ensure the termination 
of the bottom-up parser.

Grammars that define programming languages require additional conditions on the 
rules to efficiently parse the strings of the language. Grammars specifically designed for 
efficient parsing are presented in Chapters 19 and 20.

18.1 The Graph o f a Grammar

In this intuitive introduction, top-down parsing is described as searching a graph of deriva
tions. Since any derivable terminal string has a leftmost derivation (Theorem 3.5.1), we 
will limit the search to leftmost derivations. If the grammar is unambiguous, the derivations

555
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form a tree whose root is the start symbol of the grammar. It is important to note that for 
any interesting grammar, there are infinitely many derivations and the graph has infinitely 

many nodes.

Definition 18.1.1

Let G =  (V, E , P, S) be a context-free grammar. The graph of the gram m ar G, denoted 
g(G), is the labeled directed graph where the nodes and arcs are defined by

i) N =  {w e  (V U E)* | S = ► w}

ii) A =  {[i», u ) ', i t ] € N x N x N |u = > M ) b y  application of rule k}.

The nodes of the graph are the left sentential forms of the grammar, the strings derivable 
from the start symbol by a leftmost derivation. A string w is adjacent to v in g(G) if v => tu, 

that is, if w can be obtained from v by one leftmost rule application. The rules o f the grammar 
are assigned numbers, which are used as the labels on the arcs of the graph and in the 
subsequent parsing algorithms. If the application of rule k is used to create an arc from v to 
w, the arc is labeled by k. A path from 5 to uj  in g(G )  represents a leftmost derivation of 
w from S.

The graph of a grammar is defined for an arbitrary context-free grammar. If  the grammar 
is unambiguous, the resulting graph is a tree with the start symbol as the root. Since 
grammars used for deterministic parsing are unambiguous, we will feel free to use the 
terminology of trees and tree searching when describing the parsing strategies. In particular, 
we will call g(G) the tree of derivations of the grammar G.

With the representation of derivations as paths in g( G), the problem of deciding whether 
a string w is in the language of G is reduced to that of finding a path from S  to w in g(G). 
The representation of derivations as paths in a graph is illustrated in Figure 18.1 using the 
grammar AE (additive expressions):

1. S ->  A

2 . A ^ T \ A  + T

3. A —> A  -f- T

4. r - »

5. T  -> (A).

The start symbol of AE is 5 and the language consists of arithmetic expressions constructed 
from the operator + , the single operand b, and parentheses. Strings generated by AE include 
b, ((b)), (b +  b), and (b) +  b. The grammar AE will be used throughout this chapter to 
demonstrate the properties of the parsing algorithms.

The number of rules that can be applied to the leftmost variable of a sentential form 
determines the number of children of the node. The presence of either direct or indirect 
recursion produces infinitely many nodes in the tree. Repeated applications of the directly 
recursive A rule and the indirectly recursive T  rules generate arbitrarily long paths in the 
tree in Figure 18.1.
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Level 0

(A)

A+T - T+T

A+T+T-

(T)

(A+T)

b+T

(A)+T

T+T+T

■(b)

■ ((A))

■ (T+T)

■ (A+T+T)

■ b+b

■ b+(A)

(T)+T  

' (A+T)+T 

■ b+T+T 

' (A)+T+T 

■ T+T+T+T 

'A+T+T+T+T

FIGURE 18.1 Tree of derivations o f AE.

Standard tree searching techniques are used to examine the derivations in the tree of 
derivations. In tree searching terminology, the tree of derivations is called an implicit tree 
since its nodes have not been constructed prior to the invocation of the search algorithm. 
The search consists of building the tree as the paths are examined. An important feature of 
the algorithm is to explicitly construct as little of the implicit tree as possible.

18.2 A Top-Down Parser

Paths in the tree of derivations of a grammar represent leftmost derivations of the grammar. 
Our top-down parsing algorithm employs a breadth-first strategy to search the implicit tree 
for derivations of an input string. The algorithm accepts the input if a derivation of the string 
is discovered and rejects the input if the parser determines that no derivation is possible.

To limit the amount of searching required, the parser will use prefix matching to identify 
sentential forms that cannot appear in a derivation of the input string. The terminal prefix 
of a string is the substring occurring before the leftmost variable. That is, x  is the terminal 
prefix of x B y  if B is the first variable in the string. When a terminal prefix x  of a string
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x B y  does not match a prefix of the input string, the input string is not derivable from x  By. 
We will call such a string a dead end and omit its descendants from the search.

The parser builds a search tree T with pointers from a child node to its parent (parent 
pointers). The search tree is the portion of the implicit tree that is explicitly examined during 
the parse. The rules of the grammar are numbered and children of a node are added to the 
tree according to the ordering of the rules. The process of generating the successors of a 
node and adding them to the search tree is called expanding the node.

A queue is used to implement the first-in, first-out memory management strategy 
required for a breadth-first tree traversal. The queue Q is maintained by three functions: 
INSERT(x, Q) places the string x  at the rear of the queue, REMOVE(Q) returns the item at 
the front and deletes it from the queue, and EMPTY(Q) is a Boolean function that returns 
true if the queue is empty, false otherwise.

Algorithm 18.2.1 
Breadth-First Top-Down Parser

input: context-free grammar G =  (V, E , P, 5) 
string p e E *  

data structure: queue Q

1. initialize T with root 5 
INSERT(S , Q)

2. repeat
2.1. q :=  REMOVE(Q) (node to be expanded)
2.2. i :=  0 (number of last rule used)
2.3. dont := fa ls e  (Boolean indicator o f expansion completion)
Let q =  uA v  where A  is the leftmost variable in q.

2.4. repeat
2.4.1. if there is no A rule numbered greater than i then done :=  true
2.4.2. if  not done then

Let A -*  w be the first A rule with number greater than i and 
let j  be the number of this rule.
2.4.2.1. if  uw v  £  E* and the terminal prefix of u w v  matches 

a prefix of p  then
2.4.2.1.1. INSERT(uwv, Q)
2.4.2.1.2. Add node uw v  to T. Set a pointer from 

uw v  to q.
end if

end if
2.4.3. i :=  j

until done or p  =  uw v  
until EMPTY (Q) or p  =  uwv

3. if p  =  uw v  then accept else reject
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The search tree is initialized with root 5 since a top-down algorithm attempts to find 
a derivation of an input string p  from 5. The algorithm consists of two nested repeat-until 
loops. The outer loop selects the first node q in the queue for expansion. The inner loop, 
step 2.4, generates the successors of q in the order specified by the numbering of the rules. 
There are three possibilities for each string uw v  generated in the expansion of a string uAv: 
it may be a terminal string, it may be a dead end, or it may be a sentential form that requires 
further expansion.

If uw v is a terminal string, it represents the completion of a derivation and is not added 
to either the tree or the queue. The until statements check if it is the input string p. If so, 
the computatioa halts and accepts the string. Otherwise, the expansion of u A w  continues 
with the generation of the next child.

The condition in step 2.4.2.1 checks for a prefix match. If the string is a dead end, it 
is not added to the queue or the tree. Strings that satisfy the prefix match are added to the 
queue and the tree in steps 2.4.2.1.1 and 2.4.2.1.1. In either of these two cases, the expansion 
continues with the generation of the next child of uAv.

The cycle of node selection and expansion is repeated until the input string is generated 
or the queue is emptied. The latter occurs only when all possible derivations have been 
examined and have failed. The first-in, first-out ordering maintained by the queue produces 
a breadth-first construction of the search tree.

The first five levels of the tree of derivations of the grammar AE are shown in Fig
ure 18.1. The parser evaluates the nodes of this tree in a level-by-level manner. The search 
tree constructed by the parse of (b + b) is given in Figure 18.2. Sentential forms that are 
generated but not added to the search tree are indicated by dotted lines.

The comparison in step 2.4.2.1 checks whether the terminal prefix of the sentential 
form generated by the parser matches the input string. To obtain the information required 
for the match, the parser “reads” the input string as it builds derivations. The parser scans 
the input string in a left-to-right manner up to the leftmost variable in the derived sentential 
form. The growth of the terminal prefix causes the parser to read the entire input string. The 
derivation of (b + b) exhibits the correspondence between the initial segment of the string 
scanned by the parser and the terminal prefix of the derived string:

Derivation Input Read by Parser

S => A A.
=> T A

=*(A) (
=> (A + T) (
=> (7- +  T) (
=*(b + T) (b +
=> (b + b) (b + b)
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A + T

(b + T )--- (b + b)

m  + T)

(T+ T+T)
(A + T+ T+ T )

T+T

A + T+T

b + T 

<A) + T
.__(b) + T

(T)+T --- ((A))+ r

■T + T + T

(A + T) + T 

b + T+T  

(A) + T+T

A + T+ T+ T T+T+T+T"

A + T+ T+ T+ T

(T+ T) + T 
(A + T+T) + T

(T) +T+T 
(A + T) + T+T

b+T + T + T  

(A) + T + T + T

T + T + T + T + T
A + T + T + T + T + T

FIGURE 18.2 A top-down parse of (b + b).

A parser must not only be able to generate derivations for strings in the language, it 
must also determine when strings are not in the language. The bottom branch of the search 
tree in Figure 18.2 can potentially grow forever. The direct recursion of the rule A  -»■ A +  T  
builds strings with any number of +  T ’s as a suffix. In the search for a derivation of a string 
not in the language, the directly recursive A rule will never generate a prefix capable of 
terminating the search.

It may be argued that the string A + T  + T  cannot lead to a derivation of (b + b) 
and should be declared a dead end. It is true that the presence of two + ’s guarantees that 
no sequence of rule applications can transform A + T + T  to (b + b). However, such a 
determination requires a knowledge of the input string beyond the initial segment that has 
been scanned by the parser. The parsers in Chapter 19 will “look ahead” in the string, 
scanning beyond the terminal prefix generated by the parse, to aid in the selection of the 
subsequent action to be taken by the parser.

The possibility of entering an unending computation is caused by the presence of rules 
whose application does not increase the length of the terminal prefix. One approach to 
“fixing” Algorithm 18.2.1 is to use only grammars that do not allow this to happen. In 
Chapter 4 we showed that any context-free language is generated by a grammar in Greibach 
normal form. Every rule application in a Greibach normal form grammar either adds a 
terminal to the prefix of the derived string or completes a derivation. This is sufficient to
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ensure that Algorithm 18.2.1 will halt for all input strings, since the explicit search tree will 
have a depth that is limited by the length of the input string.

Although the breadth-first algorithm succeeds in constructing a derivation for any 
string in the language, the practical application of this approach has several shortcomings. 
Lengthy derivations and grammars with a large number of rules cause the size of the 
search tree to increase rapidly. The exponential growth of the search tree is not limited 
to parsing algorithms but is a general property of breadth-first tree searches. If  the grammar 
can be designed to utilize the prefix matching condition quickly or if other conditions 
can be developed to find dead ends in the search, the combinatorial problems associated 
with growth of the search tree may be delayed but not avoided. Better strategies are 
required.

18.3 Reductions and Bottom-Up Parsing

In top-down parsing, the search for a derivation examines paths in the tree of derivations of a 
grammar beginning with the start symbol. The search systematically constructs derivations 
until the input string is found or until it is determined that no derivation is capable of 
producing the input. The strategy is to perform an exhaustive search. With the exception of 
the pruning that results from the identification of dead ends, the same tree is generated for 
every input string. Searching in this manner examines many derivations that cannot possibly 
generate the input string. For example, the entire subtree with root A +  T  in Figure 18.2 
consists of derivations that cannot produce (b + b).

Bottom-up parsing constructs a search tree whose root is the input string p  and applies 
rules “backwards.” By beginning the search with the input string, the only derivations that 
are examined are those that can generate p. This serves to focus the search and reduce the 
size of the search tree. To limit the size of the implicit graph, the top-down parser generated 
only leftmost derivations. Since the bottom-up parser constructs derivations backwards, it 
will examine only rightmost derivations. Bottom-up parsing may be considered to be a 
search of an implicit graph consisting of all strings that derive p  by rightmost derivations.

The operation used to build a derivation in reverse is called a reduction. As may be 
expected, rule applications and reductions have an inverse relationship:

Rule Application Reduction

string uAv uwv

rule A -> w A -» w

result uwv uAv

A reduction replaces the right-hand side of a rule with the single variable on the left-hand 
side. As implied in its name, a reduction is intended to reduce the length of a string as 
illustrated by the following examples.
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string abb aA bAbbab  B A A

rule A —* a b  A —» bAb A —*■ AA

reduction Ab a A A b a b  BA

Whenever the length of the right-hand side of the rule is greater than one, a reduction 
produces a string of shorter length.

The grammar AE is used to illustrate the condition that is required to ensure that the 
search examines only rightmost derivations. Consider the two reductions of the string b + b 
using the rule T  —►  b:

This tree represents the derivations T  +  b => b + b and b + T  =$■ b + b. Building another 
level by adding all reductions of b + T  and T + b produces

Notice that the string T + T  occurs twice, once in the derivation T + T  => T  +  b => 
b + b and once in T + T  => b + T  => b + b. The latter derivation is not rightmost and 
the corresponding reduction should not be considered in the search.

A reduction to uwv by a rule A -*■ w produces a rightmost derivation only if the string 
v has no variables. If there is a variable in v, the corresponding derivation u A v  => uw v  is 
not rightmost since the variable in v occurs to the right of A. This condition is incorporated 
into the bottom-up parser to ensure the generation of rightmost derivations. Example 18.3.1 
illustrates the process of obtaining a rightmost derivation from a sequence o f  reductions.

Example 18.3.1

A reduction of the string (b ) + b to the start symbol S is given using the rules o f the grammar 
AE.
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Reduction Rule

(b) + b

{T) + b T —>■ b

(A) +  b A - *  T

T + b T -* (A)

A + b A - *  T

A + T T b

A A -*■ A + T

S S -* A

Reductions with the rules T  —*■ (A) and A —* A + T  reduce the length of the string and 
T  -> b transforms an occurrence of the terminal b into the variable T . Reversing the order 
of the sentential forms in the reduction of w to S produces the rightmost derivation

S=* A 

=>A + T  

=> A + b 

= *T +  b 

= X A ) + b  

= *(T) + b 

=> (b) +  b.

Because the construction of a derivation terminates with the start symbol, bottom-up parsers 
are often said to construct rightmost derivations in reverse. □

18.4 A Bottom-Up Parser

The implicit graph searched by a bottom-up parser is determined by both the grammar 
G =  (V, £ ,  P, S) and the input string p. The nodes of the graph are strings that can derive 
p  using rightmost rule applications. A node w is adjacent to a node v if w can be obtained 
from v by one rightmost rule application.

A breadth-first bottom-up parser builds a search tree with root p  in a level-by-level 
manner. As with the top-down parser, the search tree T is constructed using the queue 
operations INSERT, REMOVE, and EMPTY.
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Algorithm 18.4.1 
Breadth-First Bottom-Up Parser

input: context-free grammar G =  (V, E , P, S) 
string p  e  E* 

data structure: queue Q

1. initialize T with root p  
INSERT (p, Q)

2. repeat
q :=  REMOVE(Q)
2.1. for each rule A -*• w in P  do

2.1.1. for each decomposition uw v  of q with i; e  E* do
2.1.1.1. !NSERT(uAv, Q)
2.1.1.2. Add node uA v  to T. Set a pointer from u A v  to q. 

end for
end for 

until q =  S  or EMPTY (Q)
3. if q = S  then accept else reject

The search tree is initialized with root p. The remainder of the algorithm consists of 
selecting a node q for expansion, generating the reductions of q, and updating the queue 
and tree. Step 2.1.1 checks that no variable occurs to the right of the string w being reduced 
to ensure that only rightmost derivations are inserted into the queue and added to the search 
tree.

Figure 18.3 shows the search tree built when the string (b +  b) is analyzed by the 

bottom-up parser. Following the path from S  to (b + b) yields the rightmost derivation

S => A 

=> T  

=>(A)

=> (A +  T)

^  (A + b)

=>(T + b)

=» (b + b).

Compare the search tree produced by the bottom-up parse of (b +  b) in Figure 18.3 with 
that produced by the top-down parse in Figure 18.2. Restricting the search to derivations 
that can produce (b +  b) significantly decreased the number of nodes generated.

The dramatic difference in the size of the search trees generated by the top-down and 
bottom-up parsers is shown for strings not in the language. Figure 18.4 shows the trees
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(b + b) <

(5 + *)----- (5 + D ------ (S + A ) ------(5 + 5)

^  (5)
(A + b) £— (A + T) (A) T ----- A -------5

(T + b )<  ( A + A ) ---- (A + S)

( T + T ) ---- (T + A ) ------(7 + 5 )

(b + T ) ---- (b + A )----- (b + S)

FIGURE 18.3 Bottom-up parse of (b +  b).

Top down
/b y '  (T)

-  (A) ------  (A+T)

y  b+T

A + T ------ T+T '-----  (A)+T • • •

^ ^ A + r + r ------T+T+T

A+T+T+T 

Bottom up

(b+)------- (T+)-------- (A+)-------- (5+)

FIGURE 18.4 Top-down and bottom-up parse of (b +).

produced by the analysis of the string (b + ). Due to the left recursion in AE, the top-down 
parse will never terminate. The bottom-up parse halts after examining four nodes.

One important step has been omitted in the preceding presentation— finding the reduc
tions of a string q. We will now rectify that omission. A string q has a reduction if

i) q can be written u w v , and

ii) there is a rule A -* w in the grammar.

Determining the reductions of a string q requires matching the right-hand sides of the rules 
with substrings of the q.

A shift-and-compare strategy can be used to generate all reductions of a string q. The 
string q is divided into two substrings, q — xy .  The initial division sets x  to the null string 
and y to q. The right-hand side of each rule is compared with the suffixes of x. A  match
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occurs when x  can be written uw  and A  —* w is a rule of the grammar. This combination 
produces the reduction of q to uAy.

When all the rules have been compared with the suffixes of x  for a given pair xy ,  q is 
divided into a new pair of substrings x 'y '  and the process is repeated. The new decomposition 
is obtained by setting x '  to x  concatenated with the first element of y\ y ' is y  with its first 
element removed. The process of updating the division is known as a shift. The shift and 
compare operations are used to generate all possible reductions of the string (A +  T)  in the 

grammar AE.

X y Suffixes Rule Reduction

X (A +  T) X

Shift ( A +  T) ( ,x

Shift (A +  T) (A, A, X 5 -» A (S +  T)

Shift (A + T) (A + ,  A + ,  + ,  X

Shift (A +  T ) (A +  T , A  +  T, +  T , T , X A - *  A +  T (A)

A —f T (A +  A)

Shift (A +  T) X (A +  T), A +  T),  +  T ) ,T ) , ) ,  X

In generating the reductions of the string, the right-hand side of the rule must match a suffix 
of x. All other reductions in which the right-hand side of a rule occurs in x  would have been 
discovered prior to the most recent shift.

As seen in the preceding table, a X-rule will match a suffix in every decomposition 
xy  and produce n +  1 reductions for any string of length n. Consequently, this bottom- 
up parsing algorithm should not be used for grammars with X-rules. However, X-rules will 
cause no problems for the bottom-up parsers considered in Chapter 20.

Does the breadth-first bottom-up parser halt for every possible input string, or is it 
possible for the algorithm to continue indefinitely in the repeat-until loop? If the string p  
is in the language of the grammar, a rightmost derivation will be found. If the length of the 
right-hand side of each rule is greater than 1, the reduction of a sentential form creates a 
new string of strictly smaller length. For grammars satisfying this condition, the depth of the 
search tree cannot exceed the length of the input string, assuring the termination of a parse 
with either a derivation or a failure. This condition, however, is not satisfied by grammars 
with rules of the form A —►  B, A -> a, and A -*■ X. In Exercise 11 you are asked to give a 
grammar and string for which Algorithm 18.4.1 will not terminate. Termination is assured 
for grammars without X-rules and chain rules.

The efficiency of the bottom-up parser in Algorithm 18.4.1 is adversely affected by 
possible discovery multiple actions for a sentential form. For example, the string A +  T  has 
two reductions and b + b + b has three reductions using the rules of AE. The exhaustive 
search strategy will preform each reduction, add the resulting sentential forms to the search
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tree, and generate their descendants. The ability to select a single action at each step is 
needed to produce a more efficient parse. Grammars that allow deterministic bottom-up 

parsing are introduced in Chapter 20.

18.5 Parsing and Compiling

Parsing is the process of verifying that the source code of a program satisfies the syntactic 
specification of the programming language. The entire process of transforming source 
code written in a high-level programming language into executable machine or assembly 
language code is compiling the program. Compiling a program consists of lexical analysis, 
parsing, and code generation. In addition to the analysis of syntax, the first two steps of the 
compilation process include semantic analysis and error identification and recovery. We will 
briefly discuss the additions beyond simple syntax analysis included in the lexical analysis 
and parsing of a program.

Lexical analysis scans the source code and creates a string of tokens of the programming 
language. The tokens of a programming language are the identifiers, reserved words, literals, 
and special symbols used in the language. The generation of a token string removes white 
space, comments, carriage return characters, linefeed characters, and other symbols in the 
source code that are not components of the language. The lexical analyzer also detects 
errors when a sequence of characters do not form syntactically correct identifiers, constants, 
or special symbols. The Java definition of. an identifier requires the first symbol to be a 
letter, an underscore, or a dollar sign. When the lexical analyzer encounters a string of 
symbols that does not satisfy this requirement, or match any other Java reserved word or 
symbol, it generates an error message. Since the tokens of a programming language form 
a regular language, the lexical analysis is often performed with the aid o f a finite-state 
machine.

The parser checks if the string of tokens produced by the lexical analyzer defines a 
syntactically correct program. This is accomplished by constructing a derivation, either in 
a top-down or bottom-up manner, of the string using the rules of the grammar that defines 
the programming language. A successful parse yields a derivation or parse tree (see Section 
3.1) of the program.

The result of the parsers presented in the preceding two sections was simply an in
dication of the correctness of the input string— accept or reject. The parsing phase of a 
compiler must identify syntactic errors, generate informative error messages for the pro
grammer, and recover from errors to continue the parse. Statement terminators, separators, 
and special symbols are invaluable for error recovery. If an error is discovered while parsing 
a sequence of statements, an error message is generated and the parser continues to read the 
token string until it encounters a symbol such as a semicolon or a bracket that designates the 
end of statement. At this point the parser will attempt to continue the parse o f the remainder 
of the token string based on the token being read.
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Semantic analysis uses information obtained during the parse to check for the semantic 
correctness of the statements generated by the parser. Semantic errors that may be identified 
in this phase of compilation include the declaration of a reserved word as an identifier, 
referencing a variable that has not been declared, multiple declarations of an identifier, and 
type incompatibility in assignments or operations.

After successful syntactic and semantic analysis, the parse tree is frequently used 
to create a representation of the program in an intermediate language. The intermediate 
representation is designed to facilitate the final step in the compilation: the translation into 
and optimization of the machine or assembly language code.

Exercises

1. Build the subgraph of the graph of the grammar of G consisting of the left sentential 
forms that are generated by derivations of length 3 or less.

G: 5  -> aS  | A B  | B 

A —> abA  | ab 

B -* B B  \ ba

2. Build the subgraph of the graph of the grammar of G consisting of the left sentential 
forms that are generated by derivations of length 4 or less.

G : S —* a SA  | aB  

A -> bA  | k  

B cB  \c

Is G ambiguous?

In Exercises 3 through 7, trace the actions of the algorithm as it parses the input string using 
the grammar AE. If the input string is in the language, give the derivation constructed by 
the parser.

3. Algorithm 18.2.1 with input (b) +  b.

4. Algorithm 18.2.1 with input b + (b).

5. Algorithm 18.2.1 with input ((b)).

6. Algorithm 18.4.1 with input (b) +  b.

7. Algorithm 18.4.1 with input (b)).

8. Give the first five levels o f the search tree generated by Algorithms 18.2.1 and 18.4.1 
when parsing the string b) + b.
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9. Let G be the grammar

1. S aS

2. S  —►  AB

3. A - ► bAa

4. A - ► a

5. B —► bB

6. B —+■ b.

a) Give a set-theoretic definition for L(G).

b) Give the tree built by the top-down parse of baab.

c) Give the tree built by the bottom-up parse of baab.

10. Let G be the grammar

1. S ->  A 

2 . S ^ - A B

3. A —*■ abA

4. A —*■ b

5. B -»  baB

6. B —►  a.

a) Give a regular expression for L(G).

b) Give the tree built by the top-down parse of abbbaa.

c) Give the tree built by the bottom-up parse of abbbaa.

11. Construct a grammar G without k -rules and a string p  e  E* such that Algorithm 18.4.1 
loops indefinitely in attempting to parse p.

12. Assume that the start symbol S  of the grammar is nonrecursive. Modify Algorithm
18.4.1 to not continue the search whenever a string contains S. Trace the parse of your 
modified algorithm with grammar AE and input (b +  b). Compare your tree with the 
search tree in Figure 18.3.

Bibliographic Notes

The parsers presented in this chapter are graph searching algorithms modified for this 
particular application. A thorough exposition of graph and tree traversals is given in Knuth 
[1968] and in most texts on data structures. A comprehensive introduction to syntax analysis 
and compiling can be found in Aho, Sethi, and Ullman [1986]. Grammars amenable to 
deterministic parsing techniques are presented in Chapters 19 and 20. For references to 
parsing, see the bibliographic notes following those chapters.



CHAPTER 1 9

LL( k )  Grammars

The fundamental cause of the inefficiency of the algorithms presented in Chapter 18 is the 
possibility of having several options when expanding a node in the search tree. The top-down 
parser extends the derivation by applying every A rule, where A is the leftmost variable in 
the sentential form. The bottom-up parser may have several reductions for a given string. In 
either case, the parsers perform all the possible actions, add the resulting sentential forms 
to the search tree, and generate their descendants.

A parsing algorithm is deterministic if, at each step, there is sufficient information to 
select a single action to be performed. For a top-down parser, this means being able to 
determine which of the possible rules to apply. The LL(jt) grammars constitute the largest 
subclass o f context-free grammars that permits deterministic top-down parsing using a k- 
symbol lookahead. The notation LL describes the parsing strategy for which these grammars 
are designed; the input string is scanned in a left-to-right manner and the parser generates 
a leftmost derivation. The lookahead, reading beyond the portion of input string generated 
by the parser, provides the additional information needed to select the appropriate action.

Throughout this chapter, all derivations and rule applications are leftmost. We also 
assume that the grammars are unambiguous and do not contain useless symbols. Techniques 
for detecting and removing useless symbols were presented in Section 4.4.

19.1 Lookahead in Context-Free Grammars

A top-down parser attempts to construct a leftmost derivation of an input string p. The 
parser extends derivations of the form S => uAv, where u is a prefix of p, by applying an

571
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A rule. “Looking ahead” in the input string can reduce the number of A rules that must 
be examined. If p  = uaw,  the terminal a is obtained by looking one symbol beyond the 
prefix of the input string that has been generated by the parser. Using the lookahead symbol 
permits an A rule whose right-hand side begins with a terminal other than a to be eliminated 
from consideration. The application of any such rule generates a terminal string that is not 

a prefix of p.
Consider a derivation of the string acbb  in the regular grammar 

G: S —> a S \ c A  

A -*■ bA \ cB  | k 

B ^ c B \ a \ k .

The derivation begins with the start symbol S and lookahead symbol a. The grammar 
contains two S  rules, S -*■ aS  and S  —►  cA. Clearly, applying S -*■ cA  cannot lead to a 
derivation of acbb  since c does not match the lookahead symbol. It follows that a derivation 
of acbb must begin with an application of the rule 5 -*■ aS.

After the application of the S  rule, the lookahead symbol is advanced to c. Again, there 
is only one S rule that generates c. Comparing the lookahead symbol with the terminal in 
each of the appropriate rules permits the deterministic construction of derivations in G.

Prefix
Generated

Lookahead
Symbol Rule Derivation

k a S -* aS S => aS

a c S -*■ cA => acA

ac b A -*  b A => acb A
acb b A -* bA => acbbA

acbb k A -> k ^  acbb

Looking ahead one symbol is sufficient to construct derivations deterministically in the 
grammar G. A more general approach allows the lookahead to consist of the portion of the 
input string that has not been generated. An intermediate step in a derivation of a terminal 
string p  has the form S uA v,  where p  =  ux.  The string x  is called a lookahead string for 
the variable A. The lookahead set of A consists o f all lookahead strings for that variable.

Definition 19.1.1

LetG  =  (V, E , P, S) be a context-free grammar and A  €  V.

i) The lookahead set of the variable A, LA(A), is defined by

LA(A) =  {jc | 5 ^  u A v  ux €  E*}.

ii) For each rule A —►  w in P, the lookahead set of the rule A —*■ w is defined by

LA(A -*■ w) =  {x | wv x  where x  e  E* and 5 ^  uAv}.
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LA(A) consists of all terminal strings derivable from strings Av,  where uA v  is a 
left sentential form of the grammar. LA(A —> w) is the subset of LA(A) in which the 

subderivations A v  => x  are initiated with the rule A -* w.
Let A —►  u)], . . . , A  —> w„ be the A rules of a grammar G. The lookahead string can 

be used to select the appropriate A rule whenever the sets LA(A —> uj,) partition LA(A), 
that is, when the sets LA(A —► uj,) satisfy

i) LA(A) =  (J  LA(A -»• uj,), and
i=i

ii) LA(A -»■ Wj) fi LA(A —> Wj) =  0 for all 1 <  i < j  < n.

The first condition is satisfied for every context-free grammar; it follows directly from 

the definition of the lookahead sets. If the lookahead sets satisfy (ii) and 5 => uA v  is 
a partial derivation of a string p  = ux  e  L(G), then x  is an element of exactly one set 
LA(A —>• wk). Consequently, A —►  wk is the only A rule whose application can lead to a 
successful completion of the derivation.

Example 19.1.1

The lookahead sets are constructed for the variables and the rules of the grammar

Gj: 5 -*■ Aabd \ cAbcd  

A —»• a | ft | A.

LA(S) consists of all terminal strings derivable from S. Every terminal string derivable from 
the rule 5 —>■ Aabd  begins with a or b. On the other hand, derivations initiated by the rule 
S  —> cAbcd  generate strings beginning with c.

LA(S) =  [aabd, babd , abd, cabcd, ebbed , ebed)

LA(5 -> Aabd)  =  {aabd, babd, abd)

LA(5 -*■ cAbcd) =  {cabcd, ebbed, ebed)

Knowledge of the first symbol of the lookahead string is sufficient to select the appropriate 
S  rule.

To construct the lookahead set for the variable A we must consider derivations from 
all the left sentential forms of G] that contain A. There are only two such sentential forms, 
Aabd  and cAbcd.  The lookahead sets consist of terminal strings derivable from Aabd  and 
Abed. ■‘j zoc

LA(A ->■ a) =  {aabd!abkd)

LA(A -*■ b) =  [babd, bbed)

LA(A -*■ A) =  {abd, bed)

The substring ab  can be obtained by applying A -*■ a to Abed  and by applying A -*■ 
A to Aabd. Thus a two-symbol lookahead is not sufficient for selecting the correct A
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rule. Looking ahead three symbols in the input string provides sufficient information to 
discriminate between these rules. A top-down parser with a three-symbol lookahead can 
deterministically construct derivations in the grammar G]. □

A lookahead string of the variable A is the concatenation of the results of two deriva
tions, one from the variable A and one from the portion of the sentential form following A. 
Example 19.1.2 emphasizes the dependence of the lookahead set on the sentential form.

Example 19.1.2

A lookahead string of G2 receives at most one terminal from each of the variables A, B, 
and C.

G2: S —*■ AB C abcd  

A - y a  |X 

f l -» i> |X  

C -> c | X

The only left sentential form of G2 that contains A is ABCabcd.  The variable B  appears 
in aBC abcd  and BCabcd, both of which can be obtained by the application of an A rule 
to ABCabcd. In either case, BCabcd  is used to construct the lookahead set. Similarly, the 
lookahead set LA(C) consists of strings derivable from Cabcd.

LA(A -»  a) =  {abcabcd , acabcd, ababcd, aabcd}

LA(A -> X) =  {bcabcd, cabcd, babcd, abed]

LA (B -> b)  =  {bcabcd, babcd]

LA(B -*  k) =  {cabcd, abed]

LA(C - ►  c) =  {cabcd]

LA(C —v X) =  {abed]

One-symbol lookahead is sufficient for selecting the B  and C rules. A string with prefix 
abc can be derived from the sentential form A BC abcd  using the rule A -*  a or A -> X. 
Four-symbol lookahead is required to parse the strings of G2 deterministically. □

The lookahead sets LA(A) and LA(A —>■ w) may contain strings of arbitrary length. 
The selection of rules in the previous examples needed only fixed-length prefixes of strings 
in the lookahead sets. The k -symbol lookahead sets are obtained by truncating the strings of 
the sets LA(A) and LA(A —> w). A  function trunck is introduced to simplify the definition 
of the fixed-length lookahead sets.

Definition 19.1.2

Let G =  (V, E , P, S) be a context-free grammar and let it be a natural number greater 
than zero.



19.1 L o o k a h e a d  in C ontex t-F ree  G r a m m a r s  575

i) trunck is a function from ? (£ * )  to T(E*) defined by

trunck(X ) =  {« | u e  X with length(u) < k or uv  € X with length(u) =  k}

for all X € T(E*).

ii) The length-fc lookahead set o f the variable A  is the set

LA*(A) =  trunck(LA(A)).

iii) The length-fc lookahead set of the rule A - y  w is the set

LA*(A —> w) = trunck(LA(A  -*■ w)).

Example 19.1.3

The length-three lookahead sets for the rules of the grammar Gi from Example 19.1.1 are

LA3(S —*■ Aabd) =  [aab, bab, abd]

LA3(5 -*  cAbcd)  =  {cab, ebb, ebe]

LA3(A —y a) =  {aab, abc}

LA3(A -»• b) =  {bab, bbc}

LA3(A —> k) — {abd, bed).

Since there is no string in common in the length-three lookahead sets of the S  rules or the 
A rules, a three-symbol lookahead is sufficient to determine the appropriate rule of Gj. □

Example 19.1.4

The language {a'abc‘ | i > 0} is generated by each of the grammars G ^ G2, and G3. The 
minimal-length lookahead sets necessary for discriminating between alternative produc
tions are given for these grammars.

Rule Lookahead Set

G,: 5 -* aSc [aaa]
S -y aabc {aab}

G2: S -y a A .
A -y Sc [aa]
A -y abc {ab}

G3: S -y aaAc
A —► aAc la)
A —y b W
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A one-symbol lookahead is insufficient for determining the S  rule in G | since both 
of the alternatives begin with the symbol a. In fact, three-symbol lookahead is required to 
determine the appropriate rule. Grammar G 2  is constructed from Gj by using the S  rule 
to generate the leading a. The variable A is added to generate the remainder of the right- 
hand side of the S  rules of Gj. This technique is known as left factoring since the leading a 
is factored out of the rules S —> a Sc and S —*■ aabc. Left factoring the S  rule reduces the 
length of the lookahead needed to select the rules.

A lookahead of length 1 is sufficient to parse strings with the rules of G3. The recursive 
A rule generates an a while the nonrecursive rule terminates the derivation by generating 
a b. □

19.2 FIRST, FOLLOW, and Lookahead Sets

We have seen that lookahead sets can be used to select the appropriate rule to apply to derive 
a desired string. To incorporate this information into a parser, it is necessary to be able to 
generate the lookahead sets for each variable and rule. In this section we introduce the 
FIRST and FOLLOW sets, which will be used for constructing the lookahead sets directly 
from the rules of the grammar.

The lookahead set LA* (A) contains prefixes of at most length k of strings that can be 
derived from the variable A. If A derives strings of length less than k, the remainder of the 
lookahead comes from derivations that follow A in the sentential forms o f the grammar. 
For each variable A, sets FIRST*(A) and FOLLOW*(A) are introduced to provide the 
information required for constructing the lookahead sets. FIRST*(A) contains prefixes of 
terminal strings derivable from A. FOLLOW*(A) contains prefixes of terminal strings that 
can follow the strings derivable from A. For convenience, a set FIRST* is defined for every 
string in (V U £)*.

Definition 19.2.1

Let G be a context-free grammar. For every string u 6 (V U E)*andfc > 0, the set FIRST* (u) 
is defined by

FIRST*(w) =  trunck((x \ u x ,  x  € £*}).

Example 19.2.1

FIRST sets are constructed for the strings S  and A B C  using the grammar G 2  from Exam
ple 19.1.2.

FIRST,(ABC) =  [a, b, c, X}

FIRST2(ABC) =  {ab, ac, be, a, b, c, X}

FIRST3(S) =  {abc, aca, aba, aab, bca, bab, cab) □
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Recall that the concatenation of two sets X and Y is denoted by juxtaposition, XY = 
{xy | x € X and y  e  Y }. Using this notation, we can establish the following relationships 

for the FIRST* sets.

Lemma 19.2.2

For every k > 0,

1. FIRST*(X) =  {X}

2. FIRST*(a) =  {a}

3. FIRST*(aw) =  [av \ v e  FIRST*_[(k)}

4. FIRST*(«i>) =  /r«nc*(FIRST*(tt)FIRST*(tO)

5. if A —►  w is a rule in G, then FIRST*(u>) c  FIRST*(A).

Definition 19.2.3

Let G be a context-free grammar. For every A € V and k > 0, the set FOLLOW*(A) is 
defined by

FOLLOW*(A) =  {x | S uA v  and x e FIRST*(u)}.

The set FOLLOW*(A) consists of prefixes of terminal strings that can follow the 
variable A in derivations in G. Since the null string follows every derivation from the 
sentential form consisting solely of the start symbol, X e FOLLOW* (5).

Example 19.2.2

The FOLLOW sets of length 1 and 2 are given for the variables of G 2 .

FOLLOW ,(5) =  {X} FOLLOW2(S) =  {X}

FOLLOW,(A) =  {a, b, c) FOLLOW2(A) =  {ab , be, ba, ea]

FOLLOWj(B) =  la, c} FOLLOW2(fi) =  {ca, ab)

FOLLOW ,(C) =  {a} FOLLOW2(C) =  [ab] □

The FOLLOW sets of a variable B are obtained from the rules in which B  occurs on the 
right-hand side. Consider the relationships generated by a rule of the form A -*■ uBv.  The 
strings that follow B include those generated by v concatenated with all terminal strings 
that follow A. If the grammar contains a rule A -»• uB, any string that follows A can also 
follow B. The preceding discussion is summarized in Lemma 19.2.4.

Lemma 19.2.4

For every k > 0,

1. FOLLOW* (5) contains X, where S  is the start symbol of G

2. if A —►  uB  is a rule of G, then FOLLOW*(A) C FOLLOW*(S)

3. if A - ►  u B v  is a rule of G, then rrunc*(FIRST*(u)FOLLOW*(A)) C FOLLOW*(5).
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The FIRST* and FOLLOW* sets are used to construct the lookahead sets for the rules 
of a grammar. Theorem 19.2.5 follows immediately from the definitions of the length-fc 

lookahead sets and the function fr«nc*.

Theorem 19.2.5

Let G =  (V, E , P, S) be a context-free grammar. For every k >  0, A €  V, and rule 

A —►  w =  M] « 2  • • ■ H/i in P,

i) LA*(A) =  /r«Mc*(FIRST*(A)FOLLOW*(A))

ii) LA*(A -*• w) =  jrnnc*(FIRST*(u;)FOLLOW*(A))
=  / t w ic * (FIRST*(w j ) . . .  FIRST*(k„)FOLLOW*(A)).

Example 19.2.3

The FIRST3  and FOLLOW3 sets for the symbols in the grammar

Gp S -*■ Aabd \ cAbcd  

A  —►  a | b | X

from Example 19.1.1 are

FIRST3 (S) =  {aab, bab, abd, cab, ebb, ebe)

FIRST3 (A) = {a,b ,  X}

FIRST3 (a) =  [a]

FIRST3 (fc) =  [b]

FIRST3 (c) =  {c}

FIRST3 (d) =  {d)

FOLLOW3 (S) =  {X}

FOLLOW3 (A) =  {abd, bed).

The set LA3(S -*• Aabd)  is explicitly constructed from the sets FIRST3 (A), FIRST3 (a), 
FIRST3 (i>), FIRST3 (rf), and FOLLOW3 (S) using the strategy outlined in Theorem 19.2.5.

LA3(S ->• Aabd) =  frH/ic3 (FIRST3 (A)FIRST3 (a)FIRST3 (fc)FIRST3 (*/)FOLLOW3 (S)) 

=  trunc3({a, b, X}{a}{fe}{d}{X})

=  trunc3({aabd, babd, abd))

=  {aab, bab, abd)

The remainder of the length-three lookahead sets for the rules of Gj can be found in 
Example 19.1.3. □
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19.3 Strong LL(k) Grammars

We have seen that the lookahead sets can be used to select the A rule in a top-down parse 
when LA(A) is partitioned by the sets LA(A -*• to,). This section introduces a subclass of 
context-free grammars known as the strong LL(fc) grammars. The strong LL(fc) condition 
guarantees that the lookahead sets LA*(A) are partitioned by the sets LA*(A —►  to,).

When employing a it-symbol lookahead, it is often helpful if there are k symbols to 
be examined. An endmarker #* is concatenated to the end of each string in the language to 
guarantee that every lookahead string contains exactly k symbols. If the start symbol S  of 
the grammar is nonrecursive, the endmarker can be concatenated to the right-hand side of 
each 5 rule. Otherwise, the grammar can be augmented with a new start symbol S' and rule 
S' -*• S#*.

Definition 19.3.1

Let G =  (V, E , P, 5) be a context-free grammar with endmarker #*. G is strong LL(fc) 
if whenever there are two leftmost derivations

5 => u tA v t = ► mi-ri>| u^zW]

S  => u2A v2 => u2yv2 => u2zw 2,

where u(, wh z g  E* and length(z) =  k, then x  =  y.

We now establish several properties of strong LL(ifc) grammars. First, we show that 
the length-A: lookahead sets can be used to parse strings deterministically in a strong LL(fc) 
grammar.

Theorem 19.3.2

A grammar G is strong LL(fc) if, and only if, the sets LA*(A -> w,) partition LA*(A) for 
each variable A G V.

Proof. Assume that the sets LA*(A —►  u>,) partition LA* (A) for each variable A g  V. Let 
z be a terminal string of length k that can be obtained by the derivations

S u iAv\  => = ► i^zto!

5 u2A v2  => u2y v 2 => u2zw 2.

Then z is in both LA*(A —* x)  and LA*(A —*■ y). Since the sets LA*(A —*• to,) partition 
LA*(A), x  =  y  and G is strong LL(fc).

Conversely, let G be a strong LL(fc) grammar and let z be an element o f LAJk(A). The 
strong LL(fc) condition ensures that there is only one A rule that can be used to derive 
terminal strings of the form uzw  from the sentential forms uA v  of G. Consequently, z is in 
the lookahead set of exactly one A rule. This implies that the sets LA* (A ->• to,) partition 
LA* (A). a
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Theorem 19.3.3

If G is strong LL(ifc) for some k, then G is unambiguous.

Intuitively, a grammar that can be deterministically parsed must be unambiguous; there 
is exactly one rule that can be applied at each step in the derivation of a terminal string. The 
formal proof of this proposition is left as an exercise.

Theorem 19.3.4

If G has a left-recursive variable, then G is not strong LL(fc), for any k > 0.

Proof. Let A be a left-recursive variable. Since G does not contain useless variables, there 
is a derivation of a terminal string containing a left-recursive subderivation o f the variable 
A. The proof is presented in two cases.

Case 1: A  is directly left-recursive. A derivation containing direct left recursion uses A rules 
of the form A -*■ Ay  and A -*■ x ,  where the first symbol of x  is not A.

S => uAv  => uA yv  => u xyv  => uw  e  £*

The prefix of w of length k is in both LA* (A —> Ay)  and LA*(A —►  x). By Theorem 19.3.2, 
G is not strong LL(/t).

Case 2: A is indirectly left-recursive. A derivation with indirect recursion has the form 

S => uA v  => u B tyv  => • • • => uBnvn ^  uAvn+l => uxv„+l uw  €  E*.

Again, G is not strong LL(fc) since the sets LA*(A S ^ J a n d  LA* (A -*• x)  are not disjoint.

19.4 Construction o f FIRST* Sets

We now present algorithms to construct the length-* lookahead sets for a context-free gram
mar with endmarker #*. This is accomplished by generating the FIRST* and FOLLOW* 
sets for the variables of the grammar. The lookahead sets can then be constructed using the 
technique presented in Theorem 19.2.5.

The initial step in the construction of the lookahead sets begins with the generation of 
the FIRST* sets. Consider a rule of the form A -*  u xu2 . ■ ■ u„. The subset o f FIRST*(A) 
generated by this rule can be constructed from the sets F IR S T * ^ ), FIRST*(w2)> • • • ,  
FIRST*(«„), and FOLLOW*(A). The problem of constructing FIRST* sets for a string 
reduces to that of finding the sets for the variables in the string.
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Algorithm 19.4.1 
Construction o f  FIRST* Sets

input: context-free grammar G =  (V, E , P, S)

1. for each a e  £  do F '(a) :=  [a]

„ ,  , . . . .  |  (A.) if A -»  X is a rule in P
2. for each A € V do F(A) :=  { * '

[ 0 otherwise
3. repeat

3.1 for each A e  V do F'(A) := F(A)
3.2 for each rule A -*■ u xu2 ■ ■ ■ un with n > 0 do

F(A) :=  F(A) U frM/ic*(F'(M,)F'(M2) . . .  F'(tt„)) 
until F(A) =  F'(A) for all A € V

4. FIRST*M) =  F(A)

The elements of FIRST*(A) are generated in step 3.2. At the beginning o f each iteration 
of the repeat-until loop, the auxiliary set F'(A) is assigned the current value o f  F(A). Strings 
obtained from the concatenation F ( « 1)F '(« 2 ) . . .  F '(«n), where A —* u\u2 . ■ ■ u„ is a rule 
of G, are then added to F(A). The algorithm halts when an iteration occurs in which none 
of the sets F(A) are altered.

Example 19.4.1

Algorithm 19.4.1 is used to construct the FIRSTj sets for the variables of the grammar

G: S  —►  A##

A —►  a A d  | BC  

B - ►  bBc  | X 

C -*■ acC  | ad.

The sets F '(a) are initialized to {a} for each a e l .  The action of the repeat-until loop 
is prescribed by the right-hand side of the rules of the grammar. Step 3.2 generates the 
assignment statements

F(S) := F(S) U trunc2(F'(A){#}{#})

F(A) :=  F(A) U trunc2({a}F'(A){d}) U /r««c2(F '(B )F '(C ))

F (S ) := F(B)  U trunc2({b}F'(B){c))

F(C) :=  F(C ) U trunc2([a}lc}F'(C)) U trunc2(la}ld})
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from the rules of G. The generation of the FIRST2 sets is traced by giving the status of the sets 
F(5), F(A), F (S ), and F(C) after each iteration of the loop. Recall that the concatenation 

of the empty set with any set yields the empty set.

F(S) * F(A) F(B) F(C)

0 0 0 M 0

1 0 0 {X, be) {ad)

2 0 {ad, be] [X, be, bb) {ad, ac)

3 {ab, be) {ad, be, aa, ab, bb, ac) {A., be, bb) {ad, ac)

4 {ad, be, aa, ab, bb, ac) {ad, be, aa, ab, bb, ac) {A., be, bb) {ad, ac)

5 {ad, be, aa, ab, bb, ac] {ad, be, aa, ab, bb, ac) [X, be, bb) {ad, ac)

Theorem 19.4.2

Let G =  (V, £ ,  P, S) be a context-free grammar. Algorithm 19.4.1 generates the sets 
FIRST* (A), for every variable A e V.

Proof. The proof consists of showing that the repeat-until loop in step 3 terminates and, 
upon termination, F(A) =  FIRST*(A).

i) Algorithm 19.4.1 terminates. The number of iterations of the repeat-until loop is bounded 
since there are only a finite number of lookahead strings of length k  or less.

ii) F(A) =  FIRST*(A). First we prove that F(A) C FIRST*(A) for all variables A e  V. To 
accomplish this we show that F(A) C FIRST*(A) at the beginning of each iteration of the 
repeat-until loop. By inspection, this inclusion holds prior to the first iteration. Assume 
F(A) C FIRST*(A) for all variables A after m iterations of the loop.

During the m +  1st iteration, the only additions to F(A) come from assignment state
ments of the form

F(A) := F(A) U rr«/ic*(F'(Ml)F '(« 2 > • ■ • F '(«n» .

where A ->• u xu2 . ■ ■ u„ is a rule of G. By the inductive hypothesis, each of the sets F'(w,) 
is the subset of FIRST*(h;)- If u is added to F(A) on the iteration then

u € trunck(F7(uJF '(« 2) • ■ • F '(«„)) 

c  rrunc*(FIRST*(u,)FIRST*(u2) . . .  FIRST* (u„))

=  FIRST*(m,m2 . . . u„)

C FIRST*(A)

and u 6 FIRST*(A). The final two steps follow from parts 4  and 5 of Lemma 19.2.2.
We now show that FIRST*(A) c  F(A) upon completion of the loop. Let Fm(A) be the 

value of the set F(A) after m iterations. Assume the repeat-until loop halts after j  iterations. 
We begin with the observation that if a string can be shown to be in Fm (A) for some m > j ,
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then it is in Fj (A ).  This follows since the sets F(A) and F'(A) would be identical for all 
iterations of the loop past iteration j .  We will show that FIRST*(A) C Fj (A ) .

Let x  be a string in FIRST*(A). Then there is a derivation A ^>  w, where w e  ]T* and 
x  is the prefix of w of length k. We show that x  6 Fm(A). The proof is by induction on the 
length of the derivation. The basis consists of terminal strings that can be derived with one 
rule application. If A -> w € P, then x  is added to F^A ).

Assume that trunck({w \ A => w € E*}) C Fm(A) for all variables A  in V. Let x  e  

trunck({w \ A w e  E*}); that is, x  is a prefix of terminal string derivable from A by 
m +  1 rule applications. We will show that x  € Fm+1(A). The derivation of w  can be written

A = ► u tu2 . , . u „ ^  x xx2 . . . x „  = w,

where «, € V U E and «, ^  Xj. Clearly, each subderivation ut =4- jc, has length less than 
m +  1. By the inductive hypothesis, the string obtained by truncating x, at length k is in

On the m +  1st iteration, Fm+1(A) is augmented with the set

t r u n c ^ F '^ iU i)  . . .  F ^+1(wn)) =  trunck(Fm(u { ) . . .  Fm(u„)).

Thus,

{*) =  trunck(x,x2 . . .  x„) C t ru n c ^ F ^ u O  . . .  F„(«„))

and x  is an element o f Fm+i(A). It follows that every string in FIRST*(A) is in Fy(A), as 
desired. ■

19.5 Construction o f FOLLOW* Sets

The inclusions in Lemma 19.2.4 form the basis of an algorithm to generate the FOLLOW* 
sets. FOLLOW* (A) is constructed from the FIRST* sets and the rules in which A occurs 
on the right-hand side. Algorithm 19.5.1 generates FOLLOW*(A) using the auxiliary set 
FL(A). The set FL'(A), which triggers the halting condition, maintains the value assigned 
to FL(A) on the preceding iteration.

Algorithm 19.5.1 

Construction o f  FOLLOW* Sets

input: context-free grammar G =  (V, E , P, S) 
FIRST*(A) for every A e  V

1. FL(S) :=  {A.}
2. for each A e  V -  {5} do FL(A) := 0
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3. repeat
3.1 for each A G V do FL'(A) :=  FL(A)
3.2 for each rule A  -*■ w = u xu2 ■ ■ • u„ with w & E* do

3.2.1. L := FL'(A)
3.2.2. if u„ G V then FL(«„) :=  FL(w„) U L
3.2.3. f o r « :=  n — 1 to  1 do

3.2.3.1. L :=  //wic*(FIRST*(k1+1)L)
3.2.3.2. if Uj G V then FL(u,) :=  FL(n,) U L 

end for
end for

until FL(A) =  FL'(A) for every A e  V
4. FOLLOW*(A) :=FL(A )

The inclusion FL(A) c  FOLLOW*(A) is established by showing that every element 
added to FL(A) in statements 3.2.2 or 3.2.3.2 is in FOLLOW*(A). The opposite inclusion 
is obtained by demonstrating that every element of FOLLOW*(A) is added to FL(A) prior 
to the termination of the repeat-until loop. The details are left as an exercise.

Example 19.5.1

Algorithm 19.5.1 is used to construct the set FOLLOW2 for every variable o f the grammar 
G from Example 19.4.1. The interior of the repeat-until loop processes each rule in a right- 
to-left fashion. The action of the loop is specified by the assignment statements obtained 
from the rules of the grammar.

Rule Assignments

5 -*• A## FL(A) := FL(A) U rrunc2({##}FL'(5))

A -*  a Ad FL(A) := FL(A) U rrunc2({</)FL'(A))

A - +  B C FL(C) := FL(C) U FL'(A)

FL(B) := FL(B) U frunc2(FIRST2(C)FL'(A))

=  FL(fl) U trunc2(.{ad, ac}FL'(A))

B —► bBc FL(B) := FL(B) U /ru/ic2((c)FL'(B))

The rule C -»• acC  has been omitted from the list since the assignment generated by this 
rule is FL(C) :=  FL(C) U FL'(C). Tracing Algorithm 19.5.1 yields

FL(S) FL(A) FL(B) FL(C)

0 {X} 0 0 0
1 {A.} {##} 0  0

2 {A} {##, </#} [ad, ac] (##}

3 {A) {m ,d* ,dd \ {ad ,ac ,ca } {##,</#}
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FL(S) F L(j4 ) F L (B ) F L(C )

4 (A.) (##, d#, dd) {ad, ac, ca, cc) {##, dtt, d d )

5 {A.} {##, dU, dd) {ad, ac, ca, cc] {##, d#, dd)

Example 19.5.2

The length-two lookahead sets for the rules of the grammar G are constructed from the 
FIRST2 and FOLLOW2 sets generated in Examples 19.4.1 and 19.5.1.

LA2(S -*■ A M )  = {ad, be, aa, ab, bb, ac}

LA2(A -*■ aA d)  =  {aa, ab)

LA2(A —*■ B C)  =  {be, bb, ad, ac)

LA2(B  -»  bBc) =  {bb, be)

LA2(B -*■ X) =  {ad, ac, ca, cc]

LA2(C —y acC)  =  {ac}

LA2(C -»  ad) = {ad}

G is strong LL(2) since the lookahead sets are disjoint for each pair of alternative rules. □

The preceding algorithms provide a decision procedure to determine whether a gram
mar is strong LL(fc). The process begins by generating the FIRST*, and FOLLOW* sets 
using Algorithms 19.4.1 and 19.5.1. The techniques presented in Theorem 19.2.5 are then 
used to construct the length-* lookahead sets. By Theorem 19.3.2, the grammar is strong 
LL (i) if, and only if, the sets LA*(A -*• x )  and LA*(A —>■ y) are disjoint for each pair of 
distinct A rules.

19.6 A Strong LL(1) Grammar

The grammar AE was introduced in Section 18.1 to generate infix additive expressions 
containing a single variable b. AE is not strong LL(fc) since it contains a directly left- 
recursive A rule. In this section we modify AE to obtain a strong LL(1) grammar that 
generates the additive expressions. To guarantee that the resulting grammar is strong LL( 1), 
the length-one lookahead sets are constructed for each rule.

The transformation begins by adding the endmarker # to the strings generated by AE. 
This ensures that a lookahead set does not contain the null string. The grammar

AE: S  -> A#

A —>• 7"

A - y  A + T 

T -> b 

T -*■ (A)
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generates the strings in L(AE) concatenated with the endmarker #. The direct left recursion 
can be removed using the techniques presented in Section 4.5. The variable Z is used to 
convert the left recursion to right recursion, yielding the equivalent grammar AEj.

AE,: S  -»  A#

A-*- T  

A —*■ T Z  

Z  -> + T  

Z ->  + T Z  

T -+ b 

T -*■ (A)

AE] still cannot be strong LL( 1) since both A rules have T  as the first symbol occurring 
on the right-hand side. This difficulty is removed by left factoring the A rules using the new 
variable B. Similarly, the right-hand side of the Z rules begin with identical substrings. The 
variable Y is introduced by the factoring of the Z rules. AE2  results from making these 
modifications to AE).

AE2: 5 -*  A#

A - *  T B  

B - + Z  

B - y  X 

Z ->  + T Y

Y Z

y  a

T - > b  

T  —►  (A)

To show that AEj is strong LL(1), the length-one lookahead sets for the variables of the 
grammar must satisfy the partition condition of Theorem 19.3.2. We begin by tracing the 
sequence of sets generated by Algorithm 19.4.1 in the construction o f the FIRSTi sets.

F(S) F(A) F(B) F(Z) F(K) F(7)

0 0 0 M 0 w 0
1 0 0 M {+} w ib, 0
2 0 {*. 0 IX, +) {+} {>.. +} Ib. 0
3 {*. 0 (b. (} {*,+} (+) {*.+} {b, 0
4 [b, (} lb, (} {*.+} {+) {A ..+ } lb, (}
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Similarly, the FOLLOW2 sets are generated using Algorithm 19.5.1.

FL(S) FL(A) FL(B) F UZ) FL(y) FL(D

0 {X} 0 0 0 0 0

1 (M {#.)) 0 0 0 0

2 (M (#.)) (#,)} 0 0 0

3 {X} {#.)) (#,)} {#.)} 0 0

4 W (#.)) {#.)} (#.)) {#,)) 0

5 W {#,)} {#. » {#.)} {#,)} (#.)}
6 {X} {#.)) (#,)} (#.)) {#.)} {#.»

The length-one lookahead sets are obtained from the FIRSTi and FOLLOW, sets.

LA,(S -*• A#) =  {b, (}

LA,(A -> T B )  = {b , (}

LA ,(2? -*• Z) =  {+}

LA,(B - * k )  =  {#,)}

LA ,(Z  —> +  7 T ) =  {+}

L A ,(y  -»  Z) =  {+}

L A ,(y  k) =  {#,)}

LA ,(T  -> b)  =  {b}

LA ,(T  (A)) =  {(}

Since the lookahead sets for alternative rules are disjoint, the grammar AE2 is strong LL( 1).

19.7 A Strong LL(Hr) Parser

Parsing with a strong LL(fc) grammar begins with the construction of the lookahead sets 
for each of the rules of the grammar. Once these sets have been built, they are available 
for the parsing of any number of strings. The strategy for parsing strong LL(ifc) grammars 
presented in Algorithm 19.7.1 consists of a loop that compares the lookahead string with 
the lookahead sets and applies the appropriate rule.

Unlike the examination of multiple rules in the top-down parser given in Algorithm
18.2.1, node expansion using a strong LL(£) grammar is limited to the application of at 
most one rule. The lookahead string and lookahead sets provide sufficient information to 
eliminate other rules from consideration.
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Algorithm 19.7.1
Deterministic Parser for a Strong LL(fc) Grammar

input: strong LL(Jk) grammar G =  (V, E , P, S) 
string p  e  E*
lookahead sets LA* (A —►  to) for each rule in P

1. q :=  S (q is the sentential form to be expanded)

2. repeat
Let q =  u A v  where A is the leftmost variable in q and 
let p  =  uyz  where leng th (y ) =  k.
2.1. if  y  e  LA*(A —►  w) for some A rule then q :=  uw v  

until q =  p  or y  & LA*(A —*■ w ) for all A rules
3. if  q =  p  then accept else reject

The presence of the endmarker in the grammar ensures that the lookahead string y  
contains k  symbols. The input string is rejected whenever the lookahead string is not an 
element of one of the lookahead sets. When the lookahead string is in LA* (A —►  w), a new 
sentential form is constructed by applying A —*■ w to the current string uAv.  The input is 
accepted if this rule application generates the input string. Otherwise, the loop is repeated 
for the sentential form uwv.

Example 19.7.1

Algorithm 19.7.1 and the lookahead sets of the strong LL(1) grammar AE2  from Sec
tion 19.6 are used to parse the string (b +  £>)#. Each row in the table that follows represents 
one iteration of step 2 of Algorithm 19.7.1.

u A V Lookahead Rule Derivation

A. S k ( S - >  A# S=0 A#
k A # ( A-*- T B = * T B *

X T B* ( T  -* (A) => (A)B#

( A )fi# b A - *  T B => ( r f l ) B #

( T B )B # b T -*  b =>(bB)B#

(b B )B # + B -> Z =>(frZ)fl#
(b Z ) B # + Z - *  +  T Y =>(*+  T Y ) B #

0 b + T Y )B # b T  -*■ b =*(b +  b Y )B *

(b + b r ) B # ) Y -* k =>(b +  b)B#

Cb + b) B # # B —* k => (b + />)#
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19.8 LL(Ac) Grammars

The lookahead sets in a strong LL(Ar) grammar provide a global criterion for selecting a 
rule. When A is the leftmost variable in the sentential form being extended by the parser, 
the lookahead string generated by the parser and the lookahead sets provide sufficient 
information to select the appropriate A  rule. This choice does not depend upon the sentential 
form containing A. The LL(fc) grammars provide a local selection criterion; the choice of 
the rule depends upon both the lookahead and the sentential form.

Definition 19.8.1

Let G =  (V, E , P, S) be a context-free grammar with endmarker #*. G is LL(fc) if 
whenever there are two leftmost derivations

S ^  uA v  => u xv  u z w i

S =$■ uA v  =$■ uyv  =*• uzw 2,

where «, u>,, z €  E* and length(z)  =  k, then x  =  y.

Notice the difference between the derivations in Definitions 19.3.1 and 19.8.1. The 
strong LL(/t) condition requires that there be a unique A rule that can derive the lookahead 
string z from any sentential form containing A. An LL(Ar) grammar only requires the rule to 
be unique for a fixed sentential form uAv.  The lookahead sets for an Lh(k)  grammar must 
be defined for each sentential form.

Definition 19.8.2

LetG  =  (V, E , P, S) be a context-free grammar with endmarker#* and u A v  a sentential 
form of G.

i) The lookahead set o f the sentential form u Av  is defined by LA* (m Au) =  FIRST^Au).

ii) The lookahead set for the sentential form uA v  and rule A -> w is defined by 
LAk(uAv, A -»  w) =  FIRST*(u>t;).

A result similar to Theorem 19.3.2 can be established for LL(fc) grammars. The unique 
selection of a rule for the sentential form u A v  requires the set L A k(uAv)  to be partitioned 
by the lookahead sets LA*(«Ai;, A —►  «;,) generated by the A rules. If the grammar is 
strong LL(Ar), then the partition is guaranteed and the grammar is also LL(/t).

Example 19.8.1

An LL(fc) grammar need not be strong LL(fc). Consider the grammar

Gj: S  —►  Aabd  | cAbcd  

A —> a | | X
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whose lookahead sets were given in Example 19.1.1. Gj is strong LL(3) but not strong LL(2) 
since the string ab  is in both LA2(A —► a) and LA2(A -*■ X). The length-two lookahead sets 
for the sentential forms containing the variables S and A  are

LA2(S, 5 —>■ Aabd)  =  {aa, ba, ab)

LA2(S, S —*■ cAbcd)  =  {ca, cb]

L A 2(Aabd, A - *  a) — [aa] LA2(cAbcd, A -> a) =  {ab}

LA2(Aabd, A —>■ b) =  {ba} LA2(cAbcd, A -> b) =  {bb}

LA2(Aabd, A —►  X) =  {ab} LA2(cAbcd, A —►  A.) =  {be}.

Since the alternatives for a given sentential form are disjoint, the grammar is LL(2). □

Example 19.8.2

A three-symbol lookahead is sufficient for a local selection of rules in the grammar

G: S ^ - a B A d  \ b Bb Ad  

A —> a b A | c  

B —*■ ab  | a.

The S and A rules can be selected with a one-symbol lookahead; so we turn our attention 
to selecting the B rule. The lookahead sets for the B rules are

LA3(aBA d, B —> ab) =  {aba, abc)

LA3(aBA d, B -*■ a) = {aab, a cd }

LA3(bBbAd, B->-ab) =  {abb}

LA3(bBbAd, B -> a) =  {aba, abc}.

The length-three lookahead sets for the two sentential forms that contain B are partitioned 
by the B rules. Consequently, G is LL(3). The strong LL(fc) conditions can be checked by 
examining the lookahead sets for the B rules.

LA(B -> ab) =  ab(ab)*cd U abb(ab)*cd 

LA (B  ->• a) =  a(ab)*cd U ab(ab)*cd

For any integer k, there is a string of length greater than k in both L A (5  -v  ab) and 
LA(B —► a). Consequently, G is not strong LL(&) for any k. □

Parsing deterministically with LL(fc) grammars requires the construction of the local 
lookahead sets for the sentential forms generated during the parse. The lookahead set for 
a sentential form can be constructed directly from the FIRST* sets of the variables and
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terminals of the grammar. The lookahead set L A k(uAv, A -> w), where w — w x . . .  wn 

and v =  . . .  vm, is given by

trunck(FIRST*(u;i). . .  F IR S T ^ iu JF IR S T ^ i;,) . . .  F IR ST *(uJ).

A parsing algorithm for LL(fc) grammars can be obtained from Algorithm 19.7.1 by adding 
the construction of the local lookahead sets.

Algorithm 19.8.3
Deterministic Parser for an LL(fc) Grammar

input: LL(fc) grammar G =  (V, £ ,  P, S) 
string p e l *
FIRST* (A) for every A e  V

1. q : = S
2. repeat

Let q =  u Av  where A is the leftmost variable in q and 
let p  =  uyz  where length(y)  =  k.
2.1. for each rule A -> w  construct the set LAk(uAv, A -*■ w)
2.2. if y  6 L A k(uAv, A -> w) for some A rule then q :=  uwv  

until q =  p  or y  & L A k(uAv, A w) for all A rules
3. if q =  p  then accept else reject

The family of strong LL(/:) grammars is a proper subset of the LL(fc). The local 
lookahead sets permit more contextual information to be used in the selection of the 
appropriate rule, In the determination of the rule to apply to a sentential form uAv,  a 
strong LL(&) grammar considers the variable A and the lookahead string. The terminal 
prefix u already generated by the parser may also be used in rule selection in an LL(&) 
grammar. The LL(fc) grammars do not generate every context-free language that can be 
parsed deterministically. Exercise 14 gives an example o f a language that can be parsed by 
a deterministic pushdown automaton, but is not generated by any LL(fc) grammar.

Exercises

1. Let G be a context-free grammar with start symbol S. Prove that LA(S)=L(G).

2. Give the lookahead sets for each variable and rule of the following grammars.

a) S  —* A B a b  \ bAcc  b) 5  —*• a S  \ A
A -*  a \ c A - >  a b \ b

c) S ->  A B  | ab 
A  —►  a A  | A. 
B - ►  bB  |X

d) 5  -*■ a A b B c  
A -*  a A  | cA  | X 
B —►  bB c  | be
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3. Give the FIRST! and FOLLOW! sets for each of the variables of the following gram
mars. Which of these grammars are strong LL(1)?

a) 5  a A B #  b) S  ^  A B #
A  -»■ a | X A - *  a A b  \ B
B - > b  \X B -*  a B c  \ X

c) S  -*  A B C #  d ) S ^ - a A d #
A —* aA  | X A —* B C D
B —►  b B c  | X B -*  b B \ X
C -*■ c A \  d B  | X C - * c C \ X

D -+ bD  | X

4. Give strong-LL(l) grammars that generate each of the following languages.

a) {a'b-'c1 | i > 0, j  > 0}

b) {a 'V c | i >  1, j  > 0}

5. Show that the grammar

S  -> aSa  | bSb \ X

is strong LL(2) but not strong LL(1).

6. Use Algorithms 19.4.1 and 19.5.1 to construct the FIRST2  and FOLLOW2 sets for 
variables of the following grammars. Construct the length-two lookahead sets for the 
rules of the grammars. Are these grammars strong LL(2)?

a) 5  ->■ A B C # #  b) 5  —►  A##
A -*■ a A  | a A -*  b B A  \ B cA a  \ X
B - > b B \ X  B  —►  acB  \ b 
C - + c C \ a \ b \ c

7. Prove parts 3 ,4 , and 5 of Lemma 19.2.2.

*8. Prove Theorem 19.3.3.

9. Show that each of the grammars defined below is not strong LL(fc) for any k. Construct 
a deterministic PDA that accepts the language generated by the grammar.

a) S  -*  aSb  \ A  b) 5  -»• A | B
A -*  a A c  | X A - * a A b \ a b

B -> a B c  j ac

c) S - *  A
A —*■ a A b  | B 
B -* a B \ a

10. Prove that Algorithm 19.5.1 generates the sets FOLLOW*(A).

11. Modify the grammars given below to obtain an equivalent strong LL( 1) grammar. Build 
the lookahead sets to ensure that the modified grammar is strong LL(1).

a) S  -*  A#  b) 5  -> a A#  | a b B #  \ abcC#
A -*  a B  | Ab  | Ac A -*■ a A  | A.
B -> bB c  | A. B - > b B \ X

C - * c C  \X
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12. Parse the following strings with the LL(1) parser and the grammar AEj. Trace the 
actions of the parser using the format of Example 19.7.1. The lookahead sets for AE2  

are given in Section 19.6.

a) b +  00#

b) ((*>))#

c) b + b  + b#

d) b +  +b#

13. Construct the lookahead sets for the rules of the grammar. What is the minimal k such 
that the grammar is strong LL(fc)? Construct the lookahead sets for the combination of 
each sentential form and rule. What is the minimal k such that the grammar is LL(fc)?

a) S -* aAcaa \ bAbcc b) S -*■ aAbc | bABbd
A —* a \ a b \ k  A - ►  a | A.

B -*■ a | b

c) S - * a A b B | b A b A  
A —* a b \ a  
B —*■ a B  | b

* 14. Prove that there is no LL(fc) grammar that generates the language

L =  {«' | i >  0} U {a‘b‘ \ i > 0}.

Design a deterministic pushdown automaton that accepts L.

* 15. Prove that a grammar is strong LL(1) if, and only if, it is LL(1).

16. Prove that a context-free grammar G is LL(Jt) if, and only if, the lookahead set 
L A k(uAv)  is partitioned by the sets L A k(uAv, A —►  w,) for each left sentential form 
uAv.
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CHAPTER 20

LR( k )  Grammars

A bottom-up parser generates a sequence of shifts and reductions to reduce the input string 
to the start symbol of the grammar. A deterministic parser must incorporate additional 
information into the process to select the correct alternative when more than one operation 
is possible. A grammar is LR(fc) if a ^-symbol lookahead provides sufficient information 
to make this selection. LR signifies that these strings are parsed in a left-to-right manner to 
construct a rightmost derivation. The LR(fr) grammars are theoretically significant because 
every context-free language that can be parsed deterministically reading the input string in 
a left-to-right manner is generated by an LR(fc) grammar. The practical significance is that 
the LR approach provides the foundation for bottom-up parser generators, programs used 
to automatically generate a parser directly from the rules of the grammar.

All derivations in this chapter are rightmost. We also assume that grammars have a 
nonrecursive start symbol and that all the symbols in a grammar are useful.

20.1 LR(0) Contexts

A deterministic bottom-up parser attempts to reduce the input string to the start symbol of 
the grammar. Nondeterminism in bottom-up parsing is illustrated by examining reductions 
of the string aabb using the grammar

G: 5 -*■ aA b  \ BaAa  

A -*■ a b \ b  

B —>■ Bb \ b.

595
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The parser scans the prefix aab before finding a reducible substring. The suffixes b and ab  
of aab both constitute the right-hand side of a rule of G. Three reductions o f aabb can be 
obtained by replacing these substrings.

Rule Reduction

A b aaAb 

A -*  ab  aAb 

B -*  b aaBb

The objective of a bottom-up parser is to repeatedly reduce the input string until the 
start symbol is obtained. Can a reduction of aabb  initiated with the rule A  —y b eventually 
produce the start symbol? Equivalently, is aaAb a right sentential form of G? Rightmost 
derivations of the grammar G have the form

S => aAb => aabb 

S  => aAb => abb

S  => BaAa ==> Baaba => Bb'aaba  => bb'aaba i >  0

S  => BaAa => Baba => Bb'aba  => bb'aba i >  0.

Successful reductions of strings in L(G) can be obtained by “reversing the arrows” in 
the preceding derivations. Since the strings aaAb and aaBb do not occur in any of these 
derivations, a reduction of aabb initiated by the rule A  -*■ b or B  -> b cannot produce 5. 
With this additional information, the parser need only reduce aab using the rule A —►  ab.

Successful reductions were obtained by examining rightmost derivations o f G. A parser 
that does not use lookahead must decide whether to perform a reduction with a rule A -> w 
as soon as a string uw  is scanned by the parser. We now introduce the set of LR(0) contexts 
of a rule A - y  w, which defines the contexts in which a reduction should be performed when 
w is read by the scanner.

Definition 20.1.1

Let G =  (V, E , P, S ) be a context-free grammar. The string uw  is an LR(0) context of a 
rule A —y w if there is a derivation

5 => uA v => uwv,
K R

where u e  (V U £)* and v € £*. The set of LR(0) contexts of the rule A —y w is denoted 
LR(0)-CONTEXT(A -> w).

The LR(0) contexts of a rule A -y  w are obtained from the rightmost derivations that 
terminate with the application of the rule. In terms of reductions, uw is an LR(0) context 
of A ►  w if there is a reduction of a string uw v  to S  that begins by replacing w with A. If 
uw & LR(0)-CQNTEXT(A -*■ w) then there is no sequence of reductions beginning with
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A -* w that produces 5 from a string of the form uw v  with v €  2*. The LR(0) contexts, 
if known, can be used to eliminate reductions from consideration by the parser. The parser 
need only reduce a string uw  with the rule A w  when uw  is an LR(0) context of A —»• w.

The LR(0) contexts of the rules of G are constructed from the rightmost derivations of 
G. To determine the LR(0) contexts of S  —>■ aAb, we consider all rightmost derivations that 
contain an application of the rule S -*• aAb.  The only two such derivations are

S => aA b => aabb 

S  => aAb  ^  abb.

The only rightmost derivation terminating with the application of 5 -*■ a A b  is S => aAb. 
Thus LR(0)-CONTEXT(5 -»  aAb)  =  {a A b }.

The LR(0) contexts of A -*■ ab  are obtained from the rightmost derivations that termi
nate with an application of A -*• ab. There are only two such derivations. The reduction is 
indicated by the arrow from ab  to A. The context is the prefix of the sentential form up to 
and including the occurrence of ab  that is reduced.

^ ? i 
S  = >  aAb =>  aabb

< A
S  BaAa = >  Baaba

Consequently, the LR(0) contexts of A —»■ ab  are aab  and Baab. In a similar manner we 
can obtain the LR(0) contexts for all the rules of G.

Rule LR(0) Contexts

5  -*■ a A b {a A b }

S -*  B aAa (B a A a }

A  —*• ab {aab, B a a b }

A - >  b {ab, Bab)

B ^  Bb {Bb)

B -> b (b)

Example 20.1.1

The LR(0) contexts are constructed for the rules of the grammar

S ^ a A \ b B  

A —> a b A | b B  

B -* bBc  | be.
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The rightmost derivations initiated by the rule S  -»• a A  have the form

S => a A => a(ab)‘ A ^  a(ab)'bB  4  a(ab)'bb-*Bd =$■ a(ab)‘bb-'bcc*,

where i, j  >  0. Derivations beginning with S —> bB  can be written

S= > bB  4  bb‘Bc‘ = ► bVbcc1.

The LR(0) contexts can be obtained from the sentential forms generated in the preceding 
derivations.

Rule LR(0) Contexts

S -*  aA M )

S —* bB {&*}

A -*  abA \a(ab)‘ A  11 > 0}

A - *  bB {a(ab)‘bB  \ i > 0)

B -* bBc {a(ab)'bbJ Be,  bb1 Be  11 > 0, j  > 0}

B  —*■ be {a(ab)'bb^c, bb!c \ i > 0, j  > 0}

The contexts can be used to eliminate reductions from consideration by the parser. 
When the LR(0) contexts provide sufficient information to eliminate all but one action, the 
grammar is called an LR(0) grammar.

Definition 20.1.2

A context-free grammar G =  (V, E , P, S) with nonrecursive start symbol S  is LR(0) if, 
for every u e  (V U E)* and t> € E*,

u 6 LR(0)-CC)NTEXT(A ->■ u>,) and uv  € LR(0)-CC>NTEXT(B -+ w2) 

implies v = X, A = B, and uj] =  w2.

The grammar from Example 20.1.1 is LR(0). Examining the table of LR(0) contexts, 
we see that there is no LR(0) context of a rule that is a prefix of an LR(0) context of another 
rule.

The contexts of an LR(0) grammar provide the information needed to select the appro
priate action. Upon scanning the string u, the parser takes one of three mutually exclusive 
actions:

1. If u € LR(0)-CONTEXT(A —►  ui), then u is reduced with the rule A - >  w.

2. If u is not an LR(0) context but is a prefix of some LR(0) context, then the parser effects 
a shift.

3. If u is not the prefix of any LR(0) context, then the input string is rejected.
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Since a string u is an LR(O) context for at most one rule A —*■ w, the first condition specifies 
a unique action. A string u is called a viable prefix if there is a string v 6 (V U E)* such 
that mu is an LR(0) context. If u is a viable prefix and not an LR(O) context, a sequence of 
shift operations produces the LR(0) context uv.

Example 20.1.2

The grammar

G: S —►  aA  \ aB  

A -*■ aA b  | b 

B —* bBa  |b

is not LR(0). The rightmost derivations of G have the form

S => a A  => aa' Ab' => aa'bb'

S  => aB  4  ab' Ba' =*■ ab'ba'

for i >  0. The LR(0) contexts for the rules of the grammar can be obtained from the right 
sentential forms in the preceding derivations.

Rule LR(0) Contexts

S aA [aA\

S -* aB {.uB}

A -* aAb [aa' Ab \ i > 0}

A —y b laa‘b | i > 0}

B -* bBa {ab'Ba \ i > 0}

B —* b {ab1 11 > 0}

The grammar G is not LR(0) since ab  is an LR(0) context of both B -*■ b and A  —►  b. □

20.2 An LR(0) Parser

Incorporating the information provided by the LR(0) contexts of the rules of an LR(0) 
grammar into a bottom-up parser produces a deterministic parsing algorithm. The input 
string p  is scanned in a left-to-right manner. The action of the parser in Algorithm 20.2.1 
is determined by comparing the LR(0) contexts with the string scanned. The string u is the 
prefix of the sentential form scanned by the parser, and v is the remainder o f the input string. 
The operation shift(u, u) removes the first symbol from t> and concatenates it to the right 
end of u.
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Algorithm 20.2.1
Parser for an LR(0) Grammar

input: LR(0) grammar G =  (V, E , P, S) 
string p  € E*

1. u :=  X, v :=  p
2. dead-end :=false
3. repeat

3.1. if  u e  LR(0)-CONTEXT(A -*  w) for the rule A -*■ w in P 
where u =  xw  then u :=  xA  

else if u is a viable prefix and v ^=X then shift (u, v) 
else dead-end :=  true 

until u =  S or dead-end
4. if u =  S  then accept else reject

The decision to reduce with the rule A -*■ w is made as soon as a substring u = x w  
is encountered. The decision does not use any information contained in v, the unscanned 
portion of the string. The parser does not look beyond the string x  w, hence the zero in LR(0) 
indicating no lookahead is required.

One detail has been overlooked in Algorithm 20.2.1. No technique has been provided 
for deciding whether a string is a viable prefix or an LR(0) context of a rule o f the grammar. 
In the next section we will design a finite automaton whose computations identify LR(0) 
contexts and viable prefixes.

Example 20.2.1

The string aabbbbcc is parsed using the rules and LR(0) contexts of the grammar presented 
in Example 20.1.1 and the parsing algorithm for LR(0) grammars.

u V Rule Action

X aabbbbcc shift

a abbbbcc shift

aa bbbbcc shift

aab bbbcc shift

aabb bbcc shift

aabbb bcc shift

aabbbb cc shift

aabbbbc c B  -*• be reduce

aabbbB c shift

aabbbBc X B  -*• bBc reduce
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v  Rule Action

k  A -*■ bB  reduce

k A -*  abA reduce

k  S  —►  c A  reduce

____________________ O

20.3 The LR(0) Machine

To select the appropriate action, the LR(0) parser compares the string u being processed 
with the LR(0)-contexts of the rules of the grammar. Since the set of LR(0) contexts of a 
rule may contain infinitely many strings and strings in set may be arbitrarily long, we cannot 
generate these sets for a direct comparison. The problem of dealing with infinite sets was 
avoided in LL(*) grammars by restricting the length of the lookahead strings. Unfortunately, 
the decision to reduce a string requires knowledge of the entire scanned string (the context). 
The LR(0) grammars Gi and G2 demonstrate this dependence.

The LR(0) contexts o f the rules A —*• aA b  and A  —* ab  of G] form disjoint sets that 
satisfy the prefix conditions. If these sets are truncated at any length k, the string ak will be 
an element of both of the truncated sets. The final two symbols of the context are required 
to discriminate between these reductions.

Rule LR(0) Contexts

Gj: S  —►  A (A)

A -» aAa {a'Aa | ( >0}

A —* aAb la' Ab | i > 0 }

A —► ab {a'b | i >0}

One may be tempted to consider only fixed-length suffixes of contexts, since a reduction 
alters the suffix of the scanned string. The grammar G2 exhibits the futility o f this approach.

Rule LR(0) Contexts

G2 : S  —► A (A)
S  —► bB {bB)

A —► a A la'A 11 > 0)

A ab {a‘b 11i > 0}

B -* aB Iba'B 1 >' > 0}

B -*• ab Iba'b 1 / > 0}

u

aabbB

aabA

aA

S
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The sole difference between the LR(0) contexts of A —> ab  and B —* ab  is the first 
element of the string. A parser will be unable to discriminate between these rules if the 
selection process uses only fixed-length suffixes of the LR(0) contexts.

The grammars G] and G2 demonstrate that the entire scanned string is required by 
the LR(0) parser to select the appropriate action. Fortunately, this does not imply that the 
complete set of LR(0) contexts is required. For a given grammar, a finite automaton can 
be constructed whose computations determine whether a string is a viable prefix of the 
grammar. The states of the machine, called LR(0) items, are constructed directly from the 
rules of the grammar.

Definition 20.3.1

Let G =  (V, E , P, S) be a context-free grammar. The LR(0) items of G are defined as 
follows:

i) If A -*■ uv € P, then A —►  u.v is an LR(0) item.

ii) If A -*  k  e  P, then A -*■ . is an LR(0) item.

The LR(0) items are obtained from the rules of the grammar by placing the marker 
in the right-hand side of a rule. An item “A -*■ u." is called a complete item. A rule whose 
right-hand side has length n generates n +  1 items, one for each possible position of the 
marker.

Definition 20.3.2

Let G =  (V, E , P, 5) be a context-free grammar. The nondeterministic LR(0) machine 
of G is an NFA-A. M =  (Q, V U E , <5, q0, Q), where Q is the set of LR(0) items augmented 
with the state q0. The transition function is defined by

i) 8(q0, k) = [S -*■ .w  | S -*• w e  P)

ii) <S(A —►  u.av, a) =  {A —>• ua.v]

iii) 5(A ->■ u.B v, B) = {A -»■ u B .v}

iv) <5(A -*■ u .B v , A.) =  {B —►  .w | B —►  w € P).

The computations of the nondeterministic LR(0) machine M of a grammar G com
pletely process strings that are viable prefixes of the grammar. All other computations halt 
prior to reading the entire input. Since all the states of M are accepting, M accepts precisely 
the viable prefixes of the original grammar. A computation of M records the progress made 
toward matching the right-hand side of a rule of G. The item A -*■ u.v  indicates that the 
string u has been scanned and the automaton is looking for the string t> to complete the 
match.

The symbol following the marker in an item defines the arcs leaving a node. If the 
marker precedes a terminal, the only arc leaving the node is labeled by that terminal. Arcs 
labeled B or k  may leave a node containing an item of the form A ->• u.Bv. To extend the 
match of the right-hand side of the rule, the machine is looking for a B. The node A —► uB .v
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is entered if the parser reads B. It is also looking for strings that may produce B. The variable 
B may be obtained by a reduction using a B rule. Consequently, the parser is also looking 
for the right-hand side of a B rule. This is indicated by X-transitions to the items B —> .w.

Definition 20.3.2, the LR(0) items, and the LR(0) contexts of the rules o f the grammar 
G given in the following table are used to demonstrate the recognition of viable prefixes by 
the associated NFA-X.

Rule LR(0) Item s LR(0) C ontexts

A B  S -*  .A B  {AB}

S -*• A .B  

S -*  A B .

Aa A  -*■ .Aa [Aa]

M

B - ►  bBa B -*  .bBa [A h 'B a \i>  0) 

B -»• b.Ba 
B —*■ bB.a 
B ->• bBa.

B -*■ ba B -*  .ba {A b'ba \ i > 0}

.A B

s —*■ A.B

s  —► A B .

A  —>■ .Aa

A -*■ A.a

A -*• Aa.

A -*■ .a

A —► a.

B -* .bBa

B - ► b.Ba

B -* bB.a

B  - ► bBa.

B -» .ba

B -> b.a

B ba.

The NFA-X in Figure 20.1 is the LR(0) machine of the grammar G. A string w is a 
prefix of a context of the rule A -*■ uv  if A -*■ u.v € S(q0, w). The computation S(q0, A) of 
the LR(0) machine in Figure 20.1 halts in the states containing the items A —>• A.a, S  —►
A .B , B —►  .bBa, and B ->• .ba. These are precisely the rules that have LR(0) contexts 
beginning with A. Similarly, the computation with input AbB  indicates that A bB  is a viable 
prefix of the rule B -*• bBa  and no other.

The techniques presented in Chapter 5 can be used to construct an equivalent DFA 
from the nondeterministic LR(0) machine of G. This machine, the determ inistic LR(0) 
machine of G, is given in Figure 20.2. The start state qs o f the deterministic machine is the 
X-closure of q0, the start state o f the nondeterministic machine. The state that represents 
failure, the empty set, has been omitted. When the computation obtained by processing the 
string u successfully terminates, u is an LR(0) context or a viable prefix. Algorithm 20.3.3 
incorporates the LR(0) machine into the LR(0) parsing strategy.
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>(5o)— - — » ( s —> . A B ^ -— - — » (  A —> .a T )— ------A —> a.~~)

A—> . A a)---------- *^ A —> A.~a)-------------(^A—> Aa. j

{  5 —> A B .)

(is—> bB^a)----------- »~(b —> fcBa.)

FIGURE 20.1 Nondeterministic LR(0) machine o f G.

Algorithm 20.3.3
Parser Utilizing the Deterministic LR(0) Machine

input: LR(0) grammar G =  (V, E , P, 5) 
string p  €  E*
deterministic LR(0) machine of G

1. u :=  X, v :=  p
2. dead-end :=false
3. repeat

3.1. if  S(qs, u) contains A —> tf . where u = xw  then u :=  xA

else if &(qs, u) contains an item A  —►  y.z  and v 5 6  X then shift(u, v) 
else dead-end :=  true 

until u =  S  or dead-end
4. if u =  S  then accept else reject
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( f i—> bB.a)— - — - ( f i —> frfia.)

FIGURE 20.2 Deterministic LR(0) machine of G.

The decision of which action to take is made in step 3.1 based on the result of the 
computation 8(qs, u) by the LR(0) machine. If 8(qs, u) contains a complete LR(0) item 
A -*  w., then a reduction with the rule A -*  w is performed and the loop is repeated 
with the resulting string. If 8(qs, u) contains an LR(0) item A —►  y.z, a shift is performed 
to extend the match of the viable prefix. Finally, the computation halts if 8(qs, u ) is 
empty.

Example 20.3.1

The string aabbaa is parsed using Algorithm 20.3.3 and the deterministic LR(0) machine in 
Figure 20.2. Upon processing the leading a , the machine enters the state A  ->■ a., specifying 
a reduction using the rule A —*■ a. Since 8(qs, A) does not contain a complete item, the parser 
shifts and constructs the string Aa. The computation 8(qs, Aa) =  {A —► Aa.) indicates that 
Aa is an LR(0) context of A -*• Aa and that it is not a prefix of a context of any other rule.



Having generated a complete item, the parser reduces the string using the rule A  —* Aa. The 
shift and reduction cycle continues until the sentential form is reduced to the start symbol S.
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u V Computation Action

A aabbaa & { q „  A.) = {5 -* .AB, 

A -* .a,

A -* .Aa)

Shift

a abbaa h q 5 ,  a) — (A a.) Reduce

A abbaa h q s .  A) = {A —* A.a,

S —►  A.B, 

B —►  .bBa, 

B - ►  .ba]

Shift

Aa bbaa S ( q „  Aa) = {A —►  Aa.} Reduce

A bbaa II

«■©

[A ->■ A.a, 

S-+  A.B, 

B - *  .bBa, 

B -*■ .ba)

Shift

Ab baa H q s < Ab) = {B - ► .bBa, 

B - *  b.Ba, 

B - *  .ba,

B —* b.a)

Shift

Abb aa % , Abb) = { B -*• .bBa, 

B —► b.Ba, 

B ->• .ba,

B - f  b.a]

Shift

Abba a l(qs,Abba) = {B -*• ba.) Reduce

AbB a & ( q s .  AbB) = {B -»• f>B.a) Shift

AbBa A. S ( q s ,  AbBa) = (B -> bBa.) Reduce

AB A h q s < AB) = (5 —► AB.) Reduce
S

-----------------------------------------------------. ------------------------------------------------------------------------- □

20.4 Acceptance by the  LR(0) Machine

The LR(0) machine has been constructed to decide whether a string is a viable prefix of the 
grammar. Theorem 20.4.1 establishes that computations of the LR(0) machine provide the 
desired information.
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Theorem 20.4.1

Let G be a context-free grammar and M the nondeterministic LR(0) machine of G. The 
LR(0) item A -*■ u.v is in 8(q0, w) if, and only if, w =  pu, where puv is an LR(0) context 
of A —►  uv.

Proof. Let A  —►  u.v  be an element of 8(q0, w). We prove, by induction on the number of 
transitions in the computation <5(<?0, u>), that wv is an LR(0) context of A -> uv.

The basis consists of computations of length 1. All such computations have the form

X§ ) — ~ s ~ *  )
where S -*  q is a rule of the grammar. These computations process the input string w = k. 
Setting p  =  k , u =  k, and v = q gives the desired decomposition of w.

Now let 8(q0, w ) be a computation of length k >  1 with A -*■ u.v  in 8(q0, w). Isolating 
the final transition, we can write this computation as 8(S(qo, y), x ) , where w =  y x  and 
x e V U E U  {X}. The remainder of the proof is divided into three cases.

Case 1: x  =  a 6  E. In this case, u = u'a. The final transition of the computation has the 
form

By the inductive hypothesis, pu 'av  =  w v  is an LR(0) context of A —►  uv.

Case 2: x  € V. The proof is similar to that of case 1.

Case 3: x  =  k. If x  =  k, then y  =  w and the computation terminates at an item A  —►  .v. 
The final transition has the form

( * ± Z ) — - — ^  A—>.v )

The inductive hypothesis implies that w can be written w =  p r, where p rA s  is an LR(0) 
context of B -> r As. Thus there is a rightmost derivation

S  =>■ p B q  = ► p rA sq .

The application of A  —►  v yields

S  =>• pB q  =>• p rA sq  => prvsq .

The final step of this derivation shows that pr v =  iuv is an LR(0) context of A  -*  v.

To establish the opposite implication, we must show that S(q0, pu)  contains the item 
A —>■ u.v  whenever pu v  is an LR(0) context of a rule A —>■ uv. First, we note that if 
S(<7o. P) contains A —*■ .uv, then 8(qo, pu) contains A —* u.v. This follows immediately 
from conditions (ii) and (iii) of Definition 20.3.2.
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Since puv is an LR(0) context of A -*• uv, there is a derivation

5 pA q  => puvq.
R R

We prove, by induction on the length of the derivation S  => pAq, that &(qo, p)  contains 

A —*■ .uv. The basis consists of derivations S => p A q  of length 1. The desired computation 
consists of traversing the X-arc to S —>■ .pAq followed by the arcs that process the string p. 
The computation is completed by following the X-arc from S —*■ p .A q  to A —»■ .uv.

Now consider a derivation in which the variable A is introduced on the fcth rule 
application. A derivation of this form can be written

5 = >  xBy => xwAzy.
R R

The inductive hypothesis asserts that <5(<?0, x)  contains the item B —►  .wAz. Hence B —► 
w .A z  6 S(q0, xw ). The X-transition to A —►  .uv completes the computation. ■

The relationships in Lemma 20.4.2 between derivations in a context-free grammar and 
the items in the nodes of the deterministic LR(0) machine of the grammar follow from 
Theorem 20.4.1. The proof of Lemma 20.4.2 is left as an exercise. Recall that qs is the start 
symbol of the deterministic machine.

Lemma 20.4.2

Let M be the deterministic LR(0) machine of a context-free grammar G. Assume 8(qs, w) 
contains an item A —►  u.Bv.

i) If B => X, then 8(qs, w) contains an item of the form C —»•. for some variable C e V .

ii) If B => x e  E +, then there is an arc labeled by a terminal symbol leaving the node 

S(qs, w) or S(qs, w) contains an item of the form C -*• . for some variable C e V .

Lemma 20.4.3

Let M be the deterministic LR(0) machine of an LR(0) grammar G. Assume S(qs, u) 
contains the complete item A —*■ w.. Then S(qs, ua) is undefined for all terminal symbols 
a e  S .

Proof. By Theorem 20.4.1, u is an LR(0) context of A —v w. Assume that &(qs, ua) is 
defined for some terminal a. Then ua is a prefix of an LR(0) context of some rule B —*■ y. 
This implies that there is a derivation

S  => pBv => pyv =  uazv

with z € (V U S)* and D e l * .  Consider the possibilities for the string z. If z e  S*, then uaz 
is an LR(0) context of the rule B  —* y. If z is not a terminal string, then there is a terminal 
string derivable from z

z rC s  => rts r , s , t e  E*
R
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where C —* t is the final rule application in the derivation of the terminal string from z. 
Combining the derivations from S and z shows that uart is an LR(0) context of C —*■ t. In 
either case, u is an LR(0) context and ua is a viable prefix. This contradicts the assumption 

that G is LR(0). ■

The previous results can be combined with Definition 20.1.2 to obtain a characterization 
of LR(0) grammars in terms of the structure of the deterministic LR(0) machine.

Theorem 20.4.4

Let G be a context-free grammar with a nonrecursive start symbol. G is LR(0) if, and only 
if, the extended transition function <5 of the deterministic LR(0) machine of G  satisfies the 
following conditions:

i) If 8(qs, u) contains a complete item A -> w. with w ^  X, then 8(qs, u ) contains no 
other items.

ii) If S(qs, u) contains a complete item A -* ■., then the marker is followed by a variable 

in all other items in 8(qs,u ) .

Proof. First we show that a grammar G with nonrecursive start symbol is LR(0) when the 
extended transition function satisfies conditions (i) and (ii). Let u be an LR(0) context of 
the rule A -*■ w. Then 8(qs, uv) is defined only when v begins with a variable. Thus, for 
all strings v € £*, uv  e  LR(0)-CONTEXT(£ -»  j c )  implies v = X, B =  A, and w = x.

Conversely, let G be an LR(0) grammar and u an LR(0) context of the rule A —►  w. By 
Theorem 20.4.1, 8(qs, u) contains the complete item A —►  w.. The state 8(qs, u) does not 
contain any other complete items B -*■ v. since this would imply that u is also an LR(0) 
context of B -> v. By Lemma 20.4.3, all arcs leaving 8(qs, u) must be labeled by variables.

Now assume that 8(qs, u) contains a complete item A —> w. where w X. By Lemma

20.4.2, if there is an arc labeled by a variable with tail &(qs, «). then 8(qs, u) contains a 
complete item C —*■ .o r  8(qs,u )  has an arc labeled by a terminal leaving it. In the former 
case, u is an LR(0) context of both A -*■ w and C —> X, contradicting the assumption that 
G is LR(0). The latter possibility contradicts Lemma 20.4.3. Thus A —►  n>. is the only item 
in 8(qs, u). m

Intuitively, we would like to say that a grammar is LR(0) if a state containing a complete 
item contains no other items. This condition is satisfied by all states containing complete 
items generated by nonnull rules. The previous theorem permits a state containing A -+ . to 
contain items in which the marker is followed by a variable. Consider the derivation using 
the rules S —>• aA B c, A —> X, and B —> b.

S => a A B c  => a Abc  => abc
K R R

The string a is an LR(0) context of A —* X and a prefix of a A b , which is an LR(0) context 
of B ->■ b. The effect of reductions by X-rules in an LR(0) parser is demonstrated in 
Example 20.4.1.
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Example 20.4.1

The deterministic LR(0) machine for the grammar

G: S -*  B A A b  

A-*- k  

B b

C B->b. ) (s-tBA A b.')

The analysis of the string bb is traced using the computations of the machine to specify the 
actions of the parser.

u V Computation Action

k bb k q s, k) = (5 -* .BAAb 

B -* .b }

Shift

b b k q s, b) = IB -  b.} Reduce

B b hq„  B) = {5 -* B.AAb 

A -*  .}

Reduce

BA b S(q„ BA) = (S-» BA.Ab 
A - . }

Reduce

BAA b l ( q s , BAA) = {5 - > ■  BAA.b} Shift

BAAb

S

k S(q„  BAAb) = {S -* BAAb.) Reduce

The parser reduces the sentential form with the rule A  —►  k  whenever the LR(0) 
machine halts in a state containing the complete item A -* ■.. This reduction adds an A 
to the end o f the currently scanned string. In the next iteration, the LR(0) machine follows 
the arc labeled A  to the subsequent state. An A is generated by a A. reduction only when its 
presence adds to the prefix of an item being recognized. □

Theorem 20.4.4 establishes a procedure for deciding whether a grammar is LR(0). The 
process begins by constructing the deterministic LR(0) machine of the grammar. A grammar
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with a nonrecursive start symbol is LR(0) if the restrictions imposed by conditions (i) and 
(ii) of Theorem 20.4.4 are satisfied by the LR(0) machine.

Example 20.4.2

The grammar AE augmented with the endmarker #,

AE: S ->  A#

A —y A + T  \ T 

T  -»  b | (A),

is LR(0). The deterministic LR(0) machine of AE is given in Figure 20.3. Since each of the 
states containing a complete item is a singleton set, the grammar is LR(0). □

Example 20.4.3

The grammar

is not LR(0). This grammar is obtained by adding the variable F  (factor) to  AE to generate 

multiplicative subexpressions. We show that this grammar is not LR(0) by constructing two 
states of the deterministic LR(0) machine.

5 -> A#

T  - ►  T -F  | F

F -*> b | (A)

r ° \

A -> .A + T

T—» .T -F  
T—» .F

T

The computation generated by processing T  contains the complete item A - + T .  and 
the item T  -> T .-  F. When the parser scans the string T , there are two possible courses of 
action: Reduce using A - * T  or shift in an attempt to construct the string T -F . □
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20.5 LR(1) Crammars

The LR(0) conditions are generally too restrictive to construct grammars that define pro
gramming languages. In this section the LR parser is modified to utilize information ob
tained by looking beyond the substring that matches the right-hand side of the rule. The 
lookahead is limited to a single symbol. The definitions and algorithms, with obvious mod
ifications, can be extended to utilize a lookahead of arbitrary length.
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A grammar in which strings can be deterministically parsed using a one-symbol look
ahead is called LR(1). The lookahead symbol is the symbol to the immediate right of the 
substring to be reduced by the parser. The decision to reduce with the rule A —►  w is made 
upon scanning a string of the form uwz, where z € E U {X}. Following the example of LR(0) 
grammars, a string uw z  is called an LR(1) context if there is a derivation

S => u A v  =>■ uwv,
R R

where z is the first symbol of v or the null string if v =  X. Since the derivation constructed 
by a bottom-up parser is rightmost, the lookahead symbol z is either a terminal symbol or 
the null string.

The role of the lookahead symbol in reducing the number of possibilities that must be 
examined by the parser is demonstrated by considering reductions in the grammar

G: S  -»  A  | Be 

A —>■ a A \a  

B —> a | ab.

When an LR(0) parser reads the symbol a, there are three possible actions:

i) Reduce with A -»■ a.

ii) Reduce with B -*  a.

iii) Shift to obtain either a A or ab.

One-symbol lookahead is sufficient to determine the appropriate operation. The symbol 
underlined in each of the following derivations is the lookahead symbol when the initial a 
is scanned by the parser.

S => A S ^  A S => Be S =» Be 
=> a_ =* aA => ac => abc

=> aaA 
=>■ aaa

In the preceding grammar, the action of the parser when reading an a is completely 
determined by the lookahead symbol.

String
Scanned

Lookahead
Symbol Action

a K Reduce with A -* a
a a Shift
a b Shift
a c Reduce with B -* a
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The action of an LR(0) parser is determined by the result of a computation of the 
LR(0) machine of the grammar. An LR(1) parser incorporates the lookahead symbol into 
the decision procedure. An LR(1) item is an ordered pair consisting of an LR(0) item and 
a set containing the possible lookahead symbols.

Definition 20.5.1

LetG  =  (V, E , P, 5) be a context-free grammar. The LR(1) items of G have the form

[A -*  u.v, {z,, z2......... z„}],

where A —►  uv  6 P and z, e  E U  {X}. The set [zh z2, . . . ,  z„} is the lookahead set of the 
LR(1) item.

The lookahead set of an item [A -*  u.v, {z1(. . . ,  z„}] consists of the first symbol in 
the terminal strings y  that follow mu in rightmost derivations.

S => x A y  => xuvy
R R

Since the S  rules are nonrecursive, the only derivation terminated by a rule 5 -> w is the 
derivation S=> w. The null string follows w in this derivation. Consequently, the lookahead 
set of an S rule is always the singleton set {X}.

As before, a complete item is an item in which the marker follows the entire right- 
hand side of the rule. The LR(1) machine, which specifies the actions of an LR(1) parser, 
is constructed from the LR(1) items of the grammar.

Definition 20.5.2

L etG  =  (V, E , P, 5) be a context-free grammar. The nondeterm inistic LR(1) m achine 
of G is an NFA-X M =  (Q, V U E , S, qQ, Q), where Q is a set of LR(1) items augmented 
with the state q0. The transition function is defined by

i) S(q0, X) =  [{5 .w, {X}] I 5 - ►  w e  P)

ii) S([A - ►  u .B v , {z,......... z„)], B) =  {[A -> uB .v , {zx...........z„}]}

iii) 5([A u m v ,  {Z |,. . . ,  z„}], a) =  {[A - ►  ua.v, {zl t . . . ,  z„}]}

iv) S([A ->■ u.B v , [zt, . . . .  zn) \  X) =  {[B -»• .w, {>>i,. . . ,  yt }] |B - > u i e P  where 
yt e  FIRSTi(vzj)  for some j ) .

If we disregard the lookahead sets, the transitions of the LR(1) machine defined in 
(i), (ii), and (iii) have the same form as those of the LR(0) machine. The LR(1) item 
[A -*■ u.v, {zh . . . ,  z„}] indicates that the parser has scanned the string u and is attempting 
to find v to complete the match of the right-hand side of the rule. The transitions generated 
by conditions (ii) and (iii) represent intermediate steps in matching the right-hand side of a 
rule and do not alter the lookahead set. Condition (iv) introduces transitions of the form

(  [A-*u.Bv, (z.......zn} ])---- -----^  [B—>.w, {y....... y>}] ~)
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Following this arc, the LR(1) machine attempts to match the right-hand side of the rule 
B -*■ w. If the string w is found, a reduction of uw v  produces uB .v , as desired. The 
lookahead set consists of the symbols that follow u;, that is, the first terminal symbol in 

strings derived from v and the lookahead set [zl t . . . ,  z„] if v = ► X.
A bottom-up parser may reduce the string uw  to uA  whenever A -+ w  is a rule of the 

grammar. An LR(1) parser uses the lookahead set to decide whether to reduce or to shift 
when this occurs. If S(q0, uw) contains a complete item [A —*■ w., { z ,,. . . ,  z„}], the string 
is reduced only if the lookahead symbol is in the set {zx, . . . ,  z„).

The state diagrams of the nondeterministic and deterministic LR(1) machines of the 
grammar G are given in Figures 20.4 and 20.5, respectively.

X

([A—» .aA, {X}])---- - -----»-{[A—> a .A, {X}])---- ------—([A—> aA„ (X}j)

* ( [A -> .a , (XQ)---- ------» ([A ->  a.,{X}j)

[5-»  .A, (X}])---- - ---- - ([S -> A ..{ X |])

[S-> ,Bc,(X}])---------- - ( [5 -»  B.c, {X}])---- ----- —([5 —> Be., (X}j)

*  (  j g —» - a , ( c } ] ) -------------» ( [ B —> a . , ( c } ] )

([B—> .a i> ,{c |j)----- - ------> a .fc ,(c }])---------------- - ------» ([B—> q b .,(c } ])

FIGURE 20.4 Nondeterministic LR(1) machine of G.
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^ — Q - > A ,{ X } l )

B.c, {X}])---- £-----Be.. (X)])

/ [A-> a.A, {X}\

[A->a,(X }] '

[A—> .o4,{X}]
(A—> .<2,{X}]
[S->o.,{c}] 

y [ g - >  a.fc.(c}]J

a A

f  [A—> aA ,{X }]\

[A- > .o4.{X}] r ^ \  a 
[A-> .a,{X}] L y

y[A -»a.,{X }] J

FIGURE 20.5 Deterministic LR(1) machine of G.

G: S  -*• A  | Be 

A —* a A \a  

B  —>■ a \ab

A grammar is LR(1) if the actions of the parser are uniquely determined using a single 
lookahead symbol. The structure of the deterministic LR(1) machine can be used to define 
the LR(1) grammars.

Definition 20.5.3

Let G be a context-free grammar with a nonrecursive start symbol. The grammar G is LR(1) 
if the extended transition function 8 of the deterministic LR(1) machine of G  satisfies the 
following conditions:

( f r - >  ab., {c}]) 

— > a4.,(X}])

f %  \  

[5—> -4, (X)] 
[5 -»  .Be, {X}]

/  [A—> .oA. {A.,}] 
[A—> .a,{X,}] 
[B-> .a.{c}]

\ [ g - >  ■ab,{c}] J

a
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i) If 8(qs, u) contains a complete item [A -*■ w., {Z |,. . . .  z„}] and 8(QS< m) contains an 
item [fi -»■ r.as, {y,......... y*}], then a ^  z, for all 1 <  i <  n.

ii) If 8{qs, u) contains two complete items [A —►  w., (zl t . . . ,  zn}] and 
[B -*■ v., {y j,. . . ,  y*}], then y, #  z j  for all 1 <  i <  k, 1 <  j  < n.

Example 20.5.1

The deterministic LR(1) machine is constructed for the grammar AE.

90 \  [5—> .A . |X}]  ̂

[ a —> . r , { X ,+ ) ]

[a —> . a + r,{X.+}] 

[T—> .b,[K+}] j  
V [7 ->  . (A),{X,+(] /

[5—> A.,(X(] 

[A—  ̂A. +

(  [A > 7’..(X,+}] )

/ [A ->  A +.r,{X ,+  }] 

[7 ->  .(A). JX .+} ] 

u r - >  (X .+ n

(.A),{X,+ } ] \

/ [A—> .A + T, {X,+}]

[A -> • T, IX.+)]

[T —> .fc, {X,+}]

\ [ r - > • (A),{X,+)] y

\

/ [7—> (A.), {X,+}] 

[A -»  A. + T, {X,+}]

)

(  [A -» A + r„  (X,+ }j) ( [ r -X A ) .. ( X , + n )
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The state containing the complete item S —* A. also contains A A. + T . ll follows 
that AE is not LR(0). Upon entering this state, the LR(1) parser halts unsuccessfully unless 
the lookahead symbol is +  or the null string. In the latter case, the entire input string has 
been read and a reduction with the rule S —* A  is specified. When the lookahead symbol is 
+ , the parser shifts in an attempt to construct the string A +  T. □

The action of a parser for an LR(1) grammar upon scanning the string u is selected by 
the result of the computation 8(qs, u). Algorithm 20.5.4 gives a deterministic algorithm for 
parsing an LR(1) grammar.

Algorithm 20.5.4
Parser for an LR(1) Grammar

input: LR(1) grammar G =  (V, E , P, S) 
string p  e  E*
deterministic LR(1) machine of G

1. Let p  = zv  where z e  E U {X} and v e  E*
(z is the lookahead symbol, v the remainder of the input)

2. u — X
3. dead-end :=false
4. repeat

4.1. if 8(qs, u) contains [A —»■ w., {z(......... z„}]
where u = x w  and z =  z, for some 1 < i < n then u : = x A  

else if z ^  X and 8(qs, u) contains an item A -*  p .zq  then 
(shift and obtain new lookahead symbol)
4.1.1. u :=  uz

4.1.2. Let u =  zv ' where z € E  U {X} and v' 6 E*
4.1.3. v : = v ' 

end if
else dead-end :=  true 

until u = S  or dead-end
5. if u =  S  then accept else reject

For an LR(1) grammar, the structure of the LR(1) machine ensures that the action 
specified in step 4.1 is unique. When a state contains more than one complete item, the 
lookahead symbol specifies the appropriate operation.

Example 20.5.2

Algorithm 20.5.4 and the deterministic LR(1) machine in Figure 20.5 are used to parse the 
strings aaa  and ac using the grammar
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u

A

a

aa

aaa

aaA

aA

A

G: S - y  A | Be 

A -*  a A \a  

B -^y a | ab.

Computation Action

aa A.) =

S(qs, a) =

{ [ S -y .A .l*.}], 
[5 ->• .Be, (X)], 

[A - ►  .aA, {A}], 

[A -  m , {A.}], 

[B -y .a {c}],

IB -y .ab {c}]}

Shift

{[A - ►  a.A, {A.}], 
[A -  a ., {A}], 

[A ->• .aA, {A}], 

[A ->■ .a, {A}], 

[B -  a.. |c)], 

IB -  a.b, (c)]}

Shift

{[A - ♦  a.A, {A}], 

[A - ►  mA, (A)], 

[A -> .a, {A}], 

[A -  a., (A)]}

Shift

{[A -  a.A, {A}], 

[A - ►  a  A, {A}], 

[A - ►  a ,  {A}], 

[A -  a., {A}])

Reduce

{[A -  aA., {A}]} Reduce

{[A -*• aA., {A}]) Reduce

{[5 -y A., (A)]) Reduce

S
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Action

A a c Uqs,k )  = ([S->-.A,{A}], Shift
[S -> .Be, {X}],

[A -y .aA. {A}],

[A -> .a, {A}],
[B -* .a (c)],
[fl -  .ab {c}]}

a c A S(qs,a ) = {[A -* a.A, (A)], Reduce

[A -*■ a., (A)],

[A -+ .aA. {A}],

[A -*• .a, {A}],

IB -  a., {c}],
[fl - ►  a.b, {c)](

B e k  8(q„ B) =  {[5 - ♦  B.c, {A}]) Shift 

Be k A &(qs, Be) =  {[5 -*• Be., {A}]) Reduce 

5

Exercises

1. Give the LR(0) contexts for the rules of the following grammars. Build the nondeter
ministic LR(0) machine. Use this to construct the deterministic LR(0) machine. Is the 
grammar LR(0)?

a) S  —►  A B  
A - y  a A \ b  
B —y b B \ a  

c) S —► A
A —* a A b \ b A a \ k

e) S - +  B A  | b A B  
A - y  a A  \ k  
B —y Bb  | b

2. Build the deterministic LR(0)

S -y  aA b \ aB  

A -y  Aa \ k  

B —y Ac.

b) S ^y  Ac 
A -y  B A \k  
B -y aB  | b 

d) 5 -» aA | AS 
A —yaAb \ b 
B -y a b \b  

f) S -y  A \aB  
A -y BC | k 
B -y  B b \C  
C -y Cc | c

machine for the grammar
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Use the technique presented in Example 20.3.1 to trace the parse of the strings aaab  

and ac.

3. Show that the grammar AE without an endmarker is not LR(0).

4. Prove Lemma 20.4.2.

5. Prove that an LR(0) grammar is unambiguous.

6. Define the LR(fc) contexts of a rule A -*■ w.

7. For each of the following grammars, construct the nondeterministic and deterministic 
LR(1) machines. Is the grammar LR(1)?

a) S —y Ac  b) S —►  A
A - y  B A  | A. A - y A a A b \ k

e) S -* A
/i —*• AAa | AAb \ c

8. Construct the LR(1) machine for the grammar introduced in Example 20.4.3. Is this 
grammar LR(1)?

9. Parse the following strings using the LR(1) parser and the grammar AE. Trace the 
actions of the parser using the format of Example 20.5.2. The deterministic LR(1) 
machine of AE is given in Example 20.5.1.

a) b + b

b) (b)

c) b + +b

Bibliographic Notes

LR grammars were introduced by Knuth [1965], The number of states and transitions in the 
LR machine made the use of LR techniques impractical for parsers of computer languages. 
Korenjak [1969] and De Remer [1969, 1971] developed simplifications that eliminated 
these difficulties. The latter works introduced the SLR (simple LR) and LALR (lookahead 
LR) grammars. The relationships between the class of LR(ifc) grammars and other classes of 
grammars that can be deterministically parsed, including the LL(jfc) grammars, are presented 
in Aho and Ullman [1972, 1973].

B ^ a B \ b  
c) 5 -* A d) S —► A

A  —► a A b | B  
B -*■ B b \ b

A -y BB 
B —y aB \ b
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Index of Notation

Symbol Page

€ 8

* 8

I* 1 • • ■} 8

N 8

0 8

c 8

3>(X) 9

U 9

n 9

- 9

X 9

X 11

[*. y] 11

f  :X -y  Y 12

f (x ) 12

f i x )  t 13

/ ( * H 13

Interpretation

is an element of 

is not an element of 

the set of x such that . . . 

the set of natural numbers 

empty set 

is a subset of 

power set of X 

union

intersection

X — Y: set difference

complement

X x Y: Cartesian product 

ordered pair

/  is a function from X to Y 

value assigned to x by the function /  

f ( x )  is undefined 

/ (x) is defined

623
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Symbol Page Interpretation

div 13 integer division

=  IS equivalence relation

[ ] .  15 equivalence class

card 16 cardinality

5 24,300 successor function
m
£  31,398 bounded summation
l'sn

— 39,395 proper subtraction

X 42 null sting

E* 42 set of strings over 2

length 43 length of a string

uv 44 concatenation of u and v

u" 44 concatenation of u n times

uR 45 reversal of u

XY 47 concatenation of sets X and Y

X' 47 concatenation of X with itself i times

X* 48 strings over X

X+ 48 nonnull strings over X

oo 48 infinity

0 50 regular expression for the empty set

X 50 regular expression for the null string

a 50 regular expression for the set (a)

U 50 regular expression union operation

-* 65,69,326 rule of a grammar

=> 67,69,326 is derivable by one rule application

=> 69,326 is derivable from

=* 69 is derivable by one or more rule applications

=► 69 is derivable by n rule applications

L(G) 70,326 language of the grammar G

nx(u) 84 number of occurrences of x in u

=> 91 leftmost rule application
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Appendix I Index of Notation 6 2 5  

Page Interpretation

=!> 91
*

A opt 94, 631

s 147, 163,222, 256

L(M) 148, 163, 234,260

1- 149, 224, 258

K 149,224, 258

S 151, 185

k-closure 170

r 222, 256

B 256

lo 286

Xl 298

Xl 298

i 299,471

z 300, 390

e 300

pV 300, 390

id 301

pred 301

o 308

311,391

w 320

p 343

u 356

Lh 357, 365

P 372
1 393
n
n 398
i=0

400,413

M*[p] 401

rightmost rule application

occurrence of A is optional

transition function

language of the machine M

yields by one transition

yields by zero or more transitions

extended transition function

lambda closure function

stack or tape alphabet

blank tape symbol

lexicographical ordering

characteristic function of language L

partial characteristic function of language L

representation of i

zero function

empty function

^-variable projection function

identity function

predecessor function

composition

fc-variable constant function

greatest integer less than or equal to x

decision problem

universal Turing machine

language of the Halting Problem

property of recursively enumerable languages

factorial

bounded product 

unbounded minimalization 

bounded minimalization
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Symbol Page Interpretation

quo 404 quotient function

pn(i) 405 ith prime function

g"k 406 (k +  Invariable Godel numbering function

dec(i, x ) 407 decoding function

gnf 408 bounded Godel numbering function

417,420 TUring machine trace function

9 431,468 class of polynomial languages

m 431,469 class of nondeterministically polynomial languages

o  (g) 436 big oh of g, the order of the function g

e(g) 438 big theta of g

l>l 438 absolute value of i

443 time complexity function

M 451 least integer greater than or equal to x

rep(p) 471 representation of problem instance p

A 481 conjunction

V 481 disjunction

- 481 negation

l sa t 483 language of the Satisfiability Problem

m e 492 class of NP-complete languages

Co-WP 531 complement of M̂P

SCM 532 space complexity function

in f 538 infimum, greatest lower bound

y-Space 540 class of polynomial space languages

N3>-Space 540 class of nondeterministic polynomial space languages

g(G) 556 graph of the grammar G

LA (A) 572 lookahead set of variable A

LA (A —*• w) 572 lookahead set of the rule A -*  ui

trunck 575 length-/: truncation function

FIRST*(u) 576 FIRST* set of the string u

FOLLOW*(i4) 577 FOLLOW* set of the variable A

shift 599 shift function



APPENDIX II

The Creek Alphabet

Uppercase Lowercase Name

A or alpha
B fi beta
r Y gamma
A & delta
E e epsilon
z f zeta
H ' r> eta
© e theta
I i iota
K K kappa
A A. lambda
M mu
N V nu
3 { xi
o 0 o micron
n 71 Pi
p P rho
£ a sigma
T X tau
T V upsilon
<t <t> phi
X X chi
* + psi
Q CO omega
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APPENDIX III

The ASCII Character Set

The American Standard Code for Information Interchange, more commonly referred 
to as the ASCII code, is a code that represents printable symbols and special functions 
using the binary representation of the numbers 0 to 127. Numbers 0 through 31 are control 
characters and the column labeled Name gives an abbreviation for the action associated 
with the character. For example, numbers 14 and IS indicate that the printer should begin a 
new line (LF, line feed) or a new page (FF, form feed) when this character is encountered. 
Numbers 32 (a blank space) to 126 have become widely accepted as the standard encoding 
for text documents.

Code Char Name

0 NUL

1 “A SOH
2 "B STX
3 ETX
4 ‘D EOT
5 *E ENQ
6 *F ACK
7 "G BEL
8 ‘H BS
9 ‘I TAB

10 AJ LF
11 *K VT

Code Char Code

32 64

33 ! 65
34 " 66
35 # 67
36 $ 68
37 % 69
38 & 70
39 ’ 71
40 ( 72
41 ) 73
42 • 74
43 + 75

Char Code Char

@ 96 •

A 97 a
B 98 b
C 99 c
D 98 d
E 101 e
F 102 f
G 103 g
H 104 h
I 105 i
J 106 j
K 107 k
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Code Char Name Code Char Code Char Code Char

12 ‘L FF 44 76 L 108 1

13 CR 45 - 77 M 109 m

14 “N SO 46 78 N 110 n

15 "O SI 47 / 79 O 111 0

16 “P DLE 48 0 80 P 112 P
17 *Q DCl 49 1 81 Q 113 q
18 ‘R DC2 50 2 82 R 114 r

19 "S DC3 51 3 83 S 115 s
20 *T DC4 52 4 84 T 116 t
21 ‘U NAK 53 5 85 U 117 u
22 'V SYN 54 6 86 V 118 V

23 *w ETB 55 7 87 w 119 w
24 'X CAN 56 8 88 X 120 X

25 *Y EM 57 9 89 Y 121 y
26 'Z SUB 58 90 Z 122 z
27 ESC 59 ; 91 [ 123 (
28 “\ FS 60 < 92 \ 124 1
29 *1 GS 61 = 93 ] 125 }
30 A* RS 62 > 94 * 126 ~
31 *- US 63 7 95 - 127 DEL



APPENDIX IV

Backus-Naur Form 
Definition of Java

The programming language Java was developed under the direction of James Gosling at 
Sun Microsystems. Java was introduced in 1995 as a platform independent, object-oriented 
programming language particularly suitable for Internet and network applications. Since 
its introduction, Java has become one of the most commonly used languages for Internet 
applications.

The grammar for the language Java is derived from the BNF definition in Gosling et al. 
[2000], The rules have been transformed into the standard context-free grammar notation, 
with the exception of retaining the designation of a terminal or a variable as optional by 
placing the subscript opt on the symbol. The use of opt reduces the number of rules that 
are needed, but rules with optional components can easily be transformed into equivalent 
context-free rules. A rule with a variable Bopl on the right-hand side can be replaced by two 
rules; in one, the occurrence of Bopt is replaced with B, and it is deleted in the other. For 
example, A —►  BoptC is replaced by A —*■ BC  | C. A rule with n occurrences of symbols 
subscripted with opt creates 2" context-free rules. The start symbol of the grammar is the 
variable (CompilationUnit).

1. (CompilationUnit) —►  {PackageDeclaration)opl{ImportDeclarations)op,
(TypeDeclarations) opt

Declarations

2. (ImportDeclarations) -*■ (ImportDeclarations) \ (ImportDeclarations)
{ImportDeclaration)

3. (TypeDeclarations) —►  (TypeDeclaration) |
(TypeDeclarations) (TypeDeclaration)
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4. (PackageDeclaration) -> package (PackageName) ;

5. (ImportDeclaration) —►  (SingleTypelmportDeclaration) \ (TypelmportOnDemand)

6. (SingleTypelmportDeclaration) -> im port {TypeName) ;

7. (TypelmportOnDemandDeclaration) -> im port (PackageName) . * ;

8. (TypeDeclaration) -*■ (ClassDeclaration) \ (Declaration) |;

9. (Type)-*- (PrimitiveType)(ReferenceType)

10. (PrimitiveType) -*  (NumericType) boolean

11. {NumericType) -*■ (IntegralType) \ (FloatingPointType)

12. (IntegralType) -»■ byte | short | in t | long | char

13. (FloatingPointType) —►  float | double

Reference Types and Values

14. (ReferenceType) -> (ClassOrlnterfaceType) | (ArrayType)

15. (ClassOrlnterfaceType) -*  (ClassType) \ (InterfaceType)

16. (ClassType) —*• (TypeName)

17. (InterfaceType) —*■ (TypeName)

18. (ArrayType) —>■ (Type) [ ]

Class Declarations

19. (ClassDeclaration) -*• (ClassModifier)opt class (Identifier)(Super)opt(Interfaces)opl
(Classbody)

20. (ClassModifiers) -*  (ClassModifier) \ (ClassModifiers)(ClassModifier)

21. (ClassModifier) ->  public | abstract | final

22. (Super) -*■ extends (ClassType)

23. (Interfaces) —>■ im plem ents (InterfaceTypeList)

24. (InterfaceTypeList) -*  (InterfaceType) \ (InterfaceTypeList) (InterfaceType)

25. (ClassBody) —►  { (ClassBodyDeclarations)opt }

26. (ClassBodyDeclarations) -*■ (ClassBodyDeclaration) \
(ClassBodyDeclaration) (ClassBodyDeclarations)

27. (ClassBodyDeclaration) (ClassMemberDeclaration) \ (Staticlnitializer) |
(Const ructorDeclarations)

28. (ClassMemberDeclaration) —* (FieldDeclaration) \ (MethodDeclaration)

Field Declarations

29. (FieldDeclaration) —*■ (FieldModifiers)op,(Type)(VariableDeclarators)\

30. (VariableDeclarators) —►  (VariableDeclarator) \ (VariableDeclarators) ,
(VariableDeclarator)



31. {VariableDeclarator) —►  (Variable Declarator ID) |
{VariableDeclaratorsID) =  (Variablelnitializer)

32. {VariableDeclaratorlD) —*■ {Identifier) | {VariableDeclaratorsID) [ ]

33. (Variablelnitializer) -*■ {Expression) \ {Arraylnitializer)

34. {FieldModifiers) -*■ {FieldModifier) \ {FieldModifiers)(FieldModifier)

35. {FieldModifier) ->• public | protected | private | final | static | transient | volatile

Method Declarations

36. (MethodDeclaration) —►  (MethodHeader) {MethodBody)

37. {MethodHeader) -*  {MethodModifiers)op,(ResultType){MethodDeclarator)

(Throws) opt

38. (ResultType) -*■ (Type) | void

39. (MethodDeclarator) —>■ (Identifier) ( (FormalParameterList)op, )
(MethodDeclarator) [ ]

40. (FormalParameterList) -*■ (FormalParameter) \
(FormalParameterList) (FormalParameter)

41. (FormalParameter) -*  (Type)(VariableDeclaratorld)

42. (MethodModifiers) —►  (MethodModifier) \ {MethodModifiers)(MethodModifiers)

43. (MethodModifier) -*■ public | protected | private | abstract | final |
static | synchronized | native

44. (Throws) -> throws (ClassTypeUst)

45. (ClassTypeUst) —* (ClassType) \ (ClassTypeUst) , (ClassType)

46. (MethodBody) (Block) \ ;

Constructor Declarations

47. (ConstructorDeclaration) -*■ (ConstructorModifiers)opl(ConstructorDeclarator)
(Throws) op,(ConstructorBody)

48. (ConstructorDeclarator) —* (SimpleTypeName) ( (FormalParameter L ist)opt)

49. (ConstructorModifiers) -*■ (ConstructorModifier) \
(ConstructorModifiers) (ConstructorModifier)

50. (ConstructorModifier) -*• public | private | protected

51. (ConstructorBody) -*■ { (ExplicitConstructorlnvocation)op,(BlockStatements)opl }

52. (ExplicitConstructorlnvocation) —*■ this ( (ArgumentUst)opl } ; m id
super ( (ArgumentUst)opl };

Interface Declarations

53. (InterfaceDeclaration) -*■ (InterfaceModifiers)opl interface (Identifier)
(Ex tends In terface)opt (InterfaceBody)

A p p en d ix  IV B a c k u s -N a u r  F o rm  D efin it ion  o f  Java 63 3
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54. {InterfaceModifiers) —> {InterfaceModifier) \ (InterfaceModifiers) (InterfaceModifier)

55. {InterfaceModifier) -*■ public | abstract

56. {Extendslnterfaces) —> extends (InterfaceType) \
{Extendslnterfaces) , (InterfaceType)

57. (InterfaceBody) -»■ { (InterfaceMemberDeclaration) opt }

58. (InterfaceMemberDeclarations) —> (InterfaceMemberDeclaration) \
{InterfaceMemberDeclarations)(InterfaceMemberDeclaration)

59. (InterfaceMemberDeclaration) —* (ConstantDeclaration) |
{AbstractMethodDeclaration)

Constant Declarations

60. (ConstantDeclaration) —►  {ConstantModifiers)opl(Type)(VariableDeclarator)

61. (ConstantModifiers) —* public | static | final

Abstract Method Declarations

62. {AbstractMethodDeclaration) —*■ (AbstractMethodModifiers)op,(ResultType)
(MethodDeclarator) (Throws) opt

63. (AbstractMethodModifiers) -*  (AbstractMethodModifier) \
(AbstractMethodModifiers)(AbstractMethodModifier)

64. (AbstractMethodModifier) —> public | abstract

Array Initializers

65. (Arraylnitializer) —*■ { (Variablelnitializers)opt , op, }

66. {Variablelnitializers) -»■ (Variablelnitializer) \
(Variablelnitializers) (Variablelnitializers)

Blocks and Local Variable Declaration

67. (Block) —*• { {BlockStatements)opl }

68. (BlockStatements) —*■ (BlockStatement) \ (BlockStatements) (BlockStatement)

69. (BlockStatement) -*■ (LocalVariableDeclarationStatement) | (Statement)

70. (Staticlnitializer) —> static (Block)

71. (LocalVariableDeclarationStatement) -*■ {LocalVariableDeclaration)

72. (LocalVariableDeclaration) -*■ (Type)(VariableDeclarators)

Statements

73. (Statement) -*■ (StatementWithoutTrailingSubstatement) | (LabeledStatement) \
(IJThenStatement) \ (IfThenElseStatement) \
(WhileStatement) \ (ForStatement)
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74. (StatementNoShortlf) -*■ (StatementWithoutTrailingSubstatement) \
(LabeledStatementNoShortlf) \
(IfThenStatementNoShortlf) \
(IfThenElseStatementNoShortlf) \

(ForStatementNoShortlf)

75. (StatementWithoutTrailingSubstatement) —*■ {Block)
{EmptyStatement) \ {ExpressionStatement) \ 
{SwitchStatement) \ {DoStatement) \
{BreakStatement) | {ContinueStatement) \ 
(RetumStatement) \ (SynchronizedStatement) | 
{ThrowStatement) \ {TryStatement)

Empty, Labeled, and Expression Statements

76. (EmptyStatement) —* ;

77. (LabeledStatement) -*■ (Identifier) : (Statement)

78. {LabeledStatementNoShortlf) —>■ (Identifier) : (StatementNoShortlf)

79. {ExpressionStatement) —> (StatementExpression) ;

80. (StatementExpression) —►  (Assignment) \ (PreincrementExpression) \
(PredecrementExpression) \ (PostincrementExpression) \ 
(PostdecrementExpression) \ (Methodlnvocation) \ 
(ClassInstanceCreationExpression)

If Statements

81. (IfThenStatement) —> if ( (Expression) ) (Statement)

82. (IfThenElseStatement) -> if ( (Expression)) (StatementNoShortlf) else (Statement)

83. (IfThenElseStatementNoShortlf) —►  if ( (Expression) ) (StatementNoShortlf)
else (StatementNoShortlf)

Switch Statement

84. (SwitchStatement) —> switch ( (Expression) ) (SwitchBlock)

85. (SwitchBlock) —►  { (SwitchBlockStatementGroups)op,(SwitchLabel)op, }

86. (SwitchBlockStatementGroups) —*■ (SwitchBlockStatementGroup) \
(SwitchBlockStatementGroups)(SwitchBlockStatementGroups)

87. (SwitchBlockStatementGroup) -*■ (SwitchLabels) (BlockStatements)

88. (SwitchLabels) —* (SwitchLabel) | (SwitchLabels) (SwitchLabel)

89. (SwitchLabel) -*■ case (ConstantExpression) : | default :

While, Do, and For Statements

90. (WhileStatement) —*■ while ( (Expression)) (Statement)
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91. (WhileStatementNoShortlf) -*■ while ( (Expression) )  (StatementNoShortlf)

92. (DoStatement) —► do (Statement) while ( (Expression) ) ;

93. (ForStatement) for ( ( ForInit)opl; (Expression)op, ; (ForUpdate)opt) (Statement)

94. (ForStatementNoShortlf) -*■ for ( (ForInit)opl; (Expression)opl; (ForUpdate)opt)
(StatementNoShortlf)

95. (Forlnit) -*■ (StatementExpressionList) \ (LocalVariableDeclaration)

96. (ForUpdate) —* (StatementExpressionList)

97. (StatementExpressionList) —►  (StatementExpression) \
(StatementExpressionList) , (StatementExpression)

Break, Continue, Return, Throw, Synchronized, and Try Statements

98. (BreakStatement) —> break (Identifier)opt ;

99. (ContinueStatement) -> continue (Identifier)opt ;

100. (RetumStatement) —*■ return (Expression)opt ;

101. (ThrowStatement) —*• throw (Expression);

102. (SynchronizedStatement) —*■ synchronized ( (Expression)) (Block)

103. (TryStatement) —►  try (Block) (Catches) \
try (Block)(Catches)opt(Finally)

104. (Catches) —*■ (CatchClause) \ (Catches)(CatchClause)

105. (CatchClause) -*• catch ( (FormalParamenter)) (Block)

106. (Finally) —*■ finally (Block)

Creation and Access Expressions

107. (Primary) —>■ (PrimaryNoNewArray) \ (ArrayCreationExpression)

108. (PrimaryNoNewArray) —►  (literal) \ this |
( (Expression) ) \ (ClassInstanceCreationExpression) | 

(FieldAccess) \ (Methodlnvocation) |
(ArrayAccess)

109. (ClassInstanceCreationExpression) -*■ new (ClassType) ( (ArgumentUst)opt)

110. (ArgumentUst) -*■ (Expression) \ (ArgumentUst) , (Expression)

111. (ArrayCreationExpression) —►  new (PrimitiveType)(DimExprs)(Dims)op, \

new (TypeName)(DimExprs) (Dims)opt

112. (DimExprs) —*■ (DimExpr) \ (DimExprs) (DimExpr)

113. {DimExpr) ->  [(Expression) ]

114. (Dims) —►  [ ] | (Dims) [ ]

115. (FieldAccess) —►  (Primary) . (Identifier) | super . (Identifier)
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116. (Methodlnvocation) -*  (MethodName) ( (ArgumentUst)opt) |
(Primary) . (Identifier) ( (ArgumentUst)opl ) | 
super . (Identifier) ( (ArgumentUst)opt )

117. {ArrayAccess) —►  (ExpressionName) [ (Expression) ] |
(PrimaryNoNewArray) [ (Expression) ]

Expressions

118. (Expression) -*  (AssignmentExpression)

119. (ConstantExpression)—*■ (Expression)

Assignment Operators

120. (AssignmentExpression) —*■ (ConditionalExpression) | (Assignment)

121. (Assignment) -»• (LefiHandSide)(AssignmentOperator)(AssignmentExpression)

122. (LeftHandSide) —►  (ExpressionName) \ (FieldAccess) \ (ArrayAccess)

123. (AssignmentOperator) —►  =  | * = |  / = |  % = |  +  =  | — =  | < < =  |
> > = | > > > =  | & = | =  | | =

Postfix Expressions

124. (PostfixExpression) -*■ (Primary) | (ExpressionName) \
(PostlncrementExpression) \ (PostDecrementExpression)

125. (PostlncrementExpression) —*■ (PostfixExpression) +  +

126. (PostDecrementExpression) -*■ (PostfixExpression)-----

Unary Operators

127. (UnaryExpression) -> (PrelncrementExpression) \ (PreDecrementExpression) \
+  (UnaryExpression) \ — (UnaryExpression) \
(UnaryExpressionNotPlusMinus)

128. (PrelncrementExpression)- * + +  (UnaryExpression)

129. (PreDecrementExpression) —*■----- (UnaryExpression)

130. (UnaryExpressionNotPlusMinus) —> (PostfixExpression) \ (UnaryExpression) \
! (UnaryExpression) | (CastExpression)

131. (CastExpression) -*■ ( (PrimitiveType)(Dims)op, )(UnaryExpression) |
( (PrimitiveType) )(UnaryExpressionNotPlusMinus)

Operators

132. (MultiplicativeExpression) —►  (UnaryExpression) |
(MultiplicativeExpression) * (UnaryExpression) | 
(MultiplicativeExpression) /  (UnaryExpression) | 
(MultiplicativeExpression) % (UnaryExpression)
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133. (AdditiveExpression) —> (MultiplicativeExpression) |
(AdditiveExpression) +  (MultiplicativeExpression) \ 
(AdditiveExpression) — (MultiplicativeExpression)

134. (ShiftExpression) -> (AdditiveExpression) |
(ShiftExpression) < <  {AdditiveExpression) \
(ShiftExpression) > >  (AdditiveExpression) \
(ShiftExpression) > > >  (AdditiveExpression)

135. (RelationalExpression) —» (ShiftExpression) \
(RelationalExpression) < (ShiftExpression) \ 
(RelationalExpression) > (ShiftExpression) \
(RelationalExpression) < =  (ShiftExpression) \ 
(RelationalExpression) > =  (ShiftExpression) \
(RelationalExpression) instanceof (ReferenceType)

136. (EqualityExpression) -*  (RelationalExpression) \
(RelationalExpression) —■= (RelationalExpression) \ 
(RelationalExpression) ! =  (RelationalExpression)

137. (AndExpression) -*■ (EqualityExpression) | (AndExpression) & (EqualiltyExpression)

138. (ExclusiveOrExpression) —►  (EqualityExpression) \
(ExclusiveOrExpression) (AndExpression)

139. (InclusiveOrExpression) -*■ (ExclusiveOrExpression) \
(InclusiveOrExpression) \ (AndExpression)

140. (ConditionalAndExpression) —* (InclusiveOrExpression) |
(ConditionalAndExpression) && 

(InclusiveOrExpression)

141. (ConditionalOrExpression) —►  (ConditionalAndExpression) |
(ConditionalOrExpression) ||

(ConditionalAndExpression >

142. (ConditionalExpression) —> (ConditionalOrExpression) |
(ConditionalOrExpression) ? <Expression) :

{ConditionalExpression)

Literals

143. (Literal) —+ (IntegerLiteral) \ (FloatingPointLiteral) \ (BooleanLiteral) \
(CharacterLiteral) \ (StringLiteral) \ (NullLiteral)

144. (IntegerLiteral) —>• (DecimallntegerUteral) \ (HexIntegerLiteral) \
(OctallntegerLiteral)

145. (DecimallntegerLiteral) —*■ (DecimalNumeral)(IntegerTypeSuffix)opl

146. (HexIntegerLiteral) —>■ (HexNumeral)(IntegerTypeSuffix)opt

147. (HexIntegerLiteral) -> (HexNumeral)(IntegerTypeSujfix)nnt
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148. {OctallntegerUteral) ->■ (OctalNumeral)(IntegerTypeSuffix)op,

149. {IntegerTypeSuffix) —► 1 | L

150. (DecimalNumeral) —* 0 | (NonZeroDigit) (Digits) op,

151. (Digits) -*  (Digit) \ (Digits) (Digit)

152. (Digit) -*■ 0 | (NonZeroDigit)

153. (NonZeroDigit) -*■ 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

154. (HexNumeral) ->• Ox(HexDigit) | OX(HexDigit) \ (HexNumeral)(HexDigit)

155. (HexDigit) - * - 0 | l | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | a | f > | c | < / | e | A | f l | C | D | £

156. (OctalNumeral) ->• O(OctalDigit) \ 0(OctalNumeral)(OctalDigit)

157. (OctalDigit) - > 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

158. (FloatingPointLiteral) —►  (Digits) . (Digits)op,(ExponentPart)opt
(FloatTypeSuffix)op, \

. (Digits) (ExponentPart)opt (FloatTypeSuffix) opt \
(Digits)(ExponentPart) (FloatTypeSuffix)opt |
(Digits) (ExponentPart) opt (FloatTypeSuffix)

159. (ExponentPart) -*  (ExponentIndicator)(Signedlnteger)

160. (Exponentlndicator) —►  e | E

161. (Signedlnteger) -*  (Sign)opl(Digits)

162. ( S ig n ) ^  +  | -

163. (FloatTypeSuffix) —> f  | F | d | D

164. (BooleanLiteral) -*■ true | false

165. (CharacterLiteral) —►  ' (InputCharacter)' | ' (EscapeCharacter)'

166. (StringLiteral) -> "(StringCharacters)op

167. (NullLiteral) -> null

Identifier

168. (Identifier) —►  (IdentifierChars)

169. (IdentifierChars) —►  (JavaLetter) | (IdentifierChars)(JavaLetterOrDigit)

The variables (SingleCharacter), (InputCharacter), (EscapeSequence), and 
(JavaLetter) define the subsets of the 16-bit Unicode character set that can be used in 
input, literals, and identifiers.

Identifiers are defined by the variable (Identifier) and use characters from the Unicode 
alphabet so that programmers can write the source code in their own language. The first 
character of an identifier must be a letter, an underscore (_), or a dollar sign ($) followed 
by any number of Java letters or digits. Java letters and digits consist of Unicode characters 
for which the method Character.isJavaldentifierPart returns true. The Java keywords are 
reserved and cannot be used as identifiers.
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Input characters are Unicode characters, not including the representation of linefeed or 
carriage return. A (SingleCharacter) is an input character but n o t' or \ .  An escape sequence 
consists of a \  followed by an ASCII symbol to signify a nongraphic character. For example, 
\n  is the escape sequence representing linefeed. Details on both the syntax and semantics 
of the Java programming language can be found in Gosling et al. [2000].
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