
Preface

The objective of the third edition of Languages and Machines: An Introduction to the
Theory o f Computer Science remains the same as that of the first two editions, to provide
a mathematically sound presentation of the theory of computer science at a level suitable
for junior- and senior-level computer science majors. The impetus for the third edition was
threefold: to enhance the presentation by providing additional motivation and examples; to
expand the selection of topics, particularly in the area of computational complexity; and to
provide additional flexibility to the instructor in the design of an introductory course in the
theory of computer science.

While many applications-oriented students question the importance o f studying the
oretical foundations, it is this subject that addresses the “big picture" issues of computer
science. When today’s programming languages and computer architectures are obsolete
and solutions have been found for problems currently of interest, the questions considered
in this book will still be relevant. What types of patterns can be algorithmically detected?
How can languages be formally defined and analyzed? What are the inherent capabilities
and limitations of algorithmic computation? What problems have solutions that require so
much time or memory that they are realistically intractable? How do we compare the relative
difficulty of two problems? Each of these questions will be addressed in this text.

Organization

Since most computer science students at the undergraduate level have little or no background
in abstract mathematics, the presentation is intended not only to introduce the foundations
of computer science but also to increase the student’s mathematical sophistication. This
is accomplished by a rigorous presentation of the concepts and theorems of the subject
accompanied by a generous supply of examples. Each chapter ends with a set of exercises
that reinforces and augments the material covered in the chapter.

To make the topics accessible, no special mathematical prerequisites are assumed.
Instead, Chapter 1 introduces the mathematical tools of the theory of computing; naive set

x i v Preface

theory, recursive definitions, and proof by mathematical induction. With the exception of
the specialized topics in Sections 1.3 and 1.4, Chapters 1 and 2 provide background material
that will be used throughout the text. Section 1.3 introduces cardinality and diagonalization,
which are used in the counting arguments that establish the existence of undecidable
languages and uncomputable functions. Section 1.4 examines the use of self-reference in
proofs by contradiction. This technique is used in undecidability proofs, including the proof
that there is no solution to the Halting Problem. For students who have completed a course
in discrete mathematics, most of the material in Chapter 1 can be treated as review.

Recognizing that courses in the foundations of computing may emphasize different
topics, the presentation and prerequisite structure of this book have been designed to permit
a course to investigate particular topics in depth while providing the ability to augment
the primary topics with material that introduces and explores the breadth of computer
science theory. The core material for courses that focus on a classical presentation of formal
and automata language theory, on computability and undecidability, on computational
complexity, and on formal languages as the foundation for programming language definition
and compiler design are given in the following table. A star next to a section indicates that
the section may be omitted without affecting the continuity of the presentation. A starred
section usually contains the presentation of an application, the introduction of a related
topic, or a detailed proof of an advanced result in the subject.

Formal Languages
Formal Language Computability Computational for Programming
and Automata Theory Theory Complexity Languages

Chap. 1 : 1-3, 6 - 8 Chap. 1: all Chap. 1: all Chap. 1: 1-3, 6 - 8

Chap. 2: 1-3,4* Chap. 2: 1-3,4* Chap. 2: 1-3,4* Chap. 2: 1-4

Chap. 3: 1-3,4* Chap. 5: 1-6,7* Chap. 5: 1-4,5-7* Chap. 3: 1-4
Chap. 4: 1-5,6 *, 7 Chap. 8 : 1-7, 8 ' Chap. 8 : 1-7, 8 * Chap. 4: 1-5,6 *. 7
Chap. 5: 1-6, 7* Chap. 9: 1-5, 6 * Chap. 9: l^ t, 5-6* Chap. 5: 1-6, 7*
Chap. 6 : 1-5, 6 * Chap. 10: 1 Chap. 11: 1-4, 5* Chap. 7: 1-3,4-5*
Chap. 7: 1-5 Chap. 11: all Chap. 14: 1-4, 5-7* Chap. 18: all
Chap. 8 : 1-7, 8 * Chap. 12: all Chap. 15: all Chap. 19: all
Chap. 9: 1-5,6 * Chap. 13: all Chap. 16: 1-6, 7* Chap. 20: all
Chap. 10: all Chap. 17: all

The classical presentation of formal language and automata theory examines the rela
tionships between the grammars and abstract machines of the Chomsky hierarchy. The com
putational properties of deterministic finite automata, pushdown automata, linear-bounded
automata, and Turing machines are examined. The analysis of the computational power of
abstract machines culminates by establishing the equivalence of language recognition by
Turing machines and language generation by unrestricted grammars.

Preface XV

Computability theory examines the capabilities and limitations of algorithmic prob
lem solving. The coverage of computability includes decidability and the Church-Turing
Thesis, which is supported by the establishment of the equivalence of Turing computabil
ity and ^-recursive functions. A diagonalization argument is used to show that the Halting
Problem for Turing machines is unsolvable. Problem reduction is then used to establish the
undecidability of a number of questions on the capabilities of algorithmic computation.

The study of computational complexity begins by considering methods for measuring
the resources required by a computation. The Turing machine is selected as the framework
for the assessment of complexity, and time and space complexity are measured by the
number of transitions and amount of memory used in Turing machine computations. The
class 7 of problems that are solvable by deterministic Turing machines in polynomial time
is identified as the set problems that have efficient algorithmic solutions. The class N T and
the theory of NP-completeness are then introduced. Approximation algorithms are used to
obtain near-optimal solutions for NP-complete optimization problems.

The most important application of formal language theory to computer science is the
use of grammars to specify the syntax of programming languages. A course with the focus
of using formal techniques to define programming languages and develop efficient parsing
strategies begins with the introduction of context-free grammars to generate languages
and finite automata to recognize patterns. After the introduction to language definition,
Chapters 18-20 examine the properties of LL and LR grammars and deterministic parsing
of languages defined by these types of grammars.

Exercises

Mastering the theoretical foundations of computer science is not a spectator sport; only by
solving problems and examining the proofs of the major results can one fully comprehend
the concepts, the algorithms, and the subtleties of the theory. That is, understanding the “big
picture” requires many small steps. To help accomplish this, each chapter ends with a set of
exercises. The exercises range from constructing simple examples of the topics introduced
in the chapter to extending the theory.

Several exercises in each set are marked with a star. A problem is starred because it
may be more challenging than the others on the same topic, more theoretical in nature, or
may be particularly unique and interesting.

Notation

The theory of computer science is a mathematical examination of the capabilities and lim
itations of effective computation. As with any formal analysis, the notation must provide

XVi Preface

precise and unambiguous definitions of the concepts, structures, and operations. The fol
lowing notational conventions will be used throughout the book:

Items Description Examples

Elements and strings Italic lowercase letters from the beginning
of the alphabet

a, b, abc

Functions Italic lowercase letters f ' g ' h

Sets and relations Capital letters X. Y.Z, z , r

Grammars Capital letters G, G„ G2

Variables of grammars Italic capital letters A, B, C, S

Abstract machines Capital letters M, M „M 2

The use of roman letters for sets and mathematical structures is somewhat nonstandard
but was chosen to make the components of a structure visually identifiable. For example, a
context-free grammar is a structure G = (E , V, P, S). From the fonts alone it can be seen
that G consists of three sets and a variable S.

A three-part numbering system is used throughout the book; a reference is given by
chapter, section, and item. One numbering sequence records definitions, lemmas, theorems,
corollaries, and algorithms. A second sequence is used to identify examples. Tables, figures,
and exercises are referenced simply by chapter and number.

The end of a proof is marked by ■ and the end of an example by □ . An index of symbols,
including descriptions and the numbers of the pages on which they are introduced, is given
in Appendix I.

Supplements

Solutions to selected exercises are available only to qualified instructors. Please contact your
local Addison-Wesley sales representative or send email to aw.cse@aw.com for information
on how to access them.

Acknowledgments

First and foremost, I would like to thank my wife Janice and daughter Elizabeth, whose
kindness, patience, and consideration made the successful completion of this book possible.
I would also like to thank my colleagues and friends at the Institut de Recherche en
Informatique de Toulouse, Universite Paul Sabatier, Toulouse, France. The first draft of
this revision was completed while 1 was visiting IRIT during the summer of 2004. A special
thanks to Didier Dubois and Henri Prade for their generosity and hospitality.

The number of people who have made contributions to this book increases with each
edition. I extend my sincere appreciation to all the students and professors who have

mailto:aw.cse@aw.com

used this book and have sent me critiques, criticisms, corrections, and suggestions for
improvement. Many of the suggestions have been incorporated into this edition. Thank
you for taking the time to send your comments and please continue to do so. My email
address is tsudkamp@cs.wright.edu. ,

This book, in its various editions, has been reviewed by a number of distinguished com
puter scientists including Professors Andrew Astromoff (San Francisco State University),
Dan Cooke (University of Texas-El Paso), Thomas Fernandez, Sandeep Gupta (Arizona
State University), Raymond Gumb (University of Massachusetts-Lowell), Thomas F. Hain
(University of South Alabama), Michael Harrison (University of California at Berkeley),
David Hemmendinger (Union College), Steve Homer (Boston University), Dan Jurca (Cal
ifornia State University-Hayward), Klaus Kaiser (University of Houston), C. Kim (Uni
versity of Oklahoma), D. T. Lee (Northwestern University), Karen Lemone (Worcester
Polytechnic Institute), C. L. Liu (University of Illinois at Urbana-Champaign), Richard
J. Lorentz (California State University-Northridge), Fletcher R. Norris (The University
of North Carolina at Wilmington), Jeffery Shallit (University of Waterloo), Frank Stomp
(Wayne State University), William Ward (University of South Alabama), Dan Ventura
(Brigham Young University), Charles Wallace (Michigan Technological University), Ken
neth Williams (Western Michigan University), and Hsu-Chun Yen (Iowa State University).
Thank you all.

I would also like to gratefully acknowledge the assistance received from the people at
the Computer Science Education Division of the Addison-Wesley Publishing Company and
Windfall Software who were members of the team that successfully completed this project.

Thomas A. Sudkamp
Dayton, Ohio

mailto:tsudkamp@cs.wright.edu

Contents

Preface xiii

Introduction 1

PART I Foundations

C h ap te r 1

Mathematical Preliminaries 7

1.1 Set Theory 8

1.2 Cartesian Product, Relations, and Functions 11

1.3 Equivalence Relations 14

1.4 Countable and Uncountable Sets 16

1.5 Diagonalization and Self-Reference 21

1. 6 Recursive Definitions 23

1.7 Mathematical Induction 27

1.8 Directed Graphs 32

Exercises 36

Bibliographic Notes 40

C h ap te r 2

Languages 41

2.1 Strings and Languages 42

2.2 Finite Specification of Languages 45

2.3 Regular Sets and Expressions 49

2.4 Regular Expressions and Text Searching 54

Exercises 58

Bibliographic Notes 61

V

Vi C o n te n t s

PART II Grammars, Automata, and Languages

C h ap te r 3

Context-Free Grammars

3.1 Context-Free Grammars and Languages 6 8

3.2 Examples of Grammars and Languages 76

3.3 Regular Grammars 81

3.4 Verifying Grammars 83

3.5 Leftmost Derivations and Ambiguity 89

3.6 Context-Free Grammars and Programming Language Definition

Exercises 97

Bibliographic Notes 102

C h ap te r 4

Normal Forms for Context-Free Grammars

4.1 Grammar Transformations 104

4.2 Elimination of X-Rules 106

4.3 Elimination of Chain Rules 113

4.4 Useless Symbols 116

4.5 Chomsky Normal Form 121

4.6 The CYK Algorithm 124

4.7 Removal of Direct Left Recursion 129

4.8 Greibach Normal Form 131

Exercises 138

Bibliographic Notes 143

C h ap te r 5

Finite Automata

5.1 A Finite-State Machine 145

5.2 Deterministic Finite Automata 147

5.3 State Diagrams and Examples 151

5.4 Nondeterministic Finite Automata 159

5.5 A.-Transitions 165

5.6 Removing Nondeterminism 170

5.7 DFA Minimization 178

Exercises 184

Bibliographic Notes 190

Chapter 6

Properties o f Regular Languages

6 .1 Finite-State Acceptance of Regular Languages 191

6.2 Expression Graphs 193

6.3 Regular Grammars and Finite Automata 196

6.4 Closure Properties of Regular Languages 200

6.5 A Nonregular Language 203

6 . 6 The Pumping Lemma for Regular Languages 205

6.7 The Myhill-Nerode Theorem 211

Exercises 217

Bibliographic Notes 220

Chapter 7

Pushdown Automata and Context-Free Languages

7.1 Pushdown Automata 221

7.2 Variations on the PDA Theme 227

7.3 Acceptance of Context-Free Languages 232

7.4 The Pumping Lemma for Context-Free Languages 239

7.5 Closure Properties of Context-Free Languages 243

Exercises 247

Bibliographic Notes 251

PART III Computability

Chapter 8

Turing Machines

8.1 The Standard Turing Machine 255

8.2 Turing Machines as Language Acceptors 259

8.3 Alternative Acceptance Criteria 262

8.4 Multitrack Machines 263

8.5 Two-Way Tape Machines 265

8 . 6 Multitape Machines 268

8.7 Nondeterministic Turing Machines 274

8 . 8 Turing Machines as Language Enumerators 282

Exercises 288

Bibliographic Notes 293

viii C o n te n t s

C h ap te r 9

Turing Computable Functions

9.1 Computation of Functions 295

9.2 Numeric Computation 299
9.3 Sequential Operation of Turing Machines 301

9.4 Composition of Functions 308

9.5 Uncomputable Functions 312

9.6 Toward a Programming Language 313

Exercises 320

Bibliographic Notes 323

C h ap te r 10

The Chomsky Hierarchy

10.1 Unrestricted Grammars 325

10.2 Context-Sensitive Grammars 332

10.3 Linear-Bounded Automata 334

10.4 The Chomsky Hierarchy 338

Exercises 339

Bibliographic Notes 341

C h ap te r 11

Decision Problems and the Church-Turing Thesis

11.1 Representation of Decision Problems 344

11.2 Decision Problems and Recursive Languages 346

11.3 Problem Reduction 348

11.4 The Church-Turing Thesis 352

11.5 A Universal Machine 354

Exercises 358

Bibliographic Notes 360

C hap te r 12

Undecidability

12.1 The Halting Problem for Turing Machines 362

12.2 Problem Reduction and Undecidability 365

12.3 Additional Halting Problem Reductions 368

12.4 Rice’s Theorem 371

12.5 An Unsolvable Word Problem 373

12.6 The Post Correspondence Problem 377

12.7 Undecidable Problems in Context-Free Grammars 382

Exercises 386

Bibliographic Notes 388

Chapter 13

Mu-Recursive Functions

13.1 Primitive Recursive Functions 389

13.2 Some Primitive Recursive Functions 394

13.3 Bounded Operators 398

13.4 Division Functions 404

13.5 Godel Numbering and Course-of-Values Recursion 406

13.6 Computable Partial Functions 410

13.7 Turing Computability and Mu-Recursive Functions 415

13.8 The Church-Turing Thesis Revisited 421

Exercises 424

Bibliographic Notes 430

PART IV Computational Complexity

Chapter 14

Time Complexity

14.1 Measurement of Complexity 434

14.2 Rates of Growth 436

14.3 Time Complexity of a Turing Machine 442

14.4 Complexity and Turing Machine Variations 446

14.5 Linear Speedup 448

14.6 Properties of Time Complexity of Languages 451

14.7 Simulation of Computer Computations 458

Exercises 462

Bibliographic Notes 464

Chapter 15

3 \ NT, and Cook’s Theorem

15.1 Time Complexity of Nondeterministic Turing Machines

15.2 The Classes !P and N3* 468

15.3 Problem Representation and Complexity 469

15.4 Decision Problems and Complexity Classes 472

15.5 The Hamiltonian Circuit Problem 474

X C o n te n t s

15.6 Polynomial-Time Reduction 477

15.7 479

15.8 The Satisfiability Problem 481

15.9 Complexity Class Relations 492

Exercises 493

Bibliographic Notes 496

C h ap te r 16

NP-Complete Problems 497

16.1 Reduction and NP-Complete Problems 497

16.2 The 3-Satisfiability Problem 498

16.3 Reductions from 3-Satisfiability 500

16.4 Reduction and Subproblems 513

16.5 Optimization Problems 517

16.6 Approximation Algorithms 519

16.7 Approximation Schemes 523

Exercises 526

Bibliographic Notes 528

C h ap te r 17

Additional Complexity Classes 529

17.1 Derivative Complexity Classes 529

17.2 Space Complexity 532

17.3 Relations between Space and Time Complexity 535

17.4 y-Space, NP-Space, and Savitch’s Theorem 540

17.5 P-Space Completeness 544

17.6 An Intractable Problem 548

Exercises 550

Bibliographic Notes 551

PARTV Deterministic Parsing

C h ap te r 18

Parsing: An Introduction 555

18.1 The Graph of a Grammar 555

18.2 A Top-Down Parser 557

18.3 Reductions and Bottom-Up Parsing 561

18.4 A Bottom-Up Parser 563

C o n te n t s xi

18.5 Parsing and Compiling 567

Exercises 568

Bibliographic Notes 569

Chapter 19

LL(lc) Grammars 571

19.1 Lookahead in Context-Free Grammars 571

19.2 FIRST, FOLLOW, and Lookahead Sets 576

19.3 Strong LL(fc) Grammars 579

19.4 Construction of FIRST* Sets 580

19.5 Construction of FOLLOW* Sets 583

19.6 A Strong LL(1) Grammar 585

19.7 A Strong LL(it) Parser 587

19.8 LL(fc) Grammars 589

Exercises 591

Bibliographic Notes 593

Chapter 20

LR(fc) Grammars 595

20.1 LR(0) Contexts 595

20.2 An LR(0) Parser 599

20.3 The LR(0) Machine 601

20.4 Acceptance by the LR(0) Machine 606

20.5 LR(1) Grammars 612

Exercises 620

Bibliographic Notes 621

Appendix I

Index o f Notation 623

Appendix II

The Greek Alphabet 627

Appendix III

The ASCII Character Set 629

Appendix IV

Backus-Naur Form Definition o f Java 631

Bibliography

Subject Index

641

649

1 * 1 jl u ii m m mi i i

Introduction

i

The theory of computer science began with the questions that spur most scientific endeavors:
how and what. After these had been answered, the question that motivates many economic
decisions, how much, came to'the forefront. The objective of this book is to explain the
significance of these questions for the study of computer science and provide answers
whenever possible.

Formal language theory was initiated by the question, “How are languages defined?” In
an attempt to capture the structure and nuances of natural language, linguist Noam Chomsky
developed formal systems called grammars for defining and generating syntactically correct
sentences. At approximately the same time, computer scientists were grappling with the
problem of explicitly and unambiguously defining the syntax of programming languages.
These two studies converged when the syntax of the programming language ALGOL was
defined using a formalism equivalent to a context-free grammar.

The investigation of computability was motivated by two fundamental questions:
“What is an algorithm?” and “What are the capabilities and limitations o f algorithmic
computation?” An answer to the first question requires a formal model of computation. It
may seem that the combination of a computer and high-level programming language, which
clearly constitute a computational system, would provide the ideal framework for the study
of computability. Only a little consideration is needed to see difficulties with this approach.
What computer? How much memory should it have? What programming language? More
over, the selection of a particular computer or language may have inadvertent and unwanted
consequences on the answer to the second question. A problem that may be solved on one
computer configuration may not be solvable on another.

The question of whether a problem is algorithmically solvable should be independent
of the model computation used: Either there is an algorithmic solution to a problem or there
is no such solution. Consequently, a system that is capable of performing all possible al
rithmic computations is needed to appropriately address the question of computability. 1 ni
characterization of general algorithmic computation has been a major area o f research for
mathematicians and logicians since the 1930s. Many different systems have been proposed
as models of computation, including recursive functions, the lambda calculus of Alonzo

1

2 Introduction

Church, Markov systems, and the abstract machines developed by Alan Turing. All of these
systems, and many others designed for this purpose, have been shown to be capable of solv
ing the same set of problems. One interpretation of the Church-Turing Thesis, which will
be discussed in Chapter 11, is that a problem has an algorithmic solution only if it can be
solved in any (and hence all) of these computational systems.

Because of its simplicity and the similarity of its components to those of a modem day
computer, we will use the Turing machine as our framework for the study of computation.
The Turing machine has many features in common with a computer: It processes input,
writes to memory, and produces output. Although Turing machine instructions are primitive
compared with those of a computer, it is not difficult to see that the computation of
a computer can be simulated by an appropriately defined sequence of Turing machine
instructions. The Turing machine model does, however, avoid the physical limitations of
conventional computers; there is no upper bound on the amount of memory or time that may
be used in a computation. Consequently, any problem that can be solved on a computer can
be solved with a Turing machine, but the converse of this is not guaranteed.

After accepting the Turing machine as a universal model of effective computation,
we can address the question, “What are the capabilities and limitations of algorithmic
computation?” The Church-Turing Thesis assures us that a problem is solvable only if there
is a suitably designed Turing machine that solves it. To show that a problem has no solution
reduces to demonstrating that no Turing machine can be designed to solve the problem.
Chapter 12 follows this approach to show that several important questions concerning our
ability to predict the outcome of a computation are unsolvable.

Once a problem is known to be solvable, one can begin to consider the efficiency
or optimality of a solution. The question how much initiates the study of computational
complexity. Again the Turing machine provides an unbiased platform that permits the
comparison of the resource requirements of various problems. The time complexity of
a Turing machine measures the number of instructions required by a computation. Time
complexity is used to partition the set of solvable problems into two classes: tractable and
intractable. A problem is considered tractable if it is solvable by a Turing machine in which
the number of instructions executed during a computation is bounded by a polynomial
function of length of the input. A problem that is not solvable in polynomial time is
considered intractable because of the excessive amount of computational resources required
to solve all but the simplest cases of the problem.

The Turing machine is not the only abstract machine that we will consider; rather,
it is the culmination of a series of increasingly powerful machines whose properties will
be examined. The analysis of effective computation begins with an examination of the
properties of deterministic finite automata. A deterministic finite automaton is a read-once
machine in which the instruction to be executed is determined by the state o f the machine
and the input symbol being processed. Although structurally simple, deterministic finite
automata have applications in many disciplines including pattern recognition, the design of
switching circuits, and the lexical analysis of programming languages.

A more powerful family of machines, known as pushdown automata, are created by
adding an external stack memory to finite automata. The addition of the stack extends the

Introduction 3

computational capabilities of a finite automaton. As with the Turing machines, our study of
computability will characterize the computational capabilities of both of these families of
machines.

Language definition and computability, the dual themes of this book, are not two
unrelated topics that fall under the broad heading of computer science theory, but rather
they are inextricably intertwined. The computations of a machine can be used to recognize
a language; an input string is accepted by the machine if the computation initiated with the
string indicates its syntactic correctness. Thus each machine has an associated language,
the set of strings accepted by the machine. The computational capabilities o f each family of
abstract machines is characterized by the languages accepted by the machines in the family.
With this in mind, we begin our investigations into the related topics of language definition
and effective computation.

PART I

Foundations

Theoretical computer science includes the study of language definition, pattern recog
nition, the capabilities and limitations of algorithmic computation, and the analysis

of the complexity of problems and their solutions. These topics are built on the founda
tions of set theory and discrete mathematics. Chapter 1 reviews the mathematical concepts,
operations, and notation required for the study of formal language theory and the theory of
computation.

Formal language theory has its roots in linguistics, mathematical logic, and computer
science. A set-theoretic definition of language is given in Chapter 2. This definition is suffi
ciently broad to include both natural (spoken and written) languages and formal languages,
but the generality is gained at the expense of not providing an effective method for gen
erating the strings of a language. To overcome this shortcoming, recursive definitions and
set operations are used to give finite specifications of languages. This is followed by the
introduction of regular sets, a family of languages that arises in automata theory, formal
language theory, switching circuits, and neural networks. The section ends with an exam
ple of the use of regular expressions— a shorthand notation for regular sets— in describing
patterns for searching text.

CHAPTER 1

Mathematical
Preliminaries

Set theory and discrete mathematics provide the mathematical foundation for formal lan
guage theory, computability theory, and the analysis of computational complexity. We begin
our study of these topics with a review of the notation and basic operations of set theory.
Cardinality measures the size of a set and provides a precise definition of an infinite set.
One of the interesting results of the investigations into the properties of sets by German
mathematician Georg Cantor is that there are different sizes of infinite sets. While Cantor’s
work showed that there is a complete hierarchy of sizes of infinite sets, it is sufficient for
our purposes to divide infinite sets into two classes: countable and uncountable. A set is
countably infinite if it has the same number of elements as the set of natural numbers. Sets
with more elements than the natural numbers are uncountable.

In this chapter we will use a construction known as the diagonalization argument
to show that the set of functions defined on the natural numbers is uncountably infinite.
After we have agreed upon what is meant by the terms effective procedure and computable
function (reaching this consensus is a major goal of Part III of this book), we will be
able to determine the size of the set of functions that can be algorithmically computed.
A comparison of the sizes of these two sets will establish the existence of functions whose
values cannot be computed by any algorithmic process.

While a set may consist of an arbitrary collection of objects, we are interested in sets
whose elements can be mechanically produced. Recursive definitions are introduced to
generate the elements of a set. The relationship between recursively generated sets and
mathematical induction is developed, and induction is shown to provide a general proof
technique for establishing properties of elements in recursively generated infinite sets.

7

8 C h a p t e r 1 M a th e m a t ic a l P re l im ina r ie s

This chapter ends with a review of directed graphs and trees, structures that will be
used throughout the book to graphically illustrate the concepts of formal language theory

and the theory of computation.

1.1 Set Theory

We assume that the reader is familiar with the notions of elementary set theory. In this
section, the concepts and notation of that theory are briefly reviewed. The symbol € signifies
membership; x e X indicates that x is a member or element of the set X. A slash through a
symbol represents not, so x & X signifies that * is not a member of X. Two sets are equal if
they contain the same members. Throughout this book, sets are denoted by capital letters.
In particular, X, Y, and Z are used to represent arbitrary sets. Italics are used to denote the
elements of a set. For example, symbols and strings of the form a , b, A, B, aaaa, and abc
represent elements of sets.

Brackets { } are used to indicate a set definition. Sets with a small number of members
can be defined explicitly; that is, their members can be listed. The sets

X = {1, 2, 3}

Y = {a, b , c, d, e)

are defined in an explicit manner. Sets having a large finite or infinite number of members
must be defined implicitly. A set is defined implicitly by specifying conditions that describe
the elements of the set. The set consisting of all perfect squares is defined by

{n | n = m 2 for some natural number m }.

The vertical bar | in an implicit definition is read “such that.” The entire definition is read
“the set of n such that n equals m squared for some natural number m.”

The previous example mentioned the set of natural numbers. This important set,
denoted N, consists of the numbers 0, 1, 2, 3, The em pty set, denoted 0, is the set
that has no members and can be defined explicitly by 0 = { }.

A set is determined completely by its membership; the order in which the elements are
presented in the definition is immaterial. The explicit definitions

X = {1, 2, 3}, Y = {2, 1, 3}, Z = {1, 3, 2, 2, 2}

describe the same set. The definition of Z contains multiple instances of the number 2.
Repetition in the definition of a set does not affect the membership. Set equality requires
that the sets have exactly the same members, and this is the case; each of the sets X, Y, and
Z has the natural numbers 1, 2, and 3 as its members.

A set Y is a subset of X, written Y C X, if every member of Y is also a member of X.
The empty set is trivially a subset of every set. Every set X is a subset of itself. If Y is a

1.1 Set Theory 9

subset of X and Y 5 6 X, then Y is called a proper subset of X. The set of all subsets of X
is called the power set of X and is denoted J ’(X).

Example 1.1.1

Let X = {1, 2, 3}. The subsets of X are

0 {1} {2} {3}

{1,2} {2,3} {3,1} {1,2,3}. □

Set operations are used to construct new sets from existing ones. The union of two sets
is defined by

X U Y = { z | z € X o r z € Y}.

The or is inclusive. This means that z is a member of X U Y if it is a member of X or Y or
both. The intersection of two sets is the set of elements common to both. This is defined

by

X n Y = { z | z € X and z € Y}.

Two sets whose intersection is empty are said to be disjoint. The union and intersection of
n sets, Xj, X2, . . . , X„, are defined by

n

U X, = Xi U X 2 U • • • U X„ = {x | x e X,-, for some 1 = 1, 2 , n}
;=i
n

Q x(= x, n x2 n • ■ • n X„ = {* IX € X,-, for all / = 1 , 2......n },
1 = 1

respectively.
Subsets X ^ X2, X„ of a set X are said to partition X if

i) X = U X,
i=i

ii) Xj H X j = 0 , for 1 < i, j < n , and i ^ j .

For example, the set of even natural numbers (zero is considered even) and the set of odd
natural numbers partition N.

The difference of sets X and Y, X — Y, consists of the elements of X that are not in Y:

X - Y = { z | z € X a n d z £ Y } .

Let X be a subset of a universal set U. The com plem ent of X with respect to U is the set
of elements in U but not in X. In other words, the complement of X with respect to U is
the set U j— X. When the universe U is known, the complement of X with respect to U is
denoted X. The following identities, known as DeMorgan’s Laws, exhibit the relationships

1 0 C h a p t e r 1 M a th e m a t ic a l P re l im ina r ie s

between union, intersection, and complement when X and Y are subsets o f a set U and
complementation is taken with respect to U:

i) (X U Y) = X H Y

ii) (X n Y) = X U Y .

Example 1.1.2

Let X = {0, 1, 2, 3}, Y = {2, 3, 4, 5), and let X and Y denote the complement of X and Y
with respect to N. Then

X U Y = {0, 1, 2, 3, 4, 5} X = {n | n > 3}

X n Y = {2, 3} Y = {0, 1} U {n | n > 5}

X — Y = {0, 1} X H Y = {h | n > 5}

Y - X = {4, 5} (X U Y) = {« | n > 5}

The final two sets in the right-hand column exhibit the equality required by DeMorgan’s
Law. □

The definition of subset provides the method for proving that a set X is a subset of Y;
we must show that every element of X is also an element of Y. When X is finite, we can
explicitly check each element of X for membership in Y. When X contains infinitely many
elements, a different approach is needed. The strategy is to show that an arbitrary element
of X is in Y.

Example 1.1.3

We will show that X = {8 n — 1 1 n > 0} is a subset of Y = {2m + 1 1 m is odd). To gain a
better understanding of the sets X and Y, it is useful to generate some of the elements of X
and Y:

X : 8 - 1 - 1 = 7, 8 - 2 — 1 = 15, 8 - 3 - 1 = 23, 8 - 4 - 1 = 31, . . .

Y: 2 1 + 1 = 3, 2 - 3 + 1 = 7, 2 - 5 + 1 = 1 1 , 2 - 7 + 1 = 1 3 , . . .

To establish the inclusion, we must show that every element of X is also an element of Y.
An arbitrary element x of X has the form 8 n — 1, for some n > 0. Let m = 4n — 1. Then m
is an odd natural number and

2m + 1 = 2(4n - 1) + 1

= 8 w - 2 + 1

= 8n - 1

= x.

Thus x is also in Y and X C Y. □

1.2 C a r te s ia n P r o d u c t , R ela t ions , a n d F u n c t io n s 11

Set equality can be defined using set inclusion; sets X and Y are equal if X C Y and
Y C X. This simply states that every element of X is also an element of Y and vice versa.
When establishing the equality of two sets, the two inclusions are usually proved separately
and combined to yield the equality.

Example 1.1.4

We prove that the sets

X = {n | n = m 2 for some natural number m > 0}

Y = [n2 + 2n + 1 1 rt > 0}

are equal. First, we show that every element of X is also an element of Y. Let x G X; then
x = m 2 for some natural number m > 0. Let m j be that number. Then x can be written

x = (m0) 2

= (m0 - 1 + l) 2

= (m0 — l)2 + 2(m o — 1) + 1.

Letting n = m 0 — 1, we see that x = rt2 + 2rt + 1 with rt > 0. Consequently, x is a member
of the set Y.

We now establish the opposite inclusion. Let y = (n0) 2 + 2«q + 1 be an element of Y.
Factoring yields y = (n0 + l)2. Thus y is the square of a natural number greater than zero
and therefore an element of X.

Since X c Y and Y c X, we conclude that X = Y. □

1.2 Cartesian Product, Relations, and Functions

The Cartesian product is a set operation that builds a set consisting of ordered pairs of
elements from two existing sets. The Cartesian product of sets X and Y, denoted X x Y, is
defined by

X x Y = {[*, y] \ x 6 X and y e Y}.

A binary relation on X and Y is a subset of X x Y. The ordering of the natural numbers
can be used to generate a relation LT (less than) on the set N x N. This relation is the subset
of N x N defined by

LT = {[«', j] | i < j and /, j e N}.

The notation [i, j] € LT indicates that i is less than j , for example, [0, 1], [0, 2] € LT and
[1, 1] £ LT.

1 2 C h a p t e r 1 M a th e m a t ic a l P re l im in a r ie s

The Cartesian product can be generalized to construct new sets from any finite number
of sets. If x t, x2, . . ■ , xn are n elements, then [*,, * 2 x„] is called an ordered n-tuple.
An ordered pair is simply another name for an ordered 2-tuple. Ordered 3-tuples, 4-tuples,
and 5 -tuples are commonly referred to as triples, quadruples, and quintuples, respectively.
The Cartesian product of n sets Xj, X2 , . . . , X„ is defined by

X, x X2 x • • • x X„ = {[*,, x 2......... x„] | x, 6 X „ for i = 1, 2 , . . . , n}.

An n -ary relation on X |, X2, . . . , X„ is a subset o fX , x X2 x - ■ ■ x X„. 1-ary, 2-ary, and
3 -ary relations are called unary, binary, and ternary, respectively.

Example 1.2.1

Let X = {1, 2, 3} and Y = [a, b\. Then

a) X x Y = {[1, a], [1 , H [2, a], [2, b], [3, a], [3, *]}

b) Y x X = {[a, 1], [a, 2], [a, 3], [b, 1], [b, 2], [b , 3]}

c) Y x Y = {[a, a], [a, b], [b, a], [b, fc]}

d) X x Y x Y = {[1, a, a], [1, b, a], [2, a , a], [2, b , a], [3, a, a), [3, b, a],
[1, a, b], [1, b , b], [2, a, b], [2, b, b], [3, a, b], [3, b, b]} □

Informally, a function from a set X to a set Y is a mapping of elements o f X to elements
of Y in which each element of X is mapped to at most one element of Y. A function / from
X to Y is denoted / : X —► Y. The element of Y assigned by the function / to an element
x e X is denoted / (x) . The set X is called the domain of the function and the elements
of X are the arguments or operands of the function / . The range of / is the subset of Y
consisting of the members of Y that are assigned to elements of X. Thus the range of a
function / : X -» Y is the set {y e Y | y = f (x) for some x € X).

The relationship that assigns to each person his or her age is a function from the set of
people to the natural numbers. Note that an element in the range may be assigned to more
than one element of the domain— there are many people who have the same age. Moreover,
not all natural numbers are in the range of the function; it is unlikely that the number 1 0 0 0

is assigned to anyone.
The domain of a function is a set, but this set is often the Cartesian product of two or

more sets. A function

/ : X, x X 2 x • • ■ x X„ - ► Y

is said to be an n-variable function or operation. The value of the function with variables
X|, * 2 , is denoted f (x x 2 x„). Functions with one, two, or three variables
are often referred to as unary, binary, and ternary operations. The function sq : N —► N
that assigns n2 to each natural number is a unary operation. When the domain of a function
consists of the Cartesian product of a set X with itself, the function is simply said to be a
binary operation on X. Addition and multiplication are examples of binary operations on N.

1.2 C a r te s ia n P ro d u c t , R ela t ions , a n d F u n c t io n s 1 3

A function / relates members of the domain to members of the range of / . A natural
definition of function is in terms of this relation. A total function / from X to Y is a binary
relation on X x Y that satisfies the following two properties:

i) For each x € X, there is a y e Y such that [*, y] e / .

ii) If [x, >>,] 6 / and [*, y2] € / , then y, = y2.

Condition (i) guarantees that each element of X is assigned a member of Y, hence the term
total. The second condition ensures that this assignment is unique. The previously defined
relation LT is not a total function since it does not satisfy the second condition. A relation
on N x N representing greater than fails to satisfy either of the conditions. Why?

Example 1.2.2

Let X = {1, 2, 3} and Y = {a, b). The eight total functions from X to Y are listed below.

x f i x) X f (x) X f (x) x f i x)

1 a 1 a 1 a 1 b

2 a 2 a 2 b 2 a

3 a 3 b 3 a 3 a

X f i x) X f (x) X f i x) X f i x)

1 a 1 b 1 b 1 b

2 b 2 a 2 b 2 b

3 b 3 b 3 a 3 b

V A partial function / from X to Y is a relation on X x Y in which y x — y2 whenever
U.ViJ € / and [;r, _v2] 6 / . A partial function / is defined for an argument x if there is a
y G Y such that [*, y] e / . Otherwise, / is undefined for x. A total function is simply a
partial function defined for all elements of the domain.

Although functions have been formally defined in terms of relations, we will use the
standard notation / (*) = y to indicate that y is the value assigned to x by the function / , that
is, that [*, y] € / . The notation f (x) f indicates that the partial function / is undefined for
the argument x. The notation / (x) I is used to show that / (*) is defined without explicitly
giving its value.

Integer division defines a binary partial function div from N x N to N. The quotient
obtained from the division of i by j , when defined, is assigned to div(i, j) . For example,
div(3, 2) = 1, div(4, 2) = 2, and div(1, 2) = 0. Using the previous notation, div(i, 0) | and
div(i, j) | for all values of j other than zero.

A total function / : X —* Y is said to be one-to-one if each element o f X maps to a
distinct element in the range. Formally, / is one-to-one if x t ^ x 2 implies / (* ,) ^ f (x2).
A function / : X -> Y is said to be onto if the range of / is the entire set Y. A total function

1 4 C h a p t e r 1 M a th e m a t ic a l P re l im in a r ie s

that is both one-to-one and onto defines a correspondence between the elements of domain

and the range.

Example 1.2.3

The functions / , g, and s are defined from N to N - {0}. the set of positive natural numbers,

i) / («) = 2 n + l

... , . f 1 i f n = 0

“ > * < " > = („ otherwise

iii) s(n) = n + 1

The function / is one-to-one but not onto; the range of / consists of the odd numbers.
The mapping from N to N - {0} defined by g is clearly onto but not one-to-one since
g(0) = g (l) = 1. The function s is both one-to-one and onto, defining a correspondence
that maps each natural number to its successor. □

Example 1.2.4

In the preceding example we noted that the function f (n) = 2n + 1 is one-to-one, but not
onto the set N — {0}. It is, however, a mapping from N to the set of odd natural numbers
that is both one-to-one and onto. We will use / to demonstrate how to prove that a function
has these properties.

One-to-one: To prove that a function is one-to-one, we show that n and m must be the same
whenever f (n) = f (m) . The assumption f (n) — / (m) yields,

2n + 1 = 2m + 1 or

2n = 2m, and finally,

n = m.

It follows that n ^ m implies f (n)J= f (m), and / is one-to-one.

Onto: To establish that / maps N onto the set of odd natural numbers, we must show that
every odd natural number is in the range of / . If m is an odd natural number, it can be
written m = 2n + 1 for some n e N. Then f (n) = 2n + 1 = m and m is in the range of / .

□

1.3 Equivalence Relations

A binary relation over a set X has been formally defined as a subset of the Cartesian product
X x X. Informally, we use a relation to indicate whether a property holds between two
elements of a set. An ordered pair is in the relation if its elements satisfy the prescribed
condition. For example, the property is less than defines a binary relation on the set of
natural numbers. The relation defined by this property is the set LT = {[/, j] | i < j }.

1.3 E qu iva le nc e R e la t io n s 1 5

Infix notation is often used to express membership in many common binary relations.
In this standard usage, i < j indicates that i is less than j and consequently the pair [i, j]

is in the relation LT defined above.
We now consider a type of relation, known as an equivalence relation, that can be used

to partition the underlying set. Equivalence relations are generally denoted using the infix
notation a = b to indicate that a is equivalent to b.

Definition 1.3.1

A binary relation = over a set X is an equivalence relation if it satisfies

i) Reflexivity: a = a, for all a € X

ii) Symmetry: a = b implies b = a, for all a, b € X

iii) Transitivity: a = b and b = c implies a = c, for all a, b, c e X.

Definition 1.3.2

Let = be an equivalence relation over X. The equivalence class of an element a € X defined
by the relation = is the set [a]s = {b e X | a = b).

Example 1.3.1

Let = P be the parity relation over N defined by n = P m if, and only if, n and m have the
same parity (even or odd). To prove that = P is an equivalence relation, we must show that
it is symmetric, reflexive, and transitive.

i) Reflexivity: For every natural number n, n has the same parity as itself and n = P n.

ii) Symmetry: If n = P m, then n and m have the same parity and m = P n.

iii) Transitivity: If n = P m and m = P k, then n and m have the same parity and m and k
have the same parity. It follows that n and k have the same parity and n = P k.

The two equivalence classes of the parity relation = P are [0]=p = {0, 2, 4, . . .} and [l] . p =
{1, 3 , 5 , . . . } . □

An equivalence class is usually written [a]E, where a is an element in the class. In the
preceding example, [0]_p was used to represent the set of even natural numbers. Lemma
1.3.3 shows that if a = b, then [a]s = [£>]_. Thus the element chosen to represent the class
is irrelevant.

Lemma 1.3.3

Let = be an equivalence relation over X and let a and b be elements of X. Then either
[fl]. = tb]m or [a]s n [b]s = 0 .

Proof. Assume that the intersection of [a]= and [£>]„ is not empty. Then there is some
element c that is in both of the equivalence classes. Using symmetry and transitivity, we
show that [6]= c [a]= . Since c is in both [a]m and [b]_, we know a = c and b = c. By
symmetry, c = b. Using transitivity, we conclude that a = b.

1 6 C h a p te r 1 M a th e m a t ic a l P re l im ina r ie s

Now let d be any element in [b\m. Then b = d. The combination of a = b, b = d, and
transitivity yields a = d . That is, d € [a]_. We have shown that every element in [b]B is
also in [a]m, so [fc]= c [a]s . By a similar argument, we can establish that [a]_ c The
two inclusions combine to produce the desired set equality. ■

Theorem 1.3.4

Let = be an equivalence relation over X. The equivalence classes of = partition X.

Proof. By Lemma 1.3.3, we know that the equivalence classes form a disjoint family of
subsets of X. Let a be any element of X. By reflexivity, a e [a]*. Thus each element of X
is in one of the equivalence classes. It follows that the union of the equivalence classes is
the entire set X. ■

vc---
1.4 Countable and Uncountable Sets

Cardinality is a measure that compares the size of sets. Intuitively, the cardinality of a set is
the number of elements in the set. This informal definition is sufficient when dealing with
finite sets; the cardinality can be obtained by counting the elements of the set. There are
obvious difficulties in extending this approach to infinite sets.

Two finite sets can be shown to have the same number of elements by constructing a
one-to-one correspondence between the elements of the sets. For example, the mapping

a — ► 1

fc— ► 2

c — ► 3

demonstrates that the sets {a, b, c} and {1, 2, 3} have the same size. This approach, com
paring the size of sets using mappings, works equally well for sets with a finite or infinite
number of members.

Definition 1.4.1

i) Two sets X and Y have the same cardinality if there is a total one-to-one function from
X onto Y.

ii) The cardinality of a set X is less than or equal to the cardinality of a set Y if there is
total one-to-one function from X into Y.

Note that the two definitions differ only by the extent to which the mapping covers the set Y.
If the range of the one-to-one mapping is all of Y, then the two sets have the same cardinality.

The cardinality of a set X is denoted card(X). The relationships in (i) and (ii) are
denoted card(X) = card(Y) and card(X) < card(Y), respectively. The cardinality of X is
said to be strictly less than that of Y, written card(X) < card(Y), if card(X) < card(Y) and
card(X) / card(Y). The Schroder-Bemstein Theorem establishes the familiar relationship
between < and = for cardinality. The proof of the Schroder-Bemstein Theorem is left as
an exercise.

1.4 Countable and Uncountable Sets 1 7

Theorem 1.4.2 (Schrdder-Bemstein)

If card(X) < card(Y) and card(Y) < card(X), then card(X) = card{Y).

The cardinality of a finite set is denoted by the number of elements in the set. Thus
card([a, fc}) = 2. A set that has the same cardinality as the set of natural numbers is said
to be countably infinite or denumerable. Intuitively, a set is denumerable if its members
can be put into an order and counted. The mapping / that establishes the correspondence
with the natural numbers provides such an ordering; the first element is / (0), the second
/ (l) , the third / (2) , and so on. The term countable refers to sets that are either finite or
denumerable. A set that is not countable is said to be uncountable.

The set N — {0} is countably infinite; the function s(n) = n + 1 defines a one-to-one
mapping from N onto N — {0}. It may seem paradoxical that the set N — {0}, obtained
by removing an element from N, has the same number of elements of N. Clearly, there is
no one-to-one mapping of a finite set onto a proper subset of itself. It is this property that
differentiates finite and infinite sets.

Definition 1.4.3

A set is infinite if it has a proper subset of the same cardinality.

Example 1.4.1

The set of odd natural numbers is countably infinite. The function f { n) = 2n + 1 from
Example 1.2.4 establishes the one-to-one correspondence between N and the odd numbers.

□

A set is countably infinite if its elements can be put in a one-to-one correspondence
with the natural numbers. A diagram of a mapping from N onto a set graphically illustrates
the countability of the set. The one-to-one correspondence between the natural numbers
and the set of all integers

. . . -3 -2 -1 0 1 2 3 . . .

1 8 C h a p t e r 1 M a th e m a t ic a l P re l im in a r ie s

exhibits the countability of the set of integers. This correspondence is defined by the function

. . . | div(n, 2) + 1 if n is odd
J (”) — j _ 2) if n is even.

Example 1.4.2

The points of an infinite two-dimensional grid can be used to show that N x N, the set of
ordered pairs of natural numbers, is denumerable. The grid is constructed by labeling the
axes with the natural numbers. The position defined by the i th entry on the horizontal axis
and the j th entry on the vertical axis represents the ordered pair [i, j].

The elements of the grid can be listed sequentially by following the arrows in the diagram.
This creates the correspondence

0 1 2 3 4 5 6 7

[0 , 0] [0 , 1] [1 , 0] [0 , 2] [1, 1] [2 , 0] [0 ,3] [1 , 2] . . .

that demonstrates the countability of N x N. The one-to-one correspondence outlined above
maps the ordered pair [i, j] to the natural number ((/' + j) (i + j + l) / 2) + i. □

The sets of interest in language theory and computability are almost exclusively finite
or denumerable. We state, without proof, several closure properties of countable sets.

Theorem 1.4.4

i) The union of two countable sets is countable.

ii) The Cartesian product of two countable sets is countable.

1.4 Countable and Uncountable Sets 1 9

iii) The set of finite subsets of a countable set is countable.

iv) The set of finite-length sequences consisting of elements of a nonempty countable set
is countably infinite.

The preceding theorem indicates that the property of countability is retained under
many standard set-theoretic operations. Each of these closure results can be established by
constructing a one-to-one correspondence between the new set and a subset of the natural
numbers.

A set is uncountable if it is impossible to sequentially list its members. The following
proof technique, known as Cantor's diagonalization argument, is used to show that there
is an uncountable number of total functions from N to N. Two total functions / : N —>• N
and g : N —>■ N are equal if they have the same value for every element in the domain. That
is. / = g if / («) = g(n) for all n € N. To show that two functions are distinct, it suffices
to find a single input value for which the functions differ.

Assume that the set of total functions from the natural numbers to the natural numbers
is denumerable. Then there is a sequence / q, f i , f i , ■ ■ ■ that contains all the functions. The
values of the functions are exhibited in the two-dimensional grid with the input values on
the horizontal axis and the functions on the vertical axis.

0 1 2 3 4

fo /o(0) /oU) /o(2) /oO) /o<4>

A / i(0) / l (l) / i(2) /] (3) W)

f i / 2(0) / a d) W) h i 3) / j W

h / j (0) / j (l) M 2) / j(3) W)

U / 4(0) / . (D u m /«(3) f* W

Consider the function / : N —»■ N defined by f (n) = /„ («) + 1. The values of / are
obtained by adding 1 to the values on the diagonal of the grid, hence the name diagonaliza
tion. By the definition of / , / (i) ^ / , (i) for every i. Consequently, / is not in the sequence
/„ , f \ , f i , • ■ • • This is a contradiction since the sequence was assumed to contain all the
total functions. The assumption that the number of functions is countably infinite leads to
a contradiction. It follows that the set is uncountable.

Diagonalization is a general proof technique for demonstrating that a set is not count
able. As seen in the preceding example, establishing uncountability using diagonalization
is a proof by contradiction. The first step is to assume that the set is countable and there
fore its members can be exhaustively listed. The contradiction is achieved by producing
a member of the set that cannot occur anywhere in the list. No conditions are put on the
listing of the elements other than that it must contain all the elements of the set. Producing
a contradiction by diagonalization shows that there is no possible exhaustive listing of the
elements and consequently that the set is uncountable. This technique is exhibited again in
the following examples.

20 C h a p t e r 1 M a th e m a t ic a l P re l im ina r ie s

Example 1.4.3

A function / from N to N has a fixed point if there is some natural number i such that
/ (/) = i. For example, f (n) = n2 has fixed points 0 and 1, while f (n) = n2 + 1 has no
fixed points. We will show that the number of functions that do not have fixed points is
uncountable. The argument is similar to the proof that the number of all functions from N
to N is uncountable, except that we now have an additional condition that must be met when
constructing an element that is not in the listing.

Assume that the number of the functions without fixed points is countable. Then these
functions can be listed f 0, / (, / 2, To obtain a contradiction to our assumption that the
set is countable, we construct a function that has no fixed points and is not in the list. Consider
the function / (/i) = /„ («) + n + 1. The addition of n + 1 in the definition o f / ensures that
f (n) > n for all n. Thus / has no fixed points. By an argument similar to that given above,
/ (i) ^ fj (i) for all i. Consequently, the listing f 0, fa, fa, . . . is not exhaustive, and we
conclude that the number of functions without fixed points is uncountable. □

Example 1.4.4

CP(N), the set of subsets of N, is uncountable. Assume that the set of subsets of N is
countable. Then they can be listed N0, Nj, N2Define a subset D of N as follows: For
every natural number j ,

j € D if, and only if, y £ N^.

By our construction, 0 € D if 0 ^ Nq, l e D i f l ^ N], and so on. The set D is clearly a set of
natural numbers. By our assumption, N0, N[, N2, . . . is an exhaustive listing of the subsets
of N. Hence, D = N,- for some i . Is the number i in the set D? By definition of D,

i € D if, and only if, i & Nf.

But since D = N,-, this becomes

/ 6 D if, and only if, i £ D,

which is a contradiction. Thus, our assumption that TfN) is countable must be false and we
conclude that 9 (N) is uncountable.

To appreciate the “diagonal” technique, consider a two-dimensional grid with the
natural numbers on the horizontal axis and the vertical axis labeled by the sets N0, N h
N2 The position of the grid designated by row N, and column j contains yes if j e N,-.
Otherwise, the position defined by N, and column j contains no. The set D is constructed by
considering the relationship between the entries along the diagonal of the grid: the number
j and the set N^. By the way that we have defined D, the number j is an element of D if,
and only if, the entry in the position labeled by N; and j is no. □

1.5 Diagonalization and Self-Reference 21

1.5 Diagonalization and Self-Reference

In addition to its use in cardinality proofs, diagonalization provides a method for demon
strating that certain properties or relations are inherently contradictory. These results are
used in nonexistence proofs since there can be no object that satisfies such a property. Di
agonalization proofs of nonexistence frequently depend upon contradictions that arise from
self-reference— an object analyzing its own actions, properties, or characteristics. Russell’s
paradox, the undecidability of the Halting Problem for Turing Machines, and Godel’s proof
of the undecidability of number theory are all based on contradictions associated with self
reference.

The diagonalization proofs in the preceding section used a table with operators listed
on the vertical axis and their arguments on the horizontal axis to illustrate the relationship
between the operators and arguments. In each example, the operators were of a different
type than their arguments. In self-reference, the same family of objects comprises the
operators and their arguments. We will use the barber’s paradox, an amusing simplification
of Russell’s paradox, to illustrate diagonalization and self-reference.

The barber’s paradox is concerned with who shaves whom in a mythical town. We are
told that every man who is able to shave himself does so and that the barber of the town
(a man himself) shaves all and only the people who cannot shave themselves. We wish to
consider the possible truth of such a statement and the existence of such a town. In this case,
the set of males in the town make up both the operators and the arguments; they are doing
the shaving and being shaved. Let M = [ph p 2, p$......... ph . . . } be the set of all males in
the town. A tabular representation of the shaving relationship has the form

Pi Pi Pi ■ ■ ■ Pi

P i

P2

Pi

Pi

where the /', j th position of the table has a 1 if p, shaves p j and a 0 otherwise. Every column
will have one entry with a 1 and all the other entries will be 0 ; each person either shaves
himself or is shaved by the barber. The barber must be one of the people in the town, so
he is pi for some value i. What is the value of the position i, i in the table? This is classic
self-reference; we are asking what occurs when a particular object is simultaneously the
operator (the person doing the shaving) and the operand (the person being shaved).

Who shaves the barber? If the barber is able to shave himself, then he cannot do so since
he shaves only people who are unable to shave themselves. If he is unable to shave himself,

22 C h a p te r 1 M a th e m a t ic a l P re l im ina r ie s

then he must shave himself since he shaves everyone who cannot shave themselves. We
have shown that the properties describing the shaving habits of the town are contradictory

so such a town cannot exist.
Russell’s paradox follows the same pattern, but its consequences were much more

significant than the nonexistence of a mythical town. One of the fundamental tenets of
set theory as proposed by Cantor in the late 1800s was that any property or condition that
can be described defines a set— the set of objects that satisfy the condition. There may be
no objects, finitely many, or infinitely many that satisfy the property, but regardless of the
number or the type of elements, the objects form a set. Russell devised an argument based
on self-reference to show that this claim cannot be true.

The relationship examined by Russell’s paradox is that of the membership of one set
in another. For each set X we ask the question, “Is a set Y an element of X?” This is not
an unreasonable question, since one set can certainly be an element of another. The table
below gives both some negative and positive examples of this question.

X Y Y e X ?

(a) {a) no

{(a), b) {«} yes

{{«).«. 0) 0 yes

{{a. *}. {a}) {{all no

{{{*}.&), b) {{«). b) yes

It is important to note that the question is not whether Y is a subset of X, but whether it is
an element of X.

The membership relation can be depicted by the table

X, X2 X3 . . . X,

x , n I I ~ ~
X2

X3

X,

where axes are labeled by the sets. A table entry [i, j] is 1 if X; is an element of X,- and 0
if X j is not an element of X, .

A question of self-reference can be obtained by identifying the operator and the operand
in the membership question. That is, we ask if a set X, is an element of itself. The diagonal
entry [/, i] in the preceding table contains the answer to the question, “Is X, an element of
X,?" Now consider the property that a set is not an element of itself. Does this property
define a set? There are clearly examples of sets that satisfy the property; the set {a} is not

1.6 R ecurs ive D e f in i t io n s 23

an element of itself. The satisfaction of the property is indicated by the complement of the
diagonal. A set X, is not an element of itself if, and only if, entry [/, i] is 0.

Assume that S = {X | X <f. X} is a set. Is S in S? If S is an element of itself, then it is
not in S by the definition of S. Moreover, if S is not in S, then it must be in S since it is not
an element of itself. This is an obvious contradiction. We were led to this contradiction by
our assumption that the collection of sets that satisfy the property X ^ X form a set.

We have constructed a describable property that cannot define a set. This shows that
Cantor’s assertion about the universality of sets is demonstrably false. The ramifications of
Russell’s paradox were far-reaching. The study of set theory moved from a foundation based
on naive definitions to formal systems of axioms and inference rules and helped initiate the
formalist philosophy of mathematics. In Chapter 12 we will use self-reference to establish
a fundamental result in the theory of computer science, the undecidability of the Halting
Problem.

1.6 Recursive Definitions

Many, in fact most, of the sets of interest in formal language and automata theory contain
an infinite number of elements. Thus it is necessary that we develop techniques to describe,
generate, or recognize the elements that belong to an infinite set. In the preceding section we
described the set of natural numbers utilizing ellipsis dots (. . .) . This seemed reasonable
since everyone reading this text is familiar with the natural numbers and knows what comes
after 0, 1 ,2 , 3 . However, this description would be totally inadequate for an alien unfamiliar
with our base 10 arithmetic system and numeric representations. Such a being would have
no idea that the symbol 4 is the next element in the sequence or that 1492 is a natural
number.

In the development of a mathematical theory, such as the theory o f languages or
automata, the theorems and proofs may utilize only the definitions of the concepts of that
theory. This requires precise definitions of both the objects of the domain and the operations.
A method of definition must be developed that enables our friend the alien, or a computer
that has no intuition, to generate and “understand” the properties of the elements of a set.

A recursive definition of a set X specifies a method for constructing the elements
of the set. The definition utilizes two components: a basis and a set of operations. The
basis consists of a finite set of elements that are explicitly designated as members of X.
The operations are used to construct new elements of the set from the previously defined
members. The recursively defined set X consists of all elements that can be generated from
the basis elements by a finite number of applications of the operations.

The key word in the process of recursively defining a set is generate. Clearly, no
process can list the complete set of natural numbers. Any particular number, however, can be
obtained by beginning with zero and constructing an initial sequence of the natural numbers.
This intuitively describes the process of recursively defining the set of natural numbers. This
idea is formalized in the following definition.

24 C h a p t e r 1 M a th e m a t ic a l P re l im ina r ie s

Definition 1.6.1

A recursive definition of N, the set of natural numbers, is constructed using the successor

function s.

i) Basis: 0 € N.

ii) Recursive step: If n e N, then s(n) e N.

iii) Closure: n e N only if it can be obtained from 0 by a finite number of applications of
the operation s.

The basis explicitly states that 0 is a natural number. In (ii), a new natural number
is defined in terms of a previously defined number and the successor operation. The clo
sure section guarantees that the set contains only those elements that can be obtained
from 0 using the successor operator. Definition 1.6.1 generates an infinite sequence 0,
5 (0), j(s(0)), j(s (s (0)))This sequence is usually abbreviated 0 , 1 , 2 , 3How
ever, anything that can be done with the familiar Arabic numerals could also be done with
the more cumbersome unabbreviated representation.

The essence of a recursive procedure is to define complicated processes or structures
in terms of simpler instances of the same process or structure. In the case of the natural
numbers, “simpler” often means smaller. The recursive step of Definition 1.6 .1 defines a
number in terms of its predecessor.

The natural numbers have now been defined, but what does it mean to understand their
properties? We usually associate operations of addition, multiplication, and subtraction with
the natural numbers. We may have learned these by brute force, either through memorization
or tedious repetition. For the alien or a computer to perform addition, the meaning of “add”
must be appropriately defined. One cannot memorize the sum of all possible combinations
of natural numbers, but we can use recursion to establish a method by which the sum of any

two numbers can be mechanically calculated. The successor function is the only operation
on the natural numbers that has been introduced. Thus the definition of addition may use
only 0 and s.

Definition 1.6.2

In the following recursive definition of the sum of m and n, the recursion is done on n, the
second argument of the sum.

i) Basis: If n = 0, then m + n = m.

ii) Recursive step: m + s(n) = s(m + n).

iii) Closure: m + n = k only if this equality can be obtained from rn + 0 = m using finitely
many applications of the recursive step.

The closure step is often omitted from a recursive definition of an operation on a given
domain. In this case, it is assumed that the operation is defined for all the elements of the
domain. The operation of addition given above is defined for all elements of N x N.

The sum of m and the successor of n is defined in terms of the simpler case, the sum of
m and n, and the successor operation. The choice of n as the recursive operand was arbitrary;
the operation could also have been defined in terms of m, with n fixed.

1.6 R ecurs ive D e f in i t io n s 25

Following the construction given in Definition 1.6.2, the sum of any two natural
numbers can be computed using 0 and s, the primitives used in the definition of the natural
numbers. Example 1.6.1 traces the recursive computation of 3 + 2.

Example 1.6.1

The numbers 3 and 2 abbreviate s(s(s(0))) and j (5 (0)), respectively. The sum is computed
recursively by

5 (5 (5 (0))) + 5 (s(0))

= i (5 (s(5 (0))) + j (0))

= s(i(5(5(s(0))) + 0))

= s(s(s(s(s(0))))) (basis case).

This final value is the representation of the number 5. □

Figure 1.1 illustrates the process of recursively generating a set X from basis Xq. Each of
the concentric circles represents a stage of the construction. X, represents the basis elements
and the elements that can be obtained from them using a single application of an operation
defined in the recursive step. X,- contains the elements that can be constructed with i or
fewer operations. The generation process in the recursive portion of the definition produces
a countably infinite sequence of nested sets. The set X can be thought of as the infinite union
of the X, ’s. Let x be an element of X and let X j be the first set in which x occurs. This
means that x can be constructed from the basis elements using exactly j applications of the
operators. Although each element of X can be generated by a finite number o f applications of

the operators, there is no upper bound on the number of applications needed to generate the
entire set X. This property, generation using a finite but unbounded number of operations,
is a fundamental property of recursive definitions.

The successor operator can be used recursively to define relations on the set N x N. The
Cartesian product N x N is often portrayed by the grid of points representing the ordered
pairs. Following the standard conventions, the horizontal axis represents the first component
of the ordered pair and the vertical axis the second. The shaded area in Figure 1.2(a) contains
the ordered pairs [/, j] in which i < j . This set is the relation LT, less than, that was described
in Section 1.2.

Example 1.6.2

The relation LT is defined as follows:

i) Basis: [0, 1] € LT.

ii) Recursive step: If [m, n] e LT, then [m, s(n)] e LT and [s(/«), f(«)] € LT.

iii) Closure: [m, n] € LT only if it can be obtained from [0, 1] by a finite number of
applications of the operations in the recursive step.

26 C h a p t e r 1 M a th e m a t ic a l P re l im ina r ie s

Recursive generation of X:

Xq = {jt | x is a basis element}
X, + i = X, U (at | at can be generated by < + 1 operations)
X = {a: | x € Xj for some j > 0}

FICURE 1.1 Nested sequence o f sets in recursive definition.

Using the infinite union description of recursive generation, the definition of LT gen
erates the sequence LTf of nested sets where

LT0 = ([0, 1]}

LT, = LT0 U {[0,2], [1,2]}

LT2 = LT, U {[0, 3], [1,3], [2,3]}

LT3 = LT2 U {[0,4], [1,4], [2,4], [3,4]}

L T ^ L T . ^ U { [; ,/ + !] | 7 = 0 , 1......... i)

□

The construction of LT shows that the generation of an element in a recursively defined
set may not be unique. The ordered pair [1, 3] € LT2 is generated by the two distinct
sequences of operations:

Basis

1

2

[0, 1]

[0 , s (l)] = [0 , 2]

[5(0), 5(2)] = [1, 3]

[0, 1]

[5(0), 5(1)] = [1 , 2]

[1,5(2)] = [1,3],

1.7 M a th e m a t ic a l I n d u c t io n 27

0 1 2 3

(a)

4 5

(b)

6 7 8 9

FICURE 1.2 Relations on N x N.

Example 1.6.3

The shaded area in Figure 1.2(b) contains all the ordered pairs with second component 3,
4, 5, or 6 . A recursive definition of this set, call it X, is given below.

i) Basis: [0, 3], [0, 4], [0, 5], and [0, 6] are in X.

ii) Recursive step: If [m, n] 6 X, then [5 (m), n] € X.

iii) Closure: [m , n] 6 X only if it can be obtained from the basis elements by a finite number
of applications of the operation in the recursive step.

The sequence of sets X, generated by this recursive process is defined by

X, = {[;, 3], [j, 4], [j, 5], [j, 6] | j = 0, 1 , . . . , / } .

1.7 Mathematical Induction

Establishing relationships between the elements of sets and operations on the sets requires
the ability to construct proofs that verify the hypothesized properties. It is impossible to
prove that a property holds for every member in an infinite set by considering each element
individually. The principle of mathematical induction gives sufficient conditions for proving
that a property holds for every element in a recursively defined set. Induction uses the family
of nested sets generated by the recursive process to extend a property from the basis to the
entire set.

28 C h a p t e r 1 M a th e m a t ic a l P re l im ina r ie s

Principle o f Mathematical Induction Let X be a set defined by recursion from the basis Xq
and let Xq, X,, X2X, , . . . be the sequence of sets generated by the recursive process.
Also let P be a property defined on the elements of X. If it can be shown that

i) P holds for each element in Xq,

ii) whenever P holds for every element in the sets X<), X], . . . ,X ,-,P also holds for every

element in Xl+1,

then, by the principle of mathematical induction, P holds for every element in X.

The soundness of the principle of mathematical induction can be intuitively exhibited
using the sequence of sets constructed in the recursive definition of X. Shading the circle X,
indicates that P holds for every element of X ,. The first condition requires that the interior
set be shaded. Condition (ii) states that the shading can be extended from any circle to the
next concentric circle. Figure 1.3 illustrates how this process eventually shades the entire
set X.

The justification for the principle of mathematical induction should be clear from the
preceding argument. Another justification can be obtained by assuming that conditions (i)
and (ii) are satisfied but P is not true for every element in X. If P does not hold for all
elements of X, then there is at least one set X,- for which P does not universally hold. Let
X j be the first such set. Since condition (i) asserts that P holds for all elements of Xq, j
cannot be zero. Now P holds for all elements of Xy_j by our choice of j . Condition (ii)
then requires that P hold for all elements in X j. This implies that there is no first set in the
sequence for which the property P fails. Consequently, P must be true for all the X, ’s, and
therefore for X.

An inductive proof consists of three distinct steps. The first step is proving that the
property P holds for each element of a basis set. This corresponds to establishing condition
(i) in the definition of the principle of mathematical induction. The second is the statement
of the inductive hypothesis. The inductive hypothesis is the assumption that the property P
holds for every element in the sets Xq, X |...........X„. The inductive step then proves, using
the inductive hypothesis, that P can be extended to each element in Xn+(. Completing the
inductive step satisfies the requirements of the principle of mathematical induction. Thus,
it can be concluded that P is true for all elements of X.

In Example 1.6.2, a recursive definition was given to generate the relation LT, which
consists of ordered pairs [/, j] that satisfy i < j . Does every ordered pair generated by
the definition satisfy this inequality? We will use this question to illustrate the steps of an
inductive proof on a recursively defined set.

The first step is to explicitly show that the inequality is satisfied for all elements in the
basis. The basis of the recursive definition of LT is the set {[0, 1]}. The basis step of the
inductive proof is satisfied since 0 < 1 .

The inductive hypothesis states the assumption that x < y for all ordered pairs [x, y] e
LT„. In the inductive step we must prove that i < j for all ordered pairs [i, j] e LT„+1. The
recursive step in the definition of LT relates the sets LTn + 1 and LT„. Let [/, j] be an ordered

1.7 Mathematical Induction 29

FIGURE 1.3 Principle of mathematical induction.

pair in LTn+1. Then either [/, j] = [x, ^(>>)] or [/, j] = [.?(*), ■s(.y)] for some [jc, >] G LTn.
By the inductive hypothesis, x < y. If [i, j] = [jc, j(y)], then

i — x < y < *(;y) = j .

Similarly, if [/', 7] = [s(x), s(y)], then

i = 5(jc) < j(;y) = j .

30 C h a p t e r 1 M a th e m a t ic a l P re l im ina r ie s

In either case, i < j and the inequality is extended to all ordered pairs in LTn+1. This
completes the requirements for an inductive proof and consequently the inequality holds

for all ordered pairs in LT.
In the proof that every ordered pair [i, j] in the relation LT satisfies i < j , the inductive

step used only the assumption that the property was true for the elements generated by
the preceding application of the recursive step. This type of proof is sometimes referred
to as simple induction. When the inductive step utilizes the full strength o f the inductive
hypothesis— that the property holds for all the previously generated elements—the proof
technique is called strong induction. Example 1.7.1 uses strong induction to establish a
relationship between the number of operators and the number of parentheses in an arithmetic
expression.

Example 1.7.1

A set E of arithmetic expressions is defined recursively from symbols {a, b}, operators 4-
and —, and parentheses as follows:

i) Basis: a and b are in E.

ii) Recursive step: If u and v are in E, then (u + u), (u — v), and (—v) are in E.

iii) Closure: An expression is in E only if it can be obtained from the basis by a finite
number of applications of the recursive step.

The recursive definition generates the expressions (a + b), (a + (b + b)), ((a + a) —
(b — a)) in one, two, and three applications of the recursive step, respectively. We will use
induction to prove that the number of parentheses in an expression u is twice the number
of operators. That is, n p(u) = 2n0(u), where n p(u) is the number of parentheses in u and
n0(u) is the number of operators.

Basis: The basis for the induction consists of the expressions a and b. In this case,
np(a) = 0 = 2 n0(a) and n p(b) = 0 = 2 n0(b).

Inductive Hypothesis: Assume that np(u) = 2n0(u) for all expressions generated by n or
fewer iterations of the recursive step, that is, for all u in E„.

Inductive Step: Let w be an expression generated by n + 1 applications o f the recursive
step. Then w = (u + v), w = (u — v), or w = (—u) where u and v are strings in E„. By the
inductive hypothesis,

n p(u) = 2 n0(u)

np(v) = 2n„(v).

If w = (u + v) or w = (u — v),

np(w) = n p(u) + np(v) + 2

n„(w) = na(u) + na(v) + 1 .

1.7 Mathematical Induction 31

Consequently,

2 na(w) = 2 na(u) + 2 n„(v) + 2 = n p(u) + n p(v) + 2 = np(u>).

If w = (—v), then

2 nB(w) = 2(n„(v) + 1) = 2 n0(v) + 2 = rtp(v) + 2 = n p(w).

Thus the property n p(w) = 2na(w) holds for all w e En+ 1 and we conclude, by mathemat
ical induction, that it holds for all expressions in E. □

Frequently, inductive proofs use the natural numbers as the underlying recursively
defined set. A recursive definition of this set with basis {0} is given in Definition 1.6.1. The
nth application of the recursive step produces the natural number n, and the corresponding
inductive step consists of extending the satisfaction of the property under consideration
from 0 tt to n + 1 .

Example 1.7.2

Induction is used to prove that 0 + 1 + • • • + n = n(n + l)/2 . Using the summation nota
tion, we can write the preceding expression as

n

£ i = n (n + l) / 2 .
(= 0

Basis: The basis is n = 0. The relationship is explicitly established by computing the values
of each of the sides of the desired equality.

o

= 0 = 0 (0 + l) / 2 .
1= 0

Inductive Hypothesis: Assume for all values k = 1 , 2 , . . . , n that

k

£ « = * (* + l) / 2 .
1=0

Inductive Step: We need to prove that

n+l

£ i = (n + 1)(« + 1 + l) / 2 = (n + l)(n + 2) / 2 .
1=0

32 C h a p te r 1 M a th e m a t ic a l P re l im ina r ie s

The inductive hypothesis establishes the result for the sum of the sequence containing n
or fewer integers. Combining the inductive hypothesis with the properties of addition, we

obtain

n+ 1 n
£ / = £ , + (« + 1)

;=o ;=o

= n(ji + l) / 2 + {n + 1)

= (R + l) (« / 2 + 1)

= (n + l)(n + 2) / 2 .

Since the conditions of the principle of mathematical induction have been established, we
conclude that the result holds for all natural numbers. □

Each step in the proof must follow from previously established properties of the
operators or the inductive hypothesis. The strategy of an inductive proof is to manipulate
the formula to contain an instance of the property applied to a simpler case. When this
is accomplished, the inductive hypothesis may be invoked. After the application of the
inductive hypothesis, the remainder of the proof often consists of algebraic manipulation
to produce the desired result.

1.S Directed Graphs

A mathematical structure consists of a set or sets, distinguished elements from the sets,
and functions and relations on the sets. A distinguished element is an element of a set that
has special properties that differentiate it from the other elements. The natural numbers, as
defined in Definition 1.6.1, can be expressed as a structure (N, s, 0). The set N contains
the natural numbers, 5 is a unary function on N, and 0 is a distinguished element of N. Zero
is distinguished because of its explicit role in the definition of the natural numbers.

Graphs are frequently used to portray the essential features of a mathematical entity
in a diagram, which aids the intuitive understanding of the concept. Formally, a directed
graph is a mathematical structure consisting of a set N and a binary relation A on N. The
elements of N are called the nodes, or vertices, of the graph and the elements of A are called
arcs.or edges. The relation A is referred to as the adjacency relation. A node y is said to
be adjacent to x when [x, y] e A. An arc from x to >• in a directed graph is depicted by an
arrow from x to y. Using the arrow metaphor, y is called the head of the arc and x the tail.
The in-degree of a node x is the number of arcs with * as the head. The out-degree of x is
the number of arcs with x as the tail. Node a in Figure 1.4 has in-degree two and out-degree
one.

A path from a node x to a node y in a directed graph G = (N, A) is a sequence of
nodes and arcs x0, [jc0, *i], j q , [j c j , x 2), x 2, . . . , *„], x„ of G w ith* = jr0 and
y = x„. The node x is the initial node of the path and y is the terminal node. Each pair

(associativity of +)

(inductive hypothesis)

(distributive property)

1.8 D ire c te d G r a p h s 33

N = [a, b, c,d) Node In-degree Out-degree

A = {la, b). lb, a], lb, c]. a 2 1

[b, d]. [c, H [c, d]. b 2 3

Id, a]. Id, d)} c 1 2

d 3 2

FIGURE 1.4 Directed graph.

of nodes x,-, Jt, + 1 in the path is connected by the arc [x,, xi+1]. The length o f a path is the
number of arcs in the path. We will frequently describe a path simply by sequentially listing
its arcs.

There is a path of length zero from any node to itself called the null path . A path
of length one or more that begins and ends with the same node is called a cycle. A cycle
is simple if it does not contain a cyclic subpath. The path [a, b], [b, c], [c, d], [d, a] in
Figure 1.4 is a simple cycle of length four. A directed graph containing at least one cycle is
said to be cyclic. A graph with no cycles is said to be acyclic.

The arcs of a directed graph often designate more than the adjacency of the nodes. A
labeled directed graph is a structure (N, L, A) where L is the set of labels and A is a relation
on N x N x L. An element [x, y, i>] e A is an arc from x to y labeled by v. The label
on an arc specifies a relationship between the adjacent nodes. The labels on the graph in
Figure 1.5 indicate the distances of the legs of a trip from Chicago to Minneapolis, Seattle,
San Francisco, Dallas, St. Louis, and back to Chicago.

An ordered tree, or simply a tree, is an acyclic directed graph in which each node is
connected by a unique path from a distinguished node called the root of the tree. The root
has in-degree zero and all other nodes have in-degree one. A tree is a structure (N, A, r)
where N is the set of nodes, A is the adjacency relation, and r e N is the root of the tree.
The terminology of trees combines a mixture of references to family trees and to those of
the arboreal nature. Although a tree is a directed graph, the arrows on the arcs are usually
omitted in the illustrations of trees. Figure 1.6(a) gives a tree T with root x t.

A node y is called a child of a node x, and x the parent of y, if y is adjacent to x.
Accompanying the adjacency relation is an order on the children of any node. When a tree
is drawn, this ordering is usually indicated by listing the children of a node in a left-to-right
manner according to the ordering. The order of the children of x2 in T is x4, x5, and x6.

34 C h a p t e r 1 M a th e m a t ic a l P re l im in a r ie s

FIGURE 1.5 Labeled directed graph.

A node with out-degree zero is called a leaf. All other nodes are referred to as internal
nodes. The depth of the root is zero; the depth of any other node is the depth of its parent
plus one. The height or depth of a tree is the maximum of the depths of the nodes in the
tree.

A node y is called a descendant of a node x , and x an ancestor of y, if there is a path
from x to y. With this definition, each node is an ancestor and descendant of itself. The
ancestor and descendant relations can be defined recursively using the adjacency relation
(Exercises 43 and 44). The minimal common ancestor of two nodes x and y is an ancestor
of both and a descendant of all other common ancestors. In the tree in Figure 1.6(a), the
minimal common ancestor of x 10 and * n is *5, of x 1 0 and x 6 is x 2, and of jc10 and * 1 4 is jcj.

A subtree of a tree T is a subgraph of T that is a tree in its own right. The set of
descendants of a node x and the restriction of the adjacency relation to this set form a
subtree with root x. This tree is called the subtree generated by x.

The ordering of siblings in the tree can be extended to a relation LEFTOF on N x N.
LEFTOF attempts to capture the property of one node being to the left o f another in the
diagram of a tree. For two nodes x and y, neither of which is an ancestor of the other,
the relation LEFTOF is defined in terms of the subtrees generated by the minimal common
ancestor of the nodes. Let z be the minimal common ancestor o f* and y and let z (, z2, . . . ,
z„ be the children of z in their correct order. Then x is in the subtree generated by one of the
children of z, call it z,. Similarly, y is in the subtree generated by Zj for some j . Since z is
the minimal common ancestor of x and y, i ^ j . i f ; < j , then [*, _y] e LEFTOF; [y, x] e
LEFTOF otherwise. With this definition, no node is LEFTOF one of its ancestors. If * 1 3

were to the left of x I2, then *) 0 must also be to the left of *5 , since they are both the first

1.8 D ire c te d G r a p h s 35

! \

(a) (b)

FIGURE 1.6 (a) Tree with root jc(. (b) Subtree generated by Xy

child of their parent. The appearance of being to the left or right of an ancestor is a feature
of the diagram, not a property of the ordering of the nodes.

The relation LEFTOF can be used to order the set of leaves of a tree. The frontier of
a tree is constructed from the leaves in the order generated by the relation LEFTOF. The
frontier of T is the sequence x9, x I0, x n , jr6, Af13, x 14, xg.

When a family of graphs is defined recursively, the principle of mathematical induction
can be used to prove that properties hold for all graphs in the family. We will use induction to
demonstrate a relationship between the number of leaves and the number of arcs in strictly
binary trees, trees in which each node is either a leaf or has two children.

Example 1.8.1

A tree in which each node has at most two children is called a binary tree. If each node is
a leaf or has exactly two children, the tree is called strictly binary. The family of strictly
binary trees can be defined recursively as follows:

i) Basis: A directed graph T = ({r}, 0, r) is a strictly binary tree.

ii) Recursive step: If T! = (Ni, A |, r () and T 2 = (N2, A2, r2) are strictly binary trees,
where Ni and N2 are disjoint and r & N(U N2, then

is a strictly binary tree.

iii) Closure: T is a strictly binary tree only if it can be obtained from the basis elements by
a finite number of applications of the construction given in the recursive step.

A strictly binary tree is either a single node or is constructed from two distinct strictly
binary trees by the addition of a root and arcs to the two subtrees. Let /v(T) and arc(T)
denote the number of leaves and arcs in a strictly binary tree T. We prove by induction that
2 /i>(T) — 2 = arc(T) for all strictly binary trees.

T = (N , U N 2 U{r}, A, U A2 U {[r, r j], [r, r2]}, r)

36 C h a p t e r 1 M a th e m a t ic a l P re l im ina r ie s

Basis: The basis consists of strictly binary trees of the form ({r}, 0, r). The equality clearly
holds in this case since a tree of this form has one leaf and no arcs.

Inductive Hypothesis: Assume that every strictly binary tree T generated by n or fewer
applications of the recursive step satisfies 2 / v(T) — 2 — arc(T).

Inductive Step: Let T be a strictly binary tree generated by n + 1 applications o f the recursive
step in the definition of the family of strictly binary trees. T is built from a node r and two
previously constructed strictly binary trees T] and T 2 with roots rx and r2, respectively.

r

The node r is not a leaf since it has arcs to the roots of T | and T2. Consequently, /t>(T) =
/v(T |) + /d(T2). The arcs of T consist of the arcs of the component trees plus the two arcs
from r.

Since T[and T 2 are strictly binary trees generated by n or fewer applications of the
recursive step, we may employ the inductive hypothesis to establish the desired equality.
By the inductive hypothesis,

2/u(T]) — 2 = arc(T[)

2 Iv (T2) - 2 = arc(T2).

Now,

arc(T) = arc(T[) + arc(T2) + 2

= 2 /t>(T,) - 2 + 2 lv (T2) - 2 + 2

= 2(/u(T |) + /d(T2)) — 2

= 2(/i>(T)) - 2,

as desired. n

Exercises

1. Let X = {1, 2, 3, 4} and Y = {0, 2, 4, 6). Explicitly define the sets described in parts
(a) to (e).

a) X U Y d) Y - X

b) X n Y e) 0>(X)

c) X - Y

Exerc ises 37

2. Let X = {a, b, c) and Y = {1, 2).

a) List all the subsets of X.

b) List the members of X x Y.

c) List all total functions from Y to X.

3. Let X = {3" | rt > 0} and Y = {3n | n > 0}. Prove that X C Y.

4. Let X = {n3 + 3n2 + 3n \ n > 0} and Y = [rt3 — 1 1 n > 0). Prove that X = Y.

* 5. Prove DeMorgan’s Laws. Use the definition of set equality to establish the identities.

6 . Give functions / : N -* N that satisfy the following.

a) / is total and one-to-one but not onto.

b) / is total and onto but not one-to-one.

c) / is total, one-to-one, and onto but not the identity.

d) / is not total but is onto.

7. Prove that the function / : N -* N defined by f (n) = rt2 + 1 is one-to-one but not onto.

8 . Let / : R + —► R + be the function defined by f (x) = l / x , where R + denotes the set of
positive real numbers. Prove that / is one-to-one and onto.

9. Give an example of a binary relation on N x N that is

a) reflexive and symmetric but not transitive.

b) reflexive and transitive but not symmetric.

c) symmetric and transitive but not reflexive.

10. Let = be the binary relation on N defined by rt = m if, and only if, n = m. Prove that

= is an equivalence relation. Describe the equivalence classes of = .

11. Let = be the binary relation on N defined by n = m for all n, m € N. Prove that = is
an equivalence relation. Describe the equivalence classes of = .

12. Show that the binary relation LT, less than, is not an equivalence relation.

13. Let = p be the binary relation on N defined by n s=p m if rt mod p = m mod p. For
p > 2, prove that = p is an equivalence relation. Describe the equivalence classes of

=p-

14. Let X], . . . , X„ be a partition of a set X. Define an equivalence relation = on X whose
equivalence classes are precisely the sets X ^ . . . , X„.

15. A binary relation = is defined on ordered pairs of natural numbers as follows:
[m, n] = [j, fc] if, and only if, m + k = n + j . Prove that = is an equivalence relation
in N x N.

16. Prove that the set of even natural numbers is denumerable.

17. Prove that the set of even integers is denumerable.

* 18. Prove that the set of nonnegative rational numbers is denumerable.

19. Prove that the union of two disjoint countable sets is countable.

20. Prove that there are an uncountable number of total functions from N to {0, 1).

21. A total function / from N to N is said to be repeating if f (n) — f (n + 1) for some
n G N. Otherwise, / is said to be nonrepeating. Prove that there are an uncountable
number of repeating functions. Also prove that there are an uncountable number of
nonrepeating functions.

22. A total function / from N to N is monotone increasing if f (n) < f (n + 1) for all n e
N. Prove that there are an uncountable number of monotone increasing functions.

23. Prove that there are uncountably many total functions from N to N that have a fixed
point. See Example 1.4.3 for the definition of a fixed point.

24. A total function / from N to N is nearly identity if f (n) = n — 1, n, orn + 1 for every
n. Prove that there are uncountably many nearly identity functions.

* 25. Prove that the set of real numbers in the interval [0, 1] is uncountable. Hint: Use the
diagonalization argument on the decimal expansion of real numbers. Be sure that each
number is represented by only one infinite decimal expansion.

26. Let F be the set of total functions of the form / : {0, 1} —»• N (functions that map from
{0, 1} to the natural numbers). Is the set of such functions countable or uncountable?
Prove your answer.

27. Prove that the binary relation on sets Refined by X = Y if, and only if, card(X) =
card(Y) is an equivalence relation.

* 28. Prove the Schroder-Bemstein Theorem.

29. Give a recursive definition of the relation is equal to on N x N using the operator s.

30. Give a recursive definition of the relation greater than on N x N using the successor
operator s.

31. Give a recursive definition of the set of points [m, n] that lie on the line n = 3m in
N x N. Use s as the operator in the definition.

32. Give a recursive definition of the set of points [m, n] that lie on or under the line n = 3m
in N x N. Use s as the operator in the definition.

33. Give a recursive definition of the operation of multiplication of natural numbers using
the operations s and addition.

34. Give a recursive definition of the predecessor operation

At \ 1 0 if n = 0 predin) = {
I n — 1 otherwise

using the operator s.

38 C h a p te r 1 M a th e m a t ic a l P re l im ina r ie s

Exerc ises 39

35. Subtraction on the set of natural numbers is defined by

! n — m if n > m
0 otherwise.

This operation is often called proper subtraction. Give a recursive definition of proper
subtraction using the operations s and pred.

36. Let X be a finite set. Give a recursive definition of the set of subsets of X. Use union
as the operator in the definition.

* 37. Give a recursive definition of the set of finite subsets of N. Use union and the successor
s as the operators in the definition.

38. Prove that 2 + 5 + 8 + ■ • • + (3n — 1) = n(3n + l) /2 for all n > 0.

39. Prove that 1 + 2 + 22 + • • • + 2" = 2"+l — 1 for all n > 0.

40. Prove 1 + 2" < 3" for all n > 2 .

41. Prove that 3 is a factor of n 3 — n + 3 for all n > 0.

42. Let P = {A, B) be a set consisting of two proposition letters (Boolean variables). The
set E of well-formed conjunctive and disjunctive Boolean expressions over P is defined
recursively as follows:

i) Basis: A, B e E.

ii) Recursive step: If u, v € E, then (u v v) € E and (u a d) € E.

iii) Closure: An expression is in E only if it is obtained from the basis by a finite
number of iterations of the recursive step.

a) Explicitly give the Boolean expressions in the sets Eq, E |, and Ej.

b) Prove by mathematical induction that for every Boolean expression in E, the number
of occurrences of proposition letters is one more than the number of operators. For
an expression u, let n p(u) denote the number of proposition letters in u and n„(u)
denote the number of operators in u.

c) Prove by mathematical induction that, for every Boolean expression in E, the
number of left parentheses is equal to the number of right parentheses.

43. Give a recursive definition of all the nodes in a directed graph that can be reached by
paths from a given node x. Use the adjacency relation as the operation in the definition.
This definition also defines the set of descendants of a node in a tree.

44. Give a recursive definition of the set of ancestors of a node x in a tree.

45. List the members of the relation LEFTOF for the tree in Figure 1.6 (a).

40 C h a p te r 1 M a th e m a t ic a l P re l im in a r ie s

46. Using the tree below, give the values of each of the items in parts (a) to (e).

*5 **6 X1 * 8

1 1 r \
•*10 *11

1

* 1 2

1

*14 *15

a) the depth of the tree

b) the ancestors of x t i

c) the minimal common ancestor of x \4 and jcj j, of jci 5 and X\i

d) the subtree generated by x2

e) the frontier of the tree

47. Prove that a strictly binary tree with n leaves contains 2n — 1 nodes.

48. A complete binary tree of depth n is a strictly binary tree in which every node on levels
1, 2...........n — 1 is a parent and each node on level n is a leaf. Prove that a complete
binary tree of depth n has 2 n + 1 — 1 nodes.

Bibliographic Notes

The topics presented in this chapter are normally covered in a first course in discrete math
ematics. A comprehensive presentation of the discrete mathematical structures important
to the foundations of computer science can be found in Bobrow and Arbib [1974],

There are a number of classic books that provide detailed presentations o f the topics
introduced in this chapter. An introduction to set theory can be found in Halmos [1974],
Stoll [1963], andFraenkel, Bar-Hillel, and Levy [1984], The latter begins with an excellent
description of Russell’s paradox and other antinomies arising in set theory. The diagonal
ization argument was originally presented by Cantor in 1874 and is reproduced in Cantor
[1947]. The texts by Wilson [1985], Ore [1963], Bondy and Murty [1977], and Busacker
and Saaty [1965] introduce the theory of graphs. Induction, recursion, and their relationship
to theoretical computer science are covered in Wand [1980].

CHAPTER 2

Languages

The concept of language includes a variety of seemingly distinct categories including
natural languages, computer languages, and mathematical languages. A general definition
of language must encompass all of these various types of languages. In this chapter, a purely
set-theoretic definition of language is given: A language is a set of strings over an alphabet.
The alphabet is the set of symbols of the language and a string over the alphabet is a finite
sequence of symbols from the alphabet.

Although strings are inherently simple structures, their importance in communication
and computation cannot be overemphasized. The sentence “The sun did not shine” is a string
of English words. The alphabet of the English language is the set of words and punctuation
symbols that can occur in sentences. The mathematical equation

p = (n x r x t) / v

is a string consisting of variable names, operators, and parentheses. A digital photograph is
stored as a bit string, a sequence of 0 ’s and 1 ’s. In fact, all data stored and manipulated by
computers are represented as bit strings. As computer users, we frequently input information
to the computer and receive output in the form of text strings. The source code of a computer
program is a text string made up of the keywords, identifiers, and special symbols that
constitute the alphabet of the programming language. Because of the importance of strings,
we begin this chapter by formally defining the notion of string and studying the properties
of operations on strings.

Languages of interest are not made up of arbitrary strings; not all strings of English
words are sentences and not all strings of source code are legitimate computer programs.
Languages consist of strings that satisfy certain requirements and restrictions that define the

41

42 C h a p t e r 2 L a n g u a g e s

syntax of the language. In this chapter, we will use recursive definitions and set operations
to enforce syntactic restrictions on the strings of a language.

We will also introduce the family of languages defined by regular expressions. A regular
expression describes a pattern and the language associated with the regular expression
consists of all strings that match the pattern. Although we introduce the regular expressions
via a set-theoretic construction, as we progress we will see that these languages occur
naturally as the languages generated by regular grammars and accepted by finite-state
machines. The chapter concludes by examining the use of regular expressions in searching
and pattern matching.

2.1 Strings and Languages

The description of a language begins with the identification of its alphabet, the set of symbols
that occur in the language. The elements of the language are finite-length strings of alphabet
symbols. Consequently, the study of languages requires an understanding of the operations
that generate and manipulate strings. In this section we give precise definitions of a string
over an alphabet and of the basic string operations.

The sole requirement for an alphabet is that it consists of a finite number o f indivisible
objects. The alphabet of a natural language, like English or French, consists of the words
and punctuation marks of the language. The symbols in the alphabet of the language are
considered to be indivisible objects. The word language cannot be divided into long and
uage. The word format has no relation to the words fo r and maf, these are all distinct
members of the alphabet. A string over this alphabet is a sequence of words and punctuation
symbols. The sentence that you have just read is such a string. The alphabet o f a computer
language consists of the permissible keywords, identifiers, and symbols of the language. A
string over this alphabet is a sequence of source code.

Because the elements of the alphabet of a language are indivisible, we will generally
denote them by single characters. Letters a, b, c, d, e, with or without subscripts, are
used to represent the elements of an alphabet and £ is used to denote an alphabet. Strings
over an alphabet are represented by letters occurring near the end of the alphabet. In
particular, p, q, u, v, w, x , y, z are used to denote strings. The notation used for natural
languages and computer languages provides an exception to this convention. In these cases,
the alphabet consists of the indivisible elements of the particular language.

A string has been defined informally as a sequence of elements from an alphabet. In
order to establish the properties of strings, the set of strings over an alphabet is defined
recursively. The basis consists of the string containing no elements. This string is called the
null string and denoted X. The primitive operator used in the definition consists o f adjoining
a single element from the alphabet to the right-hand side of an existing string.

Definition 2.1.1

Let £ be an alphabet. E*, the set of strings over 2 , is defined recursively as follows:

2.1 Strings and Languages 43

i) Basis: X € E*.

ii) Recursive step: If w e E* and a € E , then wa e S '.

iii) Closure: w € E* only if it can be obtained from X by a finite number o f applications of
the recursive step.

For any nonempty alphabet E , E* contains infinitely many elements. If E = (a), E*
contains the strings X, a, aa, aaa, The length of a string w, intuitively the number of
elements in the string or formally the number of applications of the recursive step needed to
construct the string from the elements of the alphabet, is denoted length(w). If E contains
n elements, there are nk strings of length k in E*.

Example 2.1.1

Let E = {a, b, c). The elements of E* include

Length 0: X

Length 1: a b c

Length 2: aa ab ac ba bb be ca cb cc

Length 3: aaa aab aac aba abb abc aca acb acc

baa bab bac bba bbb bbc bca beb bcc

caa cab cac cba ebb ebe cca ccb ccc □

By our informal definition, a language consists of strings over an alphabet. For example,
the English language consists of those strings of words that we call sentences. Not all strings
of words form sentences, only those satisfying certain conditions on the order and type of
the constituent words. The collection of rules, requirements, and restrictions that specify
the correctly formed sentences defines the syntax of the language. These observations lead
to our formal definition of language; a language consists of a subset of the set of all possible
strings over the alphabet.

Definition 2.1.2

A language over an alphabet E is a subset of E*.

Since strings are the elements of a language, we must examine the properties of strings
and the operations on them. Concatenation, taking two strings and “gluing them together," is
the fundamental operation in the generation of strings. A formal definition o f concatenation
is given by recursion on the length of the second string in the concatenation. At this point,
the primitive operation of adjoining a single member of the alphabet to the right-hand side
of a string is the only operation on strings that has been introduced. Thus any new operation
must be defined in terms of it.

Definition 2.1.3

Let m, v e E*. The concatenation of u and u, written uv, is a binary operation on E* defined
as follows:

4 4 C h a p t e r 2 L a n g u a g e s

i) Basis: If length(v) = 0, then v = k and uv = u.

ii) Recursive step: Let v be a string with length(v) = n > 0. Then v = wa, for some string
w with length n — 1 and a e £ , and uv = (uw)a .

Example 2.1.2

Let u = ab, v = ca, and w - bb. Then

uv = abca vw = cabb

(uv)w = abcabb u(vw) = abcabb. □

The result of the concatenation of u, v, and w is independent of the order in which
the operations are performed. Mathematically, this property is known as associativity.
Theorem 2.1.4 proves that concatenation is an associative binary operation.

Theorem 2.1.4

Let u, v, w e £*. Then (uv)w = u(vw).

Proof. The proof is by induction on the length of the string w. The string w was chosen for
compatibility with the recursive definition of strings, which builds on the right-hand side of
an existing string.

Basis: length(w) = 0. Then w = X, and (uv)w = uv by the definition of concatenation. On
the other hand, u(vw) — u(v) = uv.

Inductive Hypothesis: Assume that (uv)w = u(vw) for all strings w of length n or less.

Inductive Step: We need to prove that (uv)w = u(vw) for all strings w of length n + 1. Let
w be such a string. Then w = xa for some string x of length n and a 6 E and

(uv)w = (uv)(xa) (substitution, w = xa)

= ((uv)x)a (definition of concatenation)

= (u(vx))a (inductive hypothesis)

= u((vx)a) (definition of concatenation)

= u(v(xa)) (definition of concatenation)

= u(vw) (substitution, xa = w). m

Since associativity guarantees the same result regardless of the order of the operations,
parentheses are omitted from a sequence of applications of concatenation. Exponents are
used to abbreviate the concatenation of a string with itself. Thus uu may be written u2,
uuu may be written and so on. For completeness, u°, which represents concatenating
u with itself zero times, is defined to be the null string. The operation of concatenation
is not commutative. For strings u = ab and v = ba, uv = abba and vu = baab. Note that
u2 = abab and not aabb = a2b2.

Substrings can be defined using the operation of concatenation. Intuitively, u is a
substring of u if u “occurs inside o f ’ v. Formally, u is a substring of v if there are strings

2.2 Fini te S p ec if ica t ion o f L a n g u a g e s 45

x and y such that v = xuy. A prefix of v is a substring u in which x is the null string in the
decomposition of v. That is, v = uy. Similarly, u is a suffix of v if u = xu.

The reversal of a string is the string written backward. The reversal o f abbc is cbba.
Like concatenation, this unary operation is also defined recursively on the length of the
string. Removing an element from the right-hand side of a string constructs a smaller string
that can then be used in the recursive step of the definition. Theorem 2.1 . 6 establishes the
relationship between the operations of concatenation and reversal.

Definition 2.1.5

Let u be a string in £*. The reversal of u, denoted u R, is defined as follows:

i) Basis: If length(u) = 0, then u = X and k R = X.

ii) Recursive step: If length(u) — n > 0, then u — wa for some string w with length n — 1
and some a e £ , and u R = a w R.

Theorem 2.1.6

Let u, v e £*. Then (uv)R = v Ru R.

Proof. The proof is by induction on the length of the string v.

Basis: If length(v) = 0, then v = X and (uv)R = u R. Similarly, vRuR = XRu R = uR.

Inductive Hypothesis: Assume (uv)R = v RuR for all strings v of length n or less.

Inductive Step: We must prove that, for any string v of length n + 1, (uv)R = v Ru R. Let i;
be a string of length n + 1. Then v = wa, where w is a string of length n and a € S . The
inductive step is established by

(uv)R = (u(w a))R

= ((uw)a)R (associativity of concatenation)

= a (uw)R (definition of reversal)

= a (w Ru R) (inductive hypothesis)

= (aw R)uR (associativity of concatenation)

= (w a)Ru R (definition of reversal)

= vRu R.

2.2 Finite Specification o f Languages

A language has been defined as a set of strings over an alphabet. Languages of interest do not
consist of arbitrary sets of strings but rather of strings that satisfy some prescribed syntactic
requirements. The specification of a language requires an unambiguous description of
the strings of the language. A finite language can be explicitly defined by enumerating
its elements. Several infinite languages with simple syntactic requirements are defined
recursively in the examples that follow.

46 C h a p t e r 2 L a n g u a g e s

Example 2.2.1

The language L of strings over {a, b] in which each string begins with an a and has even

length is defined by

i) Basis: aa, ab 6 L.

ii) Recursive step: If u e L, then uaa, uab, uba, ubb e L.

iii) Closure: A string u e L only if it can be obtained from the basis elements by a finite
number of applications of the recursive step.

The strings in L are built by adjoining two elements to the right-hand side of a previously
constructed string. The basis ensures that each string in L begins with an a. Adding
substrings of length two maintains the even parity. □

Example 2.2.2

The language L over the alphabet {a, b] defined by

i) Basis: X e L;

ii) Recursive step: If u € L, then ua, uab e L;

iii) Closure: A string u e L only if it can be obtained from the basis element by a finite
number of applications of the recursive step;

consists of strings in which each occurrence of b is immediately preceded by an a. For
example, A., a, abaab are in L and bb, bab, abb are not in L. □

The recursive step in the preceding examples concatenated elements to the end of an
existing string. Breaking a string into substrings permits the addition of elements anywhere
within the original string. This technique is illustrated in the following example.

Example 2.2.3

Let L be the language over the alphabet {a, b) defined by

i) Basis: X € L.

ii) Recursive step: If u € and u can be written u = xyz , then xaybz 6 L and xaybz e L.

iii) Closure: A string u € L only if it can be obtained from the basis element by a finite
number of applications of the recursive step.

The language L consists of all strings with the same number of cr’s and b's. The first
construction in the recursive step, xaybz e L, consists of the following three actions:

1. Select a string u that is already in L.

2. Divide u into three substrings x, y, z such that u = xyz . Note that any of the substrings
may be X.

3. Insert an a between x and y and a b between y and z.

2.2 Fini te S pec if ica t ion o f L a n g u a g e s 47

Taken together, the two rules can be intuitively interpreted as “insert one a and one b
anywhere in the string u." Cl

Recursive definitions provide a tool for defining the strings of a language. Exam
ples 2.2.1, 2.2.2, and 2.2.3 have shown that requirements on order, positioning, and parity
can be obtained using a recursive generation of strings. The process of generating strings us
ing a single recursive definition, however, is unsuitable for enforcing the complex syntactic
requirements of natural or computer languages.

Another technique for constructing languages is to use set operations to construct
complex sets of strings from simpler ones. An operation defined on strings can be extended
to an operation on sets, hence on languages. Descriptions of infinite languages can then be
constructed from finite sets using the set operations. The next two definitions introduce
operations on sets of strings that will be used for both language definition and pattern
specification.

Definition 2.2.1

The concatenation of languages X and Y, denoted XY, is the language

XY = {uv | h € X and v e Y}.

The concatenation of X with itself n times is denoted X". X° is defined as {X}.

Example 2.2.4

Let X = {a, b, c) and Y = {abb, ba}. Then

XY = {aabb , babb, cabb, aba, bba, cba}

X°={X)

X' = X = {a, b, c)

X 2 = XX = {aa, ab, ac, ba, bb, be, ca, cb, cc}

X 3 = X2X = {aaa, aab, aac, aba, abb, abc, aca, acb, acc,

baa, bab, bac, bba, bbb, bbc, bca, beb, bcc,

caa, cab, cac, cba, ebb, ebe, cca, ccb, ccc}. □

The sets in the previous example should look familiar. For each i , X' contains the strings
of length i in E * given in Example 2.1.1. This observation leads to another set operation, the
Kleene star of a set X, denoted X*. Using the * operator, the strings over a set can be defined
with the operations of concatenation and union rather than with the primitive operation of
Definition 2.1.1.

48 C h a p t e r 2 L a n g u a g e s

Definition 2.2.2

Let X be a set. Then

00 00

x* = (jx ' and X+ = (J X ' .

/=o <=i

The set X* contains all strings that can be built from the elements of X. If X is an
alphabet, X+ is the set of all nonnull strings over X. An alternative definition of X+ using
concatenation and the Kleene star is X+ = XX*.

The definition of a formal language requires an unambiguous specification of the strings
that belong to the language. Describing languages informally lacks the rigor required for a
precise definition. Consider the language over [a, b) consisting of all strings that contain the
substring bb. Does this mean that a string in the language contains exactly one occurrence
of bb, or are multiple substrings bb permitted? This could be answered by specifically
describing the strings as containing exactly one or at least one occurrence o f bb. However,
these types of questions are inherent in the imprecise medium provided by natural languages.

The precision afforded by set operations can be used to give an unambiguous descrip
tion of the strings of a language. Example 2.2.5 gives a set theoretic definition of the strings
that contain the substring bb. In this definition it is clear that the language contains all strings
in which bb occurs at least once.

Example 2.2.5

The language L = {a, b}*{bb){a, b)* consists of the strings over {a , b } that contain the
substring bb. The concatenation of {bb), which contains the single string bb, ensures the
presence of bb in every string in L. The sets {a, b}* permit any number o f a ’s and b’s, in
any order, to precede and follow the occurrence of bb. In particular, additional copies of
the substring bb may occur before or after the occurrence ensured by the concatenation of
{bb). □

Example 2.2.6

Concatenation can be used to specify the order of components of strings. Let L be the
language that consists of all strings that begin with aa or end with bb. The set {aa){a, b}*
describes the strings with prefix aa. Similarly, {a, b)*{bb) is the set of strings with suffix
bb. Thus L = {aa)[a, b)* U [a, b)*{bb). □

Example 2.2.7

Let L! = [bb] and L2 = {X, bb, bbbb) be languages over {/>}. The languages L* and L£ both
contain precisely the strings consisting of an even number of b's. Note that X, with length
zero, is an element of both L* and Lj. □

2.3 R eg u la r S e ts a n d E x p r e s s io n s 49

Example 2.2.8

The set {aa, bb, ab, ba)* consists of all even-length strings over {a, b). The repeated
concatenation constructs strings by adding two elements at a time. The set of strings of
odd length can be defined by {a, b}* — {aa, bb, ab, ba}*. This set can also be obtained by
concatenating a single element to the even-length strings. Thus the odd-length strings are

also defined by {aa, bb, ab, ba}*{a, b). □

2.3 Regular Sets and Expressions

In the previous section we used set operations to construct new languages from existing
ones. The operators were selected to ensure that certain patterns occurred in the strings of
the language. In this section we follow the approach of constructing languages from set
operations but limit the sets and operations that are allowed in the construction process.

A set of strings is regular if it can be generated from the empty set, the set containing the
null string, and sets containing a single element of the alphabet using union, concatenation,
and the Kleene star operation. The regular sets, defined recursively in Definition 2.3.1,
comprise a family of languages that play an important role in formal languages, pattern
recognition, and the theory of finite-state machines.

Definition 2.3.1

Let E be an alphabet. The regular sets over E are defined recursively as follows:

i) Basis: 0, {X} and {a), for every a € E , are regular sets over E.

ii) Recursive step: Let X and Y be regular sets over E . The sets

X U Y

XY

X*

are regular sets over E .

iii) Closure: X is a regular set over E only if it can be obtained from the basis elements by
a finite number of applications of the recursive step.

A language is called regular if it is defined by a regular set. The following examples
show how regular sets can be used to describe the strings of a language.

Example 2.3.1

The language from Example 2.2.5, the set of strings containing the substring bb, is a regular
set over {a, b}. From the basis of the definition, {a } and {b} are regular sets. The union
of {a} and (£>) and the Kleene star operation produce {a, b}*, the set of all strings over

50 C h a p t e r 2 L an g u a g e s

[a ,b). By concatenation, {/>}{*>} = {bb} is regular. Applying concatenation twice yields

{a, b)*{bb){a, b}*. D

Example 2.3.2

The set of strings that begin and end with an a and contain at least one b is regular over
{a, b}. The strings in this set could be described intuitively as “an a, followed by any string,
followed by a b, followed by any string, followed by an a.” The concatenation

{a}{a, b)'{bHa, b)*{a)

exhibits the regularity of the set. □

By definition, regular sets are those that can be built from the empty set, the set
containing the null string, and the sets containing a single element of the alphabet using
the operations of union, concatenation, and Kleene star. Regular expressions are used to
abbreviate the descriptions of regular sets. The regular sets 0, {A.}, and {a} are represented
by 0, A., and a, removing the need for the set brackets { }. The set operations o f union, Kleene
star, and concatenation are designated by U, *, and juxtaposition, respectively. Parentheses
are used to indicate the order of the operations.

Definition 2.3.2

Let £ be an alphabet. The regular expressions over £ are defined recursively as follows:

i) Basis: 0, A, and a , for every a € E , are regular expressions over E.

ii) Recursive step: Let u and v be regular expressions over E. The expressions

(u U v)

(uv)

(«*)

are regular expressions over E.

iii) Closure: u is a regular expression over £ only if it can be obtained from the basis
elements by a finite number of applications of the recursive step.

Since union and concatenation are associative, parentheses can be omitted from ex
pressions consisting of a sequence of one of these operations. To further reduce the num
ber of parentheses, a precedence is assigned to the operators. The priority designates the
Kleene star as the most binding operation, followed by concatenation and union. Employ
ing these conventions, regular expressions for the sets in Examples 2.3.1 and 2.3.2 are
(a U b)*bb(a U b)* and a(a U b)*b{a U b)*a, respectively. The notation «+ is used to ab
breviate the expression uu*. Similarly, u2 denotes the regular expression uu, u3 denotes
u2u, and so on.

2.3 R egu lar S e ts a n d E x p r e s s io n s 5 1

Example 2.3.3

The set {bawab \ w G {a, b}*} is regular over {a, b). The following table demonstrates the
recursive generation of a regular set and the corresponding regular expression definition of
the language. The column on the right gives the justification for the regularity of each of
the components used in the recursive operations.

Set Expression Justification

1-{«1 a Basis

2. {b} b Basis

3. fa}{*} = {ab) ab 1, 2, concatenation

4. (a) U {*>) = {a, b) a U b 1, 2, union
5. {b){a} = {ba} ba 2, 1, concatenation

6. {a, b}* (a U by 4, Kleene star
7. {ba){a, b}* ba(a U by 5, 6, concatenation
8. {ba){a, b)*{ab} ba(a U b y ab 7, 3, concatenation

The preceding example illustrates how regular sets and regular expressions are gener
ated from the basic regular sets. Every regular set can be obtained by a finite sequence of
operations in the manner shown in Example 2.3.3.

A regular expression defines a pattern and a string is in the language o f the expression
only if it matches the pattern. Concatenation specifies order; a string w is in uv only if it
consists of a string from u followed by one from v. The Kleene star permits repetition and
U selection. The pattern specified by the regular expression in Example 2.3.3 requires ba
to begin the string, ab to end it, and any combination of a's and b's to occur between the
required prefix and suffix. The following examples further illustrate the ability of regular
expressions to describe patterns.

Example 2.3.4

The regular expressions (a U b)*aa(a U b)* and (a U b)*bb(a U b)* represent the regular
sets with strings containing aa and bb, respectively. Combining these two expressions with
the U operator yields the expression (a U b)*aa(a U b)* U (a U b)*bb(a U b)* representing
the set of strings over {a, b} that contain the substring aa or bb. □

Example 2.3.5

A regular expression for the set of strings over {a, b) that contain exactly two b’s must
explicitly ensure the presence of two b’s. Any number of a ’s may occur before, between,
and after the b’s. Concatenating the required subexpressions produces a*ba*ba*. □

5 2 C h a p te r 2 L a n g u a g e s

Example 2.3.6

The regular expressions

i) a*ba*b{a U b)*

ii) (a U b)*ba*ba*

iii) (a U b)*b(a U b)*b(a U b)*

define the set of strings over {a, b) containing two or more b's. As in Example 2.3.5, the
presence of at least two b's is ensured by the two instances of the expression b in the
concatenation. □

Example 2.3.7

Consider the regular set defined by the expression a*(a*ba*ba*)*. The expression inside
the parentheses is the regular expression from Example 2.3.5 representing the strings with
exactly two b’s. The Kleene star generates the concatenation of any number o f these strings.
The result is the null string (no repetitions of the pattern) and all strings with a positive, even
number of b’s. Strings consisting of only a ’s are not included in (a*ba*ba*)*. Concatenating
a* to the beginning of the expression produces the set consisting of all strings with an even
number of b’s. Another regular expression for this set is a*(ba*ba*)*. □

Example 2.3.8

The ability of substrings to share elements complicates the construction of a regular expres
sion for the set of strings that begin with ba, end with ab, and contain the substring aa. The
expression ba(a U b)*aa(a U b)*ab explicitly inserts each of the three components. Every
string represented by this expression must contain at least four a ’s. However, the string baab
satisfies the specification but only has two a ’s. A regular expression for this language is

ba(a U b)*aa(a U b)*ab '

U baa(a Ub)*ab

U ba(a U b)*aab

U baab. □

The construction of a regular expression is a positive process; features of the desired
strings are explicitly inserted into the expression using concatenation, union, or the Kleene
star. There is no negative operation to omit strings that have a particular property. To
construct a regular expression for the set of strings that do not have a property, it is necessary

2.3 R egular S e ts a n d E x p r e s s io n s 53

to formulate the condition in a positive manner and construct the regular expression using
the reformulation of the language. The next two examples illustrate this approach.

Example 2.3.9

To construct a regular expression for the set of strings over {a, b) that do not end in aaa , we
must ensure that aaa is not a suffix of any string described by the expression. The possible
endings for a string with a b in one of the final three positions are b, ba, or baa. The first
part of the regular expression

(a U b)*(b U ba U baa) U X U a U o a

defines these strings. The final three expressions represent the special case of strings of
length zero, one, and two that do not contain a b. □

Example 2.3.10

The language L defined by c*(b Uac*)* consists of all strings over [a, b, c} that do not
contain the substring be. The outer c* and the ac* inside the parentheses allow any number
of a's and c’s to occur in any order. A b can be followed by another b or a string from
ac*. The a at the beginning of ac* blocks a b from directly preceding a c. To help develop
your understanding of the representation of sets by expressions, convince yourself that both
acabacc and bbaaacc are in the set represented by c*(b U ac*)*. □

Examples 2.3.6 and 2.3.7 show that the regular expression definition of a language is not
unique. Two expressions that represent the same set are called equivalent. The identities in
Table 2.1 can be used to algebraically manipulate regular expressions to construct equivalent
expressions. These identities are the regular expression formulation of properties of union,
concatenation, and the Kleene star operation.

Identity 5 follows from the commutativity of the union of sets. Identities 9 and 10 are the
distributive laws of union and concatenation translated to the regular expression notation.
The final set of expressions provides a number of equivalent representations of all strings
made from elements of u and d . The identities in Table 2.1 can be used to simplify or to
establish the equivalence of regular expressions.

Example 2.3.11

A regular expression is constructed to represent the set of strings over {a, b) that do not
contain the substring aa. A string in this set may contain a prefix of any number of b's.
All a ’s must be followed by at least one b or terminate the string. The regular expression
b*(ab+)* U b*(ab+)*a generates the desired set by partitioning it into two disjoint subsets;

54 C h a p te r 2 L a n g u a g e s

TABLE 2.1 R egu lar E xp ress ion Id e n t i t i e s

1. 0U = U0 = 0

2. Xu = uX = u

3. 0* = X
4. X, = X

5. u \ J v = v V u

6. u U 0 = u

7. u U u = u

8. u* = (II*)*

9. u (v U u i) = u tiU u w

10. (u U v)w = uw U vw

11. (UU)*K = u(vu)*

12. (u U v)* = («* U u)*

= u*(u U u)* = (« U u«*)*

= (k*u*)* = u*(vu*)*
= (u*v)*u*

the first consists of strings that end in b and the second of strings that end in a. This
expression can be simplified using the identities from Table 2.1 as follows:

b*(ab+)* U b*(ab+)*a

= b*{ab+)*(XU a)

= b*(abb*)*{k\Ja)

= (bU ab)*(X \Ja). □

While regular expressions allow us to describe many complex patterns, it is important
to note that there are languages that cannot be defined by any regular expression. In Chapter
6 we will see that there is no regular expression that defines the language {a 'b ' | i > 0}.

2.4 Regular Expressions and Text Searching

A common application of regular expressions, perhaps the most common for the majority
of computer users, is the specification of patterns for searching documents and files. In
this section we will examine the use of regular expressions in two types of text searching
applications.

The major difference between the use of regular expressions for language definition and
for text searching is the scope of the desired match. A string is in the language defined by
a regular expression if the entire string matches the pattern specified by regular expression.

2.4 R egular E x p re s s io n s a n d Text S e a rc h in g 55

For example, a string matches ab+ only if it begins with an a and is followed by one or

more b's.
In text searching we are looking for the occurrence of a substring in the text that matches

the desired pattern. Thus the words

about

abbot

rehabilitate

tabulate

abominable

would all be considered to match the pattern ab+. In fact, abominable would match it twice!
This brings up a difference between two types of text searching that can be described

(somewhat simplistically) as off-line and online searching. By off-line search we mean that a
search program is run, the input to the program is a pattern and a tile, and the output consists
of the lines or the text in the file that match the pattern. Frequently, off-line file searching
is done using operating system utilities or programs written in a language designed for
searching. GREP and awk are examples of the utilities available for file searching, and
Perl is a programming language designed for file searching. We will use GREP, which is
an acronym for “Global search for Regular Expression and Print," to illustrate this type of
regular expression search.

Online search tools are provided by web browsers, text editors, and word processing
systems. The objective is to interactively find the first, the next, or to sequentially find all
occurrences of substrings that match the search pattern. The “Find” command in Microsoft
Word will be used to demonstrate the differences between online and off-line pattern
matching.

Since the desired patterns are generally entered on a keyboard, the regular expression
notation used by search utilities should be concise and not contain superscripts. Although
there is no uniform syntax for regular expressions in search applications, the notation
used in the majority of the applications has many features in common. We will use the
extended regular expression notation of GREP to illustrate the description of patterns for
text searching.

The alphabet of the file or document frequently consists of the ASCII character set,
which is given in Appendix III. This is considerably larger than the two or three element
alphabets that we have used in most of our examples of regular expressions. With the
alphabet {a, b}, the regular expression for any string is (a U b)*. To write the expression
for any string of ASCII characters using this format would require several lines and would
be extremely inconvenient to enter on a keyboard. Two notational conventions, bracket
expressions and range expressions, were introduced to facilitate the description of patterns
over an extended alphabet.

The bracket notation [] is used to represent the union of alphabet symbols. For ex
ample, [abed] is equivalent to the expression (aU b U c U d) . Adding a caret immediately

56 C h a p te r 2 L an g u a g e s

TABLE 2.2 E x tende d R egu lar E x p ress io n O p e r a t io n s

Operation Symbol Example Regular Expression

concatenation ab ab

[a-c][AB] a A U a B U b A U b B U c A U c B

Kleene star * [ab]* (,a U b y

disjunction 1 [ab]*|A (a U b y u A

zero or more + [ab]+ (a U b)+

zero or one ? a? (aUX)

one character a.a a(aUb)a i f £ = {a, b]

n-times {n} a(4} aaaa = a4

n or more times In.} a{4,(aaaaa*

m o m times {n.m) a{4,6(aaaa U aaaaa U aaaaaa

after the left bracket produces the complement of the union, thus ["abed] designates all
characters other than a, b, c, and d.

Range expressions use the ordering of the ASCII character set to describe a sequence
of characters. For example, A-Z is the range expression that designates all capital letters. In
the ASCII table these are the characters numbered from 65 to 90. Range expressions can
be arguments in bracket expressions; [a-zA-ZO-9] represents the set of all letters and digits.
In addition, certain frequently occurring subsets of characters are given there own mne
monic identifiers. For example, [: d i g i t :] , [: a lp h a :] , and [:a ln u m :] are shorthand
for [0 -9] , [a -zA -Z], and [a-zA -ZO -9]. The extended regular expression notation also
includes symbols \< and \> that require the match to occur at the beginning or the end of
a word.

Along with the standard operations of U, concatenation, and *, the extended regular
expression notation of GREP contains additional operations on expressions. These opera
tions do not extend the type of patterns that can be expressed, rather they are introduced
to simplify the representation of patterns. A description of the extended regular expression
operations are given in Table 2.2. A set of priorities and parentheses combine to define the
scope of the operations.

The input to GREP is a pattern and file to be searched. GREP performs a line-by-line
search on the file. If a line contains a substring that matches the pattern, the line is printed
and the search continues with the subsequent line. To demonstrate pattern matching using
extended regular expressions, we will search a file caesar containing Caesar’s comments to
his wife in Shakespeare’s Julius Caesar, Act 2, Scene 2.

Cowards die many times before their deaths;

The valiant never taste of death but once.

Of all the wonders that I yet have heard.

It seems to me most strange that men should fear;

2.4 R egular E x p re s s io n s a n d Text S e a rc h in g 57

Seeing that death, a necessary end,

Will come when it will come.

We begin by looking for matches of the pattern m [a -z] n. This is matched by a substring
of length three consisting of an m and an n separated by any single lowercase letter. The result
of the search is

C:> grep -E "m[a-z]n" caesar

Cowards die many times before their deaths;

It seems to me most strange that men should fear;

The option -E in the GREP call indicates that the extended regular expression notation
is used to describe the pattern, and the quotation marks delimit the pattern. The substring
man in many and the word men match this pattern and the lines containing these strings are
printed.

The search is now changed to find occurrences of m and n separated by any number of
lowercase letters and blanks.

C:> grep -E "m[a-z]*n" caesar

Cowards die many times before their deaths;

It seems to me most strange that men should fear;

Will come when it will come.

The final line is added to the output because the pattern is matched by the substring me
when. The pattern m [a-z] *n is matched six times in the line

It seems to me most strange that men should fear;

However, GREP does not need to find all matches; finding one is sufficient for a line to be
selected for output.

The extended regular expression notation can be used to describe more complicated
patterns of interest that may occur in text. Consider the task of finding lines in a text file
that contain a person's name. To determine the form of names, we initially consider the
potential strings that occur as parts of a name:

i) First name or initial: [A-Z] [a -z] + 1 [A-Z] [.]

ii) Middle name, initial, or neither: ([A-Z] [a -z] + 1 [A-Z] [.]) ?

iii) Family name: [A-Z] [a -z] +

A string that can occur in the first position is either a name or an initial. In the former case,
the string begins with a capital letter followed by a string of lowercase letters. An initial is
simply a capital letter followed by a period. The same expressions can be used for middle
names and family names. The ? indicates that no middle name or initial is required. These
expressions are concatenated with blanks

([A-Z] [a-z] +1 [A-Z] [.]) [] (([A-Z] [a-z] +1 [A-Z] [.]) []) ?([A-Z] [a-z] +)

to produce a general pattern for matching names.

58 C h a p te r 2 L an g u a g e s

The preceding expression will match E. B. White, Edgar Allen Poe, and Alan Turing.
Since pattern matching is restricted to the form of the strings and not any underlying meaning
(that is, pattern matching checks syntax and not semantics), the expression will also match
Buckingham Palace and U. S. Mail. Moreover, the pattern will not match Vincent van Gogh,
Dr. Watson, or Aristotle. Additional conditions would need to be added to the expression
to match these variations of names.

Unlike off-line analysis, search commands in web browsers or word processors interac
tively find occurrences of strings that match an input pattern. A substring matching a pattern
may span several lines. The pattern m*n in the Microsoft Word “Find” command searches
for substrings beginning with m and ending with n; any string may separate the m and n.
The search finds and highlights the first substring beginning at or after the current location
of the cursor that matches the pattern. Repeating the search by clicking “next" highlights
successive matches of the pattern. The substrings identified as matches of m*n in the file
caesar follow, with the matching substrings highlighted.

Cowards die many times before their deaths;

Cowards die many limes before their deaths;

The valiant never taste of death but once.

It seems to me most strange that men should fear;

It seems to me most strange that men should fear;

It seems to me most strange that men should fear;

It seems to me most strange that men should fear;

Will come when it will come.

Notice that not all matching substrings are highlighted. The pattern m*n is matched by
any substring that begins with an occurrence of m and extends to any subsequent occurrence
of n. The search only highlights the first matching substring for every m in the file.

In Chapter 6 we will see that a regular expression can be converted into a finite-state
machine. The computation of the resulting machine will find the strings or substrings
that match the pattern described by the expression. The restrictions on the operations
used in regular expressions— intersection and set difference are not allowed— facilitate the
automatic conversion from the description of a pattern to the implementation of a search
algorithm.

Exercises

1. Give a recursive definition of the length of a string over £ . Use the primitive operation
from the definition of string.

Exerc ises 59

2. Using induction on /, prove that (w R)' — (w ‘)R for any string w and all i > 0.

3. Prove, using induction on the length of the string, that (w K)K = u> for all strings w G E*.

4. Let X = {aa, bb) and Y = {A., b, ab).

a) List the strings in the set XY.

b) How many strings of length 6 are there in X*?

c) List the strings in the set Y* of length three or less.

d) List the strings in the set X*Y* of length four or less.

5. Let L be the set of strings over {a, b) generated by the recursive definition

i) Basis: b gL.

ii) Recursive step: if u is in L then ub g L, uab gL, and uba gL, and bua gL.

iii) Closure: a string v is in L only if it can be obtained from the basis by a finite
number of iterations of the recursive step.

a) List the elements in the sets Lq, L |, and L2.

b) Is the string bbaaba in L? If so, trace how it is produced. If not, explain why not.

c) Is the string bbaaaabb in L? If so, trace how it is produced. If not, explain why not.

6. Give a recursive definition of the set of strings over {a, b) that contain at least one b and
have an even number of a 's before the first b. For example, bab, aab, and aaaabababab
are in the set, while aa, abb are not.

7. Give a recursive definition of the set {a'b^ \ 0 < / < j < 2i).

8. Give a recursive definition of the set of strings over {a, b) that contain twice as many
a ’s as b’s.

9. Prove that every string in the language defined in Example 2.2.1 has even length. The
proof is by induction on the recursive generation of the strings.

10. Prove that every string in the language defined in Example 2.2.2 has at least as many a ’s
as b’s. Let na(u) denote the number of a ’s in the string u and nb(u) denote the number
of b’s in u. The inductive proof should establish the inequality na(u) > nb(u).

11. Let L be the language over {a, b) generated by the recursive definition

i) Basis: X e L.

ii) Recursive step: If u G L then aaub G L.

iii) Closure: A string w is in L only if it can be obtained from the basis by a finite
number of applications of the recursive step.

a) Give the sets Lq, L^ and L2 generated by the recursive definition.

b) Give an implicit definition of the set of strings defined by the recursive definition.

c) Prove by mathematical induction that for every string u in L, the number of a ’s in
u is twice the number b’s in u. Let na(u) and nb(u) denote the number of a ’s and
the number of b’s in u, respectively.

60 C h a p te r 2 L an g u a g e s

* 12. A palindrome over an alphabet 2 is a string in E* that is spelled the same forward
and backward. The set of palindromes over £ can be defined recursively as follows:

i) Basis: X and a, for all a e 2 , are palindromes.

ii) Recursive step: If w is a palindrome and a € 2 , then awa is a palindrome.

iii) Closure: w is a palindrome only if it can be obtained from the basis elements by
a finite number of applications of the recursive step.

The set of palindromes can also be defined by {w | w = w R}. Prove that these two
definitions generate the same set.

13. Let L] = {aaa}*, L2 = {a, b}[a, b}{a, b){a, £}, and L3 = L2. Describe the strings that
are in the languages L2, L3, and L |0 L3.

For Exercises 14 through 38, give a regular expression that represents the described set.

14. The set of strings over {a, b, c} in which all the a ’s precede the b's, which in turn
precede the c ’s. It is possible that there are no a ’s, b’s, or c ’s.

15. The same set as Exercise 14 without the null string.

16. The set of strings over [a, b, c} with length three.

17. The set of strings over [a, b, c} with length less than three.

18. The set of strings over [a, b ,c] with length greater than three.

19. The set of strings over {a, b) that contain the substring ab and have length greater than
two.

20. The set of strings of length two or more over [a, b } in which all the a ’s precede the b’s.

21. The set of strings over {a, b } that contain the substring aa and the substring bb.

22. The set of strings over {a, b } in which the substring aa occurs at least twice. Hint:
Beware of the substring aaa.

23. The set of strings over [a, b, c } that begin with a, contain exactly two b's, and end with
cc.

* 24. The set of strings over {a, b } that contain the substring ab and the substring ba.

25. The set of strings over [a, b, c) in which every b is immediately followed by at least
one c.

26. The set of strings over [a, b] in which the number of a ’s is divisible by three.

27. The set of strings over {a, b, c} in which the total number of b's and c ’s is three.

* 28. The set of strings over [a, b } in which every a is either immediately preceded or
immediately followed by b, for example, baab, aba, and b.

29. The set of strings over {a, b, c} that do not contain the substring aa.

30. The set of strings over [a, b) that do not begin with the substring aaa.

31. The set of strings over [a, b] that do not contain the substring aaa.

* 32. The set of strings over {a, b } that do not contain the substring aba.

B ib l io g rap h ic N o te s 61

33. The set of strings over {a, b] in which the substring aa occurs exactly once.

34. The set of strings of odd length over [a, b } that contain the substring bb.

35. The set of strings of even length over {a , b, c} that contain exactly one a.

36. The set of strings of odd length over [a, b] that contain exactly two b's.

37. The set of strings over [a, b} with an even number of a ’s or an odd number of b's.

* 38. The set of strings over [a, b} with an even number of a ’s and an even number of b's.
This is tricky; a strategy for constructing this expression is presented in Chapter 6.

39. Use the regular expression identities in Table 2.1 to establish the following identities:

a) (ba)+(a*b* U a*) = (ba)*ba+(b* U k)

b) b+(a*b* U k)b = b(b*a* U k)b+

c) (a U b)* = (a U b)*b*

d) (aU b)* = (a*Uba*)*

e) (a U b y = (b*(a U k)b*)*

40. Write the output that would be printed by a search of the file caesar described in Section
2.4 with the following extended regular expressions.

a) [Cc]

b) [K-Z]

c) \< [a -z]{ 6 } \>

d) \< [a - z] { 6 } \> I \< [a - z] { 7 } \>

41. Design an extended regular expression to search for addresses. For this exercise, an
address will consist of

i) a number,

ii) a street name, and

iii) a street type identifier or abbreviation.

Your pattern should match addresses of the form 1428 Elm S t r e e t , 51095 Tobacco
R d ., and 1600 P e n n sy lv a n ia Avenue. Do not be concerned if your regular expres
sion does not identify all possible addresses.

Bibliographic Notes

Regular expressions were developed by Kleene [1956] for studying the properties of neural
networks. McNaughton and Yamada [1960] proved that the regular sets are closed under
the operations of intersection and complementation. An axiomatization of the algebra of
regular expressions can be found in Salomaa [1966].

PART II

Grammars, Automata,
and Languages

The syntax of a language specifies the permissible forms of the strings in the language.
In Chapter 2, set-theoretic operations and recursive definitions were used to generate

the strings of a language. These string-building tools, although primitive, were adequate
for enforcing simple constraints on the order and the number of elements in a string. We
now introduce a rule-based approach for defining and generating the strings o f a language.
This approach to language definition has its origin in both linguistics and computer science:
linguistics in the attempt to formally describe natural language and computer science in the
need to have precise and unambiguous definitions of high-level programming languages.
Using terminology from the linguistic study, the string generation systems are called
grammars.

In Chapter 3 we introduce two families of grammars, regular and context-free gram
mars. A family of grammars is defined by the form of the rules and the conditions under
which they are applicable. A rule specifies a string transformation, and the strings of a lan
guage are generated by a sequence of rule applications. The flexibility provided by rules
has proved to be well suited for defining the syntax of programming languages. The gram
mar that describes the programming language Java is used to demonstrate the context-free
definition of several common programming language constructs.

After defining languages by the generation of strings, we turn our attention to the
mechanical verification of whether a string satisfies a desired condition or matches a desired
pattern. The family of deterministic finite automata is the first in a series o f increasingly
powerful abstract machines that we will use for pattern matching and language definition.
We refer to the machines as abstract because we are not concerned with constructing
hardware or software implementations of them. Instead, we are interested in determining
the computational capability of the machines. The input to an abstract machine is a string,
and the result of a computation indicates the acceptability of the input string. The language
of a machine is the set of strings accepted by the computations of the machine.

A deterministic finite automaton is a read-once machine in which the instruction to be
executed is determined by the state of the machine and the input symbol being processed. Fi
nite automata have many applications including the lexical analysis of computer programs,
digital circuit design, text searching, and pattern recognition. Kleene’s theorem shows that
the languages accepted by finite automata are precisely those that can be described by reg
ular expressions and generated by regular grammars. A more powerful class of read-once
machines, pushdown automata, is created by augmenting a finite automaton with a stack
memory. The addition of the external memory permits pushdown automata to accept the
context-free languages.

The correspondence between the generation of language by grammars and their accep
tance by machines is a central theme of this book. The relationship between machines and
grammars will continue with the families of unrestricted grammars and Turing machines
introduced in Part III. The regular, context-free, and unrestricted grammars are members of
the Chomsky hierarchy of grammars that will be examined in Chapter 10.

CHAPTER 3

Context-Free Grammars

In this chapter we present a rule-based approach for generating the strings of a language.
Borrowing the terminology of natural languages, we call a syntactically correct string a
sentence of the language. A small subset of the English language is used to illustrate the
components of the string-generation process. The alphabet of our miniature language is the
set (a, the, John, Jill, hamburger, car, drives, eats, slowly, frequently, big, juicy, brown). The
elements of the alphabet are called the term inal symbols of the language. Capitalization,
punctuation, and other important features of written languages are ignored in this example.

The sentence-generation procedure should construct the strings John eats a hamburger
and Jill drives frequently. Strings of the form Jill and car John slowly should not result from
this process. Additional symbols are used during the construction of sentences to enforce
the syntactic restrictions of the language. These intermediate symbols, known as variables
or nonterminals, are represented by enclosing them in angle brackets ().

Since the generation procedure constructs sentences, the initial variable is named
(sentence). The generation of a sentence consists of replacing variables by strings of a
specific form. Syntactically correct replacements are given by a set of transformation rules.
T\vo possible rules for the variable (sentence) are

1. (sentence) -* (noun-phrase)(verb-phrase)

2. (sentence) —* (noun-phrase)(verb)(direct-object-phrase)

An informal interpretation of rule 1 is that a sentence may be formed by a noun phrase
followed by a verb phrase. At this point, of course, neither of the variables (noun-phrase) nor
(verb-phrase) has been defined. The second rule gives an alternative definition of sentence,
a noun phrase followed by a verb followed by a direct object phrase. The existence of
multiple transformations indicates that syntactically correct sentences may have several
different forms.

65

6 6 C h a p te r 3 C on tex t-F ree G r a m m a r s

A noun phrase may contain either a proper or a common noun. A common noun is
preceded by a determiner, while a proper noun stands alone. This feature o f the syntax of
the English language is represented by rules 3 and 4.

Rules for the variables that generate noun and verb phrases are given below. Rather
than rewriting the left-hand side of alternative rules for the same variable, we list the right-
hand sides of the rules sequentially. Numbering the rules is not a feature of the generation
process, merely a notational convenience.

3. (noun-phrase) —*■ (proper-noun)

4. —► (determiner) (common-noun)

5. (proper-noun) —*■ John

6. -*■ Jill

7. (common-noun) —* car

8. ->• hamburger

9. (determiner) -*■ a

10. —> the

11. (verb-phrase) —*■ (verb) (adverb)

12. - ► (verb)

13. (verb) —► drives

14. —► eats

15. (adverb) —> slowly

16. —► frequently

With the exception of (direct-object-phrase), rules have been defined for each of the
variables that have been introduced.

The application of a rule transforms one string to another. The transformation consists
of replacing an occurrence of the variable on the left-hand side of the -*■ with the string on
the right-hand side. The generation of a sentence consists of repeated rule applications to
transform the variable (sentence) into a string of terminal symbols.

For example, the sentence Jill drives frequently is generated by the following transfor
mations:

Derivation Rule Applied

(sentence) => (noun-phrase) (verb-phrase) 1

=> (proper-noun) (verb-phrase) 3

=> Jill (verb-phrase) 6

=> Jill (verb) (adverb) 11

=> Jill drives (adverb) 13

=> Jill drives frequently 16

C h a p t e r 3 C on tex t-F ree G r a m m a r s 67

The symbol =>, used to designate a rule application, is read “derives.” The column on the
right gives the number of the rule that was applied to achieve the transformation. The
derivation terminates when all variables have been removed from the derived string.
The resulting string, consisting solely of terminal symbols, is a sentence o f the language.
The set of terminal strings derivable from the variable (sentence) is the language generated
by the rules of our example.

To complete the set of rules, the transformations for (direct-object-phrase) must be
given. Before designing rules, we must decide upon the form of the strings that we wish
to generate. In our language we will allow the possibility of any number of adjectives,
including repetitions, to precede the direct object. This requires a set of rules capable of
generating each of the following strings:

John eats a hamburger

John eats a big hamburger

John eats a big juicy hamburger

John eats a big brown juicy hamburger

John eats a big big brown juicy hamburger

As can be seen by the potential repetition of the adjectives, the rules of the grammar must be
capable of generating strings of arbitrary length. The use of a recursive definition allows the
elements of an infinite set to be generated by a finite specification. Following that example,
recursion is introduced into the string-generation process, that is, into the rules.

17. (adjective-list) —*■ (adjective) (adjective-list)

18. —► X

19. (adjective) - ► big

20. —> juicy

21. —► brown

The definition of (adjective-list) follows the standard recursive pattern. Rule 17 defines
(adjective-list) in terms of itself, while rule 18 provides the basis of the recursive definition.
The X on the right-hand side of rule 18 indicates that the application of this rule replaces
(adjective-list) with the null string. Repeated applications of rule 17 generate a sequence
of adjectives. Rules for (direct-object-phrase) are constructed using (adjective-list):

22. (direct-object-phrase) —*■ (adjective-list) (proper-noun)

23. —► (determiner) (adjective-list) (common-noun)

The sentence John eats a big juicy hamburger can be derived by the following sequence of

rule applications:

6 8 C h a p te r 3 C ontex t-F ree G r a m m a r s

Derivation Rule Applied

(sentence) => (noun-phrase) (verb) (direct-object-phrase) 2

=> (proper-noun) (verb) (direct-object-phrase) 3

=> John (verb) (direct-object-phrase) 5

=> John eats (direct-object-phrase) 14

=> John eats (determiner) (adjective-list) (common-noun) 23

=> John eats a (adjective-list) (common-noun) 9

=> John eats a (adjective) (adjective-list) (common-noun) 17

=> John eats a big (adjective-list) (common-noun) 19

=> John eats a big (adjective) (adjective-list) (common-noun) 17

=> John eats a big juicy (adjective-list) (common-noun) 20

=> John eats a big juicy (common-noun) 18

=> John eats a big juicy hamburger 8

The generation of sentences is strictly a function of the rules. The string the car eats
slowly is a sentence in the language since it has the form (noun-phrase) (verb-phrase)
outlined by rule 1. This illustrates the important distinction between syntax and semantics;
the generation of sentences is concerned with the form of the derived string without regard
to any underlying meaning that may be associated with the terminal symbols.

By rules 3 and 4, a noun phrase consists of a proper noun or a common noun preceded
by a determiner. The variable (adjective-list) may be incorporated into the (noun-phrase)
rules, permitting adjectives to modify a noun:

3'. (noun-phrase) —* (adjective-list) (proper-noun)

4'. -> (determiner) (adjective-list) (common-noun)

With this modification, the string big John eats frequently can be derived from the variable
(sentence).

3.1 Context-Free Grammars and Languages

We will now define a formal system, the context-free grammar, that is used to generate
the strings of a language. The natural language example was presented to motivate the
components and features of string generation using a context-free grammar.

Definition 3.1.1

A context-free gram m ar is a quadruple (V, £ , P, 5) where V is a finite set of variables,
E (the alphabet) is a finite set of terminal symbols, P is a finite set of rules, and S is a

distinguished element of V called the start symbol. The sets V and £ are assumed to be
disjoint.

A rule is written A —* w where A 6 V and w 6 (V U E)*. A rule of this form is called
an A rule, referring to the variable on the left-hand side. Since the null string is in (V U £)*,
X may occur on the right-hand side of a rule. A rule of the form A —> k is called a null or
X-rule.

Italics are used to denote the variables and terminals of a context-free grammar.
Terminals are represented by lowercase letters occurring at the beginning of the alpha
bet, that is, a , b , c, Following the conventions introduced for strings, the letters
p , q, u, v, w, x , y , z, with or without subscripts, represent arbitrary members of
(V U £)*. Variables will be denoted by capital letters. As in the natural language example,
variables are referred to as the nonterminal symbols of the grammar.

Grammars are used to generate properly formed strings over the prescribed alphabet.
The fundamental step in the generation process consists of transforming a string by the
application of a rule. The application of A -+ w to the variable A in u A v produces the
string uwv. This is denoted u A v => uwv. The prefix u and suffix v define the context in
which the variable A occurs. The grammars introduced in this chapter are called context-
free because of the general applicability of the rules. An A rule can be applied to the variable
A whenever and wherever it occurs; the context places no limitations on the applicability
of a rule.

A string w is derivable from v if there is a finite sequence of rule applications that
transforms u to w; that is, if a sequence of transformations

v =$ uif => w2 =>■■■=> wn = w

can be constructed from the rules of the grammar. The derivability of w from v is denoted

v =$ w. The set of strings derivable from v, being constructed by a finite but unbounded
number of rule applications, can be defined recursively.

Definition 3.1.2

Let G = (V, Z , P, S) be a context-free grammar and t € (V U 2)*. The set of strings
derivable from v is defined recursively as follows:

i) Basis: v is derivable from v.

ii) Recursive step: If u = x A y is derivable from v and A -*■ w 6 P, then x w y is derivable
from t>.

iii) Closure: A string is derivable from v only if it can be generated from v by a finite
number of applications of the recursive step.

Note that the definition of a rule uses the —► notation, while its application uses =>.
The symbol => denotes derivability and => designates derivability utilizing one or more
rule applications. The length of a derivation is the number of rule applications employed.
A derivation of w from v of length n is denoted v => w . When more than one grammar is

3.1 C on tex t-F ree G r a m m a r s a n d L a n g u a g e s 6 9

70 C h a p te r 3 C on tex t-F ree G r a m m a r s

being considered, the notation v => w will be used to explicitly indicate that the derivation
G

utilizes rules of the grammar G.
A language has been defined as a set of strings over an alphabet. A grammar consists of

an alphabet and a method of generating strings. These strings may contain both variables and
terminals. The start symbol of the grammar, assuming the role of {sentence) in the natural
language example, initiates the process of generating acceptable strings. The language of
the grammar G is the set of terminal strings derivable from the start symbol. We now state
this as a definition.

Definition 3.1.3

Let G = (V, E , P, S) be a context-free grammar.

i) A string w e (V U E)* is a sentential form of G if there is a derivation S w in G.

ii) A string w 6 E* is a sentence of G if there is a derivation S w in G.

iii) The language of G, denoted L(G), is the set {u> e E* | S ==> u>}.

A sentential form is a string that is derivable from the start symbol of the grammar.
Referring back to the natural language example, the derivation

(sentence) => (noun-phrase) (verb-phrase)

=> (proper-noun) (verb-phrase)

=> Jill (verb-phrase)

shows that Jill (verb-phrase) is a sentential form of that grammar. It is not yet a sentence,
it still contains variables, but it has the form of a sentence. A sentence is a sentential form
that contains only terminal symbols. The language of a grammar consists of the sentences
generated by the grammar. A set of strings over an alphabet E is said to be a context-free
language if it is generated by a context-free grammar.

The use of recursion is necessary for a finite set of rules to generate strings of arbitrary
length and languages with infinitely many strings. Recursion is introduced into grammars
through the rules. A rule of the form A -*■ uA v is called recursive since it defines the variable
A in terms of itself. Rules of the form A —* A v and A —*■ uA are called left-recursive and
right-recursive, respectively, indicating the location of recursion in the rule.

Because of the importance of recursive rules, we examine the form of strings produced
by repeated applications of the recursive rules A -> aAb, A -* a A, A —>■ Ab, and A —>• A A:

A = > aA b A = $ a A A = $ A b A=$ AA

=> aA b => a A => Ab => A A A

=>aaAbb =$aaA => Abb => A A A A

=>aaaAbbb = $aaaA => Abbb =» A A A A A

A derivation employing the rule A -*■ aAb generates any number of a ’s followed by the same
number of b's. Rules of this form are necessary for producing strings that contain symbols in

3.1 C ontex t-F ree G r a m m a r s a n d L a n g u a g e s 7 1

G = (V, E ,P , S)
V = {5, A}
X = [a, b)
P: S - + A A

A -* A A A | bA | Ab \ a

S =>■ AA S => AA S => AA S= > A A
=> a A => A A A A =$ Aa => aA
^ a A A A => a A A A => A A A a ^ a A A A

=> ab A A A a b A A A => A A bA a => a A A a
=> abaA A => abaA A => AAbaa a b A A a
=* ababAA => ababA A =» AbAbaa => abA bA a

=> ababaA =$■ ababaA => Ababaa =>■ ababAa

=> ababaa => ababaa ^ a b a b a a => ababaa

(a) (b) (c) (d)

FIGURE 3.1 Sample derivations of ababaa in G.

matched pairs, such as left and right parentheses. The right recursive rule A —* a A generates
any number of a ’s preceding the variable A, and the left recursive A -» A b generates any
number of b’s following A. Each application of the rule A —► AA , which is both left- and
right-recursive, produces an additional A. The repetitive application of a recursive rule can
be terminated at any time by the application of a different A rule.

A variable A is called recursive if there is a derivation A => uAv. A derivation of the
form A => w = ► uAv, where A is not in w, is said to be indirectly recursive. Note that, due
to indirect recursion, a variable A may be recursive even if there are no recursive A rules.

A grammar G that generates the language consisting of strings with a positive, even
number of a ’s is given in Figure 3.1. The rules are written using the shorthand A -> u \ v
to abbreviate A -*■ u and A -> v. The vertical bar | is read “or." Four distinct derivations
of the terminal string ababaa are shown in Figure 3.1. The definition of derivation permits
the transformation of any variable in the string. Each rule application in derivations (a)
and (b) in the figure transforms the first variable occurring in a left-to-right reading of the
string. Derivations with this property are called leftmost. Derivation (c) is rightmost, since
the rightmost variable has a rule applied to it. These derivations demonstrate that there may
be more than one derivation of a string in a context-free grammar.

Figure 3.1 exhibits the flexibility of derivations in a context-free grammar. The essential
feature of a derivation is not the order in which the rules are applied, but the manner in
which each variable is transformed into a terminal string. The transformation is graphically
depicted by a derivation or parse tree. The tree structure indicates the rule applied to each
variable but does not designate the order of the rule applications. The leaves o f the derivation
tree can be ordered to yield the result of a derivation represented by the tree.

Definition 3.1.4

Let G = (V, £ , P, S) be a context-free grammar and let 5 ^ w be a derivation in G. The

derivation tree, DT, of S => w is an ordered tree that can be built iteratively as follows:

i) Initialize DT with root S.

72 C h a p te r 3 C on tex t-F ree G r a m m a r s

ii) If A —► x xx 2 ■ ■ ■ xn with e (V U E) is the rule in the derivation applied to the string
uAv, then add x2.......... x„ as the children of A in the tree.

iii) If A ->■ X is the rule in the derivation applied to the string uA v, then add X as the only

child of A in the tree.

The ordering of the leaves also follows this iterative process. Initially, the only leaf
is S and the ordering is obvious. When the rule A -*■ x tx 2 . . . x„ is used to generate the
children of A, each x, becomes a leaf and A is replaced in the ordering of the leaves by
the sequence Xi, x2, . . . , x„. The application of a rule A —► X simply replaces A by the
null string. Figure 3.2 traces the construction of the tree corresponding to derivation (a) of
Figure 3.1. The ordering of the leaves is given along with each of the trees.

The order of the leaves in a derivation tree is independent of the derivation from which
the tree was generated. The ordering provided by the iterative process is identical to the
ordering of the leaves given by the relation LEFTOF in Section 1.8. The frontier of the
derivation tree is the string generated by the derivation.

Figure 3.3 gives the derivation trees for each of the derivations in Figure 3.1. The trees
generated by derivations (a) and (d) are identical, indicating that each variable is transformed
into a terminal string in the same manner. The only difference between these derivations is
the order of the rule applications.

A derivation tree can be used to produce several derivations that generate the same
string. The rule applied to a variable A can be reconstructed from the children of A in the
tree. The rightmost derivation

S=> AA

=*• A A A A

=> A A A a

=> A AbAa

=> AAbaa

=> AbAbaa

=> Ababaa

=> ababaa

is obtained from the derivation tree (a) in Figure 3.3. Notice that this derivation is different
from the rightmost derivation (c) in Figure 3.1. In the latter derivation, the second variable in
the string A A is transformed using the rule A —»■ a, while A —► AAA is used in the preceding
derivation. The two trees graphically illustrate the distinct transformations.

As we have seen, the context-free applicability of rules allows a great deal of flexibility
in the constructions of derivations. Lemma 3.1.5 shows that a derivation may be broken into
subderivations from each variable in the string. Derivability was defined recursively, the
length of derivations being finite but unbounded. Consequently, we may use mathematical
induction to establish that a property holds for all derivations from a given string.

3.1 C on tex t-F ree G r a m m a r s a n d L a n g u a g e s

Derivation

S

=*AA

=> aA

=> aAAA

=> abAAA

=» abaAA

FIGURE 3.2

Ordering
Tree of Leaves

S

A. A

a, A

a A A A

S a, b, A, A, A

a A A A

/ I

a, b, a, A, A

A

/ / l \
a A A A

b A

I

Construction of derivation tree, (continued on next page)

74 C h a p te r 3 C ontex t-Free G r a m m a r s

Derivation

=> ababAA

Ordering
of Leaves

a, b, a, b. A, A

>ababaA

=> ababaa

a, b, a, b, a, A

a, b, a, b, a, a

FIGURE 3.2 (continued)

Lemma 3.1.5

Let G be a context-free grammar and v ^k- w be a derivation in G where v can be written

v = w iA iw2A 2 . . . wkAkwk+i,

with Wj € S*. Then there are strings € (E U V)* that satisfy

i) A, b Pi

ii) w = w [p lw2p 2 ■ ■ ■ u>kpkwk+{
k

' £ t i = n .
i=i

3.1 C ontex t-F ree G r a m m a r s a n d L a n g u a g e s 7 5

A A A

y] N \

A A A

/ / } K
> A h A a

1 1
a b A b A

1 1
1 1

a a
1 1
a a

(a) (b)

S S

A A A A

A A

a b A

1

A

[\
b A

1

a a A

/ }
b A

1

A A

b A a

1
a a

(C)

a

(d)

a

FICURE 3.3 Trees corresponding to the derivations in Figure 3.1.

Proof. The proof is by induction on the length of the derivation of w from v.

Basis: The basis consists of derivations of the form v w. In this case, w = v and each A,

is equal to the corresponding p,. The desired derivations have the form A,- =% p,.

Inductive Hypothesis: Assume that all derivations v => w can be decomposed into derivations
from the A,-’s, the variables of v, which together form a derivation of w from v of length n.

Inductive Step: Let v ==> w be a derivation in G with

v = w iA lu>2A 2 . . ,w kAkwk+h

where u>, € £*. The derivation can be written v => u ^ w. This reduces the original
derivation to the application of a single rule and derivation of length n, the latter of which
is suitable for the invocation of the inductive hypothesis.

The first rule application in the derivation, v ^ u, transforms one of the variables in t \
call it A j, with a rule of the form

A j -»• u lB lu2B2 . . . umBmum+l,

76 C h a p t e r 3 C on tex t-F ree G r a m m a r s

where each e l ' . The string u is obtained from v by replacing A j by the right-hand side
of the A j rule. Making this substitution, u can be written as

u>xA x . . . A j_ xWjUXB xu2B2 ■ ■ ■ umBmum+lwj+xA j+ x . . . wkAkwk+x.

Since w is derivable from u using n rule applications, the inductive hypothesis asserts
that there are strings p x, . . . , P j- \ , q\, ■ • • , qm, and p j+x...........pk that satisfy

i) Aj => pj for i = 1......... j - 1, j + 1 , . . . , k

Bi => qj for i = 1......... m;

ii) w = w xp xw2 . . . P j- \w ju xq xu2 . . . umqmum+lwj+xp j+ x. . . wkpkwk+i\ and

j - 1 k m
iii) J ^ t i + Y i h + Y , S j = n .

i=i i=j+1 i=i

Combining the rule Ay —► u xB xu2B2 . . . umBmum+i with the derivations B, qh we obtain
a derivation

A j u xq xu2q2 . . . umqmum+, = pj

whose length is the sum of lengths of the derivations from the fi, ’s plus one. The derivations

Aj => pi, i = k, provide the desired decomposition of the derivation of w from v.
■

Lemma 3.1.5 demonstrates the flexibility and modularity of derivations in context-
free grammars. Every complex derivation can be broken down into subderivations of the
constituent variables. This modularity will be exploited in the design of complex languages
by using variables to define smaller and more manageable subsets of the language. These
independently defined sublanguages are then combined by additional rules to produce the
syntax of the entire language.

3.2 Examples o f Grammars and Languages

Context-free grammars have been introduced to generate languages. Formal languages, like
computer languages and natural languages, have requirements that the strings must satisfy
in order to be syntactically correct. Grammars for these languages must generate precisely
the desired strings and no others. There are two natural approaches that we may take to help
develop our understanding of the relationship between grammars and languages. One is
to begin with an informal specification of a language and then construct a grammar that
generates it. This is the approach followed in the design of programming languages—
the syntax is selected and the language designer produces a set of rules that defines the
correctly formed strings. Conversely, we may begin with the rules of a grammar and analyze
them to determine the form of the strings of the language. This is the approach frequently
taken when checking the syntax of the source code of a computer program. The syntax
of the programming is specified by a set of grammatical rules, such as the definition of

the programming language Java given in Appendix IV. The syntax of constants, identifiers,
statements, and entire programs is correct if the source code is derivable from the appropriate
variables in the grammar.

Initially, determining the relationship between strings and rules may seem difficult.
With experience, you will recognize frequently occurring patterns in strings and the rules
that produce them. The goal of this section is to analyze examples to help you develop an
intuitive understanding of language definition using context-free grammars.

In each of the examples a grammar is defined by listing its rules. The variables and
terminals of the grammar are those occurring in the rules. The variable S is the start symbol
of each grammar.

Example 3.2.1

Let G be the grammar given by the rules

S —>■ aSa | aBa

B —► bB | b.

Then L(G) = {a"bman \ n > 0, m > 0}. The rule 5 -> aSa recursively builds an equal
number of a ’s on each end of the string. The recursion is terminated by the application
of the rule S —*■ aB a, ensuring at least one leading and one trailing a. The recursive B rule
then generates any number of b's. To remove the variable B from the string and obtain a
sentence of the language, the rule B —v b must be applied, forcing the presence of at least
one b. □

3.2 E x am p le s of G r a m m a r s a n d L a n g u a g e s 77

Example 3.2.2

The relationship between the number of leading a ’s and trailing d 's in the language
[a"bmcmd 2n | n > 0, m > 0} indicates that a recursive rule is needed to generate them.
The same is true of the b ’s and c ’s. Derivations in the grammar

S -* aS d d |A

A -*■ bAc | be

generate strings in an outside-to-inside manner. The S rules produce the a ’s and d ’s while
the A rules generate the b's and c ’s. The rule A —y be, whose application terminates the
recursion, ensures the presence of the substring be in every string in the language. □

Example 3.2.3

Recall that a string w is a palindrome if w = w R. A grammar is constructed to generate
the set of palindromes over {a, b). The rules of the grammar mimic the recursive definition
of palindromes given in Exercise 2.12. The basis of the set of palindromes consists of the
strings X, a, and b. The S rules

78 C h a p te r 3 C on tex t-F ree G r a m m a r s

immediately generate these strings. The recursive part of the definition consists of adding
the same symbol to each side of an existing palindrome. The rules

S —*■ aSa | bSb

capture the recursive generation process. □

Example 3.2.4

The first recursive rule of

S —>aSb | a S b b \ k

generates a trailing b for every a, while the second generates two b’s for each a. Thus
there is at least one b for every a and at most two. The language of the grammar is
[anbm | 0 < n < m < In). □

Example 3.2.5

Consider the grammar
5 -> abScB | k

B ^ b B \ b .

The recursive S rule generates an equal number of ab’s and c B ’s. The B rules generate b+.
In a derivation each occurrence of B may produce a different number of b’s. For example,
in the derivation

5 = ► abScB

^ ababScBcB

=> ababcBcB

=>ababcbcB

=>ababcbcbB

=» ababcbcbb ,

the first occurrence of B generates a single b and the second occurrence produces bb. The
language of the grammar is the set {(ab)n(cbm”)n \ n > 0, m n > 0). The superscript mn
indicates that the number of b’s produced by each occurrence of B may be different since
bm' need not equal bm> when i £ j . □

Example 3.2.6

Let Gi and G2 be the grammars

Gp S —* A B G2: S —>• aS | aA

A - * a A \ a A —* b A \ k .

B —>■ bB \ k

3.2 E xa m ple s of G r a m m a r s a n d L a n g u a g e s 79

Both of these grammars generate the language a +b*. The A rules in Gi provide the standard
method of generating a nonnull string of a ’s. The use of the A-rule to terminate the derivation
allows the possibility of having no b's. The rules in grammar G2 build the strings of a +b*
in a left-to-right manner. O

Example 3.2.7

The grammars G! and G2 generate the strings over {a, b) that contain exactly two b's. That
is, the language of the grammars is a*ba*ba*.

G,: S -*• AbAbA G2: S -»■ aS \ bA

A —y aA \ k A —*• aA \ bC

C —*■ aC | k

Gj requires only two variables since the three instances of a* are generated by the same A
rules. The second builds the strings in a left-to-right manner, requiring a distinct variable
for the generation of each sequence of a ’s. □

Example 3.2.8

The grammars from Example 3.2.7 can be modified to generate strings with at least two b's.

G,: S -*• A bAbA G2: S -> aS | bA

A -*■ aA | bA | k A -*■ a A \ bC

C -*■ aC \b C \ k

In G |, any string can be generated before, between, and after the two b ’s produced by the S
rule. A derivation in G2 produces the first b using the rule S -*■ bA and the second b with
A -> bC. The derivation finishes using applications of the C rules, which can generate any
string of a ’s and b’s. □

Two grammars that generate the same language are said to be equivalent. Examples
3.2.6,3.2.7, and 3.2.8 show that equivalent grammars may produce the strings o f a language
by significantly different derivations. In later chapters we will see that rules having particular
forms may facilitate the mechanical determination of the syntactic correctness of strings.

Example 3.2.9

A grammar is given that generates the language consisting of even-length strings over {a, b).
The strategy can be generalized to construct strings of length divisible by three, by four, and
so forth. The variables S and O serve as counters. An 5 occurs in a sentential form when an

80 C h a p te r 3 C on tex t-F ree G r a m m a r s

even number of terminals has been generated. An O records the presence of an odd number

of terminals.

S - + a O \ b O \ X

O —> aS \ bS

The application of 5 ->• X completes the derivation of a terminal string. Until this occurs, a
derivation alternates between applications of S and O rules. □

Example 3.2.10

Let L be the language over [a, b } consisting of all strings with an even number of b's. The

grammar

S - * a S \ b B | A.

B - > a B \ b S \ b C

C —> a C | X

that generates L combines the techniques presented in the previous examples. Example 3.2.9
for the even number of b's and Example 3.2.7 for the arbitrary number of a ’s. Deleting all
rules containing C yields another grammar that generates L. □

Example 3.2.11

Exercise 2.38 requested a regular expression for the language over {a , b } consisting of
strings with an even number of a ’s and an even number of b’s. It was noted at the time that
a regular expression for this language was quite complex. The flexibility provided by string
generation with rules makes the construction of a context-free grammar for this language
straightforward. The variables are chosen to represent the parities of the number of a ’s and
b's in the derived string. The variables of the grammar with their interpretations are

Variable Interpretation

5 Even number of a’s and even number of b ’s

A Even number of a’s and odd number of b's

B Odd number of a’s and even number of b's

C Odd number of a’s and odd number of b's

The application of a rule adds one terminal symbol to the derived string and updates
the variable to reflect the new status. The rules of the grammar are

S -+ aB | bA | X

A - * a C \ b S

B ^ a S \ b C

C —> aA | bB.

3.3 R egu lar G r a m m a r s 8 1

When the variable S is present, the derived string has an even number of a ’s and an even
number of b's. The application of S —> A. removes the variable from the sentential form,
producing a string that satisfies the language specification. □

Example 3.2.12

The rules of a grammar are designed to impose a structure on the strings in the language.
This structure may consist of ensuring the presence or absence of certain combinations of
elements of the alphabet. We construct a grammar with alphabet {a, b, c} whose language
consists of all strings that do not contain the substring abc. The variables are used to
determine how far the derivation has progressed toward generating the string abc.

S ^ b S \ c S \ a B \ X

B ^ a B \ c S \ b C \ X

C -*■ aB | bS | X

The strings are built in a left-to-right manner. At most one variable is present in a sentential
form. If an S is present, no progress has been made toward deriving abc. The variable B
occurs when the previous terminal is an a. The variable C is present only when preceded
by ab. Thus, the C rules cannot generate the terminal c. □

3.3 Regular Grammars

Regular grammars are an important subclass of context-free grammars that play a prominent
role in the lexical analysis and parsing of programming languages. Regular grammars are
obtained by placing restrictions on the form of the right-hand side of the rules. In Chapter 6
we will show that regular grammars generate precisely the languages that are defined by
regular expressions or accepted by finite-state machines.

Definition 3.3.1

A regular gram m ar is a context-free grammar in which each rule has one o f the following
forms:

i) A —► a,

ii) A —► aB , or

iii) A -* X,

where A, B e V, and a e S .

Derivations in regular grammars have a particularly nice form; there is at most one
variable present in a sentential form and that variable, if present, is the rightmost symbol
in the string. Each rule application adds a terminal to the derived string until a rule of the

82 C h a p te r 3 C ontex t-Free G r a m m a r s

form A —* a or A —► X terminates the derivation. These properties are illustrated using the
regular grammar Gj

S —* a S | a A

A -* b A \ X

from Example 3.2.6 that generates the language a+b*. The derivation of aabb,

S aS

=> aaA

=> aabA

= ► aabbA

=> aabb,

shows the left-to-right generation of the prefix of terminal symbols. The derivation ends
with the application of the rule A - ► X.

A language generated by a regular grammar is called a regular language. You may recall
that the family of regular languages was introduced in Chapter 2 as the set of languages
described by regular expressions. There is no conflict with what might appear to be two
different definitions of the same term, since we will show that regular expressions and
regular grammars define the same family of languages.

A regular language may be generated by both regular and nonregular grammars. The
grammars G | and G2 from Example 3.2.6 both generate the language a +b*. The grammar
G | is not regular because the rule S —*■ A B does not have the specified form. A language is
regular if it is generated by some regular grammar; the existence of nonregular grammars
that also generate the language is irrelevant. The grammars constructed in Examples 3.2.9,
3.2.10, 3.2.11, and 3.2.12 provide additional examples of regular grammars.

Example 3.3.1

We will construct a regular grammar that generates the same language as the context-free
grammar

G: S —*■ abSA \ X

A —> Aa | X.

The language of G is X U (ab)+a*. The equivalent regular grammar

S ^ - a B |X

B ->■ bS | bA

A -*■ a A \ X

3.4 Verifying G r a m m a r s 83

generates the strings in a left-to-right manner. The S and B rules generate a prefix from the
set (ab)*. If a string has a suffix of a ’s, the rule B -*■ bA is applied. The A rules are used
to generate the remainder of the string. □

3.4 Verifying Grammars

The grammars in the previous sections were built to generate specific languages. An intuitive
argument was given to show that the grammar did indeed generate the correct set of strings.
No matter how convincing the argument, the possibility of error exists. A proof is required
to guarantee that a grammar generates precisely the desired strings.

To prove that the language of a grammar G is identical to a given language L, the
inclusions L c L(G) and L(G) c L must be established. To demonstrate the techniques
involved, we will prove that the language of the grammar

G: 5 -> A A S B \ A A B

A —► a

B -» bbb

is the set L = [a ^ b 3" \ n > 0}.
A terminal string is in the language of a grammar if it can be derived from the start

symbol using the rules of the grammar. The inclusion {a 2nb in \ n > 0} c L(G) is established
by showing that every string in L is derivable in G. Since L contains an infinite number of
strings, we cannot construct a derivation for every string in L. Unfortunately, this is precisely
what is required. The apparent dilemma is solved by providing a derivation schema. The
schema consists of a pattern that can be followed to construct a derivation for any string in
L. A string of the form a 2"^3", for n > 0, can be derived by the following sequence of rule
applications:

Derivation Rule Applied

S ^ (A A) n~ 'SB"-' S —► AASB

=> (AA)nBn S —*• AAB

=̂ => (aa)"B” A -* a

=£=> (aa)" (bbb)" B -> bbb

= a2nb1n

where the superscripts on the => specify the number of applications of the rule. The
preceding schema provides a “recipe,” that, when followed, can produce a derivation for
any string in L.

The opposite inclusion, L(G) C [a2nb}‘n | n > 0}, requires each terminal string deriv
able in G to have the form specified by the set L. The derivation of a string in the language

84 C h a p te r 3 C ontex t-F ree G r a m m a r s

consists of a finite number of rule applications, indicating the suitability of a proof by induc
tion. The first difficulty is to determine exactly what we need to prove. We wish to establish
a relationship between the a ’s and b’s in all terminal strings derivable in G. A necessary
condition for a string w to be a member of L is that three times the number of a ’s in the
string be equal to twice the number of b's. Letting nx(u) be the number of occurrences of
the symbol x in the string u, this relationship can be expressed by 3na(u) = 2nb(u).

This numeric relationship between the symbols in a terminal string clearly is not true
for every string derivable from S. Consider the derivation

S = > A A S B

=» aASB.

The string a A S B , which is derivable in G, contains one a and no b’s.
To account for the intermediate sentential forms that occur in a derivation, relationships

between the variables and terminals that hold for all steps in the derivation must be deter
mined. When a terminal string is derived, no variables will remain and the relationships
should yield the required structure of the string.

The interactions of the variables and the terminals in the rules of G must be examined
to determine their effect on the derivations of terminal strings. The rule A —> a guarantees
that every A will eventually be replaced by a single a. The number of a ’s present at the
termination of a derivation consists of those already in the string and the number of A’s in
the string. The sum na(u) + nA(u) represents the number of a ’s that must be generated
in deriving a terminal string from u. Similarly, every B will be replaced by the string
bbb. The number of b’s in a terminal string derivable from u is nh(u) + 3n B(u). These
observations are used to construct condition (i), establishing the correspondence of variables
and terminals that holds for each step in the derivation.

i) 3(na(u) + n A(u)) = 2(nb(u) + 3n B(u)).

The string a A S B , which we have seen is derivable in G, satisfies this condition since
na(aA SB) + n A(aA SB) = 2 and rtb(a A S B) + 3n g (aA SB) = 3.

Conditions (ii) and (iii) are

ii) n A(u) + na(u) > 1, and

iii) the a ’s and A’s in a sentential form precede the S, which precedes the b's and B's.

All strings in (a2nb3n | n > 0} contain at least two a ’s and three b’s. Conditions (i) and
(ii) combine to yield this property. Condition (iii) prescribes the order of the symbols in
a derivable string. Not all of the symbols must be present in each string; strings derivable
from 5 by one rule application do not contain any terminal symbols.

After the appropriate relationships have been determined, we must prove that they hold
for every string derivable from S. The basis of the induction consists of all strings that can
be obtained by derivations of length one (the S rules). The inductive hypothesis asserts that
the conditions are satisfied for all strings derivable by n or fewer rule appJications. The

3.4 Verifying G r a m m a r s 85

inductive step consists of showing that the application of an additional rule preserves the
relationships.

There are two derivations of length one, S => A A S B and S => AAB. For each of these
strings, 3(na(u) + nA(u)) = 2(nb(u) + 3n B(u)) = 6. By observation, conditions (ii) and

(iii) hold for the two strings.
The inductive hypothesis asserts that (i), (ii), and (iii) are satisfied by all strings

derivable by n or fewer rule applications. We now use the inductive hypothesis to show that
the three properties hold for all strings generated by derivations of n + 1 rule applications.

Let i v b e a string derivable from 5 by a derivation S ==> w of length n + 1. To use
the inductive hypothesis, we write the derivation of length n + 1 as a derivation of length n
followed by a single rule application:

5 => u => w.

Written in this form, it is clear that the string u is derivable by n rule applications. The
inductive hypothesis asserts that properties (i), (ii), and (iii) hold for u. The inductive step
requires that we show that the application of one rule to u preserves these properties.

For any sentential form v, we let j (v) = 3(na(v) + n A(v)) and k(v) = 2 (nj,(v) +
3n B(v)). By the inductive hypothesis, j (u) = k(u) and j (u) / 3 > 1. The effects of the
application of an additional rule on the constituents of the string u are given in the following
table.

Rule j(w) k (w) j (w) /3

S->- A A S B ;'(«) + 6 k(u) + 6 j (u) / 3 + 2
S - * A A B ; («) + 6 k{u) + 6 jU O P + 2

A —* a j (u) k(u) j (u) /3

B —* bbb j W k(u) I M P

Since j (u) = k(u), we conclude that j { w) = k(w). Similarly, j { w) / 3 > 1 follows from the
inductive hypothesis that j (u) / 3 > 1. The ordering of the symbols is preserved by noting
that each rule application either replaces S by an appropriately ordered sequence of variables
or transforms a variable to the corresponding terminal.

We have shown that the three conditions hold for every string derivable in G. Since there
are no variables in a string w e L(G), condition (i) implies 3na(w) = 2nb(w). Condition
(ii) guarantees the existence of a ’s and b's, while (iii) prescribes the order. Thus L(G) c
[a2nb}‘n | n > 0). Having established the opposite inclusions, we conclude that the language
of G is {a2nb i n \ n > 0) .

As illustrated by the preceding argument, proving that a grammar generates a certain
language is a complicated process. This, of course, was an extremely simple grammar with
only a few rules. The inductive process is straightforward after the correct relationships
have been determined. The most challenging part of the inductive proof is determining the

8 6 C h a p te r 3 C on tex t-F ree G r a m m a r s

relationships between the variables and the terminals that must hold in the intermediate
sentential forms. The relationships are sufficient if, when all references to the variables are
removed, they yield the desired structure of the terminal strings.

As seen in the preceding argument, establishing that a grammar G generates a language
L requires two distinct arguments:

i) that all strings of L are derivable in G, and

ii) that all strings generated by G are in L.

The former is accomplished by providing a derivation schema that can be used to produce
a derivation for any sting in L. The latter uses induction to show that each sentential form
satisfies conditions that lead to the generation of a string in L. The following examples
further illustrate the steps involved in these proofs.

Example 3.4.1

Let G be the grammar

S - ► aS | fcB | A.

B -*■ aB | bS | bC

C —*■ aC | k

given in Example 3.2.10. We will prove that L(G) = a*(a*ba*ba*)*, the set of all strings
over {a, b } with an even number of b’s. It is not true that every string derivable from 5 has
an even number of b ’s. The derivation S =$ bB produces a single b. To derive a terminal
string, every B must eventually be transformed into a b. Consequently, we conclude that the
desired relationship asserts that nb(u) + n B(u) is even. When a terminal string w is derived,
n B(w) = 0 and n b(ui) is even.

We will prove that nb(u) + n B(u) is even for all strings derivable from S. The proof is
by induction on the length of the derivations.

Basis: Derivations of length one. There are three such derivations:

5 => aS

S= >bB

S ^ k.

By inspection, nb(u) + n B(u) is even for these strings.

Inductive Hypothesis: Assume that nb(u) + n B(u) is even for all strings u that can be derived
with n rule applications.

Inductive Step: To complete the proof, we need to show that nb(w) + n B(w) is even when
ever w can be obtained by a derivation of the form 5 ==> w. The key step is to reformulate
the derivation to apply the inductive hypothesis. A derivation of w of length n + 1 can be
written S ^ u ^ w.

3.4 Verifying G r a m m a r s 87

By the inductive hypothesis, nb(u) + n B(u) is even. We show that the result of the
application of any rule to u preserves the parity of nb(u) + n B(u). The table

Rule nb(w) + n B(u>)

S -* a S nb(u) + n B(,u)

S - * b B nb(u) + n B(u) + 2

S - * k nb(u) + n B(u)

B —► aB nb(u) + n B(u)

B -* bS nb(u) + n B(u)

B ->■ bC nb(u) + n B(u)

C -*■ aC nb(u) + n B(u)

C ^ - k nb(u) + n B(u)

gives the value of nb(w) + n B(w) when the corresponding rule is applied to u. Each of the
rules leaves the total number of B ’s and b’s fixed except the second, which adds two to the
total. Thus the sum of the b's and B's in a string obtained from u by the application of a rule
is even. Since a terminal string contains no B ’s, we have shown that every string in L(G)
has an even number of b's.

To complete the proof, the opposite inclusion, L(G) c a*(a*ba*ba*)*, must also be
established. To accomplish this, we show that every string in a*(a*ba*ba*)* is derivable in
G. A string in a*(a*ba*ba*)* has the form

an'ban2ban>. . . anuba"»->-', k > 0 .

Any string in a* can be derived using the rules S -> a S and S -*■ k. All other strings in L(G)
can be generated by a derivation of the form

Derivation Rule Applied

= > an'S S -*• aS
= > an,bB S -* bB

= > aniba"2B B -* aB
=> an'ba"2bS B ^ b S

an'baniban' .. .a n*B B -* aB
= > an'baniban*.. . an»bC B —> bC

an'ba"2ban:>. .. an*ba"»+<C C - f a C
antban2b a . . . an2kba"2*+i C —► A

□

8 8 C h a p t e r 3 C ontex t-Free G r a m m a r s

Example 3.4.2

Let G be the grammar
S ^ > - a A S B \ k

A —► a d \ d

B - ► bb.

We show that every string in L(G) has at least as many b's as a ’s. The number of b’s in
a terminal string depends upon the b's and B’s in the intermediate steps of the derivation.
Each B generates two b’s, while an A generates at most one a. We will prove, for every
sentential form u of G, that na(u) + nA(u) < nb(u) + 2n B(u). Let j (u) = n a(u) + n A(u)
and k(u) = nb(u) + 2n B(u).

Basis: There are two derivations of length one

Rule j (u) k(u)

S => aASB 2 2
S=>k 0 0

and j (u) < k(u) for both of the derivable strings.

Inductive Hypothesis: Assume that j (u) < k (u) for all strings u derivable from 5 in n or
fewer rule applications.

Inductive Step: We need to prove that j (w) < k(w) whenever 5 ==> w. The derivation of
w can be rewritten S => u => w and, by the inductive hypothesis, j (u) < k(u). We must
show that the inequality is preserved by an additional rule application. The effect of each
rule application on j and k is indicated in the following table.

Rule j (w) k(w)

S —► aASB ;(«) + 2 k(u) + 2

S -+ X j (u) k(u)

B ^ b b j W k(u)

A -*■ ad j(u) k(u)
A —* d j (u) - \ k(u)

The first rule adds 2 to each side of an inequality, maintaining the inequality. The final rule
subtracts 1 from the smaller side, reinforcing the inequality. For a string w e L(G), the
inequality yields na(w) < nb(w) as desired. □

Example 3.4.3

In Example 3.2.2 the grammar
G : S —*■ aS d d \ A

A —> bAc | be

3.5 L e f tm o s t D e r iv a t io n s a n d A m b ig u i ty 89

was constructed to generate the language L = {anbmcmd 2n | n > 0, m > 0}. We develop
relationships among the variables and terminals that are sufficient to prove that L(G) c L.
The S and the A rules enforce the numeric relationships between the a ’s and d 's and the b’s
and c ’s. In a derivation of G, the start symbol is removed by an application of the rule S —► A.
The presence of an A guarantees that a b will eventually be generated. These observations
lead to the following four conditions for every sentential form u of G:

i) 2na(u) = n d(u).

ii) nb(u) = n c(u).

iii) n s (u) + n A(u) + n b(u) > 0.

iv) The a ’s precede the b’s, which precede the 5 or A, which precede the c ’s, which precede

the d's.

The equalities guarantee that the terminals occur in correct numerical relationships.
The description of the language also demands that the terminals occur in a specified order.
The final condition ensures that the order is maintained at each step in the derivation. □

3.5 Leftmost Derivations and Ambiguity

The language of a grammar is the set of terminal strings that can be derived, in any
manner, from the start symbol. A terminal string may be generated by a number of different
derivations. For example. Figure 3.1 gave a grammar and four derivations of the string
ababaa using the rules of the grammar. Any one of the derivations is sufficient to exhibit
the syntactic correctness of the string.

The derivations using the natural language example that introduced this chapter were
all given as leftmost derivations. This is a natural technique for readers of English since the
leftmost variable is the first encountered when reading a string. To reduce the number of
derivations that must be considered in determining whether a string is in the language of a
grammar, we now prove that every string in the language is derivable in a leftmost manner.

Theorem 3.5.1

Let G = (V, S , P, 5) be a context-free grammar. A string w is in L(G) if, and only if,
there is a leftmost derivation of w from S.

Proof. Clearly, w e L(G) whenever there is a leftmost derivation of w from S. We must
establish the “only if” clause of the equivalence, that is, that every string in the L(G) is
derivable in a leftmost manner. Let

5 => uj| => w2 => Wj => • ■ • =>• w„ — w

be a, not necessarily leftmost, derivation of w in G. The independence of rule applications
in a context-free grammar is used to build a leftmost derivation of w. Let wk be the first
sentential form in the derivation to which the rule application is not leftmost. If there is no
such k, the derivation is already leftmost and there is nothing to show. We will show that

90 C h a p te r 3 C ontex t-F ree G r a m m a r s

the rule applications can be reordered so that the first k + 1 rule applications are leftmost.
This procedure can be repeated, n — k times if necessary, to produce a leftmost derivation.

By the choice of wk, the derivation S =$ wk is leftmost. Assume that A is the leftmost
variable in wk and B is the variable transformed in the k + 1st step of the derivation. Then
wk can be written u xA u2B u3 with «, € £*. The application of a rule B -> v to wk has the
form

wk = u xAu2B u 3 => u xA u2vu$ = wk+x.

Since w is a terminal string, an A rule must eventually be applied to the leftmost variable
in wk. Let the first rule application that transforms the variable A occur at the j + 1st step
in the original derivation. Then the application of the rule A —► p can be written

wj = U\Aq = *uxpq = wj+x.

The rules applied in steps k + 2 to j transform the string u 2vu^ into q. The derivation is
completed by the subderivation

Wj+1 =*• w„ = w.

The original derivation has been divided into five distinct subderivations. The first k rule
applications are already leftmost, so they are left intact. To construct a leftmost derivation,
the rule A -* p is applied to the leftmost variable at step k + 1. The context-free nature of
rule applications permits this rearrangement. A derivation of w that is leftmost for the first
k + 1 rule applications is obtained as follows:

S ==> wk = u xA u2Bu$

^ u i p u j Bu j (applying A - * p)

=> u lp u 2vui (applying B —*■ ii)

■==> « ip q = w j+i (using the derivation u 2v u j =>■ q)

"-i-1
wn. (using the derivation wj +l => w„).

Every time this procedure is repeated, the derivation becomes “more” leftmost. If the length
of a derivation is n, then at most n iterations are needed to produce a leftmost derivation
of w. m

Theorem 3.5.1 does not guarantee that all sentential forms of the grammar can be
generated by a leftmost derivation. Only leftmost derivations of terminal strings are assured.
Consider the grammar

S - y AB

A —> aA | A.

B ^ b B \ k

3.5 L e f tm o s t D e r iv a t io n s a n d A m b ig u i ty 9 1

that generates a*b*. The sentential form A can be obtained by the rightmost derivation
S => A B => A. It is easy to see that there is no leftmost derivation of A.

A similar result (Exercise 31) establishes the sufficiency of using rightmost derivations
for the generation of terminal strings. Leftmost and rightmost derivations o f w from v are

explicitly denoted u => w and v ^ w.

Restricting our attention to leftmost derivations eliminates many of the possible deriva
tions of a string. Is this reduction sufficient to establish a canonical derivation? That is, is
there a unique leftmost derivation of every string in the language of a grammar? Unfortu
nately, the answer is no. Two distinct leftmost derivations of the string ababaa were given
in Figure 3.1.

The possibility of a string having several leftmost derivations introduces the notion of
ambiguity. Ambiguity in formal languages is similar to ambiguity encountered frequently
in natural languages. The sentence Jack was given a book by Hemingway has two distinct
structural decompositions. The prepositional phrase by Hemingway can modify either the
verb was given or the noun book. Each of these structural decompositions represents a
syntactically correct sentence.

The compilation of a computer program utilizes the derivation produced by the parser
to generate machine-language code. The compilation of a program that has two derivations
uses only one of the possible interpretations to produce the executable code. An unfortunate
programmer may then be faced with debugging a program that is completely correct
according to the language definition but does not perform as expected. To avoid this
possibility— and help maintain the sanity of programmers everywhere— the definitions of
computer languages should be constructed so that no ambiguity can occur. The preceding
discussion of ambiguity leads to the following definition.

Definition 3.5.2

A context-free grammar G is ambiguous if there is a string w € L(G) that can be derived by
two distinct leftmost derivations. A grammar that is not ambiguous is called unambiguous.

Example 3.5.1

Let G be the grammar

S -*■ aS | Sa \ a

that generates a +. G is ambiguous since the string aa has two distinct leftmost derivations:

S ^ a S S = ► Sa

=> aa =*• aa.

The language a + is also generated by the unambiguous grammar

5 —> aS | a.

92 C h a p te r 3 C ontex t-Free G r a m m a r s

This grammar, being regular, has the property that all strings are generated in a left-to-right
manner. The variable S remains as the rightmost symbol of the string until the recursion is
halted by the application of the rule S -* a. □

The previous example demonstrates that ambiguity is a property of grammars, not of
languages. When a grammar is shown to be ambiguous, it is often possible to construct
an equivalent unambiguous grammar. This is not always the case. There are some context-
free languages that cannot be generated by any unambiguous grammar. Such languages are
called inherently ambiguous. The syntax of most programming languages, which require
unambiguous derivations, is sufficiently restrictive to avoid inherent ambiguity.

Example 3.5.2

Let G be the grammar

S -> b S \ S b \ a

with language b*ab*. The leftmost derivations

S ^ b S S= > Sb

=> bSb => bSb

=> bab => bab

exhibit the ambiguity of G. The ability to generate the b's in either order must be eliminated
to obtain an unambiguous grammar. L(G) is also generated by the unambiguous grammars

G,: G2: S -> bS \ A

A^> b A \ \ A - + A b \ a .

In G^ the sequence of rule applications in a leftmost derivation is completely determined
by the string being derived. The only leftmost derivation of the string b"abm has the form

S ^ > b nS

=>bnaA

=> bnabm A

=» bnabm.

A derivation in G2 initially generates the leading b's, followed by the trailing b's, and finally
the a. □

A grammar is unambiguous if, at each step in a leftmost derivation, there is only one
rule whose application can lead to a derivation of the desired string. This does not mean
that there is only one applicable rule, but rather that the application of any other rule makes
it impossible to complete a derivation of the string.

3.6 C on tex t-F ree G r a m m a r s a n d P r o g r a m m in g L a n g u a g e D ef in i t ion 9 3

Consider the possibilities encountered in constructing a leftmost derivation of the
string bbabb using the grammar G2 from Example 3.5.2. There are two S rules that can
initiate a derivation. Derivations initiated with the rule 5 —> A generate strings beginning
with a. Consequently, a derivation of bbabb must begin with the application of the rule
S —* bS. The second b is generated by another application of the same rule. At this point,
the derivation continues using 5 —► A. Another application of 5 —► bS would generate the
prefix bbb. The suffix bb is generated by two applications of A —> Ab. The derivation is
successfully completed with an application of A -*• a. Since the terminal string specifies
the exact sequence of rule applications, the grammar is unambiguous.

Example 3.5.3

The grammar from Example 3.2.4 that generates the language L = {anbm | 0 < n < m <2n]
is ambiguous. The string aabbb can be generated by the derivations

S => aSb S =* aSbb

=>• aaSbbb =>• aaSbbb

=» aabbb =>■ aabbb.

A strategy for unambiguously generating the strings of L is to initially produce a ’s with
a single matching b. This is followed by generating a ’s with two b's. An unambiguous
grammar that produces the strings of L in this manner is

S - > a S b \ A | A.

A —*■ aAbb \ abb. □

A derivation tree depicts the transformation of the variables in a derivation. There is a
natural one-to-one correspondence between leftmost (rightmost) derivations and derivation
trees. Definition 3.1.4 outlines the construction of a derivation tree directly from a leftmost
derivation. Conversely, a unique leftmost derivation of a string w can be extracted from a
derivation tree with frontier w. Because of this correspondence, ambiguity is often defined
in terms of derivation trees. A grammar G is ambiguous if there is a string in L(G) that is the
frontier of two distinct derivation trees. Figure 3.3 shows that the two leftmost derivations
of the string ababaa given in Figure 3.1 generate distinct derivation trees.

3.6 Context-Free Grammars and Programming Language
Definition

In the preceding sections we used context-free grammars to generate “toy” languages us
ing an alphabet with only a few elements and a small number of rules. These examples
demonstrated the ability of context-free rules to produce strings that satisfy particular syn
tactic requirements. A programming language has a larger alphabet and more complicated
syntax, increasing the number and complexity of the rules needed to define the language.

94 C h a p te r 3 C on tex t-F ree G r a m m a r s

The first formal specification of a high-level programming language was given for the lan
guage ALGOL 60 by John Backus [1959] and Peter Naur [1963]. The system employed
by Backus and Naur is now referred to as Backus-Naur form, or BNF. The programming
language Java, whose specification was given in BNF, will be used to illustrate principles
of the syntactic definition of a programming language. A complete formal definition of Java
is given in Appendix IV.

A BNF description of a language is a context-free grammar; the only difference is the
notation used to define the rules. We will give the rules using the context-free notation, with
one exception. The subscript opt after a variable or a terminal indicates that it is optional.
This notation reduces the number of rules that need to be written, but rules with optional
components can easily be transformed into equivalent context-free rules. For example,
A -*■ Bopt and A -* BoptC can be replaced by the rules A —► B \ X and A —>■ BC \ C,
respectively.

The notational conventions used in the Java rules are the same as the natural language
example at the beginning of the chapter. The names of the variables indicate the components
of the language that they generate and are enclosed in <). Java keywords are given in bold,
and other terminal symbols are represented by character strings delimited by blanks.

The design of a programming language, like the design of a complex program, is
greatly simplified utilizing modularity to develop subsets of the grammar independently.
The techniques you have used in building small rule sets provide the skills needed to design
a grammar for larger languages with more complicated syntaxes. These techniques include
using rules to ensure the presence or relative position of elements and using recursion to
generate sequences and to nest parentheses.

To illustrate the principles of language design, we will examine rules that define literals,
identifiers, and arithmetic expressions in Java. Literals, strings that have a fixed type and
value, are frequently used to initialize variables, to set the bounds on repetitive statements,
and to store standard messages to be output. The rule for the variable {Literal) defines the
types of Java literals. The Java literals, along with the variables that generate them, are

Literal Variable Exam ples

Boolean < BooleanLitera l > true, false

Character < C h a ra c terL ite ra l > ’a’, ’\ n ’ (linefeed escape sequence), V ’,

String < S tr in g L ite ra l > "" (empty string),

Null

Floating point

Integer

< F loating P o in t L i tera l >

< N u l lL i te ra l >

< In teger L i tera l >

"This is a nonempty string"

0, 356, 1234L (long), 077 (octal),

0xlab2(hex)

2., .2, 2.0, 12.34, 2e3,6.2e-5

null

Each floating point literal can have an f, F, d, or D as a suffix to indicate its precision. The
definitions for the complete set of Java literals are given in rules 143-167 in Appendix IV.

3.6 C ontex t-F ree G r a m m a r s a n d P r o g r a m m in g L a n g u a g e D e f in i t io n 9 5

We will consider the rules that define the floating point literals, since they have the most
interesting syntactic variations. The four (FloatingPointLiteral) rules specify the general

form of floating point literals.

(FloatingPointLiteral) —► (Digits) . (Digits)opl(ExponentPart)opl(FloatTypeSuffix)opl |

. (Digits) (ExponentPart)opt(FloatTypeSuffix)opt \

(Digits) (ExponentPart) (FloatTypeSuffix) opt \

(Digits) (ExponentPart)opt (FloatTypeSuffix)

The variables (Digits), (ExponentPart), and (FloatTypeSuffix) generate the compo
nents that make up the literal. The variable (Digits) generates a string o f digits using
recursion. The nonrecursive rule ensures the presence of at least one digit.

(Digits) -» (Digit) \ (Digits) (Digit)

(Digit) —> 0 | (NonZeroDigit)

(NonZemDigit) -> 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

(ExponentPart) -»• (ExponentIndicator)(SignedInteger)

(Exponentlndicator) —> e | E

(Signedlnteger) -> (Sign)op,(Digits)

(Sign) -*• + | -

(FloatTypeSuffix) —> f | F | d | D

The subscript opt in the rule (Signedlnteger) —*■ (Sign)opt (Digits) indicates that a signed
integer may begin with + or but the sign is not necessary.

The first (FloatingPointLiteral) rule generates literals of the form 1., 1.1, l.le , l.e,
l.lef, l.f, 1. If, and l.ef. The leading string of digits and decimal point are required; all
other components are optional. The second rule generates literals that begin with a decimal
point, and the last two rules define the floating point literals without decimal points.

Identifiers are used as names of variables, types, methods, and so forth. Identifiers are
defined by the rules

(Identifier) —► (IdentifierChars)

(IdentifierChars) —► (JavaLetter) | (JavaLetter)(JavaLetterOrDigit)

where the Java letters include the letters A to Z and a to z, the underscore and the dollar
sign $, along with other characters represented in the Unicode encoding.

The definition of statements in Java begins with the variable (Statement)-.

(Statement) -* (StatementWithoutTrailing Substatement) \ (LabeledStatement) |

(IfThenStatement) \ (IfThenElseStatement) |

(WhileStatement) \ (ForStatement).

96 C h a p t e r 3 C on tex t-F ree G r a m m a r s

Statements without trailing substatements include blocks and the do and switch statements.
The entire set of statements is given in rules 73-75 in Appendix IV. Like the rules for the
literals, the statement rules define the high-level structure of a statement. For example,
if-then and do statements are defined by

(IjThenStatement) —*• if ((Expression)){Statement)

(DoStatement) —*■ do (Statement) while ((Expression)).

The occurrence of the variable (Statement) on the right-hand side of the preceding rules
generates the statements to be executed after the condition in the if-then statement and in
the loop in the do loop.

The evaluation of expressions is the key to numeric computation and checking the
conditions in if-then, do, while, and switch statements. The syntax of expressions is defined
by the rules 118-142 in Appendix IV. The syntax is complicated because Java has numeric
and Boolean expressions that may utilize postfix, prefix, or infix operators. Rather than
describing individual rules, we will look at several subderivations that occur in the derivation
of a simple arithmetic assignment.

The first steps transform the variable (Expression) to an assignment:

(Expression) => (AssignmentElxpression)

=> (Assignment)

=>• (LeftHandSide) (AssignmentOperator) (AssignmentExpression)

=> (ExpressionName) (AssignmentOperator)(AssignmentExpression)

=> (Identifier) (AssignmentOperator) (AssignmentExpression)

=> (Identifier) = (AssignmentExpression).

The next step is to derive (AdditiveExpression) from (AssignmentExpression).

(AssignmentExpression) => (ConditionalExpression)

=> (ConditionalOrExpression)

=> (ConditionalAndExpression)

=> (InclusiveOrExpression)

=> (ExclusionOrExpression)

=> (AndExpression)

=> (EqualityExpression)

=> (RelationalExpression)

=> (ShiftExpression)

=> (AdditiveExpression).

E xerc ises 97

Derivations beginning with (AdditiveExpression) produce correctly formed expressions
with additive operators, multiplicative operators, and parentheses. For example,

(AdditiveExpression) => (AdditiveExpression) + {MultiplicativeExpression)

=> (MultiplicativeExpression) + (MultiplicativeExpression)

=> (UnaryExpression) + (MultiplicativeExpression)

(Identifier) + {MultiplicativeExpression)

=> (Identifier) +

(MultiplicativeExpression) * (MultiplicativeExpression)

begins such a derivation. Derivations from {UnaryExpression) can produce literals, vari
ables, or ((Expression)) to obtain nested parentheses.

The rules that define identifiers, literals, and expressions show how the design of a large
language is decomposed into creating rules for frequently recurring subsets o f the language.
The resulting variables (Identifier), (Literal), and (Expression) become the building blocks
for higher-level rules.

The start symbol of the grammar is (CompilationUnit) and the derivation of a Java
program begins with the rule

(CompulationUnit) —*■ (PackageDeclaration)op,(ImportDecIarations)opl

(Type Dec larations) opt.

A string of terminal symbols derivable from this rule is a syntactically correct Java program.

Exercises

1. Let G be the grammar

5 —>■ abSc | A

A -y cA d | cd.

a) Give a derivation of ababccddcc.

b) Build the derivation tree for the derivation in part (a).

c) Use set notation to define L(G).

2. Let G be the grammar

S -+ A S B | X

A —*■ aA b | k

B —* bBa | ba.

a) Give a leftmost derivation of aabbba.

b) Give a rightmost derivation of abaabbbabbaa.

98 C h a p te r 3 C on tex t-F ree G r a m m a r s

c) Build the derivation tree for the derivations in parts (a) and (b).

d) Use set notation to define L(G).

3. Let G be the grammar

S -+ SA B \X

A -> aA | a

B - + b B \ k .

a) Give a leftmost derivation of abbaab.

b) Give two leftmost derivations of aa.

c) Build the derivation tree for the derivations in part (b).

d) Give a regular expression for L(G).

4. Let DT be the derivation tree

5

A B

a A A B

a a b

a) Give a leftmost derivation that generates the tree DT.

b) Give a rightmost derivation that generates the tree DT.

c) How many different derivations are there that generate DT?

5. Give the leftmost and rightmost derivations corresponding to each o f the derivation
trees given in Figure 3.3.

6. For each of the following context-free grammars, use set notation to define the language
generated by the grammar.

a) S -*■ aaSB | A
B ^ b B \ b

b) S - +aSbb \ A
A - * c A \ c

c) S -+ abSdc | A
A -* cdAba | A.

7. Construct a grammar over [a, b, c } whose language is [anb2ncm \ n, m >0) .

8. Construct a grammar over [a, b, c] whose language is {a”bmc2n+m \ n , m > 0).

9. Construct a grammar over {a, b, c} whose language is {anbmc‘ \ 0 < n + m < i }.

d) 5 -*• aSb | A
A -*■ cA d | cB d
B -> a B b | ab

e) 5 -*• a S B | aB
B -* b b \ b

E xerc ises 99

10. Construct a grammar over {a, b } whose language is [ambn | 0 < n < m < 3n).

11. Construct a grammar over {a, b } whose language is {amb'an \ i = m + n}.

12. Construct a grammar over [a, b} whose language contains precisely the strings with
the same number of a ’s and b ’s.

* 13. Construct a grammar over {a, b} whose language contains precisely the strings of odd
length that have the same symbol in the first and middle positions.

14. For each of the following regular grammars, give a regular expression for the language
generated by the grammar.

a) S -*■ a A c) S -* a S \ bA
A —* a A | b A | b A —* b B

B -> o B | X

b) S - * a A d) S —► a S \ bA \ X
A - * a A \ b B A —* a A \ bS
B -* b B \ X

For Exercises 15 through 25, give a regular grammar that generates the described language.

15. The set of strings over [a, b, c} in which all the a ’s precede the b's, which in turn
precede the c ’s. It is possible that there are no a ’s, b’s, or c’s.

16. The set of strings over {a, b} that contain the substring aa and the substring bb.

17. The set of strings over {a, b } in which the substring aa occurs at least twice. (Hint:
Beware of the substring aaa.)

18. The set of strings over [a, b} that contain the substring ab and the substring ba.

19. The set of strings over [a, b) in which the number of a ’s is divisible by three.

20. The set of strings over {a, b] in which every a is either immediately preceded or
immediately followed by b, for example, baab, aba, and b.

21. The set of strings over {a, b} that do not contain the substring aba.

22. The set of strings over [a, b } in which the substring aa occurs exactly once.

23. The set of strings of odd length over {a, b] that contain exactly two b's.

* 24. The set of strings over [a, b, c] with an odd number of occurrences o f the substring
ab.

25. The set of strings over {a, b) with an even number of a ’s or an odd number of b's.

26. The grammar in Figure 3.1 generates (b*ab*ab*)+ , the set of all strings with a positive,
even number of a ’s. Prove this.

27. Prove that the grammar given in Example 3.2.2 generates the prescribed language.

28. Let G be the grammar

S —> aSb | B

B ->• bB | b.

Prove that L(G) = {anbm \ 0 < n < m).

100 C h a p te r 3 C ontex t-Free G r a m m a r s

29. Let G be the grammar

S -* aSaa \ B

B -»■ bbB dd | C

C -* bd.

a) What is L(G)?

b) Prove that L(G) is the set given in part (a).

* 30. Let G be the grammar

S -*■ aSbS | aS \ X.

Prove that every prefix of a string in L(G) has at least as many a ’s as b’s.

31. Let G be a context-free grammar and w e L(G). Prove that there is a rightmost deriva
tion of u> in G.

32. Let G be the grammar

S - + a S \ S b \ ab.

a) Give a regular expression for L(G).

b) Construct two leftmost derivations of the string aabb.

c) Build the derivation trees for the derivations from part (b).

d) Construct an unambiguous grammar equivalent to G.

33. For each of the following grammars, give a regular expression or set-theoretic definition
for the language of the grammar. Show that the grammar is ambiguous and construct
an equivalent unambiguous grammar.

a) S —* aaS \ aaaaaS \ X

b) S -»• aSA | X
A ^ b A \X

c) S —* aSb | aAb
A -* cA d | B
B —y aB b | X

d) S - * AaSbB | X
A —* aA | a
B bB \X

* e) S -* A | B
A —► abA | X
B —>aBb | X

Exerc ises 1 0 1

34. Let G be the grammar

S —> aA 1*

A-> aA | bB

B bB \b.

a) Give a regular expression for L(G).

b) Prove that G is unambiguous.

35. Let G be the grammar

5 —► a S | a A \ a

A —*■ aAb | ab.

a) Give a set-theoretic definition of L(G).

b) Prove that G is unambiguous.

36. Let G be the grammar

S - > a S \ b A \ k

A -*■ bA | aS | X.

Give a regular expression for L(G). Is G ambiguous? If so, give an unambiguous
grammar that generates L(G). If not, prove it.

37. Construct unambiguous grammars for the languages L* = {a"bncm \ n, m > 0} and
L2 = [anbmcm | n, m > 0}. Construct a grammar G that generates Lj U I P r o v e that
G is ambiguous. This is an example of an inherently ambiguous language.'Explain,
intuitively, why every grammar generating Lj U L2 must be ambiguous.

38. Use the definition of Java in Appendix IV to construct a derivation of the string 1.3e2
from the variable (Literal).

* 39. Let G) and G2 be the following grammars:

Gj: S - * a A B b G2\ S ^ A A B B

A —* a A | a A -*■ AA \ a

B - > b B \ b B -*■ B B \ b.

a) For each variable X, show that the right-hand side of every X rule o f Gj is derivable
from the corresponding variable X using the rules of G2. Use this to conclude that
L(G,) c L(G2).

b) Prove that L(Gj) = L(G2).

1 0 2 C h a p te r 3 C ontex t-F ree G r a m m a r s

* 40. A right-linear gram m ar is a context-free grammar, each of whose rules has one of the
following forms:

i) A-*- w, or

ii) A -*■ wB,

where u e E * . Prove that a language L is generated by a right-linear grammar if, and
only if, L is generated by a regular grammar.

41. Try to construct a regular grammar that generates the language {anbn | n > 0}. Explain
why none of your attempts succeed.

42. Try to construct a context-free grammar that generates the language {anbncn \ n > 0}.
Explain why none of your attempts succeed.

Bibliographic Notes

Context-free grammars were introduced by Chomsky [1956], [1959]. Backus-Naur form
was developed by Backus [1959], This formalism was used to define the programming
language ALGOL; see Naur [1963]. The BNF definition of Java is given in Appendix IV.
The equivalence of context-free languages and the languages generated by BNF definitions
was noted by Ginsburg and Rice [1962],

Properties of ambiguity are examined in Floyd [1962], Cantor [1962], and Chomsky
and Schutzenberger [1963]. Inherent ambiguity was first noted in Parikh [1966]. A proof
that the language in Exercise 37 is inherently ambiguous can be found in Harrison [1978].
Closure properties for ambiguous and inherently ambiguous languages were established by
Ginsburg and Ullian [1966a, 1966b].

CHAPTER 4

Normal Forms for
Context-Free Grammars

The definition of a context-free grammar permits unlimited flexibility in the form of the
right-hand side of a rule. This flexibility is advantageous for designing grammars, but
the lack of structure makes it difficult to establish general relationships about grammars,
derivations, and languages. Normal forms for context-free grammars impose restrictions on
the form of the rules to facilitate the analysis of context-free grammars and languages. Two
properties characterize a normal form:

i) The grammars that satisfy the normal form requirements should generate the entire set
of context-free languages.

ii) There should be an algorithmic transformation of an arbitrary context-free grammar
into an equivalent grammar in the normal form.

In this chapter we introduce two important normal forms for context-free grammars, the
Chomsky and Greibach normal forms. Transformations are developed to convert an arbitrary
context-free grammar into an equivalent grammar that satisfies the conditions of the normal
form. The transformations consist of a series of rule modifications, additions, and deletions,
each of which preserves the language of the original grammar.

The restrictions imposed on the rules by a normal form ensure that derivations of the
grammar have certain desirable properties. The derivation trees for derivations in a Chomsky
normal form grammar are binary trees. In Chapter 7 we will use the relationship between
the depth and number of leaves of a binary tree to guarantee the existence of repetitive
patterns in strings in a context-free language. We will also use the properties of derivations

103

104 C h a p te r 4 N o rm a l F o rm s fo r C on tex t-F ree G r a m m a r s

in Chomsky normal form grammars to develop an efficient algorithm for deciding if a string
is in the language of a grammar.

A derivation using the rules of a Greibach normal form grammar builds a string in
a left-to-right manner. Each rule application adds one terminal symbol to the derived
string. The Greibach normal form will be used in Chapter 7 to establish a machine-based
characterization of the languages that can be generated by context-free grammars.

4.1 Grammar Transformations

The transformation of a grammar into a normal form consists of a sequence of rule additions,
deletions, or modifications, each of which preserves the language of the original grammar.
The objective of each step is to produce rules that satisfy some desirable property. The
sequence of transformations is designed to ensure that each successive step maintains the
properties produced by the previous transformations.

Our first transformation is quite simple; the goal is to limit the role of the start symbol
to the initiation of a derivation. If the start symbol is a recursive variable, a derivation of the
form S ^ uSv permits the start symbol to occur in sentential forms in intermediate steps
of a derivation. For any grammar G, we build an equivalent grammar G' in which the start
symbol is nonrecursive. The observation that is important for this transformation is that
the start symbol of G' need not be the same variable as the start symbol o f G. Although
this transformation is straightforward, it demonstrates the steps that are required to prove a
transformation preserves the language of the original grammar.

Lemma 4.1.1

Let G = (V, E , P, S) be a context-free grammar. There is a grammar G ' that satisfies

i) L(G) = L(G').

ii) The start symbol of G ' is not a recursive variable.

Proof. If the start symbol 5 does not occur on the right-hand side of a rule of G, then
there is nothing to change and G' = G. If S is a recursive variable, the recursion of the start
symbol must be removed. The alteration is accomplished by “taking a step backward” with
the start of a derivation. The grammar G '= (V U {S'}, £ , P U {S' —>■ S), S') is constructed
by designating a new start symbol S' and adding S' -*■ S to the rules of G. The two grammars

generate the same language since any string u derivable in G by a derivation S ^ u can be

obtained by the derivation S' => 5 => u. Moreover, the only role of the rule added to P' is
... , G' G'

to initiate a derivation in G , the remainder of which is identical to a derivation in G. Thus
a string derivable in G ' is also derivable in G. ■

4.1 G r a m m a r T r a n s f o r m a t io n s 1 0 5

Example 4.1.1

The start symbol of the grammar G

G': S' -»• S

S aS \ A B | AC

A -» aA | A.

B -»• bB | bS

C -> cC | X

is recursive. The technique outlined in Lemma 4.1.1 is used to construct the equivalent
grammar G'. The start symbol of G' is S', which is nonrecursive. The variable S is still
recursive in G \ but it is not the start symbol of the new grammar. □

The process of transforming grammars into normal forms consists o f removing and
adding rules to the grammar. With each alteration, the language generated by the grammar
should remain unchanged. Lemma 4.1.2 establishes a simple criterion by which rules may
be added to a grammar without altering the language. Lemma 4.1.3 provides a method for
removing a rule. Of course, the removal of a rule must be accompanied by the addition of
other rules so the language does not change.

Lemma 4.1.2

Let G = (V, 2 , P, 5) be a context-free grammar. If A =*• w, then the grammar G' =

(V, £ , PU {A -»-u;} , 5) is equivalent to G.

Proof. Clearly, L(G) c L(G') since every rule in G is also in G'. The other inclusion
follows from the observation that the effect of the application of the rule A -*■ w in a
derivation in G' can be accomplished in G by employing the derivation A w to transform

c
A to tu. ■

Lemma 4.1.3

Let G = (V, I , P, 5) be a context-free grammar, A -* uB v be a rule in P, and B —► tu, |
u>2 | . . . | w„ be the B rules of P. The grammar G' = (V, E , P', S) where

P* = (P — {A —► u B v }) U {A —* u w tv | uw 2v | . . . | uw nv]

is equivalent to G.

Proof. Since each rule A -»■ mui, u is derivable in G, the inclusion L(G') C L(G) follows
from Lemma 4.1.2.

G: S

A ■

B

a S \ A B \ A C

aA | X

b B \ b S

c C \ X

106 C h a p te r 4 N o rm a l F o r m s fo r C on tex t-F ree G r a m m a r s

The opposite inclusion is established by showing that every terminal string derivable
in G using the rule A —* uB v is also derivable in G'. The rightmost derivation of a terminal
string that utilizes this rule has the form

5 pA q => p u B vq p x B v q = ► pxWjVq ^ w,

where u ^ x transforms u into a terminal string. The same string can be generated in G'
using the rule A —* uw sv:

S pA q =>■ puw jvq pxWjVq => w. ■

4.2 Elimination o f A-Rules

In the derivation of a terminal string, the intermediate sentential forms may contain variables
that do not generate terminal symbols. These variables are removed from the sentential form
by applications of A-rules. This property is illustrated by the derivation of the string aaaa
in the grammar

S —*■ SaB | aB

B - > b B \ k .

The language generated by this grammar is (ab*)+. The leftmost derivation of aaaa
generates four B's, each of which is removed by the application of the rule B k:

S => SaB

=» SaB aB

=> S aB aB aB

=>■ a B a B a B a B

=> a a B a B a B

=> aaaB aB

=*• aaaaB
=> aaaa.

The objective of our next transformation is to ensure that every variable in a sentential
form contributes to the terminal string that is derived. In the preceding example, none of the
occurrences of the B ’s produced terminals. A more efficient approach would be to avoid
the generation of variables that are subsequently removed by X-rules.

The language (ab*)+ is also generated by the grammar

5 -*■ SaB | Sa \ aB \ a

B —y bB \b

4.2 E l im ina t ion o f X-Rules 107

that does not have X-rules. The derivation of the string aaaa,

S Sa

=> Saa

=> Saaa
=> aaaa,

uses half the number of rule applications as before. This efficiency is gained at the expense
of increasing the number of rules of the grammar.

The effect of a X-rule B -> X in a derivation is not limited to the variable B. Consider
the grammar

S —>aAb

A —>■ aA \ B

B —► bB |X

that generates the language a +b+. The variable A occurs in the derivation of the string ab,

S => aAb

=> a Bb

=> ab,

but the subderivation beginning with the application of the rule A —* B does not produce
terminal symbols. Whenever a variable can derive the null string, as A does in the preceding
example, it is possible that its occurrence in a sentential form may not contribute to the string.
We will call a variable that can derive the null string nullable. If a sentential form contains
a nullable variable, the length of the derived string can be reduced by a sequence of rule
applications.

We will now present a technique to remove X-rules from a grammar. The modification
of the grammar consists of three steps:

1. The determination of the set of nullable variables,

2. The addition of rules in which occurrences of the nullable variables are omitted, and

3. The deletion of the X-rules.

If a grammar has no nullable variables, each variable that occurs in a derivation contributes
to the generation of terminal symbols. Consequently, the application of a rule cannot reduce
the length of the sentential form. A grammar with this property is called noncontracting.

The first step in the removal of X-rules is the determination of the set of nullable
variables. Algorithm 4.2.1 iteratively constructs this set from the X-rules of the grammar. The
algorithm utilizes two sets: the set NULL collects the nullable variables and PREV, which
contains the nullable variables from the previous iteration, triggers the halting condition.

1 0 8 C h a p te r 4 N o rm a l F o rm s fo r C on tex t-F ree G r a m m a r s

Algorithm 4.2.1
Construction o f the Set o f Nullable Variables

input: context-free grammar G = (V, £ , P, S)

1. NULL := {A | A X € P}
2. repeat

2.1. PREV := NULL
2.2. for each variable A € V do

if there is an A rule A —>■ w and w 6 PREV*, then
NULL := NULL U {A}

until NULL = PREV

The set NULL is initialized with the variables that derive the null string in one rule
application. A variable A is added to NULL if there is an A rule whose right-hand side
consists entirely of variables that have previously been determined to be nullable. The
algorithm halts when an iteration fails to find a new nullable variable. The repeat-until loop
must terminate since the number of variables is finite. The definition of nullable, based on
the notion of derivability, is recursive. Thus, induction may be used to show that the set
NULL contains exactly the nullable variables of G at the termination of the computation.

Lemma 4.2.2

Let G = (V, £ , P, 5) be a context-free grammar. Algorithm 4.2.1 generates the set of
nullable variables of G.

Proof. Induction on the number of iterations of the algorithm is used to show that every
variable in NULL derives the null string. If A is added to NULL in step 1, then G contains
the rule A -* k, and the derivation is obvious.

Assume that all the variables in NULL after n iterations are nullable. We must prove
that any variable added in iteration n + 1 is nullable. If A is such a variable, then there is a
rule

A -> A j A2 . . . Ak

with each A,- in PREV at the n + 1st iteration. By the inductive hypothesis, A,- => k for
i = 1, 2 , . . . , k. These derivations can be used to construct the derivation

A = ► A,A2 . . . A k

A 2 . . . A k

4 A3 . . . Ak

=> Ak

h k .

exhibiting the nullability of A.

4 .2 E l im ina t ion o f A-Rules 1 0 9

Now we show that every nullable variable is eventually added to NULL. If n is the
length of the minimal derivation of the null string from the variable A, then A is added to
the set NULL on or before iteration n of the algorithm. The proof is by induction on the
length of the derivation of the null string from the variable A.

If A ^ A, then A is added to NULL in step 1. Suppose that all variables whose minimal
derivations of the null string have length n or less are added to NULL on or before iteration rt.
Let A be a variable that derives the null string by a derivation of length n + 1. The derivation
can be written

Each of the variables A,- is nullable with minimal derivations of length n or less. By the
inductive hypothesis, each A, is in NULL prior to iteration n + 1. Let m < n be the iteration
in which all of the A, ’s first appear in NULL. On iteration m + 1 the rule

The language generated by a grammar contains the null string only if it can be derived
from the start symbol of the grammar, that is, if the start symbol is nullable. Thus Algorithm
4.2.1 provides a decision procedure for determining whether the null string is in the language
of a grammar.

Example 4.2.1

The set of nullable variables of the grammar

is constructed using Algorithm 4.2.1. The action of the algorithm is traced by giving the
contents of the sets NULL and PREV after each iteration of the repeat-until loop. Iteration
zero specifies the composition of NULL prior to entering the loop.

A -> A jA2 . . . Ak

causes A to be added to NULL.

G : S - > A C A

A —*■ aAa \ B \ C

B ^ > b B \ b

C - ► cC | A.

Iteration NULL PREV

0 (Cl
{A. C) (C)
(S, A, C((A, C)

{5, A, C) {5, A, C}

2

3

1 1 0 C h a p te r 4 N o rm a l F o r m s fo r C on tex t-F ree G r a m m a r s

The algorithm halts after three iterations. The nullable variables of G are 5, A, and C . Since
the start symbol is nullable, the null string is in L(G). a

A grammar with X-rules is not noncontracting. To build an equivalent noncontracting
grammar, rules must be added to generate the strings whose derivations in the original
grammar require the application of X-rules. There are two distinct roles that a nullable
variable B can play in a derivation that is initiated by the application of the rule A —*• uBv;
it can derive a nonnull terminal string or it can derive the null string. In the latter case, the
derivation has the form

A => u Bv

^ u v

w.

The string w can be derived without X-rules by augmenting the grammar with the rule
A -* uv. Lemma 4.1.2 ensures that the addition of this rule does not affect the language of
the grammar.

The rule A —>■ B A B a requires three additional rules to construct derivations without
X-rules. If both of the B's derive the null string, the rule A -> Aa can be used in a
noncontracting derivation. To account for all possible derivations of the null string from
the two instances of the variable B, a noncontracting grammar requires the four rules

A -*■ B A B a

A -> A Ba

A -*• BAa

A->- Aa

to produce all the strings derivable from the rule A -*• BABa . Since the right-hand side of
each of these rules is derivable from A, their addition to the rules of the grammar does not
alter the language.

The previous technique constructs rules that can be added to a grammar G to derive
strings in L(G) without the use of X-rules. This process is used to construct a grammar
without X-rules that is equivalent to G. If L(G) contains the null string, there is no equivalent
noncontracting grammar. All variables occurring in the derivation S X must eventually
disappear. To handle this special case, the rule S -> X is allowed in the new grammar, but
all other X-rules are replaced. The derivations in the resulting grammar, with the exception
of 5 => X, are noncontracting. A grammar satisfying these conditions is called essentially
noncontracting.

When constructing equivalent grammars, a subscript is used to indicate the restriction
being imposed on the rules. The grammar obtained from G by removing X-rules is denoted

GL-

4 .2 E l im ina t ion o f X-Rules 1 1 1

Theorem 4.2.3

Let G = (V, E , P, 5) be a context-free grammar. There is an algorithm to construct a

context-free grammar GL = (VL, E , Pl . Sl) that satisfies

i) L(Gl) = L(G).

ii) SL 's not a recursive variable.

iii) GL has no X-rules other than S -*■ X if X e L(G).

Proof. The start symbol can be made nonrecursive by the technique presented in Lemma
4 .1.1. The set of variables VL is simply V with a new start symbol added, if necessary. The
set PL of rules of GL is obtained by a two step process.

1. For each rule A -* w in P, if u> can be written

w lA lw 2A 2 . . . wkAkwk+i,

where Aj, A2, A* are a subset of the occurrences of the nullable variables in w,
then add the rule

A -*■ w,w 2 . . . wkwk+i

to P L.

2. Delete all X-rules other than S —*■ X from P l.

Step 1 generates rules of PL from each rule of the original grammar. A rule with n oc
currences of nullable variables in the right-hand side produces 2" rules. Step 2 deletes all
X-rules other than S l —>• X from PL. The rules in PL are either rules of G or derivable using
rules of G. Thus, L (G l) £ L(G).

The opposite inclusion, that every string in L(G) is also in L (G l), must also be
established. We prove this by showing that every nonnull terminal string derivable from

a variable of G is also derivable from that variable in GL. Let A => w be a derivation in G
• G

with w e E +. We prove that A => w by induction on n, the length of the derivation of w in
°L

G. If rt = 1, then A —► w is a rule in P and, since w ^ X, A -> w is in PL.
Assume that terminal strings derivable from any variable of G by n or fewer rule appli

cations can be derived from the variable in GL- Note that this makes no claim concerning
the length of the derivation in Gl- Let A w be a derivation of a terminal string. If we

G
explicitly specify the first rule application, the derivation can be written

A w tA tw2A 2 . . . wkAkwk+l = ► w,
G

where A,- 6 V and to,- e E*. By Lemma 3.1.5, w can be written

w = w ip iw2p 2 . . . w kpkwk+l.

1 1 2 C h a p t e r 4 N o rm a l F o r m s fo r C on tex t-F ree G r a m m a r s

where At derives p, in G with a derivation of length n or less. For each Pj € E +, the inductive

hypothesis ensures the existence of a derivation Aj => p,. If Pj = k, the variable A j is

nullable in G. Step 1 generates a rule from L

A -» w lAiiv2A 2 ■ ■ ■ w^A^W/t+i

in which each of the A j ’s that derives the null string is deleted. A derivation of w in G l
can be constructed by first applying this rule and then deriving each p, e S + using the
derivations provided by the inductive hypothesis. ■

Example 4.2.2

Let G be the grammar given in Example 4.2.1. The nullable variables of G are [S, A, C).
The equivalent essentially noncontracting grammar GL is given below.

G: S -*• AC A Gl : S -* A C A \ C A | AA \ A C | A \ C | X

A -*■ aAa \ B \ C A -* aAa \ aa \ B \ C

B - > b B \ b B bB \b

C - ► cC | k C -*■ cC | c

The rule S —> A is obtained from S -> AC A in two ways: deleting the leading A and C or
the final A and C. All X-rules, other than S —>■ X, are discarded. □

Although the grammar G l is equivalent to G, the derivation of a string in these
grammars may be quite different. The simplest example is the derivation of the null string.
Six rule applications are required to derive the null string from the start symbol of the
grammar G in Example 4.2.2, while the X-rule in GL generates it immediately. Leftmost
derivations of the string aba are given in each of the grammars.

G: S => AC A G l: S => A

=>aAaCA =>aAa

=$aBaCA =>aBa

=> abaCA => aba

=> aba A

=> abaC

=> aba

The first rule application of the derivation in GL generates only variables that eventually
derive terminals. Thus, all applications of the X-rule are avoided.

4.3 E l im in a t io n o f C h a in Rules 1 1 3

Example 4.2.3

Let G be the grammar

G: S -> A B C

A —y a A |X

B - * b B \ k

C -*■ cC | X

that generates a*b*c*. The nullable variables of G are S, A , B, and C. The equivalent
grammar obtained by removing X rules is

Gl : 5 -*• A B C | A B \ BC \ AC \ A \ B \ C | X

A —*■ a A | a

B —y bB \b

C —y cC | c.

The S rule that initiates a derivation determines which symbols occur in the derived string.
Since S is nullable, the rule S —y X is added to the grammar. □

[4.3 Elimination o f Chain Rules

The application of a rule A —► B does not increase the length of the derived string, nor does
it produce additional terminal symbols; it simply renames a variable. Rules of this form are
called chain rules. The idea behind the removal of chain rules is realizing that a chain rule
is nothing more than a renaming procedure. Consider the rules

A -*• a A \a \ B

B -* bB \ b \ C.

The chain rule A —y B indicates that any string derivable from the variable B is also derivable
from A. The extra step, the application of the chain rule, can be eliminated by adding A
rules that directly generate the same strings as B. This can be accomplished by adding a
rule A —y w for each rule B —y w and deleting the chain rule. The chain rule A —y B can
be replaced by three A rules yielding the equivalent rules

A - + a A \ a \ b B \ b \ C

B ^ y b B \ b \ C .

Unfortunately, another chain rule was created by this replacement. The preceding procedure
could be repeated to remove the new chain rule. Rather than repeating the process, we will
develop a technique to remove all chain rules at one time.

114 C h a p t e r 4 N o rm a l F o r m s fo r C on tex t-F ree G r a m m a r s

A derivation A => C consisting solely of chain rules is called a chain. Algorithm 4.3.1
generates all variables that can be derived by chains from a variable A in an essentially non
contracting grammar. This set is denoted CHAIN(A). The set NEW contains the variables
that were added to CHAIN(A) on the previous iteration.

Algorithm 4.3.1
Construction o f the Set CHAIN (A)

input: essentially noncontracting context-free grammar G = (V, E , P, 5)

1. CHAIN(A) := {A}
2. PREV := 0
3. repeat

3.1. NEW := CHAIN(A) - PREV
3.2. PREV := CHAIN(A)
3.3. for each variable B € NEW do

for each rule B -> C do
CHAIN(A) := CHAIN(A) U {C}

until CHAIN(A) = PREV

Algorithm 4.3.1 is fundamentally different from the algorithm that generates the nul
lable variables. The strategy for finding nullable variables begins by initializing the set with
the variables that generate the null string with one rule application. The rules are then ap
plied backward; if the right-hand side of a rule consists entirely of variables in NULL, then
the left-hand side is added to the set being built.

The generation of CHAIN(A) follows a top-down approach. The repeat-until loop iter
atively constructs all variables derivable from A using chain rules. Each iteration represents
an additional rule application to the previously discovered chains. The proof that Algorithm
4.3.1 generates CHAIN(A) is left as an exercise.

Lemma 4.3.2

LetG = (V, E , P, 5) be an essentially noncontracting context-free grammar. Algorithm
4.3.1 generates the set of variables derivable from A using only chain rules.

The variables in CHAIN(A) determine the substitutions that must be made to remove
the A chain rules. The grammar obtained by deleting the chain rules from G is denoted Gc .

Theorem 4.3.3

LetG = (V, E , P, 5) be an essentially noncontracting context-free grammar. There is an
algorithm to construct a context-free grammar Gc that satisfies

i) L(GC) = L(G).

ii) Gc is essentially noncontracting and has no chain rules.

4.3 E l im ina t ion o f C h a in R ules 115

Proof. The A rules of Gc are constructed from the set CHAIN(A) and the rules of G. The
rule A -* w is in Pc if there is a variable B and a string w that satisfy

i) B e CHAIN(A).

ii) B -*■ w € P.

iii) u> £ V .

Condition (iii) ensures that Pc does not contain chain rules. The variables, alphabet, and
start symbol of Gc are the same as those of G.

By Lemma 4.1.2, every string derivable in Gc is also derivable in G. Consequently,

L(GC) C L(G). Now let w e L(G) and A ^ B be a maximal sequence of chain rules used
G

in the derivation of u>. The derivation of w has the form

5 => uA v => u B v = ► upv => w,
G G G G

where B -*■ p is a rule, but not a chain rule, in G. The rule A -* p can be used to replace
the sequence of chain rules in the derivation. This technique can be repeated to remove all
applications of chain rules, producing a derivation of w in Gc- ■

Example 4.3.1

The grammar Gc is constructed from the grammar Gl in Example 4.2.2. Since GL is
essentially noncontracting. Algorithm 4.3.1 generates the variables derivable using chain
rules. The computations construct the sets

CHAIN(S) = (5, A, C, B }

CHAIN(A) = {A, B, C }

CHAIN(B) = {B)

s CHAIN(C) = {C}.

These sets are used to generate the rules of Gc .

Pc : S -*• AC A | CA | AA | AC | aAa \ a a \ b B \b \cC \c \X

A -*■ aAa \ aa \ bB \ b | cC \ c

B —► b B | b

C —*■ cC | c □

The removal of chain rules increases the number of rules in the grammar but reduces
the length of derivations. This is the same trade-off that accompanied the construction of
an essentially noncontracting grammar. The restrictions require additional rules to generate
the language but simplify the derivations.

Eliminating chain rules from an essentially noncontracting grammar preserves the
noncontracting property. Let A -*• w be a rule created by the removal of chain rules. This

1 1 6 C h a p te r 4 N o rm a l F o r m s fo r C on tex t-F ree G r a m m a r s

implies that there is a rule B —* w for some variable B e CHAIN(A). Since the original
grammar was essentially noncontracting, the only X-rule is S —► X. The start symbol, being
nonrecursive, is not a member of CHAIN(A) for any A ^ 5. It follows that no additional

X-rules are produced in the construction of Pc-
Each rule in an essentially noncontracting grammar without chain rules has one of the

following forms:

i) S —► X,

ii) A -*■ a, or

iii) A —*u>,

where w e (V U £)* is of length at least two. The rule S —► X is used only in the derivation
of the null string. The application of any other rule adds a terminal to the derived string or
increases the length of the string.

4.4 Useless Symbols

Grammars are designed to generate languages, and variables define the structure of the
sentential forms during the string-generation process. Ideally, every variable in a grammar
should contribute to the generation of strings of the language. The construction of large
grammars, making modifications to existing grammars, or sloppiness may produce variables
that do not occur in derivations that generate terminal strings. Consider the grammar

S —»■ AC | B S | B

A —> a A | a F

B -> C F 1 b

C - + c C | D

D -* a D | B D | C

E - + a A \ B S A

F ^ - b B 1 b.

What is L(G)? Are there variables that cannot possibly occur in the generation of terminal
strings, and if so, why? Try to convince yourself that L(G) = b+. To begin the process of
identifying and removing useless symbols, we make the following definition.

Definition 4.4.1

Let G be a context-free grammar. A symbol x € (V U S) is useful if there is a derivation

5 ^ uxv => w ,
G G

where u, v g (V U £)* and w e 2*. A symbol that is not useful is said to be useless.

4.4 U s e le s s S y m b o l s 1 1 7

A terminal is useful if it occurs in a string in the language of G. For a variable to be
useful, two conditions must be satisfied. The variable must occur in a sentential form of the
grammar; that is, it must occur in a string derivable from S. Moreover, every symbol occur
ring in the sentential form must be capable of deriving a terminal string (the null string is
considered to be a terminal string). A two-part procedure to eliminate useless variables is
presented. Each construction establishes one of the requirements for the variables to be
useful.

Algorithm 4.4.2 builds a set TERM consisting of the variables that derive terminal
strings. The strategy used in the algorithm is similar to that used to determine the set of
nullable variables of a grammar. The proof that Algorithm 4.4.2 generates the desired set
follows the strategy employed by the proof of Lemma 4.2.2 and is left as an exercise.

Algorithm 4.4.2
Construction o f the Set o f Variables That Derive Terminal Strings

input: context-free grammar G = (V, E , P, S)

1. TERM := {A | there is a rule i 4 - > i o e P with w e E*}
2 . repeat

2.1. PREV := TERM
2.2. for each variable A e V do

if there is an A rule A - ► w and w e (PREV U S) ' then
TERM := TERM U {A}

until PREV = TERM

Upon termination of the algorithm, TERM contains the variables of G that generate
terminal strings. Variables not in TERM are useless; they cannot contribute to the generation
of strings in L(G). This observation provides the motivation for the construction of a
grammar GT that is equivalent to G and contains only variables that derive terminal strings.

Theorem 4.4.3

Let G = (V, E , P, 5) be a context-free grammar. There is an algorithm to construct
a context-free grammar GT = (VT, E T, PT, S) that satisfies

i) L(Gt) = L(G).

ii) Every variable in GT derives a terminal string in GT.

Proof. PT is obtained by deleting all rules containing variables of G that do not derive ter
minal strings, that is, all rules containing variables in V — TERM. The components of G j are

VT = TERM,

PT = {A —» w | A -> w is a rule in P, A e TERM, and w € (TERM U E)*}, and

E t = {a € E | a occurs in the right-hand side of a rule in PT}.

The alphabet E t consists of all the terminals occurring in the rules in PT.

1 1 8 C h a p te r 4 N o rm a l F o rm s fo r C on tex t-F ree G r a m m a r s

We must show that L(GX) = L(G). Since PT C P, every derivation in Gx is also a*
derivation in G and L(GT) c L(G). To establish the opposite inclusion, we must show that
removing rules that contain variables in V — TERM has no effect on the set of terminal
strings generated. Let S => w be a derivation of a string w 6 L(G). This is also a derivation

in Gt . If not, a variable from V - TERM must occur in an intermediate step in the derivation.
A derivation from a sentential form containing a variable in V — TERM cannot produce a
terminal string. Consequently, all the rules in the derivation are in PT and w € L(Gt). ■

Example 4.4.1

The grammar Gt is constructed for the grammar G introduced at the beginning of this
section.

G: S —*■ AC | B S | B

A —► a A | a F

B —y C F \ b

C —y cC \ D

D - > a D \ B D \ C

E ^ a A \ B S A

F ^ b B \ b

Algorithm 4.4.2 is used to determine the variables of G that derive terminal strings.

Iteration TERM PREV

0 I*.
1 [B, F, A, 5) {*. n
2 {B, F, A, S, E) (B, F, A, S)
3 [B, F, A, S, E) {B, F, A, S, E)

Using the set TERM to build GT produces

Vt = {5, A, B , E, F]

E t = {a, b}

PT: S -*• B S | B

A -*■ aA | a F

B —y b

E - * a A | BSA

F ^ > b B \ b .

4 .4 U s e le s s S y m b o ls 1 1 9

The indirectly recursive derivation produced by an occurrence of the variables Cor D, which
can never be exited once entered, is discovered by the algorithm. All rules containing these

variables are deleted. 0

The construction of GT completes the first step in the removal of useless variables.
All variables in GT derive terminal strings. We must now remove the variables that do not
occur in sentential forms of the grammar. A set REACH is built that contains all variables
derivable from S.

9

Algorithm 4.4.4
Construction o f the Set o f Reachable Variables

input: context-free grammar G = (V, E , P, S)

1. REACH := {5}
2. PREV := 0
3. repeat

3.1. NEW := REACH - PREV
3.2. PREV := REACH
3.3. for each variable A € NEW do

for each rule A -*■ w do add all variables in w to REACH
until REACH = PREV

Algorithm 4.4.4, like Algorithm 4.3.1, uses a top-down approach to construct the
desired set of variables. The set REACH is initialized to S. Variables are added to REACH
as they are discovered in derivations from S.

Lemma 4.4.5

Let G = (V, E , P, S) be a context-free grammar. Algorithm 4.4.4 generates the set of
variables reachable from S.

Proof. First we show that every variable in REACH is derivable from S. The proof is by
induction on the number of iterations of the algorithm.

The set REACH is initialized to S, which is clearly reachable. Assume that all variables
in the set REACH after n iterations are reachable from S. Let B be a variable added to
REACH in iteration n + 1. Then there is a rule A -*■ u B v where A is in REACH after n
iterations. By induction, there is a derivation S => xAy . Extending this derivation with the
application of A -* u B v establishes the reachability of B.

We now prove that every variable reachable from 5 is eventually added to the set
REACH. If S => uAv, then A is added to REACH on or before iteration n. The proof is
by induction on the length of the derivation from S.

The start symbol, the only variable reachable by a derivation of length zero, is added
to REACH at step 1 of the algorithm. Assume that each variable reachable by a derivation
of length n or less is inserted into REACH on or before iteration n.

120 C h a p te r 4 N o rm a l F o rm s fo r C on tex t-F ree G r a m m a r s

Let 5 => x A y =>■ x u B v y be a derivation in G where the (n 4- l)st rule applied is
A —*■ uBv. By the inductive hypothesis, A has been added to REACH by iteration n. B

is added to REACH on the succeeding iteration. ■

Theorem 4.4.6

Let G = (V, E , P, 5) be a context-free grammar. There is an algorithm to construct a

context-free grammar Gy that satisfies

i) L(Gu) = L(G).

ii) Gy has no useless symbols.

Proof. The removal of useless symbols begins by building G-p from G. Algorithm 4.4.4 is
used to generate the variables of GT that are reachable from the start symbol. All rules of
Gt that reference variables not reachable from 5 are deleted to obtain Gy, defined by

Vu = REACH,

Pu = [A - ► w | A ->■ u; € PT, A e REACH, and w e (REACH U £)*}, and

Eu = [a € E | a occurs in the right-hand side of a rule in Pu).

To establish the equality of L(G|j) and L(GT), it is sufficient to show that every string
derivable in G t is also derivable in Gy. Let u; be an element of L(GT). Every variable
occurring in the derivation of w is reachable and each rule is in Pjj. ■

Example 4.4.2

The grammar Gy is constructed from the grammar GT in Example 4.4.1. The set of reachable
variables of GT is obtained using Algorithm 4.4.4.

Iteration REACH PREV NEW

0 (5) 0

1 {S, B) (S) (S)
2 {S, B) {S, B 1 fB)

Removing all references to the variables A, E, and F produces the grammar

Gy: S - * BS | B

B ^ - b .

The grammar Gu is equivalent to the grammar G given at the beginning o f the section.
Clearly, the language of these grammars is b+. / □

Removing useless symbols consists of the two-part process outlined in Theorem 4.4.6.
The first step is the removal of variables that do not generate terminal strings. The resulting

4.5 C h o m sk y N o r m a l Form 121

grammar is then purged of variables that are not derivable from the start symbol. Applying
these procedures in reverse order may not remove all the useless symbols, as shown in the

next example.

Example 4.4.3

Let G be the grammar

G:

A -*■ b.

The necessity of applying the transformations in the specified order is exhibited by applying
the processes in both orders and comparing the results.

Remove variables that do not
generate terminal strings:

5 —*• a

A ^ b

Remove unreachable symbols:

S -*■ a

Remove unreachable symbols:

S - > a \ A B

A -* b

Remove variables that do not
generate terminal strings:

S-> a
A —*• b

The variable A and terminal b are useless, but they remain in the grammar obtained by
reversing the order of the transformations. □

The transformation of grammars to norma) forms consists of a sequence of algorithmic
steps, each of which preserves the previous ones. The removal of useless symbols will not
undo any of the restrictions obtained by the construction of GL or Gc . These transforma
tions only remove rules; they do not alter any other feature of the grammar. However, useless
symbols may be created by the process of transforming a grammar to an equivalent non
contracting grammar. This phenomenon is illustrated by the transformations in Exercises 8

and 17.

4.5 Chomsky Normal Form

A normal form is described by a set of conditions that each rule in the grammar must satisfy.
The Chomsky normal form places restrictions on the length and the composition of the
right-hand side of a rule.

122 C h a p te r 4 N o rm a l F o rm s fo r C on tex t-F ree G r a m m a r s

Definition 4.5.1

A context-free grammar G = (V, E , P, S) is in Chomsky norm al form if each rule has
one of the following forms:

i) A -> BC,

ii) A —* a, or

iii) 5 —► X,

where B, C e V — {5}.

Since the maximal number of symbols on the right-hand side of a rule is two, the
derivation tree associated with a derivation in a Chomsky normal form grammar is a binary
tree. The application of a rule A —*■ BC produces a node with children B and C. All other
rule applications produce a node with a single child. The representation of the derivations as
binary derivation trees will be used in Chapter 7 to establish repetition properties of strings
in context-free languages. In the next section, we will use the ability to transform a grammar
G into Chomsky normal form to obtain a decision procedure for membership o f a string in
L(G).

The conversion of a grammar to Chomsky normal form continues the sequence of
modifications presented in the previous sections. We assume that the grammar G to be
transformed has a nonrecursive start symbol, no X-rules other than 5 -» X, no chain rules,
and no useless symbols.

Theorem 4.5.2

Let G = (V, E , P, S) be a context-free grammar. There is an algorithm to construct a
grammar G' = (V', E , P', S') in Chomsky normal form that is equivalent to G.

Proof. After the preceding transformations, a rule has the form 5 -*■ X, A -*■ a, or A -*■ w,
where w € ((V U E) — {S})* and length(w) > 1. The set P' of rules of G ' is built from the
rules of G.

The only rule of G whose right-hand side has length zero is 5 -*• X. Since G does not
contain chain rules, the right-hand side of a rule A —»• w is a single terminal whenever the
length of if is one. In either case, the rules already satisfy the conditions of Chomsky normal
form and are added to P'.

Let A -> w be a rule with length(w) greater than one. The string w may contain both
variables and terminals. The first step is to remove the terminals from the right-hand side of
all such rules. This is accomplished by adding new variables and rules that simply rename
each terminal by a variable. For example, the rule

A -*■ bD cF

can be replaced by the three rules

A - ► B ’DC'F

B ' - > b

C' -*■ c.

4.5 C h o m s k y N o r m a l F o rm 123

After transforming each rule whose right-hand side has length two or more in this manner,
the right-hand side of a rule consists of the null string, a terminal, or a string of variables.
Rules of the latter form must be broken into a sequence of rules, each of whose right-hand
side consists of two variables. The sequential application of these rules should generate the
right-hand side of the original rule. Continuing with the previous example, we replace the
A rule by the rules

A -*• S T ,

T, - ► DT2

T2 ->• C'F.

The variables T\ and T2 are introduced to link the sequence of rules. Rewriting each rule
whose right-hand side has length greater than two as a sequence of rules completes the
transformation to Chomsky normal form. ■

Example 4.5.1

Let G be the grammar

S —y a A B C \ a

A -* a A \ a

B -> be B | be

C -*■ cC | c.

This grammar already satisfies the conditions placed on the start symbol and A.-rules and
does not contain chain rules or useless symbols. The equivalent Chomsky normal form
grammar is constructed by transforming each rule whose right-hand side has length greater
than two.

G': 5 -*• A % | a

A' - y a

r , ^ a t 2

T2 ~* BC

A —► A'A | a

B -> B'T-i | B'C'

T-i - ► C'B

C -»• C 'C | c

B' - + b

C' —y c □

124 C h a p te r 4 N o rm a l F o r m s fo r C on tex t-F ree G r a m m a r s

Example 4.5.2

The rules

X -> a X b | ab

generate the strings {a'b1 \ i > 1). Adding a start symbol S, the rule 5 —► X, and removing

chain rules produces the grammar

5 -*■ a X b | ab

X -*■ a X b | ab.

The Chomsky normal form

S -> A T | AB

T -*■ X B

X -*■ A T | AB

A —*■ a

B —> b

is obtained by adding the rules A —* a and B —> b that provide aliases for the terminals and
by reducing the length of the right-hand sides of the S and X rules. □

4.6 The CYK Algorithm

Given a context-free grammar G and a string u, is u in L(G)? This question is called
the membership problem for context-free grammars. Using the structure o f the rules in
a Chomsky normal form grammar, J. Cocke, D. Younger, and T. Kasami independently
developed an algorithm to answer this question. The CYK algorithm employs a bottom-up
approach to determine the derivability of a string.

Let h = X]X2 . . . x„ be a string to be tested for membership and let x, j denote the
substring X j . . . Xj of u. Note that the substring x is simply xh the ith symbol in u. The
strategy of the CYK algorithm is

• Step 1: For each substring ,■ of u with length one, find the set X,- ,• of all variables A
with a rule A -* Xj

• Step 2: For each substring x, , + 1 of u with length two, find the set X, ,+1 of all variables

that initiate derivations A =>

• Step 3: For each substring x t i+2 of u with length three, find the set X,- , + 2 o f all variables

that initiate derivations A => Xj i+2.

• Step n — 1: For the substrings * i-n_ |, x2 n of u with length n — 1, find the sets

and X 2n of all variables that initiate derivations A jcln _] and A => x2n , respectively.

4 .6 T h e CYK A lg o r i th m 1 25

• Step n: For the string „ = u of length n, find the set X | „ of all variables that initiate

derivations A => x ln .

If the start symbol S is in X ln , then u is in the language of the grammar. The generation
of the sets X, j uses a problem solving technique known as dynamic programming. The
important feature of dynamic programming is that all the information needed to compute a
set X j j at step t has already been obtained in steps 1 through t — 1.

Let’s see why this property is true for derivations using Chomsky normal form gram
mars. Building the sets in step 1 is straightforward; A e X , , if A -*■ is a rule of the
grammar.

For step 2, a derivation of the substring x,-I+i has the form

A=* BC

=> XjC

=>*,*;+ 1-

Since B derives and C derives xi+1, these variables will be in X ,, and X , + 1 j+i- A variable
A is added to X, , + 1 when there is a rule A —> B C with B e X , , and C e XI+[,+1.

Now we consider the generation of the set X, i+, in step t of the algorithm. We wish to
find all variables that derive the substring Xj l+(. The first rule application of such a derivation
produces two variables, call them B and C. This is followed by derivations beginning with
B and C that produce x ii+l. Thus the derivation has the form

A = > S C

^ x i,kC
*

where B generates x i k and C generates jc(t+1-l+, for some k between / and t — 1. Conse
quently, A derives x,i(+, only if there is a rule A —► BC and a number k between /' and t — 1
such that B e X, * and C € Xi+ l l+f. All of the sets that need to be examined in checking
this condition are produced prior to step t.

The sets X t j may be represented as the upper triangular portion of an n x n matrix.

1 2 3 n - 1 n

1 Xi.i X|,2 X,.3 • x,̂ _, x,.„
2 X2.2 X2.3 X2,„_, X2.„
3 X3.3 • x3.„—, X3.„

- 1 Xn— l,n —] x„-,.n
n X„.n

126 C h a p t e r 4 N o rm a l F o r m s fo r C on tex t-F ree G r a m m a r s

The CYK algorithm constructs the entries in a diagonal by diagonal manner starting with
the main diagonal and culminating in the upper right comer with X!

We illustrate the CYK algorithm using the grammar from Example 4.5.2 that generates
{a'b' | i > 1} and the string aaabbb. Table 4.1 traces the steps of the algorithm and the result
of the computation is given in the table

1 2 3 4 5 6

1 (A) 0 0 0 0 (S,X }

2 (A) 0 0 (S .X) (D

3 (A) IS .* } (D 0

4 (S) 0 0

5 (£} 0

6 {B}

The sets along the diagonal are obtained from the rules A -*■ a and B -*■ b. Step 2
generates the entries directly above the diagonal. The construction of a set Xj i + 1 need
only consider the substrings * ,, and *l+ i,,+i. For example, a variable is in X 12 if there are
variables in X | i = {A} and X2 2 = M} that make up the right-hand side of a rule. Since AA
is not the right-hand side of a rule, X 12 = 0. The set X3 4 is generated from X33 = {A} and
X4.4 = (S). The string AS is the right-hand side of S —► A B and X —► AB. Consequently,
S and X are in X3 4.

At step t, there are t — 1 separate decompositions of a substring *,-,,+, that must be
checked. The set X , ; , given in the rightmost column of Table 4.1, is the union of variables
found examining all t — 1 possibilities. For example, computing X3 5 needs to consider the
two decompositions * 3 3 * 4 , 5 and *3 ,4 *5 , 5 of *35. The variable T is added to this set since
S € X3 4, B e X5 5 , and T —* SB is a rule. The presence of 5 in the set X) 6 indicates that
the string aaabbb is in the language of the grammar.

Utilizing the previously outlined steps, the CYK solution to the membership problem
is given in Algorithm 4.6.1. The sets along the diagonal are computed in line 2. The variable
step indicates the length of the substring being analyzed. In the loop beginning at step 3.1,
1 indicates the starting position of a substring and k indicates the position o f split between
the first and second components.

Algorithm 4.6.1

CYK Algorithm

input: context-free grammar G = (V, £ , P, S)
string u = x xx 2 . . . *n € S*

4 .6 T h e CYK A lg o r i th m 127

1. initialize all X, y to 0
2 . for i = 1 to n

for each variable A, if there is a rule A —► Xj then X, , := X,- ,- U {A}
3. for step = 2 to n

3.1. for i = 1 to n — step 4- 1
3.1.1. fo r k = i to i + step — 2

if there are variables B 6 X, k, C e Xt+ 1 ,+J(<.p_i, and

a rule A ► BC, then XI (+siep—l *= ^ 1^1
4 . w e L(G) if S € X, „

The CYK algorithm, as outlined above, is designed to determine whether a string u is
derivable in a Chomsky normal form grammar G. The algorithm can be modified to pro
duce derivations of strings in L(G), that is, to be a parser. This can be accomplished by
recording the justifications for the addition of variables into the sets X,-j . To demonstrate
the approach, we will use the trace of the computation in Table 4.1 to produce the deri
vation of the string aaabbb. The column labeled ‘Sets’ indicates the sets that contain the
variables matching the right-hand side of the rule. For example, the variable S is added
to X 6 6 because the occurrence of A 6 X* j and T e X2 6 match the right-hand side of the
rule S —*• A T. Reversing this construction, the rule 5 —>• A T is used in the derivation of
aaabbb.

Derivation Sets

S => AT A e X u , T e X2 ,6

=* aT T 6 X2 6

=>aXB X e X2.5, B € X6 .6

=>aATB A € X2,2 t r e x 3.5. B 6 X« 6
=> aaTB T e X xs, B € X 6A
=> aaXBB X € X3.4 , B € X5t5,
=> aaABBB A € X3 3, B e X4.4, B € X5i5, B e X* , 6

=* aaabbb

The applicability of the CYK algorithm as a parser is limited by the computational
requirements needed to find a derivation. For an input string of length n, (n 2 + n) /2 sets
need to be constructed to complete the dynamic programming table. Moreover, each of these
sets may require the consideration of multiple decompositions of the associated substring. In
Part V of this book we examine grammars and algorithms designed specifically for efficient
parsing.

/

128 C h a p te r 4 N o rm a l F o rm s for C on tex t-F ree G r a m m a r s

TABLE 4.1 Trace o f CYK A lg o r i th m

String x Lj Substrings

-t| 2 = aa * 1.1. *2 .2 M) {A} 0

*2 .3 = aa *2.2. *3,3 M) {-4} 0

*3 4 = ab *3.3- *4.4 Ml {*) {5, X}

*4 5 = bb *4.4. *5.5 {B) IB) 0

*5.6 = hb *5.5" *6 .6 <B} IB) 0

* 1 3 = aaa *1,1. *2.3 M) 0 0

*1.2- *3.3 0 (A) 0

*2 ,4 = aab *2.2- *3.4 M) IS, X) 0

*2.3- *4,4 0 IB) 0

*3,5 - abb *3,3-*4.5 {A) 0 0

*3.4. *5,5 I S . X] W {r»
*4,6 = bbb *4,4. *5.6 (B) 0 0

*4.5- *6 .6 0 {«) 0

*i4 = aaab ■*1.1" -*2.4 M) 0 0

*1,2. *3.4 0 (S , x) 0

*1.3. *4.4 0 IB) 0

*2 ,5 = aabb *2,2. *3.5 {A} {T) (S.X)

*2.3> *4.5 0 0 0

*2.4. *5,5 0 IB) 0

*3 .6 = abbb *3,3" *4,6 (A) 0 0

*3,4. *5,6 IS. X] 0 0

*3.5. *6 .6 m IB) 0

* 1 5 = aaabb *1,1- *2.5 (-4} I S , X) 0

*1.2. *3.5 0 IT) 0

*1.3- *4,5 0 0 0

*1.4. *5.5 0 \B) 0

*2 ,6 = aabbb *2,2- *3.6 Ml 0 0

*2.3’ *4.6 0 0 0

*2.4. *5.6 0 0 0

*2.5. *6 .6 I S . X) («) m
* 1 6 = aaabb *l.l> *2 .6 M) {rj fs. *}

*1,2. *3.6 0 0 0

1.3 *4.6 0 0 0

*1.4. *5.6 0 0 0

*1,5- *6 .6 0 {*} 0

4 .7 R em ova l o f D irec t Left R e c u r s io n 1 29

4.7 Removal of Direct Left Recursion

In a derivation of an arbitrary context-free grammar, rule applications can generate terminal
symbols in any position and in any order in a derivation. For example, derivations in
grammar G(generate terminals to the right of the variable, while derivations in G 2 generate
terminals on both sides.

G]: S —y Aa G 2 : S —y aAb

A —> A a | b A —y a A b \ X

The Greibach normal form adds structure to the generation of the terminals in a derivation.
A string is built in a left-to-right manner with one terminal added on each rule application.

In a derivation S ^ u A v , where A is the leftmost variable, the string u is called the terminal
prefix of the sentential form. Our objective is to construct a grammar in which the terminal
prefix increases with each rule application.

The grammar G] provides an example of rules that do the exact opposite of what is
desired. The variable A remains as the leftmost symbol until the derivation terminates with
application of the rule A —► b. Consider the derivation of the string baaa

S => Aa

=> Aaa

=> Aaaa

=>■ baaa.

Applications of the left-recursive rule A -y Aa generate a string of a ’s but do not increase
the length of the terminal prefix. A derivation of this form is called directly left-recursive.
The prefix grows only when the non-left-recursive rule is applied.

An important component in the transformation to Greibach normal form is the ability
to remove left-recursive rules from a grammar. The technique for replacing left-recursive
rules is illustrated by the following examples.

a) A -y Aa \ b b) A ~ y A a \ A b \ b \ c c) A —>■ AB | BA | a

B —y b \ c

The sets generated by these rules are ba*, (b U c)(a U b)*, and (b U c)*a(b U c)*, respec
tively. The left recursion builds a string to the right of the recursive variable. The recursive
sequence is terminated by an A rule that is not left-recursive. To build the string in a left-
to-right manner, the nonrecursive rule is applied first and the remainder of the string is
constructed by right recursion. The following rules generate the same strings as the previous
examples without using direct left recursion.

a) A - y b Z \ b b) A —y bZ \ cZ \ b \ c c) A -y BAZ \ aZ \ BA \ a
Z -y aZ | a Z ^ - a Z \ b Z \ a \ b Z ^ B Z \ B

B -y b \ c

130 C h a p te r 4 N o rm a l F o r m s fo r C ontex t-F ree G r a m m a r s

The rules in (a) generate ba* with left recursion replaced by right recursion. With these rules,
the derivation of baaa increases the length of the terminal prefix with each rule application.

A => bZ

=> baZ

=> baaZ

=> baaa

The removal of the direct left recursion requires the addition of a new variable to the
grammar. This variable introduces a set of right-recursive rules. Direct right recursion causes
the recursive variable to occur as the rightmost symbol in the derived string.

To remove direct left recursion, the A rules are divided into two categories: the left-
recursive rules

A —* A u j | A u2 I . . . I Auj
and the rules

A -> D| I v2 I . . . I vk,

in which the first symbol of each Vj is not A. A leftmost derivation from these rules consists
of applications of left-recursive rules followed by the application of a rule A —y vjy which
ends the direct left recursion. Using the technique illustrated in the previous examples, we
construct new rules that initially generate u, and then produce the remainder of the string
using right recursion.

The A rules
A -*• i>i I . . . | vk | v tZ | . . . | vkZ

initially place one of the t, ’s on the left-hand side of the derived string. If the string contains
a sequence of s, they are generated by the Z rules

Z - > w 1Z | . . . | k ; Z | h , | . . . | w ;

using right recursion.

Example 4.7.1

A set of rules is constructed to generate the same strings as

A -v Aa | Aab \ bb \ b

without using direct left recursion. These rules generate (b U bb){a U ab)*. The direct left
recursion in derivations using the original rules is terminated by applying A —>■ b or A —*■ bb.
To build these strings in a left-to-right manner, we use the A rules

A -*• bb | b | bbZ \ bZ

to generate the leftmost symbols of the string. The Z rules generate (a U a b)+ using the
right-recursive rules

Z —y a Z | a b Z | a \ ab. □

4 .8 G re ib a c h N o r m a l F o rm 131

Lemma 4.7.1

Let G = (V, X, P, 5) be a context-free grammar and let A € V be a directly left-
recursive variable in G. There is an algorithm to construct an equivalent grammar G' =
(V', 2 , P', 5') in which A is not directly left-recursive.

Proof. We assume that the start symbol of G is nonrecursive, the only A.-rule is S -*■ k,
and P does not contain the rule A —*■ A. If this is not the case, G can be transformed to
an equivalent grammar satisfying these conditions. The variables of G' are those of G
augmented with one additional variable to generate the right-recursive rules. P' is built from
P using the technique outlined above.

The new A rules cannot be left-recursive since the first symbol of each o f the v, ’s is not
A. The Z rules are also not left-recursive. The variable Z does not occur in any one of the
M,’s and the u,'s are nonnull by the restriction on the A rules of G. ■

This technique can be used repeatedly to remove all occurrences of left-recursive rules
while preserving the language of the grammar. However, a derivation using rules A B u
and B -* An can generate the sentential forms

A => Bu

=> Avu

=> Buvu

Avuvu

exhibiting the same lack of growth of the terminal prefix as derivations using direct left
recursion. The conversion to Greibach normal form will remove all possible occurrences of
indirect left recursion.

4.8j Greibach Normal Form

In the Greibach normal form, the application of every rule adds one symbol to the terminal
prefix of the derived string. This ensures that left recursion, direct or indirect, cannot occur.
It also ensures that the derivation of a string of length n > 0 consists of exactly n rule
applications.

Definition 4.8.1

A context-free grammar G = (V, £ , P, S) is in Greibach norm al form if each rule has
one of the following forms:

i) A -* a A xA 2 . . . A„,

ii) A —► a , or

iii) 5 —► A.,

where a e £ and A, e V - {5} for i = 1, 2......... n.

1 32 C h a p te r 4 N o rm a l F o r m s fo r C on tex t-F ree G r a m m a r s

The conversion of a Chomsky normal form grammar to Greibach normal form uses
two rule transformation techniques: the rule replacement scheme of Lemma 4.1.3 and the
transformation that removes left-recursive rules. The procedure begins by ordering the
variables of the grammar. The start symbol is assigned the number one; the remaining
variables may be numbered in any order. Different numberings change the transformations
required to convert the grammar, but any ordering suffices.

The first step of the conversion is to construct a grammar in which every rule has one
of the following forms:

i) S ->• k,

ii) A -*■ aw, or

iii) A -*■ Bw,

where w e V* and the number assigned to B in the ordering of the variables is greater than
the number of A. The rules are transformed to satisfy condition (iii) according to the order
in which the variables are numbered. The conversion of a Chomsky normal form grammar
to Greibach normal form is illustrated by tracing the transformation of the rules of the
grammar G:

G: S —*■ A B \ k

A -*■ A B | CB | a

B - y A B \ b

C -*■ AC | c.

The variables S, A, B, and C are numbered 1 ,2 ,3 , and 4, respectively.
Since the start symbol of a Chomsky normal form grammar is nonrecursive, the S

rules already satisfy the three conditions. The process continues by transforming the A
rules into a set of rules in which the first symbol on the right-hand side is either a terminal
or a variable assigned a number greater than two. The left-recursive rule A -*■ A B violates
these restrictions. Lemma 4.7.1 can be used to remove the direct left recursion, yielding

S -*■ A B | k

A -*• C B R i | a R t \ C B \ a

B -> A B | b

C -»• AC | c

/?,-*• B R { | B.

Now the B rules must be transformed to the appropriate form. The rule B —> A B must
be replaced since the number of B is three, and A, which occurs as the first symbol on the
right-hand side, is two. Lemma 4.1.3 permits the leading A in the right-hand side of the rule
B ► A B to be replaced by the right-hand side of the A rules, producing

4 .8 G re ib a c h N o r m a l F o rm 133

5 - ► A B | X

A -* C B R x \ a R x \ C B \ a

B -* C B R XB | a R xB \ C B B \ a B \ b

C - y AC \c

/?,->• B R X | B.

Applying the replacement techniques of Lemma 4.1.3 to the C rules creates two left-
recursive rules.

s —> A B |X

A -r-y C B R X | a R x \ C B \ a

B -*> C B R xB \ a R xB \ C B B \ a B \ b

C C B R xC \ a R xC \ C B C \ a C \ c

* 1
-> B R X | B

The left recursion can be removed, introducing the new variable R2.

S -y A B | X

A -*• C B R X | a R x | CB \ a

B -y C B R XB | a R xB \ C B B \ a B \ b

C —y a R xC | aC | c \ a R xC R 2 I a C R 2 \ cR 2

R x -y B R t \ B

R2 -y B R XC R 2 | B C R 2 | B R xC \ BC

The original variables now satisfy the condition that the first symbol of the right-hand
side of a rule is either a terminal or a variable whose number is greater than the number of
the variable on the left-hand side. The variable with the highest number, in this case C, must
have a terminal as the first symbol in each rule. The next variable, B, can have only C ’s or
terminals as the first symbol. A B rule beginning with the variable C can then be replaced
by a set of rules, each of which begins with a terminal, using the C rules and Lemma 4.1.3.
Making this transformation, we obtain the rules

S -* A B | X

A -e C B R x \ a R x \ C B \ a

B -> a R xB | ciB | b

- ► a R xC B R xB | a C B R xB | c B R xB \ a R xC R 2B R xB | a C R 2B R xB \ c R 2B R xB

- y a R xC B B \ a C B B \ c B B \ a R xC R 2B B \ a C R 2B B \ cR2BB

C - ► a R xC \ a C \ c \ a R xC R 2 \ a C R 2 \ cR 2

R x —y B R x J B

R2 -> B R xC R 2 I B C R 2 | B R XC | BC.

134 C h a p te r 4 N o rm a l F o r m s fo r C on tex t-F ree G r a m m a r s

The second list of B rules is obtained by substituting for C in the rule B -*■ C B R XB and the
third in the rule B -* C B B . The S and A rules must also be rewritten to remove variables
from the initial position of the right-hand side of a rule. The substitutions in the A rules use
the B and C rules, all of which now begin with a terminal. The A, B, and C rules can then

be used to transform the S rules, producing

S X

-*■ a R xB | aB

- ► a R xC B R xB \ a C B R xB | c B R xB \ a R xC R 2B R xB \ a C R 2B R xB | cR2B R xB

-* a R \C B B | a C B B \ c B B \ a R \C R 2B B \ a C R 2B B \ cR2B B

A -*■ a R x | a

-» aR iC B R i | a C B R x \ c B R x | a R xC R 2B R x \ a C R 2B R x \ cR 2B R x

—► aR \C B | a C B \ cB \ qR xC R 2B \ qC R 2B \ cR 2B

B —*■ a R xB | aB \ b

—► a R xC B R xB \ a C B R XB | a R xC R 2B R \B \ a C R 2B R XB \ cR 2B R XB

-» a R xC B B | a C B B \ c B B | a R xC R 2B B | a C R 2B B \ cR 2BB

C —* a R xC | aC \ c \ a R xC R 2 \ a C R 2 \ cR2

R x-> B R X | B

R2 -> B R xC R 2 | B C R 2 | B R XC | BC.

Finally, the substitution process must be applied to each of the variables added in the removal
of direct recursion. Rewriting these rules yields

R x —*■ a R xB R x | a B R x \ b R x

—► a R xC B R xB R x \ a C B R XB R x \ c B R XB R x \ a R XC R 2B R XB R x | a C R 2B R XB R x |

cR2B R xB R x

-»• a R xC B B R x \ a C B B R x \ c B B R x \ a R xC R 2B B R x \ a C R 2B B R x \ c R 2B B R x

R x -* a R xB \ a B | b

-»• a R xC B R xB \ a C B R xB \ c B R xB | a R xC R 2B R xB \ a C R 2B R xB \ c R 2B R xB

-»• a R xC B B | a C B B \ c B B | a R xC R 2B B \ a C R 2B B | cR 2BB

R2 —► a R xB R xC R 2 \ qB R xC R 2 \ b R xC R 2

-> a R xC B R XB R XC R 2 \ a C B R xB R xC R 2 \ c B R xB R xC R 2 \ a R xC R 2B R xB R xC R 2 \

a C R 2B R XB R XC R 2 \ cR2B R XB R XC R 2

-*• a R xC B B R xC R 2 | a C B B R xC R 2 \ c B B R xC R 2 | a R xC R 2B B R xC R 2 |

a C R 2B B R XC R 2 | cR 2B B R xC R 2

4 .8 G re ib a ch N o r m a l F o rm 135

R2 - ► a R xB C R 2 I a B C R 2 | bC R 2

-»■ a R \C B R \ B C R 2 \ a C B R xB C R 2 \ c B R xB C R 2 \ a R xC R 2B R xB C R 2 \

a C R 2B R xB C R 2 \ cR2B R xB C R 2

-+ a R \C B B C R 2 \ a C B B C R 2 \ c B B C R 2 \ a R xC R 2B B C R 2 \ a C R 2B B C R 2 \

c R2B BC R2

R2 —► a R xB R xC | a B R xC | b R xC

-> a R xC B R xB R xC \ a C B R xB R xC \ c B R xB R xC \ a R xC R 2B R xB R xC \

a C R 2B R xB R xC | cR 2B R xBR \C

-+ a R xC B B R xC \ a C B B R xC \ c B B R xC \ a R xC R 2B B R xC \ a C R 2B B R xC |

c R2B B R XC

R2 —► a R xBC | a B C \ bC

-> a R xC B R xBC | a C B R xB C \ c B R xBC | a R xC R 2B R xBC \ a C R 2B R xBC \

cR2B R xBC

-* a R xC B B C | a C B B C \ c B B C \ a R xC R 2B B C \ a C R 2B B C \ cR2BBC.

The resulting grammar in Greibach normal form has lost all the simplicity of the original
grammar G. Designing a grammar in Greibach normal form is an almost impossible task.
The construction of grammars should be done using simpler, intuitive rules. As with all
the preceding transformations, the steps necessary to transform an arbitrary context-free
grammar to Greibach normal form are algorithmic and can be automatically performed by
an appropriately designed computer program. The input to such a program consists of the
rules of an arbitrary context-free grammar, and the result is an equivalent Greibach normal
form grammar.

It should also be pointed out that useless symbols may be created by the rule replace
ments using Lemma 4.1.3. The variable A is a useful symbol of G, occurring in the derivation

S => A B aB => ab.

In the conversion to Griebach normal form, the substitutions removed all occurrences of A
from the right-hand side of rules. The string ab is generated by

S => a B => ab

in the equivalent Greibach normal form grammar.

Theorem 4.8.2

Let G be a context-free grammar. There is an algorithm to construct an equivalent context-
free grammar in Greibach normal form.

136 C h a p te r 4 N o rm a l F o rm s fo r C ontex t-F ree G r a m m a r s

Proof. The operations used in the construction of the Greibach normal form have previ
ously been shown to generate equivalent grammars. All that remains is to show that the rules
can always be transformed to satisfy the conditions necessary to perform the substitutions.
These require that each rule have the form

Ak —>■ A jw with k < j

or

Ak —► aw,

where the subscript represents the ordering of the variables.
The proof is by induction on the ordering of the variables. The basis is the start symbol,

the variable numbered one. Since S is nonrecursive, this condition trivially holds. Now
assume that all variables up to number k satisfy the condition. If there is a rule Ak -> A tw
with i < k, the substitution can be applied to the variable A, to generate a set of rules, each
of which has the form Ak —> A jw ' where j > i. This process can be repeated, k — i times
if necessary, to produce a set of rules that are either left-recursive or in the correct form. All
directly left-recursive variables can be transformed using the technique of Lemma 4.7.1.

Example 4.8.1

The Chomsky and Greibach normal forms are constructed for the grammar

S —>■ SaB | aB

B ^ b B | A.

Adding a nonrecursive start symbol S' and removing A. and chain rules yields

S' - ► SaB \ S a \ a B \ a

S —* SaB | Sa | aB \ a

B - + b B \ b .

The Chomsky normal form is obtained by transforming the preceding rules. Variables A
and C are used as aliases for a and b , respectively, and T represents the string aB.

S' ^ S T \ SA

S T | SA

B - + C B 1 b

T -*• A B

A —* a

C - > b

4 .8 G re ib a c h N o r m a l F o rm 137

The variables are ordered by S', S, B, T, A, and C. Removing the left-recursive S rules

produces

S’ -*• S T | SA | A B | a

S - > A B Z | a Z \ A B \ a

B —* C B \ b

T —► AB

A -* a

C - + b

Z ^ T Z \ A Z \ T \ A .

These rules satisfy the condition that requires the value of the variable on the left-hand
side of a rule to be less than that of a variable in the first position of the right-hand side.
Implementing the substitutions beginning with the A and C rules produces the Greibach
normal form grammar:

S’ - ► a B Z T | a Z T | a B T \ a T \ a B Z A \ a Z A \ a B A \ a A \ a B \ a

S —> a B Z | a Z \ a B \ a

B —>■ b B \ b

T - y a B

A —* a

C - > b

Z —► a B Z | a Z \ a B \ a.

The leftmost derivation of the string abaaba is given in each of the three equivalent
grammars.

G Chomsky Normal Form Greibach Normal Form

S => SaB S’ => SA S’ => a B Z A

=> SaBaB => ST A => abZA

=> SaBaBaB => S A T A =» abaZA
=> aBaBaBaB => A B A T A => abaaBA

=> abBaBaBaB => a B A T A => abaabA
=> abaBaBaB =>abATA => abaaba
=> abaaBaB => abaT A

=> abaabBaB => abaABA

=>abaabaB => abaaBA

=» abaaba => abaabA

=>■ abaaba

138 C h a p te r 4 N o rm a l F o rm s fo r C on tex t-F ree G r a m m a r s

The derivation in the Chomsky normal form grammar generates six variables. Each
of these is transformed to a terminal by a rule of the form A —* a. The Greibach normal
form derivation generates a terminal with each rule application. The derivation is completed
using only six rule applications. a

Exercises

For Exercises 1 through 5, construct an equivalent essentially noncontracting grammar
Gl with a nonrecursive start symbol. Give a regular expression for the language of each
grammar.

G :S -*■ a S \ b S \ B
B -*■ b b \ C \ \
C -> c C \ X

G :S -*■ A B C \ k
A -*■ a A | a
B -> bB | A
c —► cC | k

G :S -+ B S A | A
A —► aA \ k
B -* Bba | k

G :S -> A B | B C S
A -*■ a A \ C
B bbB | b
C -> cC | k

G : S - ► A B C | aB C
A —► aA | BC
B -> bB | k
C^> cC 1 k

6 . Prove Lemma 4.3.2.

For Exercises 7 through 10, construct an equivalent grammar Gc that does not contain chain
rules. Give a regular expression for the language of each grammar. Note that these grammars
do not contain A.-rules.

7. G: S - ► A S | A
A —y aA \ bB \ C
B - y bB \b
C -*■ cC \ B

8 . G: S -> A | B | C
A -*• aa | B

Exerc ises 139

B -* bb\ C
C —* cc | A

G: S —► A | C
A -> aA l«l
B ^ b B 1*
C —► cC k i

G :5-»- AB I c
A -* aA 1 B
B bB 1C
C -*■ cC l«l

11. Eliminate the chain rules from the grammar GL of Exercise 1.

12. Eliminate the chain rules from the grammar GL of Exercise 4.

13. Prove that Algorithm 4.4.2 generates the set of variables that derive terminal strings.

For Exercises 14 through 16, construct an equivalent grammar without useless symbols.
Trace the generation of the sets of TERM and REACH used to construct GT and Gy.
Describe the language generated by the grammar.

14. G :S -> A A \ C D \ b B
A —► a A \ a
B —> bB \ bC
C - + c B
D -*■ d D | d

15. G :5 - > aA \ BD
A -* aA | aA B \ aD
B aB \a C \ B F
C - » Bb | a A C | E
D —v bD | bC | b
E - > a B \ b C
F -*• a F | aG \ a
G -> a \b

16. G :S -* A C H | BB
A -> aA | a F
B -> C F H | b
C -* aC | D H
D -*■ aD | B D | Ca
F -*■ bB \b
H -*■ d H | d

140 C h a p te r 4 N o rm a l F o rm s fo r C on tex t-F ree G r a m m a r s

17. Show that all the symbols of the grammar

G: S -> A \C B

A - > C \ D

B —*■ bB | b

C -*■ cC | c

D -*■ d D | d

are useful. Construct an equivalent grammar Gc by removing the chain rules from G.
Show that Gc contains useless symbols.

18. Convert the grammar

G: 5 —*■ a A | ABa

A —*• A A | a

B -> A bB \ bb

to Chomsky normal form. G already satisfies the conditions on the start symbol S,
X-rules, useless symbols, and chain rules.

19. Convert the grammar

G: S -*■ aA bB \ A B C \a

A —> a A | a

B -* bBcC | b

C —*■ abc

to Chomsky normal form. G already satisfies the conditions on the start symbol S,
X-rules, useless symbols, and chain rules.

20. Convert the result of Exercise 9 to Chomsky normal form.

21. Convert the result of Exercise 11 to Chomsky normal form.

22. Convert the result of Exercise 12 to Chomsky normal form.

23. Convert the grammar

G: S -> A | ABa \ AbA

A -* Aa | X

B -»• Bb | BC

C -»• C B \ C A \ b B

to Chomsky normal form.

*24. Let G be a grammar in Chomsky normal form.

a) What is the length of a derivation of a string of length n in L(G)?

E xerc ises 1 4 1

b) What is the maximum depth of a derivation tree for a string of length n in L(G)?

c) What is the minimum depth of a derivation tree for a string of length n in L(G)?

25. Give the upper diagonal matrix produced by the CYK algorithm when run with the
Chomsky normal form grammar from Example 4.5.2 and the input strings abbb and
aabbb.

26. Let G be the Chomsky normal form grammar

5 -* A X \ A Y | a

X -* A X | a

Y —*■ B Y | a

A —>■ a

B ^ b .

Give the upper diagonal matrix produced by the CYK algorithm when run with the
grammar G and the input strings baaa and abaaa.

27. Let G be the grammar

G: A | B

A —y aaB \ Aab \ Aba

B - * b B | Bb \aba.

a) Give a regular expression for L(G).

b) Construct a grammar G' that contains no left-recursive rules and is equivalent to G.

28. Construct a grammar G ' that contains no left-recursive rules and is equivalent to

G: S -» A | C

A - ► A a B | AaC \ B \ a

B -y Bb \ Cb

C —y cC \ c.

Give a leftmost derivation of the string aaccacb in the grammars G and G'.

29. Construct a grammar G' that contains no left-recursive rules and is equivalent to

G: A | B

A -* A A A | a | B

B -y B B b | b.

30. Construct a Greibach normal form grammar equivalent to

S —y a A b \ a

A —* SS \ b.

142 C h a p te r 4 N o rm a l F o r m s fo r C on tex t-F ree G r a m m a r s

31. Convert the Chomsky normal form grammar

S -*■ BB

A -* AA | a

B -*■ A A | B A | b

to Greibach normal form. Process the variables according to the order 5, A, B.

32. Convert the Chomsky normal form grammar

S - » A B | BC

A —► A B | a

B -» A A | C B | b

C ^ > a \ b

to Greibach normal form. Process the variables according to the order 5 , A, B, C.

33. Convert the Chomsky normal form grammar

S - > B A | A B |X

A —► B B | A A | a

B -> AA | b

to Greibach normal form. Process the variables according to the order S, A , B.

34. Convert the Chomsky normal form grammar

S —► AB

A -> B B | CC

B —► A D \ C A

C -* a

D ^ b

to Greibach normal form. Process the variables according to the order S, A , B, C, D.

* 35. Prove that every context-free language is generated by a grammar in which each of the
rules has one of the following forms:

i) S —► X,

ii) A —► a,

iii) A -v a B , or

iv) A -*■ aBC,

where A € V, B, C e V - {S}, and a e Z .

B ib l io g ra p h ic N o te s 143

Bibliographic Notes

The constructions for removing X-rules and chain rules were presented in Bar-Hillel, Perles,
and Shamir [1961]. Chomsky normal form was introduced in Chomsky [1959], The CYK
algorithm is named for J. Cocke, D. Younger [1967], and T. Kasami who independently
developed this technique for determining derivability. Variations of this algorithm can
be used to solve the membership problem for arbitrary context-free grammars without
requiring the transformation to Chomsky normal form.

Greibach normal form is from Greibach [1965], An alternative transformation to
Greibach normal form that limits the growth of the number of rules in the resulting gram
mar can be found in Blum and Koch [1999]. There are several variations on the definition
of Greibach normal form. A common formulation requires a terminal symbol in the first
position of the string but permits the remainder of the string to contain both variables and
terminals. Double Greibach normal form, Engelfriet [1992], requires that both the leftmost
and rightmost symbol on the right-hand of rules be terminals.

A grammar whose rules satisfy the conditions of Exercise 35 is said to be in 2-normal
form. A proof that 2-normal form grammars generate the entire set of context-free languages
can be found in Hopcroft and Ullman [1979] and Harrison [1978], Additional normal forms
for context-free grammars are given in Harrison [1978].

CHAPTER 5

Finite Automata

In this chapter we introduce the family of abstract computing devices known as finite-state
machines. The computations of a finite-state machine determine whether a string satisfies
a set of conditions or matches a prescribed pattern. Finite-state machines share properties
common to many mechanical devices; they process input and generate output. A vending
machine takes coins as input and returns food or beverages as output. A combination lock
expects a sequence of numbers and opens the lock if the input sequence is correct. The input
to a finite-state machine is a string and the result of a computation indicates acceptability
of the string. The set of strings that are accepted makes up the language of the machine.

The preceding examples of machines exhibit a property that we take for granted in
mechanical computation, determinism. When the appropriate amount of money is inserted
into a vending machine, we are upset if nothing is forthcoming. Similarly, we expect the
combination to open the lock and all other sequences to fail. Initially, we require finite-
state machines to be deterministic. This condition will be relaxed to examine the effects of
nondeterminism on the capabilities of finite-state computation.

5.1 A Finite-State Machine

A formal definition of a machine is not concerned with the hardware involved in the
operation of the machine, but rather with a description of the internal operations as the
machine processes the input. A vending machine may be built with levers, a combination
lock with tumblers, and an electronic entry system is controlled by a microchip, but all accept

145

1 4 6 C h a p te r 5 F in ite A u to m a ta

input and produce an affirmative or negative response. What sort of description encompasses
the features of each of these seemingly different types of mechanical computation?

A simple newspaper vending machine, similar to those found on many street comers, is
used to illustrate the components of a finite-state machine. The input to the machine consists
of nickels, dimes, and quarters. When 30 cents is inserted, the cover of the machine may
be opened and a paper removed. If the total of the coins exceeds 30 cents, the machine
graciously accepts the overpayment and does not give change.

The newspaper machine on the street comer has no memory, at least not as we usually
conceive of memory in a computing machine. However, the machine “knows” that an
additional 5 cents will unlatch the cover when 25 cents has previously been inserted. This
knowledge is acquired by the machine’s altering its internal state whenever input is received
and processed.

A machine state represents the status of an ongoing computation. The internal operation
of the vending machine can be described by the interactions of the following seven states.
The names of the states, given in italics, indicate the progress made toward opening the
cover.

• Needs 30 cents: The state of the machine before any coins are inserted

• Needs 25 cents: The state after a nickel has been input

• Needs 20 cents: The state after two nickels or a dime have been input

• Needs 15 cents: The state after three nickels or a dime and a nickel have been input

• Needs 10 cents: The state after four nickels, a dime and two nickels, or two dimes have
been input

• Needs 5 cents: The state after a quarter, five nickels, two dimes and a nickel, or one
dime and three nickels have been input

• Needs 0 cents: The state that represents having at least 30 cents input

The insertion of a coin causes the machine to alter its state. When 30 cents or more
is input, the state needs 0 cents is entered and the latch is opened. Such a state is called
accepting since it indicates the correctness of the input.

The design of the machine must represent each of the components symbolically. Rather
than a sequence of coins, the input to the abstract machine is a string of symbols. A labeled
directed graph known as a state diagram is often used to represent the transformations of
the internal state of the machine. The nodes of the state diagram are the states described
above. The needs m cents node is represented simply by m in the state diagram. The state
of the machine at the beginning of a computation is designated > 0 - The initial state for the
newspaper vending machine is the node 30.

The arcs are labeled n, d, or q, representing the input of a nickel, dime, or quarter. An
arc from node x to node y labeled v indicates that processing input v when the machine
is in state x causes the machine to enter state y. Figure 5.1 gives the state diagram for the
newspaper vending machine. The arc labeled d from node 15 to 5 represents the change of
state of the machine when 15 cents has previously been processed and a dime is input. The

5.2 D e te r m in is t ic F in ite A u to m a ta 147

cycles of length one from node 0 to itself indicate that any input that increases the total past

30 cents leaves the latch unlocked.
Input to the machine consists of strings from [n, d, q}*. The sequence o f states entered

during the processing of an input string can be traced by following the arcs in the state
diagram. The machine is in its initial state at the beginning of a computation. The arc labeled
by the first input symbol is traversed, specifying the subsequent machine state. The next
symbol of the input string is processed by traversing the appropriate arc from the current
node, the node reached by traversal of the previous arc. This procedure is repeated until the
entire input string has been processed. The string is accepted if the computation terminates
in the accepting state. The string dndn is accepted by the vending machine, while the string
nndn is not accepted since the computation terminates in state 5.

5.2 Deterministic Finite Automata

The analysis of the vending machine required separating the fundamentals of the design
from the implementational details. The implementation-independent description is often
referred to as an abstract machine. We now introduce a class of abstract machines whose
computations can be used to determine the acceptability of input strings.

Definition 5.2.1

A deterministic finite autom aton (DFA) is a quintuple M = (Q, S , 5, q$, F), where Q
is a finite set of states, E a finite set called the alphabet, q0 e Q a distinguished state known
as the start state, F a subset of Q called the final or accepting states, and S a total function
from Q x £ to Q known as the transition function.

We have referred to a deterministic finite automaton as an abstract machine. To reveal
its mechanical nature, the operation of a DFA is described in terms of components that are
present in many familiar computing machines. An automaton can be thought of as a machine
consisting of five components: a single internal register, a set of values for the register, a
tape, a tape reader, and an instruction set.

The states of a DFA represent the internal status of the machine and are often denoted
q0, q\, q2, . . . , q„. The register of the machine, also called the finite control, contains

1 4 8 C h a p te r 5 F in ite A u to m a ta

one of the states as its value. At the beginning of a computation, the value o f the register is
q0, the start state of the DFA.

The input is a finite sequence of elements from the alphabet E . The tape stores the input
until needed by the computation. The tape is divided into squares, each square capable of
holding one element from the alphabet. Since there is no upper bound to the length of
an input string, the tape must be of unbounded length. The input to a computation of the
automaton is placed on an initial segment of the tape.

The tape head reads a single square of the input tape. The body of the machine consists
of the tape head and the register. The position of the tape head is indicated by placing the
body of the machine under the tape square being scanned. The current state o f the automaton
is indicated by the value on the register. The initial configuration of a computation with input
baba is depicted

A computation of an automaton consists of the execution of a sequence o f instructions.
The execution of an instruction alters the state of the machine and moves the tape head one
square to the right. The instruction set is obtained from the transition function of the DFA.
The machine state and the symbol scanned determine the instruction to be executed. The
action of a machine in state qt scanning an a is to reset the state to <5(ty,, a). Since S is a
total function, there is exactly one instruction specified for every combination of state and
input symbol, hence the deterministic in deterministic finite automaton.

The objective of a computation of an automaton is to determine the acceptability of
the input string. A computation begins with the tape head scanning the leftmost square of
the tape and the register containing the state q$. The state and symbol are used to select the
instruction. The machine then alters its state as prescribed by the instruction, and the tape
head moves to the right. The transformation of a machine by the execution of an instruction
cycle is exhibited in Figure 5.2. The instruction cycle is repeated until the tape head scans a
blank square, at which time the computation terminates. An input string is accepted if the
computation terminates in an accepting state; otherwise it is rejected. The computation in
Figure 5.2 exhibits the acceptance of the string aba.

Definition 5.2.2

Let M = (Q, E , 8, q0, F) be a DFA. The language of M, denoted L(M), is the set of
strings in E* accepted by M.

A DFA can be considered to be a language acceptor; the language of the machine is
simply the set of strings accepted by its computations. The language of the machine in
Figure 5.2 is the set of all strings over {a , b } that end in a.

A DFA is a read-only machine that processes the input in a left-to-right manner; once
an input symbol has been read, it has no further effect on the computation. At any point
during the computation, the result depends only on the current state and the unprocessed

5.2 D e te r m in i s t i c F in i te A u to m a ta 149

M: Q = f<?o. <?l)

£ = (a, b)

F = {<7,}

S(4o< «) = <?i

■5(90. fc) = < ?o

i(<?b a) = <?i

i(9i. *) =<?o

[l]

ii]

FIGURE 5.2 Computation in a DFA.

input. This combination is called a machine configuration and is represented by the
ordered pair [<?,-, w], where q, is the current state and w e E* is the unprocessed input. The
instruction cycle of a DFA transforms one machine configuration to another. The notation
[<?,, aw] Ijj [qj, ui] indicates that configuration [qj, w] is obtained from [qh aw] by the
execution of one instruction cycle of the machine M. The symbol Ijj, read “yields,” defines
a function from Q x E + to Q x E * that can be used to trace computations o f the DFA. The
M is omitted when there is no possible ambiguity.

Definition 5.2.3

The function on Q x E + is defined by

fa/. «»]Im [&(qj,a), iu]

for a € E and w € E*, where S is the transition function of the DFA M.

The notation [qh h] p- [qj, i>] is used to indicate that configuration [qj, u] can be
obtained from [<?, , u] by zero or more transitions.

150 C h a p t e r s F in ite A u to m a ta

Example 5.2.1

The DFA M defined below accepts the set of strings over {a, b} that contain the substring
bb. That is, L(M) = (a U b)*bb(a U b)*. The states and alphabet of M are

M : Q = {<?o. <7i> $ 2)

Y, = {a,b]

f = {?2}-

The transition function S is given in a tabular form called the transition table. The states are
listed vertically and the alphabet horizontally. The action of the automaton in state qt with
input a can be determined by finding the intersection of the row corresponding to <7, and
the column corresponding to a.

s a b

90 <7o <7l

<7o <72

<72 <?2 42

The computations of M with input strings abba and abab are traced using the function K

[<?0, abba]

I- [<70, bba]

I- [qx, ba]

I" [<?2 - 0]

H [<72- X]

accepts

[<7o, abab]

[<?o, bab]

H [9 1 . ab]

H [<7o, b]

H [<7i, X]

rejects

The string abba is accepted since the computation halts in state q2.

Example 5.2.2

The newspaper vending machine from the previous section can be represented by a DFA
with the following states, alphabet, and transition function. The start state is the state 30.

Q = {0 , 5 , 10, 15, 20, 25, 30} S n d q

X = { n , d ,q) 0 0 0 0

F = {0} 5 0 0 0
10 5 0 0
15 10 5 0
20 15 10 0
25 20 15 0
30 25 20 5

5.3 S ta te D ia g ra m s a n d E x a m p le s 1 5 1

The language of the vending machine consists of all strings that represent a sum of 30 cents
or more. Can you construct a regular expression that defines the language of this machine?

□

The transition function specifies the action of the machine for a given state and element
from the alphabet. This function can be extended to a function 8 whose input consists of a
state and a string over the alphabet. The function 8 is constructed by recursively extending
the domain from elements of X to strings of arbitrary length.

Definition 5.2.4

The extended transition function, 8, of a DFA with transition function 5 is a function from
Q x E* to Q. The values of S are defined by recursion on the length of the input string.

i) Basis: length(w) = 0. Then w = k and X) = qt.

length(w) = 1. Then w = a , for some a 6 E , and 8(qh a) = S(g,, a).

ii) Recursive step: Let w be a string of length n > 1. Then w = ua and 8 (g,, ua) =
8(8(qh u), a).

The computation of a machine in state q, with string w halts in state 8(qh w). The
evaluation of the function 8(q0, w) simulates the repeated applications o f the transition
function required to process the string w. A string w is accepted if 8(q0, w) e F. Using this
notation, the language of a DFA M is the set L(M) = {w \ 8(q0, w) e F}.

5.3 State Diagrams and Examples

The state diagram of a DFA is a labeled directed graph in which the nodes represent the
states of the machine and the arcs are obtained from the transition function. The graph in
Figure 5.1 is the state diagram for the newspaper vending machine DFA. Because of the
intuitive nature of the graphic representation, we will often present the state diagram rather
than the sets and transition function that constitute the formal definition of a DFA.

Definition 5.3.1

The state diagram of a DFA M = (Q, S , 8, q0, F) is a labeled directed graph G defined
by the following conditions:

i) The nodes of G are the elements of Q.

ii) The labels on the arcs of G are elements of X.

iii) q0 is the start node, which is depicted >Q-

iv) F is the set of accepting nodes; each accepting node is depicted O -

v) There is an arc from node q{ to q} labeled a, if 8(qh a) = qj.

vi) For every node qt and symbol o e X , there is exactly one arc labeled a leaving qt .

1 5 2 C h a p t e r s Fin i te A u to m a ta

A transition of a DFA is represented by an arc in the state diagram. Tracing the
computation of a DFA in the corresponding state diagram constructs a path that begins
at node q0 and “spells” the input string. Let pu, be a path beginning at q0 that spells w,
and let qw be the terminal node of p„,. Theorem 5.3.2 proves that there is only one such
path for every string w € '£*. Moreover, qw is the state of the DFA upon completion of the
processing of w.

Theorem 5.3.2

Let M = (Q, X, S, q0, F) be a DFA and let w e X*. Then w determines a unique path
in the state diagram of M and S(q0, w) = qw.

Proof. The proof is by induction on the length of the string. If the length of w is zero, then

Hqo< X) = qo- The corresponding path is the null path that begins and terminates with q0.
Assume that the result holds for all strings of length n or less. Let w = ua be a string

of length n + 1. By the inductive hypothesis, there is a unique path p„ that spells u and
Hqo, u) = qu. The path is constructed by following the arc labeled a from qu. This is
the only path from q0 that spells w since p„ is the unique path that spells u and there is only
one arc leaving qu labeled a. The terminal state of the path pw is determined by the transition
S(qu, a). From the definition of the extended transition function, S(q0, w) = S(S(q0, u), a).
Since S(q0, u) = qu, qw = &(qu, a) = 5(5(^0, «), a) = S(q0, w) as desired. ■

The equivalence of computations of a DFA and paths in the state diagram gives us a
heuristic method for determining the language of the DFA. The strings accepted in a state
<?, are precisely those spelled by paths from q0 to qt. We can separate the determination of
these paths into two parts:

i) First, find regular expressions u , , un for strings on all paths from q0 that reach qt
the first time.

ii) Find regular expressions v j , . . . , vm for all ways to leave qt and return to <?,.

The strings accepted by qt are («, U • • • U u„)(u, U • • • U vm)*.
Consider the DFA

b

5.3 S ta te D ia g r a m s a n d E x a m p le s 1 5 3

The language of M consists of all strings spelled by paths from qq to either q\ or q^. Using
the heuristic described previously, the strings on the paths to each of the accepting states are

State Paths to q, Simple Cycles from q, to q. Accepted Strings

q\ a b ab*

<73 ab*aa“b, bb“a bb*a, aa*b (ab'aa U ba)(ab U ba)*

Consequently, L(M) = ab* U (ab*aa*b U bb*a)(aa*b U bb*a)*. After we have established
additional properties of finite-state computation, we will present an algorithm that automat
ically produces a regular expression for the language of a finite automaton.

In the remainder of this section we examine a number of DFAs to help develop the
ability to design automata to check for patterns in strings. The types of conditions that
we will consider include the number of occurrences and the relative positions of specified
substrings. In addition, we establish the relationship between a DFA that accepts a language
L and one that accepts the complement of L.

Example 5.3.1

The state diagram of the DFA in Example 5.2.1 is

The states are used to record the number of consecutive b's processed. The state q2 is
entered when a substring bb is encountered. Once the machine enters q2, the remainder of
the input is processed, leaving the state unchanged. The computation of the DFA with input
ababb and the corresponding path in the state diagram are

Computation Path

too. ababb] 9o.
1- too- babb] <?o.
1- toi. abb] <7i.
I" too. bb] ?o.
*- to), b] 9i.
1- [?2 . X] ? 2

The string ababb is accepted since the halting state of the computation, which is also the
terminal state of the path that spells ababb, is the accepting state q2. □

1 54 C h a p te r 5 Fin i te A u to m a ta

Example 5.3.2

The DFA

b a,b

b

accepts (b U ab)*(a U A), the set of strings over {a, b] that do not contain the substring aa.
a

Example 5.3.3

Strings over [a, b} that contain the substring bb or do not contain the substring aa are
accepted by the DFA depicted below. This language is the union of the languages of the
previous examples.

a

The state diagrams for machines that accept the strings with substring bb or without
substring aa seem simple compared with the machine that accepts the union of those two
languages. There does not appear to be an intuitive way to combine the state diagrams of
the constituent DFAs to create the desired composite machine.

The next several examples provide a heuristic for designing DFAs. The first step is to
produce an interpretation for the states of the DFA. The interpretation of a state describes
properties of the string that has been processed when the machine is in the state. The
pertinent properties are determined by the conditions required for a string to be accepted.

Example 5.3.4

A successful computation of a DFA that accepts the strings over [a, b) containing the
substring aaa must process three a ’s in a row. Four states are required to record the status of
a computation checking for aaa. The interpretation of the states, along with state names, are

5.3 S ta te D ia g r a m s a n d E x a m p le s 1 5 5

State Interpretation

q0: No progress toward aaa

q{: Last symbol processed was an a

q2: Last two symbols processed were aa

qy aaa has been found in the string

Prior to reading the first symbol, no progress has been made toward finding aaa.
Consequently, this condition represents the start state.

Once the states are identified, it is frequently easy to determine the proper transitions.
When computation in state q\ processes an a, the last two symbols read are aa and q2 is
entered. On the other hand, if a b is read in q lt the resulting string represents no progress
toward aaa and the computation enters q0. Following a similar strategy, the transitions can
be determined for all states producing the DFA

On processing aaa, the computation enters <7 3 , reads the remainder of the string, and accepts

Example 5.3.5

Building a machine that accepts strings with exactly two a ’s and an odd number of b’s
requires checking two conditions: the number of a ’s and the parity of the b's. Seven states
are required to store the information needed about the string. The interpretation of the states
describes the number of a ’s read and the parity of the string processed when the computation
is in the state.

b

the input. □

State Interpretation

q$. No a’s, even number of b’s
q\. Noo’s, odd number of b's

q2: One a, even number of b's

qy One a, odd number of b’s

<j4: Two a ’s, even number of b’s
qs: Two a ’s, odd number of b's

q6: More than two a ’s

1 5 6 C h a p t e r s F in ite A u to m a ta

At the beginning of a computation, no a ’s and no b's have been processed and this becomes
the condition of the start state. A DFA accepting this language is

The horizontal arcs count the number of a ’s in the input string and the vertical pairs of
arcs record the parity of the b's. The accepting state is q$, since it represents the condition
required of a string in the language. □

Example 5.3.6

Let E = {0, 1, 2, 5}. A string in E* is a sequence of integers from E. The DFA

determines whether the sum of integers in an input string is divisible by four. For example,
the strings 12 3 0 2 and 0 1 3 0 are accepted and 0 1 1 1 rejected by M. The states represent
the value of the sum of the processed input modulo 4. □

Our definition of DFA allowed only two possible outputs, accept or reject. The defi
nition of output can be extended to have a value associated with each state. The result of
a computation is the value associated with the state in which the computation terminates.
A machine of this type is called a Moore machine after E. F. Moore, who introduced this
type of finite-state computation. Associating the value i with the state imodA , the machine
in Example 5.3.6 acts as a modulo 4 adder.

The state diagrams for machines in Examples 5.3.1, 5.3.2, and 5.3.3 showed that there
is no simple method to obtain a DFA that accepts the union of two languages from DFAs

5.3 S ta te D ia g ra m s a n d E x a m p le s 157

that accept each of the languages. The next two examples show that this is not the case
for machines that accept complementary sets of strings. The state diagram for a DFA can
easily be transformed into the state diagram for another machine that accepts all, and only,

the strings rejected by the original DFA.

Example 5.3.7

The DFA M accepts the language consisting of all strings over {a, b} that contain an even
number of a ’s and an odd number of b’s.

At any step of the computation, there are four possibilities for the parities of the input
symbols processed: (1) even number of a ’s and even number of b’s, (2) even number of a ’s
and odd number of b’s, (3) odd number of a ’s and even number of b's, (4) odd number of
a ’s and odd number of b’s. These four states are represented by ordered pairs in which the
first component indicates the parity of the a ’s and the second component, the parity of the
b’s that have been processed. Processing a symbol changes one of the parities, designating
the appropriate transition. □

Example 5.3.8

Let M be the DFA constructed in Example 5.3.7. A DFA M' is constructed that accepts all
strings over [a, b] that do not contain an even number of a ’s and an odd number of b’s. In
other words, L(M') = {a, b)* — L(M). Any string rejected by M is accepted by M' and vice
versa. A state diagram for the machine M' can be obtained from that of M by interchanging
the accepting and nonaccepting states.

158 C h a p t e r s Finite A u to m a ta

The preceding example shows the relationship between DFAs that accept complemen
tary sets of strings. This relationship is formalized by the following result.

Theorem 5.3.3

Let M = (Q, E , 8, q0, F) be a DFA. Then M' = (Q, E , 8, q0. Q - F) is a DFA with
L(M') = E* - L(M).

Proof. Let w e E* and 8 be the extended transition function constructed from 8. For each

w € L(M), 8(qo- «>) 6 F. Hence, w £ L(M'). Conversely, if w £ L(M), then 8(q0, w) €
Q - F and w e L(M'). ■

By definition, a DFA must process the entire input even if the result has already
been established. Example 5.3.9 exhibits a type of determinism, sometimes referred to as
incomplete determinism; each configuration has at most one action specified. The transitions
of such a machine are defined by a partial function from Q x E to Q. As soon as it is possible
to determine that a string is not acceptable, the computation halts. A computation that halts
before processing the entire input string rejects the input.

Example 5.3.9

The state diagram below defines an incompletely specified DFA that accepts (ab)*c.
A computation terminates unsuccessfully as soon as the input varies from the desired
pattern.

The computation with input abcc is rejected since the machine is unable to process the final
c from state q2. □

Two machines that accept the same language are called equivalent. An incompletely
specified DFA can easily be transformed into an equivalent DFA. The transformation
requires the addition of a nonaccepting “error” state. This state is entered whenever the
incompletely specified machine enters a configuration for which no action is indicated.
Upon entering the error state, the computation of the DFA reads the remainder of the string
and halts.

5.4 N o n d e te r m in i s t i c F in ite A u t o m a t a 1 5 9

Example 5.3.10

The DFA

accepts the same language as the incompletely specified DFA in Example 5.3.9. The state
qe is the error state that ensures the processing of the entire string. □

Example 5.3.11

The incompletely specified DFA defined by the state diagram

accepts the language {a'b 1 \ i < n }, for a fixed integer n. The states labeled A k count the
number of a ’s, and then the Bk’s ensure an equal number of b ’s. This technique cannot
be extended to accept {a'b' | i > 0} since an infinite number of states would be needed. In
the next chapter we will show that the language (a'b' | i > 0 } is not accepted by any finite
automaton. □

5.4 Nondeterministic Finite Automata

We now alter our definition of machine to allow nondeterministic computations. In a non
deterministic automaton there may be several instructions that can be executed from a
given machine configuration. Although this property may seem unnatural for comput
ing machines, the flexibility of nondeterminism often facilitates the design of language
acceptors.

1 6 0 C h a p te r 5 Finite A u to m a ta

A transition in a nondeterministic finite automaton (NFA) has the same effect as one
in a DFA: to change the state of the machine based upon the current state and the symbol
being scanned. The transition function must specify all possible states that the machine
may enter from a given machine configuration. This is accomplished by having the value
of the transition function be a set of states. The graphic representation of state diagrams is
used to illustrate the alternatives that can occur in nondeterministic computation. Any finite
number of transitions may be specified for a given state qn and symbol a. The value of the
nondeterministic transition function is given below the corresponding diagram.

8 (< 7 „ .a)= f<7,} 5(q„, a) = 0

Because nondeterministic computation differs significantly from its deterministic coun
terpart, we begin the presentation of nondeterministic machines with an example that
demonstrates the fundamental differences between the two computational paradigms. In
addition, we use the example to introduce the features of nondeterministic computation and
to present an intuitive interpretation of nondeterminism.

Consider the DFA Mj

that accepts (a U b)*abba(a U b)*, the strings over [a, b } that contain the substring abba.
The states q0, q x, q2, q$ record the progress toward obtaining the substring abba. The states
of the machine are

State Interpretation

q0\ When there is no progress toward abba

q\. When the last symbol processed was an a
q2'. When the last two symbols processed were ab

qy. When the last three symbols processed were abb

5.4 N o n d e te r m in i s t i c F in ite A u to m a ta 1 6 1

Upon processing abba, state q4 is entered, the remainder of the string is read, and the input

is accepted.
The deterministic computation must “back up” in the sequence q0, q\, q2, <?3 when the

current substring is discovered not to have the desired form. If a b is scanned when the
machine is in state </3, then q0 is entered since the last four symbols processed are abbb and
the current configuration represents no progress toward finding abba.

A nondeterministic approach to accepting (a U b)*abba(a U b)* is illustrated by the

machine

There are two possible transitions when M 2 processes an a in state q0. One possibility is
for M2 to continue reading the string in state qQ. The second option enters the sequence of
states <7 1 , q2, qs to check if the next three symbols complete the substring abba.

The first thing to observe is that with a nondeterministic machine, there may be multiple
computations for an input string. For example, M 2 has five different computations for string
aabbaa. We will trace the computations using the I- notation introduced in Section 5.2.

lq0, aabbaa] [q0, aabbaa] [</(,, aabbaa] [<7o, aabbaa] [(/(), aabbaa]

h [<j0, abbaa] h [g(), abbaa] b [<?(,, abbaa) H abbaa] \- [<?|, abbaa]

[<70. bbaa] \- [<70, bbaa] h [(/0. bbaa] 1- [q\, bbaa]

1- [<70. baa] h [</„, baa] b [<70. baa] 1- [<7;, baa]

[</()• " " I aa] 1- [<7o. aa] 1- [^ , aa]

a) I" [%• « 1 1- [</|. a] I- fa-l’

[<?<)• X] H<?i. A] i- [*4. *1

What does it mean for a string to be accepted when there are some computations that halt
in an accepting state and others that halt in a rejecting state? The answer lies in the use
of the word check in the preceding paragraph. An NFA is designed to check whether a
condition is satisfied, in this case, whether the input string has a substring abba. If one of
the computations discovers the presence of the substring, the condition is satisfied and the
string is accepted. As with incompletely specified DFAs, it is necessary to read the entire
string to receive an affirmative answer. Summing up, a string is accepted by an NFA if there
is at least one computation that

i) processes the entire string, and

ii) halts in an accepting state.

A string is in the language of a nondeterministic machine if there is a computation that
accepts it; the existence of other computations that do not accept the string is irrelevant.

1 6 2 C h a p te r S Fin i te A u to m a ta

Nondeterministic machines are frequently designed to employ a “guess and check”
strategy. The transition from to q x in M2 represents the guess that the a being read is the
first symbol in the substring abba. After the guess, the computation continues to states q |,
q%, and to check whether the guess is correct. If symbols following the guess are bba,
the suing is accepted.

If an input string has the substring abba, one of the guesses will cause M 2 to enter
state q x upon reading the initial a in the substring, and this computation accepts the string.
Moreover, M 2 enters q^ only upon processing abba. Consequently, the language of M 2 is
(a U b)*abba(a U b)*. It should be noted that accepting computations are not necessarily
unique; there are two distinct accepting computations for abbabba in M2.

If this is your first encounter with nondeterminism, it is reasonable to ask about the
ability of a machine to perform this type of computation. DFAs can be easily implemented
in either software or hardware. What is the analogous implementation for NFAs? We can
intuitively imagine nondeterministic computation as a type of multiprocessing. When the
computation enters a machine configuration for which there are multiple transitions, a new
process is generated for each alternative. With this interpretation, a computation produces
a tree of processes running in parallel with the branching generated by the multiple choices
in the NFA. The tree corresponding to the computation of aabbaa is

S.4 N o n d e te r m in i s t i c F in ite A u to m a ta 1 6 3

If one of the branches reads the entire string and halts in an accepting state, the input is
accepted and the entire computation terminates. The input is rejected only when all branches

terminate without accepting the string.
Having introduced the properties of nondeterministic computation in the preceding

example, we now present the formal definitions of nondeterministic machines, their state
diagrams, and their languages. With the exception of the transition function, the components
of an NFA are identical to those of a DFA.

Definition 5.4.1

A nondeterministic finite autom aton (NFA) is a quintuple M = (Q, E , <5, q0, F), where
Q is a finite set of states, E a finite set called the alphabet, q0 € Q a distinguished state known
as the start state, F a subset of Q called the final or accepting states, and S a total function
from Q x E to T(Q) known as the transition function.

Definition 5.4.2

The language of an NFA M, denoted L(M), is the set of strings accepted by the M. That is,
L(M) = {ii> | there is a computation [<?0, tu] p- [<?;, k] with qt € F).

Definition 5.4.3

The state diagram of an NFA M = (Q, E , S, qq, F) is a labeled directed graph G defined
by the following conditions:

i) The nodes of G are elements of Q.

ii) The labels on the arcs of G are elements of E.

iii) q0 is the start node.

iv) F is the set of accepting nodes.

v) There is an arc from node q(to qj labeled a, if qj e S(qh a).

The relationship between DFAs and NFAs is clearly exhibited by comparing the prop
erties of the corresponding state diagrams. Definition 5.4.3 is obtained from Definition 5.3.1
by omitting condition (vi), which translates the deterministic property of the DFA transition
function into its graphic representation.

The relationship between DFAs and NFAs can be summarized by the seemingly para
doxical phrase, “Every deterministic finite automaton is nondeterministic.” The transition
function of a DFA specifies exactly one transition for each combination of state and input
symbol, while an NFA allows zero, one, or more transitions. By interpreting the transition
function of a DFA as a function from Q x E to singleton sets of states, the family of DFAs
may be considered to be a subset of the family of NFAs.

The following example describes an NFA in terms of the components in the formal
definition. We then construct the corresponding state diagram using the technique outlined
in Definition 5.4.3.

1 6 4 C h a p te r 5 Finite A u to m a ta

Example 5.4.1

The NFA

M : Q = too- <7i- <l2) S a b

2 = {a, b } <7o too) too. <7i)

f = W 2) <7i 0 to2)

<?2 0 0

with start state q$ accepts the language (a U b)*bb. The state diagram of M is

a,b

— - © — ~—

Pictorially, it is clear that a string is accepted if, and only if, it ends with the substring bb.
As noted previously, an NFA may have multiple computations for an input string. The

three computations for the string ababb are

[<70, ababb] too. ababb] too. ababb]

too, babb] 1- too- babb] h too. babb]

h [<?o. ahb} t- [<?|. abb] l- to o . abb]

►-too- 1- too- bb]

H too. b] H to ,, b]

1- too. x] 1“ [<?2. X]

The second computation halts after the execution of three instructions since no action is
specified when the machine is in state q x scanning an a. The first computation processes the
entire input and halts'in a rejecting state while the final computation halts in an accepting
state. The third computation demonstrates that ababb is in the language of machine M. □

Example 5.4.2

The state diagrams M | and M 2 define finite automata that accept (a U b) 'bb(a U b y .

5.5 A -T ransit ions 1 6 5

M, is the DFA from Example 5.3.1. The path exhibiting the acceptance of strings by M,
enters when the first substring bb is encountered. M 2 can enter the accepting state upon

processing any occurrence of bb. D

Example 5.4.3

An NFA that accepts strings over {a, b} with the substring aa or bb can be constructed by
combining a machine that accepts strings with bb (Example 5.4.2) with a similar machine
that accepts strings with aa.

a, b

A path exhibiting the acceptance of a string reads the input in state q0 until an occurrence
of the substring aa or bb is encountered. At this point, the path branches to either q] or <7 3 ,
depending upon the substring. There are three distinct paths that exhibit the acceptance of
the string abaaabb. □

The flexibility permitted by the use of nondeterminism does not always simplify the
problem of constructing a machine that accepts L(M,) U L(M2) from the machines M 1 and
M2. This can be seen by attempting to construct an NFA that accepts the language of the
DFA in Example 5.3.3.

5.5 A-Transitions

The transitions from state to state in both deterministic and nondeterministic automata were
initiated by processing an input symbol. The definition of NFA is now relaxed to allow state
transitions without requiring input to be processed. A transition of this form is called a
A-transition. The class of nondeterministic machines that utilize A-transitions is denoted
NFA-A.

The incorporation of A-transitions into finite state machines represents another step
away from the deterministic computations of a DFA. They do, however, provide a useful
tool for the design of machines to accept complex languages.

1 6 6 C h a p te r 5 F in ite A u to m a ta

Definition 5.5.1

A nondeterministic finite autom aton with X-transitions is a quintuple M = (Q, 2 ,
S, qo, F), where Q, S, q^, and F are the same as in an NFA. The transition function is
a function from Q x (2 U {A.}) to CP(Q).

The definition of halting must be extended to include the possibility that a computation
may continue using X-transitions after the input string has been completely processed.
Employing the criteria used for acceptance in an NFA, the input is accepted if there is a
computation that processes the entire string and halts in an accepting state. As before, the
language of an NFA-X is denoted L(M). The state diagram for an NFA-X is constructed
according to Definition 5.4.3 with X-transitions represented by arcs labeled by X.

The ability to move between states without processing an input symbol can be used to
construct complex machines from simpler machines. Let Mi and M 2 be the machines

that accept (a U b)*bb{a U b)* and (b U ab)*(a U X), respectively. Composite machines are
built by appropriately combining the state diagrams of M, and M2.

Example 5.5.1

The language of the NFA-X M is L ^) U L(M2).

A computation in the composite machine M begins by following a X-arc to the start state of
either M, or M2. If the path p exhibits the acceptance of a string by machine M,-, then that
string is accepted by the path in M consisting of the X-arc from q0 to qi 0 followed by p in
the copy of the machine M ,. Since the initial move in each computation does not process an
input symbol, the language of M is L(M]) U L(M2). Compare the simplicity o f the machine
obtained by this construction with that of the deterministic state diagram in Example 5.3.3.

□

5.5 ^ -T ra n s i t io n s 1 6 7

Example 5.5.2

An NFA-A that accepts L(M,)L(M2), the concatenation of the languages o f M) and M2, is
constructed by joining the two machines with a A-arc.

An input string is accepted only if it consists of a string from L(Mj) concatenated with one
from L(M2). The A-transition allows the computation to enter M2 whenever a prefix of the
input string is accepted by Mj. □

Example 5.5.3

We will use X-transitions to construct an NFA-A. that accepts all strings of even length over
[a, b }. We begin by building the state diagram of a machine that accepts strings of length
two.

To accept the null string, a A-arc is added from q0 to q2. Strings of any positive, even length
are accepted by following the A-arc from q2 to q0 to repeat the sequence q0, q lt q2.

X

The constructions presented in Examples 5.5.1, 5.5.2, and 5.5.3 can be generalized
to construct machines that accept the union, concatenation, and Kleene star of languages
accepted by existing finite-state machines. The first step is to transform the machines into
an equivalent NFA-A whose form is amenable to these constructions.

Lemma 5.5.2

Let M = (Q, E , 8, q0, F) be an NFA-A. There is an equivalent NFA-A M ' = (Q U
Wo’ 9/1* S', q'Q, {q/}) that satisfies the following conditions:

i) The in-degree of the start state q'0 is zero.

ii) The only accepting state of M' is qf .

iii) The out-degree of the accepting state q f is zero.

1 6 8 C h a p te r 5 Finite A u to m a ta

Proof. The transition function of M/ is constructed from that of M by adding the X-

transitions

for the new states q'Q and qf . The X-transition from q^ to q0 permits the computation to
proceed to the original machine M without affecting the input. A computation of M' that
accepts an input string is identical to that of M followed by a X-transition from the accepting
state of M to the accepting state q f of M'. ■

If a machine satisfies the conditions of Lemma 5.5.2, the sole role of the start state is
to initiate a computation, and the computation terminates as soon as q f is entered. Such a
machine can be pictured as

The diagram depicts a machine with three distinct parts: the initial state, the body of the
machine, and the final state. This can be likened to a railroad car with couplers on either
end. Indeed, the conditions on the start and final state are designed to allow them to act as
couplers of finite-state machines.

Theorem 5.5.3

Let M | and M2 be two NFA-Xs. There are NFA-Xs that accept L (M i)U L (M 2),
L(M ,)L(M 2), and L(M,)*.

Proof. We assume, without loss of generality, that Mi and M2 satisfy the conditions
of Lemma 5.5.2. The machines constructed to accept the languages L (M i)U L (M 2),
L(M |)L(M 2), and L(M|)* will also satisfy the conditions of Lemma 5.5.2.

Because of the restrictions on the start and final states, Mi and M2 may be depicted

SWo. *) = ta0}

8(qh X) = {qf \ for every <y, G F

5.5 A -T ransit ions 1 6 9

The language U L(M2) is accepted by

A computation begins by following a X-arc to Mj or M2. If the string is accepted by either
of these machines, the X-arc can be traversed to reach the accepting state o f the composite
machine. This construction may be thought of as building a machine that runs M, and M2

in parallel. The input is accepted if either of the machines successfully processes the string.
Concatenation can be obtained by operating the component machines sequentially. The

start state of the composite machine is q x 0 and the accepting state is q i j - The machines
are joined by connecting the final state of M j to the start state of M2.

When a prefix of the input string is accepted by M (, the computation continues with M2.
If the remainder of the string is accepted by M2, the processing terminates in g2, / . the
accepting state of the composite machine.

A machine that accepts L(Mj)* must be able to cycle through M, any number of times.
The X-arc from q x j to q x 0 permits the necessary cycling. Another X-arc is added from q i 0
to q \ j to accept the null string. These arcs are added to M | producing

X

The ability to repeatedly connect machines of this form will be used in Chapter 6 to
establish the equivalence of languages described by regular expressions and accepted by
finite-state machines.

1 70 C h a p te r 5 Finite A u to m a ta

5.6 Removing Nondeterminism

Three classes of finite automata have been introduced in the previous sections, each class
being a generalization of its predecessor. By relaxing the deterministic restriction, have we
created a more powerful class of machines? More precisely, is there a language accepted by
an NFA that is not accepted by any DFA? We will show that this is not the case. Moreover,
an algorithm is presented that converts an NFA-A. to an equivalent DFA.

The state transitions in DFAs and NFAs accompanied the processing of an input symbol.
To relate the transitions in an NFA-A to the processing of input, we build a modified transition
function t, called the input transition function, whose value is the set of states that can be
entered by processing a single input symbol from a given state. The value o f t (q t, a) for
the diagram in Figure 5.3 is the set {q2, q$, q$, q^}- State qA is omitted since the transition
from state q\ does not process an input symbol.

Intuitively, the definition of the input transition function t(qit a) can be broken into
three parts. First, the set of states that can be reached from qt without processing a symbol
is constructed. This is followed by processing an a from all the states in that set. Finally,
following X-arcs from the resulting states yields the set t (q, , a).

The function t is defined in terms of the transition function & and the paths in the state
diagram that spell the null string. A node qj is said to be in the X-closure of if there is a
path from qt to qj that spells the null string.

Definition 5.6.1

The X-closure of a state qit denoted k-closure(qj), is defined recursively by

i) Basis: qt € k-closure(,qj).

ii) Recursive step: Let qj be an element of k-closure(qj). If qk € &(qj, X), then qk e
k-closure(qj).

iii) Closure: qj is in k-closure(qj) only if it can be obtained from qt by a finite number of
applications of the recursive step.

The set k-closure(q{) can be constructed following the top-down approach used in
Algorithm 4.3.1, which determined the chains in a context-free grammar. The input transi
tion function is obtained from the X-closure of the states and the transition function of the
NFA-X.

Definition 5.6.2

The input transition function / of an NFA-X M is a function from Q x E to !P(Q) defined
by

t (q j , a) = [J k-closure(&(qj, a)),
qj€k-closure(qj)

where S is the transition function of M.

5.6 R em o v in g N o n d e t e r m i n i s m 1 71

String
Path Processed

<7|. <?2 a
9b <?2 . <?3 a
<7|. <?4 *

9 l . 9 4 . <75

<?|. <74. 95- <76 a

FICURE 5.3

The input transition function has the same form as the transition function of an NFA.
That is, it is a function from Q x £ to sets of states. For an NFA without X-transitions, the
input transition function t is identical to the transition function 5 of the automaton.

Paths with X-transitions.

Example 5.6.1

Transition tables are given for the transition function S and the input transition function t
of the NFA-X with state diagram M. The language of M is a +c*b*.

s a b c X

<?o (9 o . <7|. <?2> 0 0 0

<7i 0 l<?i) 0 0

<72 0 0 {<?:} (<?.}

t a b c

<7o {<?0. <?|. <?2l 0 0

<?i 0 {<?|} 0

<?2 0 {<7|} {<7i. 92}

The input transition function of an NFA-X is used to construct an equivalent DFA.
Acceptance in a nondeterministic machine is determined by the existence of a computation
that processes the entire string and halts in an accepting state. There may be several paths
in the state diagram of an NFA-X that represent the processing of an input string, while the
state diagram of a DFA contains exactly one such path. To remove the nondeterminism, the
DFA must simulate the simultaneous exploration of all possible computations in the NFA-X.

Algorithm 5.6.3 iteratively builds the state diagram of a deterministic machine equiv
alent to an NFA-X M. The nodes of the DFA, called DM for deterministic equivalent o f M,
are sets of nodes of M. The start node of DM is the X-closure of the start node of M. The key
to the algorithm is step 2.1.1, which generates the nodes of the deterministic machine. If X
is a node in DM, the set Y is constructed that contains all the states that can be entered by
processing the symbol a from any state in the set X. This relationship is represented in the
state diagram of DM by an arc from X to Y labeled a. The node X is made deterministic by

1 7 2 C h a p te r 5 Finite A u to m a ta

producing an arc from it for every symbol in the alphabet. New nodes generated in step 2.1.1
are added to the set Q' and the process continues until every node in Q' is deterministic.

Algorithm 5.6.3
Construction o f DM, a DFA Equivalent to NFA-A. M

input: an NFA-X M = (Q, E , S, q0, F)
input transition function / of M

1. initialize Q' to k-closure(qo)
2. repeat

2.1. if there is a node X 6 Q' and a symbol a € E with no arc
leaving X labeled a, then

2.1.1. let Y = (<?,-, a)

2.1.2. if Y £ Q', then set Q' := Q' U {Y)
2.1.3. add an arc from X to Y labeled a

else done := true
until done

3. the set of accepting states of DM is F' = {X e Q ' | X contains an element e F)

The NFA-X from Example 5.6.1 is used to illustrate the construction o f nodes for the
equivalent DFA. The start node of DM is the singleton set containing the start node of M.
A transition from qQ processing an a can terminate in q0, q x, or q2. We construct a node
{<7o. <?i> 92) f°r the DFA and connect it to {g0} by an arc labeled a. The path from {<?0} to
[q^, q\, q2) in DM represents the three possible ways of processing the symbol a from state
q0 in M.

Since DM is to be deterministic, the node {<7 0) must have arcs labeled b and c leaving
it. Arcs from q0 to 0 labeled b and c are added to indicate that there is no action specified
by the NFA-X when the machine is in state q0 scanning these symbols.

The node (<?0) has the deterministic form; there is exactly one arc leaving it for
every member of the alphabet. Figure 5.4(a) shows DM at this stage of its construction.
Two additional nodes, {q0, q x, q2) and 0, have been created. Both of these must be made
deterministic.

An arc leaving node {q0, q x, q2) terminates in a node consisting of all the states that
can be reached by processing the input symbol from the states q0, q x, or q2 in M. The
input transition function t(qj, a) specifies the states reachable by processing an a from

The arc from {<y0, q h q2] labeled a terminates in the set consisting of the union of the
t(q0, a), t (q x, a), and t(q2, a). The set obtained from this union is again [qQ, q x, q2). An
arc from {q0, q x, q2) to itself is added to the diagram designating this transition.

The empty set represents an error state for DM. A computation enters 0 on reading an
a in state Y only if there is no transition for a for any qt € Y. Once in 0, the computation

5 .6 R e m o v in g N o n d e t e r m i n i s m 1 73

b, c

(a) (b)

FIGURE 5.4 Construction o f equivalent deterministic automaton.

processes the remainder of the input and rejects the string. This is indicated in the state
diagram by the arc from 0 to itself labeled by each alphabet symbol.

Figure 5.4(b) gives the completed deterministic equivalent of the M. Computations
of the nondeterministic machine with input aaa can terminate in state q0, q h and q2- The
acceptance of the string is exhibited by the path that terminates in q\. Processing aaa in DM
terminates in state {q0, q {, q2). This state is accepting in DM since it contains the accepting
state q x of M.

The algorithm for constructing the deterministic state diagram consists of repeatedly
adding arcs to make the nodes in the diagram deterministic. As arcs are constructed, new
nodes may be created and added to the diagram. The procedure terminates when all the
nodes are deterministic. Since each node is a subset of Q, at most card(7 (Q)) nodes can
be constructed. Algorithm 5.6.3 always terminates since card(‘J>(Q))card(H) is an upper
bound on the number of iterations of the repeat-until loop. Theorem 5.6.4 establishes the
equivalence of M and DM.

174 C h a p t e r s F in ite A u to m a ta

Theorem 5.6.4

Let w 6 2* and Qu, = {qW[, qW2......... qw.) be the set of states entered upon the completion

of the processing of the string w in M. Processing w in DM terminates in state Qu,.

Proof. The proof is by induction on the length of the string w. A computation of M that
processes the empty string terminates at a node in \-c losure(q0). This set is the start state
of DM.

Assume the property holds for all strings of length n and let w = ua be a string of length
n + 1. LetQ„ = {qU[, q„2, . . . , qUk} be the terminal states of the paths obtained by processing
the entire string u in M. By the inductive hypothesis, processing u in DM terminates in Q„.
Computations processing ua in M terminate in states that can be reached by processing an
a from a state in Qu. This set, Q^„ can be defined using the input transition function:

k

i=i

This completes the proof since Qu, is the state entered by processing a from state Qu of DM.
■

The acceptance of a string in a nondeterministic automaton depends upon the existence
of one computation that processes the entire string and terminates in an accepting state. The
node Qu, contains the terminal states of all the paths generated by computations in M that
process w. If w is accepted by M, then Qu, contains an accepting state of M. The presence
of an accepting node makes Qw an accepting state of DM and, by the previous theorem, w
is accepted by DM.

Conversely, let w be a string accepted by DM. Then Qw contains an accepting state of
M. The construction of guarantees the existence of a computation in M that processes
w and terminates in that accepting state. These observations provide the justification for
Corollary 5.6.5.

Corollary 5.6.5

The finite automata M and DM are equivalent.

Example 5.6.2

The NFA

a b

accepts the language a +b+. The construction of an equivalent DFA is traced in the following
table.

5.6 R em o v in g N o n d e t e r m i n i s m 1 7 5

State Symbol NFA Transitions Next State

too) a £(9o- a) — l9o> 9 i) (9o. 9 i)

<9o) b S(9o. b) = 0 0

too. <?i) a S(9o. a) = (9o. 9 i)

S(9i. a) = 0
l<7o. 9 i l

(<7o- 9 i) b 5(9o. b) = 0
i(9 i> b) = {91, 92)

(9|. 92)

a &(qh a) = 0

S(q2, a) = 0

0

(9 l.9 2 l b 5(9,. b) = {<7i, q2)

S(q2, b) = 0
(91.92)

Since M is an NFA, the transition function S of M serves as the input transition function
and the start state of the equivalent DFA is {<7q}. The resulting DFA is

a

□

Example 5.6.3

As seen in the preceding examples, the states of the DFA constructed using Algorithm 5.6.3
are sets of states of the original nondeterministic machine. If the nondeterministic machine
has n states, the DFA may have 2" states. The transformation of the NFA

a

1 7 6 C h a p te r 5 F in ite A u to m a ta

shows that the theoretical upper bound on the number of states may be attained. The start
state of DM is (<?o) since M does not have X-transitions.

a

□

Example 5.6.4

The machines Mj and M2 accept a(ba)* and a*, respectively.

a

Using X-arcs to connect a new start state to the start states of the original machines creates
an NFA-X M that accepts a(ba)* U a*.

S.6 R e m o v in g N o n d e t e r m i n i s m 1 77

The input transition function for M is

t a b

<7o {<72. <?3> 0

<7i {<?2) 0

<72 0 {<7.1

<73 {<73) 0

The equivalent DFA obtained from Algorithm 5.6.3 is

a

a

Algorithm 5.6.3 completes the following cycle describing the relationships between
the classes of finite automata.

DFA ------- ----- NFA - X

NFA

The arrows represent inclusion; every DFA can be reformulated as an NFA that is, in turn,
an NFA-X. The double arrow from NFA-X to DFA indicates the existence o f an equivalent
deterministic machine.

1 7 8 C h a p t e r 5 Finite A u to m a ta

5.7 DFA Minimization

The preceding sections established that the family of languages accepted by DFAs is the
same as that accepted by NFAs and NFA-As. The flexibility of nondeterminism and X-
transitions aid in the design of machines to accept complex languages. The nondeterministic
machine can then be transformed into an equivalent deterministic machine using Algorithm
5.6.3. The resulting DFA, however, may not be the minimal DFA that accepts the language.
This section presents a reduction algorithm that produces the minimal state DFA accepting
the language L from any DFA that accepts L. To accomplish the reduction, the notion of
equivalent states in a DFA is introduced.

Definition 5.7.1

Let M = (Q, E , 8, q0, F) be a DFA. States qt and qj are equivalent if £(</,■, u) e F if, and

only if, 8(qj, u) 6 F for every u 6 E*.

Two states that are equivalent are called indistinguishable. The binary relation over
Q defined by indistinguishability of states is an equivalence relation; that is, the relation
is reflexive, symmetric, and transitive. Two states that are not equivalent are said to be
distinquishable. States qj and qj are distinguishable if there is a string u such that 8(qt , u) €

F and &(qj, u) £ F, or vice versa.
The motivation behind this definition of equivalence is illustrated by the following

states and transitions;

The unlabeled dotted lines entering q, and qj indicate that the method of reaching a
state is irrelevant; equivalence depends only upon computations from the state. The states
9i and qj are equivalent since the computation with any string beginning with b from either
state halts in an accepting state and all other computations halt in the nonaccepting state qk.
States qm and q„ are also equivalent; all computations beginning in these states end in an
accepting state.

The intuition behind the transformation is that equivalent states may be merged. Ap
plying this to the preceding example yields

5.7 DFA M in im iz a t io n 1 79

To reduce the size of a DFA M by merging states, a procedure for identifying equivalent
states must be developed. In the algorithm to accomplish this, each pair o f states qt and
<jj, i < j , has associated with it values D[i, j] and S[i, j], D[i, j] is set to 1 when it is
determined that the states </,- and qj are distinguishable. 5[m, si] contains a set of indices.
Index [/, j] is in the set S[m, «] if the distinguishability of q, and qj follows from that of
qm and qn.

The algorithm begins by marking each pair of states qt and qj as distinguishable if
one is accepting and the other is rejecting. The remainder of the algorithm systematically
examines each nonmarked pair of states. When two states are shown to be distinguishable, a
call to a recursive routine DIST sets D[i, j] to 1. The call D I S T (/, j) not only marks qt and
qj as distinguishable, it also marks each pair of states qm and q„ for which [m, n] € S[«, j]
as distinguishable through a call to D I ST (m , n).

Algorithm 5.7.2
Determination o f Equivalent States o f DFA

input: DFA M = (Q, E , 8, q0, F)

1. (Initialization)
for every pair of states q, and q} , i < j , do

1.1. D[i, y ']:= 0
1.2. 5 [» , ;] : = 0

end for
2. for every pair /, j , i < j , if one of q, or qj is an accepting state and the other is

not an accepting state, then set D[/, j] := 1
3. for every pair i, j , i < j , with D[i, j] = 0, do

3.1. if there exists an a € S such that 8(qh a) = qm, 8(qj, a) = q„ and
D[tn, ti] = 1 or D[n, m] = 1, then DIST(i, j)

3.2. else for each a e E , do: Let 8(qh a) = qm and 8(qJy a) = q„
if m < n and [i, y] ?£ [m, «], then add [/', j] to S[m, rt]

else if m > n and [i, j] [n, m), then add [i, j] to S[n, m]
end for

DIST(i, j)-
begin

DU, j] := 1
for all [m, n) € 5[i, j], DIST(m, n)

end

1 8 0 C h a p te r 5 Finite A u to m a ta

The motivation behind the identification of distinguishable states is illustrated by the

relationships in the diagram

If qm and qn are already marked as distinguishable when qt and qj are examined in step 3,
then D[i, j] is set to 1 to indicate the distinguishability of qt and qj. If the status of qm
and qn is not known when qj and qj are examined, then a later determination that qm and
q„ are distinguishable also provides the answer for qt and qj. The role of the array S is to
record this information: [/, j] e S[n, m] indicates that the distinguishability o f qm and q„ is
sufficient to establish the distinguishability of qj and qr These ideas are formalized in the
proof of Theorem 5.7.3.

Theorem 5.7.3

States qj and qj are distinguishable if, and only if, D[i, j] = 1 at the termination of
Algorithm 5.7.2.

Proof. First we show that every pair of states q, and qs for which D[i, j] = 1 is distin
guishable. If D[i, j] is assigned 1 in the step 2, then qt and qj are distinguishable by the null
string. Step 3.1 marks qj and qj as distinguishable only if <5(g,-, a) = qm and 8(q j , a) = qn
for some input a when states qm and q„ have already been determined to be distinguishable
by the algorithm. Let u be a string that exhibits the distinguishability of qm and q„. Then
au exhibits the distinguishability of qt and qj.

To complete the proof, it is necessary to show that every pair of distinguishable states

is designated as such. The proof is by induction on the length of the shortest string that
demonstrates the distinguishability of a pair of states. The basis consists of all pairs of states
qi, qj that are distinguishable by a string of length 0. That is, the computations 8(q,, X) = <?,

and S(qj, X) = qj distinguish qt from qj. In this case, exactly one of q, or q j is accepting
and the position D[i, j] is set to 1 in step 2.

Now assume that every pair of states distinguishable by a string of length k or less is
marked by the algorithm. Let qt and q} be states for which the shortest distinguishing string
u has length k + 1. Then u can be written av and the computations with input u have the form
8(qt, u) = &(qh av) = S(qm, v) = qs and 8(qj, u) = 8(qj , av) = 8(q„, u) = qt -Exactly one
of qs and q, is accepting since the preceding computations distinguish qt from qj. Clearly,
the same computations exhibit the distinguishability of qm from qn by a string of length k.
By induction, we know that the algorithm will set D[m, n] to 1.

If D[m, n] is marked before the states q, and q^ are examined in step 3, then D[i, j]
is set to 1 by the call D IS T (i , j) . If qt and qj are examined in the loop in step 3.1 and
D im , n] ^ 1 at that time, then [i, 7] is added to the set S[m, «]. By the inductive hypothesis,
D[m, m] will eventually be set to 1. D[i, j] will also be set to 1 at this time by a recursive
call from D I S T (m ,n) since [/, j] is in 5[m, /1]. a

a

a

5.7 DFA M in im iz a t io n 1 8 1

A new DFA M' can be built from the original DFA M = (Q, £ , <5, <?o- F) an^ the
indistinguishability relation. The states of M' are the equivalence classes consisting of
indistinguishable states of M. The start state is [<?0], and [<?,] is a final state if q, € F.
The transition function S' of M' is defined by £'([?j], a) = [S(^f, a)]. In Exercise 44, S'
is shown to be well defined. L(M') consists of all strings whose computations have the form
c5'([<y0], u) = [£(<?,, A.)] with qj € F. These are precisely the strings accepted by M. If M' has
states that are unreachable by computations from [<y0], these states and all associated arcs
are deleted.

Example 5.7.1

The minimization process is exhibited using the DFA M

that accepts the language (a U b)(a U b*).

In step 2. D[0, 1], D[0, 2], D[0, 3], D[0. 4], D[0, 5], D[0. 6], D [l, 7], D[2, 7], D[3, 7],
D[4, 7], D[5, 7], and £>[6 , 7] are set to 1. Each index not marked in step 2 is examined in
step 3. The table shows the action taken for each such index.

Index Action Reason

[0. 7] D[0. 7] = 1 Distinguished by a

[1. 2] £>[1, 2]= 1 Distinguished by a

[1,3] D [1 .3]= l Distinguished by a

[1.4] 5[2.5] = ([1.4]}
5[3. 6] = {[1.4]}

[1. 51 D [1.5]= 1 Distinguished by a
[1. 6] D[l. 6] = 1 Distinguished by a

[2, 3] D\2. 3]= 1 Distinguished by b

(Continued)

1 8 2 C h a p te r 5 Finite A u to m a ta

Index Action Reason

[2, 4] D[2, 4]= 1 Distinguished by a

[2, 5] No action since 3 (q2,x) = &(qs, x) for every

[2, 6] D[2, 6] = 1 Distinguished by b

[3, 4] 0[3, 4] = 1 Distinguished by a

[3, 5] P[3, 5] = 1 Distinguished by b

[3, 6]
[4, 5] D[4, 5] = 1 Distinguished by a

[4, 6] D[4, 6] = 1 Distinguished by a

[5, 6] D[5, 6] = 1 Distinguished by b

After each pair of indices is examined, [1, 4], [2, 5], and [3, 6] are left as equivalent
pairs of states. Merging these states produces the minimal state DFA M ' that accepts
(a U b)(a U b*).

Example 5.7.2

Minimizing the DFA M illustrates the recursive marking of states by the call to DIST. The
language of M is a(q U b)* U ba(a U b)* U bba (a U b)*.

C>“

The comparison of accepting states to nonaccepting states assigns 1 to D[0, 4], D[0, 5],
£»[0, 6], D [l, 4], D [l, 5], D [l, 6], D[2, 4], D[2, 5], D[2, 6], D[3, 4], D[3, 5], and D[3, 6].
Tracing the algorithm produces

5.7 DFA M in im iz a t io n 1 8 3

Index Action Reason

[0 ,1] S[4, 5] = {[0, 1])

5(1. 2] = ([0 , 1]}

[0, 2] S[4, 6] = {[0, 2]}

S[l, 3] = {[0, 2])

[0, 3] £)[0, 3] = 1 Distinguished by a

[1,2] S[5, 6] = ([1, 2](

S[2, 3] = ([1, 2]}

(1. 3] 0 [1 , 3] = 1 Distinguished by a

£>[0, 2] = 1 Call to DIST (I, 3)

(2, 3] D[2, 3] = 1 Distinguished by a

£>[1, 2] = 1 Call to DIST (I, 2)

[4, 5]

[4, 6]

[5, 6]

£>[0, 1] = 1 Call to DIST(0, 1)

Merging equivalent states q4, q5, and q6 yields

The minimization algorithm completes the sequence of algorithms required for the con
struction of optimal DFAs. Nondeterminism and ^-transitions provide tools for designing
finite automata to match complicated patterns or to accept complex languages. Algorithm
5.6.3 can then be used to transform the nondeterministic machine into a DFA, which may not
be minimal. Algorithm 5.7.2 completes the process by producing the minimal state DFA.

For the moment, we have presented an algorithm for DFA reduction but have not
established that it produces the minimal DFA. In Section 6.7 we prove the Myhill-Nerode
Theorem, which characterizes the language accepted by a finite automaton in terms of
equivalence classes of strings. This characterization will then be used to prove that the
machine M' produced by Algorithm 5.7.2 is the unique minimal state DFA that accepts L.

184 C h a p te r 5 F in ite A u to m a ta

Exercises

1. Let M be the deterministic finite automaton defined by

Q = too. <?i< <72! i a b

E = [a, b } <7o <?0 <7l

F={<72}
<7l <72 <7i

<?2 92 <7o

a) Give the state diagram of M.

b) Trace the computations of M that process the strings abaa, bbbabb, bababa, and
bbbaa.

c) Which of the strings from part (b) are accepted by M?

d) Give a regular expression for L(M).

2. Let M be the deterministic finite automaton

Q = Wo- <?1. <72) S a b

E = [a, b } <70 <7i <7o

F = {<7o) 9l <7i <72

<72 <?i <7o

a) Give the state diagram of M.

b) Trace the computation of M that processes babaab.

c) Give a regular expression for L(M).

d) Give a regular expression for the language accepted if both q0 and q\ are accepting
states.

3. Let M be the DFA with state diagram

b a

a) Construct the transition table of M.

b) Which of the strings baba , baab, abab, abaaab are accepted by M?

c) Give a regular expression for L(M).

E xerc ises 185

* 4. The recursive step in the definition of the extended transition function (Definition 5.2.4)
may be replaced by S' (<?,-, au) = S'(S(qh a), u), for all u e 2*, a € £ ,a n d qt € Q. Prove

that 5 = 5'.

For Exercises 5 through 21, build a DFA that accepts the described language.

5. The set of strings over {a, b, c) in which all the a ’s precede the b's, which in turn
precede the c ’s. It is possible that there are no a ’s, b’s, or c ’s.

6. The set of strings over {a, b\ in which the substring aa occurs at least twice.

7. The set of strings over {a, b] that do not begin with the substring aaa.

8. The set of strings over {a, b] that do not contain the substring aaa.

9. The set of strings over {a, b, c) that begin with a, contain exactly two b ’s, and end with
cc.

10. The set of strings over {a, b, c} in which every b is immediately followed by at least
one c.

11. The set of strings over {a , b) in which the number of a ’s is divisible by three.

12. The set of strings over {a, b} in which every a is either immediately preceded or
immediately followed by b, for example, baab, aba, and b.

13. The set of strings of odd length over {a, b } that contain the substring bb.

14. The set of strings over [a, b) that have odd length or end with aaa.

15. The set of strings of even length over {a, b, c} that contain exactly one a.

16. The set of strings over [a, b) that have an odd number of occurrences o f the substring
aa. Note that aaa has two occurrences of aa.

17. The set of strings over {a, b] that contain an even number of substrings ba.

18. The set of strings over {1, 2, 5} the sum of whose elements is divisible by six.

19. The set of strings over [a, b, c) in which the number of a ’s plus the number of b's plus
twice the number of c ’s is divisible by six.

20. The set of strings over {a, b} in which every substring of length four has at least one b.
Note that every substring with length less than four is in this language.

* 21. The set of strings over {a, b, c) in which every substring of length four has exactly one
b.

22. For each of the following languages, give the state diagram of a DFA that accepts the
languages.

a) (ab)*ba

b) (ab)*(ba)*

c) aa(a U b)+bb

d) ((aa)+bb)*

e) (ab*a)*

23. Let M be the nondeterministic finite automaton

1 8 6 C h a p t e r 5 F in ite A u to m a ta

b

a) Construct the transition table of M.

b) Trace all computations of the string aaabb in M.

c) Is aaabb in L(M)?

d) Give a regular expression for L(M).

24. Let M be the nondeterministic finite automaton

a

a) Construct the transition table of M.

b) Trace all computations of the string aabb in M.

c) Is aabb in L(M)?

d) Give a regular expression for L(M).

e) Construct a DFA that accepts L(M).

f) Give a regular expression for the language accepted if both q0 and q \ are accepting
states.

25. For each of the following languages, give the state diagram of an NFA that accepts the
languages.

a) (a U a b U aab)*

b) (ab)* U a*

c) (abc)*a*

d) (ba U bb)* U (ab U aa)*

e) (ab+a)+

26. Give a recursive definition of the extended transition function 6 of an NFA-A.. The value
S(qj(w) is the set of states that can be reached by computations that begin at node q,
and completely process the string w.

E xerc ises 187

For Exercises 27 through 34, give the state diagram of an NFA that accepts the given
language. Remember that an NFA may be deterministic, but you should use nondeterminism

whenever it is appropriate.

27. The set of strings over [a, b } that contain either aa and bb as substrings.

28. The set of strings over {a, b } that contain both or neither aa and bb as substrings.

* 29. The set of strings over {a, b] whose third-to-the-last symbol is b.

30. The set of strings over [a, b) whose third and third-to-last symbols are both b. For
example, aababaa, abbbbbbbb, and abba are in the language.

31. The set of strings over [a, b) in which every a is followed by b or ab.

32. The set of strings over [a, b} that have a substring of length four that begins and ends
with the same symbol.

33. The set of strings over {a , b } that contain substrings aaa and bbb.

34. The set of strings over {a, b, c} that have a substring of length three containing each
of the symbols exactly once.

35. Construct the state diagram of a DFA that accepts the strings over {a, b) ending with
the substring abba. Give the state diagram of an NFA with six arcs that accepts the
same language.

36. Let M be the NFA-X

a) Compute X-closure(qj) for i = 0, 1, 2.

b) Give the input transition function t for M.

c) Use Algorithm 5.6.3 to construct a state diagram of a DFA that is equivalent to M.

d) Give a regular expression for L(M).

1 8 8 C h a p t e r 5 F in ite A u to m a ta

37. Let M be the NFA-X

b

x g

@
b

a

a) Compute \-closure(qj) for i = 0, 1, 2, 3.

b) Give the input transition function t for M.

c) Use Algorithm 5.6.3 to construct a state diagram of a DFA that is equivalent to M.

d) Give a regular expression for L(M).

38. Use Algorithm 5.6.3 to construct the state diagram of a DFA equivalent to the NFA in
Example 5.5.2.

39. Use Algorithm 5.6.3 to construct the state diagram of a DFA equivalent to the NFA in
Exercise 17.

40. For each of the following NFAs, use Algorithm 5.6.3 to construct the state diagram of
an equivalent DFA.

a) ^

Exerc ises 189

41. Build an NFA M (that accepts (ab)* and an NFA M2 that accepts (ba)*. Use X-
transitions to obtain a machine M that accepts (ab)*(ba)*. Give the input transition
function of M. Use Algorithm 5.6.3 to construct the state diagram of a DFA that accepts
L(M).

42. Build an NFA M! that accepts (aba)+ and an NFA M2 that accepts (ab)*. Use X-
transitions to obtain a machine M that accepts (aba)+ U (ab)*. Give the input transition
function of M. Use Algorithm 5.6.3 to construct the state diagram of a DFA that accepts
L(M).

43. Assume that q: and qj are equivalent states of a DFA M (as in Definition 5.7.1) and

S(qt , u) = qm and S(qj, u) = q„ for a string u € £*. Prove that qm and qn are equivalent.

* 44. Show that the transition function S' obtained in the process of merging equivalent
states is well defined. That is, show that if.g, and q, are states with [<?,] = ■], then
£'([<?/]. a) = S'([qj\, a) for every a e E.

45. For each DFA:

i) Trace the actions of Algorithm 5.7.2 to determine the equivalent states of M. Give
the values of D[i, j] and 5[i, j] computed by the algorithm.

ii) Give the equivalence classes of states.

iii) Give the state diagram of the minimal state DFA that accepts L(M).

1 9 0 C h a p te r 5 F in ite A u to m a ta

a a

b) b

Bibliographic Notes

Alternative interpretations of the result of finite-state computations were studied in Mealy
[1955] and Moore [1956]. Transitions in Mealy machines are accompanied by the gener
ation of output. A two-way automaton allows the tape head to move in both directions. A
proof that two-way and one-way automata accept the same languages can be found in Rabin
and Scott [1959] and Sheperdson [1959]. Nondeterministic finite automata were introduced
by Rabin and Scott [1959]. The algorithm for minimizing the number of states in a DFA
was presented in Nerode [1958]. The algorithm of Hopcroft [1971] increases the efficiency
of the minimization technique.

The theory and applications of finite automata are developed in greater depth in the
books by Minsky [1967]; Salomaa [1973]; Denning, Dennis, and Qualitz [1978]; and Bavel
[1983],

CHAPTER 6

Properties of Regular
Languages

Grammars were introduced as language generators, finite automata as language acceptors,
and regular expressions as pattern descriptors. This chapter develops the relationship be
tween these three approaches to language definition and explores the limitations of finite
automata as language acceptors.

6.1 Finite-State Acceptance o f Regular Languages

In this section we show that an NFA-X can be constructed to accept any regular language.
Regular sets are built recursively from 0, {X}, and singleton sets containing elements
from the alphabet by applications of union, concatenation, and the Kleene star operation
(Definition 2.3.2). The construction of an NFA-X that accepts a regular set can be obtained
following the steps of its recursive generation, but using state diagrams as the building
blocks rather than sets.

State diagrams for machines that accept 0, {X}, and singleton sets {a) are

191

192 C h a p te r 6 P ro p e r t ie s o f R egu lar L a n g u a g e s

Note that each of these machines satisfies the restrictions described in Lemma 5.5.2. That
is, the machines contain a single accepting state and there are no arcs entering the start state
or leaving the accepting state.

As shown in Theorem 5.5.3, A-transitions can be used to combine machines of this form
to produce machines that accept more complex languages. Using repeated applications of
these techniques, the construction of the regular expression from the basis elements can
be mimicked by the corresponding machine operations. This process is illustrated in the
following example.

Example 6.1.1

An NFA-A that accepts (a U b)*ba is constructed following the steps in the recursive
definition of the regular expression. The language accepted by each intermediate machine
is indicated by the regular expression above the state diagram.

a b

>Q^O >0^-0
ba

O ^ O K H -O
(au*)

(aub)*

X

X

6.2 E x p ress io n G r a p h s 193

(aub)* ba

6.2 Expression Graphs

The construction in the previous section demonstrates that every regular language is rec
ognized by a finite automaton. We will now show that every language accepted by a finite
automaton is regular by constructing a regular expression for the language o f the machine.
To accomplish this, we extend the notion of a state diagram.

Definition 6.2.1

An expression graph is a labeled directed graph in which the arcs are labeled by regular
expressions. An expression graph, like a state diagram, contains a distinguished start node
and a set of accepting nodes.

The state diagram of a finite automaton with alphabet E is a special case of an
expression graph; the labels consist of k and expressions corresponding to the elements of
E. Paths in expression graphs generate regular expressions. The language o f an expression
graph is the union of the regular expressions along paths from the start node to an accepting
node. For example, the expression graphs

ab b+a ba ba bb

accept the languages (ab)*, (b+a)*(a U b)(ba)*, and (ba)*b*(bb U (a+(ba)*b*))*, respec
tively.

Because of the simplicity of the graphs, the expressions for the languages accepted
by the previous examples were obvious. A procedure is developed to reduce an arbitrary
expression graph to an expression graph containing at most two nodes. The reduction is
accomplished by repeatedly removing nodes from the graph in a manner that preserves the
language of the graph.

The state diagram of a finite automaton may have any number of accepting states.
Each of these states exhibits the acceptance of a set of strings, the strings whose processing

194 C h a p te r 6 P ro p e r t ie s o f R egu lar L a n g u a g e s

successfully terminates in the state. The language of the machine is the union of these sets.
By Lemma 5.5.2, we can convert an arbitrary finite automaton to an equivalent NFA-X
with a single accepting set. To simplify the generation of a regular expression from a finite
automaton, we will assume that the machine has only one accepting state.

The numbering of the states of the NFA-X will be used in the node deletion algorithm
to identify paths in the state diagram. The label of an arc from state <?, to state qj is denoted
Wjj. If there is no arc from node qf to qj, Wjj = 0.

Algorithm 6.2.2
Construction o f a Regular Expression from a Finite Automaton

input: state diagram G of a finite automaton with one accepting state

Let q0 be the start state and q, the accepting state of G.
1. repeat

1.1. choose a node qt that is neither q0 nor q,
1.2. delete the node q, from G according to the following procedure:

1.2.1 for every j , k not equal to i (this includes j = k) do
i) if Wj'jjt 0, w i k ^ 0 and u>,-(= 0, then add an arc

from node j to node k labeled u i j (w ik
ii) if U>i'k^ 0 and 0, then add an arc from

node qj to node qk labeled w j i(wi i)*wi k
iii) if nodes qj and qk have arcs labeled u>j, u>2, . . . , ws

connecting them, then replace the arcs by a single
arc labeled u>iUu>2 U • • • U ws

1.2.2 remove the node qf and all arcs incident to it in G
until the only nodes in G are q0 and q,

2. determine the expression accepted by G

The deletion of node is accomplished by finding all paths qj, <?,, qk of length two
that have q(as the intermediate node. An arc from qj to qk is added, bypassing the node
q^ If there is no arc from qt to itself, the new arc is labeled by the concatenation of the
expressions on each of the component arcs. If w, , ^ 0, then the arc tu, ,■ can be traversed
any number of times before following the arc from qj to qk. The label for the new arc is
wj.i(vui.i)*vui,k- These graph transformations are illustrated as follows:

H 'l. i

Step 2 in the algorithm may appear to be begging the question; the objective of the entire
algorithm is to determine the expression accepted by G. After the node deletion process is

6.2 E x p ress io n C r a p h s 195

completed, the regular expression can easily be obtained from the resulting graph. The
reduced graph has at most two nodes, the start node and the accepting node. If these are the

same node, the reduced graph has the form

u

accepting u*. A graph with distinct start and accepting nodes reduces to

u h>

and accepts the expression u*v(w U xu*v)*. This expression may be simplified if any of
the arcs in the graph are labeled 0.

Algorithm 6.2.2 can also be used to construct the language of a finite state machine
with multiple accepting states. For each accepting state, we can produce an expression for
the strings accepted by that state. The language of the machine is simply the union of the
regular expressions obtained for each accepting state.

Example 6.2.1

The reduction technique of Algorithm 6.2.2 is used to generate a regular expression for the
language of the NFA with state diagram

Deleting node q j yields

1 9 6 C h a p te r 6 P ro p e r t ie s o f R egu lar L a n g u a g e s

The deletion of q\ produced a second path from q$ to q$, which is indicated by the union in
the expression on the arc from q3 to q$. Removing <72 produces

abba

b v b b

with associated language (abb*a)*(b U bb)(a(abb*a)*(b U bb))'. □

The results of the previous two sections yield a characterization of regular languages
originally established by Kleene. The construction outlined in Section 6 .1 can be used to
build an NFA-A. to accept any regular language. Conversely, Algorithm 6.2.2 produces a
regular expression for the language accepted by a finite automaton. Using the equivalence
of deterministic and nondeterministic machines, Kleene’s Theorem can be expressed in
terms of languages accepted by deterministic finite automata.

Theorem 6.2.3 (Kleene)

A language L is accepted by a DFA with alphabet E if, and only if, L is a regular language
over E.

6.3 Regular Grammars and Finite Automata

A context-free grammar is called regular (Section 3.3) if each rule is of the form A —*■
aB , A —> a, or A -*■ X. A string derivable in a regular grammar contains at most one
variable which, if present, occurs as the rightmost symbol. A derivation is terminated by
the application of a rule of the form A -*■ a or A —► X.

The language a +b+ is generated by the grammar G and accepted by the NFA M

G: S —*■ aS | aA a b

A - > b A \ b
M:

where the states of M have been named S, A, and Z to simplify the comparison of com
putation and generation. The computation of M that accepts aabb is given along with the
derivation that generates the string in G.

String
Derivation Computation Processed

5 => aS [5, aabb] 1- [S, abb] a
=> aaA h [A, bb] aa
=> aab A)~lA.b] aab
=> aabb h [Z. X] aabb

6.3 R egu lar G r a m m a r s a n d F in ite A u t o m a t a 197

A computation in an automaton begins with the input string, sequentially processes
the leftmost symbol, and halts when the entire string has been analyzed. Generation, on the
other hand, begins with the start symbol of the grammar and adds terminal symbols to the
prefix of the derived sentential form. The derivation terminates with the application of a
X-rule or a rule whose right-hand side is a single terminal.

The example illustrates the correspondence between generating a terminal string with
a regular grammar and processing the string by a computation of an automaton. The state
of the automaton is identical to the variable in the derived string. A computation terminates
when the entire string has been processed, and the result is designated by the final state.
The accepting state Z, which does not correspond to a variable in the grammar, is added to
M to represent the completion of the derivation of G.

The state diagram of an NFA M can be constructed directly from the rules of a grammar
G. The states of the automaton consist of the variables of the grammar and, possibly, an
additional accepting state. In the previous example, transitions 5(5, a) = S, S(S, a) = A,
and <5(A, b) = A of M correspond to the rules S —► aS, S —► a A, and A -*■ bA of G. The
left-hand side of the rule represents the current state of the machine. The terminal on the
right-hand side is the input symbol. The state corresponding to the variable on the right-hand
side of the rule is entered as a result of the transition.

Since the rule terminating a derivation does not add a variable to the string, the
consequences of an application of a X-rule or a rule of the form A -» a must be incorporated
into the construction of the corresponding automaton.

Theorem 6.3.1

Let G = (V, L , P, S) be a regular grammar. Define the NFA M = (Q, E , S, S, F) as
follows:

^ q _ | V U (Z) where Z & V, if P contains a rule A —>■ a
(V otherwise.

ii) &(A, a) = B whenever A —> aB € P
5(A, a) = Z whenever A —*■ a € P.

j { A |A ^ X e P } U { Z } if Z e Q
({A | A -*■ X € P} otherwise.

Then L(M) = L(G).

Proof. The construction of the machine transitions from the rules of the grammar allows
every derivation of G to be traced by a computation in M. The derivation of a terminal
string has the form S => X, S =$ wC => wa, or S =$ wC => w where the derivation S => wC
consists of the application of rules of the form A -> aB. Induction can be used to establish
the existence of a computation in M that processes the string w and terminates in state C
whenever wC is a sentential form of G (Exercise 6).

First we show that every string generated by G is accepted by M. If L(G) contains the
null string, then S is an accepting state of M and X e L(M). The derivation of a nonnull
string is terminated by the application of a rule C -> a or C X. In a derivation of the

form S wC =» wa, the final rule application corresponds to the transition S(C, a) = Z,

1 9 8 C h a p te r 6 P ro p e r t ie s o f R egular L a n g u a g e s

causing the machine to halt in the accepting state Z. A derivation of the form S => wC => w
is terminated by the application of a X-rule. Since C —► X is a rule of G, the state C is
accepting in M. The acceptance of w in M is exhibited by the computation that corresponds

to the derivation S => wC.
Conversely, we must show that L(M) C L(G). Let w = ua be a string accepted by M.

A computation accepting w has the form

[5, w] F- [B, X], where B # Z,

or

[5, u>] (*■ [A, a] I- [Z, X],

In the former case, B is the left-hand side of a X-rule of G. The string w B can be derived by
applying the rules that correspond to transitions in the computation. The generation of w is
completed by the application of the X-rule. Similarly, a derivation of u A can be constructed
from the rules corresponding to the transitions in the computation [5, to] F [A, a]. The
string w is obtained by terminating this derivation with the rule A —*■ a. Thus every string
accepted by M is in the language of G. ■

Example 6.3.1

The grammar G generates and the NFA M accepts the language a*(a U b+).

G: S - + a S \ b B \a M

B ->■ bB | X

The preceding transformation can be reversed to construct a regular grammar from
an NFA. The transition S(A, a) = B produces the rule A -> aB. Since every transition
results in a new machine state, no rules of the form A —>• a are produced. The rules obtained
from the transitions generate derivations of the form S => wC that mimic computations in
the automaton. Rules must be added to terminate the derivations. When C is an accepting
state, a computation that terminates in state C exhibits the acceptance of w. Completing the
derivation S => wC with the application of a rule C —► X generates w in G. The grammar
is completed by adding X-rules for all accepting states of the automaton. This informal
argument justifies Theorem 6.3.2. The formal proof is left as an exercise.

6.3 R egular G r a m m a r s a n d F in ite A u t o m a t a 1 9 9

Theorem 6.3.2

LetM = (Q, E , 8, q0, F) be an NFA. Define a regular grammar G = (V, E , P, q0) as

follows:

i) V = Q,

ii) qj —► e P whenever S {qt , a) = q j ,

iii) q{ -*• X € P if c?, e F.

Then L(G) = L(M).

The constructions outlined in Theorems 6.3.1 and 6.3.2 can be applied sequentially to
shift from automaton to grammar and back again. Beginning with an NFA M, the sequence
of transformations would have the form

M ------------------»G------------------►M '.

Since G contains only rules of the form A -*• a B or A -*■ X, the NFA M' is identical to M.
A regular grammar G can be converted to an NFA that, in tum, can be reconverted into

a grammar G':

G -- »G'.

The grammar G' that results from these conversions can be obtained directly from G by
adding a single new variable, call it Z, to the grammar and the rule Z -* k. All rules A-*- a
are then replaced by A —* a Z .

Example 6.3.2

The regular grammar G ' that accepts L(M) is constructed from the automaton M from
Example 6.3.1.

G': S ^ a S \ b B \a Z

B bB \k

Z —y k

The transitions provide the S rules and the first B rule. The X-rules are added since B and
Z are accepting states. □

The two conversions allow us to conclude that the languages generated by regular
grammars are precisely those accepted by finite automata. It follows from Theorems 6.2.3
and 6.3.1 that the language generated by a regular grammar is a regular set. The conversion
from automaton to regular grammar guarantees that every regular set is generated by some
regular grammar. This yields the characterization of regular languages promised in Section
3.3: the languages generated by regular grammars.

200 C h a p te r 6 P ro p e r t ie s o f R egu lar L a n g u a g e s

Example 6.3.3

The language of the regular grammar from Example 3.2.12 is the set of strings over {a, b, c)
that do not contain the substring abc. Theorem 6.3.1 is used to construct an NFA that accepts
this language.

b, cS

B

C

bS | cS | a B | X

aB | c S | b C | X

a B \ b S \ X

Example 6.3.4

A regular grammar with alphabet [a, b) that generates strings with an even number of a ’s and
an odd number of b's can be constructed from the DFA in Example 5.3.5. This machine is
reproduced below with the states [ea, eb], [oa, eb], [ea, ob], and [oa , ob] renamed S, A, B,
and C, respectively.

The associated grammar is

S - * a A \ b B

A aS \ bC

B —>■ bS \ aC | X

C -*■ a B | bA. □

6.4 Closure Properties o f Regular Languages

Regular languages have been defined, generated, and accepted. A language over an alphabet
Z is regular if it is

i) a regular set (expression) over E,

ii) accepted by a DFA, NFA, or NFA-X, or

iii) generated by a regular grammar.

6.4 C lo su r e P ro p e r t ie s o f R eg u la r L a n g u a g e s 201

A family of languages is closed under an operation if the application of the operation to
members of the family produces a member of the family. Each of the equivalent formula
tions of regularity will be used to demonstrate closure properties of the family of regular
languages.

The recursive definition of regular sets establishes closure for the unary operation
Kleene star and the binary operations union and concatenation. This was also proved in
Theorem 5.5.3 using acceptance by finite-state machines.

Theorem 6.4.1

Let L] and L2 be two regular languages. The languages L | U L2, L]L2, and L , are regular
languages.

The regular languages are also closed under complementation. If L is regular over the
alphabet E , then so is L = X* — L, the set containing all strings in E* that are not in L.
Theorem 5.3.3 used the properties of DFAs to construct a machine that accepts L from
one that accepts L. Complementation and union combine to establish the closure of regular
languages under intersection.

Theorem 6.4.2

Let L be a regular language over E. The language L is regular.

Theorem 6.4.3

Let Lj and L2 be regular languages over E. The language L | O L2 is regular.

Proof. By DeMorgan’s Law

L, H L2 = (Lj U L2).

The right-hand side of the equality is regular since it is built from L| and L2 using union
and complementation. ■

Closure properties provide additional tools for establishing the regularity of languages.
The operations of complementation and intersection, as well as union, concatenation, and
Kleene star, preserve regularity when combining regular languages.

Example 6.4.1

Let L be the language over {a, b] consisting of all strings that contain the substring
aa but do not contain bb. The regular languages L> = (a U b)*aa(a U fe)* and Lj =
(a U b)*bb(a U b)* consist of strings containing substrings aa and bb, respectively. Hence,
L = L, fl L2 is regular. □

202 C h a p te r 6 P ro p e r t ie s o f R egu lar L a n g u a g e s

Example 6.4.2

Let L be any regular language over [a, b). The language

L, = {u | u € L and u has exactly one a]

is regular. The regular expression b*ab* describes the set of strings with exactly one a. The
language L! = L n b*ab* is regular since it is the intersection of regular languages. □

The next example exhibits the robustness of the family of regular languages. Adding or
removing a small number, in fact any finite number, of strings cannot turn a regular language
into a nonregular language.

Example 6.4.3

Let Li be a regular language over an alphabet E and let L2 C £* be any finite set of
strings. Then L[U L2 and L[— L 2 are both regular. The critical observation is that any
finite language is regular. Why? The regularity of L* U L2 and L] — L2 then follows from
the closure of the regular languages under union and set difference (Exercise 8). □

Example 6.4.4

The set SUF(L) = {v | uv € L) consists of all suffixes of strings of the langauge L. For
example, if aabb e L, then k, b, bb, abb, and aabb are in SUF(L). We will show that if
L is regular, then so is SUF(L). Since L is regular, we know that it is defined by a regular
expression, accepted by a finite automaton, and generated by a regular grammar. We may
use any of these categorizations of regularity to show that SUF(L) is regular.

Using the grammatical characterization, we know that L is generated by a regular
grammar G = (V, E , P, S). We may assume that G has no useless symbols. If it did, we
would use the algorithm from Section 4.4 to remove them while preserving the language.

A suffix of v of G is produced by a derivation of the form

S ^ u A ^ uv.

Intuitively, we would like to add a rule S -* A to G to directly generate the suffix

S =>• A v.

Unfortunately, the resulting grammar would not be regular. To fix that problem, we will use
grammar transformations from Chapter 4.

We begin by defining a new grammar G '= (V', E , P', S') by

V' = V U {5')

P' = P U {S' -> A | A € V}.

6.5 A N o n r e g u la r L a n g u a g e 203

A derivation in G' uses only one rule not in G. Any string in L is produced by a derivation

of the form

S' => S±> w,

while the remaining suffixes are generated by

S' => A => w.

Consequently, L(G) = SUF(L). We can obtain an equivalent regular grammar by removing
X-rules and chain rules from G'. □

6.5 A Nonregular Language

The incompletely specified DFA

accepts the language {a'b‘ 11 < n). The states A,- count the number of leading a ’s in the
input string. Upon processing the first b, the machine enters the sequence of states labeled
Bj . The accepting state B0 is entered when an equal number of b’s are processed. This
strategy cannot be extended to accept the language L = {a'b ' \ i > 0} since it would require
infinitely many states. However, there may be other strategies and machines that accept L
that only require finitely many states. We will show that this is not the case, that L is not
accepted by any DFA and therefore is not a regular language.

The proof of the nonregularity of the language L = {a 'b ' | / > 0} is by contradiction.
We assume that there is a DFA that accepts L and show that it must have states that record
the number of a ’s in the same manner as the states Aj, A2, . . . in the preceding diagram. It
follows that the machine must have infinitely many states, which contradicts the requirement
that a DFA has only finitely many states. The contradiction allows us to conclude that no
DFA can accept L.

We begin with the assumption that L is accepted by some DFA, call it M. The extended
transition function 8 is used to show that the automaton M must have an infinite number
of states. Let A, be the state of the machine entered upon processing the string a ' ; that
is, 8(q0, a') = A,. For all i, j > 0 with i ^ j , a'b ' e L and a j b‘ £ L. Hence, 8(q0, a 'b ') ^
<5(<?o, aj b‘) since the former is an accepting state and the latter rejecting. Now

204 C h a p te r 6 P ro p e r t ie s o f R egu lar L a n g u a g e s

and

j (9o. a’ V) = H H q0. « ') . **) = * L -

Consequently, S(A,, 6 ') ^ 5(Ay, b'). In a deterministic machine, two computations that
begin in the same state and process the same string must end in the same state. Since the
computations l(A ,, b‘) and S(Aj, b') process the same string but terminate in different
states, we conclude that A(- ^ Aj.

We have shown that states Aj and A j are distinct for all values of / ^ j . Any de
terministic finite-state machine that accepts L must contain an infinite sequence of states
corresponding to A0, A i, A2.......... This violates the restriction that limits a DFA to a finite
number of states. Consequently, there is no DFA that accepts L, or equivalently, L is not
regular. The preceding argument justifies Theorem 6.5.1.

Theorem 6.5.1

The language {a'b1 | / > 0} is not regular.

The argument establishing Theorem 6.5.1 is an example of a nonexistence proof. We
have shown that no DFA can be constructed, no matter how clever the designer, to accept the
language {a'b ' \ i > 0}. Proofs of existence and nonexistence have an essentially different
flavor. A language can be shown to be regular by constructing an automaton that accepts
it. A proof of nonregularity requires proving that no machine can accept the language.
Theorem 6.5.1 can be generalized to establish the nonregularity of a number of languages.

Corollary 6.5.2 (to the proof of Theorem 6.5.1)

Let L be a language over E. If there are sequences of distinct strings Uj e h * and i/, e
£* , i > 0, with UjVj € L and u, Vj & L for i ^ j , then L is not a regular language.

The proof is identical to that of Theorem 6.5.1, with m, replacing a ' and v, replacing
b‘ .

Example 6.5.1

The set L of palindromes over {a , b) is not regular. By Corollary 6.5.2, it is sufficient to
discover two sequences of strings m, and u, that satisfy m, t>, 6 L and UjVj g L for all i ^ j .
The strings

fulfill these requirements.

Uj = a'b

Vj = a'

□

6.6 T h e P u m p i n g L e m m a fo r R egu lar L a n g u a g e s 205

Example 6.5.2

Grammars were introduced as a formal structure for defining the syntax o f languages.
Corollary 6.5.2 can be used to show that regular grammars are not a sufficiently powerful
tool to define programming languages containing arithmetic or Boolean expressions in infix

form. The grammar AE

AE: S -> A

A T \ A + T

T ^ b \ (A)

generates additive expressions using + , parentheses, and the operand b. For example, (b),

b + (b), and ((b)) are in L(AE).
Infix notation permits— in fact, requires— the nesting of parentheses. The derivation

S => T

=>(A)

= » (D

= > («

exhibits the generation of the string (b) using the rules of AE. Repeated applications of the
sequence of rules T => (A) => (T) before terminating the derivation with the application of
the rule T -*■ b generates the strings ((b)), (((b))).......... The strings ('b and)' satisfy the
requirements of the sequences w, and v, of Corollary 6.5.2. Thus the language defined by
the grammar AE is not regular. A similar argument can be used to show that programming
languages such as C, C++, and Java, among others, are not regular. □

Just as the closure properties of regular languages can be used to establish regularity,
they can also be used to demonstrate the nonregularity of languages.

Example 6.5.3

The language L = {a'bJ | i, j > 0 and i ^ j) is not regular. If L is regular then, by Theo
rems 6.4.2 and 6.4.3, so is L D a*b*. But L fl a*b* = [a'b' \ i > 0}, which we know is not
regular. □

6.6 The Pumping Lemma for Regular Languages

The existence of nonregular languages was established in the previous section by demon
strating the impossibility of constructing a DFA to accept the language. In this section a more
general criterion for establishing nonregularity is developed. The main result, the pumping
lemma for regular languages, requires strings in a regular language to admit decompositions
satisfying certain repetition properties.

206 C h a p te r 6 P ro p e r t ie s o f R egu lar L a n g u a g e s

Pumping a string refers to constructing new strings by repeating (pumping) substrings
in the original string. Acceptance in the state diagram of the DFA

illustrates pumping strings. Consider the string z — ababbaaab in L(M). This string can be
decomposed into substrings u, v, and w where u = a , v = bab, w = baaab, and z = uvw.
The strings a(bab)'baaab are obtained by pumping the substring bab in ababbaaab.

As usual, processing z in the DFA M corresponds to generating a path in the state
diagram of M. The decomposition of z into u, v, and w breaks the path in the state diagram
into three subpaths. The subpaths generated by the computation of substrings u = a and
w — baaab are qq, q\ and q j, g3, q2, q$, q\, q-$. Processing the second component of
the decomposition generates the cycle q^, q3, q2, q\. The pumped strings u v 'w are also
accepted by the DFA since the repetition of the substring i> simply adds additional trips
around the cycle q\, q-$, q2, q\ before the processing of w terminates the computation in
state q$.

The pumping lemma requires the existence of such a decomposition for all sufficiently
long strings in the language of a DFA. Two lemmas are presented establishing conditions
guaranteeing the existence of cycles in paths in the state diagram of a DFA. The proofs
utilize a simple counting argument known as the pigeonhole principle. This principle is
based on the observation that given a number of boxes and a greater number of items to be
distributed among them, at least one of the boxes must receive more than one item.

Lemma 6.6.1

Let G be the state diagram of a DFA with k states. Any path of length k in G contains a
cycle.

Proof. A path of length k contains k + 1 nodes. Since there are only k nodes in G, there
must be a node, call it qh that occurs in at least two positions in the path. The subpath from
the first occurrence of qt to the second produces the desired cycle. ■

Paths with length greater than k can be divided into an initial subpath of length k and
the remainder of the path. Lemma 6.6.1 guarantees the existence of a cycle in the initial
subpath. The preceding remarks are formalized in Corollary 6.6.2.

6.6 T h e P u m p i n g L e m m a fo r R egu lar L a n g u a g e s 207

Corollary 6.6.2

Let G be the state diagram of a DFA with k states and let p be a path of length k or more.
The path p can be decomposed into subpaths q, r, and s where p = qrs, the length of qr is

less than or equal to k, and r is a cycle.

Theorem 6.6.3 (Pum ping Lemma for Regular Languages)

Let L be a regular language that is accepted by a DFA M with k states. Let z be any string in
L with length(z) > k. Then z can be written uvw with length(uv) < k, length(v) > 0, and

uv'w e L for all i > 0.

Proof. Let z e L be a string with length n > k. Processing z in M generates a path of length
n in the state diagram of M. By Corollary 6.6.2, this path can be broken into subpaths q,
r, and s, where r is a cycle in the state diagram. The decomposition of z into u, v, and w
consists of the strings spelled by the paths q, r, and s. ■

The paths corresponding to the strings uv 'w begin and end at the same nodes as
the computation for uvw. The sole difference is the number of trips around the cycle r.
Consequently, if uvw is accepted by M, then so is uv'w.

Properties of the particular DFA that accepts the language L are not specifically men
tioned in the proof of the pumping lemma. The argument holds for all such DFAs, including
the DFA with the minimal number of states. The statement of the theorem could be strength
ened to specify k as the number of states in the minimal DFA accepting L.

The pumping lemma is a powerful tool for proving that languages are not regular. Every
string of length k or more in a regular language, where k is the value specified by the pumping

lemma, must have an appropriate decomposition. To show that a language is not regular,
it suffices to find one string that does not satisfy the conditions of the pumping lemma.
The use of the pumping lemma to establish nonregularity is illustrated in the following
examples. The technique consists of choosing a string z in L and showing that there is no
decomposition uvw of z for which uv 'w is in L for all i > 0.

The first two examples show that computations of a finite state machine are not
sufficiently powerful to determine whether a number is a perfect square or a prime.

Example 6.6.1

Let L = {z G {ci* | length(z) is a perfect square}. Assume that L is regular. This implies
that L is accepted by some DFA. Let k be the number of states of the DFA. By the pumping
lemma, every string z € L of length k or more can be decomposed into substrings u, v, and
w such that length(uv) < k, v ^ X, and uv 'w e L for all i > 0.

Consider the string z = ak~ of length k2. Since z is in L and its length is greater than k, z
can be written z = uvw where the u, v, and w satisfy the conditions of the pumping lemma.

208 C h a p t e r 6 P ro p e r t ie s o f R egu lar L a n g u a g e s

In particular, 0 < length(v) < k. This observation can be used to place an upper bound on

the length of u v2w:

length(uv2w) = length(uvw) + length(v)

= k 2 + length(v)

< k 2 + k

< k 2 + 2 k + \

= (* + l)2.

The length of u v2w is greater than k 2 and less than (k + l)2 and therefore is not a perfect
square. Thus the string uv2w obtained by pumping v once is not in L. We have shown
that there is no decomposition of z that satisfies the conditions of the pumping lemma. The
assumption that L is regular leads to a contradiction, establishing the nonregularity of L.

□

Example 6.6.2

To show that the language L = {a1 | i is prime } is not regular, we assume that there is a DFA
with some number k states that accepts it. Let n be a prime greater than k. The pumping
lemma implies that a" can be decomposed into substrings uvw, v / X, such that uv 'w is
in L for all i > 0. Assume that such a decomposition exists.

If uvn+,w e L, then its length must be prime. But

length(uvn+lw) = length(uvvnw)

= length(uvw) + length(vn)

= n + n(length(v))

= «(1 + length(v)).

Since its length is not prime, h i/i+ ,iu is not in L. Thus there is no division o f an into uvw
that satisfies the pumping lemma and we conclude that L is not regular. □

In the preceding examples, the constraints on the length of the strings were sufficient
to prove that the languages were not regular. Often the numeric relationships among the
elements of a string are used to show that there is no substring that satisfies the conditions
of the pumping lemma. We will now present another argument, this time using the pumping
lemma, that demonstrates the nonregularity of {a'b1 | i > 0}.

Example 6.6.3

To show that L = {a'b' \ i > 0} is not regular, we must find a string in L of appropriate length
that has no pumpable substring. Assume that L is regular and let k be the number specified

6.6 T h e P u m p i n g L e m m a fo r R egu lar L a n g u a g e s 209

by the pumping lemma. Let z be the string akbk. Any decomposition of uvw of z satisfying
the conditions of the pumping lemma must have the form

u v w
ai a J ak~'~*bk,

where i + j < k and j > 0. Pumping any substring of this form produces u v2w =
a 'aJaJak~‘~->bk = aka>bk, which is not in L. Since z € L has no decomposition that satisfies
the conditions of the pumping lemma, we conclude that L is not regular. □

Example 6.6.4

The language L = {a'bmcn | 0 < /, 0 < m < «} is not regular. Assume that L is accepted by
a DFA with k states. Then, by the pumping lemma, every string z € L with length k or more
can be written z = uvw, with length(uv) < k, length(v) > 0, and u v 'w e L for all i > 0.

Consider the string z = abkck+i, which is in L. We must show that there is no suitable
decomposition of z. Any decomposition of z must have one of two forms, and the cases are
examined separately.

Case 1: A decomposition in which a & v has the form

u v w
ab' b>

where i + j < k — 1 and j > 0. Pumping v produces u v 2w = ab'b^b->bk~‘~^ck+l =
which is not in L.

Case 2: A decomposition of z in which a e v has the form

u v w
k ab* bk- ‘ck+l

where i < k — 1. Pumping v zero times produces uv°w = bk~'ck+l, which is not in L since
it does not contain an a.

Since abk(^+ 1 has no decomposition with a “pumpable” substring, L is not regular. □

The pumping lemma can be used to determine the size of the language accepted by a
DFA. Pumping a string generates an infinite sequence of strings that are accepted by the
DFA. To determine whether a regular language is finite or infinite it is only necessary to
determine if it contains a pumpable string.

Theorem 6.6.4

Let M be a DFA with k states.

i) L(M) is not empty if, and only if, M accepts a string z with length(z) < k.

ii) L(M) has an infinite number of members if, and only if, M accepts a string z where
k < length(z) < 2k.

210 C h a p te r 6 P ro p e r t ie s o f R egu lar L a n g u a g e s

Proof.

i) L(M) is clearly not empty if a string of length less than k is accepted by M.

Now let M be a machine whose language is not empty and let z be the smallest string
in L(M). Assume that the length of z is greater than k — 1. By the pumping lemma, z can be
written uvw where uv'w e L. In particular, uv°w = uw is a string smaller than z in L. This
contradicts the assumption of the minimality of the length of z. Therefore, length(z) < k.

ii) If M accepts a string z with k < length(z) < 2k, then z can be written u vw where u, v,
and w satisfy the conditions of the pumping lemma. This implies that the strings uv 'w are
in L for all i > 0.

Assume that L(M) is infinite. We must show that there is a string whose length is between
k and 2/c — 1 in L(M). Since there are only finitely many strings over a finite alphabet with
length less than k, L(M) must contain strings of length greater than k — 1. Choose a string
z € L(M) whose length is as small as possible but greater than k — 1. If k < length(z) < 2k,
there is nothing left to show. Assume that length(z) > 2k. By the pumping lemma, z = uvw,
length(v) < k ,anduv°w = uw € L(M). But this is a contradiction since uw is a string whose
length is greater than k — 1 but strictly smaller than the length of z. ■

The preceding result establishes a decision procedure for determining the cardinality
of the language of a DFA. If k is the number of states and j the size of the alphabet of the
automaton, there are (j k — 1)/(j — 1) strings having length less than k. By Theorem 6.6.4,
testing each of these determines whether the language is empty. Testing all strings with
length between k and 2k — 1 resolves the question of finite or infinite. This, of course,
is an extremely inefficient procedure. Nevertheless, it is effective, yielding the following
corollary.

Corollary 6.6.5

Let M be a DFA. There is an algorithm that determines whether L(M) is empty, finite, or
infinite.

The closure properties of regular language can be combined with Corollary 6.6.5 to
develop a decision procedure that determines whether two DFAs accept the same language.

Corollary 6.6.6

Let Mi and M2 be two DFAs. There is a decision procedure to determine whether M | and
M2 are equivalent.

Proof. Let Lj and be the languages accepted by M! and M2. By Theorems 6.4.1,6.4.2,
and 6.4.3, the language

L = (L, n L^) U (Lj n L2)

is regular. L is empty if, and only if, L, and L2 are identical. By Corollary 6.6.5, there is a
decision procedure to determine whether L is empty, or equivalently, whether M | and M2
accept the same language. ■

6.7 T h e M yh il l -N erode T h e o r e m 211

6.7 The Myhill-Nerode Theorem

Kleene’s Theorem established the relationship between regular languages and finite au
tomata. In this section regularity is characterized by the existence of an equivalence relation
on the strings of the language. This characterization provides a method for obtaining the
minimal state DFA that accepts a regular language and provides the justification for the
DFA minimization presented in Algorithm 5.7.2.

Definition 6.7.1

Let L be a language over E. Strings u, v € E* are indistinguishable in L if, for every w € E*,
either uw and vw are both in L or neither uw nor vw is in L.

Using membership in L as the criterion for differentiating strings, u and v are distin
guishable if there is some string w whose concatenation with u and v produces strings with
different membership values in L. That is, w distinguishes u and v if one of uw and vw is
in L and the other is not.

Indistinguishability in a language L defines a binary relation = l on E*; u = L v if u
and v are indistinguishable. It is easy to see that = L is reflexive, symmetric, and transitive.
These observations provide the basis for Lemma 6.7.2.

Lemma 6.7.2

For any language L, the relation = L is an equivalence relation.

Example 6.7.1

Let L be the regular language a(a U b)(bb)*. Strings aa and ab are indistinguishable since,
for any w, aaw and abw are either both in L or both not in L. The former arises when w
consists of an even number of b’s and the latter for any other string. The pair o f strings b and
ba are also indistinguishable in L since bw and baw are not in L for any string iu. Strings
a and ab are distinguishable in L since concatenating bb to a produces abb & L and to ab
produces abbb € L.

The equivalence classes of = L are

Representative Element Equivalence Class

X

M - l b(a U b y U a(a U b)(bbya(a U b) 'U a (a U b)(bbyba(a U b y

M . t a
laa)m L a (aU b)(b by

[aa*]=L a{aU b)b(bby

□

212 C h a p te r 6 P ro p e r t ie s o f R eg u la r L a n g u a g e s

Example 6.7.2

Let L be the language {a'b1 \ i > Oj. The strings a' and aJ, where i ^ j , are distinguishable
in L. Concatenating b' produces a 'b ' € L and a^b‘ & L. Thus each string a', i = 0, 1, ,
is in a different equivalence class. This example shows that the indistinguishability relation
= L may generate infinitely many equivalence classes. □

The equivalence relation = L defines indistinguishability on the basis of membership
in the language L. We now define the indistinguishability of strings on the basis of compu
tations of a DFA.

Definition 6.7.3

Let M = (Q, 2 , 8, q0, F) be a DFA that accepts L. Strings w, i> € E* are indistinguishable
by M if 8(q0, u) = 8(q0, u).

Strings u and v are indistinguishable by M if the computation of M with input u halts
in the same state as the computation with v. It is easy to see that indistinguishability defined
in this manner is also an equivalence relation over £*. Each state q, of M that is reachable
by computations of M has an associated equivalence class: the set of all strings whose
computations halt in <jj. Thus the number of equivalence classes of a DFA M is at most the
number of states of M. Indistinguishability by a machine M will be denoted = M.

Example 6.7.3

Let M be the DFA

a i? a

D

that accepts the language a*ba*(ba*ba*)*, the set of strings with an odd number of b's. The
equivalence classes of E* defined by the relation = M are

State Associated Equivalence Class

<?o a*

<7 i a*ba*(ba'ba*Y
qi a* ba’ ba* (ba" ba*)*

Indistinguishability relations can be used to provide additional characterizations of
regularity. These characterizations use the right-invariance o f the indistinguishability equiv
alence relations. An equivalence relation = over E* is said to be right-invariant if u = v
implies uw = vw for every w 6 £*. Both = L and = M are right-invariant.

6.7 T h e M yh il l -N erode T h e o r e m 213

Theorem 6.7.4 (Myhill-Nerode)

The following are equivalent:

i) L is regular over E.

ii) There is a right-invariant equivalence relation = on E* with finitely many equivalence
classes such that L is the union of a subset of the equivalences classes of = .

iii) = L has finitely many equivalence classes.

Proof.

Condition (i) implies condition (ii): Since L is regular, it is accepted by some DFA M =
(Q, E , S, q0, F). We will show that = M satisfies the conditions of statement (ii). As previ
ously noted, = M has at most as many equivalence classes as M has states. Consequently,
the number of equivalence classes of = M is finite. Right-invariance follows from the de
terminism of the computations of M, which ensures that uw) = S(q0, vw) whenever

Hqo. u) = S(qo, v).
It remains to show that L is the union of some of the equivalence classes o f = M. For each

state qf of M, there is an equivalence class consisting of the strings whose computations halt
in qj. The language L is the union of the equivalence classes associated with the accepting
states of M.

Condition (ii) implies condition (iii): Let = be an equivalence relation that satisfies (ii). We
begin by showing that every = equivalence class [u]= is a subset of the = L equivalence
class [«]=L-

Let u and v be any two strings from [n]_; that is, u = v. By right-invariance, uw = vw
for any w e E*. Thus uw and vw are in the same = equivalence class. Since L is the union
of some set of equivalence classes of = , every string in a particular = equivalence class has
the same membership value in L. Consequently, uw and vw are either both in L or both not
in L. It follows that u and i; are in the same equivalence class of = L.

Since [«]„ c [k]- l for every string u e E*, there is at least one = equivalence class
in each of the = L equivalence classes. It follows that the number of equivalence classes of
=L is no greater than the number of equivalence classes of = , which is finite.

Condition (iii) implies condition (i): To prove that L is regular when s L has only a finite
number of equivalence classes, we will build a DFA ML that accepts L. The alphabet of
Ml consists of the symbols in L and the states are the equivalence classes o f = L. The start
state is the equivalence class containing X. An equivalence class is an accepting state if it
contains an element u e L. All that remains is to define the transition function and show
that the language of Ml is L.

For a symbol a e E , we define 5(tM]*.L, a) = [«a]=L. By this definition, the result of
a transition from state [«]-L with symbol a is the equivalence class [i<a]aEL. We must show
that the definition of the transition is independent of the choice of a particular element from
the equivalence class [«]-L-

Let u and u be two strings in that are = L equivalent. For the transition function S to
be well defined, [«a]=L must be the same equivalence class as [i|a]Ml , or equivalently,

214 C h a p te r 6 P ro p e r t ie s o f R egu lar L a n g u a g e s

ua = L va. To establish this, we need to show that for any string x 6 E*. uax and vax are
either both in L or both not in L. By the definition of = L, uw and vw are both in L or both
not in L for any w € E*. Letting w = ax gives the desired result.

All that remains is to show that L(Ml) = L. For any string u, 6([X]-L , u) = [m]= l. If

u is in L, the computation S([X]„L, u) halts in the accepting state [u]_L. Exercise 25 shows
that either all of the elements in an equivalence [m]*l are in L or none of the elements are
in L. Thus if u <£ L, then [«]-L is not an accepting state. It follows that a string u is accepted
by M l if, and only if, u e L.

Note that the equivalence classes of = L are precisely those of = Ml, the indistinguish
ability relation over E* generated by the machine M L. ■

Example 6.7.4

The DFA M from Example 5.7.1 accepts the language (a U b)(a U b*). The eight equiva
lence classes of the relation s M with the associated states of M are

State Equivalence Class State Equivalence Class

9o X 94 b

9 l a 95 ba

92 aa 96 bb+

93 ab+ 97 (aa(a U b) U ab+a U ba(a U b) U bb+a)(a U ft)*

The equivalence relation = L identifies strings u and u as indistinguishable if for any
w, either both uw and uw are in L or both are not in L. The = L equivalence classes of the
language (a U b)(a U b*) aie

= L Equivalence Classes

W - L
X

a U ft

[a a] « L aaUba

[« « ■, ab+ U ftft+

[a f t o] = L (aa(a U ft) U ab+a U ba(a U ft) U bb+a)(a U ft)*

where the string inside the brackets is a representative element of the class. It is easy to
see that the strings within an equivalence class are indistinguishable and that strings from
different classes are distinguishable.

If we denote the = M equivalence class of strings whose computations halt in state q,
by c/mO?;). the relationship between the equivalence classes of = L and = M is

6.7 T h e M yh il l -N erode T h e o r e m 21 5

[a]=L = c/M(<?l) U clM(q4)

[aa]_L = clM(q2) U clM(q5)

[ab]m ̂ = clM(q3) U cIM(q6)

[aba]mt = c/M(<?7).

Using the technique outlined in the Myhill-Nerode Theorem, we can construct a
DFA Ml accepting L from the equivalence classes of = l- The DFA obtained by this

construction is

which is identical to the DFA M' in Example 5.7.1 obtained using the minimization tech-

Theorem 6.7.5 shows that the DFA ML obtained from the = L equivalence classes is
the minimal state DFA that accepts L.

Theorem 6.7.5

Let L be a regular language and = l the indistinguishability relation defined by L. The
minimal state DFA accepting L is the machine ML defined from the equivalence classes of
=L 38 specified in Theorem 6.7.4.

Proof. Let M = (Q, S , S, q0, F) be any DFA that accepts L and let = M be the equiva
lence relation generated by M. By the Myhill-Nerode Theorem, each equivalence class of
= M is a subset of an equivalence class of = L. Since the equivalence classes o f both = M and
=L partition E*, = M must have at least as many equivalence classes as = L. Combining the
preceding observation with the construction of ML from the equivalence classes of = L, we
see that

b

nique presented in Section 5.7. □

the number of states of M

> the number of equivalence classes of = M

> the number of equivalence classes of = L

= the number of states of ML.

216 C h a p te r 6 P ro p e r t ie s o f R egu lar L a n g u a g e s

Thus a DFA M that accepts L may not have fewer states than ML, and we conclude that M L

is the minimal state DFA that accepts L. ■

The statement of Theorem 6.7.5 asserts that the ML is the minimal state DFA that
accepts L. Exercise 31 establishes that all minimal state DFAs accepting L are identical to
Ml , except possibly for the names assigned to the states.

Theorems 6.7.4 and 6.7.5 establish the existence of a unique minimal state DFA
Ml that accepts a language L. The minimal state machine can be constructed from the
equivalence classes of the relation = L. Unfortunately, to this point we have not provided
a straightforward method to obtain these equivalence classes. Theorem 6.7.6 shows that
the machine whose states are the = l equivalence classes is the machine produced by the
minimization algorithm in Section 5.7.

Theorem 6.7.6

Let M be a DFA that accepts L and M' the machine obtained from M by minimization
construction in Section 5.7. Then M' = Ml -

Proof. By Theorem 6.7.5 and Exercise 31, M' is the minimal state DFA accepting L if the
number of states of M' is the same as the number of equivalence classes of = l- Following
Definition 6.7.3, there is an equivalence relation = M- that associates a set of strings with ,
each state of M'. The equivalence class of = M> associated with state [q,] is

I “) = fa.-]} = (J 1 u) = qi^'

where & and 8 are the extended transition functions of M' and M, respectively. By the
Myhill-Nerode Theorem, c/M-([<?,]) is a subset of an equivalence class of =m l -

Assume that the number of states of M' is greater than the number of equivalence classes
of s L. Then there are two states and [qj] of M' such that c/M.([<?,]) and c/M-([^y]) are
both subsets of the same equivalence class of = L. This implies that there are strings u and

i> such that 8(qo> “) = <?i> <5(<?0’ v) = qj, and u = L v.
Since [^] and [qj] are distinct states in M', there is a string w that distinguishes these

states. That is, either 8(qt , w) is accepting and 8(q j , w) is nonaccepting or vice versa. It
follows that uw and vw have different membership values in L. This is a contradiction
since » 5 L d implies that uw and vw have the same membership value in L for all strings
w. Consequently, the assumption that the number of states of M' is greater than the number
of equivalence classes of = L must be false. ■

The characterization of regularity in the Myhill-Nerode Theorem gives another method
for establishing the nonregularity of a language. A language L is not regular if the equiva
lence relation = L has infinitely many equivalence classes.

Exerc ises 2 1 7

Example 6.7.5

In Example 6.7.2, it was shown that the language [a'b1 \ i > 0} has infinitely many = l
equivalence classes and therefore is not regular. □

Example 6.7.6

The Myhill-Nerode Theorem will be used to show that the language L = {a2' \ i > 0} is

not regular. To accomplish this, we show that a2' and a2' are distinguishable by the = L

equivalence relation whenever i < j . Concatenating a 2' with each of these strings produces

a 2'a2' = a2'+> e L and a 2'a 2' # L. The latter string is not in L since it has length greater than

2J but less than 2-/+1. Thus, a2' a2' . These strings produce an infinite sequence [a0] = L,
[a1] = L, [a2] = L, [a4] = L, . . . of distinct equivalence classes of L. □

Exercises

1. Use the technique from Section 6.2 to build the state diagram of an NFA-X that accepts
the language (ab)*ba. Compare this with the DFA constructed in Exercise 5.22(a).

2. For each of the state diagrams in Exercise 5.40, use Algorithm 6.2.2 to construct a
regular expression for the language accepted by the automaton.

3. The language of the DFA M in Example 5.3.4 consists of all strings over {a, b) with
an even number of a ’s and an odd number of b ’s. Use Algorithm 6.2.2 to construct a
regular expression for L(M). Exercise 2.38 requested a nonalgorithmic construction of
a regular expression for this language, which, as you now see, is a formidable task.

4. Let G be the grammar

G: S —> aS | M | a

A —► aS | bA | b.

a) Use Theorem 6.3.1 to build an NFA M that accepts L(G).

b) Using the result of part (a), build a DFA M' that accepts L(G).

c) Construct a regular grammar from M that generates L(M).

d) Construct a regular grammar from M' that generates L(M').

e) Give a regular expression for L(G).

5. Let M be the NFA

218 C h a p te r 6 P ro p e r t ie s o f R egu lar L a n g u a g e s

a) Construct a regular grammar from M that generates L(M).

b) Give a regular expression for L(M).

* 6. Let G be a regular grammar and M the NFA obtained from G according to Theo
rem 6.3.1. Prove that if S wC, then there is a computation [S, iy] Is- [C, X] in M.

7. Let L be a regular language over [a, b, c). Show that each of the following sets is
regular.

a) {w | w e L and w ends with aa)

b) {u> | w e L or w contains an a)

c) { w \ w $ L and w does not contain an a)

d) («v | u G L and u £ L}

8. Prove that the family of regular languages is closed under the operation of set difference.

9. Prove that the family of regular languages is not closed under intersection with context-
free languages. That is, if L is regular and L! context-free, L fl L[need not be regular.

10. Is the family of regular languages closed under infinite unions? That is, if Lo, L |, L2, . . .
00

are regular, is Lj necessarily regular? If so, prove it. If not, give a counterexample.
1= 0

11. Let L be a regular language. Show that the following languages are regular.

a) The set P = [u | uv e L} of prefixes of strings in L.

b) The set L* = {to* | w e L} of reversals of strings in L.

c) The set E = {mu | v e L} of strings that have a suffix in L.

d) The set SUB = {u | uvw e L) of strings that are substrings of a string in L.

12. Let L be a regular language containing only strings of even length. Let L ' be the
language (u | uv € Land length(u) = lertgih(v)).L' is the set of all strings that contain
the first half of strings from L. Prove that L' is regular.

13. Use Corollary 6.5.2 to show that each of the following sets is not regular.

a) The set of strings over {a, b) with the same number of a ’s and b’s.

b) The set of palindromes of even length over {a, b).

c) The set of strings over {(,)} in which the parentheses are paired, for example,
X, () , () () , (()) () .

d) The language {a’ (ab)> (ca)2* \ i , j > 0).

14. Use the pumping lemma to show that each of the following sets is not regular.

a) The set of palindromes over {a , b)

b) (anbm \n < m)

c) {a ' b ^ c 11 > 0, j > 0}

d) {ww | io g (a, i>}*}

* e) The set of initial sequences of the infinite string

Exerc ises 219

abaabaaabaaaab . . . banban+ib . . .

f) The set of strings over {a , b] in which the number of a ’s is a perfect cube

15. Prove that the set of nonpalindromes over {a , b) is not a regular language.

16. Let L be a regular language and let L | = {uu | u e. L) be the language L “doubled.” Is
L] necessarily regular? Prove your answer.

17. Let Li be a nonregular language and L2 an arbitrary finite language.

a) Prove that L! U L2 is nonregular.

b) Prove that L! — L2 is nonregular.

c) Show that the conclusions of parts (a) and (b) are not true if L2 is not assumed to
be finite.

18. Give examples of languages Lj and L2 over [a, b) that satisfy the following descrip
tions.

a) Li is regular, L2 is nonregular, and L | U L2 is regular.

b) Li is regular, L2 is nonregular, and L] U L2 is nonregular.

c) L| is regular, L2 is nonregular, and Li fl L2 is regular.

d) L[is nonregular, L2 is nonregular, and Lt U L2 is regular.

e) Lj is nonregular and L* is regular.

19. Let E | and E2 be two alphabets. A string homom orphism is a total function h from
E f to E£ that preserves concatenation. That is, h satisfies

i) h(k) = X

ii) h(uv) = h(u)h(v).

a) Let L! c E* be a regular language. Show that the set [h(w) | u; € L,} is regular over
E 2. This set is called the homomorphic image of L | under h.

b) Let L2 C E 2 be a regular language. Show that the set {u> e E* | h(w) e L2) is
regular. This set is called the inverse image of L2 under h.

20. A context-free grammar G = (V, E , P, 5) is called right-linear if each rule is of the
form

i) A —*• u, or

ii) A -*• uB,

where A, B e V, and u e E*. Use the techniques from Section 6.3 to show that the
right-linear grammars generate precisely the regular sets.

21. A context-free grammar G = (V, E , P, S) is called left-regular if each rule is of the
form

i) A —> X,

ii) A -»• a, or

iii) A Ba,

where A, B € V, and a € E.

220 C h a p te r 6 P ro p e r t ie s o f R egu lar L a n g u a g e s

a) Design an algorithm to construct an NFA that accepts the language of a left-regular

grammar.

b) Show that the left-regular grammars generate precisely the regular sets.

22. A context-free grammar G = (V, 2 , P, S) is called left-linear if each rule is of the

form

i) A -» u, or

ii) A -*■ Bu,

where A, B e V, and u e £*. Show that the left-linear grammars generate precisely

the regular sets.

23. Give a regular language L such that = L has exactly three equivalence classes.

24. Give the = L equivalence classes of the language a +b+.

25. Let [h]Bl be a = l equivalence class of a language L. Show that if [k]= l contains one
string v € L, then every string in [w]*L is in L.

26. Prove that = L is right-invariant for any regular language L. That is, if u = L v, then
ux = L vx for any * € 2*, where 2 is the alphabet of the language L.

27. Use the Myhill-Nerode Theorem to prove that the language [a' | i is a perfect square }
is not regular.

28. Let u e [ab]„M and v e [aba]m^ be strings from the equivalence classes of
(a U b) (a U b*) defined in Example 6.7.4. Show that u and v are distinguishable.

29. Give the equivalence classes defined by the relation = M for the DFA in Example 5.3.1.

30. Give the equivalence classes defined by the relation = M for the DFA in Example 5.3.3.

*31. Let Ml be the minimal state DFA that accepts a language L defined in Theorems 6.7.4
and 6.7.5. Let M be another DFA that accepts L with the same number of states as
Ml . Prove that M l and M are identical except (possibly) for the names assigned to the
states. Two such DFAs are said to be isomorphic.

Bibliographic Notes

The equivalence of regular sets and languages accepted by finite automata was established
by Kleene [1956]. The proof given in Section 6.2 is modeled after that of McNaughton and
Yamada [I960], Chomsky and Miller [1958] established the equivalence of the languages
generated by regular grammars and accepted by finite automata. Closure under homomor-
phisms (Exercise 19) is from Ginsburg and Rose [1963b]. The closure of regular sets under
reversal was noted by Rabin and Scott [1959]. Additional closure results for regular sets
can be found in Bar-Hillel, Perles, and Shamir [1961], Ginsburg and Rose [1963b], and
Ginsburg [1966]. The pumping lemma for regular languages is from Bar-Hillel, Perles, and
Shamir [1961], The relationship between the number of equivalence classes of a language
and regularity was established in Myhill [1957] and Nerode [1958].

CHAPTER 7

Pushdown Automata and
Context-Free Languages

Regular languages have been characterized as the languages generated by regular grammars
and accepted by finite automata. This chapter presents a class of machines, the pushdown
automata, that accepts the context-free languages. A pushdown automaton is a finite-state
machine augmented with an external stack memory. The addition of a stack provides
the pushdown automaton with a last-in, first-out memory management capability. The
combination of stack and states overcomes the memory limitations that prevented the

acceptance of the language {a'b' \ i > 0) by a deterministic finite automaton.
As with regular languages, a pumping lemma for context-free languages ensures the

existence of repeatable substrings in strings of a context-free language. The pumping lemma
provides a technique for showing that many easily definable languages are not context-free.

7.1 Pushdown Automata

Theorem 6.5.1 established that the language {a'b' | / > 0} is not accepted by any finite
automaton. To accept this language, a machine needs the ability to record the processing of
any finite number of a ’s. The restriction of having finitely many states does not allow the
automaton to “remember” the number of leading a ’s in an arbitrary input string. A new type
of automaton is constructed that augments the state-input transitions of a finite automaton
with the ability to utilize unlimited memory.

A pushdown stack, or simply a stack, is added to a finite automaton to construct a new
machine known as a pushdown automaton (PDA). Stack operations affect only the top item
of the stack; a pop removes the top element from the stack and a push places an element

2 2 1

222 C h a p t e r 7 P u s h d o w n A u to m a ta a n d C ontex t-Free L a n g u a g e s

on the stack top. Definition 7.1.1 formalizes the concept of a pushdown automaton. The
components Q, E , q0, and F of a PDA are the same as in a finite automaton.

Definition 7.1.1

A pushdown autom aton is a sextuple (Q, E , r , 8, <?o> F), where Q is a finite set of states,
E a finite set called the input alphabet, T a finite set called the stack alphabet, q0 the start
state, F c Q a set of final states, and 8 a transition function from Q x (E U {X}) x (r U {X})
to subsets of Q x (r U {X}).

A PDA has two alphabets: an input alphabet E from which the input strings are built
and a stack alphabet T whose elements are stored on the stack. The stack is represented as
a string of stack elements; the element on the top of the stack is the leftmost symbol in the
string. We will use capital letters to represent stack elements and Greek letters to represent
strings of stack elements. The notation Aa represents a stack with A as the top element. An
empty stack is denoted X. The computation of a PDA begins with the machine in state q0,
the input on the tape, and the stack empty.

A PDA consults the current state, input symbol, and the symbol on the top of the stack
to determine the machine transition. The transition function S lists all possible transitions
for a given state, symbol, and stack top combination. The value of the transition function

indicates that two transitions are possible when the automaton is in state <j, scanning an a
with A on the top of the stack. The transition

causes the machine to

i) change the state from q, to qj,

ii) process the symbol a (advance the tape head),

iii) remove A from the top of the stack (pop the stack), and

iv) push B onto the stack.

Since multiple transitions may be specified for a machine configuration, PDAs are nonde
terministic machines.

A pushdown automaton can also be depicted by a state diagram. The labels on the arcs
indicate both the input and the stack operation. The transition S(qh a. A) = {[qj, B]} is
depicted by

S(qt, a. A) = {{q j , B], [qk, C]}

[qf B] G h{qt, a, A)

\ \
new state

new stack top
current stack top

current input symbol
current state

7.1 P u s h d o w n A u t o m a t a 223

(* > ^ ®

The symbol / indicates replacement: A / B indicates that A is replaced on the top of the stack
by B.

The domain of the transition function is Q x (E U {A.}) x (f U {A.}), which indicates
that X may occur in either the input or stack top positions of a transition. A X argument
specifies that the value of the component should be neither consulted nor acted upon by the
transition; the applicability of the transition is completely determined by the positions that
do not contain X.

When X occurs as an argument in the stack position of the transition function, the
transition is applicable whenever the current state and input symbol match those in the
transition regardless of the status of the stack. The stack top may contain any symbol or
the stack may be empty. The transition [qj, f i] e 8(qh a, X) is applicable whenever a
machine is in state q: scanning an a ; the application of the transition will cause the machine
to enter qj and add B to the top of the stack.

The symbol X may also occur in the new stack position of a transition, [qj, X] e
8(qh a. A). The execution such a transition does not push a symbol onto the stack. We
will now look at several examples of the effect of X in PDA transitions.

If the input position is X, the transition does not process an input symbol. Thus,
transition (i) pops and (ii) pushes the stack symbol A without altering the state or the input.

i) [qh X]e<5(<?,, X, A)

XA/X

ii) [qh A] e 8 (q h X, X)

X X/A

iii) [qj, X]€ 8 (q ; ,a , X)

If the action specified by a transition has X in the new stack top position, [qj, X], no symbol is
pushed onto the stack. Transition (iii) is the PDA equivalent of a finite automaton transition.
The applicability is determined only by the state and input symbol; the transition does not
consult nor does it alter the stack.

224 C h a p te r 7 P u s h d o w n A u to m a ta a n d C on tex t-F ree L a n g u a g e s

A PDA configuration is represented by the triple [qt, w, or], where q, is the machine
state, w the unprocessed input, and a the stack. The notation

[qh w, qtJIm Iqj, v, 0]

indicates that configuration [qj, v, /3] can be obtained from [qt, w, a] by a single transition
of the PDA M. As before, represents the result of a sequence of transitions. When there
is no possibility of confusion, the subscript M is omitted. A computation of a PDA is
a sequence of transitions beginning with the machine in the initial state with an empty
stack.

We are now ready to construct a PDA M to accept the language {a 'b ' \ i > 0). The
computation begins with the input string w and an empty stack. Processing input symbol
a causes A to be pushed onto the stack. Processing b pops the stack, matching the number
of b's to the number of a ’s. The computation generated by the input string aabb illustrates
the actions of M.

M :Q = {9o.9 i) aXM b A a Ho* aabb, X)

E = {a, b) I- [<70, abb. A]

r = (A) x ® bAlX - Q) h too. bb, AA)

F = {<7o. ? i} [<7i. b. A]

&(q0, a , X) = {[<70, A]) h [qx, X, X]

8(q0, b. A) = {[<?,, X])

8(qh b, A) = {[?,,*]}

The computation of M with input a 'b1 processes the entire string and halts in an
accepting state with an empty stack. These conditions become our criteria for acceptance.

Definition 7.1.2

Let M = (Q, E , T, 8, q0, F) be a PDA. A string w e E* is accepted by M if there is a
computation

[<70. w. AJP- [?,, A, X]

where qt 6 F. The language of M, denoted L(M), is the set of strings accepted by M.

A computation that accepts a string is called successful. A computation that processes
the entire input string and halts in a nonaccepting configuration is said to be unsuccessful.
Because of the nondeterministic nature of the transition function, there may be computations
that cannot complete the processing of the input string. Computations of this form are also
considered unsuccessful.

Acceptance by a PDA follows the standard pattern for nondeterministic machines; one
computation that processes the entire string and halts in a final state is sufficient for the

7.1 P u s h d o w n A u t o m a t a 225

string to be in the language. The existence of additional unsuccessful computations does
not affect the acceptance of the string.

Example 7.1.1

The PDA M accepts the language (w cw K | w € (a, ft}*}- The stack is used to record the
string w as it is processed. Stack symbols A and B represent input a and b, respectively.

M: Q = {tfo. <7i} 5(9o. *•) = U<?0. ^1) bX lB b B/^
n l/A a A/X

£ = {a, b, c) 5(^0, b, X) = {[q0, B]} aAM

r = { A ,£) 8(q0, c, X) = {[q\. A.]) ^ ^ / c X / X

F = {?i} 5(</i< a. A) = {[<?!, X]}

8(q{, b, B) = {[^,, X]}

A successful computation records the string w on the stack as it is processed. Once the c
is encountered, the accepting state q l is entered and the stack contains a string representing
w K. The computation is completed by matching the remaining input with the elements on
the stack. The computation of M with input abcba is

[(ft, abcba , X]

I- [q0, bcba, 4]

I- [g0, cba, BA]

\- [</], ba, BA]

h [qx, a , A]

H91.X.X] □

A PDA is deterministic if there is at most one transition that is applicable for each
combination of state, input symbol, and stack top. Two transitions [qj, C] € 8(qt, u, A)
and [qk, D] e 8(qh v, B) are called compatible if any of the following conditions are
satisfied:

i) u = u and A = B.

ii) u = v and A = X or B = X.

iii) A = B and u = X or v = X.

iv) u = X or v = X and A = X or B = X.

Compatible transitions can be applied to the same machine configurations. A PDA is deter
ministic if it does not contain distinct compatible transitions. Both the PDA in Example 7.1.1
and the machine constructed to accept {a 'b ' | / > 0} are deterministic.

226 C h a p te r 7 P u s h d o w n A u to m a ta a n d C on tex t-F ree L a n g u a g e s

Example 7.1.2

The language L = {a ' 11 > 0} U {a'b' \ i > 0} contains strings consisting solely of a ’s or
an equal number of a ’s and b's. The stack of the PDA M that accepts L maintains a record
of the number of a ’s processed until a b is encountered or the input string is completely
processed.

a AM

When scanning an a in state q0, there are two transitions that are applicable. A string
of the form a'b', i > 0, is accepted by a computation that remains in states q0 and q j.
If a transition to state q2 follows the processing of the final a in a string a 1, the stack is
emptied and the input is accepted. Reaching q2 in any other manner results in an unsuccessful
computation, since no input is processed after q2 is entered.

The A.-transition allows M to enter q2 any time it is in q0. This transition introduces
nondeterminism into the computations of M. The accepting computation of a string a'
processes the entire string in q0, transitions to q2, empties the stack, and accepts. □

Example 7.1.3

The even-length palindromes over [a, b } are accepted by the PDA

bk/B h B
aUA aA/x

That is, L(M) = {u>u)R | w e {a, b}*). A successful computation remains in state q0 while
processing the string w and enters state q x upon reading the first symbol in w R. Unlike the
strings in Example 7.1 1, the strings in L do not contain a middle marker that induces the
change from state q0 to q (. Nondeterminism allows the machine to guess when the middle of
the string has been reached. Transitions to q t that do not occur immediately after processing
the last element of w result in unsuccessful computations. □

In Chapter 5 we showed that deterministic and nondeterministic finite automata ac
cepted the same family of languages. Nondeterminism was a useful design feature but did

7.2 V aria t ions o n th e PDA T h e m e 227

not increase the ability of the machine to accept languages. This is not the case for pushdown

automata.
There is no deterministic PDA that accepts the language L = [w w R \ w € [a, b}*} from

Example 7.1.3. This can be seen intuitively by considering the properties needed by a PDA
to accept L. Since the computation of a PDA processes the input in a left-to-right manner,
the machine is not able to determine when the first half of the input string has been read. For
the nondeterministic machine M in Example 7.1.3, this poses no problem. The transition
from q0 to q\ represents a nondeterministic guess that the symbol being scanned is the first
symbol of the second copy of w. For a string in L, one of the guesses will be correct and
the resulting computation accepts the input by matching the second half of the string with

the stack elements.
Consider the possible actions of a deterministic PDA processing the input strings

aabbaa and aabbbbaa.

When an a or b is read in the first half of a string, the corresponding stack symbol A or
B must be pushed onto the stack to be compared with the second half of the input. After
reading the first three symbols, the stack is B A A . Regardless of which of the two strings is
being processed, the next symbol is a b. To accept aabbaa, it is necessary to pop the stack
to begin the matching of aab with baa. However, to accept the aabbbbaa the machine
must push a B onto the stack. A deterministic machine can have only one option for this
configuration and consequently one of these two strings will not be accepted.

The languages accepted by deterministic pushdown automata include all regular lan
guages and are a proper subset of the context-free languages. This family of languages,
which is important for programming language definition and parsing, consists of the lan
guages that can be generated by LR(£) grammars. The use of LR(fc) grammars for language
definition and deterministic parsing will be examined in Chapter 19.

7.2 Variations on the PDA Theme

Pushdown automata are often defined in a manner that differs slightly from Definition 7.1.1.
In this section we examine several alterations to our definition that preserve the set of
accepted languages.

Along with changing the state, a transition in a PDA is accompanied by three actions:
popping the stack, pushing a stack element, and processing an input symbol. A PDA is
called atomic if each transition causes only one of the three actions to occur. Transitions in
an atomic PDA have the form

i) [qj, X] € S(qh a, X),

ii) [qj, A]e S(qh X, A), or

iii) [qj. A]e<5(<7,, X, X).

2 2 8 C h a p te r 7 P u s h d o w n A u to m a ta a n d C ontex t-Free L a n g u a g e s

Clearly, every atomic PDA is a PDA in the sense of Definition 7.1.1. Theorem 7.2.1
shows that the languages accepted by atomic PDAs are the same as those accepted by PDAs.
Moreover, it outlines a method to construct an equivalent atomic PDA from an arbitrary

PDA.

Theorem 7.2.1

Let M be a PDA. Then there is an atomic PDA M' with L(M') = L(M).

Proof. To construct M', the nonatomic transitions of M are replaced by a sequence of
atomic transitions. Let [qj, B] € 8(qt , a , A) be a transition of M. The atomic equivalent
requires two new states, p\ and p2> ar>d the transitions

[p,, A]ea(g ,, a , A.)

8(Pi, X, A) = {[p2, X]}

8(p2, X, X) = {[qj, B]}

to accomplish the same result as the nonatomic single transition.
In a similar manner, a transition that consists of changing the state and performing two

additional actions can be replaced with a sequence of two atomic transitions. Replacing all
nonatomic transitions with a sequence of atomic transitions produces an equivalent atomic
PDA. ■

An extended transition is an operation on a PDA that pushes a string of elements, rather
than just a single element, onto the stack. The transition [qj, BCD] e &(q,, a. A) pushes
B C D onto the stack with B becoming the new stack top. A PDA containing extended
transitions is called an extended PDA. The apparent generalization does not increase the
set of languages accepted by pushdown automata. Each extended PDA can be converted
into an equivalent PDA in the sense of Definition 7.1.1.

To construct a PDA from an extended PDA, extended transitions are transformed into a
sequence of transitions each of which pushes a single stack element. To achieve the result of
an extended transition that pushes k elements requires k — 1 additional states. The sequence
of transitions

[pi, D] e 8(qt, a , A)

8 (p lt X, X) = { [p a . C]}

S(P2, X, X) = { [q j , 5] }

pushes the string B C D onto the stack and leaves the machine in state q j . The sequen
tial execution of these three transitions produces the same result as the single extended
transition [qj, B C D] e 8(qh a. A). The preceding argument can be generalized to yield
Theorem 7.2.2.

Theorem 7.2.2

Let M be an extended PDA. Then there is a PDA M' such that L(M') = L(M).

7.2 V a r ia t io n s o n th e PDA T h e m e 229

Example 7.2.1

Let L = {a'b2i | i > 1). A standard PDA, an atomic PDA, and an extended PDA are
constructed to accept L. The input alphabet [a, b }, stack alphabet {A}, and accepting state
q\ are the same for each automaton. The states and transitions are

PDA Atomic PDA Extended PDA

Q = too. <?1.<72) Q = (<?o. <?!• <72. <?3> <?4) Q = {<?o. <7l)

8(q0, a, X) := ([<72. A)) 8(q0, a, X) = {(<73. *1) S(<7o. a>X) = {[?0.

H q 2, X , X) = ((<70. -41) 8(q3, X, X) = {[<72. A]} S(<7o. b. A) = {[<7i. X]}

8(q0. b. A) = {[<71. A]} S(q2, X, X) = {[<?«. A]) S(q t, b, A) = {[<71. A]}

H q i , b , A) = ([<7.. X]} 8[q0, b. X) = {[<74. X]}
*(<74. X, A) = {[<?,. X]}
8(qu h, X) = {[<74. *])

As might be expected, the atomic PDA requires more transitions and the extended
PDA fewer transitions than the equivalent standard PDA. The stack symbol A is used to
count the number of matching b's required to accept the string. The extended transition
8(q0, a, X) = {[<70, AA]} pushes both counters on the stack with a single transition. The
standard PDA requires two transitions and the atomic PDA three to accomplish the same
result. □

By Definition 7.1.2, an input string is accepted if there is a computation that processes
the entire string and terminates in an accepting state with an empty stack. This type of
acceptance is referred to as acceptance by final state and empty stack. Defining acceptance
in terms of the final state or the configuration of the stack alone does not change the set of
languages recognized by pushdown automaton.

A string w is accepted by final state if there is a computation [^0, w, X] p- [qh X, a],
where q, is an accepting state and a e T*, that is, a computation that processes the input
and terminates in an accepting state. The contents of the stack at termination are irrelevant
with acceptance by final state. A language accepted by final state is denoted Lp.

Lemma 7.2.3

Let L be a language accepted by a PDA M = (Q, E , T, 8, q0, F) with acceptance defined
by final state. Then there is a PDA that accepts L by final state and empty stack.

Proof. A PDA M' = (Q U {qf}, E , T, 8’, q0, [q f)) is constructed from M by adding a
state q f and transitions for q j . Intuitively, a computation in M' that accepts a string should
be identical to one in M except for the addition of transitions that empty the stack. The
transition function 5' is constructed by augmenting 5 with the transitions

8'(qh X, X) = {[qf, X]} fo ra llg , € F

8'(qf, X, A) = [[qf, X]} for all A 6 T.

230 C h a p te r 7 P u s h d o w n A u to m a ta a n d C on tex t-F ree L a n g u a g e s

Let [^q, w, X] (u [<?,, X, a] be a computation of M accepting w by final state. In M \ this
computation is completed by entering the accepting state q f and emptying the stack

[tfo. w, X]

fe [<?;. X, a]

lM'[^/.X,a]

& [<?/, X,X]

showing that w is accepted in M'.
We must also guarantee that the new transitions do not cause M' to accept strings that are

not in L(M). The sole accepting state of M' is q f , which can be entered only on a transition
from any accepting state of M. Since the transitions for q j do not process input, entering
q f with unprocessed input results in an unsuccessful computation. Consequently, a string
ui is accepted by M' only if there is computation in M that processes all of w and halts in
an accepting state of M. That is, w € L(M') only when w e L(M) as desired. ■

A string w is said to be accepted by empty stack if there is a computation [q0, w, X] f±-
[q,-, X, X], No restriction is placed on the halting state <?,. When acceptance is defined by
empty stack, it is necessary to require at least one transition to permit the acceptance of
languages that do not contain the null string. The language accepted by empty stack is
denoted LE(M).

Lemma 7.2.4

Let L be a language accepted by a PDA M = (Q, E , T, S, q0) with acceptance defined
by empty stack. Then there is a PDA that accepts L by final state and empty stack.

Proof. Let M '= (Q U (^) , E , T, S', q ’Q, Q), where S’(qj, x , A) = S(qh x . A) and
S'(q'0, x , A) = S(q0, x , A) for every qt e Q, x € E U {X}, and A e T U {X). Every state
of the original machine M is an accepting state of M'.

The computations of M and M' are identical except that those of M begin in state q0
and M' in state q'Q. A computation of length one or more in M' that halts with an empty stack
also halts in a final state. Since q'Q is not accepting, the null string is accepted by M' only if
it is accepted by M. Thus, L(M ') = LE(M). ■

Lemmas 7.2.3 and 7.2.4 show that a language accepted by either final state or empty
stack alone is also accepted by final state and empty stack. Exercises 8 and 9 establish
that any language accepted by final state and empty stack is accepted by a pushdown
automaton using the less restrictive forms of acceptance. These observations yield the
following theorem.

Theorem 7.2.5

The following three conditions are equivalent:.

i) The language L is accepted by some PDA.

ii) There is a PDA M| with LF(M () = L.

iii) There is a PDA M2 with LE(M2) = L.

7.2 V ar ia t ions o n th e PDA T h e m e 231

We have considered alternatives to the standard PDA model obtained by changing the
acceptance criteria and the form of the transitions. Another common modification is to
assume that there is a distinguished element that marks the bottom of the stack. A bottom
marker can be read but not popped from the stack. Reading the bottom marker allows the
machine to recognize an empty stack and act accordingly. The following example illustrates
the role of a bottom marker and shows how it can be simulated in a standard PDA.

Example 7.2.2

The pushdown automaton M defined by the transitions

accepts strings that have the same number of a ’s and b’s. The stack symbol Z plays the role
of a bottom marker; it is placed on the stack with the first transition ar.d remains throughout
the computation.

The stack records the difference in the number of a ’s and b’s that have been read. The
stack will contain n A’s if the automaton has processed n more a ’s than b’s. Similarly, the
number of B's on the stack indicates the number of b ’s in excess of the number of a ’s that
have been processed. The bottom marker Z is read when the same number of a ’s and b's
have been processed. The computation

[q^, abba , X]

I- [<7 i, abba, Z]

I- [q2, bba, Z]

I- [qx, bba, AZ]

h [<7i. ba, Z]

y- t o . a . z]

I- [<71, a, BZ)

!-[<7i,X , Z]

I- [<74, X, X]

232 C h a p te r 7 P u s h d o w n A u to m a ta a n d C on tex t-F ree L a n g u a g e s

exhibits the acceptance of abba. When an a is read with an A or Z on the top of the stack,
an A is added to the stack by the transitions to q2 and back to q\. If the stack top is a B, the
stack is popped in q\ since reading the a decreases the difference between the number of
b's and a ’s that have been processed. A similar strategy is employed when a b is read.

The lone accepting state of the automaton is q4. If the input string has the same number
of a ’s and b’s, the transition to q4 pops the Z and terminates the computation. □

The variations of pushdown automata that accept the same family of languages illustrate
the robustness of acceptance using a stack memory. In the next section we show that the
languages accepted by pushdown automata are precisely those generated by context-free
grammars.

7.3 Acceptance of Context-Free Languages

In Chapter 6 we showed that the languages generated by regular grammars were precisely
those accepted by DFAs. In this section we continue the relationship between grammatical
generation and mechanical acceptance of languages. The characterization of pushdown au
tomata as acceptors of context-free languages is obtained by establishing a correspondence
between computations of a PDA and derivations in a context-free grammar.

First we prove that every context-free language is accepted by an extended PDA. To
accomplish this, the rules of the grammar are used to generate the transitions o f an equivalent
PDA. Let L be a context-free language and G a grammar in Greibach normal form with
L(G) = L. The rules of G, except for 5 —»■ X, have the form A —> a A yA 2 ■ ■ ■ A„. In a
leftmost derivation, the variables A,- must be processed in a left-to-right manner. Pushing
A \A 2 ■ ■ ■ An onto the stack stores the variables in the order required by the derivation.
The PDA has two states: a start state q0 and an accepting state q t. An S rule of the form
S —► a A xA 2 . • • An generates a transition that processes the terminal symbol a, pushes the
variables A tA 2 . . . A„ onto the stack, and enters staje q t. The remainder of the computation
uses the input symbol and the stack top to determine the appropriate transition.

The Greibach normal form grammar G that accepts (a’b' 11 > 0} is used to illustrate
the construction of an equivalent PDA.

G: S —* a A B | aB

A -*■ a A B | aB

B ^ b

The transition function of the equivalent PDA is defined directly from the rules of G.
bB/X

S(q0, a, X) = {[<?,, AB], [<?,, fi]} a A /B
aA/AB

&(ql, a , A) = [[ql,A B] , [qx, B]}

S(qj, b, fi) = {[<?„ A]}
aX/B

a X/AB

7.3 A c c e p ta n c e of C ontex t-F ree L a n g u a g e s 233

The computation obtained by processing aaabbb exhibits the correspondence between
derivations in the Greibach normal form grammar and computations in the associated PDA.

5 => aA B [<7o, aaabbb, X] 1- [̂ i, aabbb, A B]

=> a a A B B h [q\, abbb, A B B]

=> a a a B B B 1- lqt, bbb, BBB]

=> aaabB B \ - l q t,bb , BB]

=>■ aaabbB H [«i. b, B]

=► aaabbb h [«?„ X, X]

The derivation generates a string consisting of a prefix of terminals followed by a suffix
of variables. Processing an input symbol corresponds to its generation in the derivation. The
stack of the PDA contains the variables in the derived string. This strategy for the generation
of a PDA equivalent to a Greibach normal form grammar is formalized in Theorem 7.3.1
to show that every context-free language is accepted by a PDA.

Theorem 7.3.1

Let L be a context-free language. Then there is a PDA that accepts L.

Proof. Let G = (V, E , P, S) be a grammar in Greibach normal form that generates L.
The extended PDA M with start state q0 defined by

Q m = too- 4 i)

E m = £

rM = v -{S}
Fm = tel)

and transitions

S(qo, a, X) = {[<71. «>]|| S -> aw e P}

S(qi, a. A) = {[<?!. IV] |I A -* aw e P and A e V — {S}}

Hqo. *. X) = {[<7.. M) i f 5 -» X e P

accepts L.

We first show that L c L(M). Let S ^ u u j b e a derivation with u e E + and w e V*.
We will prove that there is a computation

[q0, u, X] h=- [qh X, w]

in M. The proof is by induction on the length of the derivation and utilizes the correspon
dence between derivations in G and computations of M.

234 C h a p te r 7 P u s h d o w n A u to m a ta a n d C on tex t-F ree L a n g u a g e s

The basis consists of derivations S => aw of length one. The transition generated by
the rule S —* aw yields the desired computation. Assume that for all strings uw generated

by derivations S => uw there is a computation

[q0, u, A]F [qx. A, w]

in M.
Now let S = > mw be a derivation with u = va e £ + and w 6 V*. This derivation can

be written

S => vA w2 => uw,

where w = WjW2 and A -*■ a w x is a rule in P. The inductive hypothesis and the transition
fai, w,] e 5(^lt a, A) combine to produce the computation

to,, va, A] \̂ - [qx, a, A w 2]

h [qh X, w ,w2].

For every string u in L of positive length, the acceptance of u is exhibited by the

computation in M corresponding to the derivation S => u. If X e L, then S -* X is a rule
of G and the computation [^0, X, A] b [qh X, A] accepts the null string.

The opposite inclusion, L(M) c L, is established by showing that for every computa
tion [<70. u, A] p- [qx. A, w] there is a corresponding derivation 5 => uw in G. The proof
is by induction on the number of transitions in a computation and is left as an exercise. ■

To complete the characterization of context-free languages as precisely those accepted
by pushdown automata, we must show that every language accepted by a PDA is context-
free. The rules of a context-free grammar are constructed from the transitions of the
automaton so that the application of a rule corresponds to a transition in the computation in
the PDA. To simplify the proof, we divide the presentation into four stages:

1. The addition of transitions to the PDA so that each string in the language is accepted
by a computation in which every transition both pops and pushes the stack;

2. The construction of the rules of a grammar from the modified PDA;

3. The presentation of an example that illustrates the correspondence between computa
tions of the PDA and derivations of the grammar;

4. Finally, the formal proof that the language of the grammar and the PDA are the same.

The first two steps are constructive— adding transitions and building rules. The final step
is accomplished by Lemmas 7.3.3 and 7.3.4, which show that the rules generate exactly
the strings accepted by the PDA. We start with an arbitrary PDA M and show that L(M) is
context-free. The proof begins by modifying M so that the transitions can be converted to
rules.

L e tM = (Q , £ , T, 8, qQ, F) be a PDA. An extended PDA M 'with transition function
8' is obtained from M by augmenting 8 with the transitions

7.3 A c c e p ta n c e of C ontex t-F ree L a n g u a g e s 235

i) If [q^ X] 6 S(qh u, k), then [qj, A] € S'(qh u. A) for every A e T.

ii) If [qjt B] e u, k), then [qj, BA] e S'(qh u. A) for every A € I \

The interpretation of these transitions is that a transition of M that does not remove an
element from the stack can be considered to initially pop the stack and later replace the same
symbol on the top of the stack. Any string accepted by a computation that utilizes a new
transition can also be obtained by applying the original transition; hence, L(M) = L(M').

A grammar G = (V, L , P, 5) is constructed from the transitions of M '. The alphabet
of G is the input alphabet of M'. The variables of G consist of a start symbol S and objects of
the form (qjt A, qj) where the ^ ’s are states of M' and A e T U {X}. The variable (<?, , A, qj)
represents a computation that begins in state qit ends in qj, and removes the symbol A from
the stack. The rules of G are constructed as follows:

1. S —> (q0, k , qj) for each qj e F.

2. Each transition [qj, B] e x , A), where A € T U {X}, generates the set of rules

{(<?,, A, qk) - ► x{qj, B, qk) | qk 6 Q}.

3. Each transition [qj, BA] € S'iq,, x , A), where A e T, generates the set of rules

{(<?<• A, qk) - ► x{qj, B, qn){qn. A, qk) | qk, q„ € QJ.

4. For each state qk e Q,

(qk, X, qk) -+ X.

A derivation begins with a rule of type 1 whose right-hand side represents a computation
that begins in state q0, ends in a final state, and terminates with an empty stack, in other
words, a successful computation in M'. Rules of types 2 and 3 trace the action of the
machine. Rules of type 3 correspond to the extended transitions of M'. In a computation,
these transitions increase the size of the stack. The effect of the corresponding rule is to
introduce an additional variable into the derivation.

Rules of type 4 are used to terminate derivations. The rule {qk, X, qk) -*■ X represents a
computation from a state qk to itself that does not alter the stack, that is, the null computation.

Example 7.3.1

A grammar G is constructed from the PDA M. The language of M is the set [ancbn \ n > 0}.

M: Q = {q0, q x) 8(q0, a , X) = {[<70. A])

E = {a,fc,c} *(?0.c .X) = {[?1,X]}

r = {A} S(ql, b , A) = {[qi,k])

F = f< 7 .}

236 Chapter 7 Pushdown Automata and Context-Free Languages

The transitions S'(qq, a, A) = {[<?o. AA]} and 8'(qo, c, A) — {[<?i. A]} are added to M
to construct M'. The rules of the equivalent grammar G and the transition from which they

were constructed are

Transition Rule

S -*• (q0, k , q x)

8(q0, a, k) = {[(ft. 'I]} <<7o. k , q 0) -<• a{q0. A , q0)

<<7o. k , q ,) -* a(q0. A, q ,}

8(q0, a, A) = {[^0, /M]} (q0, A, q0) -> a(q0. A , qo)(qo, A, q0)

(<7o. A, q x) -* a(q0, A . qo){qo< A , <?,)

{q0, A , q0) -*• a{q0. A, q x){qx, A, q0)

{q0. A , q x) -* a(q0, A , q ,) (q ,, A, q x)

S(q0, c, k) = {fa,, X]) <90 . k, q0) -*• c(qx, k , q0)

{qQ, k , <j|) -*■ c (q h k , q x)

8(q0, c, /4) = {[<?|, A]) {q0. A , <?(,) - * c{qu A. q0)

too - A, q |> - ► c{q ,, A, q x)

8(qx, b , A) = {[<?,, A]} < ? l. A . qo) ->■ b (q x, k , q0)

(<?!> A , ? i > -*■ b(qx, k , q{j

(qo< k , q0) —* k

{q|, k , q x) -* k

The relationship between computations in a PDA and derivations in the associated
grammar are demonstrated using the grammar and PDA of Example 7.3.1. The derivation
begins with the application of an S rule; the remaining steps correspond to the processing
of an input symbol in M'. The first component of the leftmost variable contains the state
of the computation. The third component of the rightmost variable contains the accepting
state in which the computation will terminate. The stack can be obtained by concatenating
the second components of the variables.

[<7o. aacbb, X]

I- [<7o. acbb, A]

I- [g0. ebb, A A]

h [<7i, bb, AA]

f- [<?i, b. A]

y- [<?i. x]

*s

S => {<70, k, q x)

=>a(q0, A , q x)

=>aa(q0, A, q x){qx, A, q x)

=> aac(qx, A, q x)(qx, A, q x)

=> aacb(qx, k , q x)(qx, A , q x)

= ► aacb(qx, A, q x)

=> aacbb(qx, k , q x)

=> aacbb

7.3 Acceptance of Context-Free Languages 237

The variable {q0, A., q ^ , obtained by the application of the S rule, indicates that a
computation from state q0 to state q\ that does not alter the stack is required. The result of
subsequent rule application signals the need for a computation from q$ to q\ that removes
an A from the top of the stack. The fourth rule application demonstrates the necessity
for augmenting the transitions of M when S contains transitions that do not remove a
symbol from the stack. The application of the rule {q0. A, q\) —* c (qj. A, q j) represents a
computation that processes c without removing the A from the top of the stack.

We are now ready to prove that a language accepted by a PDA is context-free. This
result combines with Theorem 7.3.1 to establish the equivalence of string generation using
context-free rules and string acceptance by pushdown automata.

Theorem 7.3.2

Let M be a PDA. Then there is a context-free grammar G with L(G) = L(M).

The grammar G is constructed as outlined from the extended PDA M' that is equivalent

to M. We must show that there is a derivations w if, and only if, [<?0, u), X]p- [qj, X, X]for
some qj € F. This follows from Lemmas 7.3.3 and 7.3.4, which establish the correspondence
of derivations in G to computations in M'.

Lemma 7.3.3

If (qh A , qj) ^ w where i» e Z * and A € T U {X}, then [qh w , A] (*- [qj, X, X],

Proof. The proof is by induction on the length of derivations of terminal strings from
variables of the form (qh A, qj). The basis consists of derivations of strings consisting of
a single rule application. The null string is the only terminal string derivable with one rule
application. The derivation has the form {qh X, q,) => X utilizing a rule of type 4. The null
computation in state q, yields [qh X, X] ^ [q,, X, X] as desired.

Assume that there is a computation [qh v, A] p- [qj, X, X] whenever {q,, A, qj) v.
Let w be a terminal string derivable from {qh A, qj) by a derivation of length rt + 1. The
first step of the derivation consists of the application of a rule of type 2 or 3. A derivation
initiated by a rule of type 2 can be written

(qh A, qj) => u (qk, B, qj)

uv = w,

where (qh A, qj) —► u (qk, B, qj) is a rule of G. By the inductive hypothesis, there is a
computation [qk, v, B] p- [qj, X, X] corresponding to the derivation (qk, B, qj) ^ v.

The rule (qh A, qj) —»• u (qk, B, qj) in G is generated by a transition [qk, S] e
S(qh u. A). Combining this transition with the computation established by the inductive
hypothesis yields

[qh uv, A]\-[qk, v, B]

f5- Iqj. X, X],

238 Chapter 7 Pushdown Automata and Context-Free Languages

If the first step of the derivation is a rule of type 3, the derivation can be written

{qh A, qj) => u (qk, B, qm)(qm, A, q})

n
=> w.

The corresponding computation is constructed from the transition [qk, B A] € S(qj, u. A)
and two invocations of the inductive hypothesis. ■

Lemma 7.3.4

If [qh w, A] p- [qj, X, X] where A e T U {A.}, then there is a derivation (qh A , qj) w.

Proof. The null computation from configuration [qt , X, X] is the only computation of M
that uses no transitions. The corresponding derivation consists of a single application of the
rule (qh X, q,) -»• X.

Assume that every computation [qj, u, A] P- [qj, X, X] has a corresponding derivation

(qh A, qj) v in G. Consider a computation of length n + 1. A computation of the
prescribed form beginning with a nonextended transition can be written

[<7i. u;, A]

h [qk, v, B]

V- [qj, X, X],

where w = uv and [qk, B] € S(qit u. A). By the inductive hypothesis, there is a derivation

(qk, B, qj) ^ v. The first transition generates the rule (qh A ,q j) -*■ u (qk, B, qj) in G.
Hence a derivation of w from (qt . A , qj) can be obtained by

{Qh A ,q j) = > u (q k, B ,q j)

=> uv.

A computation in M' beginning with an extended transition [qr BA] e S(q,, u. A) has
the form

[qh w. A]

h [qk, v, BA]

^ tom. y - M

[qj, X, X],

where w = uv and v = xy. The rule (qj, A ,q j) -+ u (qk, B , q m)(qm, A, q j) is generated by
the first transition of the computation. By the inductive hypothesis, G contains derivations

to*. B , q m) ^ x

{qm< A <qj)=>y-

7.4 The Pumping Lemma for Context-Free Languages 239

Combining these derivations with the preceding rule produces a derivation of w from

(<?(> A, qj). ■

Proof o f Theorem 7.3.2. Let w be any string in L(G) with derivation S =>
(q0, X, qj) => w. By Lemma 7.3.3, there is a computation [<y0. w, X] [qj, X, X] ex
hibiting the acceptance of w by M'.

Conversely, if w e L(M) = L(M '), then there is a computation [q0, w, X] F- [qjt X, X]
that accepts w. Lemma 7.3.4 establishes the existence of a corresponding derivation

(q0, X, Qj) ^ w in G. Since qj is an accepting state, G contains a rule S —> (qQ, X, qj).
Initiating the previous derivation with this rule generates w in the grammar G. ■

7.4 The Pumping Lemma for Context-Free Languages

The pumping lemma for regular languages, Theorem 6.6.3, showed that sufficiently long
strings in a regular language have a substring that can be repeated any number of times
with the resulting string remaining in the language. In this section we establish a pumping
lemma for context-free languages. For context-free languages, however, pumping refers to
simultaneously repeating two substrings. The ability to generate any context-free language
with a Chomsky normal form grammar provides the structure needed to prove the pumping
lemma.

There are two milestones in the proof of the pumping lemma. Using the properties
of derivation trees built using the rules of Chomsky normal form grammars, we obtain a
number k such that

1. the derivation of any string of length k or more must have a recursive subderivation

A ^ v A x , with v, x 6 £*, and

2. the strings v and x can be simultaneously pumped in z with the resulting string
remaining in the language.

The relationship between the number of leaves and depth of a binary tree is used to achieve
the first milestone, and the repetition of the recursive subderivation establishes the latter.
The relationship between string length and depth of a derivation tree for Chomsky normal
form grammars is obtained in Lemma 7.4.1 and restated in Corollary 7.4.2.

Lemma 7.4.1

Let G be a context-free grammar in Chomsky normal form and A w a derivation of
w € E* with derivation tree T. If the depth of T is n, then length(w) < 2n_1.

Proof. The proof is by induction on the depth of the derivation trees that generate terminal
strings. Since G is in Chomsky normal form, a derivation tree of depth 1 that represents the
generation of a terminal string must have one of the following two forms.

240 Chapter 7 Pushdown Automata and Context-Free Languages

S A

X a

In either case, the length of the derived string is less than or equal to 2° = 1 as required.
Assume that the property holds for all derivation trees of depth n or less. Let A => w be

a derivation with tree T of depth n + 1. Since the grammar is in Chomsky normal form,

the derivation can be written A => BC => uv where fi => m, C => u, and w = uv. The
derivation tree of A => w is constructed from TB and Tc , the derivation trees of B => u

and C => v.

4

The trees TB and Tc both have depth n or less. By the inductive hypothesis,
length(u) < 2n_1 and length(v) < 2"_1. Therefore, length{w) = length(uv) < 2". ■

Corollary 7.4.2

Let G = (V, E , P, S) be a context-free grammar in Chomsky normal form and S w a
derivation of w € L(G). If length(w) > 2”, then the derivation tree has depth at least n -f 1.

Theorem 7.4.3 (Pumping Lemma for Context-Free Languages)

Let L be a context-free language. There is a number k, depending on L, such that any string
z e L with length(z) > k can be written z = u vw x y where

i) length(vwx) < k

ii) length(v) + length(x) > 0

iii) u v 'w x 'y € L, for i > 0.

Proof. LetG = (V, E , P, S) be a Chomsky normal form grammar that generates L and
let k = 2" with n = card(\) . We show that all strings in L with length k or greater can be
decomposed to satisfy the conditions of the pumping lemma. Let z e L(G) be such a string
and let 5 ^ z be a derivation in G. By Corollary 7.4.2, there is a path o f length at least
n + 1 = card(V) + 1 in the derivation tree of S z.

Let p be a path of maximal length from the root 5 to a leaf of the derivation tree.
Then p must contain at least n + 2 nodes, all of which are labeled by variables except the

7.4 The Pumping Lemma for Context-Free Languages 241

leaf node, which is labeled by a terminal symbol. The pigeonhole principle guarantees that
some variable A must occur twice in the final n + 2 nodes of this path. Although A may
appear more than twice in the path, we will be concerned only with its last and next to last

occurrence in p.
Translating the properties of a path in the derivation tree to subderivations, the deriva

tion of z can be depicted

where z = uvw xy . The derivation S => r\Ar2 produces the next to last occurrence of the
variable A. The subderivation A => vA x may be omitted or repeated any number of times
before applying A w to halt the recursion. The resulting derivations generate the strings
u v 'w x 'y e L(G) = L.

We now show that conditions (i) and (ii) in the pumping lemma are satisfied by this
decomposition. The subderivation A vAx must begin with a rule of the form A -*■ BC.
The second occurrence of the variable A is derived from either B or C. If it is derived from
B, the derivation can be written

A => BC

=> uAsC

=> vAst

= vAx.

The string t is nonnull since it is obtained by a derivation from a variable in a Chomsky
normal form grammar that is not the start symbol of the grammar. It follows that x is also
nonnull. If the second occurrence of A is derived from the variable C, a similar argument
shows that v must be nonnull.

The subpath between the final two occurrences of A in the path p must be of length at
most n + 2. The derivation tree generated by the derivation A => vw x has depth of at most
n + 1. It follows from Lemma 7.4.1 that the string vw x obtained from this derivation has
length k = 2" or less. ■

Like its counterpart for regular languages, the pumping lemma provides a tool for
demonstrating that languages are not context-free. By the pumping lemma, every suffi
ciently long string in a context-free grammar must have pumpable substrings. Thus we can
show that a language is not context-free by finding a string that has no decomposition u vw xy
that satisfies the requirement of Theorem 7.4.3.

242 Chapter 7 Pushdown Automata and Context-Free Languages

Example 7.4.1

The language L = {a 'b 'c ' | / > 0) is not context-free. Assume L is context-free. By Theo
rem 7.4.1, the string z = akbkck, where k is the number specified by the pumping lemma,
can be decomposed into substrings uv w x y that satisfy the repetition properties. Consider
the possibilities for the substrings v and x. If either of these contains more than one type of
terminal symbol, then uv2w x2y contains a b preceding an a or a c preceding a b. In either
case, the resulting string is not in L.

By the previous observation, v and x must be substrings of one of ak, bk, or ck. Since
at most one of the strings v and x is null, uv2w x2y increases the number of at least one,
maybe two, but not all three types of terminal symbols. This implies that u v2w x 2y £ L.
Thus there is no decomposition of akbkck satisfying the conditions of the pumping lemma;
consequently, L is not context-free. □

Example 7.4.2

The language L = {a'b1 a ‘bJ \ i, j > 0} is not context-free. Let k be the number specified by
the pumping lemma and z = akbkakbk. Assume there is a decomposition u v w x y of z that
satisfies the conditions of the pumping lemma. Condition (ii) requires the length of vw x to
be at most k. This implies that vw x is a string containing only one type o f terminal or the
concatenation of two such strings. That is,

i) vw x € a* or utu* e b*, or

ii) vw x 6 a*b* or vw x e b*a*.

By an argument similar to that in Example 7.4.1, the substrings v and x must contain only
one type of terminal. Pumping v and x increases the number of a ’s or b ’s in only one of
the substrings in z. Since there is no decomposition of z satisfying the conditions of the
pumping lemma, we conclude that L is not context-free. □

Example 7.4.3

The language L = {w e a* | length(w) is prime} is not context-free. Assume L is context-
free and n a prime greater than k, the constant of Theorem 7.4.3. The string a" must
have a decomposition uvw xy that satisfies the conditions of the pumping lemma. Let m =
length(u) + length(w) + length(y). The length of any string u v 'w x 'y is m + i(n - m).

In particular, length(wvn+lw xn+,y) — m + (n + 1)(« - m) = n(n — m + 1). Both of
the terms in the preceding product are natural numbers greater than 1. Consequently, the
length of uv',+1u;x',+1y is not prime and the string is not in L. Thus, L is not context-free.

7.5 Closure Properties of Context-Free Languages 243

7.5 Closure Properties of Context-Free Languages

The flexibility of the rules of context-free grammars is used to establish closure results for
the set of context-free languages. Operations that preserve context-free languages provide
another tool for proving that languages are context-free. These operations, combined with
the pumping lemma, can also be used to show that certain languages are not context-free.

Theorem 7.5.1

The family of context-free languages is closed under the operations union, concatenation,
and Kleene star.

Proof. Let L | and L2 be context-free languages generated by G] = (V^ £] , P |, Sj) and

= (V2, E 2, P2, S2), respectively. The sets V, and V2 of variables are assumed to be
disjoint. Since we may rename variables, this assumption imposes no restriction on the
grammars.

A context-free grammar will be constructed from G (and G2 that establishes the desired
closure property.

Union: Define G = (V! U V2 U {5}, U £ 2, P! U P2 U {5 -* S\ | S2}, 5). A string w is

in L(G) if, and only if, there is a derivation S = ► S,- => w for i = 1 or 2. Thus w is in L[

or L^. On the other hand, any derivation S* w can be initialized with the rule S —► S, to
generate w in G. '

Concafena«on:DefineG = (V1U V 2 U{5}, E iU E 2, P[U P2 U {5 -* S ^ } , S).Thestart
symbol initiates derivations in both Gi and G2. A leftmost derivation of a terminal string

in G has the form S => 5)52 => uS2 => uv, where u € L! and v g L 2■ The derivation of u
uses only rules from Pj and v rules from P2. Hence L(G) c L]L2. The opposite inclusion
is established by observing that every string w in L(L2 can be written uv with m € L] and

v G L^. The derivations Sj => u and S2 => v, along with the S rule of G, generate w in G.

Kleene star: Define G = (V,, S), P, U {5 -> S\S \ X), S). The S rule of G generates any
number of copies of Sj. Each of these, in tum, initiates the derivation of a string in Lj. The
concatenation of any number of strings from L| yields L*. ■

Theorem 7.5.1 presented positive closure results for the set of context-free languages.
A simple example is given to show that the context-free languages are not closed under
intersection. Finally, we combine the closure properties of union and intersection to obtain
a similar negative result for complementation.

Theorem 7.5.2

The set of context-free languages is not closed under intersection or complementation.

Proof.

Intersection: Let Li = [a'b'c-i \ i, j > 0} and L2 = [aJb'c' | i, j > 0}. L] and L2 are both
context-free since they are generated by G! and G2, respectively.

244 Chapter 7 Pushdown Automata and Context-Free Languages

G,: S-> BC G2: S -> AB

B -*■ aB b | X A ^ flA | X

C - ► cC | X B -» bBc | X

The intersection of L | and L2 is the set {a'b 'c ' 11 > 0} , which is not context-free by
Example 7.4.1.

Complementation: Let L[and L2 be any two context-free languages. If the context-free
languages are closed under complementation, then by Theorem 7.5.1, the language

L = L | U L2
t

is context-free. By DeMorgan’s Law, L = Ljfl L2 . This implies that the context-free
languages are closed under intersection, contradicting the result of part (i). ■

Exercise 9 of Chapter 6 showed that the intersection of a regular and context-free lan
guage need not be regular. The correspondence between languages and pushdown automata
is used to establish a positive closure property for the intersection of regular and context-free
languages.

Let R be a regular language accepted by a DFA N and L a context-free language
accepted by PDA M. We show that R fl L is context-free by constructing a single PDA
that simulates the operation of both N and M. The states of this composite machine are
ordered pairs consisting of a state from M and one from N.

Theorem 7.5.3

Let R be a regular language and L a context-free language. Then the language R fl L is
context-free.

Proof. LetN = (QN, E N, SN, q0, FN) be a DFA that accepts Rand let M = (QM, S M, T,
^M' P0' Fm) a PDA that accepts L. The machines N and M are combined to construct a
PDA

= (Qm x Qn- F, S, [po- <?<)]' Fm x Fn)

that accepts R n L. The transition function of M' is defined to “run the machines M and N
in parallel.” The first component of the ordered pair traces the sequence of states entered by
the machine M and the second component by N. The transition function of M ' is defined by

i) S([p, q], a , A) = {[[/>', q ’], B] \ [p \ B] e SM(p, a. A) and SN(<?, a) = <?')

ii) S([p, q], X, A) = {[[/>', q]. B) | [/>', B] e SM(p, X, A)).

Every transition of a DFA processes an input symbol, whereas a PDA may contain tran
sitions that do not process input. The transitions introduced by condition (ii) simulate the
action of a PDA transition that does not process an input symbol.

A string w is accepted by M' if there is a computation

[[Po- P- H P ,. <7>]. H

where p, and qj are final states of M and N, respectively.

7.5 Closure Properties of Context-Free Languages 245

The inclusion L(N) n L(M) C L(M') is established by showing that there is a compu
tation

[[Po- 9ol. u>, X] [[ph u, a]

whenever

[p0, w, and [<70, u>] [qj, w]

are computations in M and N. The proof is by induction on the number of transitions in the
PDA M.

The basis consists of the null computation in M. This computation terminates with pj =
Pq, u = w , and M containing an empty stack. The only computation in N that terminates with
the original string is the null computation; thus, qj = q0. The corresponding computation
in the composite machine is the null computation in M'.

Assume the result holds for all computations of M having length n. Let

[Po, X] lS '[P /,w ,a] and [^0. w] & Iqj, «]

be computations in the PDA and DFA, respectively. The computation in M can be written

[Po> «>. *1

F [Pk. 0]

I~ [P i ,u ,a] ,

where either v = u or v = au. To show that there is a computation [[p0, <70], w, A.] Ifr
[[/>,-, qj], u, a], we consider each of the possibilities for v separately.

Case 1: u = u. In this case, the final transition of the computation in M does not process
an input symbol. The computation in M is completed by a transition of the form [ph B] e
$M(Pk’ A). This transition generates [[/>,-, qj], B] € S([pk, q}], X, A) in M'. The compu
tation

[[Po- ?ol. w• W ft [[/>*, q j l v, 0]

Kp,. <?>]. v, a]

is obtained from the inductive hypothesis and the preceding transition of M'.

Case 2: v = au. The computation in N that reduces w to u can be written

[<7o. «>]

& fern. ”1

In [qj, «].

where the final step utilizes a transition <5N(<?m, a) = qj. The DFA and PDA transitions
for input symbol a combine to generate the transition [[ph qj], B] e &([pk , qm], a, /4) in

246 Chapter 7 Pushdown Automata and Context-Free Languages

M'. Applying this transition to the result of the computation established by the inductive

hypothesis produces

[[po. 9ol- w < *•] Kf 4m l V,

Im [Ip«. 4 j l “ 1-

The opposite inclusion, L(M') C L(N) n L(M), is proved using induction on the length
of computations in M'. The proof is left as an exercise. ■

Theorem 7.5.2 used DeMorgan’s Law to show that the family of context-free languages
is not closed under complementation. The next example gives a grammar that explicitly

demonstrates this property.

Example 7.5.1

The language L = {ww \ w e {a, b}*} is not context-free, but L is. First we show that L
is not context-free using a proof by contradiction. Assume L is context-free. Then, by
Theorem 7.5.3,

L n a*b*a*b* = [a W a W \ i , j > 0}

is context-free. However, this language was shown not to be context-free in Example 7.4.2,
contradicting our assumption.

To show that L is context-free, we construct two context-free grammars Gj and G2 with
L(G,) U L(G2) = L.

G,: S - ► a A \ bA | a \ b G2: S —► A B \ BA

A - * a S \ b S A ^ * Z A Z \ a

B - + Z B Z | b

Z —*■ a \ b

The grammar G, generates the strings of odd length over [a, b], all of which are in L. G2
generates the set of even length string in L. Such a string may be written u lx v iu 2yv2, where
x , y € E and x ^ y; u\, w2, U), i>2 € E* with length(ux) = length(u2) and length(tij) =
length(v2). That is, x and y are different symbols that occur in the same position in the
substrings that make up the first half and the second half of u lx v lu2y v 2. Since the u ’s
and u’s are arbitrary strings in Z*, this characterization can be rewritten u tx p q y v 2, where
length(p) = length(ui) and length(q) = length(v2). The recursive variables of G2 generate
precisely this set of strings. □

Exercises 247

Exercises

1. Let M be the PDA defined by

Q = Wo. 0i. ft} s (9o. «■ *) = {[<70.

E = {a, *>} «(9o. X, X) = {[*„ X]}

T = {A} «(«„. *. A) = [[?2. X])

F = {ft, ft} S (ft, X, A) = {[?i, X]}

S(q2, b, A) = {[q2, X]}

&(q2, X, A) = {[<7 2 , X]}.

a) Describe the language accepted by M.

b) Give the state diagram of M.

c) Trace all computations of the strings aab, abb, aba in M.

d) Show that aabb, aaab € L(M).

2. Let M be the PDA in Example 7.1.3.

a) Give the transition table of M.

b) Trace all computations of the strings ab, abb, abbb in M.

c) Show that a a a a , baab € L(M).

d) Show that aaa, ab & L(M).

3. Construct PDAs that accept each of the following languages.

a) {a'b> | 0 < i < j)

b) {a'c-'fc' | i, j > 0}

c) {a'b-'c* 11 + k = j }

d) {id | u; e {a, b}* and w has twice as many a ’s as b 's}

e) {a'b1 | i > 0} U a* U b*

f) {a'fc-'c* | / = j or j = <:}

g) {a'b* | i ?£ j)

h) [a'bi | 0 < i < j < 2/)

i) {a '+ib 'c i | i, j > 0}

j) The set of palindromes over {a, b)

4. Construct a PDA with only two stack elements that accepts the language

{w dw R | w € {a, b, c}*}.

248 Chapter 7 Pushdown Automata and Context-Free Languages

5. Give the state diagram of a PDA M that accepts {a2,b,+j | 0 < j < i] with acceptance
by empty stack. Explain the role of the stack symbols in the computation of M. Trace
the computations of M with input aabb and aaaabb.

6. The machine M

accepts the language L = {a‘b‘ 11 > 0} by final state and empty stack.

a) Give the state diagram of a PDA that accepts L by empty stack.

b) Give the state diagram of a PDA that accepts L by final state.

7. Let L be the language {u> e {a, b}* \ w has a prefix containing more b ’s than a ’s}. For
example, baa, abba, abbaaa € L, but aab, aabbab L.

a) Construct a PDA that accepts L by final state.

b) Construct a PDA that accepts L by empty stack.

8 . Let M = (Q, S , T, S, q0, F) be a PDA that accepts L by final state and empty stack.
Prove that there is a PDA that accepts L by final state alone.

9. Let M = (Q, S , T, 5, q0, F) be a PDA that accepts L by final state and empty stack.
Prove that there is a PDA that accepts L by empty stack alone.

10. Let L = {a2ib‘ | / > 0}.

a) Construct a PDA M 1 with L(Mj) = L.

b) Construct an atomic PDA M 2 with L(M2) = L.

c) Construct an extended PDA M 3 with L(M3) = L that has fewer transitions than M (.

d) Trace the computation that accepts the string aab in each of the automata con
structed in parts (a), (b), and (c).

11. Let L = [a2ib* | i > 0}.

a) Construct a PDA with L(M|) = L.

b) Construct an atomic PDA M 2 with L(M2) = L.

c) Construct an extended PDA M 3 with L(M3) = L that has fewer transitions than M[.

d) Trace the computation that accepts the string aabbb in each of the automata con
structed in parts (a), (b), and (c).

12. Use the technique of Theorem 7.3.1 to construct a PDA that accepts the language of
the Greibach normal form grammar

a AM bA! A

S -*■ a A B A | a B B

A -*■ b A \ b

B ^ > c B \ c .

Exercises 249

13. Let G be a grammar in Greibach normal form and M the PDA constructed from G.
Prove that if [qQ, u, X] \=- [qh X, w] in M, then there is a derivation S uw in G.

This completes the proof of Theorem 7.3.1.

14. Let M be the PDA

Q = (<?o> <7t> f t) s (<7o> *) = (too. Al>

a) Give the state diagram of M.

b) Give a set-theoretic definition of L(M).

c) Using the technique from Theorem 7.3.2, build a context-free grammar G that
generates L(M).

d) Trace the computation of aabbbb in M.

e) Give the derivation of aabbbb in G.

15. Let M be the PDA in Example 7.1.1.

a) Trace the computation in M that accepts bbcbb.

b) Use the technique from Theorem 7.3.2 to construct a grammar G that accepts L(M).

c) Give the derivation of bbcbb in G.

* 16. Theorem 7.3.2 presented a technique for constructing a grammar that generates the
language accepted by an extended PDA. The transitions of the PDA pushed at most two
variables onto the stack. Generalize this construction to build grammars from arbitrary
extended PDAs. Prove that the resulting grammar generates the language of the PDA.

17. Use the pumping lemma to prove that each of the following languages is not context-
free.

a) {ak | k is a perfect square)

b) {a 'b ic 'd i \ i , j > 0}

c) {a'fc2V 11 > 0}

d) (a'fc-'c* | 0 < i < j < k < zi]

e) {wwKw | w € {a, b}*}

f) The set of finite-length prefixes of the infinite string

E = {a , b)

r = {A]

F = (ft}

S(q0, b , A) = {[<?„ X]}

S(qu b , X) = {[<?2 , A.]}

S(q2, b , A) = {[<?„ X]}.

abaabaaabaaaab . . . ba"ban+]b

18. a) Prove that the language L[= {a:b2,c^ | «, j > 0} is context-free.

b) Prove that the language L2 = {a^b'c1' \ i, j > 0} is context-free.

c) Prove that L ^ L2 is not context-free.

250 Chapter 7 Pushdown Automata and Context-Free Languages

19. a) Prove that the language L, = {a‘b‘cJd^ \ i, j > 0) is context-free.

b) Prove that the language L2 = {aJb 'c 'dk \ i, j y k > 0} is context-free.

c) Prove that LjO L2 is not context-free.

20. Let L be the language consisting of all strings over {a, b] with the same number of a ’s
and b’s. Show that the pumping lemma is satisfied for L. That is, show that every string
z of length k or more has a decomposition that satisfies the conditions o f the pumping
lemma.

21. Let M be a PDA. Prove that there is a decision procedure to determine whether

a) L(M) is empty.

b) L(M) is finite.

c) L(M) is infinite.

* 22. A grammar G = (V, E , P, S) is called linear if every rule has the form

A —* u

A —► u B v

where u, v e E* and A, B g V. A language is called linear if it is generated by a linear
grammar. Prove the following pumping lemma for linear languages.

Let L be a linear language. Then there is a constant k such that for all z e L with
length(z) > k . z can be written z = u vw x y with

i) length(uvxy) < k,

ii) length(vx) > 0, and

iii) u v 'w x 'y € L, for i > 0.

23. a) Construct a DFA N that accepts all strings in {a, b}* with an odd number of a ’s.

b) Construct a PDA M that accepts {a3‘b‘ | i > 0}.

c) Use the technique from Theorem 7.5.3 to construct a PDA M' that accepts
L(N) n L(M).

d) Trace the computations that accept aaab in N, M, and M'.

24. Let G = (V, E , P, S) be a context-free grammar. Define an extended PDA M as
follows:

Q = Wo) S(<?o. X, X) = {[.ft, S]}

E = E g &(q0, A, A) (too, w] | A w e P}

r = EG U V 5(<?o>«.«) = {[<7o.*]l«eE}.

F = {<?„}

Prove that L(M) = L(G).

25. Complete the proof of Theorem 7.5.3.

Bibliographic Notes 251

* 27. Let L be a context-free language over 2 and a e 2 . Define era(L) to be the set obtained
by removing all occurrences of a from strings of L. The language era(L) is the language
L with a erased. For example, if abab, bacb, aa 6 L, then bb, bcb, and X € era(L).
Prove that era(L) is context-free. Hint: Convert the grammar that generates L to one
that generates era(L).

*28. The notion of a string homomorphism was introduced in Exercise 6.19. Let L be a
context-free language over 2 and let h : 2* -* 2* be a homomorphism.

a) Prove that /i(L) = {h(w) | w e L} is context-free, that is, that the context-free
languages are closed under homomorphisms.

b) Use the result of part (a) to show that era(L) is context-free.

c) Give an example to show that the homomorphic image of a noncontext-free language
may be context-free.

29. Let h : 2* -+ 2* be a homomorphism and L a context-free language over 2 . Prove that
{w | h(w) e L} is context-free. In other words, the family of context-free languages is
closed under inverse homomorphic images.

30. Use closure under homomorphic images and inverse images to show that the following
languages are not context-free.

a) {a'b’c 'd i | i, j > 0}

b) {a‘b2,c3l | / > 0}

c) {(aby(bcy'(cay 11 > 0}

26. Prove that the set of context-free languages is closed under reversal.

Bibliographic Notes

Pushdown automata were introduced in Oettinger [1961]. Deterministic pushdown au
tomata were studied in Fischer [1963] and Schutzenberger [1963] and their acceptance
of the languages generated by LR(fc) grammars is from Knuth [1965], The relationship be
tween context-free languages and pushdown automata was discovered by Chomsky [1962],
Evey [1963], and Schutzenberger [1963]. The closure properties for context-free languages
presented in Section 7.5 are from Bar-Hillel, Perles, and Shamir [1961] and Scheinberg
[1960]. A solution to Exercises 28 and 29 can be found in Ginsburg and Rose [1963b],

The pumping lemma for context-free languages is from Bar-Hillel, Perles, and Shamir
[1961]. A stronger version of the pumping lemma is given in Ogden [1968]. Parikh’s
Theorem [1966] provides another tool for establishing that languages are not context-free.

PART III

Computability

W e now begin our exploration of the capabilities and limitations of algorithmic compu
tation. The term effective procedure is used to describe processes that we intuitively

understand as computable. An effective procedure consists of a finite set of instructions
and a specification, based on the input, of the order of execution of the instructions. The
execution of an instruction is mechanical; it requires no cleverness or ingenuity on the part
of the machine or person doing the computation. A computation produced by an effective
procedure executes a finite number of instructions and terminates. The preceding properties
can be summarized as follows: An effective procedure is a deterministic discrete process
that halts for all possible inputs.

In 1936 British mathematician Alan Turing designed a family of abstract machines
for performing effective computation. The Turing machine represents the culmination
of a series of increasingly powerful abstract computing devices that include finite and
pushdown automata. As with a finite automaton, the applicable Turing machine instruction
is determined by the state of the machine and the symbol being read. A Turing machine
may read its input multiple times and an instruction may write information to memory. The
ability to perform multiple reads and writes increases the computational power of the Turing
machine and provides a theoretical prototype for the modem computer.

The Church-Turing Thesis, proposed by logician Alonzo Church in 1936, asserts that
any effective computation in any algorithmic system can be accomplished using a Turing
machine. The Church-Turing Thesis should not be considered as providing a definition of
algorithmic computation— this would be an extremely limiting viewpoint. Many systems
have been designed to perform effective computations. Moreover, who can predict the
formalisms and techniques that will be developed in the future? The Church-Turing Thesis
does not claim that these other systems do not perform algorithmic computation. It does,
however, assert that a computation performed in any such system can be accomplished
by a suitably designed Turing machine. Perhaps the strongest evidence supporting the
Church-Turing Thesis is that after 70 years, no counterexamples have been discovered. The
formulation of this thesis and its implications for computability are discussed in Chapter 11.

The correspondence between the generation of languages by grammars and their recog
nition by machines extends to the languages of Turing machines. If Turing machines repre
sent the ultimate in string recognition machines, it seems reasonable to expect the associated
family of grammars to be the most general string transformation systems. This is indeed the
case; the grammars that correspond to Turing machines are called unrestricted grammars
because there are no restrictions on the form or the applicability of their rules. To establish
the correspondence between recognition by a Turing machine and generation by an unre
stricted grammar, we show that a computation of a Turing machine can be simulated by a
derivation in an unrestricted grammar.

With the acceptance of the Church-Turing Thesis, the extent of algorithmic problem
solving can be identified with the capabilities of Turing machine computations. Conse
quently, to prove a problem to be unsolvable, it suffices to show that there is no Turing
machine solution to the problem. Using this approach, we show that the Halting Problem
for Turing machines is undecidable. That is, there is no algorithm that can determine, for
an arbitrary Turing machine M and string w, whether M will halt when run with w. We
will then use problem reduction to establish undecidability of additional questions about
the results of Turing machine computations, of the existence of derivations using the rules
of a grammar, and of properties of context-free languages.

CHAPTER 8

Turing Machines

The Turing machine, introduced by Alan Turing in 1936, represents another step in the
development of finite-state computing machines. Turing machines were originally proposed
for the study of effective computation and exhibit many of the features commonly associated
with a modem computer. This is no accident; the Turing machine provided a model for the
design and development of the stored-program computer. Utilizing a sequence of elementary
operations, a Turing machine may access and alter any memory position. A Turing machine,
unlike a computer, has no limitation on the amount of time or memory available for a
computation.

The Church-Turing Thesis, which will be discussed in detail in Chapter 11, asserts
that any effective procedure can be realized by a suitably designed Turing machine. The
variations of Turing machine architectures and applications presented in the next two
chapters indicate the robustness and the versatility of Turing machine computation.

8.1 The Standard Turing Machine

A Turing machine is a finite-state machine in which a transition prints a symbol on the tape.
The tape head may move in either direction, allowing the machine to read and manipulate
the input as many times as desired. The structure of a Turing machine is similar to that of
a finite automaton, with the transition function incorporating these additional features.

255

256 Chapter 8 Turing Machines

Definition 8.1.1

A TUring machine is a quintuple M = (Q, E , T, <5, qo) where Q is a finite set of states,
T is a finite set called the tape alphabet, T contains a special symbol B that represents a
blank, E is a subset of T - {B) called the input alphabet, S is a partial function from Q x T
toQ x T x {L, R) called the transition function, and qo e Q is a distinguished state called

the start state.

The tape of a Turing machine has a left boundary and extends indefinitely to the right.
Tape positions are numbered by the natural numbers, with the leftmost position numbered
zero. Each tape position contains one element from the tape alphabet.

0 1 2 3 4 5
| a | b b a

0

A computation begins with the machine in state q0 and the tape head scanning the leftmost
position. The input, a string from E*, is written on the tape beginning at position one.
Position zero and the remainder of the tape are blank. The diagram shows the initial
configuration of a Turing machine with input abba. The tape alphabet provides additional
symbols that may be used during a computation.

A transition consists of three actions: changing the state, writing a symbol on the square
scanned by the tape head, and moving the tape head. The direction of the movement is
specified by the final component of the transition. An L indicates a move of one tape position
to the left and R one position to the right. The machine configuration

and transition 8(qh x) = [qj, y, L] combine to produce the new configuration

y

The transition changed the state from to qs, replaced the tape symbol x with y, and moved
the tape head one square to the left. The ability of the machine to move in both directions
and process blanks introduces the possibility of a computation continuing indefinitely.

8.1 The Standard Turing Machine 257

A computation halts when it encounters a state, symbol pair for which no transition is
defined. A transition from tape position zero may specify a move to the left o f the boundary
of the tape. When this occurs, the computation is said to terminate abnormally. When we
say that a computation halts, we mean that it terminates in a normal fashion.

The Turing machine presented in Definition 8.1.1 is deterministic, that is, at most
one transition is specified for every combination of state and tape symbol. The one-tape
deterministic Turing machine, with initial conditions as described above, is referred to as the
standard Turing machine. The first two examples demonstrate the use of Turing machines
to manipulate strings. After developing a facility with Turing machine computations, we
will use Turing machines to accept languages and to compute functions.

Example 8.1.1

The tabular representation of the transition function of a standard Turing machine with input
alphabet [a, b) is given in the table below.

s B a b

<?o q t. B, R

<?i ?2> B. L 9l> b, R q\, a, R

<?2 q2, a, L q2, b. L

The transition from state q0 moves the tape head to position one to read the input. The
transitions in state q i read the input string and interchange the symbols a and b. The
transitions in q2 return the machine to the initial position.

A Turing machine can be graphically represented by a state diagram. The transition
8(qi, x) = [qj, y, d], d e {L, R\ is depicted by an arc from qt to qt labeled x / y d. The
state diagram

alb R a/a L
b/a R bib L

x g mR Q mL .Q

represents the Turing machine defined in the preceding transition table. a

A machine configuration consists of the state, the tape, and the position of the tape
head. At any step in a computation of a standard Turing machine, only a finite segment of
the tape is nonblank. A configuration is denoted uq,vB, where all tape positions to the right
of the B are blank and uv is the string spelled by the symbols on the tape from the left-
hand boundary to the B. Blanks may occur in the string uv, the only requirement is that the

258 Chapter 8 Turing Machines

entire nonblank portion of the tape be included in uv. The notation uqjvB indicates that the
machine is in state qt scanning the first symbol of v and the entire tape to the right of uvB

is blank.
This representation of machine configurations can be used to trace the computations

of a Turing machine. The notation uqtvB xq}y B indicates that the configuration xq^yB
is obtained from uqjVB by a single transition of M. Following the standard conventions,
uqjVB In x q p B signifies that x q j y B can be obtained from uqtvB by a finite number,
possibly zero, of transitions. The reference to the machine is omitted when there is no
possible ambiguity.

The Turing machine in Example 8.1.1 interchanges the a ’s and b’s in the input string.
Tracing the computation generated by the input string abab yields

q0BababB

I- B q iababB

\- Bbq\babB

I- Bbaq^abB

t- Bbabq^bB

Bbabaq\B

I- Bbabq2aB

h Bbaq2baB

b Bbq2obaB

I- BqjbabaB

h q2BbabaB.

The Turing machine from Example 8.1.1 made two passes through the input string.
Moving left to right, the first pass interchanged the a ’s and b ’s. The second pass, going
right to left, simply returned the tape head to the leftmost tape position. The next example
shows how Turing machine transitions can be used to make a copy of a string. The ability
to copy data is an important component in many algorithmic processes. When copies are
needed, the strategy employed be this machine can by modified to suit the type of data
considered in the particular problem.

Example 8.1.2

The Turing machine COPY with input alphabet {a, b } produces a copy of the input string.
That is, a computation that begins with the tape having the form B uB terminates with tape
BuBuB.

8.2 Turing Machines as Language Acceptors 259

XIX R
Y/YR

YlbL

The computation copies the input string one symbol at a time beginning with the leftmost
symbol in the input. Tape symbols X and Y record the portion of the input that has been
copied. The first unmarked symbol in the string specifies the arc to be taken from state
q\. The cycle q\, q2, <7 3 , q4, q\ replaces an a with X and adds an a to the string being
constructed. Similarly, the lower branch copies a b using Y to mark the input string. After
the entire string has been copied, the transitions in state q-j change the X’s and Y's to a ’s
and b's and return the tape head to the initial position. □

8.2 Turing Machines as Language Acceptors

Turing machines have been introduced as a paradigm for effective computation. A Turing
machine computation consists of a sequence of elementary operations determined from the
machine state and the symbol being read by the tape head. The machines constructed in the
previous section were designed to illustrate the features of Turing machine computations.
The computations read and manipulated the symbols on the tape; no interpretation was given
to the result of a computation. Turing machines can be designed to accept languages and to
compute functions. The result of a computation can be defined in terms of the state in which
the computation terminates or the configuration of the tape at the end of the computation.

In this section we consider the use of Turing machines as language acceptors; a
computation accepts or rejects the input string. Initially, acceptance is defined by the final
state of the computation. This is similar to the technique used by finite-state and pushdown
automata to accept strings. Unlike finite-state and pushdown automata, a Turing machine
need not read the entire input string to accept the string. A Turing machine augmented with
final states is a sextuple (Q, E , T, <5, q0, F), where F C Q is the set of final states.

260 Chapter 8 Turing Machines

Definition 8.2.1

Let M = (Q, Z , T, 8, q0, F) be a Turing machine. A string u € S* is accepted by final
state if the computation of M with input u halts in a final state. A computation that terminates
abnormally rejects the input regardless of the state in which the machine halts. The language
of M, denoted L(M), is the set of all strings accepted by M.

A language accepted by a Turing machine is called a recursively enum erable lan
guage. The ability of a Turing machine to move in both directions and process blanks
introduces the possibility that the machine may not halt for a particular input. Thus there are
three possible outcomes for a Turing machine computation: It may halt and accept the input
string; halt and reject the string; or it may not halt at all. Because of the last possibility, we
will sometimes say that a machine M recognizes L if it accepts L but does not necessarily
halt for all input strings. The computations of M identify the strings L but may not provide
answers for strings not in L.

A language accepted by a Turing machine that halts for all input strings is said to be
recursive. Membership in a recursive language is decidable; the computations of a Turing
machine that halts for all inputs provide a procedure for determining whether a string is
in the language. A Turing machine of this type is sometimes said to decide the language.
Being recursive is a property of a language, not of a Turing machine that accepts it. There
are multiple Turing machines that accept a particular language; some may halt for all input,
whereas others may not. The existence of one Turing machine that halts for all inputs is
sufficient to show that the membership in the language is decidable and the language is
recursive.

In Chapter 12 we will show that there are languages that are recognized by a Turing
machine but are not decided by any Turing machine. It follows that the set of recursive
languages is a proper subset of the recursively enumerable languages. The terms recursive
and recursively enumerable have their origins in the functional interpretation of Turing
computability that will be presented in Chapter 13.

Example 8.2.1

The Turing machine M

b/bR

BIBR a! a R

b/bR

8.2 Turing Machines as Language Acceptors 261

accepts the language (a U b)*aa(a U b)*. The computation

q0BaabbB

h Bq\aabbB

h Baq2abbB

I- Baaq-jbbB

examines only the first half of the input before accepting the string aabb. The language
(a U b)*aa(a U b)* is recursive; the computations of M halt for every input string. A suc
cessful computation terminates when a substring aa is encountered. All other computations
halt upon reading the first blank following the input. □

Example 8.2.2

The language L = {a'b 'c ' | « > 0} is accepted by the Turing machine

b/bL
Y/YL
Z/ZL

The tape symbols X, Y, and Z mark the a ’s, b's, and c ’s as they are matched. A computation
successfully terminates when all the symbols in the input string have been transformed to
the appropriate tape symbol. The transition from q i to q6 accepts the null string.

262 Chapter 8 Turing Machines

The Turing machine M shows that L is recursive. The computations for strings in L
halt in q$. For strings not in L, the computations halt in a nonaccepting state as soon as
it is discovered that the input string does not match the pattern a 'b 'c ' . For example, the
computation with input bca halts in q\ and with input abb in qy □

8.3 Alternative Acceptance Criteria

Using Definition 8.2.1, the acceptance of a string by a Turing machine is determined by
the state of the machine when the computation halts. Alternative approaches to defining
acceptance are presented in this section.

The first alternative is acceptance by halting. In a Turing machine that is designed to
accept by halting, an input string is accepted if the computation initiated with the string
halts. Computations for which the machine terminates abnormally reject the string. When
acceptance is defined by halting, the machine is defined by the quintuple (Q, E , T, 5, q0).
The final states are omitted since they play no role in the determination of the language of
the machine.

Definition 8.3.1

Let M = (Q, E , T, S, q0) be a Turing machine. A string u e E* is accepted by halting
if the computation of M with input u halts (normally).

Turing machines designed for acceptance by halting are used for language recognition.
The computation for any input not in the language will not terminate. Theorem 8.3.2 shows
that any language recognized by a machine that accepts by halting is also accepted by a
machine that accepts by final state.

Theorem 8.3.2

The following statements are equivalent:

i) The language L is accepted by a Turing machine that accepts by final state.

ii) The language L is accepted by a Turing machine that accepts by halting.

Proof. Let M = (Q, E , f , 8, q0) be a Turing machine that accepts L by halting. The

machine M '= (Q, E , F, 8, qQ, Q), in which every state is a final state, accepts L by final
state.

Conversely, let M = (Q, E , T, 8, q0, F) be a Turing machine that accepts the lan
guage L by final state. Define the machine M' = (Q U [qe], E , T, 8 \ q0) that accepts by
halting as follows:

i) If 8(qj, x) is defined, then 8 \ q h x) = 8(q,, x).

ii) For each state qt e Q - F, if 8(qn x) is undefined, then <$'(</,, x) = [qe, x , R\.

iii) For each x € f , 8 \q e, x) = [qe, x , /?].

8.4 Multitrack Machines 263

Computations that accept strings in M and M' are identical. An unsuccessful computation
in M may halt in a rejecting state, terminate abnormally, or fail to terminate. When an
unsuccessful computation in M halts, the computation in M' enters the state qe. Upon
entering qe, the machine moves indefinitely to the right. The only computations that halt in
M' are those that are generated by computations of M that halt in an accepting state. Thus
L(M') = L(M). ■

Example 8.3.1

The Turing machine from Example 8.2.1 is altered to accept (a U b)*aa(a U b)* by halting.
The machine below is constructed as specified by Theorem 8.3.2. A computation enters qe
when the entire input string has been read and no aa has been encountered.

b/bR

b/bR
B/BR

The machine obtained by deleting the arcs from q0 to qe and those from qe to qe labeled
a /a R and b/b R also accepts (a U b)*aa(a U b)* by halting. □

In Exercise 7 a type of acceptance, referred to as acceptance by entering, is introduced
that uses final states but does not require the accepting computations to terminate. A string
is accepted if the computation ever enters a final state; after entering a final state, the
remainder of the computation is irrelevant to the acceptance of the string. As with acceptance
by halting, any Turing machine designed to accept by entering can be transformed into a
machine that accepts the same language by final state.

Unless noted otherwise, Turing machines will accept by final state as in Definition 8.2.1.
The alternative definitions are equivalent in the sense that machines designed in this manner
accept the same family of languages as those accepted by standard Turing machines.

8.4 Multitrack Machines

The remainder of the chapter is dedicated to examining variations of the standard Turing
machine model. Each of the variations appears to increase the capability o f the machine.

264 Chapter 8 Turing Machines'

We prove that the languages accepted by these generalized machines are precisely those
accepted by the standard Turing machines. Additional variations will be presented in the

exercises.
A multitrack tape is one in which the tape is divided into tracks. A tape position in an

n -track tape contains n symbols from the tape alphabet. The diagram depicts a two-track
tape with the tape head scanning the second position.

Track 2

Track 1

A
The machine reads an entire tape position. Multiple tracks increase the amount of informa
tion that can be considered when determining the appropriate transition. A tape position in
a two-track machine is represented by the ordered pair [x, >'], where x is the symbol in track
1 and y is in track 2.

The states, input alphabet, tape alphabet, initial state, and final states of a two-
track machine are the same as in the standard Turing machine. A two-track transition
reads and rewrites the entire tape position. A transition of a two-track machine is written
8(qj. [jt, y]) = [qjt [z, w], d], where d e {L, /?}.

The input to a two-track machine is placed in the standard input position in track 1. All
the positions in track 2 are initially blank. Acceptance in multitrack machines is by final
state.

We will show that the languages accepted by two-track machines are precisely the
recursively enumerable languages. The argument easily generalizes to n-track machines.

Theorem 8.4.1

A language L is accepted by a two-track Turing machine if, and only if, it is accepted by a
standard Turing machine.

Proof. Clearly, if L is accepted by a standard Turing machine, it is accepted by a two-track
machine. The equivalent two-track machine simply ignores the presence of the second track.

Let M = (Q, E, T, 8, q0, F) be a two-track machine. A one-track machine will be
constructed in which a single tape square contains the same information as a tape position
in the two-track tape. The representation of a two-track tape position as an ordered pair
indicates how this can be accomplished. The tape alphabet of the equivalent one-track
machine M' consists of ordered pairs of tape elements of M. The input to the two-track
machine consists of ordered pairs whose second component is blank. The input symbol a
of M is identified with the ordered pair [a, B] of M'. The one-track machine

M' = (Q, E x {B }, T x T, &',q0, F)

8.5 Two-Way Tape Machines 265

£'(<?,. [x, ?]) = 8{qt , [at, y))

accepts L(M).

with transition function

8.5 Two-Way Tape Machines

A Turing machine with a two-way tape is identical to the standard model except that the
tape extends indefinitely in both directions. Since a two-way tape has no left boundary, the
input can be placed anywhere on the tape. All other tape positions are assumed to be blank.
The tape head is initially positioned on the blank to the immediate left of the input string.
The advantage of a two-way tape is that the Turing machine designer need not worry about
crossing the left boundary of the tape.

A machine with a two-way tape can be constructed to simulate the actions of a standard
machine by placing a special symbol on the tape to represent the left boundary of the one
way tape. The symbol #, which is assumed not to be an element of the tape alphabet of
the standard machine, is used to simulate the boundary of the tape. A computation in the
equivalent machine with two-way tape begins by writing # to the immediate left of the initial
tape head position. The remainder of a computation in the two-way machine is identical
to that of the one-way machine except when the computation of the one-way machine
terminates abnormally. When the one-way computation attempts to move to the left of the
tape boundary, the two-way machine reads the symbol # and enters a nonaccepting state
that terminates the computation.

The standard Turing machine M

a/a R

M: BIB R blbL
a/a L
B IBL

a!a L
B IB L

a! a L
B IB L

will be used to demonstrate the conversion of a machine with a one-way tape to an equivalent
two-way machine. All the states of M other than q0 are accepting. When the first b is
encountered, the tape head moves four positions to the left, if possible. Acceptance is
completely determined by the boundary of the tape. A string is rejected by M whenever
the tape head attempts to cross the left-hand boundary. All computations that remain within
the bounds of the tape accept the input. Thus the language of M consists of all strings over
{a, b) in which the first b, if present, is preceded by at least three a ’s.

A machine M' with a two-way tape can be obtained from M by the addition of three
states qs, q„ and qr. The transitions from states qs and q, insert the simulated endmarker
to the left of the initial position of the tape head of M', the two-way machine that accepts
L(M). After writing the simulated boundary, the computation enters a copy o f the one-way

266 Chapter 8 Turing Machines

machine M. The error state qe is entered in M' when a computation in M attempts to move
to the left of the tape boundary.

We will now show that a language accepted by a machine with a two-way tape is
accepted by a standard Turing machine. The argument utilizes Theorem 8.4.1, which
establishes the interdefinability of two-track and standard machines. The tape positions
of the two-way tape can be numbered by the complete set of integers. The initial position
of the tape head is numbered zero, and the input begins at position one.

-5 -4 -3 -2 -1 0 1 2 3 4 5

Imagine taking the two-way infinite tape and folding it so that position — i sits directly
above position i . Adding an unnumbered tape square over position zero produces a two-
track tape. The symbol in tape position /' of the two-way tape is stored in the corresponding
position of the one-way, two-track tape. A computation on a two-way infinite tape can be
simulated on this one-way, two-track tape.

_1 -2 -3 -4 -5

0 1 2 3 4 5

Let M = (Q, E , T, 8, q0, F) be a Turing machine with a two-way tape. Using
the correspondence between a two-way tape and a two-track tape, we construct a Turing
machine M' with a two-track, one-way tape to accept L(M). A transition of M is specified by
the state and the symbol scanned. M', scanning a two-track tape, reads two symbols at each

8.5 Two-Way Tape Machines 267

tape position. Symbols U (up) and D (down) are included in the states of M to designate
which of the two tracks should be used to determine the transition.

The components of M' are constructed from those of M and the symbols U and D:

Q' = (Q U {qs,q ,}) x [U, D)

S '= 2

r ' = r u {#}

F' = {[<?,, U l [<?,, D] | € F).

The initial state of M' is a pair [qs, D). The transition from this state writes the marker # on
the upper track in the leftmost tape position.

A transition from [q„ D] returns the tape head to its original position to begin the
simulation of a computation of M. During the remainder of a computation, the # on track 2
is used to indicate when the tape head is reading position zero and to trigger changes from
U to D in the state. The transitions of M' are defined as follows:

1. S'([qs, D], [B, B]) = Hq„ D], [fi, #], R].

2. For every x € I \ B'([q,, D], [x, B]) = [[<70. D], [■*. 5].

3. F o re v e ry ze T — (#} andd e [L, /?}, &'([qj,D], [jc, z]) = [[^ , D], [y, z], d]when-
ever S(qt, x) = [qj, y, d] is a transition of M.

4. Forevery* e T — {#} and*/ e {L, R), S'([qj,U], [z, jc]) = [[^y, C/], [z ,y], d']when
ever &(qh x) = lqj, y, d] is a transition of M, where d' is the opposite direction of d.

5. 5'([<?;, D], [x, #]) = [[qj, U\, [y, #], /?] whenever S(qj, x) = [qj, y, L] is a transition
of M.

6. &\[qj,D\, [x, #]) = [[qt , D], [y, #], K] whenever S(<?,, x) = [oj, y, ft] is a transition
of M.

7. &'([qj, U], [jt, #]) = [[qj, D], [>\ #], R] whenever S(qit x) = [qj, y, /?] is a transition
of M.

8. S'([qj,U], [x, #]) = [[q} , U \ [>’, #], /?] whenever S(qit x) = [qj, y, L] is a transition
of M.

A transition generated by schema 3 simulates a transition of M in which the tape head
begins and ends in positions labeled with nonnegative values. In the simulation, this is
represented by writing on the lower track of the tape. Transitions defined in schema 4 use
only the upper track of the two-track tape. These correspond to transitions o f M that occur
to the left of position zero on the two-way infinite tape.

The remaining transitions simulate the transitions of M from position zero on the two-
way tape. Regardless of the U or D in the state, transitions from position zero are determined
by the tape symbol on track 1. When the track is specified by D, the transition is defined
by schema 5 or 6. Transitions defined in 7 and 8 are applied when the state is [qit U \

The preceding informal arguments outline the proof of the equivalence of one-way and
two-way Turing machines.

268 Chapter 8 Turing Machines

Theorem 8.5.1

A language L is accepted by a Turing machine with a two-way tape if, and only if, it is

accepted by a standard Turing machine.

8.6 Multitape Machines

A it-tape machine has k tapes and k independent tape heads. The states and alphabets of a
multitape machine are the same as in a standard Turing machine. The machine reads the
tapes simultaneously but has only one state. This is depicted by connecting each of the
independent tape heads to a single control indicating the current state.

Tape 3

Tape 2

Tape 1

A transition is determined by the state and the symbols scanned by each of the tape
heads. A transition in a multitape machine may

i) change the state,

ii) write a symbol on each of the tapes,

iii) independently reposition each of the tape heads.

The repositioning consists of moving the tape head one square to the left or one square to
the right or leaving it at its current position. A transition of a two-tape machine scanning
x\ on tape 1 and x 2 on tape 2 is written S(qh x t, x 2) = [qf, y\, d x\ y 2, d2], where yt e T
and dj € [L, R, 5). This transition causes the machine to write y, on tape The symbol dt
specifies the direction of the movement of tape head i : L signifies a move to the left, R a
move to the right, and S means the head remains stationary. Any tape head attempting to
move to the left of the boundary of its tape terminates the computation abnormally.

The input to a multitape machine is placed in the standard position on tape 1. All the
other tapes are assumed to be blank. The tape heads originally scan the leftmost position
of each tape. A multitape machine can be represented by a state diagram in which the
label on an arc specifies the action for each tape. For example, the transition 5(<?, , X|, x 2) =
[qy, >!, </,; y2, d2] will be represented by an arc from q, to qj labeled [xl/ y i d h x2/ y 2 d2].

Two advantages of multitape machines are the ability to copy data between tapes and
to compare strings on different tapes. Both of these features will be demonstrated in the
following example.

8 .6 Multitape Machines 269

Example 8.6.1

The machine

[a/a R, B /a /?] [a/a R, a/a L]

[B/B R, B/B /?] V ~V [b/b R, B /B L] [B/B R, B /B R]X g)

accepts the language {a'ba' | /' > 0). A computation with input string a'ba' copies the
leading a ’s to tape 2 in state q x. When the b is read on tape 1, the computation enters state
q 2 to compare the a ’s on tape 2 with the a ’s after the b on tape 1. If the same number of a ’s
precede and follow the b, the computation halts in q3 and accepts the input. The computation
for strings without a b halt in q x and strings with more than one b in q 2. The computations
for strings with with one b and an unequal number of leading and trailing a ’s also halt
in q 2. Since every computation halts, M provides a decision procedure for membership in
{a'ba' 1 1 > 0 } and consequently the language is recursive. □

A standard Turing machine is a multitape Turing machine with a single tape. Conse
quently, every recursively enumerable language is accepted by a multitape machine. We will
show that the computations of a two-tape machine can be simulated by computations of a
five-track machine. The argument can be generalized to show that any language accepted
by a fc-tape machine is accepted by a 2k + 1-track machine. The equivalence of acceptance
by multitrack and standard machines then allows us to conclude the following.

Theorem 8.6.1

A language L is accepted by a multitape Turing machine if, and only if, it is accepted by a
standard Turing machine.

LetM = (Q, E , T, 5, q 0, F) be a two-tape machine. During a computation, the tape
heads of a multitape machine are independently positioned on the two tapes.

Tape 2

Tape 1

a b b c c

b a 1c

■7
Vi

The single tape head of a multitrack machine reads all the tracks of a fixed position. The
five-track machine M' is constructed to simulate the computations of M. Tracks 1 and 3
maintain the information stored on tapes 1 and 2 of the two-tape machine. Tracks 2 and
4 have a single nonblank square indicating the position of the tape heads o f the multitape
machine.

270 Chapter 8 Turing Machines

Track 5

Track 4

Track 3

Track 2

Track 1

The initial action of the simulation in the multitrack machine is to write # in the leftmost
position of track 5 and X in the leftmost positions of tracks 2 and 4. The remainder of the
computation of the multitrack machine consists of a sequence of actions that simulate the
transitions of the two-tape machine.

A transition of the two-tape machine is determined by the two symbols being scanned
and the machine state. The simulation in the five-track machine records the symbols marked
by each of the X ’s. The states are 8-tuples of the form [j , qn x {, x2. >’|, y2, d h d2\, where
qi € Q; xh yt e £ U {I/}; and d, e {L, R, S, U). The element s represents the status of the
simulation of the transition of M. The symbol U, added to the tape alphabet and the set of
directions, indicates that this item is unknown.

Let S(qit jcj, x 2) = [qy >'|, d x\ y2, d2] be the applicable two-tape transition of M.
M 'begins the simulation of the transition in the state [/1 , qn U, U, U, U , U, U]. The
following five actions simulate the transition of M in the multitrack machine.

1. / I (find first symbol): M' moves to the right until it reads the X on track 2. State
[/ l , q,, X!, U, U, U, U, U] is entered, where jcj is the symbol in track 1 under the
X. After recording the symbol on track 1 in the state, M' returns to the initial position.
The # on track 5 is used to reposition the tape head.

2. / 2 (find second symbol): The same sequence of actions records the symbol beneath the
X on track 4. M' enters state [/2 , qt, x it x 2, U, U, U, U], where x 2 is the symbol
in track 3 under the X. The tape head is then returned to the initial position.

3. M' enters the state [p l, qr x t, x 2, Vj, y2, d\, d2], where the values qj, y |, y2, d\,
and d2 are obtained from the transition&(qh JC|, x 2). This state contains the information
needed to simulate the transition of the M.

4. p 1 (print first symbol): M' moves to the right to the X in track 2 and writes the symbol
on track 1. The X on track 2 is moved in the direction designated by d x. The machine

then returns to the initial position.

5. p2 (print second symbol): M' moves to the right to the X in track 4 and writes the
symbol y2 on track 3. The X on track 4 is moved in the direction designated by d2.

6. The simulation of the transition S(qh jcj, x 2) = [qy, y x, d\, y2, d2] terminates by return
ing the tape head to the initial position to process the subsequent transition.

If S(q,-, Jt|, x2) is undefined in the two-tape machine, the simulation halts after returning to
the initial position following step 2. A state [/2 , q,, x t, y lt U, U, U, U] is an accepting
state of the multitrack machine M' whenever qt is an accepting state of M.

X

a b b c c

X

b a c

8.6 Multitape Machines 271

The next two examples illustrate the use of the additional tapes to store and manipulate

data in a computation.

Example 8.6.2

The set [ak | it is a perfect square} is a recursively enumerable language. The design of a
three-tape machine that accepts this language is presented. Tape 1 contains the input string.
The input is compared with a string of X’s on tape 2 whose length is a perfect square. Tape 3
holds a string whose length is the square root of the string on tape 2. The initial configuration
for a computation with input aaaaa is

Tape 3 — k

Tape 2 — k2

Tape 1 — input a a a a a

t
<30

The values of k and k2 are incremented until the length of the string on tape 2 is greater
than or equal to the length of the input. A machine to perform these comparisons consists
of the following actions.

1. If the input is the null string, the computation halts in an accepting state. If not, tapes 2
and 3 are initialized by writing X in position one. The three tape heads are then moved
to position one.

2. Tape 3 now contains a sequence of k X ’s and tape 2 contains k 2 X ’s. Simultaneously,
the heads on tapes 1 and 2 move to the right while both heads scan nonblank squares.
The head reading tape 3 remains at position one.

a) If both heads simultaneously read a blank, the computation halts and the string is
accepted.

b) If tape head 1 reads a blank and tape head 2 an X, the computation halts and the
string is rejected.

3. If neither of the halting conditions occur, the tapes are reconfigured for comparison
with the next perfect square.

a) An X is added to the right end of the string of X 's on tape 2.

b) Two copies of the string on tape 3 are added to the right end of the string on tape 2.
This constructs a sequence of (k + l)2 X ’s on tape 2.

272 Chapter 8 Turing Machines

c) An X is added to the right end of the string of X ’s on tape 3. This constructs a
sequence of A: + 1 X ’s on tape 3.

d) The tape heads are then repositioned at position one of their respective tapes.

4. The computation continues with step 2.

Tracing the computation for the input string aaaaa, step 1 produces the configuration

Tape 3 — 1

Tape 2 — K

Tape 1 — input a a a a a

\ t

The simultaneous left-to-right movement of tape heads 1 and 2 halts when tape head 2
scans the blank in position two.

Tape 3 — 1

Tape 2 — l2

Tape 1 — input
L

Part (c) of step 3 reformats tapes 2 and 3 so that the input string can be compared with
the next perfect square.

Tape 3 — 2

Tape 2 — 22

Tape 1 — input

8.6 Multitape Machines 273

Another iteration of step 2 halts and rejects the input.

A machine that performs the preceding computation is defined by the following transitions:

S(qo, fl, B, B) = [<?!; B, R\ fl, R; B , /?] (initialize the tape)

S(q{, a, B, B) = [q2; a, S; X , S; X, S]

S(q2, a, X, X) = [q2, a, R ; X, R; X, 5]

S(q2, fl, fl, X) = [q3; B, S; B, S; X, S]

&(q2, a , B, X) = [q4; a, S ; X , R \ X , 5]

(compare strings on tapes 1 and 2)

(accept)

(rewrite tapes 2 and 3)5(94, a, B , X) = [<?5; a, S; X, R; X, 5]

<S(<?4 , a, B , B) = lq6;a, L; B, L \ X , L)

S(q5, a , fl, X) = [^4;a , 5; X, R ; X, /?]

5(<?6- a . X, X) = [g6; a, L \ X , L; X, L\ (reposition tape heads)

S(q6, a , X, fl) = [96;a , L; X, L; B, 5]

«(<?6, a , fl, fl) = [<76;a , L; fl, S; fl, S]

S(q6, fl, X, fl) = fe6; fl, 5; X, L; fl, 5]

S(<?6, fl, fl, fl) = [q2, fl, /?; fl, /{; fl, /?]. (repeat comparison cycle)

The accepting states are q\ and qy The null string is accepted in q x, and strings ak, where
k is a perfect square greater than zero, are accepted in q}.

Since the machine designed above halts for all input strings, we have shown that the
language {a* | k is a perfect square} is not only recursively enumerable but also recursive.

274 Chapter 8 Turing Machines

Example 8.6.3

The two-tape Turing machine

[x/xR, B/xR]

accepts the language {uu | « € {a, b}*}. The symbols x and y on the labels of the arcs
represent an arbitrary input symbol.

The computation begins by making a copy of the input on tape 2. When this is complete,
both tape heads are to the immediate right of the input. The tape heads now move back to
the left, with tape head 1 moving two squares for every one square that tape head 2 moves.
If the computation halts in q3, the input string has odd length and is rejected. The loop in
q4 compares the first half of the input with the second; if they match, the string is accepted
in state q5. □

8.7 Nondeterministic Turing Machines

A nondeterministic Turing machine may specify any finite number of transitions for a given
configuration. The components of a nondeterministic machine, with the exception of the
transition function, are identical to those of the standard Turing machine. Transitions in
a nondeterministic machine are defined by a function from Q x T to subsets of Q x T x
{£-,/?}.

Whenever the transition function indicates that more than one action is possible, a
computation arbitrarily chooses one of the transitions. An input string is accepted by a
nondeterministic machine if there is at least one computation that terminates in an accepting
state. The existence of other computations that halt in nonaccepting states or fail to halt
altogether is irrelevant. As usual, the language of a machine is the set of strings accepted
by the machine.

8.7 Nondeterministic Turing Machines 275

Example 8.7.1

The nondeterministic Turing machine

a!a R
b/bR
c/c R

x§> B/BR b/bR

c/c L

accepts strings containing a c preceded or followed by ab. The machine processes the input
in state q x until a c is encountered. When this occurs, the computation may continue in state
q |, enter state q2 to determine if the c is followed by ab, or enter q$ to determine if the c is
preceded by ab. In the language of nondeterminism, the computation chooses a c and then
chooses one of the conditions to check. □

The machine constructed in Example 8.7.1 accepts strings by final state. As with
standard machines, acceptance in nondeterministic Turing machines can be defined by final
state or by halting alone. A nondeterministic machine accepts a string u by halting if there
is at least one computation that halts normally when run with u. Exercise 24 establishes that
these alternative approaches accept the same languages.

Nondeterminism does not increase the capabilities of Turing computation; the lan
guages accepted by nondeterministic machines are precisely those accepted by deterministic
machines. To accomplish the transformation of a nondeterministic Turing machine to an
equivalent deterministic machine, we show that the multiple computations for a single input
string can by sequentially generated and examined.

A nondeterministic Turing machine may produce multiple computations for a single
input string. The computations can be systematically produced by ordering the alternative
transitions for a state, symbol pair. Let n be the maximum number of transitions defined for
any combination of state and tape symbol. The numbering assumes that S(qit x) defines n,
not necessarily distinct, transitions for every state qt and tape symbol x with S(qit x) ^ 0.
If the transition function defines fewer than n transitions, one transition is assigned several
numbers to complete the ordering.

A sequence (m(, . . . , mit mk), where each m, is a number from 1 to n, defines a
unique computation in the nondeterministic machine. The computation associated with this
sequence consists of k or fewer transitions. The j th transition is determined by the state, the
tape symbol scanned, and my, the y'th number in the sequence. Assume the j — 1st transition
leaves the machine in state q, scanning x. I f &(qh .*) = 0, the computation halts. Otherwise,
the machine executes the transition in 8(qh x) numbered m r

276 Chapter 8 Turing Machines

TABLE 8.1 Ordering of Transitions

State Symbol Transition State Symbol Transition

<?o B 1<?i, B, R
2qh B, R

3<?|, B, R

?2 a 1^3, a , R

2q3, a, R

3^3, a , R

<?i a 1<7i, a, R
2<?|, a, R

3<?|, a, R

<?3 b 1?4, b, R
2^4, b, R

3^4, b, R

<?i b lqi,b, R

2qt,b, R

3q\, b, R

<?5 b 1?6. b, L
2q6, b, L
3<?6, b, L

4i c 1<?I, c, R

2q2, c, R

3<7s, c. l

96 a lqlt a , L

2qlt a, L

3^7, a, L

The transitions of the nondeterministic machine in Example 8.7.1 can be ordered as
shown in Table 8.7.1. The computations defined by the input string acab and the sequences
(1, 1, 1, 1, 1), (1, 1, 2, 1, 1), and (2, 2, 3, 3, 1) are

q0BacabB 1

I- Bq^acabB 1
I- BaqtcabB 1

b Bacq^abB 1

I- Bacaq^bB 1
I- BacabqlB

q0BacabB 1

I- Bq\acabB 1

I- BaqicabB 2
b Bacq2abB 1

b Bacaq^bB 1

b BacabqlB

q0BacabB 2

Bq^acabB 2
- BaqicabB 3

*- BqsacabB.

The number on the right designates the transition used to obtain the subsequent configu
ration. The third computation terminates prematurely since no transition is defined when
the machine is in state q5 scanning an a. The string acab is accepted since the computation
defined by (1, 1,2, 1, 1) terminates in state q4.

Using the ability to sequentially produce the computations of a nondeterministic ma
chine, we will now show that every nondeterministic Turing machine can be transformed
into an equivalent deterministic machine. Let M = (Q, L , T, S, q0) be a nondetermin
istic machine that accepts strings by halting. We choose acceptance by halting because
this reduces the number of potential outcomes of a computation from three to two—a

8.7 Nondeterministic Turing Machines 277

computation halts (and accepts) or does not halt. Thus we have fewer cases to consider in
the proof. Assume that the transitions of M have been numbered according to the previous
scheme, with n the maximum number of transitions for a state, symbol pair. A deterministic
three-tape machine M' is constructed to accept the language of M. Acceptance in M' is also
defined by halting.

The machine M' is built to simulate the computations of M. The correspondence be
tween sequences (mj, . . . , m k) and computations of M' ensures that all possible computa
tions are examined. The role of the three tapes of M' are

Tape 1: stores the input string;

Tape 2: simulates the tape of M;

Tape 3: holds sequences of the form (m l......... mk) to guide the simulation.

A computation in M' consists of the actions:

1. A sequence of integers (mi, , mk) from 1 to n is written on tape 3.
*

2. The input string on tape 1 is copied to the standard input position on tape 2.

3. The computation of M defined by the sequence on tape 3 is simulated on tape 2.

4. If the simulation halts prior to executing k transitions, the computation o f M' halts and
accepts the input.

5. If the computation did not halt in step 3, the next sequence is generated on tape 3 and
the computation continues at step 2.

The simulation is guided by the sequence of values on tape 3. The deterministic Turing
machine in Figure 8.1 generates all finite-length sequences of integers from 1 to n, where
the symbols 1,2, . . . , n are individual tape symbols. Sequences of length 1 are generated
in numeric order, followed by sequences of length 2, length 3, and so on. A computation
begins in state q0 at position zero. When the tape head returns to position zero the tape
contains the next sequence of values. The notation i / i abbreviates 1/1, 2/2.......... n /n .

Using the exhaustive generation of numeric sequences, we now construct a determinis
tic three-tape machine M' that accepts L(M). A computation of the machine M ' interweaves
the generation of the sequences on tape 3 with the simulation of M on tape 2. M' halts when
the sequence on tape 3 defines a computation that halts in M. Recall that both M and M'
accept by halting.

Let E and T be the input and tape alphabets of M. The alphabets of M' are

EM' = E

r M' = I*. I x 6 n U [1......... n }.

Symbols of the form #x represent tape symbol x and are used to mark the leftmost square
on tape 2 during the simulation of the computation of M. The transitions of M ' are naturally
grouped by their function. States labeled qs j are used in the generation of a sequence on tape

278 Chapter 8 Turing Machines

(Rollover)
1/1 R

(Find end of sequence)

FICURE 8.1 Turing machine generating {7, 2, . . . , n}+.

3. These transitions are obtained from the machine in Figure 8.1. The tape heads reading
tapes 1 and 2 remain stationary during this operation.

5 (^ ,0, B, B, B) = fa,.,; B, 5; B, S; B, ft]

$(&,,. B, B, t) = f a , ,; B, S\ B, S; i, ft] t = 1 , . . . , n

S(qs.i , B , B, B) = faJ>2; B, 5; B, S; B, L]

8(q,t2, B, B, n) = faJi2; B, S; B, 5; 1, L]

&(4s,2’ B, B , t — 1) = [qs4 \ B, S; B, S ; t , L] t = 1, . . . , n — 1

S(qtt2, B, B, B) = [q,_3; B, 5; B , S; B, ft]

5(^.3 , B, B, 7) = faJ-3; B, S; B, 5; 1, ft]

<5(^.3, B, B, B) = faJ>4; B, S; B, S; 7, L]

B, B, 0 = faM ; B , S ; B , S , t , L] t - 1..........n

5(^,4 , B, B, B) = [qC'0- B, 5; B, 5; B, S]

The next step is to make a copy of the input on tape 2. The symbol #B is written in
position zero to designate the left boundary of the tape.

8.7 Nondeterministic Turing Machines 279

8(qCi0, B, B , B) = [qcA; B, R ;#B , R; B , S]

8(qc \, x , B, B) = [«7C>1; x, R \x , R \ B , S] for all x € T - {B}

8(qcA, B, B, B) = [qC'2; B , L; B, L; B, S]

8(qC'i, x , x , B) = [qc. i \ x , L ;x , L; B, 5] for all x e T

8(qC2> B , #B, B) = [^0; 5; #B, S; B, /?]

The transitions that simulate the computation of M on tape 2 of M' are obtained directly
from the transitions of M. If &(qh x) = [qjt y, d] is a transition of M assigned the number

/ in the ordering, then

8(qit B, x, 0 = [q j ; B, S \ y , d \ t , R]

8{qh B, #x, t) = [qy, B, S \# y , d ; t ,

are the corresponding transitions of M'.
If the sequence on tape 3 consists of k numbers, the simulation processes at most k

transitions. The computation of M' halts if the computation of M specified by the sequence
on tape 3 halts. When a blank is read on tape 3, the simulation has processed all of the
transitions designated by the current sequence. Before the next sequence is processed,
the result of the simulated computation must be erased from tape 2. To accomplish this,
the tape heads on tapes 2 and 3 are repositioned at the leftmost position in state qe q and
qe h respectively. The head on tape 2 then moves to the right, erasing the tape.

8(qj, B, x , B) = [<jv,o; B, S; x , 5; B, 5] for all x e T

8(q,-, B, #x, B) = B, S ,# x , S; B, 5] for all j e T

8(qe 0, B, x, B) = [qe>0; B, S , x , L, B, S] for all x € T

8(qe o, B, #x, B) = [qe \, B, S; B, S ; B, L] for alLc e T

B, B, t) = [qe j; B, S; B, S ; t , L] t = l , . . . , n

8(qeA, B, B, B) = lqea ; B, 5; B, /?; B, /?]

8{qet2i B, x , /) = 2; B, 5; B, i, fl] for all x e T and / = 1 , . . . , n

8(qe_2, B, B, B) = [qe£, B, 5; B, L; B, L]

5(^,3 , B, B, /) = 3; B, S; B, L; r, L] t = 1...........n

8(qe -$, B, B, B) = [<7Ji0; B, 5; B, S; B, 5]

When a blank is read on tape 3, the entire segment of the tape that may have been
accessed during the simulated computation has been erased. M' then returns the tape heads to
their initial position and enters qs 0 to generate the next sequence and continue the simulation
of computations.

280 Chapter 8 Turing Machines

The process of simulating computations of M, steps 2 through 5 of the algorithm, con
tinues until a sequence of numbers is generated on tape 3 that defines a halting computation.
The simulation of this computation causes M' to halt, accepting the input. If the input string
is not in L(M), the cycle of sequence generation and computation simulation in M' will

continue indefinitely.
The actions of the deterministic machine constructed following the preceding strategy

are illustrated using the nondeterministic machine from Example 8.7.1 and the numbering
of the transitions in Table 8.7.1. The first three transitions of the computation M defined by
the sequence (1, 3, 3, 2, 1) and input string accb are

q0BaccbB 1

h Bq^accbB 3

I- BaqiCcbB 3

I- Bq^accbB.

The sequence 1, 3, 3, 2,1 that designates the particular computation of M is written on tape
3 of M'. The configuration of the three-tape machine M' prior to the execution of the third
transition of M is

Transition 3 from state q x with M scanning a c causes the machine to print c, enter state q$,
and move to the left. This transition is simulated in M' by the transition 8'(q lt B, c , 3) =
[<75; B, S; c, L;3, R]. The transition of M' alters tape 2 as prescribed by the transition of M
and moves the head on tape 3 to designate the number of the subsequent transition.

Nondeterministic Turing machines can be defined with a multitrack tape, two-way tape,
or multiple tapes. Machines defined using these alternative configurations can also be shown
to accept precisely the recursively enumerable languages.

8.7 Nondeterministic Turing Machines 281

Like their deterministic counterparts, nondeterministic machines that accept by final
state can be used to show that a language is recursive. If every computation in the nondeter
ministic machine halts, so will every computation in the equivalent deterministic machine

(Exerecise 23).

Example 8.7.2

The two-tape nondeterministic machine

accepts the set of strings over [a, b) with a b in the middle. The transition from state q\ to
q2 on reading a b on tape 1 represents a guess that the b is in the middle o f the input. The
loop in state <y2 compares the number of symbols following the b to the number preceding
it. If a string is in L(M), one computation will enter upon reading the middle b and accept
the input. The computations for strings with no b’s halt in q t, and strings that do not have
a b in the middle halt in either q t or q2■ Since M halts for all inputs, L(M) is recursive. □

The next example illustrates the flexibility afforded by the combination of multitape
machines and the guess and check strategy of nondeterminism.

Example 8.7.3

Let M = (Q, E , T, 8, q0, F) be a standard Turing machine that accepts a language L.
We will design a two-tape nondeterministic machine M' that accepts strings over £* that
have a substring of length two or more in L. That is, L(M') = [u \ u = x y z , length(y) >
2 and y e L). A computation of M' with input u consists of the following steps:

1. Reading the input on tape 1 and nondeterministically choosing a position in the string
to begin copying to tape 2;

2. Copying from tape 1 to tape 2 and nondeterministically choosing a position to stop
copying;

3. Simulating the computation of M on tape 2.

The first two steps constitute the nondeterministic guess of a substring of u and the third
checks whether the substring is in L.

The states of M' are Q U [qs, qb, qc, qd, qe) with start state qs. The alphabets and final
states are the same as those of M. The transitions for steps 1 and 2 use states qs, qb, qc, qd,
and qe.

[a/aR, B/XR]
[b/bR, B/XR)

[a/aR, X/XL)
[b/b R, X/X L]

282 Chapter 8 Turing Machines

S \q „ B , B) = { [qb\ B, R ; B, «]}

S \q b, x , B) = { [qh\ x , R\ B, S], [qc\ x, R ;x , «]} for all x e 2

S \q c, x , B) = { [qc\ x , R \ x , R], [qd\x , R \ x, /?]} for all x € £

&'(qd, x, B) = { [qd;x , R\ B, S]} for all x e £

S'(qd, B , B) = { [qe\ B, 5; B, L]J

S'(qe, 5 , x) = { [qe\ B, 5; x, L]) for all x € £

s \q e, B , B) = { [q0; B, S ; S , 5]}

The transition from qb to qc initiates the copying of a substring of u onto tape 2. The second
transition in qc completes the selection of the substring. The tape head on tape 1 is moved
to the blank following the input in qd, and the head on tape 2 is returned to position zero
in qe.

After the nondeterministic selection of a substring, the transitions of M are run on
tape 2 to check whether the “guessed” substring is in L. The transitions for this part of the
computation are obtained directly from 5, the transition function of M:

S'(qh B, x) = { [qy, B, S; y, d}) whenever S(q,-, x) = [qj, y, d] is a transition of M.

The tape head reading tape 1 remains stationary while the computation of M is run on tape 2.
□

S.8 Turing Machines as Language Enumerators

In the preceding sections Turing machines have been formulated as language acceptors: A
machine is provided with an input string, and the result of the computation indicates the
acceptability of the input. Turing machines may also be designed to enumerate a language.
The computation of such a machine sequentially produces an exhaustive listing of the
elements of the language. An enumerating machine has no input; its computation continues
until it has generated every string in the language.

Like Turing machines that accept languages, there are a number of equivalent ways to
define an enumerating machine. We will use a jfc-tape deterministic machine, k > 2 , as the
underlying Turing machine model in the definition of enumerating machines. The first tape
is the output tape and the remaining tapes are work tapes. A special tape symbol # is used
on the output tape to separate the elements of the language that are generated during the
computation.

The machines considered in this section perform two distinct tasks, acceptance and
enumeration. To distinguish them, a machine that accepts a language will be denoted M
while an enumerating machine will be denoted E.

8.8 Turing Machines as Language Enumerators 283

Definition 8.8.1

A jfc-tape Turing machine E = (Q, E , T, <5, q0) enum erates the language L if

i) the computation begins with all tapes blank;

ii) with each transition, the tape head on tape 1 (the output tape) remains stationary or
moves to the right;

iii) at any point in the computation, the nonblank portion of tape 1 has the form

S#mi#m2# . . . #«*# or • • • #uk#v,

where ut G L and i> € £*;

iv) a string u will be written on tape 1 preceded and followed by # if, and only if, u G L.

The last condition indicates that the computation of a machine E that enumerates L
eventually writes every string in L on the output tape. Since all of the elements of a language
must be produced, a computation enumerating an infinite language will never halt. The
definition does not require a machine to halt even if it is enumerating a finite language.
Such a machine may continue indefinitely after writing the last element on the output tape.

Example 8.8.1

The machine E enumerates the language L
this language was given in Example 8.2.2.

[B/B R, B/B R] ̂ q [BW R, B/a S]

The computation of E begins by writing ## on the output tape, indicating that A e L.
Simultaneously, an a is written in position one of tape 2, with the head returning to tape

= [a'b'c' | i > 0). A Turing machine accepting

[B/aR, a/aR)

284 Chapter 8 Turing Machines

position zero. At this point, E enters the nonterminating loop described by the following

actions.

1. The tape heads move to the right, writing an a on the output tape for every a on the

work tape.

2. The head on the work tape then moves right to left through the a's and a b is written

on the output tape for each a.

3. The tape heads move to the right, writing a c on the output tape for every a on the work

tape.

4. An a is added to the end of the work tape and the head is moved to position one.

5. A # is written on the output tape.

After a string is completed on the output tape, the work tape contains the information
required to construct the next string in the enumeration. □

The definition of enumeration requires that each string in the language appear on the
output tape but permits a string to appear multiple times. Theorem 8.8.2 shows that any
language that is enumerated by a Turing machine can be enumerated by one in which each
string is written only once on the output tape.

Theorem 8.8.2

Let L be a language enumerated by a Turing machine E. Then there is a Turing machine E'
that enumerates L and each string in L appears only once on the output tape of E'.

Proof. Assume E is a k -tape machine enumerating L. A (.k + l)-tape machine E' that
satisfies the “single output" requirement can be built from the enumerating machine E.
Intuitively, E is a submachine of E' that produces strings to be considered for output by E'.
The output tape of E' is the additional tape added to E, while the output tape of E becomes
a work tape for E'. For convenience, we call tape 1 the output tape of E'. Tapes 2, 3, . . . ,
k + 1 are used to simulate E, with tape 2 being the output tape of the simulation. The actions
of E' consist of the following sequence of steps:

1. The computation begins by simulating the actions of E on tapes 2, 3, . . . , k + 1.

2. When the simulation of E writes #w# on tape 2, E' initiates a search procedure to see
if u already occurs on tape 2.

3. If u is not on tape 2, it is added to the output tape of E'.

4. The simulation of E is restarted to produce the next string.

Searching for another occurrence of u requires the tape head to examine the entire nonblank
portion of tape 2. Since tape 2 is not the output tape of E', the restriction that the tape head
on the output tape never move to the left is not violated. ■

Theorem 8.8.2 justifies the selection of the term enumerate to describe this type
of computation. The computation sequentially and exhaustively lists the strings in the

8.8 Turing Machines as Language Enumerators 285

language. The order in which the strings are produced defines a mapping from an initial
sequence of the natural numbers onto L. Thus we can talk about the zeroth string in L, the
first string in L, and so on. This ordering is machine-specific; another enumerating machine
may produce a completely different ordering.

Turing machine computations now have two distinct ways of defining a language: by
acceptance and by enumeration. We show that these two approaches produce the same

languages.

Lemma 8.8.3

If L is enumerated by a Turing machine, then L is recursively enumerable.

Proof. Assume that L is enumerated by a fc-tape Turing machine E . A (k + l)-tape machine
M accepting L can be constructed from E. The additional tape of M is the input tape; the
remaining k tapes allow M to simulate the computation of E. The computation of M begins
with a string u on its input tape. Next M simulates the computation of E. When the simulation
of E writes #, a string i » e L has been generated. M then compares u with w and accepts u
if u = w. Otherwise, the simulation of E is used to generate another string from L and the
comparison cycle is repeated. If u e L, it will eventually be produced by E and consequently
accepted by M. ■

The proof that any recursively enumerable language L can be enumerated is compli
cated by the fact that a Turing machine M that accepts L need not halt for every input string.
A straightforward approach to enumerating L would be to build an enumerating machine
that simulates the computations of M to determine whether a string should be written on
the output tape. The actions of such a machine would be to

1. Generate a string u e E*.

2. Simulate the computation of M with input u.

3. If M accepts, write u on the output tape.

4. Continue at step 1 until all strings in S* have been tested.

The generate-and-test approach requires the ability to generate the entire set o f strings over
£ for testing. This presents no difficulty, as we will see later. However, step 2 of this naive
approach causes it to fail. It is possible to produce a string u for which the computation
of M does not terminate. In this case, no strings after u will be generated and tested for
membership in L.

To construct an enumerating machine, we first introduce the lexicographical ordering
of the input strings and provide a strategy to ensure that the enumerating machine E will
check every string in £*. The lexicographical ordering of the set of strings over a nonempty
alphabet E defines a one-to-one correspondence between the natural numbers and the strings
in £*.

286 Chapter 8 Turing Machines

Definition 8.8.4

Let £ = {a , , . . . , a„) be an alphabet. The lexicographical ordering lo o f £* is defined

recursively as follows:

i) Basis: lo(k) = 0, /o(a,) = i for / = 1, 2 , . . . , n.

ii) Recursive step: lo(a,u) = lo(u) + i ■ nUng'hiu).

The values assigned by the function lo define a total ordering on the set E*. Strings
u and v are said to satisfy u < v, u = v, and u > u if lo(u) < lo(v), lo(u) = lo(v), and
lo(u) > lo(v), respectively.

Example 8.8.2

Let £ = {a , b, c} and let a, b, and c be assigned the values 1, 2, and 3, respectively. The
lexicographical ordering produces

lo(k) = 0 lo(a) = 1 lo(aa) = 4 lo(ba) = 7 lo(ca) = 10 lo(aaa) = 13
lo(b) = 2 lo(ab) = 5 lo(bb) = & lo(cb) = 11 lo(aab) = 14
lo(c) = 3 lo(ac) = 6 lo (bc)= 9 lo(cc) = 12 lo(aac) = 15. □

Lemma 8.8.5

For any alphabet £ , there is a Turing machine Ee . that enumerates £* in lexicographical
order.

The construction of a machine that enumerates the set of strings over the alphabet {0 ,1 }
is left as an exercise.

The lexicographical ordering and a dovetailing technique are used to show that a
recursively enumerable language L can be enumerated by a Turing machine. Let M be
a Turing machine that accepts L. Recall that M need not halt for all input strings. The
lexicographical ordering produces a listing uQ = k, u x, u2, u3, . . . of the strings of E*. A
two-dimensional table is constructed whose columns are labeled by the strings of E* and
rows by the natural numbers.

[X.3] [«,.3] [«,,3]

[X.2J l«r 2]

Ik, I] [«,,H [«2.1]

[X.,0] [«,,0] l“2.0]

X "i “ 2

The [i, j] entry in this table is interpreted to mean “run machine M on input m, for j
steps." Using the technique presented in Example 1.4.2, the ordered pairs in the table can
be enumerated in a “diagonal by diagonal" manner (Exercise 33).

The machine E built to enumerate L interleaves the enumeration of the ordered pairs
with the computations of M. The computation of E is a loop that consists of the following

steps:

1. Generate an ordered pair [i, j].

2. Run a simulation of M with input u, for j transitions or until the simulation halts.

3. If M accepts, write m, on the output tape.

4. Continue with step 1.

If Uj e L, then the computation of M with input u, halts and accepts after k transitions, for
some number k. Thus Uj will be written to the output tape of E when the ordered pair [/, fc]
is processed. The second element in an ordered pair [i, j] ensures that the simulation M is
terminated after j steps. Consequently, no nonterminating computations are allowed and
each string in £* is examined.

Combining the preceding argument with Lemma 8.8.3 yields

Theorem 8.8.6

A language is recursively enumerable if, and only if, it can be enumerated by a Turing
machine.

A Turing machine that accepts a recursively enumerable language halts and accepts
every string in the language but is not required to halt when an input is a string that is not

i in the language. A language L is recursive if it is accepted by a machine that halts for all
input. Since every computation halts, such a machine provides a decision procedure for
determining membership in L. The family of recursive languages can also be defined by
enumerating Turing machines.

The definition of an enumerating Turing machine does not impose any restrictions
on the order in which the strings of the language are generated. Requiring the strings to
be generated in a predetermined computable order provides the additional information
needed to obtain negative answers to the membership question. Intuitively, the strategy
to determine whether a string u is in the language is to begin the enumerating machine and
compare u with each string that is produced. Eventually either u is output, in which case it
is accepted, or some string beyond u in the ordering is generated. Since the output strings
are produced according to the ordering, u has been passed and is not in the language. Thus
we are able to decide membership, and the language is recursive. Theorem 8.8.7 shows that
recursive languages may be characterized as the family of languages whose elements can
be enumerated in order.

Theorem 8.8.7

L is recursive if, and only if, L can be enumerated in lexicographical order.

8.8 Turing Machines as Language Enumerators 287

288 Chapter 8 Turing Machines

Proof. We first show that every recursive language can be enumerated in lexicographical
order. Let L be a recursive language over an alphabet E . Then it is accepted by some machine
M that halts for all input strings. A machine E that enumerates L in lexicographical order can
be constructed from M and the machine E j . that enumerates E* in lexicographical order.
The machine E is a hybrid, interleaving the computations of M and E^.. The computation

of E consists of the following loop:

1. The machine Ee . is run, producing a string u € E*.

2. M is run with input u.

3. If M accepts u, u is written on the output tape of E.

4. The generate-and-test loop continues with step 1.

Since M halts for all inputs, E cannot enter a nonterminating computation in step 2. Thus
each string u € E* will be generated and tested for membership in L.

Now we show that any language L that can be enumerated in lexicographical order is
recursive. This proof is divided into two cases based on the cardinality of L.

Case 1: L is finite. Then L is recursive since every finite language is recursive.

Case 2: L is infinite. The argument is similar to that given in Theorem 8.8.2 except that
the ordering is used to terminate the computation. As before, a (k + l)-tape machinc M
accepting L can be constructed from a fc-tape machine E that enumerates L in lexicographical
order. The additional tape of M is the input tape; the remaining k tapes allow M to simulate
the computations of E. The ordering of the strings produced by E provides the information
needed to halt M when the input is not in the language. The computation of M begins with
a string u on its input tape. Next M simulates the computation of E. When the simulation
produces a string w , M compares u with w. If u = w, then M halts and accepts. If w is
greater than u in the ordering, M halts rejecting the input. Finally, if w is less than u in
the ordering, then the simulation of E is restarted to produce another element of L and the
comparison cycle is repeated. ■

Exercises

1. Let M be the Turing machine defined by

s B a b c

?o <?l, B. R

<?i <72. B, L q \ ,a . R <7i, c, R <7i. c. R

?2 <72. c, L <?2. b, L

a) Trace the computation for the input string a a b c a .

b) Trace the computation for the input string bcbc.

Exercises 289

c) Give the state diagram of M.

d) Describe the result of a computation in M.

2. Let M be the Turing machine defined by

s B a b c

90 <?i, B, R

<7i 9i. B, R qu a, R q\,b , R <72. c. L

<?2 <?2’ b, L <72' a» £

a) Trace the computation for the input string abcab.

b) Trace the first six transitions of the computation for the input string abab.

c) Give the state diagram of M.

d) Describe the result of a computation in M.

3. Construct a Turing machine with input alphabet {a , b] to perform each of the following
operations. Note that the tape head is scanning position zero in state q f whenever a
computation terminates.

a) Move the input one space to the right. Input configuration q0BuB, result q jB B u B .

b) Concatenate a copy of the reversed input string to the input. Input configuration
qoBuB, result qj B uur B.

* c) Insert a blank between each of the input symbols. For example, input configuration
q0BabaB, result q jB a B b B a B .

d) Erase the b's from the input. For example, input configuration q0BbabaababB,

result qf BaaaaB.

4. Construct a Turing machine with input alphabet {a, b, c} that accepts strings in which
the first c is preceded by the substring aaa. A string must contain a c to be accepted
by the machine.

5. Construct a Turing machine with input alphabet {a, b) to accept each o f the following
languages by final state.

a) {a'bJ 11 > 0, j > i]

b) {a'bja'b-i \ i , j > 0)

c) Strings with the same number of a ’s and b's

d) {uuR |« € { a , b)*)

e) {m m | u 6 [a ,b }*}

6. Modify your solution to Exercise 5(a) to obtain a Turing machine that accepts the
language {a'b> \ i > 0, j > i) by halting.

7. An alternative method of acceptance by final state can be defined as follows: A string
u is accepted by a Turing machine M if the computation of M with input u enters

290 Chapter 8 Turing Machines

(but does not necessarily terminate in) a final state. With this definition, a string may
be accepted even though the computation of the machine does not terminate. Prove
that the languages accepted by this definition are precisely the recursively enumerable
languages.

8. The transitions of a one-tape deterministic Turing machine may be defined by a partial
function from Q x T to Q x T x [L, R, 5}, where 5 indicates that the tape head
remains stationary. Prove that machines defined in this manner accept precisely the
recursively enumerable languages.

9. An atomic Turing machine is one in which every transition consists o f a change of
state and one other action. The transition may write on the tape or move the tape head,
but not both. Prove that the atomic Turing machines accept precisely the recursively
enumerable languages.

* 10. A context-sensitive Turing machine is one in which the applicability o f a transition is
determined not only by the symbol scanned but also by the symbol in the tape square
to the right of the tape head. A transition has the form

S(qh xy) = [qjt z, d] x , y , z e T ; d e {L, R }.

When the machine is in state qt scanning an x, the transition may be applied only when
the tape position to the immediate right of the tape head contains a y. In this case the
x is replaced by z, the machine enters state qj, and the tape head moves in direction d.

a) Let M be a standard Turing machine. Define a context-sensitive Turing machine M'
that accepts L(M). Hint: Define the transition function of M' from that of M.

b) Let &(qh xy) = [qj, z, d] be a context-sensitive transition. Show that the result of
the application of this transition can be obtained by a sequence of standard Turing
machine transitions. You must consider the case both when transition 6(^,, xy) is
applicable and when it isn’t.

c) Use parts (a) and (b) to conclude that context-sensitive machines accept precisely
the recursively enumerable languages.

11. Prove that every recursively enumerable language is accepted by a Turing machine with
a single accepting state.

12. Construct a Turing machine with two-way tape and input alphabet [a] that halts if
the tape contains a nonblank square. The symbol a may be anywhere on the tape, not
necessarily to the immediate right of the tape head.

13. A two-dimensional Turing machine is one in which the tape consists of a two-
dimensional array of tape squares.

Exercises 291

A transition consists of rewriting a square and moving the head to any one of the four
adjacent squares. A computation begins with the tape head reading the comer position.
The transitions of the two-dimensional machine are written 8(qh x) = [qj, y, d], where
d is U (up), D (down), L (left), or R (right). Design a two-dimensional Turing machine
with input alphabet {a} that halts if the tape contains a nonblank square.

14. Let L be the set of palindromes over [a, b}.

a) Build a standard Turing machine that accepts L.

b) Build a two-tape machine that accepts L in which the computation with input u
should take no more than 3 length(u) -I- 4 transitions.

15. Construct a two-tape Turing machine with input alphabet {a, b) that accepts the lan
guage {a 'b2| | j > 0} in which the tape head on the input tape only moves from left to
right.

16. Construct a two-tape Turing machine with input alphabet [a, b, c) that accepts the
language {a'b 'c1 | i > 0}.

17. Construct a two-tape Turing machine with input alphabet {a, b} that accepts strings
with the same number of a ’s and b's. The computation with input u should take no
more than 2 length(u) + 3 transitions.

18. Construct a two-tape Turing machine that accepts strings in which each a is followed
by an increasing number of b's ; that is, the strings are of the form

abn'ab"2 . . . ab"k, k > 0,

where n | < n2 < ■ ■ ■ < n*.

19. Construct a nondeterministic Turing machine whose language is the set of strings over
{a, b] that contain a substring u satisfying the following two properties:

i) length(u) > 3;

ii) u contains the same number of a ’s and b's.

20. Construct a two-tape nondeterministic Turing machine that accepts L = [uvuw | u e
[a, />}5 , v, w € {a, 6}*). A string is in L if it contains two nonoverlapping identical

292 Chapter 8 Turing Machines

substrings of length 5. Every computation with input w should terminate after at most

2 length(w) + 2 transitions.

21. Construct a two-tape nondeterministic Turing machine that accepts L = {uu \ u e
{a, b)*}. Every computation with input w should terminate after at most 2 length(w) +
2 transitions. Using the deterministic machine from Example 8.6.2 that accepts L, what
is the maximum number of transitions required for a computation with an input of length
n?

22. Let M = (Q, E , T, 8, q0, F) be a standard Turing machine that accepts a language
L. Design a Turing machine M' (of any variety) that accepts a string w € E* if, and
only if, there is a substring of w in L.

23. Let L be a language accepted by a nondeterministic Turing machine in which every
computation terminates. Prove that L is recursive.

24. Prove the equivalent of Theorem 8.3.2 for nondeterministic Turing machines.

25. Prove that every finite language is recursive.

26. Prove that a language L is recursive if, and only if, L and L are recursively enumerable.

27. Prove that the recursive languages are closed under union, intersection, and comple
ment.

28. A machine that generates all sequences made up of integers from 1 to n was given in
Figure 8.1. Trace the first seven cycles of the machine for n = 3. A cycle consists of
the tape head returning to the initial position in state q0.

29. Build a Turing machine that enumerates the set of even length strings over {a}.

30. Build a Turing machine that enumerates the set {a'bj | 0 < / < j) .

31. Build a Turing machine that enumerates the set {a2" | n > 0}.

32. Build a Turing machine Ee » that enumerates 2* where E = {0, /}. Note: This machine
may be thought of as enumerating all finite-length bit strings.

* 33. Build a machine that enumerates the ordered pairs N x N. Represent a number n by a
string of n + 1 / ’s. The output for ordered pair [i, j] should consist of the representation
of the number i followed by a blank followed by the representation of j . The markers
should surround the entire ordered pair.

34. In Theorem 8.8.7, the proof that every recursive language can be enumerated in
lexicographical order considered the cases of finite and infinite languages separately.
The argument for an infinite language may not be sufficient for a finite language. Why?

35. Define the components of a two-track nondeterministic Turing machine. Prove that
these machines accept precisely the recursively enumerable languages.

36. Prove that every context-free language is recursive. Hint: Construct a two-tape nonde
terministic Turing machine that simulates the computation of a pushdown automaton.

Bibliographic Notes 293

Bibliographic Notes

The Turing machine was introduced by Turing [1936] as a model for algorithmic compu
tation. Turing’s original machine was deterministic, consisting of a two-way tape and a
single tape head. Independently, Post [1936] introduced a family of abstract machines with
the same computational capabilities as Turing machines.

The use of Turing machines for the computation of functions is presented in Chapter 9.
The capabilities and limitations of Turing machines as language acceptors are examined in
Chapters 10 and 11. The books by Kleene [1952], Minsky [1967], Brainerd and Landweber
[1974], and Hennie [1977] give an introduction to computability and Turing machines.

CHAPTER 9

Turing Computable Functions

In the preceding chapter Turing machines provided the computational framework for ac
cepting languages. The result of a computation was determined by final state or by halting.
In either case there are only two possible outcomes: accept or reject. The result of a Turing
machine computation can also be defined in terms of the symbols written on the tape when
the computation terminates. Defining the result in terms of the halting tape configuration
permits an infinite number of possible outcomes. In this manner, the computations of a Tur
ing machine produce a mapping between input strings and output strings; that is, the Turing
machine computes a function. When the strings are interpreted as natural numbers, Turing
machines can be used to compute number-theoretic functions. We will show that several im
portant number-theoretic functions are Turing computable and that computability is closed
under the composition of functions. In Chapter 13 we will categorize the entire family of
functions that can be computed by Turing machines.

The current chapter ends by outlining how a high-level programming language could
be defined using the Turing machine architecture. This brings Turing machine computations
closer to the computational paradigm with which we are most familiar—the modern-day
computer.

9.1 Computation o f Functions

A function / : X —» Y is a mapping that assigns at most one value from the set Y to each
element of the domain X. Adopting a computational viewpoint, we refer to the variables of
/ as the input of the function. The definition of a function does not specify how to obtain

295

296 C h a p t e r 9 Tur ing C o m p u ta b le F u n c t io n s

f (x) , the value assigned to * by the function / , from the input x. Turing machines will be
designed to compute the values of functions. The domain and range of a function computed
by a Turing machine consist of strings over the input alphabet of the machine.

A Turing machine that computes a function has two distinguished states: the initial
state q0 and the halting state qf . A computation begins with a transition from state q0 that
positions the tape head at the beginning of the input string. The state q0 is never reentered;
its sole purpose is to initiate the computation. All computations that terminate do so in
state q j with the value of the function written on the tape beginning at position one. These
conditions are formalized in Definition 9.1.1.

Definition 9.1.1

A deterministic one-tape Turing machine M = (Q, E , T, 8, q$% q j) computes the unary
function / : E* —»• E* if

i) there is only one transition from the state q0 and it has the form 8(q0, B) = [qh B, fl];

ii) there are no transitions of the form 8(qt , x) = [q0, y, d] for any qt € Q, x, y e f \ and
d € {L, fl);

iii) there are no transitions of the form 8(q f , B)\

iv) the computation with input u halts in the configuration q j B v B whenever f (u) = v,
and

v) the computation continues indefinitely whenever / («) t-

A function is said to be Turing computable if there is a Turing machine that computes
it. A Turing machine that computes a function / may fail to halt for an input string u. In
this case, / is undefined for u. Thus Turing machines can compute both total and partial
functions.

An arbitrary function need not have the same domain and range. Turing machines can be
designed to compute functions from E* to a specific set R by designating an input alphabet
E and a range R. Condition (iv) is then interpreted as requiring the string v to be an element
of R.

To highlight the distinguished states qQ and q f , a Turing machine M that computes a
function is depicted by the diagram

Intuitively, the computation remains inside the box labeled M until termination. This
diagram is somewhat simplistic since Definition 9.1.1 permits multiple transitions to state q f
and transitions from q f . However, condition (iii) ensures that there are no transitions from
q f when the machine is scanning a blank. When this occurs, the computation terminates
with the result written on the tape.

M

9.1 C o m p u ta t i o n o f F u n c t io n s 297

Example 9.1.1

The Turing machine

M:

b /b R
B /B R

ata R
b /b R

a /B L
b /B L

X§>
B/B R a! a R B IBL

computes the partial function / from [a, b}* to {a , b}* defined by

/ («) =
X if u contains an a
t otherwise.

The function / is undefined if the input does not contain an a. In this case the machine
moves indefinitely to the right in state q |. When an a is encountered, the machine enters
state qi and reads the remainder of the input. The computation is completed by erasing the
input while returning to the initial position. A computation that terminates produces the
configuration q j B B designating the null string as the result. □

The machine M in Example 9.1.1 was designed to compute the unary function / . It
should be neither surprising nor alarming that computations of M do not satisfy the require
ments of Definition 9.1.1 when the input does not have the anticipated form. A computation
of M initiated with input B b B b B a B terminates in the configuration B b B b q fB . In this halt
ing configuration, the tape does not contain a single value and the tape head is not in the
correct position. This is just another manifestation of the time-honored “garbage in, garbage
out” principle of computer science.

Functions with more than one argument are computed in a similar manner. The input
is placed on the tape with the arguments separated by blanks. The initial configuration of a
computation of a ternary function / with input aba, bbb, and bab is

b b b b a b

\h i

If f {aba, bbb, bab) is defined, the computation terminates with the configuration
q / B f (aba, bbb, bab)B. The initial configuration for the computation of / (aa, X, bb) is

a a b b

0

The consecutive blanks in tape positions three and four indicate that the second argument
is the null string.

298 C h a p t e r 9 Tur ing C o m p u ta b le F u n c t io n s

Example 9.1.2

The Turing machine

B/BR

a/a R
b/bR

B/BR

B/B

B/B

computes the binary function of concatenation of strings over [a, b}. The initial configura
tion of a computation with input strings u and v has the form q0B u B vB . Either or both of
the input strings may be null.

The initial string is read in state q x. The cycle formed by states q2, q-}, <7 5 , q2 translate5

an a one position to the left. Similarly, q2, q4, q$, q2 shift a b to the left. These cycles
are repeated until the entire second argument has been translated one position to the left,
producing the configuration q ^ B u vB . □

Turing machines that compute functions can also be used to accept languages. The
characteristic function of a language L is a function x l : E* {0, 1} defined by

A language L is recursive if there is a Turing machine M that computes the characteristic
function xl- The results of the computations of M indicate the acceptability of strings. A
machine that computes the partial characteristic function

shows that L is recursively enumerable. Exercises 2, 3, and 4 establish the equivalence
between acceptance of a language by a Turing machine and the computability o f its char
acteristic function.

1 i f w e L
0 if u & L.

1 if u e L
0 or t if u & L

9 .2 N u m e r i c C o m p u t a t i o n 299

9.2 Numeric Computation

We have seen that Turing machines can be used to compute the values of functions whose
domain and range consist of strings over the input alphabet. In this section we turn our atten
tion to numeric computation, in particular the computation of number-theoretic functions.
A number-theoretic function is a function of the form / : N x N x - - - x N - > N . The do
main consists of natural numbers or n-tuples of natural numbers. The function sq : N -* N
defined by sq(n) = n2 is a unary number-theoretic function. The standard operations of
addition and multiplication are binary number-theoretic functions.

The transition from symbolic to numeric computation requires only a change of per
spective since numbers are represented by strings of symbols. The input alphabet of the
Turing machine is determined by the representation of the natural numbers used in the
computation. We will represent the natural number n by the string l n+l. The number zero
is represented by the string 1, the number one by 11, and so on. This notational scheme is
known as the unary representation of the natural numbers. The unary representation of a
natural number n is denoted n. When numbers are encoded using the unary representation,
the input alphabet for a machine that computes a number-theoretic function is the singleton
set {7}.

The computation of / (2 , 0, 3) in a Turing machine that computes a ternary number-
theoretic function / begins with the machine configuration

%

If / (2 , 0, 3) = 4, the computation terminates with the configuration

1 1 1 1 1

A ^-variable total number-theoretic function r : N x N x • ■ ■ x N -> {0, 1} defines a
k-ary relation R on the domain of the function. The relation is defined by

[«!, n2, . . . , « *] e R if r (n t, n2, . . . , » *) = 1

[«!. «2......... "*] £ R if n2...........nk) = 0 .

The function r is called the characteristic function of the relation R. A relation is Turing
computable if its characteristic function is Turing computable.

We will now construct Turing machines that compute several simple, but important,
number-theoretic functions. The functions are denoted by lowercase letters and the corre
sponding machines by capital letters.

300 C h a p t e r 9 Turing

The successor function:

S:

The zero function: z(n) = I

Z: X & H —

The empty function: e (n) '

E:

The machine that computes the successor simply adds a 1 to the right end of the input
string. The zero function is computed by erasing the input and writing 1 in tape position
one. The empty function is undefined for all arguments; the machine moves indefinitely to
the right in state q x.

The zero function is also computed by the machine

1/B R BIB L

That two machines compute the same function illustrates the difference between functions
and algorithms. A function is a mapping from elements in the domain to elements in the
range. A Turing machine mechanically computes the value of the function whenever the
function is defined. The difference is that of definition and computation. In Section 9.5 we
will see that there are number-theoretic functions that cannot be computed by any Turing
machine.

The value of the ^-variable projection function is defined as the /' th argument

of the input, p*** (« |, n2, nk) = The superscript k specifies the number of
arguments and the subscript designates the argument that defines the result of the projection.
The superscript is placed in parentheses so that it is not mistaken for an exponent. The
machine that computes p*** leaves the first argument unchanged and erases the remaining
arguments.

1/1R 1/BR 1/BR B/BL 111 L

o m p u t a b l e F u n c t io n s

1) = n + 1

1/1R 1/IP

X§>
B /B R V r v B H L

111 R 1/B L

B /B R
1/1 R

Xg) b/sR

9.3 S e q u e n t ia l O p e r a t io n o f T u r in g M a c h in e s 3 0 1

The function maps a single input to itself. This function is also called the identity

function and is denoted id. Machines P1** that compute p{f will be designed in Exam

ple 9.3.1.

Example 9.2.1

The Turing machine A computes the binary function defined by the addition of natural
numbers.

1/1R 1/1R 111 L

A:

The unary representations of natural numbers n and m are 7n+l and /m+l. The sum of these
numbers is represented by]n+m+t. This string is generated by replacing the blank between
the arguments with a 1 and erasing two l ’s from the right end of the second argument. □

Example 9.2.2

The predecessor function

. . . | 0 if n = 0
pred(n) = {

(n — 1 otherwise

is computed by the machine D (decrement):

111 R

For input greater than zero, the computation erases the rightmost 1 on the tape. □

9.3 Sequential Operation ofTuring Machines

Turing machines designed to accomplish a single task can be combined to construct ma
chines that perform complex computations. Intuitively, the combination is obtained by
running the machines sequentially. The result of one computation becomes the input for
the succeeding machine. A machine that computes the constant function c(n) = 1 can be

302 C h a p t e r 9 Turing C o m p u ta b l e F u n c t io n s

constructed by combining the machines that compute the zero and the successor functions.
Regardless of the input, a computation of the machine Z terminates with the value zero on
the tape. Running the machine S on this tape configuration produces the number one.

The computation of Z terminates with the tape head in position zero scanning a blank.
These are precisely the input conditions for the machine S. The initiation and termination
conditions of Definition 9.1.1 were introduced to facilitate this coupling of machines. The
handoff between machines is accomplished by identifying the final state of Z with the initial
state of S. Except for this handoff, the states of the two machines are assumed to be distinct.
This can be ensured by subscripting each state of the composite machine with the name of
the original machine.

1/1R 1/BL

The sequential combination of two machines is represented by the diagram

The state names are omitted from the initial and final nodes in the diagram since they may
be inferred from the constituent machines.

There are certain sequences of actions that frequently occur in a computation of a
Turing machine. Machines can be constructed to perform these recurring tasks. These
machines are designed in a manner that allows them to be used as components in more
complicated machines. Borrowing terminology from assembly language programming, we
call a machine constructed to perform a single simple task a macro.

The computations of a macro adhere to several of the restrictions introduced in Def
inition 9.1.1. The initial state q0 is used strictly to initiate the computation. Since these
machines are combined to construct more complex machines, we do not assume that a com
putation must begin with the tape head at position zero. We do assume, however, that each
computation begins with the machine scanning a blank. Depending upon the operation, the

9.3 S e q u e n t ia l O p e r a t io n o f T u r in g M a c h in e s 303

segment of the tape to the immediate right or left of the tape head will be examined by the
computation. A macro may contain several states in which a computation may terminate.
As with machines that compute functions, a macro is not permitted to contain a transition
of the form 8(q f , B) from any halting state q f .

A family of macros is often described by a schema. The macro MR, moves the tape
head to the right through i consecutive natural members (sequences of 1's) on the tape. MR!
is defined by the machine

111 R

MR* is constructed by adding states to move the tape head through the sequence of k natural
numbers.

1/1R 111 R 1/1R IU R

The move macros do not affect the tape to the left of the initial position of the tape head. A
computation of MR2 that begins with the configuration B n iq0Bn2B n)B n4B terminates in
the configuration BniBii2B n3q f B n 4B.

Macros, like Turing machines that compute functions, expect to be run with the input
having a specified form. The move right macro MR, requires a sequence of at least i natural
numbers to the immediate right of the tape at the initiation of a computation. The design
of a composite machine must ensure that the appropriate input configuration is provided to
each macro.

Several families of macros are defined by describing the results of a computation of the
machine. The computation of each macro remains within the segment of the tape indicated
by the initial and final blank in the description. The application of the macro will neither
access nor alter any portion of tape outside of these bounds. The location of the tape head
is indicated by the underscore. The double arrows indicate identical tape positions in the
before and after configurations.

ML* (move left):

B n xB n 2B . . . BrtkB k > 0

: i
B n lBrt2B . . . BnkB

304 C h a p t e r 9 Tur ing C o m p u ta b l e F u n c t io n s

FL (find left):

Ek (erase):

CPY* (copy):

FR (find right):

B B 'n B i > 0

: I

B ‘BnB

B n B 'B i > 0

I I

BnB ' B

B n \B n iB . . . B nkB k > 1

I I
B B . . . BB

Bn^BriiB . . . BnkB B B . . . B B k > 1

: : :
K n\B n2B . . . BnkBti\Bn2B . . . B n kB

CPY*, (copy through i numbers):

B n xB n 2B . . . BnkB nk+\ . . . B nk+jB B . . . B B k > 1

t i l l

Bn^BriiB . . . BnkB nk+ i. . . B n ^ B n x B ^ B . . . BnkB

T (translate):

B_B'nB i > 0

I I

BnB' B

The find macros move the tape head into a position to process the first natural number to
the right or left of the current position. Et erases a sequence of k natural numbers and halts
with the tape head in its original position.

The copy machines produce a copy of the designated number of integers. The segment
of the tape on which the copy is produced is assumed to be blank. CPY* , expects a sequence

9.3 S e q u e n t ia l O p e r a t i o n o f T u r in g M a c h in e s 305

of it + «' numbers followed by a blank segment large enough to hold a copy of the first k
numbers. The translate macro changes the location of the first natural number to the right
of the tape head. A computation terminates with the head in the position it occupied at the
beginning of the computation with the translated string to its immediate right.

The BRN (branch on zero) macro has two possible terminating states. The input to the
macro BRN, a single natural number, is used to select the halting state of the macro. The

branch macro is depicted

The computation of BRN does not alter the tape nor change the position of the tape head.
Consequently, it may be run in any configuration BnB. The branch macro is often used
in the construction of loops in composite machines and in the selection of alternative
computations.

Additional macros can be created using those already defined. The machine

X *)^ |cPY , , E, T MR, T - ►(*)-* ' ML

interchanges the order of two numbers. The tape configurations for this macro are

INT (interchange):

E n B m B B n+xB

i :

BmB7iBBn+lB

In Exercise 6, you are asked to construct a Turing machine for the macro INT that does not
leave the tape segment BnBm B.

Example 9.3.1

The computation of a machine that evaluates the projection function p*** consists of three
distinct actions: erasing the initial i — 1 arguments, translating the ith argument to tape
position one, and erasing the remainder of the input. A machine to compute p{k) can be
designed using the macros FR, FL, E,, MR,, and T.

X*)*| Ej-, [* Q * | T f * Q * | MR1 f* Q * | FR \~&*\ E*- rc- f* Q

306 C h a p t e r 9 Tur ing C o m p u ta b l e F u n c t io n s

Turing machines defined to compute functions can be used like macros in the design
of composite machines. Unlike the computations of the macros, there is no a priori bound
on the amount of tape required by a computation of such a machine. Consequently, these
machines should be run only when the input is followed by a completely blank tape.

Example 9.3.2

The macros and previously constructed machines can be used to design a Turing machine
that computes the function f (n) = 3n.

X*>*- CPY, -*(*}* ■ MR, -* -0 -*>C PY , -*<*}*■ A -* < * > ► ML, - * (*) * A

The machine A, constructed in Example 9.2.1, adds two natural numbers. The computation
of / («) combines the copy macro with A to add three copies of rt. A computation with input
rt generates the following sequence of tape configurations.

Machine Configuration

CPY,
BnB

BnBnB

MR, Bn BnB

CPY, Bn BnBnB

A Bn Bn +nB

ML, Bn B n + nB

A Bn + n + nB

Note that the addition machine A is run only when its arguments are the two rightmost
encoded numbers on the tape. □

Example 9.3.3

The one-variable constant function zero defined by z(rt) = 0, for all n e N , can be built from
the BRN macro and the machine D that computes the predecessor function.

9.3 S e q u e n t ia l O p e r a t i o n o f Tur ing M a c h in e s 307

Example 9.3.4

A Turing machine MULT is constructed to compute the multiplication of natural numbers.
Macros can be mixed with standard Turing machine transitions when designing a composite
machine. The conditions on the initial state of a macro permit the submachine to be entered
upon the processing of a blank from any state. The identification of the start state of a macro
with a state is depicted

(*>
B/BR

M

Since the macro is entered only upon the processing of a blank, transitions may also be
defined for state g,- with the tape head scanning nonblank tape symbols.

308 C h a p te r 9 Tur ing C o m p u ta b l e F u n c t io n s

If the first argument is zero, the computation erases the second argument, returns to
the initial position, and halts. Otherwise, a computation of MULT adds m to itself n times.
The addition is performed by copying m and then adding the copy to the previous total. The
number of iterations is recorded by replacing a 1 in the first argument with an X when a

copy is made. n

9.4 Composition of Functions

Using the interpretation of a function as a mapping from its domain to its range, we can
represent the unary number-theoretic functions g and h by the diagrams

A mapping from N to N can be obtained by identifying the range of g with the domain of
h and sequentially traversing the arrows in the diagrams.

0 -

The function obtained by this combination is called the composition of h with g. The
composition of unary functions is formally defined in Definition 9.4.1. Definition 9.4.2
extends the notion to n -variable functions.

Definition 9.4.1

Let g and h be unary number-theoretic functions. The composition of h with g is the unary
function / : N —>• N defined by

f (x) =

The composite function is denoted / = h o g.

t if g(x) t
t if g(x) = y and h(y) f
h(y) if g(.r) = y and h(y) i .

The value of the composite function / = h o g for input x is written / (x) = h(g(x)).
The latter expression is read “h of g of jr.” The value h(g(x)) is defined whenever g(x) is
defined and h is defined for the value g(x). Consequently, the composition of total functions
produces a total function.

From a computational viewpoint, the composition h o g consists of the sequential
evaluation of functions g and h . The computation of g provides the input for the computation
of h:

9.4 C o m p o s i t i o n o f F u n c t io n s 309

_L
evaluation

of g

x

_ _ L

evaluation
of h

Result h(g(x))

The composite function is defined only when the preceding sequence of computations can
be successfully completed.

Definition 9.4.2

Let Si. 82< ■ ■ ■ ’ Sn be ^-variable number-theoretic functions and let h be an « -variable
number-theoretic function. The fc-variable function / defined by

/ (* 1......... **) = h(gi (xl t xk) , g „ (x l y------ x k))

is called the composition of h with g |, g2, ■ . . , g n and written f = h o (gu . . . , gn). The
function / (* [......... x k) is undefined if either

i) £ ,- (* ! , . . . , xk) | for some 1 < i < n, or

ii) gi(x i......... xk) = y, for 1 < i < n and h (y x...........y„) f .

The general definition of composition of functions also admits a computational inter
pretation. The input is provided to each of the functions g, . These functions generate the
arguments of h.

Example 9.4.1

Consider the mapping defined by the composite function

add o , add o (p ^ * , p 1̂)) ,

where add(n, m) = n + m and c '^ is the three-variable constant function defined by

3 1 0 C h a p t e r 9 T ur ing C o m p u t a b l e F u n c t io n s

c<2> (” i» ” 2- " 3) = 2- The; composite is a three-variable function since the innermost func
tions of the composition, the functions that directly utilize the input, require three arguments.
The function adds the sum of the first and third arguments to the constant 2. The result for
input 1, 0, 3 is

add o (c°J ,a d d o (p l* \ p (^ » (l , 0 , 3)

= a d d o (c(*>(l, 0, 3), add o (p(f , p ^) (l , 0, 3))

= a dd(2, add(p™{ 1, 0, 3), 1, 0, 3)))

= a dd(2 , a < M (l , 3))

= add(2, 4)

= 6. □

A function obtained by composing Turing computable functions is itself Turing com
putable. The argument is constructive; a machine can be designed to compute the composite
function by combining the machines that compute the constituent functions and the macros
developed in the previous section.

Let gi and g2 be three-variable Turing computable functions and let h be a Turing
computable two-variable function. Since g,, g2, and h are computable, there are machines
G], G2, and H that compute them. The actions of a machine that computes the composite
function h o (g,, g2) are traced for input h ,, n2, and n3.

Machine Configuration

BnlBn2Bn3B

c p y 3 Bn]Bn2Bn3Bn1Bn2Bn3B
m r 3 Bn\Bn2Bn3BniBn2Brt3B

G, BnlBn2Bn3Bj;i(nl, n2, n3)B

ML3 BnxBn2Bn3Bgf(nu ”2> n3)B
c p y 3.. Bri\Bn1Bn-sBg\{nx, n2, n3)Bn\B7i2Bn3B

m r4 BnxBn2Bn3Bgx(n{, n2, n3)BnxBn2Bn3B

g2 Bn1Bn2Bn3Bgi(nl, n2, n3)Bg2(n,, n2, n3)B

ML, n2, n3)Bg2(n,, n2, n3)B

H BTi\Bn2Bn3Bh(g\(nu n2, n3), g2(nu n2, n3))B

ML3 BnxBn2Bn3Bh(gx(n\, n2, n3), g2(n{, n2, n3))B

e 3 BB . . . B/i(g,(n,, n2, n3), g2(nlt n2, n3))B

T Bh(gi(n i< «2. n3). «2(”|. "2. ”3))B

9.4 C o m p o s i t i o n o f F u n c t io n s 311

The computation copies the input and computes the value of g\ using the newly created copy
as the arguments. Since the machine G] does not move to the left of its starting position,
the original input remains unchanged. If n2, ” 3) ‘s undefined, the computation of
G! continues indefinitely. In this case the entire computation fails to terminate, correctly
indicating that /i(#i(«i, n 3), g2(nx, n2< ” 3)) ’s undefined. Upon the termination of Gj,
the input is copied and G2 is run on the new copy.

If both gi(/ii, rt2, n3) and g2(n 1, n2, n3) are defined, C 2 terminates with the input
for H on the tape preceded by the original input. The machine H is run computing
h(g t(nh n2, «3), g2(n j, n2, n3)). When the computation of H terminates, the result is trans
lated to the correct position.

The preceding construction easily generalizes to the composition of functions of any
number of variables, yielding Theorem 9.4.3.

Theorem 9.4.3

The Turing computable functions are closed under the operation of composition.

Theorem 9.4.3 can be used to show that a function / is Turing computable without
explicitly constructing a machine that computes it. If / can be defined as the composition
of Turing computable functions then, by Theorem 9.4.3, / is also Turing computable.

Example 9.4.2

The ^-variable constant functions c*** whose values are given by (/jt..........nk) = 1 are

Turing computable. The function c*** can be defined by

c<‘ > = s o s o • • • o s oz o p .

1 times

The projection function accepts the ^-variable input and passes the first value to the zero
function. The composition of i successor functions produces the desired value. Since each
of the functions in the composition is Turing computable, the function is T\iring
computable by Theorem 9.4.3. □

Example 9.4.3

The binary function smsq(n, m) = n2 + m 2 is Turing computable. The sum-of-squares
function can be written as the composition of functions

smsq = a d d o (sq o p(2), sq o p(2)).

312 C h a p t e r 9 Tur ing C o m p u ta b l e F u n c t io n s

where sq is defined by sq(n) = n2. The function add is computed by the machine con
structed in Example 9.2.1 and sq by

> © - CPY, < z> MULT

9.5 Uncomputable Functions

A function is Turing computable only if there is a Turing machine that computes it. The
existence of number-theoretic functions that are not Turing computable can be demonstrated
by a simple counting argument. We begin by showing that the set of computable functions
is countably infinite.

A Turing machine is completely defined by its transition function. The states and tape
alphabet used in computations of the machine can be extracted from the transitions. Consider
the machines Mj and M2 defined by

IIB R BIB L

Mr

I IB R BIB L

Both M, and M2 compute the unary constant function c(j*. The two machines differ only in
the names given to the states and the markers used during the computation. These symbols
have no effect on the result of a computation and hence the function computed by the
machine.

Since the names of the states and tape symbols other than B and 1 are immaterial,
we adopt the following conventions concerning the naming of the components of a Turing
machine:

i) The set of states is a finite subset of Q0 = {q, | i >0}.

ii) The input alphabet is {/}.

iii) The tape alphabet is a finite subset of the set r 0 = [B, I, X,- | i > 0}.

iv) The initial state is q0.

The transitions of a Turing machine have been specified using functional notation; the
transition defined for state qj and tape symbol x is represented by S(qt , x) = [qj, y , d].
This information can also be represented by the quintuple

Bll L

9.6 Tow ard a P r o g r a m m i n g L a n g u a g e 313

[<?,, *. >'. d, </y].

Milcurrent state

symbol scanned

symbol to write

direction

new state

With the preceding naming conventions, a transition of a Turing machine is an element of
the set T = Q0 x T0 x r 0 x {L, /?} x Q0. The set T is countable since it is the Cartesian

product of countable sets.
The transitions of a deterministic Turing machine form a finite subset o f T in which the

first two components of every element are distinct. There are only a countable number
of such subsets. It follows that the number of Turing computable functions is at most
countably infinite. On the other hand, the number of Turing computable functions is at
least countably infinite since there are countably many constant functions, all of which are
Turing computable by Example 9.4.2. These observations yield

Theorem 9.5.1

The set of Turing computable number-theoretic functions is countably infinite.

In Section 1.4, the diagonalization technique was used to prove that there are uncount
ably many total unary number-theoretic functions. Combining this with Theorem 9.5.1, we
obtain Corollary 9.5.2.

Corollary 9.5.2

There is a total unary number-theoretic function that is not Turing computable.

Corollary 9.5.2 vastly understates the relationship between computable and uncom-
putable functions. The former constitute a countable set and the latter an uncountable set.

9.6 Toward a Programming Language

High-level programming languages are the most commonly employed type of computa
tional system. A program defines a mechanistic and deterministic process, the hallmark of
algorithmic computation. The intuitive argument that the computation of a program written
in a programming language and executed on a computer can be simulated by a Turing ma
chine rests in the fact that a machine (computer) instruction simply changes the bits in some
location of memory. This is precisely the type of action performed by a Turing machine,
writing O' s and 1' s in memory. Although it may take a large number ofTuring machine tran
sitions to accomplish the task, it is not at all difficult to envision a sequence of transitions
that will access the correct position and rewrite the memory.

3 1 4 C h a p t e r 9 Tur ing C o m p u ta b l e F u n c t io n s

B v t B v2 B . . b ^ . b .vm b ■ Bv B B B B

input
variables

local
variables

registers and
work space

home
position

FIGURE 9.1 Turing machine architecture for high-level computation.

In this section we will explore the possibility of using the Turing machine architecture as
the underlying framework for high-level programming. The development of a programming
language based on the Turing machine architecture further demonstrates the power of the
Turing machine model. In describing our assembly language, we use Turing machines and
macros to define the operations. The objective of this section is not to create a functional
assembly language, but rather to demonstrate further the universality of the Turing machine
architecture.

The standard Turing machine provides the computational framework used throughout
this section. We will design an assembly language TM to bridge the gap between the Turing
machine architecture and programming languages. The first objective of the assembly
language is to provide a sequential description of the actions of the Turing machine. The
“program flow" of a Turing machine is determined by the arcs in the state diagram of the
machine. The flow of an assembly language program consists of the sequential execution
of the instructions unless this pattern is specifically altered by an instruction that redirects
the flow. In assembly language, branch and goto instructions are used to alter sequential
program flow. The second objective of the assembly language is to provide instructions that
simplify memory management.

The underlying architecture of the Turing machine used to evaluate an assembly
language program is pictured in Figure 9.1. The input values are assigned to variables
i>!.......... vk, andvn are the local variables used in the program. The values
of the variables are stored sequentially and separated by blanks. The input variables are
in the standard input position for a Turing machine evaluating a function. A TM program
begins by declaring the local variables used in the program. Each local variable is initialized
to 0 at the start of a computation.

When the initialization is complete, the tape head is stationed at the blank separating
the variables from the remainder of the tape. This will be referred to as the home position.
Between the evaluation of instructions, the tape head returns to the home position. To the
right of the home position is the Turing machine version of registers. The first value to
the right is considered to be in register 1, the second value in register 2, and so on. The
registers must be assigned sequentially; that is, register i may be written to or read from

9.6 Toward a Programming Language 315

TABLE 9.1 TM Instructions

TM Instruction Interpretation

INIT i>, Initialize local variable u, to 0.

HOME/ Move the tape head to the home position when / variables are allocated.

LOAD vit t Load value of variable u,- into register /.

STOR V, , t Store value in register / into location of u,-.

RETURN Vj Erase the variables and leave the value of v,- in the output position.

CLEAR / Erase value in register /.

BRN L, / Branch to instruction labeled L if value in register / is 0.

GOTOL Execute instruction labeled L.

NOP No operation (used in conjunction with GOTO commands).

INC/ Increment the value of register /.

DEC/ Decrement the value of register /.

ZERO / Replace value in register / with 0.

only if registers 1, 2, . . . , i — 1 are assigned values. The instructions of the language TM
are given in Table 9.1.

The tape initialization is accomplished using the INIT and HOME commands. INIT i>,
reserves the location for local variable u, and initializes the value to 0. Since variables
are stored sequentially on the tape, local variables must be initialized in order at the
beginning of a TM program. Upon completion of the initialization of the local variables, the
HOME instruction moves the tape head to the home position. These instructions are defined
by

Instruction Definition

INIT v, MR,_,
ZR

ML,-,
HOME/ MR,

where ZR is the macro that writes the value 0 to the immediate right of the tape head position
(Exercise 6). The initialization phase of a program with one input and two local variables
would produce the following sequence of Turing machine configurations:

316 C h a p t e r 9 T ur ing C o m p u ta b l e F u n c t io n s

Instruction Configuration

INIT2

INIT3

HOME 3

BiB

BlBOB

BlBQBOB

BlBOBOB

where i is the value of the input to the computation. The position of the tape head is indicated
by the underscore.

In TM, the LOAD and STOR instructions are used to access and store the values of the
variables. The objective of these instructions is to make the details of memory management
transparent to the user. In Turing machines there is no upper bound to the amount of tape that
may be required to store the value of a variable. The lack of a preassigned limit to the amount
of tape allotted to each variable complicates the memory management of a Turing machine.
This omission, however, is intentional, allowing maximum flexibility in Turing machine
computations. Assigning a fixed amount of memory to a variable, the standard approach
used by conventional compilers, causes an overflow error when the memory required to
store a value exceeds the preassigned allocation.

The STOR command takes the value from register / and stores it in the specified variable
location. The command may be used only when t is the largest register that has an assigned
value. In storing the value of register f in a variable v,, the proper spacing is maintained
for all the variables. The Turing machine implementation of the store command utilizes
the macro INT to move the value in the register to the proper position. The macro INT is
assumed to stay within the tape segment E x B y B (Exercise 6).

The STOR command is defined by

Instruction Definition In s tru c ts Definition

STOR vh 1
STOR vh t MR,_2

INT

MR
ER,

MR,
ER,

M L,_,

9 .6 T ow ard a P r o g r a m m i n g L a n g u a g e 3 1 7

where t > 1 and n is the total number of input and local variables. The exponents n — i + 1
and n — /' indicate repetition of the sequence of macros. After the value of register t is stored,

the register is erased.
The configurations of a Turing machine obtained by the execution of the instruction

STOR i>2 , 1 are traced to show the role of the macros in TM memory management. Prior to
the execution of the instruction, the tape head is at the home position.

Machine Configuration

BJT^Bv^Bv^B? B

ML, BvlBv^By^BrB

INT BWiBvlBr Bv^B

ML, BVjBy^BrBvjB

INT Bv\BrBv2Bv}B

MR, BvlBrByiBv^B

INT Bv]BrBv^Bv^B

MR, B~v\Br BvlBy^B

E, Bv]B7BU}B^B

The Turing machine implementation of the LOAD instruction simply copies the value
of variable d,- to the specified register.

Instruction Definition

LOAD V,-, t ML„_,+)

CPYi n_,+i+,

As previously mentioned, to load a value into register t requires registers 1, 2 , . . . , t — 1
to be filled. Thus the Turing machine must be in configuration

fiv, B v2 B . . . Bvk B vm B . . . B v n B7, B72 B . . . B r B

for the instruction LOAD v,-, t to be executed.
The instructions RETURN and CLEAR reconfigure the tape to return the result of

the computation. When the instruction RETURN t>,- is run with the tape head in the home
position and no registers allocated, the tape is rewritten placing the value of u, in the Turing
machine output position. CLEAR simply erases the value in the register.

3 1 8 C h a p t e r 9 T ur ing C o m p u ta b l e F u n c t io n s

Instruction Definition

RETURN Vi M L„

E,_,

T

M R,

FR

En-i+l
FL

C L E A R / M R ,.,

E,
M L,_ ,

Arithmetic operations alter the values in the registers. INC, DEC, and ZERO are defined
by the machines computing the successor, predecessor, and zero functions. Additional
arithmetic operations may be defined for our assembly language by creating a Turing
machine that computes the operation. For example, an assembly language instruction ADD
could be defined using the Turing machine implementation of addition given by the machine
A in Example 9.2.1. The resulting instruction ADD would add the values in registers 1 and
2 and store the result in register 1. While we could greatly increase the number of assembly
language instructions by adding additional arithmetic operations, INC, DEC, and ZERO
will be sufficient for purposes of developing our language.

The execution of assembly language instructions consists of the sequential operation
of the Turing machines and macros that define each of the instructions. The BRN and
GOTO instructions interrupt the sequential evaluation by explicitly specifying the next
instruction to be executed. GOTO L indicates that the instruction labeled L is the next
to be executed. BRN L,t tests register t before indicating the subsequent instruction. If the
register is nonzero, the instruction immediately following the branch is executed. Otherwise,
the statement labeled by L is executed. The Turing machine implementation of the branch
is illustrated by

BRN L,1

“instruction 1”

L “instruction 2”

9.6 Tow ard a P r o g r a m m in g L a n g u a g e 3 1 9

The value is tested, the register erased, and the machines that define the appropriate

instruction are then executed.

Example 9.6.1

The TM program with one input variable and two local variables defined below computes
the function f (n) = 2n + 1. The input variable is u, and the computation uses local variables

i>2 and 113.

INIT v2
INIT v,

HOME 3

LOAD V],l

STOR v2, 1

LI LOADv2,l
BRNL2.1

LOAD U|,l

INC
STOR vt, 1

LOAD u2, 1

DEC

STOR v2, 1
GOTO LI

L2 LOAD I/,, 1

INC

STOR u,, 1
RETURN v,

The variable v2 is used as a counter, which is decremented each time through the loop
defined by the label LI and the GOTO instruction. In each iteration, the value of Vj is
incremented. The loop is exited after rt iterations, where n is the input. Upon exiting the
loop, the value is incremented again and the result 2v j + 1 i\Ie ft on the tape. □

The objective of constructing the TM assembly language is to show that instructions of
Turing machines, like those of conventional machines, can be formulated as commands in a
higher-level language. Utilizing the standard approach to programming language definition
and compilation, the commands of a high-level language may be defined by a sequence of
the assembly language instructions. This would bring Turing machine computations even
closer in form to the algorithmic systems most familiar to many of us.

320 C h a p t e r 9 Tur ing C o m p u ta b le F u n c t io n s

Exercises

1. Construct Turing machines with input alphabet {a, b} that compute the specified func
tions. The symbols u and v represent arbitrary strings over {a , b}*.

a) / (“) = oaa

, . - [a if length(u) is even
b)/<“l = U
c) f (u) = u R

d) y (Wi J,) _ (« if length(u) > length(v)
| v otherwise

2. Let M = (Q, £ , T, S, q0, q f) be a Turing machine that computes the partial char
acteristic function of the language L. Use M to build a standard Turing machine that
accepts L.

3. Let M = (Q, £ , T, <5, q0, F) be a standard Turing machine that accepts a language
L. Construct a machine M' that computes the partial characteristic function of L. Recall
that the tape of M' must have the form qfBO B or q f B I B upon the completion of a

computation of x l -

4. Let L be a language over E and let

be the characteristic function of L.

a) If Xl *s Turing computable, prove that L is recursive.

b) If L is recursive, prove that there is a Turing machine that computes xl-

5. Construct Turing machines that compute the following number-theoretic functions and
relations. Do not use macros in the design of these machines.

a) / («) = 2n + 3

b) half(n) = [n/2J where |x j is the greatest integer less than or equal to x

c) / (n i , n2, n3) = n, + n2 + n}

1 if w e L
0 otherwise

d) even(n) =
1 if n is even
0 otherwise

e) eq (rt, m) =
1 if n = m
0 otherwise

1 if rt < m
0 otherwise

Exerc ises 321

. [n — m if n > m2) n — m = { „ , — .
(0 otherwise

6. Construct Turing machines that perform the actions specified by the following macros.
The computation should not leave the segment of the tape specified in the input

configuration.

a) ZR; input BBB, output BOB

b) FL; input BnB' B^ output BnB' B

c) E2; input B n B m B , output BB”+m+3B

d) T; input B B 'nB , output B n B 'B

e) BRN; input BnB, output BnB

f) INT; input B n B m B , output B m B n B

7. Use the macros and machines constructed in Sections 9.2 through 9.4 to design ma
chines that compute the following functions:

a) f (n) = 2« + 3

b) / (n) = n2 + 2/i + 2

c) / (/ i i , n2, /J3) = «i + n2 + «3

d) f (n , m) = m 3

e) f (n l, n 2, n 3) = n 2 + 2n3

8. Design machines that compute the following relations. You may use the macros and
machines constructed in Sections 9.2 through 9.4 and the machines constructed in
Exercise 5.

1 if n > m

>) g , <" - ”) = | 0 otherwise

b) pers („) — j * if /i is a perfect square
J 0 otherwise

c) divides(n, m) = I 1 if " > « , / « > 0, and m divides n
I 0 otherwise

9. Trace the actions of the machine MULT for computations with input

a) n = 0, m = 4

b) n = 1, m = 0

c) n = 2, m = 2.

10. Describe the mapping defined by each of the following composite functions:

a) add o (mult o (id, id), add o (id, id))

b) p ' f o (s o / / f , e o p ®)

c) mult o (c ^ , add o , s o p^))

d) mult o (mult o (p'J1, p 'J ') , p'J*).

322 C h a p t e r 9 T ur ing C o m p u ta b le F u n c t io n s

11. Give examples of total unary number-theoretic functions that satisfy the following
conditions:

a) g is not id and h is not id but g o h = id.

b) g is not a constant function and h is not a constant function but g o h is a constant
function.

12. Give examples of unary number-theoretic functions that satisfy the following condi
tions:

a) g is not one-to-one, h is not total, h o g is total.

b) gi=-e, h e, h o g = e, where e is the empty function.

c) g £ id , h ^ i d , h o g = id, where id is the identity function.

d) g is total, h is not one-to-one, h o g — id.

* 13. Let F be a Turing machine that computes a total unary number-theoretic function
/ . Design a machine that returns the first natural number n such that f (n) = 0 . A
computation should continue indefinitely if no such n exists. What will happen if the
function computed by F is not total?

14. Let F be a Turing machine that computes a total unary number-theoretic function / .
Design a machine that computes the function

n

8(n) =]T /(f)-
/=o

15. Let F and G be Turing machines that compute total unary number-theoretic functions
/ and g, respectively. Design a Turing machine that computes the function

n
h(n) = Y ^ e q (f (i) , g(i)).

i= 0

That is, h(n) is the number of values in the range 0 to n for which the functions / and
g assume the same value.

16. A unary relation R over N is Turing computable if its characteristic function is com
putable. Prove that every computable unary relation over N defines a recursive lan
guage. Hint: Construct a machine that accepts R from the machine that computes its
characteristic function.

* 17. Let R C {7j+ be a recursive language. Prove that R defines a computable unary relation
over N.

18. Prove that there are unary relations over N that are not Turing computable.

19. Let F be the set consisting of all total unary number-theoretic functions that satisfy
/ (/) = i for every even natural number Prove that there are functions in F that are
not Turing computable.

B ib l io g ra p h ic N o te s 323

20. Let U|, v2, 1)3 , u4 be a listing of the variables used in a TM program and assume register
1 contains a value. Trace the action of the instruction STOR u j.l. To trace the actions,
use the technique in Example 9.3.2.

21. Give a TM program that computes the function / (u j , v2) = t>i — v2.

Bibliographic Notes

The Turing machine assembly language provides an architecture that resembles another
family of abstract computing devices known as random access machines [Cook and Reck-
how, 1973]. Random access machines consist of an infinite number of memory locations
and a finite number of registers, each of which is capable of storing a single integer. The
instructions of a random access machine manipulate the registers and memory and perform
arithmetic operations. These machines provide an abstraction of the standard von Neumann
computer architecture. An introduction to random access machines and their equivalence
to Turing machines can be found in Aho, Hopcroft, and Ullman [1974].

CHAPTER 1 0

%

The Chomsky Hierarchy

In Chapter 3, regular and context-free grammars were introduced as rule-based systems
for generating the strings of language. A rule defines a string transformation, and a sen
tence of the language is obtained by a sequence of permissible transformations. The regular
and context-free grammars are subsets of the more general class of phrase-structure gram
mars. Phrase-structure grammars were proposed as syntactic models of natural language by
Noam Chomksy. In this chapter we will consider two additional families of phrase-structure
grammars, unrestricted grammars and context-sensitive grammars. The four families of
grammars, regular, context-free, context-sensitive, and unrestricted, make up the Chom
sky hierarchy of phrase-structure grammars, with each successive family in the hierarchy
permitting additional flexibility in the definition of a rule.

Automata were designed to mechanically recognize regular and context-free languages;
deterministic finite automata accept the languages generated by regular grammars and push
down automata accept the languages generated by context-free grammars. The relationship
between grammatical generation and mechanical acceptance is extended to the new families
of grammars. Turing machines are shown to accept the languages generated by unrestricted
grammars. A class of machines obtained by limiting the memory available to a Turing
machine accepts the languages generated by context-sensitive grammars.

10.1 Unrestricted Grammars

Phrase-structure grammars were designed to provide formal models of the syntax of natural
language. The name, phrase-structure, is based on the proposition that the sentences of

325

326 C h a p t e r 10 T h e C h o m s k y H ie ra rc h y

language may have several different syntactic patterns. The sentences themselves are made
up of phrases: noun phrases, verb phrases, and the like, that are arranged as specified by one
of the sentence patterns. The rules of the grammar define the structure of both the sentences

and the phrases. ,
The components of a phrase-structure grammar are the same as those o f the regular

and context-free grammars studied in Chapter 3. A phrase-structure grammar consists of a
finite set V of variables, an alphabet E , a start variable, and a set of rules. A rule has the
form u —* v, where u and v can be any combination of variables and terminals, and defines
a permissible string transformation. The application of a rule to a string z is a two-step

process that consists of

i) matching the left-hand side of the rule to a substring of z, and

ii) replacing the left-hand side with the right-hand side.

The application of the rule u —> v to the string xuy , written x u y => xvy , produces the string

xvy. A string q is derivable from p, p=> q, if there is a sequence of rule applications that
transforms p t o q . The language of G, denoted L(G), is the set of terminal strings derivable

from the start symbol S. Symbolically, L(G) = {u; G E* | S => u;}.
A family of grammars is defined by the restrictions placed on the form of the rules. A

context-free grammar is a phrase-structure grammar in which the left-hand side of every rule
is a single variable. The right-hand side can be any combination of variables and terminals.
Each rule of a regular grammar is required to have one of the following forms:

i) A -> aB,

ii) A —► a, or

iii) A k,

where A, B € V, and a e E.
The unrestricted grammars are the largest class of phrase-structure grammars. There

are no constraints on a rule other than requiring that the left-hand side must not be null.

Definition 10.1.1

An unrestricted gram m ar is a quadruple (V, E , P, S), where V is a finite set of variables;
E (the alphabet) is a finite set of terminal symbols; P is a set of rules; and 5 is a distin
guished element of V. A production of an unrestricted grammar has the form u -> v, where
u e (V U E)+ and u e (V U £)*. The sets V and E are assumed to be disjoint.

Two examples are given that illustrate the generative power of unrestricted grammars.
Example 10.1.1 shows that the language {a'b'c1 \ i > 0), which we know is not derivable by
any context-free grammar, can be generated by an unrestricted grammar with six rules. The
second example shows how unrestricted rules can be used to generate copies of a string.

10.1 U n r e s t r i c te d G r a m m a r s 327

Example 10.1.1

The unrestricted grammar

V = {S, A , C) S -*■ aAbc \ X

£ = [a, b , c } A —*■ aAbC \ X

Cb -*■ bC

Cc —* cc

with start symbol S generates the language {a'b'c1 1i >0}. The string a 'b 'c ' , i > 0, is
generated by a derivation that begins

S = > aAbc

a*A(bC y~xbc

= = ► a ' (b C y ~ lbc,

using the rule A —► a A B C to generate the i leading a ’s. The rule Cb —*■ bC allows the
final C to pass through the b's that separate it from the c ’s at the end of the string. Upon
reaching the leftmost c, the variable C is replaced with c. This process is repeated until each
occurrence of the variable C is moved to the right of all the b's and transformed into a c.

a

Example 10.1.2

The unrestricted grammar with terminal alphabet [a, b, [,]} defined by the productions

S - m n a l l W M m

n - » a T [A \ b T [B \ [

Aa —*• aA

Ab —> bA

Ba —*• aB

Bb —>• bB

A]—*, a]

B]-> b]

generates the language {«[«] | u e {a, Z>}*}.
The addition of an a or b to the left of the variable T is accompanied by the generation

of the variable A or B after T[. Using the rules that interchange the position o f a variable and
a terminal, the derivation progresses by passing the variable through the copy of the string
enclosed in the brackets. When the variable is adjacent to the symbol], the appropriate
terminal is added to the second string. The entire process may be repeated to generate

328 C h a p t e r 10 T h e C h o m s k y H ie ra rc h y

additional terminal symbols or be terminated by the application of the rule T[—* [. The

derivation

S=*aT[a]

=> aaT[Aa]

=> aaT [aA]

=> aaT[aa]

=> aabT [B aa]

^ aabT[aBa]

=>• aabT[aaB]

=> aabT[aab]

=> aab[aab]

exhibits the roles of the variables in a derivation. □

In the grammars in the two preceding examples, the left-hand side of each rule contained
a variable. This is not required by the definition of unrestricted grammar. However, the
imposition of the restriction that the left-hand side of a rule contain a variable does not
reduce the set of languages that can be generated (Exercise 3).

Throughout our study of formal languages, we have demonstrated a correspondence
between the generation of a language by a grammar and its acceptance by a finite-state
machine. Regular languages are accepted by finite automata and context-free languages
by pushdown automata. Unrestricted grammars provide the most flexible type of string
transformation; there are no conditions on the matching substring, nor on the replacement. It
would seem reasonable that generation by a unrestricted grammar corresponds to acceptance
by the most powerful type of abstract machine. This is indeed the case. The next two
theorems show that a language is generated by an unrestricted grammar if, and only if,
it is accepted by a Turing machine.

Theorem 10.1.2

LetG = (V, E , P, S) be an unrestricted grammar. Then L(G) is a recursively enumerable
language.

Proof. We will sketch the design of a three-tape nondeterministic Turing machine M that
accepts L(G). We will design M so that its computations simulate derivations o f the grammar
G. Tape 1 holds an input string p from £*. A representation of the rules of G is written on
tape 2. A rule u -> v is represented by the string u#v, where # is a tape symbol reserved for
this purpose. Rules are separated by two consecutive # ’s. The derivations of G are simulated
on tape 3.

A computation of the machine M that accepts L(G) consists of the following actions:

1. S is written on position one of tape 3.

2. The rules of G are written on tape 2.

10.1 U n re s t r i c te d G r a m m a r s 329

3. A rule u#v is chosen from tape 2.

4. An instance of the string u is chosen on tape 3, if one exists. Otherwise, the computation

halts in a rejecting state.

5. The string u is replaced by v on tape 3.

6. If the strings on tape 3 and tape 1 match, the computation halts in an accepting state.

7. The computation continues with step 3 to simulate another rule application.

Since the length of u and v may differ, the simulation of a rule application x u y => x v y may
require shifting the position of the string y.

For any string p 6 L(G), there is a sequence of rule applications that derives p. This
derivation will be examined by one of the nondeterministic computations of the machine M,
and M will accept p. Conversely, the actions of M on tape 3 generate precisely the strings
derivable from S in G. The only strings accepted by M are terminal strings in L(G). Thus,
L(M) = L(G). ■

Example 10.1.3

The language L = {a'b 'c ' 11 > 0} is generated by the rules

S —*■ aAbc | k

A -*• aAbC | A.

Cb -*■ bC

Cc -*■ cc.

Computations of the machine that accepts L simulate derivations of the grammar. The rules
of the grammar are represented on tape 2 by

BS#aAfcc##S###A#aAfcC##A###C/>#Z>C##Cc#ccB.

The rule S —► k is represented by the string S###. The first # separates the left-hand side
of the rule from the right-hand side. The right-hand side of the rule, the null string in this
case, is followed by the string ##. □

Theorem 10.1.3

Let L be a recursively enumerable language. Then there is an unrestricted grammar G with
L(G) = L.

Proof. Since L is recursively enumerable, it is accepted by a deterministic Turing machine
M = (Q, £ , T, 8, <7o> F). An unrestricted grammarG = (V, £ , P, 5) is designed whose
derivations simulate the computations of M. Using the representation of a Turing machine
configuration as a string, the effect of a Turing machine transition 8(qh x) = [qj, y , /?]
on the configuration uq,xvB can be represented by the string transformation u q ,xvB =>
uyqjvB.

330 C h a p t e r 10 T h e C h o m s k y H ie ra rc h y

The derivation of a terminal string in G consists of three distinct subderivations:

i) the generation of a string u[q0Bu] where u € E*,

ii) the simulation of a computation of M on the string [q0Bu], and

iii) if M accepts u, the removal of the simulation substring.

The grammar G contains a variable A,- for each terminal symbol a/ e E . These vari
ables, along with 5, T, [, and], are used in the generation of the string u[qaB u \ The
simulation of a computation uses variables corresponding to the states of M. The variables
E R and E L are used in the third phase of a derivation. The terminal symbols o f the grammar
are the elements of the input alphabet of M. Thus the alphabets of G are

£ = {«1. <*2......... an)

V = {5, T, E r , E l , [,], A,, A2, . . . , A„} U Q.

The rules for each of the three parts of a derivation are given separately. A derivation
begins by generating u[q0Bu], where u is an arbitrary string in E*. The strategy used for
generating strings of this form was presented in Example 10.1.2.

1. S —► a ; r [a ,] | [<7qS] for 1 < i < n

2. r[-»- a,T[A, | [q0B fo r i < i < n

3. Ajdj —*■ cijAj for 1 < i, j < n

4. A,] -*■ a,-] for 1 < i < n

The computation of the Turing machine with input u is simulated on the string [q0Bu],
The rules are obtained by rewriting the transitions of M as string transformations.

5. qtx y —> zq jy whenever S(qh x) = [qj, z, /?] and y e T

6. qtx] —► zqjB] whenever <5(qt , x) = [q j ,z , /?]

7. yqjX -*■ q jy z whenever 5(^ , x) = [qj, z, L] and y € T

If the computation of M halts in an accepting state, the derivation erases the string
within the brackets. The variable E R erases the string to the right of the halting position of
the tape head. Upon reaching the endmarker], the variable E L (erase left) is generated.

8. qtx - ► E R whenever 8(qh x) is undefined and qt e F

9. E rx - ► E r for x € T

10. £/?]->• e l

11. x E l -+ E l for x e f

12. [El ^ X

The derivation that begins by generating u[q0Bu] terminates with u whenever u e L(M). I f
u L(M), the brackets enclosing the simulation of the computation are never erased and
the derivation does not produce a terminal string. ■

10.1 U n re s t r i c te d G r a m m a r s 331

Example 10.1.4

The construction of a grammar that generates the language accepted by a Turing machine

is demonstrated using the machine M

a/aR
B/BR

that accepts a*b(a U b)*. When the first b is encountered, M halts and accepts in state q {.
The variables and terminals of G are

£ = [a, b]

V = {5, T, E r , E l , [,], A, X } U {<?(,, <7il-

The rules are given in three sets.

Input-generating rules:

5 aT[d\ | bT[b] \ [q0B]

T[~* aT [A | bT [X \ [q0B

Aa —*■ aA

Ab -*■ bA

A] —> a]

X o —► o X

X b ^ - b X

X) -+b]

Simulation rules:

Transition Rules

% o . B) = [?l. B, R] 9o Ba -*■ Bq<fl

q0Bb -*• B q xb

9o B B -»• B q tB

9o B] -*■ Bq,B]

i(9 |. a) ■■= [q\ ,a , /f] 9i aa —*■ aq^a

q tab - ► a q xb

q\aB -*■ aq\B

9 i“ l -*• a q xB\

«(?!. B) = [9 i. B, /?] q ,B a -» B<7,a

9 i Bb -*•
q , B B -*• Bq^B

9 i B] -* B q tB]

332 C h a p t e r 10 T h e C h o m s k y H ie ra rc h y

Erasure rules:

E r

E rO - ► E r a E L ->■ E l

E Rb -* E r b E L -> E l

E r B -* E r b e l -> E l

E r]^> E L [El ^ \

The computation that accepts the string a b in M and the corresponding derivation in

the grammar G that accepts ab are

q0BabB S = > a n a]

Bq\abB =>abT[Xa]

Baq\bB =► ab[q0BXa]

=>• ab[q0BaX]

=► ab[q0B ab]

=► ab[Bqtab]

=> ab[Baq\b)

=► a b[B aE R]

=> ab[BaEL

^ a b [B E i

=>ab[EL

=> ab.

Properties of unrestricted grammars can be used to establish closure results for recur
sively enumerable languages. The proofs, similar to those presented in Theorem 7.5.1 for
context-free languages, are left as exercises.

Theorem 10.1.4

The set of recursively enumerable languages is closed under union, concatenation, and
Kleene star.

10.2 Context-Sensitive Grammars

The context-sensitive grammars represent an intermediate step between the context-free and
the unrestricted grammars. No restrictions are placed on the left-hand side o f a production,
but the length of the right-hand side is required to be at least that of the left.

10.2 C on te x t -S e n s i t iv e G r a m m a r s 333

Definition 10.2.1

A phrase-structure grammar G = (V, 2 , P, 5) is called context-sensitive if each rule has
the form u -*■ v, where u € (V U £) + , v € (V U £)+ , and length(u) < length(v).

A rule that satisfies the conditions of Definition 10.2.1 is called monotonic. With each
application of a monotonic rule, the length of the derived string either remains the same or
increases. The language generated by a context-sensitive grammar is called, not surprisingly,

a context-sensitive language.
Context-sensitive grammars were originally defined as phrase-structure grammars in

which each rule has the form uA v —» uwv, where A € V, w € (V U E)+ , and u, v €
(VUE) * . The preceding rule indicates that the variable A can be replaced by w only when it
appears in the context of being preceded by u and followed by u. Clearly, every rule defined
in this manner is monotonic. On the other hand, a transformation defined by a monotonic
rule can be generated by a set of rules of the form u Av —> uwv (Exercises 10 and 11).

The monotonic property of the rules guarantees that the null string is not an element of a
context-sensitive language. Removing the ruIeS —► X from the grammar in Example 10.1.1,
we obtain the unrestricted grammar

S —>• aAbc

A -» aAbC | A

Cb -* bC

Cc -*■ cc

that generates the language [a'b'c1 11 >0}. The X-rule violates the monotonicity property
of context-sensitive rules. Replacing the 5 and A rules with

S -*■ aAbc | abc

A —> a A b C |a b C

produces an equivalent context-sensitive grammar.
A nondeterministic Turing machine, similar to the machine in Theorem 10.1.2, is

designed to accept a context-sensitive language. The noncontracting nature of the rules
permits the length of the input string to be used to terminate the simulation of an unsuccessful
derivation. When the length of the derived string surpasses that of the input, the computation
halts and rejects the string.

Theorem 10.2.2

Every context-sensitive language is recursive.

Proof. Following the approach developed in Theorem 10.1.2, derivations of the context-
sensitive grammar are simulated on a three-tape nondeterministic Turing machine M. The
entire derivation, rather than just the result, is recorded on tape 3. When a rule u -*■ v is

334 C h a p t e r 10 T h e C h o m s k y H ie ra rchy

applied to the string xu y on tape 3, the string x v y is written on the tape following xuy#.
The symbol # is used to separate the derived strings.

A computation of M with input string p performs the following sequence of actions:

1. 5# is written beginning at position one of tape 3.

2. The rules of G are written on tape 2.

3. A rule u#v is chosen from tape 2.

4. Let q# be the most recent string written on tape 3:

a) An instance of the string u in q is chosen, if one exists. In this case, q can be written
xuy.

b) Otherwise, the computation halts in a nonaccepting state.

5. x v y # is written on tape 3 immediately following q#.

6. a) If x v y = p, the computation halts in an accepting state.

b) If x v y occurs at another position on tape 3, the computation halts in a nonaccepting
state.

c) If length(xvy) > length(p), the computation halts in a nonaccepting state.

7. The computation continues with step 3 to simulate another rule application.

There are only a finite number of strings in (V U E) * with length less than or equal
to length(p). This implies that every derivation eventually halts, enters a cycle, or derives
a string of length greater than length(p). A computation halts at step 4 when the rule that

has been selected cannot be applied to the current string. Cyclic derivations, S =̂> w w,
are terminated in step 6(b). The length bound is used in step 6(c) to terminate all other
unsuccessful derivations.

Every string in L(G) is generated by a noncyclic derivation. The simulation of such
a derivation causes M to accept the string. Since every computation of M halts, L(G) is
recursive (Exercise 8.23). ■

10.3 Linear-Bounded Automata

We have examined several modifications of the standard Turing machine that do not alter
the set of languages accepted by the machines. Restricting the amount of the tape decreases
the capabilities of a Turing machine computation. A linear-bounded automaton is a Turing
machine in which the amount of available tape is determined by the length of the input
string. The input alphabet contains two symbols, (and), that designate the left and right
boundaries of the tape.

Definition 10.3.1

A linear-bounded autom aton (LBA) is a structure M = (Q, E , T, S, q0, (,), F), where
Q, E , T, 8, q0, and F are the same as for a nondeterministic Turing machine. The symbols
(an d) are distinguished elements of E.

10.3 L in e a r -B o u n d e d A u t o m a t a 335

The initial configuration of a computation is qo(w), requiring length(w) -I- 2 tape
positions. The endmarkers (and) are written on the tape but not considered part of the
input. A computation remains within the boundaries specified by (and). The endmarkers
may be read by the machine but cannot be erased. Transitions scanning { must designate
a move to the right and those reading > a move to the left. A string w € (£ — {(,)})* is
accepted by an LBA if a computation with input (w) halts in an accepting state.

We will show that every context-sensitive language is accepted by a linear-bounded
automaton. An LBA is constructed to simulate the derivations of the context-sensitive
grammar. The Turing machine constructed to simulate the derivations of an unrestricted
grammar begins by writing the rules of the grammar on one of the tapes. The restriction on
the amount of tape available to an LBA prohibits this approach. Instead, states and transitions
of the LBA are used to encode the rules.

The diagram in Figure 10.1 shows how transitions can simulate the application of the
rule Sa —► a AS. The application of the rule generates a string transformation uSav =>
uaASv. The first two transitions in the diagram verify that the string on the tape beginning
at the position of the tape head matches Sa. Before Sa is replaced with a AS, the string i; is
traversed to determine whether the derived string fits on the segment of the tape available
to the computation. If the > is read, the computation terminates. Otherwise, the string v is
shifted one position to the right and Sa is replaced by aAS.

B/BL

336 C h a p t e r 10 T h e C h o m s k y H ie ra rchy

Theorem 10.3.2

Let L be a context-sensitive language. Then there is a linear-bounded automaton M with

L(M) = L.

Proof. Since L is a context-sensitive language, L = L(G) for some context-sensitive
grammar G = (V, £ , P, S). An LBA M with a two-track tape is constructed to simulate
the derivations of G. The first track contains the input, including the endmarkers. The second
track holds the string generated by the simulated derivation.

Each rule of G is encoded in a submachine of M. A computation of M with input (p)
consists of the following sequence of actions:

1. S is written on track 2 in position one.

2. The tape head is moved into a position in which it scans a symbol of the string on track
2.

3. A rule u ->■ u is nondeterministically selected, and the computation attempts to apply
the rule.

4. a) If a substring on track 2 beginning at the position of the tape head does not match
u, the computation halts in a nonaccepting state.

b) If the tape head is scanning u but the string obtained by replacing u by v is greater
than length(p), then the computation halts in a nonaccepting state.

c) Otherwise, u is replaced by v on track 2.

5. If track 2 contains the string p, the computation halts in an accepting state.

6. The computation continues with step 2 to simulate another rule application.

The machine M has been defined to accept the language L. Every string in L is generated
by a derivation of G, and the simulation of the derivation causes M to accept the string.
Thus, L C L(M). Conversely, a computation of M with input (p) that halts in an accepting
state consists of a sequence of string transformations generated by steps 2 and 3. These
transformations define a derivation of p in G and L(M) C L . ■

To complete the characterization of context-sensitive languages as the set of languages
accepted by linear-bounded automata, we show that any language accepted by such an
automaton is generated by a context-sensitive grammar. The rules of the grammar are
constructed directly from the transitions of the automaton.

Theorem 10.3.3

Let L be a language accepted by a linear-bounded automaton. Then L — {A.} is a context-
sensitive language.

Proof. Let M = (Q, E M, F, 5, <?0, (,), F) be an LBA that accepts L. A context-
sensitive grammar G is designed to generate L(M). Employing the approach presented
in Theorem 10.1.3, a computation of M that accepts the input string p is simulated by a
derivation of p in G. The techniques used to construct an unrestricted grammar that simulates

10.3 L in e a r -B o u n d e d A u t o m a t a 337

a Turing machine computation cannot be employed since the rules that erase the simulation
do not satisfy the monotonicity restrictions of a context-sensitive grammar. The inability
to erase symbols in the derivation of a context-sensitive grammar restricts the length of
a derived string to that of the input. The simulation is accomplished by using composite

objects as variables.
The terminal alphabet of G is obtained from the input alphabet of M by deleting the

endmarkers. Ordered pairs are used as variables. The first component of an ordered pair is
a terminal symbol. The second is a string consisting of a combination of a tape symbol and
possibly a state and endmarker(s).

E g = s m - ((, >} = {«,, «2.........

V = {5, A, [a,, x], [a,, (x], [a,-, x>], [a,, <x>], [ah qkx], [«,, ?*{x],

[a,, (qkx], [a,, qkx)], [a,-, xqk)], [a,, <?*(x>], [a,-, (qkx)], [a,, (x ^)]) ,

where a, e 2 G, x e T, and qk € Q.
The S and A rules generate ordered pairs whose components represent the input string

and the initial configuration of a computation of M.

1. S —► [a,-, q0(ai]A

-* [a,-. <?o(«;}]
for every a, €

2. A —► [a;, a,]A

-*■ [a/. «i>]
for every a, e Eg

Derivations using the S and A rules generate sequences of ordered pairs of the form

[Of. ?o<«/>]• or

K ’ 4o(«,,] [«i2. ah] . . . [a,n, a,n>].

The string obtained by concatenating the elements in the first components of the ordered
pairs, a ^ a , , . . . ain, represents the input string to a computation of M. The second compo
nents produce qo(,a^ai2 . . . a^), the initial configuration of the LBA.

The rules that simulate a computation are obtained by rewriting the transitions of M as
transformations that alter the second components of the ordered pairs. Note that the second
components do not produce the string q0(); the computation with the null string as input is
not simulated by the grammar. The techniques presented in Theorem 10.1.3 can be modified
to produce the rules needed to simulate the computations of M. The details are left as an
exercise.

Upon the completion of a successful computation, the derivation must generate the
original input string. When an accepting configuration is generated, the variable with the
accepting state in the second component of the ordered pair is transformed into the terminal
symbol contained in the first component.

338 C h a p t e r 10 T h e C h o m s k y H ie ra rchy

3. [a,-, </*<*]-> a,
[a,, qk{x)]-> a(
whenever &(qk, <) = 0 and qk G F

[af, *<?*}]-»■ a,

whenever 5 (<7*,)) = 0 and ^ e F

K , <7*x] -+ a,
[a,-, <?**}] -> «,
[a, , (?**] - ► a,

[«i> -»■ «.
whenever 8(qk, x) = 0 and qk G F

The derivation is completed by transforming the remaining variables to the terminal
contained in the first component.

4. [a;, u]aj - ► a ,a , "
a ; [a,, u] -y flyfl,-
for every fly G E q and [a,-, «] G V ■

10.4 The Chomsky Hierarchy

Chomsky numbered the four families of grammars (and languages) that make up the
hierarchy. Unrestricted, context-sensitive, context-free, and regular grammars are referred
to as type 0, type 1, type 2, and type 3 grammars, respectively. The restrictions placed on
the rules increase with the number of the grammar. The nesting of the families of grammars
of the Chomsky hierarchy induces a nesting of the corresponding languages. Every context-
free language containing the null string is generated by a context-free grammar in which
S -*■ X is the only X-rule (Theorem 4.2.3). Removing this single A.-rule produces a context-
sensitive grammar that generates L — {A.}. Thus, the language L — {X} is context-sensitive
whenever L is context-free. Ignoring the complications presented by the null string in
context-sensitive languages, every type i language is also type (i — 1).

The preceding inclusions are proper. The set {a'b ' | i > 0} is context-free but not
regular (Theorem 6.5.1). Similarly, {a'b 'c1 | i > 0} is context-sensitive but not context-
free (Example 7.4.1). In Chapter 11, the language of the Halting Problem is shown to
be recursively enumerable but not recursive. Combining this result with Theorem 10.2.2
establishes the proper inclusion of context-sensitive languages in the set of recursively
enumerable languages.

Each class of languages in the Chomsky hierarchy has been characterized as the lan
guages generated by a family of grammars and accepted by a type of machine. The rela
tionships developed between generation and recognition are summarized in the following
table.

Exerc ises 339

Grammars Languages Accepting Machines

Type 0 grammars,
phrase-structure grammars,
unrestricted grammars

Recursively enumerable Turing machine,
nondeterministic
Turing machine

Type 1 grammars,
context-sensitive grammars,

Context-sensitive Linear-bounded
automata

Type 2 grammars,
context-free grammars

Context-free Pushdown automata

Type 3 grammars,
regular grammars,
left-linear grammars,
right-linear grammars

Regular Deterministic finite
automata,
nondeterministic finite
automata

Exercises

1. Design unrestricted grammars to generate the following languages:

a) [a 'bia 'bi \ i, j > 0}

b) {a'fc'c'd1 | i > 0}

c) {w w w | w € [a, b}*}

2. Prove that every terminal string generated by the grammar

has the form a 'b’c1 for some i > 0.

* 3. Prove that every recursively enumerable language is generated by a grammar in which
each rule has the form u v where u e V+ and v e (V U £)*.

4. Prove that the recursively enumerable languages are closed under the following oper
ations:

a) union

b) intersection

c) concatenation

d) Kleene star

e) homomorphic images

S -» aAbc | k

A —*■ aAbC | X

Cb —y bC

Cc -*■ cc

340 C h a p t e r 10 T h e C h o m s k y H ie ra rchy

5. Let M be the Turing machine

a/aR

a) Give a regular expression for L(M).

b) Using the techniques from Theorem 10.1.3, give the rules of an unrestricted gram
mar G that accepts L(M).

c) Trace the computation of M when run with input bab and give the corresponding
derivation in G.

6. Let G be the context-sensitive grammar

G: S - * S B A \ a

BA -> AB

aA -* aaB

B ^ - b .

a) Give a derivation of aabb.

b) What is L(G)?

c) Construct a context-free grammar that generates L(G).

7. Let L be the language [a'b2‘a‘ \ i >0}.

a) Use the pumping lemma for context-free languages to show that L is not context-
free.

b) Construct a context-sensitive grammar G that generates L.

c) Give the derivation of aabbbbaa in G.

d) Construct an LBA M that accepts L.

e) Trace the computation of M with input aabbbbaa.

* 8. Let L = {a'i-'c* | 0 < i < j < k}.

a) L is not context-free. Can this be proved using the pumping lemma for context-
free languages? If so, do so. If not, show that the pumping lemma is incapable of
establishing that L is not context-free.

b) Give a context-sensitive grammar that generates L.

9. Let M be an LBA with alphabet E . Outline a general approach to construct monotonic
rules that simulate the computation of M. The rules of the grammar should consist of
variables in the set

{[«i.*]. [«;.(*]. [«;.*)]. [a,-. {*>], [a,, qkx], [ah qk{x], [a,-, (qkx\ . [ah qkx) \

K - xqk)], [a,-, qk(x)], [«,-, {qkx)], [a,, {xqk)]\,

where a,- e E , x e T, and qt € Q. This completes the construction of the grammar in
Theorem 10.3.3.

B ib l io g ra p h ic N o t e s 341

10. Let u -*■ u be a monotonic rule. Construct a sequence of monotonic rules, each of whose
right-hand side has length two or less, that defines the same transformation as u -*■ v.

11. Construct a sequence of context-sensitive rules uA v -*• uw v that define the same
transformation as the monotonic rule A B —* CD. Hint: A sequence of three rules,
each of whose left-hand side and right-hand side is of length two, suffices.

12. Use the results from Exercises 10 and 11 to prove that every context-sensitive language
is generated by a grammar in which each rule has the form uA v —*■ uwv, where
w e (V U £) + and u, v € (V U £)*.

13. Let T be a full binary tree. A path through T is a sequence of left-down (L), right-down
(R), or up (U) moves. Thus paths may be identified with strings over £ = {L, R, U).
Consider the language L = [w e £* | w describes a path from the root back to the
root}. For example, A, LU, L R U U L U € L, and U, L R U L. Establish L’s place in
the Chomsky hierarchy.

14. Prove that the context-sensitive languages are not closed under arbitrary homomor-
phisms. A homomorphism is X-free if h(u) = \ implies u = X. Prove that the context-
sensitive grammars are closed under A-free homomorphisms.

15. Let L be a recursively enumerable language over £ and c a terminal symbol not in
£ . Show that there is a context-sensitive language L' over £ U {c} such that for every
w 6 £*, w e L if, and only if, wc' e L' for some i > 0.

16. Prove that every recursively enumerable language is the homomorphic image of a
context-sensitive language. Hint: Use Exercise 15.

17. A grammar is said to be context-sensitive with erasing if every rule has the form
uA v -*■ uvw, where A e V and u, u , i » 6 (V U £)*. Prove that this family of grammars
generates the recursively enumerable languages.

18. A linear-bounded automaton is deterministic if at most one transition is specified for
each state and tape symbol. Prove that every context-free language is accepted by a
deterministic LBA.

19. Let L be a context-sensitive language that is accepted by a deterministic LBA. Prove
that L is context-sensitive. Recall that a computation in an arbitrary deterministic LBA
need not halt.

Bibliographic Notes

The Chomsky hierarchy was introduced by Chomsky [1956, 1959], This paper includes the
proof that the unrestricted grammars generate precisely recursively enumerable languages.
Linear-bounded automata were presented in Myhill [1960], The relationship between linear-
bounded automata and context-sensitive languages was developed by Landweber [1963]
and Kuroda [1964]. Solutions to Exercises 10, 11, and 12, which exhibit the relationship
between monotonic and context-sensitive grammars, can be found in Kuroda [1964],

CHAPTER 11

Decision Problems and
the Church-Turing Thesis

In the preceding chapters Turing machines were used to detect patterns in strings, to
recognize languages, and to compute functions. Many interesting problems, however, are
posed at a higher level than string recognition or manipulation. For example, we may be
interested in determining answers to questions of the form: “Is a natural number a perfect
square?” Or “Does a graph have a cycle?” Or “Does the computation of a Turing machine
halt before the 20th transition?” Each of these general questions describes a decision
problem.

Formally, a decision problem P is a set of related questions each of which has a yes
or no answer. The decision problem of determining if a natural number is a perfect square
consists of the following questions:

p0: Is 0 a perfect square?

P \ . Is 1 a perfect square?

Pi- Is 2 a perfect square?

Each individual question is referred to as an instance of the problem. A solution to a decision
problem P is an algorithm that determines the appropriate answer to every question p e P.
A decision problem is said to be decidable if it has a solution.

Since the solution to a decision problem is an algorithm, a review o f our intuitive
notion of algorithmic computation may be beneficial. We have not defined, and probably
cannot precisely define, the term algorithm. This notion falls into the category of “I can’t
describe it but I know one when I see one.” We can, however, list several properties that

343

344 C h a p t e r 11 D e c is io n P r o b le m s a n d t h e C hu rc h -T u r in g T h e s i s

seem fundamental to the concept of algorithm. An algorithm that solves a decision problem

should be

• Complete: It produces the correct answer for each problem instance.

• Mechanistic: It consists of a finite sequence of instructions, each of which can be carried
out without requiring insight, ingenuity, or guesswork.

• Deterministic: When presented with identical input, it always performs the same

computation.

A procedure that satisfies the preceding properties is often called effective.
The computations of a standard Turing machine are clearly mechanistic and determin

istic. A Turing machine solution that halts for every input string is also complete. Because
of the intuitive effectiveness of their computations, we will use Turing machines as the
framework for solving decision problems. The transformation of problem instances into
input strings for a Turing machine constitutes the representation of the decision problem.
A problem instance is answered affirmatively if the corresponding input string is accepted
by the Turing machine and negatively if it is rejected.

The Church-Turing Thesis for decision problems asserts that a Turing machine can be
designed to solve any decision problem that is solvable by any effective procedure. A more
general interpretation of the Church-Turing Thesis is that any procedure or process that
can be algorithmically computed can be realized by a suitably designed Turing machine.
This chapter begins by establishing the relationship between decision problems, Turing
machines, and recursive languages. The remainder of the chapter presents the Church-
Turing Thesis and discusses the importance and implications of the assertion.

11.1 Representation of Decision Problems

The first step in a Turing machine solution of a decision problem is to express the problem
in terms of the acceptance of strings. This requires constructing a representation of the
problem. Recall the newspaper vending machine described at the beginning of Chapter 5.
Thirty cents in nickels, dimes, and quarters is required to open the latch. If more than 30
cents is inserted, the machine keeps the entire amount. Now consider the problem of a miser
who wants to buy a newspaper but refuses to pay more than the minimum. A solution to
this problem is an effective procedure that determines whether a set of coins contains a
combination that totals exactly 30 cents.

A Turing machine representation of the miser’s problem transforms an instance of the
problem from its natural domain of coins into an equivalent problem of accepting a string.
This can be accomplished by representing a set of coins as an element of {n, d, q) ’ where
n, d, and q designate a nickel, a dime, and a quarter, respectively. Using this representation,
a Turing machine that solves the miser’s problem accepts strings qnnn , nddnd and rejects
nnnd and qdqdqqq. In Exercise 1 you are asked to build a Turing machine that solves this
problem.

11.1 Representation of Decision Problems 345

Problem Turing Machine Answer
Instances Input

Pl ----------------------------------- »- w, — --------------------------------- yes/no

p2 ----------------------------------- ■- w2 ------------------------------- -— yes/no

p3 ———---------------------------- *- w3 ------------------------------------•- yes/no

Representation Turing machine
computation

Pi ----------------------------------- »- wj ------------------------------------yes/no

FIGURE 11.1 Solution to decision problem.

Constructing a Turing machine solution to a decision problem follows the two-step
process outlined in Figure 11.1. The first step is the selection of an alphabet and a string
representation of the problem instances. The properties of the representation are then utilized
in the design of the Turing machine that solves the problem. We illustrate the impact of the
representation by considering the problem of determining whether a natural number is even.
Two common representations of natural numbers are the unary and binary representations.
The alphabet of the unary representation is {7} and the number n is represented by the string
7"+ l. The alphabet {0, 7) is used by the standard binary representation of natural numbers.

The Turing machine

B/B R 1 /1 R . ^
X v)-----------------K g . J 7 - —

1/1R ^

solves the even number problem for the unary representation. The states q\ and q2 record
whether an even or odd number of 7’s have been processed. In the unary representation, a
string of odd length represents an even number. Thus the language of M | is {7' | i is odd).

The binary representation of an even number has 0 in the rightmost position. The Turing
machine

0/0 R

1/1 R

X§>
B/B R B/B L 0/0 R

accepts precisely these strings. The strategies employed by M| and M2 illustrate the depen
dence of the Turing machine on the choice of the representation.

346 C h a p t e r ' l l Decision P r o b le m s a n d t h e C hurc h -T u r in g T h e s is

There are many different ways to represent the instances of a decision problem as
strings. A decision problem has a Turing machine solution if there is at least one combination
of representation and Turing machine that solves the problem. There may, o f course, be

many.

11.2 Decision Problems and Recursive Languages

We have chosen the standard Turing machine as a formal system for solving decision
problems. Once a string representation of the problem instances is selected, the remainder of
the solution consists of the analysis of the input by a Turing machine. Since the completeness
property requires the computation of the Turing machine to terminate for every input string,
the language accepted by the machine is recursive. Thus every Turing machine solution of
a decision problem defines a recursive language. Conversely, every recursive language L
can be considered to be the solution of a decision problem. The decision problem, called
the membership problem for L, consists of the questions “Is the string w in L?” for every
string w over the alphabet of L.

The duality between solvable decision problems and recursive languages can be ex
ploited to broaden the techniques available for establishing the decidability of a decision
problem. Since computations of deterministic multitrack and multitape machines can be
simulated by a standard Turing machine, solutions using these machines also establish the
decidability of a problem.

Example 11.2.1

The decision problem of determining whether a natural number is a perfect square is
decidable. The three-tape Turing machine from Example 8.6.2 solves the perfect square
problem with the natural number n represented by the string a". □

Determinism is one of the fundamental properties of algorithms. However, it is often
easier to design a nondeterministic Turing machine than a deterministic one to accept a
language. In Section 8.7 it was shown that every language accepted by a nondeterministic
Turing machine is also accepted by a deterministic one. A solution to a decision problem
requires more than a machine that accepts the appropriate strings; it also demands that all
computations terminate. A nondeterministic machine in which every computation termi
nates can be used to establish the existence of a decision procedure. The languages of such
machines are recursive (Exercise 8.23), ensuring the existence of a complete deterministic
solution.

Example 11.2.2

We will use nondeterminism to show that the problem of determining whether there is a
path from a node vt to a node Vj in a directed graph is decidable. A directed graph consists

11.2 D e c is io n P r o b le m s a n d R ec u rs iv e L a n g u a g e s 347

of a set of nodes N = {u)......... u„} and arcs A C N x N. To represent a graph as a string
over [0, 1), node vk is encoded as l k+l using the unary representation of the subscript of the
node. An arc [u5, u(] is represented by the string en(vs)Oen(v,), where en(vs) and en(v,)
are the encodings of nodes vs and v,. The string 00 is used to separate arcs.

The input to the machine consists of a representation of the graph followed by the
encoding of nodes v, and vj. Three O's separate en(Vj) and en(vj) from the representation
of the graph. The directed graph

N = {v,, v2, v3)

A = {[W|, v2], [i>i, i>i], [V2> [^3. v2]J

is represented by the string 110111001101100111011110011110111. A computation to
determine whether there is a path from u3 to Uj in this graph begins with the input
1101110011011001110111100111101110001111011.

A nondeterministic two-tape Turing machine M is designed to solve the path problem.
The actions of M are summarized as follows:

1. The input is checked to determine if its format is that of a representation of a directed
graph followed by the encoding of two nodes. If not, M halts and rejects the string.

2. The input is now assumed to have the form R(G)000en(Vj)0en(Vj), where R(G) is the
representation of a directed graph G. If u, = V j , M halts in an accepting state.

3. The encoding of node Vj followed by 0 is written on tape 2.

4. Let vs be the rightmost node encoded on tape 2. An arc from vs to v, is nondetermin-
istically chosen from R(G). If no such arc exists or v, is already on the path encoded
on tape 2, M halts in a rejecting state.

5. If v, = Vj, then M halts in an accepting state. Otherwise, en(v,)0 is written at the end
of the string on tape 2 and the computation continues with step 4.

Steps 4 and 5 generate paths beginning with node v, on tape 2. Since step 4 guarantees that
only noncyclic paths are written on tape 2, every computation of M terminates. It follows
that L(M) is recursive and the problem is decidable. O

A decision problem will frequently be defined by describing its instances and the
condition that must be satisfied to obtain a positive answer. Using this method of problem
definition, the path problem of Example 11.2.2 can be written

Path Problem for Directed Graphs
Input: Directed graph G = (N, A), nodes vf, Vj 6 N
Output: yes; if there is a path from u, to vj in G

no; otherwise.

348 C h a p t e r 11 D e c is io n P r o b le m s a n d t h e C hurc h -T u r in g T h e s is

With the correspondence between solvable decision problems and recursive languages,
should we speak of problems or languages? We will use the terminology of decision prob
lems when the problem statement is given using high-level concepts and a representation
is required to transform the problem instances into strings. When a problem is specified
in terms of the acceptance of strings, we will use the terminology of recursive languages.
In either case, a decision problem or a language is decidable if there is an algorithm that
produces the correct answer for each problem instance or the correct membership value for
each string, respectively.

113 Problem Reduction

Reduction is a problem-solving technique commonly employed to avoid “reinventing the
wheel” when encountering a new problem. The objective of a reduction is to transform the
instances of the new problem into those of a problem that we already know how to solve.
Reduction is an important tool for establishing the decidability of problems and, as we will
see in Chapter 12, also for showing that certain problems do not have algorithmic solutions.

We will examine the mappings and requirements needed for problem reduction both on
the level of languages and on the level of decision problems. We begin with the definition
of reduction for membership in languages.

Definition 11.3.1

Let L be a language over Z , and Q a language over S 2- L is many-to-one reducible to
Q if there is a Turing computable function r : £ [—► ££ such that w € L if, and only if,
r (w) e Q .

If a language L is reducible to a decidable language Q by a function r, then L is also
decidable. Let R be the Turing machine that computes the reduction and M the machine that
accepts Q. The sequential execution of R and M on strings from £* constitutes a solution
to the membership problem for L.

Note that the reduction machine R does not determine membership in either L or Q; it simply
transforms strings from £* to ££• Membership in Q is determined by M and membership
in L by the combination of R and M.

To illustrate the reduction of one language to another, we will show that L = [x 'y 'zk |
• > 0, k > 0} is reducible to Q = {a'b1 | / > 0). A reduction of L to Q may be described in
the tabular form

11.3 P r o b le m R e d u c t io n 349

L = {jt'/z* 11 > 0, k > 0} w € [x , y , z}* u; 6 L
to I r if, and only if,

Q = {a'b' 11 > 0} u e {a, fe)* r(w) € Q

A string w e [x, y, z}* is transformed to the string r(w) e [a, b}* as follows:

i) If w has no x ’s or y ’s occurring after a z, replace each x with an a , each y with a b,
and erase the z ’s.

ii) If w has an x or y occurring after a z, erase the entire string and write a single a in the
input position.

The following table gives the result of the transformation of several strings in E*.

Reduction Input Condition

w € £* InL? r(u>) € E* InQ?

xx yy yes aabb yes
xxyyzzz yes aabb yes
yxxyz no baab no
xxzyy no a no
zyzx no a no
k yes X yes
zzz yes A yes

The examples show why the transformation is called a many-to-one reduction; multiple
strings in E* can map to the same string in EJ-

The Turing machine

y/B L
z/BL

350 C h a p t e r 11 D e c is io n P r o b le m s a n d th e C h urch -T ur ing T h e s is

performs the reduction of L to Q. Strings that have the form (x U y)*z* are identified in
states <?! and q2 and transformed in state qf . Strings in which a z precedes an x or y are
erased in state <74 and an a is written on the tape in the transition to q f .

Example 11.3.1

Consider the problem of accepting strings in the language L = [uu | u = a'b 'c' for some
1 > 0}. The machine M in Example 8.2.2 accepts the language [a’b’c' \ i > 0}. We will
sketch a reduction of the membership problem of L to that of recognizing a single instance
of a 'b 'c ' . The original problem can then be solved using the reduction and the machine M.
The reduction is obtained as follows:

1. The input string w is copied. The copy of w is used to determine whether w = uu for
some string u e [a, b, c}*.

2. If w ^ uu, then the tape is erased and a single a is written in the input position.

3. If w = uu, then the copy and the second u in the input string are erased leaving u in
the input position.

If the input string w has the form uu, then w e L if, and only if, u = a'b'c' for some /'. The
reduction does not check the number or the order of the a ’s, b’s, and c ’s; the machine M
has been designed to perform that task.

If a string w does not have the form uu, the reduction produces the string a. This string
is subsequently rejected by M, indicating that the input w is not in L. □

A decision problem P is many-to-one reducible to a problem Q if there is a transfor
mation of problem instances of P into instances of the Q that preserves the affirmative and
negative answers. Formally, a reduction transforms the string representations of the problem
instances. Frequently, we will define a reduction directly on the problem instances, with the
assumption that the modifications could be performed at the string level if we so desire.
This technique, along with the implications for the string representations, is illustrated in
the following example.

Example 11.3.2

We will show that the path problem for directed graphs, which was introduced in Example
1 1 .2 .2 , is reducible to the problem:

Cycle with Fixed Node (CFN) Problem

Input: Directed graph G = (N, A), node vk € N

Output: yes; if there is a cycle containing vk in G

no; otherwise.

The reduction requires constructing a graph G' from G so that the existence of a path from
Vj to vj in G is equivalent to G' having a cycle containing the node vk. The first step in the

11.3 P r o b le m R e d u c t io n 351

reduction is to identify the node v* in the CFN problem to the initial node v,- of the path
problem. With the selection of i;, as the node in the CFN problem, the reduction becomes

Reduction Instances Condition

Path Problem Graph G, nodes v,-, Vj G has a path from v,- to Vj

to 4■ r if, and only if,

CFN Problem Graph G', node u, G ' has a cycle containing t),

The graph G' is obtained by modifying G as follows:

i) Deleting all afcs [i>,, u,] that enter v,-.

ii) Adding an arc [i>; , u,].

If there is a path from v,- to Vj in G, then there is a path in which u, occurs only as the first
node; cycles in the path that reenter i>,- may be removed without changing either the initial
or terminal node. Consequently, the deletion of the arcs [t;,, v,] does not affect the presence
or absence of a path from v, to Vj. After the arc deletion in step (i), there are no cycles that
contain v,- since there are no arcs that enter u, .

The addition of the arc [vj, u,] in step (ii) will produce a cycle in G' if, and only if, there
is a path from v,- to Vj in the original graph G. Thus the modification of G is a reduction of
the path problem to the CFN problem.

The reduction of instance G, i>3, t), of the path problem, where G is the graph from
Example 11.2.2, produces

Since there is no path from v3 to Uj in G, G' has no cycle containing v3.
On the Turing machine level, an instance of the CFN problem consisting of a graph G'

and n o d e m a y be represented by the string R(G')000en(vi). The reduction of the instance
G, v3, V) of the path problem to the instance G', v3 of the CFN problem changes

R(G)OOOen(v3)en(v{) = 1101110011011001110111100111101110001111011

to

R(G')000en(v3) = 110111001101100111011110011110110001111.

A Turing machine that performs the reduction must delete the representations of the arcs
entering i>,-, add the representation of the arc from Vj to i>,, and erase vj from the end of the
input. □

352 C h a p t e r 11 D e c is io n P r o b le m s a n d t h e C h urch -T ur ing T h e s is

As with languages, reducing a decision problem P to a decidable problem Q shows that
P is also decidable. A solution to P can be obtained by sequentially combining the reduction

with the algorithm that solves Q.

11.4 The Church-Turing Thesis

The notion of algorithmic computation is not new. In fact, the word algorithm comes
from the name of the 9th-century Arabian mathematician Abu Ja’far Muhammad ibn Musa
al-Khwarizmi. In what is generally considered the first book on algebra, Al-Khwarizmi
presented a set of rules for solving linear and quadratic equations. Step-by-step mechanistic
procedures have been employed for centuries to describe calculations, processes, and
mathematical derivations. This informal usage matured in the early 20th century when
mathematicians sought to precisely determine the meaning, capabilities, and limitations

of algorithmic computation.
The investigation into the properties of computability led to a number of approaches

and formalisms for performing algorithmic computation. Effective procedures have been
defined by rules that transform strings, by the evaluation of functions, by the computations
of abstract machines, and more recently, by programs in high-level programming languages.
Examples of each of these types of systems include

• String Transformations: Post systems [Post, 1936], Markov systems [Markov, 1961],
unrestricted grammars

• Evaluation of Functions: partial and n -recursive functions [Godel, 1931; Kleene,
1936], lambda calculus [Church, 1941]

• Abstract Computing Machines: Register Machines [Shepherdson, 1963], Turing ma
chines

• Programming languages: while-programs [Kfoury et al., 1982], TM from Chapter 9

While-programs, listed in a final category, are programs that can be written in a minimal pro
gramming language that consists of assignment, conditional, for, and while statements. Hav
ing a small number of statements facilitates the analysis of programs, but while-programs
have the same computational ability as programs in standard programming languages such
as C, C++, Java, and so on.

We have used Turing machines as the computational framework for solving decision
problems. However, any of the other algorithmic systems could just as well have been
selected. Would this in any way have changed our ability to solve problems? Ideally the
answer should be no— the existence of a solution to a problem should be an inherent feature
of the problem itself and not an artifact of our choice of an algorithmic system. The Church-
Turing Thesis validates this intuition.

What do all of the previously mentioned algorithmic systems have in common? It has
been shown that they are all capable of performing precisely the same computations. This
claim may seem remarkable, since these systems were designed to perform different types
of operations on different types of data. However, you have already seen one example of

11.4 T h e C h urch -T ur ing T h e s i s 353

the equivalence and will see another in Chapter 13. In Section 10.1 we proved that the
computation of a Turing machine can be simulated by the rules of an unrestricted grammar.
Conversely, any language generated by an unrestricted grammar is accepted by a Turing
machine. Consequently, the power of Turing machines for recognizing languages is identical
to that of unrestricted grammars for generating languages. In Chapter 13 we will show that
the algorithmic approach to the definition and evaluation of number-theoretic functions
introduced by Godel and Kleene produces exactly the functions that can be computed by
Turing machines.

The realization that the various approaches to effective computation produced systems
that have the same computational power led to the belief that the capabilities o f these systems
define the bounds of algorithmic computation. There is no single definition of algorithm
and no single system for performing effective computation. However, there is a well-
defined bound on what can be accomplished in any of these systems. The Church-Turing
Thesis formalizes this belief in a general statement about the capabilities and limitations
of algorithmic computation. We will present three variations, one corresponding to each
of the types of computations that we have studied. We begin with the interpretation of the
Church-Turing Thesis for decision problems.

The Church-Turing Thesis for Decision Problems There is an effective procedure to solve
a decision problem if, and only if, there is a Turing machine that halts for all input strings
and solves the problem.

A solution to a decision problem requires the computation to return an answer for every
instance of the problem. Relaxing this restriction, we obtain the notion of a partial solution.
A partial solution to a decision problem P is a not necessarily complete but otherwise
effective procedure that returns an affirmative response for every problem instance p e P

whose answer is yes. If the answer to p is negative, however, the procedure may return no
or fail to produce an answer. That is, the computation recognizes affirmative instances.

Just as a solution to a decision problem can be formulated as a question of member
ship in a recursive language, a partial solution to a decision problem is equivalent to the
question of membership in a recursively enumerable language. The Church-Turing Thesis
encompasses algorithms that recognize languages as well as those that decide languages.

The Church-Turing Thesis for Recognition Problems A decision problem P is partially
solvable if, and only if, there is a Turing machine that accepts precisely the instances of P
whose answer is yes.

Turing machines compute functions using the symbols on the tape when the machine
halts to define the result of a computation. A functional approach to solving decision prob
lems uses the computed values one and zero to designate affirmative and negative responses.
The method of specifying the answer does not affect the set problems that have Turing ma
chine solutions (Exercise 9.4). Thus the formulation of the Church-Turing Thesis in terms
of computable functions subsumes and extends the two previous versions o f the thesis.

The Church-Turing Thesis for Computable Functions A function / is effectively com
putable if, and only if, there is a Turing machine that computes / .

354 C h a p t e r 11 D e c is io n P r o b le m s a n d th e C h urch -T ur ing T h e s is

After establishing the equivalence of Turing computable functions and /^-recursive
functions in Chapter 13, we will give a more concise version of the Church-Turing Thesis
and present a natural generalization from computable number-theoretic functions to com

putable functions on arbitrary sets.
To appreciate the content of the Church-Turing Thesis, it is necessary to understand

the nature of the assertion. The Church-Turing Thesis is not a mathematical theorem; it
cannot be proved. This would require a formal definition of the intuitive notion of an
effective procedure. The claim could, however, be disproved. This could be accomplished
by discovering an effective procedure that cannot be computed by a Turing machine. The
equivalence of Turing machines to other algorithmic systems, the robustness of the Turing
machine architecture, and the lack of a counterexample highlight an impressive pool of
evidence that suggests that such a procedure will not be found.

A proof by the Church-Turing Thesis is a shortcut often taken in establishing the
existence of a decision algorithm. Rather than constructing a Turing machine solution to a
decision problem, we describe an intuitively effective procedure that solves the problem.
The Church-Turing Thesis guarantees that a Turing machine can be designed to solve the
problem. We have tacitly been using the Church-Turing Thesis in this manner throughout
the presentation of Turing computability. For complicated machines, we simply gave a
description of the actions of a computation of the machine. We assumed that the complete
machine could then be explicitly constructed, if desired.

11.5 A Universal Machine

One of the most significant advances in computer design occurred in the m id-1940s with the
development of the stored program model of computation. Early computers were designed
to perform a single task; the input could vary, but the same program would be executed for
each input. Making a change to the instructions would frequently require reconfiguration
of the hardware. In the stored program model, the instructions are electronically loaded
into memory along with the data. A computation in a stored program computer is a cycle
consisting of the retrieval of an instruction from memory followed by its execution.

The Turing machines in the preceding chapters, like the early computers, were designed
to execute a single set of instructions. The Turing machine architecture has its own version of
the stored program concept, which preceded the first stored program computer by a decade.
A universal Turing machine is designed to simulate the computations of an arbitrary Turing
machine M. To do so, the input to the universal machine must contain a representation of
the machine M and the string w to be processed by M. For simplicity, we will assume that
M is a standard Turing machine that accepts by halting. The action of a universal machine
U is depicted by

Universal
machine

U

M halts with w

K(M)w

M does not halt
with input w

accept

loop

11.5 A U n ive rsa l M a c h in e 355

where /?(M) is the representation of the machine M. The output labeled loop indicates that
the computation of U does not terminate. If M halts and accepts input w, U does the same.
If M does not halt with w, neither does U. The machine U is called universal since the
computation of any Turing machine M can be simulated by U.

The first step in the construction of a universal machine is to design the string represen
tation of a Turing machine. Because of the ability to encode arbitrary symbols as strings over
{0 ,1), we consider Turing machines with input alphabet {0,1} and tape alphabet {0,1, B}.
The states of a Turing machine are assumed to be named {^0. <7 |. • ■ ■ . q„), with q0 the start
state.

A Turing machine M is defined by its transition function. A transition of a standard
Turing machine has the form S(qh x) = [q j , y, d], where qh qj € Q; x, y e T; and d €
{L, 7?}. We encode the elements of M using strings of l's:

Symbol Encoding

0 1

1 11

B 111

Qo 1

?i 11

Qn jn+i

L 1

R 11

Let en(z) denote the encoding of a symbol z. A transition S(q,, x) = [qj, y , d] is encoded
by the string

en (qj)Oen (x)Oen (qj)Oen (y)Oen (d).

The O's separate the components of the transition. A representation of the machine is con
structed from the encoded transitions. Two consecutive 0 ’s are used to separate transitions.
The beginning and end of the representation are designated by three 0 ’s.

Example 11.5.1

The computation of the Turing machine

0/0 L

356 C h a p t e r 11 D e c is io n P r o b le m s a n d t h e C hurch -T ur ing T h e s is

halts for the null string and strings that begin with 1, and does not terminate for strings
beginning with 0. The encoded transitions of M are given in the following table.

Transition Encoding

&{q0, B) = [<j|, B, fl] lO lU O im ilO U

H q i, 0) = [<?,,. 0. L) 1101010101

S(qh 1) = [<?2- A 110110111011011

S(q2, 1) = [<70. 1, L) 1110110101101

The machine M is represented by the string

00010111011011101100110101010100110110111011011001110110101101000. □

A Turing machine can be constructed to determine whether an arbitrary string u €
{0, 1}* is the encoding of a deterministic Turing machine. The computation examines u to
see if it consists of a prefix 000 followed by a finite sequence of encoded transitions separated
by 00 's followed by 000. A string that satisfies these conditions is the representation of some
Turing machine M. The machine M is deterministic if the combination of the state and input
symbol in every encoded transition is distinct.

We will now outline the design of a three-tape, deterministic universal machine U. A
computation of U begins with the input on tape 1. If the input string has the form R(M)w,
the computation of M with input w is simulated on tape 3. A computation o f U consists of
the following actions:

1. If the input string does not have the form R(M)w for a deterministic Turing machine

M and string w, U moves to the right forever.

2. The string w is written on tape 3 beginning at position one. The tape head is then
repositioned at the leftmost square of the tape. The configuration of tape 3 is the initial
configuration of a computation of M with input w.

3. A single 1, the encoding of state q0, is written on tape 2.

4. A transition of M is simulated on tape 3. The transition of M is determined by the
symbol scanned on tape 3 and the state encoded on tape 2. Let x be the symbol from
tape 3 and qt the state encoded on tape 2.

a) Tape 1 is scanned for a transition whose first two components match en(qi) and
ert(x). If there is no such transition, U halts accepting the input.

b) If tape 1 contains an encoded transition en(qt)0en(x)0en(qj)0en(y)0en(d), then
i) en(qt) is replaced by en(qj) on tape 2.

ii) The symbol y is written on tape 3.

iii) The tape head of tape 3 is moved in the direction specified by d.

5. The computation continues with step 4 to simulate the next transition o f M.

11.5 A U n ive rsa l M a c h in e 357

Theorem 11.5.1

The language LH = {7?(M)u> | M halts with input to} is recursively enumerable.

Proof. The universal machine accepts strings of the form /?(M)u> where /?(M) is the
representation of a Turing machine and M halts when run with input w. For all other strings,
the computation of U does not terminate. Thus the language of U is LH. ■

The language is known as the language of the Halting Problem. A string is in Lg if
it is the combination of the representation of a Turing M and a string w such that M halts

when run with w.
The computation of the universal machine U with input /?(M)u> simulates the compu

tation M with input w. The ability to obtain the results of one machine via the computations
of another facilitates the design of complicated Turing machines. When we say that a Turing
machine M' “runs machine M with input u>" we mean that M' is supplied with 7?(M) and
w and simulates the computation of M in the manner of the universal machine.

Example 11.5.2

A solution to the decision problem

Halts on n ’th Transition Problem

Input: Turing machine M, string w. integer n

Output: yes; if the computation of M with input w performs

exactly n transitions before halting

no; otherwise.

can be obtained by simulating the computations of M. Intuitively, a solution “runs M with
input w" and counts the transitions of M.

A machine U' that solves this problem can be constructed by adding a fourth tape
to the universal machine to record the number of transitions in a computation of M. A
problem instance will be represented by a string of the form R (M)u)00O/"+1 with the unary
representation of n separated from /?(M)w by three zeroes. The computation of U' with
input string u consists of the following actions:

1. If the input string u does not end with 0001n+ \ U' halts rejecting the input.

2. The string ln is written on tape 4 beginning in position one; 0007"+l is erased from the
end of the string on tape 1; and the tape head on tape 4 moves to position one.

3. If the string remaining on tape 1 does not have the form R (M)w , U' halts rejecting the
input.

4. The string w is copied to tape 3 and the encoding of state q0 is written on tape 2.

5. Following the strategy of the universal machine, tape 1 is searched for a transition that
matches the symbol x scanned on tape 3 and the state q, encoded on tape 2.

358 C h a p t e r 11 D e c is io n P r o b le m s a n d th e C hu rc h -T u r in g T h e s i s

a) If there is no transition for q x and a 1 is read on tape 4, then U' halts rejecting the

input.

b) If there is no transition for qt, x and a blank is read on tape 4, then U' halts accepting

the input.

c) If there is a transition , x) encoded on tape 1 and a blank is read on tape 4, then

U' halts rejecting the input.

d) If there is a transition &(qiy x) encoded on tape 1 and a 1 is read on tape 4, then the
transition is simulated on tapes 2 and 3 and the tape head on tape 4 is moved one
square to the right.

6. The computation continues with step 5 to examine the next transition o f M.

If M halts prior to the nth transition, R(M)w0001n+l is rejected in step 5 (a). After the
simulation of n transitions of M, the counter on tape 4 reads a blank. If M has no applicable
transition at this point, U' accepts. Otherwise, the input is rejected in step 5 (c). □

Exercises

1. Give a state diagram of a Turing machine M that solves the miser problem from Section
11.1. A set of coins is represented as an element of [rt, d, q}* where n, d, and q designate
a nickel, a dime, and a quarter, respectively.

In Exercises 2 through 7, describe a Turing machine that solves the specified decision
problem. Use Example 11.2.2 as a model for defining the actions of a computation of the
machine. You need not explicitly construct the transition function nor the state diagram
of your solution. You may use multitape Turing machines and nondeterminism in your
solutions.

2. Design a two-tape Turing machine that determines whether two strings u and v over
{0,1} are identical. The computation begins with B u B v B on the tape and should require
no more than 3(length(u) + 1) transitions.

3. Using the unary representation of the natural numbers, design a Turing machine whose
computations decide whether a natural number is prime.

4. Using the unary representation of the natural numbers, design a Turing machine that
solves the “2"” problem. Hint: The input is the representation of a natural number i
and the output is yes if i = 2" for some n, no otherwise.

5. A directed graph is said to be cyclic if it contains at least one cycle. Using the rep
resentation of a directed graph from Section 11.2, design a Turing machine whose
computations decide whether a directed graph is cyclic.

E xerc ises 359

6. A tour in a directed graph is a path p0, p \ pn in which

>) Po = Pn-

ii) For 0 < i, j < n, i ^ j implies p, ^ pj.

iii) Every node in the graph occurs in the path.

That is, a tour visits every node exactly once and ends where it begins. Design a Turing
machine that decides whether a directed graph contains a tour. Use the representation
of a directed graph given in Section 11.2.

*7. LetG = (V, E , P, S) be a regular grammar.

a) Construct a representation for the grammar G over {0 , /}.

b) Design a Turing machine that decides whether a string w e S* is in L(G). The use
of nondeterminism facilitates the construction of the desired machine.

8. Construct a Turing machine that reduces the language L to Q. In each case the alphabet
of L is {jt, y} and the alphabet of Q is {a, b}.

a) L = (xy)* Q = (aa)*
b) L = x +y* Q = a+b

c) L = {x,y +1 1 i > 0} Q= \ i >0}

d) L = {x 'V z' 1 i > 0, ; > 0} Q = W » 1i >0}

e) L = {-*•' (>'>')'! | « > 0 } Q= {a'b‘ \ i >0}

f) L = [xiy ‘x i 11 > 0} Q= W # | i >0}

9. Let M be the Turing machine

M: X §) -----

a) What is L(M)?

b) Give the representation of M using the encoding from Section 11.5.

10. Construct a Turing machine that decides whether a string over {0,])* is the encoding
of a nondeterministic Turing machine. What would be required to change this to a
machine that decides whether the input is the representation of a deterministic Turing
machine?

11. Design a Turing machine with input alphabet {0 ,1} that accepts an input string u if

i) u = R(M)w for some Turing machine M and input string w, and

ii) when M is run with input w , there is a transition in the computation that prints a J.

Your machine need not halt for all inputs.

0/0 R

360 Chapter 11 Decision Problems and the Church-Turing Thesis

12. Given an arbitrary Turing machine M and input string w, will the computation of M
with input w halt in fewer than 100 transitions? Describe a Turing machine that solves

this decision problem.

13. Show that the decision problem

Input: Turing machine M
Output: yes; if the third transition of M prints a blank when run

with a blank tape

no; otherwise.

is decidable. The answer for a Turing machine M is no if M halts prior to its third
transition.

* 14. Show that the decision problem

Input: Turing machine M

Output: yes; if there is some string id € E* for which the computation
of M takes more than 10 transitions

no; otherwise.

is decidable.

IS. The universal machine introduced in Section 11.5 was designed to simulate the actions
of Turing machines that accept by halting. Consequently, the representation scheme
R(M) did not encode accepting states.

a) Extend the representation 7?(M) of a Turing machine M to explicitly encode the
accepting states of M.

b) Design a universal machine U f that accepts input of the form /?(M)tu if the machine
M accepts input w by final state.

Bibliographic Notes

Turing [1936] envisioned the theoretical computing machine he designed to be capable
of performing all effective computations. This viewpoint, now known as the Church-
Turing Thesis, was formalized by Church [1936]. Turing’s 1936 paper also included the
design of a universal machine. The original plans for the development of a stored program
computer were reported by von Neumann [von Neumann, 1945], and the first working
models appeared in 1949.

In our construction of the universal machine, we limited the input and tape alphabets
of the Turing machines to {0, 7} and {0 , 7, fi), respectively. A proof that an arbitrary Turing
machine can be simulated by a machine with these alphabets can be found in Hopcroft and
Ullman [1979].

CHAPTER 1 2

Undecidability

The Church-Turing Thesis asserts that a Turing machine can be designed to solve any
decision problem that is solvable by any effective procedure. A Turing machine computation
is not encumbered by the physical restrictions that are inherent in any “real” computing
device. Thus the existence of a Turing machine solution to a decision problem depends
entirely on the nature of the problem itself and not on the availability of memory or central
processor time. The Church-Turing Thesis also has consequences for undecidability. If
a problem cannot be solved by a Turing machine, it cannot be solved by any effective
procedure. A decision problem that has no algorithmic solution is said to be undecidable.

In Section 9.5 it was shown that there are only countably many Turing machines.
The number of languages over a nonempty alphabet, however, is uncountable. It follows
that there are languages whose membership problem is undecidable. The comparison of
cardinalities ensures us of the existence of undecidable decision problems but gives us
no idea of what such a problem might look like. In this chapter we show that some
particular decision problems concerning the computational capabilities of Turing machines,
derivations in grammars, and even playing a game with dominoes are undecidable.

The first problem that we consider is the Halting Problem for Turing Machines. To
appreciate the significance of the Halting Problem, we will describe it in terms of C programs
rather than Turing machines. The Halting Problem for C Programs can be stated as

Halting Problem for C Programs
Input: C program Prog,

input file inpt for Prog

Output: yes; if Prog halts when run with input inpt
no; otherwise.

361

362 Chapter 12 Undecidability

If the Halting Problem for C Programs were decidable, a bane of all programmers— the
infinite loop— would be a thing of the past. The execution of a program would become a

two-step process:

1. running the algorithm that solves the Halting Problem on Prog and inpt;

2. if the algorithm indicates Prog will halt, then running Prog with inpt.

A solution to the Halting Problem does not tell us the result of the computation, only that a
result will be produced. After receiving an affirmative response from the halting algorithm,
the result could be obtained by running Prog with the input file inpt. Unfortunately, the
Halting Problem for C Programs, like its counterpart for Turing machines, is undecidable.

Throughout the first four sections of this chapter, we will consider Turing machines with
input alphabet {0, /} and tape alphabet {0 , 1, B). The restriction on the alphabets imposes
no limitation on the computational capabilities of Turing machines since the computation
of an arbitrary Turing machine M can be simulated by a machine with these restricted
alphabets. The simulation requires encoding the symbols of M as strings over {0, 1). This
is precisely the approach employed by digital computers, which use the ASCII (American
Standard Code for Information Interchange), EBCDIC (Extended Binary Coded Decimal
Interchange Code), or Unicode encodings to represent characters as binary strings.

12.1 The Halting Problem for Turing Machines

The most famous of the undecidable problems is concerned with the properties of Turing
machines themselves. The Halting Problem may be formulated as follows: Given an arbi
trary Turing machine M with input alphabet E and a string w e E*, will the computation
of M with input w halt? We will show that there is no algorithm that solves the Halting
Problem. The undecidability of the Halting Problem is one of the fundamental results in the
theory of computer science.

It is important to understand the statement of the problem. We may be able to determine
that a particular Turing machine will halt for a given string. In fact, the exact set of strings for
which a Turing machine halts may be known. For example, the machine in Example 8.3.1
halts for all and only the strings that contain aa as a substring. A solution to the Halting
Problem, however, requires a general algorithm that answers the halting question for every
possible combination of Turing machine and input string.

Since the Halting Problem asks a question about a Turing machine, the input must
contain a Turing machine, or more precisely the representation of a Turing machine. We will
use the Turing machine representation developed in Section 11.5, which encodes a Turing
machine with input alphabet {0, 1} as a string over {0, 1). The proof of the undecidability
of the Halting Problem does not depend upon the features of this particular encoding-. The
argument is valid for any representation that encodes a Turing machine as a string over its
input alphabet. As before, the representation of a machine M is denoted A’(M).

12.1 The Halting Problem for Turing Machines 363

The proof of the undecidability of the Halting Problem is by contradiction. We assume
that there is a Turing machine H that solves the Halting Problem. We then make several
simple modifications to H to obtain a new machine D that produces a self-referential
contradiction; an impossible situation occurs when the machine D is run with its own
representation as input. Since the assumption of the existence of a machine H that solves
the Halting Problem produces a contradiction, the Halting Problem is not solvable.

»

Theorem 12.1.1

The Halting Problem for Turing Machines is undecidable.

Proof. Assume that the Turing machine H solves the Halting Problem. A string z e {0, 1}
is accepted by H if

i) z consists of the representation of a Turing machine M followed by a string w and

ii) the computation of M with input w halts.

If either of these conditions is not satisfied, H rejects the input. The operation of the machine
H is depicted by the diagram

/?(M)w

M halts with input w

M does not halt with input w

accept

reject

The machine H is modified to construct a new Turing machine H'. The computations of
H' are the same as H except H' continues when H halts in an accepting state. At that point,
H' moves to the right forever. The transition function of H' is obtained from that of H by
adding transitions that cause H' to move indefinitely to the right upon entering an accepting
configuration of H. The action of H' may be depicted by

M halts with input w
R(M)w--------- ► H'

M does not halt with input w

halt
loop

From this point on in the proof, we are concerned only with whether a computation halts
or continues indefinitely. The latter case is denoted by the word loop in the diagrams.

The machine H' is combined with a copy machine to construct another Turing machine
D. The input to D is a Turing machine representation /?(M). A computation o f D begins by
creating the string /?(M)/?(M) from the input /?(M). The computation continues by running
H' on fl(M)/?(M).

364 Chapter 12 Undecidability

D- M halts with

with input R(M)

The input to the machine D may be the representation of any Turing machine with
alphabet {0, 1, B}. In particular, D itself is such a machine. Consider a computation of D
with input /?(D). Rewriting the previous diagram with M replaced by D and /?(M) by /?(D),

we get

D halts with

with input R(D)

loop

halt

Examining the diagram, we see that D halts with input /?(D) if, and only if, D does not halt
with input /?(D). This is obviously impossible. However, the machine D can be constructed
directly from a machine H that solves the Halting Problem. The assumption that the Halting
Problem is decidable produces the preceding contradiction. Therefore, we conclude that the
Halting Problem is undecidable. ■

The contradiction in the preceding proof uses self-reference and diagonalization. To
obtain the standard relational table for a diagonalization argument, we consider every string

v e {0 , /}* to represent a Turing machine; if v does not have the form the one-state
Turing machine with no transitions is assigned to t). Thus the Turing machines can be listed
M0, Mj, M2, M3, M4, . . . corresponding to strings k, 0,1, 00,01Now consider a table
that lists the Turing machines along the horizontal and vertical axes. The j \h entry of the
table is

1 if M,- halts when run with R(Mj)
0 if M, does not halt when run with fl(My).

The diagonal of the table represents the answers to the self-referential question, “Does M,-
halt when run on itself?" The machine D was constructed to produce a contradiction in
response to that question.

A similar argument can be used to establish the undecidability of the Halting Problem
for Turing Machines with arbitrary alphabets. The essential feature of this approach is the
ability to encode the transitions of a Turing machine as a string over its own input alphabet.
Ttoo symbols are sufficient to construct such an encoding.

The undecidability of the Halting Problem and the ability of the universal machine to
simulate computations of Turing machines combine to show that the recursive languages are

12.2 Problem Reduction and Undecidability 365

a proper subset of the recursively enumerable languages. Corollary 12.1.2 is the restatement
of the undecidability of the Halting Problem in the terminology of recursive languages.

Corollary 12.1.2

The language LH = {/?(M)u> | /?(M) is the representation of a Turing machine M and M
halts with input iu) over [0, 1}* is not recursive.

Corollary 12.1.3

The recursive languages are a proper subset of the recursively enumerable languages.

Proof. The universal machine U accepts LH; a string is accepted by U only if it is of the
form /?(M)u> and M halts when run with input w. The acceptance of LH by the universal
machine demonstrates that Lh is recursively enumerable, while Corollary 12.1.2 established
that L H is not recursive. ■

In Exercise 8.26 it was shown that a language L is recursive if both L and L are
recursively enumerable. Combining this with Corollary 12.1.2 yields

Corollary 12.1.4

The language LH is not recursively enumerable.

Corollary 12.1.4 tells us that there is no algorithm that can either accept or recognize the
strings of the language Lh- From a pattern recognition perspective, machines are designed
to detect patterns that are common to all elements in a set of strings. When a language is
not recursively enumerable, any common pattern among the elements of the language is too
complex to be detected algorithmically.

12.2 Problem Reduction and Undecidability

Reduction was introduced in Chapter 11 as a tool for constructing solutions to decision
problems. A decision problem P is reducible to Q if there is a Turing computable function
r that transforms instances of P into instances of Q, and the transformation preserves the
answer to the problem instance of P. As in Chapter 11, we will use a table o f the form

Reduction Input Condition

P instances p0, p\, . . .

i r
instances q0, q |, . . .

the answer to p, is yes

if, and only if,

the answer to r(pt) is yes

to

Q

to describe the components and conditions of a reduction of P to Q.
Reduction has important implications for undecidability as well for decidability. If P

is undecidable and reducible to a problem Q, then Q must also be undecidable. If Q were

366 Chapter 12 Undecidability

decidable, combining the reduction of P to Q with the algorithm that solves Q produces a
decision procedure for P as follows: For an input p t to P

i) Use the reduction to transform to r (/>,).

ii) Use the algorithm for Q to determine the answer for r(p,).

Since r is a reduction, the answer to the decision problem P for input p, is the same as the
answer to r(pj) for problem Q. The sequential execution of the reduction and the algorithm
that solves Q produces a solution to P. This is a contradiction since P was known to be
undecidable. Consequently, our assumption that Q is decidable must be false.

The Blank Tape Problem is the problem of deciding whether a Turing machine halts
when a computation is initiated with a blank tape. The Blank Tape Problem is a special
case of the Halting Problem since it is concerned only with the question o f halting when
the input is the null string. We will show that the Halting Problem is reducible to the Blank
Tape Problem and, consequently, that the Blank Tape Problem is undecidable.

Theorem 12.2.1

There is no algorithm that determines whether an arbitrary Turing machine halts when a
computation is initiated with a blank tape.

Proof. Assume that there is a machine B that solves the Blank Tape Problem. Such a
machine can be represented

M halts with input X
--------------------------------► accept

--------------------------------► reject
M loops with input A.

The reduction of the Halting Problem to the Blank Tape Problem is accomplished by a
machine R. The input to R is the representation of a Turing machine M followed by an
input string w. The result of a computation of R is the representation of a machine M' that

1. writes w o n a blank tape,

2. returns the tape head to the initial position with the machine in the start state of M, and

3. runs M.

/?(M') is obtained by adding encoded transitions to R(M) and suitably renaming the start
state of M. The machine M' has been constructed so that it halts when run with a blank tape
if, and only if, M halts with input w.

A new machine is constructed by adding R as a preprocessor to B. Sequentially running
the machines R and B produces the composite machine

fl(M)

12.2 Problem Reduction and Undecidability 367

Halting Problem

Tracing a computation, we see that the composite machine solves the Halting Problem. Since
the preprocessor R reduces the Halting Problem to the Blank Tape Problem, the Blank Tape
Problem is undecidable. ■

The preprocessor R, which performs the reduction of the Halting Problem to the
Blank Tape Problem, modifies the representation of a Turing machine M to construct the
representation of a Turing machine M'. Example 12.2.1 shows the result of a transformation
performed by the preprocessor R.

Example 12.2.1

Let M be the Turing machine

B/BR
1/1 R

M:

that halts whenever the input string contains 0. The encoding /?(M) of M is

0001011101101110110011011101101110110011011011011011000 .

With input R(M)01, the preprocessor R constructs the encoding of the Turing machine
M'.

1/1L
0/0 L M

368 C h a p t e r 12 U ndecidab i l i ty

When run with a blank tape, the first five states of M' are used to write 01 in the input position.
A copy of the machine M is then run with tape B01B. It is clear from the construction that
M halts with input 01 if, and only if, M' halts when run with a blank tape. □

Since the Blank Tape Problem is a subproblem of the Halting Problem, this is an ideal
time to consider the relationship between problems, subproblems, and undecidability. Each
of following problems is obtained by fixing one of the inputs of the Halting Problem:

Subproblem Input Decidable?

Blank Tape Problem /?(M), (input string fixed) Undecidable

Halting of the universal machine U (machine fixed), R(M)w Undecidable

Halting of M from Example 8.3.1 (machine fixed), w Decidable

The Halting Problem for the universal machine asks if U will halt with input /?(M)u>.
A solution to this problem would determine if an arbitrary Turing machine M halts with
input w and thus provide a solution to the Halting Problem. The preceding table shows that
subproblems of an undecidable problem may or may not be undecidable depending upon
which features of the problem are retained. On the other hand, if Q is a subproblem of a
decision problem P and Q is undecidable, then P is necessarily undecidable; any algorithm
that solves P is automatically a solution to all of its subproblems.

The reduction of the Halting Problem to the Blank Tape Problem was accomplished
by a Turing computable function r that transformed strings of the form /?(M)u; to a string
/f(M'). Theorem 12.2.1 and Example 12.2.1 showed how the Turing machine representation
7?(M) is modified to produce /?(M'). In the remainder of examples, we will give a high-
level explanation of the reduction and omit the details of the manipulation of the string
representations.

12.3 Additional Halting Problem Reductions

We have shown that there is no algorithm that determines whether a Turing machine
computation will halt, either with an arbitrary string or with a blank tape. There are many
other questions that we could ask about Turing machines: “Does a computation enter a
particular state?” Or “Does a computation print a particular symbol on its final transition?”
And so on. Many such questions can also be shown to be undecidable using reduction and
the undecidability of the Halting Problem.

We will demonstrate the general strategy for establishing the undecidability of such
questions by considering the problem of whether a Turing machine computation reenters
its start state. A computation that reenters the start state begins q0B w B p- uq0vB. The
computation need not halt in the start state or even halt at all; all that is required is that
the machine returns to state q0 at some point after the start of the computation.

We will show that the Reenter Problem is undecidable by reducing the Halting Problem

to it. The reduction has the form

12.3 A dd i t iona l H a l t in g P r o b le m R e d u c t io n s 369

Reduction Input Condition

Halting Problem Turing machine M, string w M halts with input w

to I if, and only if,

Reenter Problem Turing machine M', suing w M' reenters its start state

when run with w

As indicated, we will use the same string w as the input for the machine M in the Halting
Problem and the machine M' in the Reenter Problem.

LetM = (Q, L, T, <5, q0, F) and w be an instance of the Halting Problem. We must
construct a machine M' that reenters its start state when run with w if, and only if, M
halts when run with w. First we note that, in an arbitrary Turing machine, the halting of a
computation is in no way connected to whether the computation reenters the start state. In
designing the reduction, it is our task to connect them.

The idea behind the construction of the machine M' is to start with M, add a new start
state q'0 that has the same transitions as q0, and add a transition to q'Q for every halting
configuration of M. Formally, M' is defined from the components of M:

Q' = (Q U {<?q}), £ ' = E , r ' = T, F' = F

S'(qh x) = S(q, , x) if <5(4,, x) is defined

S'(q'0, x) = 8(q0, *) for all x € T

8\qj , at) = [<7q, x , /?] if 8(qh *) is undefined

with q'Q the start state of M'. If the computation of M halts with input w, the corresponding
computation of M' takes one additional transition and reenters q'Q. If M does not halt, a
transition to q'Q is never taken and M' does not reenter its start state. The construction
transforms the question of whether M halts with input w to the question of whether
M' reenters its start state when run with w. It follows that the Reenter Problem is also
undecidable.

Example 12.3.1

A proof by contradiction is used to show that the problem of determining whether an
arbitrary Turing machine halts for all input strings is undecidable. Assume that there is
a Turing machine A that solves this problem. The input to such a machine is a string
v € {0,]}*. The input is accepted if v = /?(M) for some Turing machine M that halts for all
input strings. The input is rejected if either v is not the representation of a Turing machine
or it is the representation of a machine that does not halt for some input string.

370 C h a p t e r 12 U ndecidab i l i ty

The computation of machine A can be depicted by

R(M)

M halts for all strings

A otherwise
accept

reject

Problem reduction is used to create a solution to the Halting Problem from the machine A.
It follows that the ‘halts for all strings’ problem is undecidable.

The language of the Halting Problem consists of strings of the form where the
machine M halts when run with input w. The reduction is accomplished by a machine R.
The first action of R is to determine whether the input string has the expected format of the
representation of some Turing machine M followed by a string w. If the input does not have
this form, R erases the input, leaving the tape blank.

When the input has the form R(M)w, the computation of R constructs the encoding of
a machine M' that, when run with any input string y,

1. erases y from the tape,

2. writes w on the tape, and

3. runs M on w.

R(M') is obtained from /?(M) by adding the encoding of two sets of transitions: one set
that erases the input that is initially on the tape and another set that then writes the w in the
input position. The machine M' has been constructed to completely ignore its input. Every
computation of M' halts if, and only if, the computation of M with input w halts.

The machine consisting of the combination of R and A

accept
reject

.................. Halting Problem

provides a solution to the Halting Problem. If the input does not have the form /?(M)u>, the
null string is produced by R and subsequently rejected by A. Otherwise R generates
Tracing the sequential operation of the machines, the input is accepted if, and only if, it is
the representation of a Turing machine M that halts when run with w.

Since the Halting Problem is undecidable and the reduction machine R is constructible,
we conclude that there is no machine A that solves the 'halts for all strings’ problem. □

The relationship between Turing machines and unrestricted grammars developed in
Section 10.1 can be used to convert undecidability results from the domain of machines to the
domain of grammars. Consider the problem of deciding whether a string w is generated by

12.4 Rice’s T h e o r e m 3 7 1

an unrestricted grammar G. A reduction that establishes the undecidability of the derivability

problem has the form

Reduction Input Condition

Halting Problem Turing machine M, string w M halts with input w
to I if, and only if,

Derivability Problem unrestricted grammar G, string w there is a derivation

S w in G

Let M be a Turing machine and w an input string for M. The first step in the reduction
is to modify M to obtain a machine M' that accepts every string for which M halts. This
is accomplished by making every state of M an accepting state in M'. In M ', halting and
accepting are synonymous.

Using Theorem 10.1.3, we can construct a grammar GM' with L(GM-) = L(M'). An
algorithm that decides whether w e L(GM0 also determines whether the computation of M'
(and M) halts. Thus no such algorithm is possible.

12.4 Rice’s Theorem

In the preceding sections we have shown that it is impossible to construct an algorithm
to answer certain questions about a computation of an arbitrary Turing machine. The first
example of this was the Halting Problem, which posed the question, “Will a Turing machine
M halt when run with input wT' Problem reduction allowed us to establish that there is no
algorithm that answers the question, “Will a Turing machine M halt when run with a blank
tape?” In each of these problems, the input contained a Turing machine and the decision
problem was concerned with determining the result of the computation of the machine.

Rather than asking about the computation of a Turing machine with a particular input
string, we will now focus on determining whether the language accepted by a Turing
machine satisfies a prescribed property. For example, we might be interested in the existence
of an algorithm that, when given a Turing machine M as input, produces an answer to
questions of the form

i) Is k in L(M)?

ii) Is L(M) = 0?

iii) Is L(M) a regular language?

iv) Is L(M) = £*?

The ability to encode Turing machines as strings over {0 , 1} permits us to transform
the preceding questions into questions about membership in a language. Employing the
encoding, a set of Turing machines defines a language over {0 , 7} and the question of
whether the set of strings accepted by a Turing machine M satisfies a property can be posed

372 C h a p te r 12 U ndecidab i l i ty

as a question of membership /?(M) in the appropriate language. For example, the question,
“Is L(M) = 0?" can be rephrased in terms of membership as, “Is /?(M) € L^?” Using this
approach, the languages associated with the previous questions are

i) L* = {*(M) | X e L(M)J

ii) L0 = {/?(M) | L(M) = 0}

iii) Lreg = {/?(M) | L(M) is regular}

iv) L s . = {/?(M) |L(M) = £*}.

Example 12.3.1 showed that the question of membership in LE. is undecidable. That is,
there is no algorithm that decides whether a Turing machine halts for all (and accepts) input
strings.

The reduction strategy employed in Example 12.3.1 can be generalized to show that
many languages consisting of representations of Turing machines are not recursive. A
property P of recursively enumerable languages describes a condition that a recursively
enumerable language may satisfy. For example, P may be “The language contains the null
string”; “The language is the empty set”; ‘T he language is regular”; or “The language
contains all strings.” The language of a property P is defined by LP = {/?(M) | L(M) satisfies
P}. Thus Ltf, the language associated with the property ‘The language is the empty set”
consists of the representations of all Turing machines that do not accept any strings.

A property P of recursively enumerable languages is called trivial if there are no
recursively enumerable languages that satisfy P or if every recursively enumerable language
satisfies P. For a trivial property, Lp is either the empty set or consists of all representations
of Turing machines. Membership in both of these languages is decidable. Rice’s Theorem
shows that any property that is satisfied by some, but not all, recursively enumerable
languages is undecidable.

Theorem 12.4.1 (Rice’s Theorem)

If P is a nontrivial property of recursively enumerable languages, then Lp is not recursive.

Proof. Let P be a nontrivial property that is not satisfied by the empty language. We will
show that Lp = {/?(M) | L(M) satisfies P} is not recursive.

Since LP is nontrivial, there is at least one language L € LP. Moreover, L is not 0 by
the assumption that the empty language does not satisfy P. Let ML be a Turing machine
that accepts L.

The reducibility of the Halting Problem to Lp will be used to show that Lp is not recur
sive. As in Example 12.3.1, a preprocessor R will be designed to transform input /?(M)w
into the encoding of a machine M'. The action of M' when run with input y is to

1. write w to the right of y, producing B yB w B ;

2. run the transitions of M on w, and

3. if M halts when run with w, then run ML with input y.

The role of the machine M and the string w is that of a gatekeeper. The processing of the
input string y by ML is allowed only if M halts with input w.

12.5 An U n so lv a b le W ord P r o b le m 373

If the computation of M halts when run with w, then M l is allowed to process input
y. In this case the result of a computation of M' with an input string y is exactly that of
the computation of ML with y. Consequently, L(M') = L(Ml) = L and L(M') satisfies P. If
the computation of M does not halt when run with w, then M' never halts regardless of the
input string y. Thus no string is accepted by M' and L(M') = 0, which does not satisfy P.

The machine M' accepts 0 when M does not halt with input w, and M' accepts L when
M halts with w. Since L satisfies P and 0 does not, L(M') satisfies P if, and only if, M halts
when run with input w.

Now assume that Lp is recursive. Then there is a machine Mp that decides membership
in Lp. The machines R and Mj> combine to produce a solution to the Halting Problem.

accept
reject

.................. Halting Problem....................

Consequently, the property P is not decidable.
Originally, we assumed that P was not satisfied by the empty set. If 0 e Lp, the pre

ceding argument can be used to show that LP is not recursive. It follows from Exercise 8.26
that Lp must also be nonrecursive. ■

Rice’s Theorem makes it easy to demonstrate the undecidability of many questions
about properties of languages accepted by Turing machines, as is seen in the following
example.

Example 12.4.1

The problem of determining whether the language accepted by a Turing machine is context-
free is undecidable. By Rice’s Theorem, all that is necessary is to show that the property
“is context-free” is a nontrivial property of recursively enumerable languages. This is
accomplished by finding one recursively enumerable language that is context-free and
another that is not. The languages 0 and [a'b'c' \ i > 0} are both recursively enumerable;
the former is context-free, and the latter is not (Example 7.4.1). □

12.5 An Unsolvable Word Problem

Semi-Thue Systems, named after their originator Norwegian mathematician Axel Thue, are
a special type of grammar consisting of a single alphabet £ and a set P of rules. A rule has the
form u -> u, where u € E + and v e E*. There is no division of the symbols into variables
and terminals, nor is there a designated start symbol. The Word Problem for Semi-Thue

374 C h a p te r 12 U ndecidab i l i ty

Systems is the problem of determining, for an arbitrary Semi-Thue System S = (E , P) and
strings u, u € E*, whether v is derivable from u in S. We will show that the Halting Problem
is reducible to the Word Problem. The reduction is obtained by establishing a relationship
between Turing machine computations and derivations in appropriately designed Semi-

Thue Systems.
L e t M = (Q , E, T, <5, q0, F) be a deterministic Turing machine. Using a modification

of the construction presented in Theorem 10.1.3, we can construct a Semi-Thue System
SM = (Ej^. Pm) whose derivations simulate the computations of M. The alphabet of S ^ is
the s e t Q u r u { [,] ,q f , qR, qL). The set PM of rules of SM is defined by

1. q(xy -> zqsy whenever&(qh x) = [qj, z, fl] and y € T

2. q,x] -*■ zqjB] whenever S(qh x) = [q} , z, fl]

3. yq tx —* q jy z whenever S(q,, x) = [q j , z, L] and y € T

4. qtx -*■ qR if 5(q/, x) is undefined

5. qRx -*■ qR fo r* € T

6- <7r] tfd

7. xqL —► qL for x € T

8- lqL ~*- [Qf-

The rules that generate the string [qaBw] in Theorem 10.1.3 are omitted since the Word
Problem for a Semi-Thue System is concerned with derivability of a string t> from another
string u, not from a distinguished starting configuration. The erasing rules (5 through 8)
have been modified to generate the string [qy] whenever the computation o f M with input
w halts.

The simulation of a computation of M in SM manipulates strings of the form [uqv]
with u, v e T*, and q € Q U { q f , q R, qi\ - Lemma 12.5.1 lists several important properties
of derivations of SM that simulate a computation of M.

Lemma 12.5.1

Let M be a deterministic Turing machine, SM be the Semi-Thue System constructed from
M, and w = [uqv] be a string with u, v e T*, and q € Q U {qf, qR, qL).

i) There is at most one string z such that w =$ z.
SM

ii) If there is such a z, then z also has the form [u' q' i/] with u', v' € T*. and q' €

Q U [qf , qR, qL).

Proof. The application of a rule replaces one instance of an element of Q U [qf, q R, qL)
with another. The determinism of M guarantees that there is at most one rule in PM that can
be applied to [uqv] whenever q e Q. If q = qR there is a unique rule that can be applied to
[uqRv]. This rule is determined by the first symbol in the string u]. Similarly, there is only

12.5 An U n so lv a b le W ord P r o b le m 375

one rule that can be applied to [uqL\. Finally, there are no rules in PM that can be applied
to a string containing q f .

Condition (ii) follows immediately from the form of the rules of Pm - ■

A computation of M that halts with input w produces a derivation

[q0Bu>B] =>
SM

The erasure rules transform this string to [q These properties are combined to yield
Lemma 12.5.2.

Lemma 12.5.2

A deterministic Turing machine M halts with input w if, and only if, [q0B w B] =̂> [q
SM

The relationship between a computation of a Turing machine and a derivation in the
corresponding Semi-Thue System is illustrated in the following example.

Example 12.5.1

The language of the Turing machine

010 R

u) © * "* -w » ©

is 0*1(0 U 1)*. The rules of the corresponding Semi-Thue System SM are

Qq BB —► Bq^B qfiB -*■ Oq^B q{lB -*• lq2B
q$B0 Bq\0 q\00 -* ■ 0qt0 q\10 - * lq20
q0Bl Bq\l q f i l -> Oq^l q \ H —* iq2i
q0B]-> BqtB] q\0] —>• OqtB] q\l] - * lq2B]

qoO -*• qK <IrB -»■ qR BqL -*■ qL
<1r qR0 -* ■ qR OqL 4l

q\B -+ qR QrI -*■ qR lU -»■ <?£.
- * qR 1 r] -* ■ <?£.) f<7/. “*■ [<?/

q20 - ► qR

<?21 <1r

376 C h a p te r 12 U n decidab i l i ty

The computation of M that accepts Oil is given with the associated derivation of [qf]

from [q^BOl IB] in the Semi-Thue System Sf^.

q0B011B [q0B011B]

h Bq\011B = ► [B q f i l lB]

h BOq^llB =>[B0qil lB]

h BOlqilB => [B01q2lB]

= ► [B01qRB]

=> [B01qR]

=> [B01qL]

=> [B0qL]

=> lBqL]

=> ta d

=>[«/]

The ability to simulate the computations of a Turing machine with derivations of a Semi-
Thue System provides the basis for establishing the undecidability of the Word Problem for
Semi-Thue Systems.

Theorem 12.5.3

The Word Problem for Semi-Thue Systems is undecidable.

Proof. The preceding lemmas sketch the reduction of the Halting Problem to the Word

Problem. For a Turing machine M and corresponding Semi-Thue System Sm, the compu
tation of M with input w halting is equivalent to the derivability of [qf] from [q0BwB] in
SM. An algorithm that solves the Word Problem could also be used to solve the Halting
Problem. ■

By Theorem 12.5.3, there is no algorithm that solves the Word Problem for an arbitrary
Semi-Thue System S = (L , P) and pair of strings in S*. The relationship between the
computations of a Turing machine M and derivations of SM developed in Lemma 12.5.2
can be used to prove that there are particular Semi-Thue Systems whose word problems are
undecidable.

Theorem 12.5.4

Let M be a deterministic Turing machine that accepts a nonrecursive language. The Word
Problem for the Semi-Thue System SM is undecidable.

Proof. Since M recognizes a nonrecursive language, the Halting Problem for M is unde-
cidable (Exercise 3). The correspondence between computations of M and derivations of
SM yields the undecidability of the Word Problem for this system. ■

12.6 T h e P o s t C o r r e s p o n d e n c e P r o b le m 377

12.6 The Post Correspondence Problem

The undecidable problems examined in the preceding sections have been concerned with
the properties of Turing machines or mathematical systems that simulate Turing machines.
The Post Correspondence Problem is a combinatorial question that can be described as a
simple game of manipulating dominoes. A domino consists of two nonnull strings from a
fixed alphabet, one on the top half of the domino and the other on the bottom.

aba

bbaba

A Post correspondence system can be thought of as defining a finite set of domino types.
The game begins with one of the dominoes being placed on a table. Another domino

is then placed to the immediate right of the domino on the table. This process is repeated,
producing a sequence of adjacent dominoes. We assume that there is an unlimited number
of dominoes of each type; playing a domino does not limit the number of future moves.

A string is obtained by concatenating the strings in the top halves o f a sequence of
dominoes. We refer to this as the top string. Similarly, a sequence of dominoes defines a
bottom string. The object of the game is to find a finite sequence of plays that produces
identical top and bottom strings. Consider the Post correspondence system defined by
dominoes

a c ba acb

ac ba a b

The sequence

a c ba
\

a acb

ac ba a ac b

spells acbaaacb in both the top and bottom strings.
Formally, a Post correspondence system consists of an alphabet E and a finite set of

ordered pairs [«,, u,], / = 1, 2 , . . . , n, where v,- e £ + . A solution to a Post correspon
dence system is a sequence i l t i2, . . . , ik such that

The problem of determining whether a Post correspondence system has a solution is the
Post Correspondence Problem.

378 C h a p te r 12 U nde c ida b i l i ty

Example 12.6.1

The Post correspondence system with alphabet {a, b } and ordered pairs [aaa, aa],

[baa, abaaa] has a solution

aaa baa aaa

aa abaaa aa □

Example 12.6.2

Consider the Post correspondence system with alphabet {a, b } and ordered pairs [ab, aba],
[bba, aa], [aba, bab]. A solution must begin with the domino

ab

aba

since this is the only domino in which prefixes on the top and bottom agree. The string in
the top half of the next domino must begin with a. There are two possibilities:

ab ab

aba aba

ab aba

aba bab

(a) (b)

The fourth elements of the strings in (a) do not match. The only possible way of constructing
a solution is to extend (b). Employing the same reasoning as before, we see that the first
element in the top of the next domino must be b. This lone possibility produces

ab aba bba

aba bab aa

which cannot be the initial subsequence of a solution since the seventh elements in the top
and bottom differ. We have shown that there is no way of “playing the dominoes” in which
the top and bottom strings are identical. Hence, this Post correspondence system has no
solution. □

We will show that the Post Correspondence Problem is undecidable by associating
derivations in a Semi-Thue System with sequences of dominoes. By Theorem 12.5.4 we
know that there is a Semi-Thue System S = (E , P) whose word problem is undecidable;

12.6 T h e P o s t C o r r e s p o n d e n c e P r o b le m 379

that is, there is no algorithm that determines whether a string v is derivable from a string u
using the rules in P. The components of the reduction are

Reduction Input Condition

Derivability in S = (S, P) strings u, v t is derivable from u

to | if, and only if,

Post Correspondence set of dominoes the Post correspondence system
Problem C„ „ C„ „ has a solution

The reduction consists of producing dominoes from the rules of P and the strings u and v in,
a manner that playing the dominoes corresponds to derivations in the Semi-Thue System.

Theorem 12.6.1

There is no algorithm that determines whether an arbitrary Post correspondence system has
a solution.

Proof. Let S = (E , P) be a Semi-Thue System with alphabet {0,1) whose word problem
is unsolvable. For each pair of strings u, v e £*, we will construct a Post correspondence
system Cu „ that has a solution if, and only if, m u. Since the latter problem is undecidable,

there can be no general algorithm that solves the Post Correspondence Problem.
We begin by augmenting the set of productions of S with the rules 0 —> 0 and 1 —*■ 1.

Derivations in the resulting system are identical to those in S except for the possible addition
of rule applications that do not transform the string. The application of such a rule, however,

guarantees that whenever u v, v may be obtained from u by a derivation of even length,
s

By abuse of notation, the augmented system is also denoted S.
Now let u and v be strings over {0,1)*. A Post correspondence system C„ „ is con

structed from u, v, and S. The alphabet of Cu u consists of 0, 0, 1, 1, [,], *, and *. A
string w consisting entirely of “barred” symbols is denoted uJ.

Each production Xj —* yh i = 1, 2 , . . . , n, of S (including 0 —* 0 and 1 —*■ 1) defines
two dominoes

y, y>

x, $

The system is completed by the dominoes

[•<» * ♦]

[♦ * *v]

380 C h a p t e r 12 U ndecidab i l i ty

The dominoes

0 0 1 I

0 0 T 1

can be combined to form sequences of dominoes that spell

w w

w w

for any string w e {0, 7)*. We will feel free to use these composite dominoes when con
structing a solution to a Post correspondence system CIIV.

First we show that Cu „ has a solution whenever u => v. Let

U = U 0 =>Ui=>---=*Uji =$V

be a derivation of even length. The rules 0 —* 0 and 1 -*■ 1 ensure that there is derivation of
even length whenever v is derivable from u. The ith step of the derivation can be written

i = Pi-\Xj._{qi_x => f t - 4. - 1 =

where u, is obtained from by an application of the rule x j —» The string

[«o * u{*u2 * S 3 * ■ • • *

is a solution to Cu v. This solution can be constructed as follows:

1. Initially play

[u*

[

2. To obtain a match, dominoes spelling the string u = u0 on the bottom are played,
producing

[U* h % *

[Po X % *

The dominoes spelling p0 and q0 are composite dominoes. The middle domino is
generated by the rule x jo -*■ >>jQ.

12.6 T h e P o s t C o r r e s p o n d e n c e P r o b le m 381

3. Since p0yj0q0 = uj, the top string can be written [u0 * u | and the bottom [u0. Repeating
the previous strategy, dominoes must be played to spell u [on the bottom

[«* Po % * P\ <7. *

[Po \ % * p 1 Xh <7. *

producing [«0 * u t*u2* on the top.

4. This process is continued for steps 2, 3, k — 1 of the derivation, producing

Pt- i V ,

Pt-1 V i 9 * - .

[m* Po \ % * P\ yJ>
*

[Po \ % * Pl x'h «l *

5. Completing the sequence with the domino

1

iv]

produces the string [«0 * u*u2 * ■ • • * in both the top and the bottom, solving
the correspondence system.

We will now show that a derivation u =» w can be constructed from a solution to the Post
correspondence system Cu v . A solution to Cu v must begin with

[k *

[

since this is the only domino whose strings begin with the same symbol. By the same
argument, a solution must end with

]

*v]

Thus the string spelled by a solution has the form [« * uj*u]. If w contains], then the solution
can be written [u * at* v]y*t>]. Since] occurs in only one domino and is the rightmost symbol
on both the top and the bottom of that domino, the string [u * **i>] is also a solution of Cu

In light of the previous observation, let [u * • • ■ *v] be a string that is a solution of
the Post correspondence system Cu „ in which] occurs only as the rightmost symbol. The

382 C h a p t e r 12 U ndecidab i l i ty

information provided by the dominoes at the ends of a solution determines the structure of
the entire solution. The solution begins with

[u*

[

A sequence of dominoes that spell u on the bottom must be played in order to match the
string already generated on the top. Let u = x ^ x i2. . . x ik be bottom strings in the dominoes
that spell u in the solution. Then the solution has the form

Xk *

*

[u* y<i

[x,i X>2 Xi>

Since each domino represents a derivation *,■ =>■ , we combine these to obtain the
derivation u => u It where u t = y,- y,- . . . yik. The prefix of the top string o f the dominoes
that make up the solution has the form [u * u{*, and the prefix of the bottom string is [«*.
Repeating this process, we see that a solution defines a sequence of strings

[U * «|*«2 * • • •

[u * i7]*«2 * “ 3* • • ■ *v]

[« * Mi* « 2 * uy*u4 * . . . *i>]

[u * Uj*U2 * « 3 *M4 * . . .

where m, => ui+l with u0 = u and uk = u. Combining these produces a derivation u v.
The preceding two arguments constitute a reduction of the Word Problem for the Semi-

Thue System S to the Post Correspondence Problem. It follows that the Post Correspondence
Problem is undecidable. ■

1X7 Undecidable Problems in Context-Free Grammars

Context-free grammars provide an important tool for defining the syntax o f programming
languages. The undecidability of the Post Correspondence Problem can be used to establish
the undecidability of several important questions concerning the languages generated by
context-free grammars. To establish a link between Post correspondence systems and
context-free grammars, the dominoes of a Post correspondence system are used to define
the rules of two context-free grammars.

12.7 U n d e c id a b le P r o b le m s in C on tex t-F ree G r a m m a r s 383

Let C = (E c , {[«,, u,], [u2, v2], [un, u„]}) be a Post correspondence system.
Two context-free grammars Gy and GL are constructed from the ordered pairs of C as

follows:

Gu: Vy = {Sul

S jj — U {1, 2, . . . , /i}

Pu = {Su —> UjS\ji, S[j —*■ Uji 11 = 1, 2, n}

Gl : Vl = {SL}

E L = EC U{1, 2......... n)

pL = ($L -> VjSLi, 5l -> Vji | / = 1, 2 , . . . ,

Determining whether a Post correspondence system C has a solution reduces to deciding
the answers to certain questions concerning derivability in corresponding grammars Gy and
Gl . The grammar GLi generates the strings that can appear in the upper half of a sequence
of dominoes. The digits in the rule record the sequence of dominoes that generate the string
(in reverse order). Similarly, GL generates the strings that can be obtained from the lower
half of a sequence of dominoes.

The Post correspondence system C has a solution if there is a sequence i\i2 . . . /*_ji*
such that

In this case, Gjj and Gl contain derivations

Su => ■ • • h ‘ i

SL =>v,{v,2 . . . v ik_lv,kikik_ l . . . i 2h,

where . . . u,k l uiiikik_ l . . . /2i, = vh vh . . . « / * _ , • • • h ‘i- Hence, the inter
section of L(Gjj) and L(Gl) is not empty.

Conversely, assume that w e L(G,j) O L(Gl). Then w consists of a string w' €
followed by a sequence /**'*_,... i2i\. The string w' = u(|z<,2 . . . uik [u ik = v , - ^ . . . v,t_, vik
is a solution to C.

Example 12.7.1

The grammars Gy and GL are constructed from the Post correspondence system [aaa, aa],
[baa, abaaaa] from Example 12.6.1.

Gu: S \ j -*■ a a a S \} l \a a a l GL: 5 l —> a a 5 Ll | a a l

—» baaS\j2 | baa2 —*■ abaaaS]2 \ abaaa2

384 C h a p te r 12 U ndecidab i l i ty

Derivations that exhibit the solution to the correspondence problem are

Sl = > aaS [J

= ► aaabaaaS\2\

=> aaabaaaaa 121. □
The relationship between solutions to a Post correspondence system and derivations in

the associated grammars Gy and GL is used to demonstrate the undecidability of several
questions about the languages generated by context-free grammars.

Theorem 12.7.1

There is no algorithm that determines whether the languages of two context-free grammars
are disjoint.

Proof. Assume there is such an algorithm. Then the Post Correspondence Problem could
be solved as follows:

1. For an arbitrary Post correspondence system C, construct the grammars Gy and GL
from the ordered pairs of C.

2. Use the algorithm to determine if L(G(j) and L(Gl) are disjoint.

3. C has a solution if, and only if, L(Gu) fl L(Gl) is nonempty.

Step 1 reduces the Post Correspondence Problem to the problem of determining whether
two context-free languages are disjoint. Since the Post Correspondence Problem has already
been shown to be undecidable, we conclude that the question of the intersection of context-
free languages is also undecidable. ■

Theorem 12.7.2

There is no algorithm that determines whether an arbitrary context-free grammar is am
biguous.

Proof. A context-free grammar is ambiguous if it contains a string that can be generated by
two distinct leftmost derivations. As before, we begin with an arbitrary Post correspondence
system C and construct G(j and GL. These grammars are combined to obtain the grammar

with start symbol 5 that generates L(Gu) U L(Gl).
Clearly, all derivations of G are leftmost; every sentential form contains at most

one variable. A derivation of G consists of the application of an 5 rule followed by a
derivation of Gjj or GL- The grammars Gy and GL are unambiguous; distinct derivations
generate distinct suffixes of integers. This implies that G is ambiguous if, and only if,
L(Gu) fl L(Gl) ^ 0. But this condition is equivalent to the existence of a solution to the

G : L = { 5 , S u , S l }

£ = £ u

P = P jj U PL U {5 —> S\j, S —> S l}

12.7 U n d e c id a b le P r o b le m s in C ontex t-F ree G r a m m a r s 385

original Post correspondence system C. Since the Post Correspondence Problem is reducible
to the problem of determining whether a context-free grammar is ambiguous, the latter

problem is also undecidable. ■

In Section 7.5 we saw that the family of context-free languages is not closed under
complementation. However, for an arbitrary Post correspondence system C, the languages
L(Gu) and L(Gl) are context-free (Exercise 20). We will use this property to establish the
undecidability of the problem of determining whether an arbitrary context-free grammar
generates all strings over its alphabet and whether two context-free grammars generate the
same language.

Theorem 12.7.3

There is no algorithm that determines whether the language of a context-free grammar
G = (L, E , P, S) is E*.

Proof. First, note that L = E* is equivalent to L = 0. We will show that there is no

algorithm that determines whether L(G) is empty for an arbitrary context-free grammar
G.

Let C be a Post correspondence system with associated grammars Gy and GL. A
context-free grammar G' that generates L(G(j) U L(Gl) can be obtained directly from the
context-free grammars that generate L(G,j) and L(Gl). By DeMorgan’s Law, L(G') =
L(Gu) fl L(Gl). ____

An algorithm that determines whether L(G) = 0 for an arbitrary context-free grammar
G can be used to solve the Post Correspondence Problem as follows:

1. For a Post correspondence system C, construct the grammars Gy and G L.

2. Construct the grammars that generate L(G,j) and L(Gl).

3. Construct G' from the grammars that generate L(Gu) and L(Gl).

4. Use the decision algorithm to determine whether L(G') = 0.

5. L(G') = 0 if, and only if, L(G,j) and L(Gl) are disjoint, if and only if, C has a solution.

Thus there can be no algorithm that decides whether L(G) = 0 or, equivalently, whether
L(G) = E*. ■

Theorem 12.7.4

There is no algorithm that determines whether the languages of two context-free grammars
are identical.

Proof. Let C be a Post correspondence system with associated grammars Gy and GL. As
in the proof of Theorem 12.7.3, a context-free grammar G i can be constructed that generates
L(Gu) U L(Gl) = L(Gu) fl L(Gl). The second context-free grammar G2 generates all
strings over Ey.

The language LfGj) contains all strings in that are not solutions of the Post
correspondence system C. Thus L(G|) = L(G2) if, and only if, C does not have a solution.

386 C h a p t e r 12 U ndecidab i l i ty

Consequently, an algorithm that determines whether two grammars generate the same
language can be used to determine whether a Post correspondence system has a solution.

Exercises

1. Prove that the Halting Problem for the universal machine is undecidable. That is, there
is no Turing machine that can determine whether the computation of U with an arbitrary

input string will halt.

2. Explain the fundamental difference between the Halts on n ’th Transition Problem from
Example 11.5.2 and the Halting Problem that makes the former decidable and the latter
undecidable.

3. Let M be any deterministic Turing machine that accepts a nonrecursive language. Prove
that the Halting Problem for M is undecidable. That is, there is no Turing machine that
takes input w and determines whether the computation of M halts with input w.

For Exercises 4 through 8, use reduction to establish the undecidability of the each of the
decision problems.

4. Prove that there is no algorithm that determines whether an arbitrary Turing machine
halts when run with the input string 101.

5. Prove that there is no algorithm that determines whether an arbitrary Turing machine
halts for at least one input string.

6. Prove that there is no algorithm with input consisting of a Turing machine M =
(Q, E , T, 5, qQ, F), a state q: e Q, and a string w s E ’ that determines whether
the computation of M with input w enters state qt .

7. Prove that there is no algorithm that determines whether an arbitrary Turing machine
prints a 7 on its final transition.

8. Prove that there is no algorithm that determines whether an arbitrary Turing machine
prints the symbol 1 on three consecutive transitions when run with a blank tape.

9. Why can’t we successfully argue that the Blank Tape Problem is undecidable as follows:
The Blank Tape Problem is a subproblem of the Halting Problem, which is undecidable
and therefore must be undecidable itself.

10. Show that the problem of deciding whether a string over E = {7} has even length is
reducible to the Blank Tape Problem. Why is it incorrect to conclude from this that the
problem of determining whether a string has even length is undecidable?

11. Give an example of a property of languages that is not satisfied by any recursively
enumerable language.

Exercises 387

12. Use Rice’s Theorem to show that the following properties of recursively enumerable
languages are undecidable. To establish the undecidability, all you need do is show that

the property is nontrivial.

a) L contains a particular string w.

b) L is finite.

c) L is regular.

d) L is {0, /}*.

13. Let L = [R(M) | M halts when run with /?(M)}.

a) Show that L is not recursive.

b) Show that L is recursively enumerable.

* 14. Let L^g = {/?(M) | L(M) is nonempty}.

a) Show that is not recursive.

b) Show that L ^ is recursively enumerable.

15. Let M be the Turing machine

a) Give the rules of the Semi-Thue System SM that simulate the computations of M.

b) Trace the computation of M with input 01 and give the corresponding derivation in

16. Find a solution for each of the following Post correspondence systems.

a) [a, aa], [bb, b], [a, bb]

b) [a, aaa], [aab, b], [abaa, ab]

c) [aa, aab], [bb, ba], [abb, b]

d) [a, ab], [ba, aba], [b, aba], [bba, b]

17. Show that the following Post correspondence systems have no solutions.

a) [b, ba], [aa, b], [bab, aa], [ab, ba]

b) [ab, a], [ba, bab], [b, aa], [ba, ab]

c) [ab, aba], [baa, aa], [aba, baa]

d) [ab, bb], [aa, ba], [ab, abb], [bb, bab]

e) [abb, ab], [aba, ba], [aab, abab]

* 18. Prove that the Post Correspondence Problem for systems with a one-symbol alphabet
is decidable.

Ill R

0/0 R

388 C h a p te r 12 U ndecidab i l i ty

19. Let P be the Post correspondence system defined by [b, bbb], [babbb, ba], [bab, aab],

[ba, a],

a) Give a solution to P.

b) Construct the grammars Gy and GL from P.

c) Give the derivations in Gy and GL corresponding to the solution in (a).

20. Build the context-free grammars Gy and GL that are constructed from the Post corre
spondence system [b, bb], [aa, baa], [ab, a]. Is L(Gu)fl L(Gl) = 0?

* 21. Let C be a Post correspondence system. Construct a context-free grammar that gener
ates L(Gu).

* 22. Prove that there is no algorithm that determines whether the intersection of the lan
guages of two context-free grammars contains infinitely many elements.

23. Prove that there is no algorithm that determines whether the complement of the lan
guage of a context-free grammar contains infinitely many elements.

* 24. Prove that there is no algorithm that determines whether the languages o f two arbitrary
context-free grammars G] and G2 satisfy L(Gj) C L(G2).

Bibliographic Notes

The undecidability of the Halting Problem was established by Turing [1936]. The proof
given in Section 12.1 is from Minsky [1967], Techniques for establishing undecidability
using properties of languages were presented in Rice [1953] and [1956], The string trans
formation systems of Thue were introduced in Thue [1914] and the undecidability of the
Word Problem for Semi-Thue Systems was established by Post [1947],

The undecidability of the Post Correspondence Problem was presented in Post [1946],
The proof of Theorem 12.6.1, based on the technique of Floyd [1964], is from Davis
and Weyuker [1983]. Undecidability results for context-free languages, including Theo
rem 12.7.1, can be found in Bar-Hillel, Perles, and Shamir [1961], The undecidability of
ambiguity of context-free languages was established by Cantor [1962], Floyd [1962], and
Chomsky and Schutzenberger [1963], The question of inherent ambiguity was shown to be
unsolvable by Ginsburg and Ullian [1966a].

CHAPTER 1 3

Mu-Recursive Functions

In Chapter 9 we introduced computable functions from a mechanical perspective; the
transitions of a Turing machine produced the values of a function. The Church-Turing Thesis
asserts that every algorithmically computable function can be realized in this manner, but
exactly what functions are Turing computable? In this chapter we will provide an answer
to this question and, in doing so, obtain further support for the Church-Turing Thesis.

We now consider computable functions from a macroscopic viewpoint. Rather than fo
cusing on elementary Turing machine operations, functions themselves are the fundamental
objects of study. We introduce two families of functions, the primitive recursive functions
and the (i-recursive functions. The primitive recursive functions are built from a set of intu
itively computable functions using the operations of composition and primitive recursion.
The /^-recursive functions are obtained by adding unbounded minimalization, a functional
representation of sequential search, to the function building operations.

The computability of the primitive and n -recursive functions is demonstrated by outlin
ing an effective method for producing the values of the functions. The analysis of effective
computation is completed by showing the equivalence of the notions ofTuring computabil
ity and /x-recursivity. This answers the question posed in the opening paragraph— the func
tions computable by a Turing machine are exactly the /^-recursive functions.

13.1 Primitive Recursive Functions

A family of intuitively computable number-theoretic functions, known as the primitive
recursive functions, is obtained from the basic functions

389

390 C h a p t e r 13 M u-R ec u rs ive F u n c t io n s

i) the successor function s: s(x) = x + 1

ii) the zero function z: z(x) = 0

iii) the projection functions p'"*: p("} (xl t . . . , x„) = x,, 1 < i < n

using operations that construct new functions from functions already in the family. The sim
plicity of the basic functions supports their intuitive computability. The successor function
requires only the ability to add one to a natural number. Computing the zero function is
even less complex; the value of the function is zero for every argument. The value of the
projection function p'"* is simply its ith argument.

The primitive recursive functions are constructed from the basic functions by appli
cations of two operations that preserve computability. The first operation is functional
composition (Definition 9.4.2). Let / be defined by the composition of the n-variable
function h with the ^-variable functions g |, g2...........g„. If each of the components of
the composition is computable, then the value of /(jc j, . . . , xk) can be obtained from h

and £ i t x | , . . . , xk), g2(*i. • ■ ■ , **). ■ • • , g„(x\......... xk). The computability of / follows
from the computability of its constituent functions. The second operation for producing new
functions is primitive recursion.

Definition 13.1.1

Let g and h be total number-theoretic functions with n and n + 2 variables, respectively.
The n + 1-variable function / defined by

i) f (x u 0) = 2 (x,----- , x n)

ii) / (* , , y + 1) = h(x i, . . . , xn, y, f (x h . . . , x „ , y))

is said to be obtained from g and h by primitive recursion.

The Xj’s are called the parameters of a definition by primitive recursion. The variable y is
the recursive variable.

The operation of primitive recursion provides its own algorithm for computing the
value of / (* ! , y) whenever g and h are computable. For a fixed set o f parameters
X\............x„, f (•*■]...........xn, 0) is obtained directly from the function g:

f (x , xn, 0) = g(Xi...........xn).

The value / (jtj......... x„, y + 1) is obtained from the computable function h using

i) the parameters jcj, . . . , x„,

ii) y, the previous value of the recursive variable, and

iii) f i x i, . . . , xn, y) , the previous value of the function.

13.1 Pr im itive R ecu rs ive F u n c t io n s 391

/C *i......... *„• 0) = S(*i...........xn)

f (x . . . , 1) = h (x x, . . . , xn, 0, / (* , , 0))

f (x 2) = h (x x......... xn, 1,x„, 1))

f (x i......... y + 1) = h (x t, . . . , x „ , y , f (x x, . . . , x„, y)).

Since h is computable, this iterative process can be used to determine / (*] x„, y + 1)
for any value of the recursive variable y.

Definition 13.1.2

A function is primitive recursive if it can be obtained from the successor, zero, and projec
tion functions by a finite number of applications of composition and primitive recursion.

A function defined by composition or primitive recursion from total functions is itself
total. This is an immediate consequence of the definitions of the operations and is left as an
exercise. Since the basic primitive recursive functions are total and the operations preserve
totality, it follows that all primitive recursive functions are total.

Taken together, composition and primitive recursion provide powerful tools for the
construction of functions. The following examples show that arbitrary constant functions,
addition, multiplication, and factorial are primitive recursive functions.

For example, f (x \ xn, y + 1) is obtained by the sequence of computations

Example 13.1.1

The constant functions c ' " * (j c j , . . . , * „) = i are primitive recursive. Example 9.4.2 defines
the constant functions as the composition of the successor, zero, and projection functions.

□

Example 13.1.2

Let add be the function defined by primitive recursion from the functions g(x) = x and
h(x, y, z) = z + 1. Then

add(x, 0) = g(x) = x

add(x , y + 1) = h(x, y, add(x , y)) = add(x , y) + 1.

The function add computes the sum of two natural numbers. The definition of add(x, 0)
indicates that the sum of any number with zero is the number itself. The latter condition
defines the sum of x and y + 1 as the sum of x and y (the result of add for the previous
value of the recursive variable) incremented by one.

392 C h a p t e r 13 M u-R ec u rs ive F u n c t io n s

The preceding definition establishes that addition is primitive recursive. Both g and
h, the components of the definition by primitive recursion, are primitive recursive since

g = p1}* and h — s o .
The result of the addition of two natural numbers can be obtained from the prim

itive recursive definition of add by repeatedly applying the condition a d d (x , y + 1) =
add(x, y) + 1 to reduce the value of the recursive variable. For example,

add(2, 4) = add(2, 3) + 1

= (add(2, 2) + 1) + 1

= ((add(2, 1) + 1) + 1) + 1

= (((add(2, 0) + 1) + 1) + 1) + 1

= (((2 + 1) + 1) + 1) + 1

= 6.

When the recursive variable is zero, the function g is used to initiate the evaluation of the
expression. □

Example 13.1.3

Let g and h be the primitive functions g = z and h = add o (p*^, p(^) . Multiplication can
be defined by primitive recursion from g and h as follows:

mult(x , 0) = g(x) = 0

mult(x , y + 1) = h(x, y, m u lt(x , >>)) = mult(x , y) + x.

The infix expression corresponding to the primitive recursive definition is the identity
x • (y + 1) = x • y + x, which follows from the distributive property of addition and multi
plication. □

Adopting the convention that a zero-variable function is a constant, we can use Defi
nition 13.1.1 to define one-variable functions using primitive recursion and a two-variable
function h . The definition of such a function / has the form

i) / (0) = n0, where n0 G N

ii) f (y + 1) = h(y, f (y)) .

Example 13.1.4

The one-variable factorial function defined by

1 i fy = 0
fact(y) =

f l i otherwise
i=i

13.1 Pr im it ive R ecurs ive F u n c t io n s 393

is primitive recursive. Let h(x, y) = mult o (p ^ \ s o p ^) = y • (x + 1). The factorial
function is defined using primitive recursion from h by

fact(0) - 1

fac t(y + 1) = h (y , fa c t (y)) =fact(y) • (y + 1).

Note that the definition uses y + 1, the value of the recursive variable. This is obtained by
applying the successor function to y, the value provided to the function h.

The evaluation of the function fact for the first five input values illustrates how the
primitive recursive definition generates the factorial function.

fact(0) = 1

fac t(l) = fact(0) • (0 + 1) = 1

fact(2) = fac t (l) • (1 + 1) = 2

factO) =fact(2) • (2 + 1) = 6

fact(4) = factO) • (3 + 1) = 24

The factorial function is usually denoted f a c t (x) = x \ . □

The primitive recursive functions were defined as a family of intuitively computable
functions. The Church-Turing Thesis asserts that these functions must also be computable
using our Turing machine approach to functional computation. The Theorem 13.1.3 shows
that this is indeed the case.

Theorem 13.1.3

Every primitive recursive function is Turing computable.

Proof. Turing machines that compute the basic functions were constructed in Section 9.2.
To complete the proof, it suffices to prove that the Turing computable functions are closed
under composition and primitive recursion. The former was established in Section 9.4. All
that remains is to show that the Turing computable functions are closed under primitive
recursion; that is, if / is defined by primitive recursion from Turing computable functions
g and h, then / is Turing computable.

Let g and h be Turing computable functions and let / be the function

/ (* l......... 0) = « (* , , . . . , *„)

f i x ,......... x„, y + 1) = h (x x------ - xn, y, / (* , , . . . , xn, y))

defined from g and h by primitive recursion. Since g and h are Turing computable, there
are standard Turing machines G and H that compute them. A composite machine F is
constructed to compute / . The computation of f (x x, x2, , x„, y) begins with tape
configuration B x tB x 2B . . . B x nByB .

1. A counter, initially set to 0, is written to the immediate right of the input. The counter
is used to record the value of the recursive variable for the current computation.

394 C h a p t e r 13 M u-R ec urs ive F u n c t io n s

The parameters are then written to the right of the counter, producing the tape con

figuration

B x xB x 2B . . . B x„ B yB Q B xiB x 2B .. . Bx„B.

2. The machine G is run on the final n values of the tape, producing

B x xB x 2B . . . B x nByB Q B g(xx, x 2, . . . , x„)B.

The computation of G generates g (x lt x 2, . . . , xn) = f (x h x 2......... x„, 0).

3. The tape now has the form

B x xB x 2B . . . B x nB y B i B f (x h x2......... x„, i)B.

If the counter i is equal to y, the computation of / (jci, x2......... ■*„, y) is completed by
erasing the initial n + 2 numbers on the tape and translating the result to tape position
one.

4. If /' < y, the tape is configured to compute the next value of / .

B x xB x 2B . , . B x nB y B i + \ B x xB x 2B . . . B x „ B iB / (jcj, x 2, . . . , x n, i)B

The machine H is run on the final n + 2 values on the tape, producing

B x xB x 2B . . . B x„ B yB i + lB h (x x, x2, . . . , x„, i, f (x \ , x 2, . . . , x„, i))B,

where the rightmost value on the tape is f (x i, x2......... x„, i + 1). The computation
continues with the comparison in step 3. ■

13.2 Some Primitive Recursive Functions

A function is primitive recursive if it can be constructed from the zero, successor, and pro
jection functions by a finite number of applications of composition and primitive recursion.
Composition permits g and h, the functions used in a primitive recursive definition, to utilize
any function that has previously been shown to be primitive recursive.

Primitive recursive definitions are constructed for several common arithmetic functions.
Rather than explicitly detailing the functions g and h, a definition by primitive recursion
is given in terms o f the parameters, the recursive variable, the previous value of the
function, and other primitive recursive functions. Note that the definitions of addition and
multiplication are identical to the formal definitions given in Examples 13.1.2 and 13.1.3,
with the intermediate step omitted.

Because of the compatibility with the operations of composition and primitive recur
sion, the definitions in Tables 13.1 and 13.2 are given using the functional notation. The
standard infix representations of the binary arithmetic functions, given below the function

13.2 S o m e Pr im itive R ecurs ive F u n c t io n s 395

TABLE 13.1 Pr im itive R ecu rs ive A r i th m et ic F u n c t io n s

Description Function Definition

Addition add(x, y)

x + y

add(x, 0) = x

add(x, y + 1) = add{x, y) + 1

Multiplication mult(x, y)
x • y

mult(x, 0) = 0
mult(x, y + 1) = mult(x, y) + x

Predecessor pred(y) pred(0)= 0

pred(y + 1) = y

Proper subtraction sub(x, y)

x - y

sub(x, 0) = x

sub(x, y + 1) = pred(sub(x, y))

Exponentation exp(x, y)

x>

exp(x, 0) = 1

exp(x, y + 1) = exp(x, y) • x

names, are used in the arithmetic expressions throughout the chapter. The notation “+ 1”
denotes the successor operator.

A primitive recursive predicate is a primitive recursive function whose range is the set
{0, 1}. Zero and one are interpreted as false and true, respectively. The first two predicates
in Table 13.2, the sign predicates, specify the sign of the argument. The function sg is true
when the argument is positive. The complement of sg, denoted cosg, is true when the input
is zero. Binary predicates that compare the input can be constructed from the arithmetic
functions and the sign predicates using composition.

TABLE 13.2 Primitive Recursive Predicates

Description Predicate Definition

Sign s g M i*(0) = 0

*giy + l) = l

Sign complement cosg(x) cosg(0) = 1

cosg(y + 1) = 0

Less than lt(x, y) s g (y - x)

Greater than gt(x, y) sg(x - y)

Equal to eq(x, y) cosg(lt(x, y) +gt(x, y))

Not equal to ne(x, y) cosg(eq(x, y))

396 C h a p t e r 13 M u -R ec u rs iv e F u n c t io n s

Predicates are functions that exhibit the truth or falsity of a proposition. The logical
operations negation, conjunction, and disjunction can be constructed using the arithmetic
functions and the sign predicates. Let p\ and p i be two primitive recursive predicates.
Logical operations on p\ and p j can be defined as follows:

Predicate Interpretation

c o s g (P i) not p t

Pi • Pi Pi and Pi

sgiPi + Pi) Pi or p2

Applying cosg to the result of a predicate interchanges the values, yielding the negation
of the predicate. This technique was used to define the predicate ne from the predicate eq.
Determining the value of a disjunction begins by adding the truth values of the component
predicates. Since the sum is 2 when both of the predicates are true, the disjunction is obtained
by composing the addition with sg. The resulting predicates are primitive recursive since
the components of the composition are primitive recursive.

Example 13.2.1

The equality predicates can be used to explicitly specify the value of a function for a finite
set of arguments. For example, / is the identity function for all input values other than 0,
1, and 2:

2

©IIHJt! f (x) = eqix, 0) • 2
5 i f x = 1 + eqix, 1) • 5
4 if* = 2 + eq{x, 2) 4
X otherwise + g t ix , 2) . X .

The function / is primitive recursive since it can be written as the composition of primitive
recursive functions eq, gt, •, and + . The four predicates in / are exhaustive and mutually
exclusive; that is, one and only one of them is true for any natural number. The value of /
is determined by the single predicate that holds for the input. □

The technique presented in the previous example, constructing a function from exhaus
tive and mutually exclusive primitive recursive predicates, is used to establish the following
theorem.

Theorem 13.2.1

Let g be a primitive recursive function and / a total function that is identical to g for all but
a finite number of input values. Then / is primitive recursive.

13.2 S o m e Pr im itive R ecu rs ive F u n c t io n s 397

Proof. Let g be primitive recursive and let / be defined by

yi if x = n |

P
if x = n2

yt if x = nk

g(x) otherwise,

The equality predicate is used to specify the values of / for input nj, For all other
input values, / (x) = g(x). The predicate obtained by the product

ne(x, nj) • ne(x, n2) ne(x, nk)

is true whenever the value of / is determined by g. Using these predicates, / can be written

f (x) = eq(x, /I,) • y, + eq(x, n2) • y2 + ----- 1- eq(x, nk) - yk

+ ne(x, « |) • ne(x , n2)ne{x , nk) • g{x).

Thus / is also primitive recursive. ■

The order of the variables is an essential feature of a definition by primitive recursion.
The initial variables are the parameters and the final variable is the recursive variable.
Combining composition and the projection functions permits a great deal of flexibility
in specifying the number and order of variables in a primitive recursive function. This
flexibility is demonstrated by considering alterations to the variables in a two-variable
function.

Theorem 13.2.2

Let g(x, y) be a primitive recursive function. Then the functions obtained by

i) (adding dummy variables) / Qt, y, z2, . . . , z„) = g(x, y)

ii) (permuting variables) / (x, y) = g(y, x)

iii) (identifying variables) f (x) = g (x , x)

are primitive recursive.

Proof. Each of the functions is primitive recursive since it can be obtained from g and the
projections by composition as follows:

o / = * o o>(r 2v r 2))

ii) f = g ° (p a2 , P{f)

iii) / = £ ° (p lj \ P*!*). ■

Dummy variables are used to make functions with different numbers of variables
compatible for composition. The definition of the composition h o (g,, g2) requires that g t

398 C h a p t e r 13 M u -R ec u rs iv e F u n c t io n s

and £ 2 have the same number of variables. Consider the two-variable function / defined by
f (x , y) = (jc • y) + x\. The constituents of the addition are obtained from a multiplication
and a factorial operation. The former function has two variables and the latter has one.
Adding a dummy variable to the function fact produces a two-variable function fact'
satisfying/acr'Cx, y) =fact(x) = *!. Finally, we note that / = add o (mult, fact') so that
/ is also primitive recursive.

13.3 Bounded Operators

The sum of a sequence of natural numbers can be obtained by repeated applications of
the binary operation of addition. Addition and projection can be combined to construct
a function that adds a fixed number of arguments. For example, the primitive recursive
function

add o (p*'}*, add o (p ^ , add o (p ^ , p ^)))

returns the sum of its four arguments. This approach cannot be used when the number of
summands is variable. Consider the function

y

f (y) = 5 2 *(*) = *<°> + * 0) + • • • + g(y)-
i=0

The number of additions is determined by the input variable y. The function / is called
the bounded sum of g. The variable i is the index of the summation. Computing a bounded
sum consists of three actions: the generation of the summands, binary addition, and the
comparison of the index with the input y.

We will prove that the bounded sum of a primitive recursive function is primitive
recursive. The technique presented can be used to show that repeated applications of any
binary primitive recursive operation is also primitive recursive.

Theorem 13.3.1

Let g(jr,, y) be a primitive recursive function. Then the functions

y
I) (bounded sum) / (* , x„, y) = £ i)

i=0
>•

I I) (bounded product) / (* , , . . . , x„, y) = f [S (*i......... x„, i)
1=0

are primitive recursive.

Proof. The sum

y

H «(*i. ••••■*„. 0
1=0

13.3 B o u n d e d O p e r a t o r s 399

is obtained by adding g(xl t . . . , x„, y) to

y - i

52 2(JC*.......i)-
i=0

Translating this into the language of primitive recursion, we get

f (x \ xn, 0) = g(jc,...........*n, 0)

f (x ix„, y + 1) = / (a t ,x„, y) + g (x t, . . . , x „ , y + l) . ■

The bounded operations just introduced begin with index zero and terminate when the
index reaches the value specified by the argument y. Bounded operations can be generalized
by having the range of the index variable determined by two computable functions. The
functions I and u are used to determine the lower and upper bounds of the index.

Theorem 13.3.2

Let g be an n + 1-variable primitive recursive function and let I and u be n-variable primitive
recursive functions. Then the functions

M(*l....*n)
>) / (* 1......... x„) = £ g(*,, . . . , X „ , «)

i=/U|....jt„)
....■**)

ii) f i x i......... x„)= n 8(xi, . . . , x „ , /)
i=IU i.....x„)

are primitive recursive.

Proof. Since the lower and upper bounds of the summation are determined by the functions
/ and u, it is possible that the lower bound may be greater than the upper bound. When this
occurs, the result of the summation is assigned the default value zero. The predicate

g t(l (x lt . . . , x„), u (x t......... *„))

is true in precisely these instances.
If the lower bound is less than or equal to the upper bound, the summation begins with

index /(* |......... x„) and terminates when the index reaches u(x ix„). Let g’ be the
primitive recursive function defined by

g'iX 1.....>0 = g(*|......... X„, y + 1(X|, AT„)).

The values of g' are obtained from those of g and I (xh . . . , x„):

g ’i x i......... x„, 0) = g(*,, . . . , x„, /(at,...........x n))

g \ x h . . . , x n, l) ~ g(x i......... x„, 1 + /(at,------ - x„))

g’ix ix n, y) = ^(a :,........... x „ ,y + / (a t , x„)).

400 C h a p t e r 13 M u -R ec u rs iv e F u n c t io n s

By Theorem 13.3.1, the function

y

/ '(* ! , . . . , x „ , y) = Y ^ * '(* l. • • • - 0
1=0

y+Hx i.....x„)

l = f (* | X „)

is primitive recursive. The generalized bounded sum can be obtained by composing / ' with
the functions u and I:

«Ui.....x„)

f ' (x 1..........xn) - l { x x...........* „)))= g (x t, . . . , x„, i).
i=K x i.... x„)

Multiplying this function by the predicate that compares the upper and lower bounds ensures
that the bounded sum returns the default value whenever the lower bound exceeds the upper
bound. Thus

f (x , ----- - x„) = cosg(,gt(l(xx......... x„), u{xx------ - *„)))

• / ' (* i......... xn, («(* ,...........x „) ~ l (x x...........^ „)» .

Since each of the constituent functions is primitive recursive, it follows that / is also
primitive recursive.

A similar argument can be used to show that the generalized bounded product is
primitive recursive. When the lower bound is greater than the upper, the bounded product
defaults to one. ■

The value returned by a predicate p designates whether the input satisfies the property
represented by p. For fixed values j t i , . . . , xn,

f iz[p{xu . . . , x „ , z)]

is defined to be the smallest natural number z such that p (x x......... xn, z) = 1. The notation
n z[p (x x, . . . , x„, z)] is read “the least z satisfying p (x {, . . . ,x„, z).” This construction is
called the minimalization of p, and /xz is called the //-operator. The minimalization of an
n + 1-variable predicate defines an n -variable function

/ (o r , , . . . , xn) = f iz[p(x i z)].

An intuitive interpretation of minimalization is that it performs a search over the natural
numbers. Initially, the variable z is set to zero. The search sequentially examines the natural
numbers until a value of z for which p (x x, . . . , x„, z) = 1 is encountered.

13.3 B o u n d e d O p e r a t o r s 401

Unfortunately, the function obtained by the minimalization of a primitive recursive
predicate need not be primitive recursive. In fact, such a function may not even be total.

Consider the function

f i x) = p.z[eq{x, z • z)J.

Using the characterization of minimalization as search, / searches for the first z such that
z2 = x. If x is a perfect square, then f i x) returns the square root of x. Otherwise, / is

undefined.
By restricting the range over which the minimalization occurs, we obtain a bounded

minimalization operator. An n + 1-variable predicate defines an n + 1-variable function

f i x i......... x„ ,y) = /lz lp ix \ , ■ ■ ■ , xn, z)]

z if p {xh . . . , x„, i) = 0 for 0 < i' < z < y
and p i x i , . . . , x„, z) = 1

y + 1 otherwise.

The bounded p.-operator returns the first natural number z less than or equal to y for which
p ix i.........x n, z) = 1. If no such value exists, the default value of y + 1 is assigned. Limiting
the search to the range of natural numbers between zero and y ensures the totality of the
function

/ (* , , . . . , x „ , y) = / l z [p (xh . . . , x n, z)J.

In fact, the bounded minimalization operator defines a primitive recursive function when
ever the predicate is primitive recursive.

Theorem 13.3.3

Let p (x | , . . . , x„, y) be a primitive recursive predicate. Then the function

f i x i......... x„ ,y) = i l z lp ix f------- xn, z)]

is primitive recursive.

Proof. The proof is given for a two-variable predicate p ix , y) and easily generalizes to
w-variable predicates. We begin by defining an auxiliary predicate

* < * • » = (! i f£ < * • / > = 0 f o r 0 * f ^
(0 otherwise

y
= n cosg ip ix , o) .

1=0

This predicate is primitive recursive since it is a bounded product of the primitive recursive
predicate cosg o p.

402 C h a p t e r 13 M u -R ec u rs iv e F u n c t io n s

The bounded sum of the predicate g produces the bounded p.-operator. To illustrate the
use of g in constructing the minimalization operator, consider a two-variable predicate p
with argument n whose values are given in the left column:

0

p(n, 0) = 0 g(n, 0) = 1 ^ g(n, i) = 1
i=0

1
p(n, 1) = 0 g(n, 1) = 1 ^ g (n , 0 = 2

1=0

2

p(n, 2) = 0 g(n, 2) = 1 ^ g (n , i ') = 3
i'= 0

3
p(n, 3) = 1 g(n, 3) = 0 ^ g (n , « ') = 3

1=0

4
p(n, 4) = 0 g (n , 4) = 0 ^ g(n, Q = 3

1= 0

5
p(n , 5) = l g (n , 5) = 0 ^ g (w , /) = 3

1=0

The value of g is one until the first number z with p(n , z) = 1 is encountered. All subsequent
values of g are zero. The bounded sum adds the results generated by g. Thus

i f z > y
otherwise.

The first condition also includes the possibility that there is no z satisfying p(n , z) = 1. In
this case the default value is returned regardless of the specified range.

By the preceding argument, we see that the bounded minimalization o f a primitive
recursive predicate p is given by the function

y
f (x , y) = f l z [p (x , z)] = ^ g (x t o ,

i = 0

and consequently is primitive recursive. ■

y
Bounded minimalization f (y) = p.z[p(x, z)] can be thought of as a search for the first

value of z in the range 0 to y that makes p true. Example 13.3.1 shows that minimalization
can also be used to find first value in a subrange or the largest value z in a specified range
that satisfies p.

13.3 B o u n d e d O p e r a t o r s 403

Example 13.3.1

Let p(x, z) be a primitive recursive predicate. Then the functions

i) / i (* . yo< y) = first value in the range [y0, y] for which p(x , z) is true,

ii) / 2(jr, y) = the second value in the range [0, y] for which p(x, z) is true, and

iii) fo(x, y) = the largest value in the range [0, y] for which p(x, z) is true

are also primitive recursive. For each of these functions, the default is y + 1 if there is no
value of z that satisfies the specified condition.

To show that f \ is primitive recursive, the primitive recursive function ge, greater than
or equal to, is used to enforce a lower bound on the value of the function. The predicate
p(x, z) • ge(z, yg) is true whenever p(x , z) is true and z is greater than or equal to y$. The
bounded minimalization

f \ (x , yo, y) = d z lp (x , z) • ge(z, y0)],

returns the first value in the range [y0, y] for which p(x , z) is true.

The minimalization uz '[p(x , z ')] is the first value in [0, }>] for which p(x , z) is true.y
The second value that makes p(x , z) true is the first value greater than ixz'[p(x, z')] that
satisfies p. Using the preceding technique, the function

f l i x , y) = £z[p{x , z) ■ s '(z , l*z'[p(x, z ')])]

returns the second value in the range [0, >>] for which p is true.
A search for the largest value in the range [0, y] must sequentially examine y, y — 1,

y
y — 2 , . . . , 1, 0. The bounded minimalization f iz[p(x, y — z)] examines the values in the
desired order; when z = 0, p(x , y) is tested, when z = 1, p(x, y — 1) is tested, and so on.

y
The function f ' (x , y) — y — f.tz[p(x, y — z)] returns the largest value less than or equal to
y that satisfies p. However, the result of / ' is y — (>> + 1) = 0 when no such value exists. A
comparison is used to produce the proper default value. The first condition in the function

h i x , y) = eq(y + 1, / Iz[p(x , z)]) • (> + !) + neq(y + 1, f lz[p(x, z)]) • / ' (* , y))

returns the default y + 1 if there is no value in [0, y] that satisfies p. Otherwise, the largest
such value is returned. □

Bounded minimalization can be generalized by computing the upper bound of the
search with a function u. If u is primitive recursive, so is the resulting function. The proof
is similar to that of Theorem 13.3.2 and is left as an exercise.

404 C h a p t e r 13 M u-R ec u rs ive F u n c t io n s

Theorem 13.3.4

Let p be an n + 1-variable primitive recursive predicate and let u be an ^-variable primitive
recursive function. Then the function

H (X | X „)

f (x 1......... X„)= f lZ [p(xx...........x„ ,z)]

is primitive recursive.

13.4 Division Functions

The fundamental operation of integer division, div, is not total. The function d iv (x , y)
returns the quotient, the integer part of the division of x by y, when the second argument is
nonzero. The function is undefined when y is zero. Since all primitive recursive functions
are total, it follows that div is not primitive recursive. A primitive recursive division function
quo is defined by assigning a default value when the denominator is zero:

/ . J 0 if jy = o
quo x , y | y ̂ otherwise.

The division function quo is constructed using the primitive recursive operation of mul
tiplication. For values of y other than zero, quo(x, y) = z implies that z satisfies z • y <
x < (z + 1) • y. That is, quo{x , y) is the smallest natural number z such that (z 4- 1) • y is
greater than x. The search for the value of z that satisfies the inequality succeeds before z
reaches x since (x + 1) • y is greater than x. The function

l l z [g t ((z+ l)-;y, *)]

determines the quotient of x and y whenever the division is defined. The default value is
obtained by multiplying the minimalization by sg()>). Thus

quo(x, y) = sg(y) • ilz[gt((z + 1) • y, *)],

where the bound is determined by the primitive recursive function . The previous
definition demonstrates that quo is primitive recursive since it has the form prescribed by
Theorem 13.3.4.

The quotient function can be used to define a number of division-related functions and
predicates including those given in Table 13.3. The function rem returns the remainder of
the division of x by y whenever the division is defined. Otherwise, rem (x , 0) = x. The
predicate divides defined by

divides(x, y) = I 1 if * > ° ’ y > ° ’ and y is a divisor of x
I 0 otherwise

is true whenever y divides x. By convention, zero is not considered to be divisible by any
number. The multiplication by sg(x) in the definition of divides in Table 13.3 enforces this
condition. The default value of the remainder function guarantees that divides(x, 0) = 0.

13.4 D ivis ion F u n c t io n s 405

TABLE 13.3 Pr im itive R ecu rs ive D iv is ion F u n c t io n s

Description Function Definition

Quotient quo(x, y) sg(y) ■ixz[gt(.(z+ 1) • y. *)]

Remainder rem(x, y) x - (y-quote, >>))

Divides divides(x, y) eq(rem(x, y), 0) •

Number of divisors ndivisors(x, y)
X

£ divides(x, i)
i=0

Prime prime(x) eq(ndivisors(x), 2)

The generalized bounded sum can be used to count the number of divisors of a number.
The upper bound of the sum is obtained from the input by the primitive recursive function
p']*. This bound is satisfactory since no number greater than at is a divisor of x. A prime
number is a number whose only divisors are 1 and itself. The predicate prime simply checks
if the number of divisors is two.

The predicate prime and bounded minimalization can be used to construct a primitive
recursive function pn that enumerates the primes. The value of pn(i) is the /th prime. Thus,
pn(0) = 2, prt(l) = 3, pn(2) = 5, p n(3) = 7, The x + 1st prime is the first prime
number greater than prt(x). Bounded minimalization is ideally suited for performing this
type of search. To employ the bounded ^i-operator, we must determine an upper bound
for the minimalization. By Theorem 13.3.4, the bound may be calculated using the input
value x.

Lemma 13.4.1

Let pn(x) denote the jcth prime. Then pn(x + 1) < pn(x)\ + 1.

Proof. Each of the primes pn(i), i = 0, 1, . . . , x, divides pn(x)\. Since a prime cannot
divide two consecutive numbers, either pn (x) ! + 1 is prime or its prime decomposition con
tains a prime other than pn (0), pn(1), . . . , pn(x). In either case, pn(x + 1) < pn(x:) !+ 1.

■

The bound provided by the preceding lemma is computed by the primitive recursive
function fact(x) + 1. The *th prime function is obtained by primitive recursion as follows:

pn (0) = 2

/ac7(/wr(.r))+l
pn(x + 1) = fiz [prime(z) * g t (z , pn(x))].

Let us take a moment to reflect on the consequences of the relationship between the
family of primitive recursive functions and Turing computability. By Theorem 13.1.3, every

406 C h a p t e r 13 M u -R ec u rs iv e F u n c t io n s

primitive recursive function is Turing computable. Designing Turing machines that explic
itly compute functions such as pn or ndivisors would require a large number of states and
a complicated transition function. Using the macroscopic approach to computation, these
functions are easily shown to be computable. Without the tedium inherent in constructing
complicated Turing machines, we have shown that many useful functions and predicates

are Turing computable.

13.5 Godel Numbering and Course-of-Values Recursion

Many common computations involving natural numbers are not number-theoretic functions.
Sorting a sequence of numbers returns a sequence, not a single number. However, there are
many sorting algorithms that we consider effective procedures. We now introduce primitive
recursive constructions that allow us to perform this type of operation. The essential feature
is the ability to encode a sequence of numbers in a single value. The coding scheme utilizes
the unique decomposition of a natural number into a product of primes. Such codes are
called Godel numberings after German logician Kurt Godel, who developed the technique.

A sequence x0, x \ , . . . , xn_ t of n natural numbers is encoded by

pn(0)*0+1 • /?n(l)*l+ Ipn(n)x"+i = 2x°+l • 3*l+1........... pn(n)x”+1.

Since our numbering begins with zero, the elements of a sequence of length n are numbered
0, 1 ,. . . , n — 1. Examples of the Godel numbering of several sequences are

Sequence Encoding

1,2 2233 = 108

0,1,3 2'3254 = 11,250

0, 1,0, 1 2'325'72 =4,410

An encoded sequence of length n is a product of powers of the first n primes. The choice
of the exponent x t + 1 guarantees that pn(i) occurs in the encoding even when Xj is zero.

The definition of a function that encodes a fixed number of inputs can be obtained
directly from the definition of the Godel numbering. We let

n
gn„(xo......... xn) = pn(0)*0 + l...........pn(n)x"+l =]"[pn(i)x<+'

i=0

be the n + 1-variable function that encodes a sequence Xq, . . . , x„. The function gn„_i
can be used to encode the components of an ordered n -tuple. The Godel number associated
with the ordered pair [*0, *,] is g/ii(.x0, *i).

13.5 G Sde l N u m b e r i n g a n d C ourse-of-V a lues R e c u rs io n 407

A decoding function is constructed to retrieve the components of an encoded sequence.

The function

dec(i, x) = ixz[cosg(divides(x, pn(/')2+1))] - 1

returns the i th element of the sequence encoded in the Godel number x . The bounded
^-operator is used to find the power of pn(i) in the prime decomposition of x. The
minimalization returns the first value of z for which pn(i)z+l does not divide x. The * th
element in an encoded sequence is one less than the power of pn(i) in the encoding. The
decoding function dec(x, i) returns zero for every prime pn(i) that does not occur in the
prime decomposition of x.

When a computation requires n previously computed values, the Godel encoding
function gn„_i can be used to encode the values. The encoded values can be retrieved
when they are needed by the computation.

Example 13.5.1

The Fibonacci numbers are defined as the sequence 0, 1, 1, 2, 3, 5, 8, 13, . . . , where an
element in the sequence is the sum of its two predecessors. The function

/ (0) = 0

/ (l) = 1

f (y + 1) = f (y) + f (y - 1) for y > 1

generates the Fibonacci numbers. This is not a definition by primitive recursion since the
computation of f (y + 1) utilizes both /(> ’) and f (y — 1). To show that the Fibonacci
numbers are generated by a primitive recursive function, the Godel numbering function
gn] is used to store the two values as a single number. An auxiliary function h encodes the
ordered pair with first component f (y — 1) and second component / (y):

h(0) = g n l(0, 1) = 2*32 = 18

h{y + 1) = g n x(dec(\ , h(y)), dec(0, h(y)) + d e c (1, h(y))) .

The initial value of h is the encoded pair [/(0) , / (l)] . The calculation of h{y + 1) begins
by producing the components of the subsequent ordered pair

[dec(1, /i(;y)), dec(0, h(y)) + dec(1, h(y))] = [f (y) , f (y - 1) + f (y)] .

Encoding the pair with g n { completes the evaluation of h(y + 1). This process constructs
the sequence of Godel numbers of the pairs [/(0) , / (l)] , [/ (l) , /(2)] , [/ (2) , / (3)]
The primitive recursive function / (y) = dec(0, h (y)) extracts the Fibonacci numbers from
the first components of the ordered pairs. □

The Godel numbering functions gn, encode a fixed number of arguments. A Godel
numbering function can be constructed in which the number of elements to be encoded

408 C h a p t e r 13 M u -R ec u rs iv e F u n c t io n s

is computed from the arguments of the function. The approach is similar to that taken in
constructing the bounded sum and product operations. The values of a one-variable primitive
recursive function / with input 0, 1, . . . , n define a sequence / (0) , / (l) , . . . , f (n) of
length n + 1. Using the bounded product, the Godel numbering function

y
g n f (xx----- - x„ ,y) = n pn(i) fU)+l

i=0

encodes the first y + 1 values of / . The relationship between a function / and its encoding
function gny is established in Theorem 13.5.1.

Theorem 13.5.1

Let f be an n + 1-variable function and gn y the encoding function defined from / . Then
/ is primitive recursive if, and only if, gn y is primitive recursive.

Proof. If / (jct......... xn, y) is primitive recursive, then the bounded product

y

gn f (xx. . . . , x„, y) =]""[p n(i) /(x '....
i = 0

computes the Godel encoding function. On the other hand, the decoding function can be
used to recover the values of / from the Godel number generated by gn f .

f (x x, . . . , x „ , y) = dec (y , gn f (xx......... x „, >>)).

Thus f is primitive recursive whenever gny is. ■

The primitive recursive functions have been introduced because of their intuitive com
putability. In a definition by primitive recursion, the computation is permitted to use the
result of the function with the previous value of the recursive variable. Consider the function
defined by

/(0) = 1

/ (l) = / (0) • 1 = 1

/ (2) = / (0) •2 + / (l) •1 = 3

/(3) = / (0) •3 + / (l) •■ 2 + / (2) -1 = 8

/ (4) = / (0) •4 + / (!) ■ ■ 3 + / (2) • 2 + /(3)

The function / can be written as

/ (0) = 1

y

f (y + 1) = 5 2 f {i) • O' + 1 - ')•
i=0

13.5 C 6 d e l N u m b e r i n g a n d C ourse-of-V a lues R e c u r s io n 409

The definition, as formulated, is not primitive recursive since the computation of
f (y + 1) utilizes all of the previously computed values. The function, however, is intu
itively computable; the definition itself outlines an algorithm by which any value can be
calculated.

When the result of a function with recursive variable y + 1 is defined in terms of
/ (0) , / (l) , . . . , /(> ’), the function / is said to be defined by course-of-values recursion.
Determining the result of a function defined by course-of-values recursion appears to utilize
a different number of inputs for each value of the recursive variable. In the preceding
example, / (2) requires only / (0) and / (l) , while / (4) requires / (0) , / (l) , / (2) , and
/(3) . No single function can be used to compute both / (2) and / (4) directly from the
preceding values since a function is required to have a fixed number of arguments.

Regardless of the value of the recursive variable y + 1, the preceding results can be
encoded in the Godel number gn f (y) . This observation provides the framework for a formal
definition of course-of-values recursion.

Definition 13.5.2

Let g and h be n + 2-variable total number-theoretic functions, respectively. The
n + 1-variable function / defined by

i) / (* , , . . . , x„, 0) = g (x ,......... x„)

») / (* i......... xn, y + 1) = h(xh . . . , x „ , y , gn f (x xn, y))

is said to be obtained from g and h by course-of-values recursion.

Theorem 13.5.3

Let / be an n + 1-variable function defined by course-of-values recursion from primitive
recursive functions g and h. Then / is primitive recursive.

Proof. We begin by defining g n y by primitive recursion directly from the primitive
recursive functions g and h.

gn f (xx......... x„, 0) = 2f u '..... *»-0)+1

= 2*(;ti....*»>+1

gn f (xh . . . , xn, y + 1) = gn f (xx, . . . , x„, y) • p n(y + l)/(*'....•r->’+ 1>+1

= g n f (xx, . . . , x „ , y) - p n (y + 1)A<*...... i.... -w » + i

The evaluation of gn f (xx, . . . , xn, y + 1) uses only

i) the parameters x0, . . . , x„,

ii) y, the previous value of the recursive variable,

iii) gn f (x x, . . . , x„, y), the previous value of gn y, and

iv) the primitive recursive functions h, pn, •, + , and exponentiation.

Thus, the function gn f is primitive recursive. By Theorem 13.5.1, it follows that / is also
primitive recursive. ■

410 C h a p t e r 13 M u -R ec u rs iv e F u n c t io n s

In mechanical terms, the Godel numbering gives computation the equivalent of unlim
ited memory. A single Godel number is capable of storing any number of preliminary re
sults. The Godel numbering encodes the values / (xQ, 0), / (x0..........x„, 1), . . . ,
f (x 0, . . . , x„, y) that are required for the computation of f (x 0......... x „ , y + 1). The decod
ing function provides the connection between the memory and the computation. Whenever
a stored value is needed by the computation, the decoding function makes it available.

Example 13.5.2

Let h be the primitive recursive function

X

h(x, y) = ^ 2 dec(i, y) • (x + 1 - /').
i = 0

The function / , which was defined earlier to introduce course-of-values computation, can
be defined by course-of-values recursion from h.

/ (0) = 1

/ O ' + 1) = h(y, gn f (y)) = ^ dec(i, gn f (y)) • (y + 1 - i)
i = 0

y

= /(*') • 0> + 1 - 0 □
;=0

13.6 Computable Partial Functions

The primitive recursive functions were defined as a family of intuitively computable func
tions. We have established that all primitive recursive functions are total. Conversely, are all
computable total functions primitive recursive? Moreover, should we restrict our analysis
of computability to total functions? In this section we will present arguments for a negative
response to both of these questions.

We will use a diagonalization argument to establish the existence of a total computable
function that is not primitive recursive. The first step is to show that the syntactic structure
of the primitive recursive functions allows them to be effectively enumerated. The ability
to list the primitive recursive functions permits the construction of a computable function
that differs from every function in the list.

Theorem 13.6.1

The set of primitive recursive functions is a proper subset of the set of effectively computable
total number-theoretic functions.

Proof. The primitive recursive functions can be represented as strings over the alphabet

L = {s, p, z, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, (,) , o, :, (,)}. The basic functions s, z, and p(0

13.6 C o m p u ta b l e Partial F u n c t io n s 411

are represented by (s), (z), and (p i (j)). The composition h o (g(, . . . , g„) is encoded
((h) o ((g ,) , {#„»), where (/i) and (g,) are the representations of the constituent
functions. A function defined by primitive recursion from functions g and h is represented

by {(g) : </>»•
The strings in £* can be generated by length: first the null string, followed by strings of

length one, length two, and so on. A straightforward mechanical process can be designed to
determine whether a string represents a correctly formed primitive recursive function. The
enumeration of the primitive recursive functions is accomplished by repeatedly generating
a string and determining if it is a syntactically correct representation of a function. The first
correctly formed string is denoted / 0, the next f x, and so on. In the same manner, we can
enumerate the one-variable primitive recursive functions. This is accomplished by deleting
all n-variable functions, n > 1, from the previously generated list. This sequence is denoted
/<i) f(i) #<i)
/ 0 * j \ ' j 2 ' • • • •

The total one-variable function

g (o = f !) (o + 1

is effectively computable. The effective enumeration of the one-variable primitive recursive
functions establishes the computability of g. The value g(i) is obtained by

i) determining the i th one-variable primitive recursive function /*'*,

ii) computing / ^ O), and

iii) adding one to / <)) (/).

Since each of these steps is effective, we conclude that g is computable. By the familiar
diagonalization argument,

for any i . Consequently, g is total and computable but not primitive recursive. ■

Theorem 13.6.1 used diagonalization to demonstrate the existence of computable func
tions that are not primitive recursive. This can also be accomplished directly by constructing
a computable function that is not primitive recursive. The two-variable number-theoretic
function, known as Ackermann's function, defined by

i) /1(0, y) = y + 1

ii) A(x + 1, 0) = A{x, 1)

iii) A(x + 1, y + 1) = A(x, A(x + 1, y))

is one such function. The values of A are defined recursively with the basis given in condition
(i). A proof by induction on x establishes that A is uniquely defined for every pair of input
values (Exercise 22). The computations in Example 13.6.1 illustrate the computability of
Ackermann’s function.

412 C h a p t e r 13 M u-R ec u rs ive F u n c t io n s

Example 13.6.1

The values A(1, 1) and A(3, 0) are constructed from the definition of Ackermann’s function.
The column on the right gives the justification for the substitution.

a) A (l, 1) = A(0, A (1.0)) (iii)

= A(0, A(0, 1)) (ii)

= A(0, 2) (i)

= 3

b) A(2, 1) = A(l , A(2, 0)) (iii)

= A(l , A(l , 1)) (ii)

= A(l , 3) (a)

= A(0, A(1, 2)) (iii)

= A(0, A(0, A(l , 1))) (iii)

= A(0, A(0, 3)) (a)

= A(0, 4) (i)

= 5 (i) □

The values of Ackermann’s function exhibit a remarkable rate of growth. By fixing the
first variable, Ackermann’s function generates the one-variable functions

A(l , y) = y + 2

A (2, y) = 2y + 3

A(3, y) = 2y+3 - 3

2I0

A(4, y) = 22 - 3.

The number of 2’s in the exponential chain in A(4, y) is y. For example, A(4, 0) = 16 — 3,

A(4, 1) = 2 16 — 3, and A(4, 2) = 22'6 — 3. The first variable of Ackermann’s function
determines the rate of growth of the function values. We state, without proof, the following
theorem that compares the rate of growth of Ackermann’s function with that of the primitive
recursive functions.

Theorem 13.6.2

For every one-variable primitive recursive function / , there is some i € N such that
/O ') < A(i, i).

Clearly, the one-variable function A(i, i) obtained by identifying the variables of A is
not primitive recursive. It follows that Ackermann’s function is not primitive recursive. If it

13.6 C o m p u ta b l e Partial F u n c t io n s 413

were, then A(i, /'), which can be obtained by the composition A o (p*}*, p*}*), would also
be primitive recursive.

Is it possible to increase the set of primitive recursive functions, possibly by adding
some new basic functions or additional operations, to include all total computable functions?
Unfortunately, the answer is no. Regardless of the set of total functions that we consider
computable, the diagonalization argument in the proof of Theorem 13.6.1 can be used to
show that there is no effective enumeration of all total computable functions. Therefore, we
must conclude that the computable functions cannot be effectively generated or that there
are computable nontotal functions. If we accept the latter proposition, the contradiction
from the diagonalization disappears. The reason we can claim that g is not one of the / , ’s

is that g(i) ^ f*? (i). If / <!, (i) t . then g(i) = /*'* (0 + 1 is also undefined. If we wish to
be able to effectively enumerate the computable functions, it is necessary to include partial
functions in the enumeration.

We now consider the computability of partial functions. Since composition and prim
itive recursion preserve totality, an additional operation is needed to construct partial func
tions from the basic functions. Minimalization has been informally described as a search
procedure. Placing a bound on the range of the natural numbers to be examined ensures that
the bounded minimalization operation produces total functions. Unbounded minimalization
is obtained by performing the search without an upper limit on the set of natural numbers
to be considered. The function

f (x) = f i z [e q (x z • 2)]

defined by unbounded minimalization returns the square root of x whenever x is a perfect
square. Otherwise, the search for the first natural number satisfying the predicate continues
ad infinitum. Although eq is a total function, the resulting function / is not. For example,
/(3) 'f. A function defined by unbounded minimalization is undefined for input x whenever
the search fails to return a value.

The introduction of partial functions forces us to reexamine the operations of compo
sition and primitive recursion. The possibility of undefined values was considered in the
definition of composition. The function h o (g), . . . , gn) is undefined for input x x, . . . , xk
if either

') gi(x b • ■ •. •**) t f°r some 1 < 1 < n; or

») 8i(* 1......... xk) 4. for all 1 < 1 < n and h(gx(xx, . . . , x k), . . . g„(xx, xk)) f .

An undefined value propagates from any of the g, ’s to the composite function.
The operation of primitive recursion required both of the defining functions g and h to

be total. This restriction is relaxed to permit definitions by primitive recursion using partial
functions. Let / be defined by primitive recursion from partial functions g and h.

f (x \ A:„,0) = g (j r , ------ ,x„)

f (x x, . . . , xn, y + l) = h (x x......... x „ ,y , f (x x...........xn, y))

414 C h a p t e r 13 M u -R ec u rs iv e F u n c t io n s

Determining the value of a function defined by primitive recursion is an iterative process.
The function / is defined for recursive variable y only if the following conditions are

satisfied:

i) f { x \ 0) | if gO*,................. x„) I

ii) f i x y + 1) I if / (* , x„, i) 4- for 0 < i < y
and y, f i x t......... xn, y)) J. .

An undefined value for the recursive variable causes / to be undefined for all the subsequent
values of the recursive variable.

With the conventions established for definitions with partial functions, a family of
computable partial functions can be defined using the operations composition, primitive
recursion, and unbounded minimalization.

Definition 13.6.3

The family of /x-recursive functions is defined as follows:

i) The successor, zero, and projection functions are /x-recursive.

ii) If h is an n-variable //-recursive function and g j......... gn are ^-variable /x-recursive
functions, then / = h o (g , , . . . , g„) is /x-recursive.

iii) If g and h are n and n + 2-variable /x-recursive functions, then the function / defined
from g and h by primitive recursion is /x-recursive.

iv) If p{x\ x„, y) is a total /x-recursive predicate, then / = f iz[p(x \x„, z)] is
/x-recursive.

v) A function is /x-recursive only if it can be obtained from condition (i) by a finite number
of applications of the rules in (ii), (iii), and (iv).

Conditions (i), (ii), and (iii) imply that all primitive recursive functions are /x-recursive.
Notice that unbounded minimalization is not defined for all predicates, but only for total
/x-recursive predicates.

The notion of Turing computability encompasses partial functions in a natural way. A
Turing machine computes a partial number-theoretic function / if

i) the computation terminates with result / Q t , , . . . , xn) whenever / (* , , . . . , x„) 4, and

ii) the computation does not terminate whenever / Qtj, . . . , * „) t-

The Turing machine computes the value of the function whenever possible. Otherwise, the
computation continues indefinitely.

We will now establish the relationship between the /x-recursive and Turing computable
functions. The first step is to show that every /x-recursive function is Turing computable.
This is not a surprising result; it simply extends Theorem 13.1.3 to partial functions.

Theorem 13.6.4

Every /x-recursive function is Turing computable.

13.7 Tur ing C o m p u ta b i l i ty a n d M u-R ec urs ive F u n c t io n s 4 1 5

Proof. Since the basic functions are known to be Turing computable, the proof consists of
showing that the Turing computable partial functions are closed under operations of com
position, primitive recursion, and unbounded minimalization. The techniques developed in
Theorems 9.4.3 and 13.1.3 demonstrate the closure ofTuring computable total functions
under composition and primitive recursion, respectively. These machines also establish the
closure for partial functions. An undefined value in one of the constituent computations
causes the entire computation to continue indefinitely.

The proof is completed by showing that the unbounded minimalization o f a Turing com
putable total predicate is Turing computable. Let / (jrt, . . . , x„) = i i z [p (x \ y)]
where p (x) , . . . , xn, y) is a total Turing computable predicate. A Turing machine to com
pute / can be constructed from P, the machine that computes the predicate p. The initial
configuration of the tape is B x \ B x 2B . . . Bx„B.

1. The representation of the number zero is added to the right of the input. The search
specified by the minimalization operator begins with the tape configuration

B x \ B x 2B . . . B x nB0B.

The number to the right of the input, call it j , is the index for the minimalization
operator.

2. A working copy of the parameters and j is made, producing the tape configuration

B x xB x 2B . . . B x „ B j B x xB x 2B . . . B x„ B jB .

3. The machine P is run with the input consisting of the copy of the parameters and j ,
producing

B x xB x 2B . . . B x „ B j B p (x h x2, . . . , xn, j) B .

4. If p{x\, x 2......... xn, j) = 1, the value of the minimalization of p is j . Otherwise, the
p (x i, x2......... xn, j) is erased, j is incremented, and the computation continues with
step 2.

A computation terminates at step 4 when the first j for which p (x |, . . . , xn, j) = 1 is
encountered. If no such value exists, the computation loops indefinitely, indicating that
the function / is undefined. ■

13.7 Turing Computability and Mu-Recursive Functions

It has already been established that every ^-recursive function can be computed by a Turing
machine. We now turn our attention to the opposite inclusion, that every Turing computable
function is //-recursive. To show this, a number-theoretic function is designed to simulate
the computations of a Turing machine. The construction of the simulating function requires
moving from the domain of machines to the domain of natural numbers. The process of

416 C h a p t e r 1 3 M u -R ec u rs iv e F u n c t io n s

translating machine computations to functions is known as the arithmetization of Turing

machines.
The arithmetization begins by assigning a number to a Turing machine configuration.

LetM = (Q, Z , T, 8, q0, qn) be a standard Turing machine that computes a one-variable
number-theoretic function / . We will construct a /^.-recursive function to numerically
simulate the computations of M. The construction easily generalizes to functions of more
than one variable.

A configuration of the Turing machine M consists of the state, the position of the tape
head, and the segment of the tape from the left boundary to the rightmost nonblank symbol.
Each of these components must be represented by a natural number. We will denote the
states and tape alphabet by

Q = {<7o. <7i.......... qn)

T = {B = a 0, / = ai, a2........ ak)

and the numbering will be obtained from the subscripts. Using this numbering, the tape
symbols B and 1 are assigned zero and one, respectively. The location of the tape head can
be encoded using the numbering of the tape positions.

0 1 2 3 4 5

The symbols on the tape to the rightmost nonblank square form a string over E*. Encoding
the tape uses the numeric representation of the elements of the tape alphabet. The string
a,0a (| . . . ain is encoded by the Godel number associated with the sequence i0, /j, . . . , i„.
The number representing the nonblank tape segment is called the tape number.

The tape number of the nonblank segment of the machine configuration

0 1 2 3 4 5

| / | / |

iii
is 2*3252 = 450. Explicitly encoding the blank in position three produces 2 I32527I = 3150,
another tape number representing the tape. Any number of blanks to the right of the
rightmost nonblank square may be included in the tape number.

Representing the blank by the number zero permits the correct decoding of any tape
position regardless of the segment of the tape encoded in the tape number. If dec(i, z) = 0
and pn(i) divides z, then the blank is specifically encoded in the tape number z. On the
other hand, if dec(i, z) = 0 and prt(i) does not divide z, then position i is to the right of the
encoded segment of the tape. Since the tape number encodes the entire nonblank segment
of the tape, it follows that position i must be blank.

13.7 T ur ing C o m p u ta b i l i ty a n d M u-R ec urs ive F u n c t io n s 417

A Turing machine configuration is defined by the state number, tape head position, and
tape number. The configuration number incorporates these values into the single number

gn2(state number, tape head position, tape number),

where g n i is the Godel numbering function that encodes ordered triples.

Example 13.7.1

The Turing machine S computes the successor function.

Ill R HI L

S:

The configuration numbers are given for each configuration produced by the computation
of the successor of 1. Recall that the tape symbols B and 1 are assigned the numbers zero
and one, respectively.

State Position Tape Number Configuration Number

q0Bl IB 0 0 2'3252 = 450 g«2(0, 0, 450)

h Bq\llB 1 1 2'3252 = 450 g*2(l, 1, 450)

h Blq,lB 1 2 2'3252 = 450 gn2(\, 2, 450)

h B l lq lB 1 3 2'32527i = 3150 gn2(l, 3, 3150)
h Blq2llB 2 2 21325272111 = 242550 gn2(2, 2, 242550)

h Bq2lUB 2 1 2'325272111 = 242550 gn2(2, 1, 242550)

h q 2BlUB 2 0 2'325272111 = 242550 gn2(2, 0, 242550)

A transition of a standard Turing machine need not alter the tape or the state, but it
must move the tape head. The change in the tape head position and the uniqueness of the
Godel numbering ensure that no two consecutive configuration numbers of a computation
are identical.

A function trM is constructed to trace the computations of a Turing machine M. Tracing
a computation means generating the sequence of configuration numbers that correspond to
the machine configurations produced by the computation. The value of trM(x, i) is the
number of the configuration after i transitions when M is run with input x. Since the initial
configuration of M is q0B xB ,

JC + 1
trM(x t 0) - gn2(0y 0 , 2 ‘ . n p n(i)2).

i = i

418 C h a p t e r 13 M u -R ecu rs iv e F u n c t io n s

The value of rrM(jt, y + 1) is obtained by manipulating the configuration number trM(x, y)
to construct the encoding of the subsequent machine configuration.

The state and symbol in the position scanned by the tape head determine the transition
to be applied by the machine M. The primitive recursive functions

cs(z) = dec(0, z)

ctp(z) = dec(1, z)

c ts (z) = dec(ctp(z), dec(2, z))

return the state number, tape head position, and the number of the symbol scanned by the
tape head from a configuration number z. The position of the tape head is obtained by a
direct decoding of the configuration number. The numeric representation o f the scanned
symbol is encoded as the ctp(z) th element of the tape number. The c ’s in cs, ctp, and cts
stand for the components of the current configuration: current state, current tape position,
and current tape symbol.

A transition specifies the alterations to the machine configuration and, hence, the
configuration number. A transition of M is written

5(4/. b) = [q j , c, d],

where qt , qj € Q; b, c € T; and d € [R , L). Functions are defined to simulate the effects of
a transition of M. We begin by listing the transitions of M:

b o) = [<7;0- Co- d o\

S(qir bi) = [qj r c,, dfi

S(qim, bm) = [qjm, c„, dm].

The determinism of the machine ensures that the arguments of the transitions are distinct.
The “new state" function

j 0 if cs(z) = i'0 and c ts (z) = n(b0)
j \ if cs(z) = i] and cts(z) = n(bx)

j m if cs(z) = im and cts(z) = n(bm)
cs(z) otherwise

ns(z) =

returns the number of the state entered by a transition from a configuration with config
uration number z. The conditions on the right indicate the appropriate transition. Letting
n(b) denote the number of the tape symbol b, the first condition can be interpreted, “If the
number of the current state is /0 (state q,Q) and the current tape symbol is b0 (number n(b0)),
then the new state number has number j 0 (state q;o) ” This is a direct translation of the initial
transition into the numeric representation. Each transition of M defines one condition in ns.

13.7 T u r i n g Computability and Mu-Recursive Functions 419

The final condition indicates that the new state is the same as the current state if there is no
transition that matches the state and input symbol, that is, if M halts. The conditions define
a set of exhaustive and mutually exclusive primitive recursive predicates. Thus, ns(z) is
primitive recursive. A function nts that computes the number of the new tape symbol can

be defined in a completely analogous manner.
A function that computes the new tape head position alters the number of the current

position as specified by the direction in the transition. The transitions designate the direc
tions as L (left) or R (right). A movement to the left subtracts one from the current position
number and a movement to the right adds one. To numerically represent the direction we
use the notation

. . . JO i f d = L
"W) = | 2 t t d - R .

The new tape position is computed by

ntp(z) =

ctp(z) + n(d0) — 1 if cs(z) = i0 and cts(z) = n(b0)
ctp(z) + n(d |) — 1 if cs(z) = ij and crs(z) = n(b i)

ctp(z) + n(dm) - 1 if cs(z) = im and cts(z) = n(bm)
ctp(z) otherwise.

The addition of n(dj) — 1 to the current position number increments the value by one when
the transition moves the tape head to the right. Similarly, one is subtracted on a move to the
left.

We have almost completed the construction of the components of the trace function.
Given a machine configuration, the functions ns and ntp compute the state number and tape
head position of the new configuration. All that remains is to compute the new tape number.

A transition replaces the tape symbol occupying the position scanned by the tape head.
In our functional approach, the location of the tape head is obtained from the configuration
number z by the function ctp. The tape symbol to be written at position ctp(z) is repre
sented numerically by nts(z). The new tape number is obtained by changing the power of
pn (ctp(z)) in the current tape number. Before the transition, the decomposition of z contains
pn(cfp(z))c' I(2,+l, encoding the value of the current tape symbol at position ctp(z). Af
ter the transition, position ctp(z) contains the symbol represented by nts(z). The primitive
recursive function

ntn(z) = quo(c tn(z) , pn(ctp(z))c,s(2)+l) • pn(ctp(z))n's^ +l

makes the desired substitution. The division removes the factor that encodes the current
symbol at position ctp(z) from the tape number ctn(z). The result is then multiplied by
pn(ctp(z))" 'sfz>+\ encoding the new tape symbol.

The trace function trM is defined by primitive recursion from the functions that simulate
the effects of a transition of M on the components of the configuration. As noted previously,

420 C h a p t e r 13 M u-R ecu rs ive F u n c t io n s

M is in state qo, the tape head is at position zero, and the tape has l's in positions one to
x + 1 at the start of a computation with input x. This machine configuration is encoded in

frM(x, 0):

x+i

/ r M(x, 0) = gn2(0, 0, 2 1 • f [pn
i=l

The subsequent machine configurations are obtained using the new state, new tape position,
and new tape number functions with the previous configuration as input:

y + 1) = >0). ntp(trM(x, y)), ntn(trM(x, y))).

Since each of the functions in trM has been shown to be primitive recursive, we conclude
that the trM is not only f i -recursive but also primitive recursive. The trace function, however,
is not the culmination of our functional simulation of a Turing machine; it does not return
the result of a computation but rather a sequence of configuration numbers.

The result of the computation of the Turing machine M that computes the number-
theoretic function / with input x may be obtained from the function frM. We first note
that the computation of M may never terminate; f (x) may be undefined. The question
of termination can be determined from the values of frM. If M specifies a transition for
configuration trM(x, i), then rrM(x, i) ^ trM(x, i + 1) since the movement of the head
changes the Godel number. On the other hand, if M halts after transition i, then (*, /') =
trM(x, i + 1) since the functions nts, ntp, and ntn return the preceding value when the
configuration number represents a halting configuration. Consequently, the machine halts
after the zth transition, where z is the first number that satisfies tru (x, z) = f rM(jc, z + 1).

Since no bound can be placed on the number of transitions that occur before an
arbitrary Turing machine computation terminates, unbounded minimalization is required
to determine this value. The /^-recursive function

term(x) = fiz[eq(trM(x, z), trM(x, z + 1))]

computes the number of the transition after which the computation of M with input x
terminates. When a computation terminates, the halting configuration of the machine is
encoded in the value trM(x, term(x)). Upon termination, the tape has the form B f (x) B .
The terminal tape number, ttn , is obtained from the terminal configuration number by

t tn (x) = dec(2, rrM(x, term(x))).

The result of the computation is obtained by counting the number of 7’s on the tape or,
equivalently, determining the number of primes that are raised to the power of 2 in the
terminal tape number. The latter computation is performed by the bounded sum

13.8 T h e C h u rc h -T u r in g T h e s i s R ev is ited 421

where y is the length of the tape segment encoded in the terminal tape number. The bound y is
computed by the primitive recursive function gdln(t tn (x)) (Exercise 17). One is subtracted
from the bounded sum since the tape contains the unary representation of f (*).

Whenever / is defined for input x, the computation of M and the simulation of M
both compute the f (x) . If f i x) is undefined, the unbounded minimalization fails to return
a value and s im M(x) is undefined. The construction of s im M completes the proof of the
following theorem.

Theorem 13.7.1

Every Turing computable function is //.-recursive.

Theorems 13.6.4 and 13.7.1 establish the equivalence of the microscopic and macro
scopic approaches to computation.

Corollary 13.7.2

A function is Turing computable if, and only if, it is /x-recursive.

13.8 The Church-Turing Thesis Revisited

In its functional form, the Church-Turing Thesis associates the effective computation of
functions with Turing computability. Utilizing Theorem 13.7.2, the Church-Turing Thesis
can be restated in terms of /x-recursive functions.

The Church-Turing Thesis (Revisited) A number-theoretic function is computable if, and
only if, it is /t-recursive.

As before, no proof can be put forward for the Church-Turing Thesis. It is accepted
by the community of mathematicians and computer scientists because of the accumulation
of evidence supporting the claim. Accepting the Church-Turing Thesis is tantamount to
bestowing the title “most general computing device” on the Turing machine. The thesis
implies that any number-theoretic function that can be effectively computed by any machine
or technique can also be computed by a Turing machine. This contention extends to
nonnumeric computation as well.

We begin by observing that the computation of any digital computer can be interpreted
as a numeric computation. Character strings are often used to communicate with the com
puter, but this is only a convenience to facilitate the input of the data and the interpretation of
the output. The input is immediately translated to a string over {0 ,1 } using either the ASCII
or EBCDIC encoding schemes. After the translation, the input string can be considered the
binary representation of a natural number. The computation progresses, generating another
sequence of 0 ’s and / ’s, again a binary natural number. The output is then translated back to
character data because of our inability to interpret and appreciate the output in its internal
representation.

422 C h a p te r 13 M u -R ec u rs iv e F u n c t io n s

Following this example, we can design effective procedures that transform a string
computation to a number-theoretic computation. The Godel encoding can be used to trans
late strings to numbers. Let E = {a0, a„] be an alphabet and / be a function from
E* to E*. The generation of a Godel number from a string begins by assigning a unique
number to each element in the alphabet. For simplicity we will define the numbering of the
elements of E by their subscripts. The encoding of a string ■ ■ - ai„ *s generated by the
bounded product

y
pn(0)'°+1 • p n (lY '+ l/w (n)'"+l = J“ [p n O)i' +1,

7=0

where y is the length of the string to be encoded.
The decoding function retrieves the exponent of each prime in the prime decomposition

of the Godel number. A string can be reconstructed using the decoding function and the
numbering of the alphabet. If x is the encoding of a string . . . ain over E , then
dec(j , x) = ij. The original string can be obtained by concatenating the results of the
decoding. Once the elements of the alphabet have been identified with natural numbers,
the encoding and decoding are primitive recursive and therefore Turing computable.

The transformation of a string function / to a numeric function is obtained using
character to number encoding and number to character decoding:

»€l* /(u)gl*

encoding decoding

JteN -/'(•*) € N

With the help of the Church-Turing Thesis, we will argue that a string function / is
algorithmically computable if, and only if, the associated numeric function / ' is Turing
computable. We begin by noting that there is an effective procedure to obtain the values of
/ whenever / ' is Turing computable. An algorithm to compute f consists of three steps:

i) encoding the input string u to a number x,

ii) computing / '(*) , and

iii) decoding f (x) to produce f (u) ,

each of which can be performed by a Turing machine.
Now assume that there is an effective procedure to compute / . Using the reversibility of

the encoding and decoding functions, we will outline an effective procedure to compute / ' .

13.8 T h e C hu rch -T u r in g T h e s i s R ev is i ted 423

ue I

decoding encoding

at€ N --------* - / W e N

The value f ' (x) can be generated by transforming the input x into a string u, computing
f (u) , and then transforming / (m) to obtain / '(*) . Since there is an effective procedure to
compute / ' , the Church-Turing Thesis allows us to conclude that / ' is Turing computable.

The preceding argument shows that the implications of the Church-Turing Thesis and
universality of Turing machine computation are not limited to numeric computation or
decision problems. A string function is computable only if it can be realized by a suitably
defined Turing machine combined with a Turing computable encoding and decoding.
Example 13.8.1 exhibits the correspondence between string and numeric functions.

Example 13.8.1

Let L be the alphabet [a, b). Consider the function / : L* -> L* that interchanges the
a ’s and the b’s in the input string. A number-theoretic function / ' is constructed which,
when combined with the functions that encode and decode strings over E , computes / .
The elements of the alphabet are numbered by the function n: n(a) = 0 and n(b) = 1. A
string u = u0u\ . . . u„ is encoded as the number

/,„ (0)n<“°)+1. p n (l)n<“i>+1......... pn(n)n{u")+l.

The power of pn(i) in the encoding is one or two depending upon whether the ith element
of the string is a or b, respectively.

Let x be the encoding of a string u over £ . Recall that gdln(x) returns the length of
the sequence encoded by x. The bounded product

gdln(x)

f i x) = f l *). °) • Pn (0 • />«(*) + eq(dec(i, x) , 1) • pn(i))
i—0

generates the encoding of a string of the same length as the string u. When eq(dec(i, x) , 0)
= 1, the i th symbol in u is a. This is represented by p n (i) 1 in the encoding of u. The product

eq(dec(i, x) , 0) • pn{i) • pn(i)

contributes the factor pn(i)2 to f ' (x) . Similarly, the power of pn (i) in / 'Q t) is one whenever
the ith element of u is b. Thus / ' constructs a number whose prime decomposition can be
obtained from that of x by interchanging the exponents 1 and 2. The translation of f (x) to
a string generates / («)• □

424 C h a p t e r 13 M u -R ec u rs iv e F u n c t io n s

Exercises

1. Let g(x) = x 2 and h(x, y, z) = x + y + z, and let / (jc, y) be the function defined
from g and / by primitive recursion. Compute the values / (l , 0), / (l , 1), / (l , 2) and

2. Using only the basic functions, composition, and primitive recursion, show that the
following functions are primitive recursive. When using primitive recursion, give the
functions g and h.

b) pred

c) f (x) = 2x + 2

3. The functions below were defined by primitive recursion in Table 13.1. Explicitly, give
the functions g and h that constitute the definition by primitive recursion.

a) sg

b) sub

c) exp

4. a) Prove that a function / defined by the composition of total functions h and g], . . . ,
g„ is total.

b) Prove that a function / defined by primitive recursion from total functions g and h
is total.

c) Conclude that all primitive recursive functions are total.

5. Let g = id, h = + p ^ , and let / be defined from g and h by primitive recursion.

a) Compute the values / (3 , 0), / (3 , 1), and / (3 , 2).

b) Give a closed-form (nonrecursive) definition of the function / .

6. Let g(x, y , z) be a primitive recursive function. Show that each of the following
functions is primitive recursive.

a) f (x , y) = g (x , y , x)

b) f (x , y , z, w) = g (x , y, x)

c) / (*) = g (l, 2, x)

7. Let / be the function

/ (5 , 0), / (5 , 1), / (5 , 2).

a)

x i f x > 2
0 otherwise.

a) Give the state diagram of a Turing machine that computes / .

b) Show that / is primitive recursive.

E xerc ises 425

8. Show that the following functions are primitive recursive. You may use the functions
and predicates from Tables 13.1 and 13.2. Do not use the bounded operations.

e) half(x) = d iv (x , 2)

*f) sqrt(x) = L ^ J

9. Show that the following predicates are primitive recursive. You may use the functions
and predicates from Tables 13.1 and 13.2 and Exercise 8. Do not use the bounded
operators.

10. Let r be a two-variable primitive recursive function and define / as follows:

Explicitly give the functions g and h that define / by primitive recursion.

11. Let g and h be primitive recursive functions. Use bounded operators to show that the
following functions are primitive recursive. You may use any functions and predicates
that have been shown to be primitive recursive.

a) max(x, y) =

x if x < y and x < z
c) min${x, y , z) = y if y < x and y < z

z if z < x and z < y

d) even(x) =
1 if jc is even
0 otherwise

c) btw(x, y, z) —
1 if y < x < z

0 otherwise

d) prsq(x) =
1 if x is a perfect square
0 otherwise

f (x, 0) = t(x , 0)

f (x , >>+!) = f (x , y) + t(x , y + 1)

a) y) _ [1 if g(i) < g(x) for all 0 < i < y
I 0 otherwise

426 C h a p t e r 13 M u -R ec u rs iv e F u n c t io n s

M ft* if 2(,) = x for SOme 0 - ' - yo) J (x , y) Q otherwise

_ I 1 if
1 | 0 oi

f t \A - l * if S (0 = h (j) for some 0 < i , j < y
' n otherwise

d) f<v) = ! 1 if g (,) < g(i + for a110 - ' - y
I 0 otherwise

f) th rd (x , y) =

e) n t(x , y) = the number of times g(i) = x in the range 0 < i < y

0 if g(i) does not assume the value x at least
three times in the range 0 < / < y

j if j is the third integer in the range 0 < i < y
for which g(i) = x

g) lrg(x, y) = the largest value in the range 0 < i < y for which g(i) = x

12. Show that the following functions are primitive recursive.

a) gcd(x , y) = the greatest common divisor of x and y

b) lcm(x, y) = the least common multiple of x and y

1 if x = 2" for some n
c) pw 2(x) =

1 0 otherwise

d) tw o r(x) — I * if * is the product of exactly two primes
{ 0 otherwise

* 13. Let g be a one-variable primitive recursive function. Prove that the function

f (x) = min(g(/))
1=0

= min{g(0),. . . , g(*)}

is primitive recursive.

14. Prove that the function

M < J C i X „)

f i x i x„)= hz [p(... z)]

is primitive recursive whenever p and u are primitive recursive.

15. Compute the Godel number for the following sequence:

a) 3 ,0

b) 0 ,0 , 1

c) 1,0, 1,2

d) 0, 1, 1 ,2 ,0

Exerc ises 427

16. Determine the sequences encoded by the following Godel numbers:

a) 18,000

b) 131,072

c) 2,286,900

d) 510,510

17. Prove that the following functions are primitive recursive:

. . . [1 if x is the Godel number o f some sequence
a) gdn(x) = (o otherwise

. . , [n if jc is the Godel number o f a sequence o f length n
b > « < " « (* > - 1 0 0 1 h e r w l s e

. . . 1 1 if jc is a Godel number and y occurs in the sequence encoded in x
c) g(x, y) = { n •(0 otherwise

18. Construct a primitive recursive function whose input is an encoded ordered pair and

whose output is the encoding o f an ordered pair in which the positions o f the elements
have been swapped. For example, if the input is the encoding o f [jc, y], then the output

is the encoding of [y, jc].

19. Let / be the function defined by

if jc = 0

if jc = 1

ifjc = 2

3) + / (jc — 1) otherwise.

Give the values / (4) , / (5), and / (6). Prove that / is primitive recursive.

* 20. Let and g2 be one-variable primitive recursive functions. Also let h , and h 2 be four-

variable primitive recursive functions. The two functions / , and f 2 defined by

/ , (jc, 0) = g ,(j f)

f 2(x , 0) = g2(x)

/,(jc, y + 1) = h i(x, y, / , (* , y), f 2(x, y))

f 2(x, y + 1) = h2(x, y, /,(jc, y), f 2(x, y))

are said to be constructed by simultaneous recursion from g it g2, h | , and h2. The

values f \ {x , y + 1) and f 2(x, y + 1) are defined in terms o f the previous values o f
both o f the functions. Prove that f \ and f 2 are primitive recursive.

/ (*) =

1
2
3
f i x

428 C h a p t e r 13 M u-R ecu rs ive F u n c t io n s

21. Let / be the function defined by

/ (0) = 1

y

/(>• + 1) = E
i= 0

a) Compute / (l) , / (2) , and /(3) .

b) Use course-of-values recursion to show that / is primitive recursive.

22. Let A be Ackermann’s function (see Section 13.6).

a) Compute A(2, 2).

b) Prove that A(x , y) has a unique value for every i j e N .

c) Prove that A(l , y) — y + 2.

d) Prove that A (2, y) = 2y + 3.

23. Prove that the following functions are p.-recursive. The functions g and h are assumed
to be primitive recursive.

„ , . . [1 if x is a perfect cube
a) cube(x) = { , . .

[t otherwise

b) root(cQ, C], c2) = the smallest natural number root of the quadratic polynomial

c 2 * x 2 + C 1 - X + C 0

1 if g(i) = g(i + x) for some i > 0
t otherwise

c) r(jt) =

d) l(x) = •

e) f i x) =

f) / (*) =

t if g(i) - h(i) < x for all i > 0
0 otherwise

1 if g(i) + h (j) = x for some i, j € N
t otherwise

1 if g(y) = h(z) for some y > x, z > x
t otherwise.

' 24. The unbounded /n-operator can be defined for partial predicates as follows:

j if p (x i , . . . , x„, i) = 0 for 0 < i < j

and p(jt,......... xn, j) = 1
t otherwise.

That is, the value is undefined if p (x x, . . . , x„, i) t for some i occurring before the first
value j for which p (x |, . . . , x„, j) = 1. Prove that the family of functions obtained
by replacing the unbounded minimalization operator in Definition 13.6.3 with the
preceding h -operator is the family of Turing computable functions.

E xerc ises 429

25. Construct the functions ns, ntp, and nts for the Turing machine S given in Exam

ple 13.7.1.

26. Let M be the machine

a) What unary number-theoretic function does M compute?

b) Give the tape numbers for each configuration that occurs in the computation of M
with input 0.

c) Give the tape numbers for each configuration that occurs in the computation of M
with input 2.

27. Let / be the function defined by

a) Give the state diagram of a Turing machine M that computes / .

b) Trace the computation of your machine for input 1 (B1 IB). Give the tape number
for each configuration in the computation. Give the value of frM(l, i) for each step
in the computation.

c) Show that / is primitive recursive. You may use the functions from the text that
have been shown to be primitive recursive in Sections 13.1, 13.2, and 13.4.

* 28. Let M be a Turing machine and trM the trace function of M.

a) Show that the function

1/1L

1/1 R

I/I R

x + 1 if x even
x — 1 otherwise.

1 if the yth transition of M with input x prints
pr t(x , y) = a blank

0 otherwise

is primitive recursive.

430 C h a p te r 13 M u-R ec urs ive F u n c t io n s

b) Show that the function

lprt(x) =

if the final transition of M
with input x that prints a 1
otherwise

is /x-recursive.

c) In light of undecidability of the printing problem (Exercise 12.7), explain why Iprt
cannot be primitive recursive.

29. Give an example of a function that is not /x-recursive. Hint: Consider a language that
is not recursively enumerable.

30. Let / be the function from {a, b }* to [a, b)* defined by / (u) = u R. Construct the
primitive recursive function / ' that, along with the encoding and decoding functions,
computes / .

31. A number-theoretic function is said to be macro-computable if it can be computed
by a Turing machine defined using only the machines S and D that compute the
successor and predecessor functions and the macros from Section 9.3. Prove that every
/x-recursive function is macro-computable. To do this you must show that

i) The successor, zero, and projection functions are macro-computable.

ii) The macro-computable functions are closed under composition, primitive recur
sion, and unbounded minimimalization.

32. Prove that the programming language TM defined in Section 9.6 computes the entire
set of /x-recursive functions.

Bibliographic Notes

The functional and mechanical development of computability flourished in the 1930s. Godel
[1931] defined a method of computation now referred to as Herbrand-Godel computability.
The properties of Herbrand-Godel computability and /x-recursive functions were developed
extensively by Kleene. The equivalence of /x-recursive functions and Turing computabil
ity was established in Kleene [1936]. Post machines [Post, 1936] provide an alternative
mechanical approach to numeric computation. The classic book by Kleene [1952] presents
computability, the Church-Turing Thesis, and recursive functions. A further examination of
recursive function theory can be found in Hermes [1965], Peter [1967], and Rogers [1967].
Hennie [1977] develops computability from the notion of an abstract family of algorithms.

Ackermann’s function was introduced in Ackermann [1928]. An excellent exposition
of the features of Ackermann’s function can be found in Hennie [1977].

PART IV

Computational
Complexity

The objective of the preceding chapters was to characterize the set of solvable problems
and computable functions. We now turn our attention from exhibiting the existence of

algorithmic solutions of problems to analyzing their complexity, where the complexity is
measured by the resources required in determining the solution. Thus we begin a formal
analysis of the question how much first posed in the Introduction.

Complexity theory attempts to distinguish problems that are solvable in practice from
those that are solvable in principle only. A problem that is theoretically solvable may
not have a practical solution; there may be no algorithm that solves the problem without
requiring an extraordinary amount of time or memory. Problems for which there are no
efficient algorithms are said to be intractable.

Since it is the inherent complexity of a problem that is of interest to us, the analysis
should be independent of any particular implementation. To isolate the features of a problem
from those of the implementation, a single algorithmic system must be chosen for analyzing
computational complexity. The choice should not place any unnecessary restrictions, such
as limiting the time or memory available, upon the computation since these limitations
are properties of the implementation and not of the algorithm itself. The standard Turing
machine, which fulfills all of these requirements, provides the underlying computational
framework for the analysis of problem complexity. Moreover, the Church-Turing Thesis
assures us that any effective procedure can be implemented on such a machine.

The time and space complexities of a Turing machine measure the number o f transitions
and the amount of tape required in a computation, respectively. The class 7 of problems
solvable in polynomial time by a deterministic Turing machine is generally considered to
contain all efficiently solvable problems. Another class of problems, NT, consists of all
decision problems that can be solved by a nondeterministic Turing machine in polynomial
time. Clearly, T is a subset of NT. It is currently unknown if these two classes of problems
are identical.

Using the guess-and-check strategy of nondeterministic solutions, the class N T consists
of all problems for which solutions can be verified in polynomial time. Answering the
T = N T question is equivalent to deciding whether constructing a solution to a problem
is inherently more difficult than checking whether a single possibility is a solution. While
it seems that this should be the case, as of yet it has not been formally proved.

A problem is NP-complete if every problem in the class N T can be reduced to it
in polynomial time. Finding a polynomial time solution to one NP-complete problem is
sufficient to establish that T = NT, but no such algorithm has been discovered at this time.
Moreover, the majority of computer scientists and mathematicians do not believe that such
an algorithm exists. The examination of NP-completeness begins with showing that the
Satisfiability Problem is NP-complete by explicitly constructing a reduction of any problem
in N T to it. Polynomial-time reductions are then used to show that a number of additional
problems are NP-complete.

Problems from many disciplines including pattern recognition, scheduling, decision
analysis, combinatorics, network design, and graph theory have been shown to be NP-
complete. Determining that a problem is NP-complete does not mean that solutions are no,
longer needed, only that it is quite unlikely that there is a polynomial-time algorithm that
produces them. For NP-complete optimization problems, approximation algorithms are fre
quently used to produce near optimal solutions efficiently. To demonstrate the strategies
employ in obtaining approximate solutions, we will examine algorithms that produce ap
proximations within a predetermined accuracy bound for several well-known NP-complete
problems.

CHAPTER 1 4

Time Complexity

We begin the study of computational complexity with the analysis of the time complexity
of a deterministic Turing machine, where time is measured by the number of transitions
in a computation. Because of the variation in the number of transitions in computations
initiated with strings of the same length, rates of growth are frequently used to describe
time complexity. We will show that the time complexity of algorithms implemented on
deterministic multitrack and multitape Turing machines differs only polynomially from
their implementation on a standard Turing machine.

The time complexity of a language is determined by those of the machines that accept
the language. Several important properties of the complexities of languages are established.
First, we will see that there is no best Turing machine, in terms of time complexity, that
accepts a language. A machine that accepts a language can be “sped up” to produce another
machine whose complexity is reduced by any desired linear factor. The speedup theorem
produces a faster machine but one whose time complexity has the same rate o f growth as the
original machine. We will also show that there is a language for which no Turing machine has
minimal asymptotic time complexity. From any machine that accepts this language, we will
be able to construct another that has a time complexity with a strictly smaller rate of growth.
Finally, we will see that there is no upper bound on the time complexity of languages; for
any computable function, there is a language whose complexity is not bounded by the values
of the function.

The Church-Turing Thesis assures us that any problem solvable using a modem com
puter is solvable with a Turing machine, but this statement does not relate the complexity
between computations in the two systems. We will show that the computation of a com
puter can be simulated by a Turing machine in which the number of transitions of the Turing

433

434 C h a p t e r 14 T im e C om plex ity

machine grows only polynomially with the number of instructions executed by the com
puter. Consequently, the resource bounds established for Turing machines provide practical
information about the complexity of algorithms and computer programs.

14.1 Measurement o f Complexity

Two main topics in the study of computational complexity are the assessment of algorithms
that solve a particular problem and the comparison of the inherent difficulty of different
problems. The focus of this presentation is the latter, but the comparison o f problem com
plexity requires the ability to analyze the algorithms that solve each of the problems. To
appreciate the issues involved in the analysis of algorithms, we will consider the measure
ment of the time complexity of the following four familiar problems:

Sort an Array of Integers

Input: Array A[l..n]
Output: Array A'[\..n] with elements in sorted order

Square a Matrix

Input: Ann x n matrix B with integral entries

Output: Matrix C = B2

Path Problem for Directed Graphs

Input: Graph G = (N, A), nodes v,, Vj € N
Output: yes; if there is a path from v, to Vj in G

no; otherwise.

Acceptance by Turing Machine M (that halts for all inputs)
Input: string w
Output: yes; if M accepts w

no; otherwise.

Algorithms that perform the computations described in the first two problems compute
functions. The sorting problem maps arrays to arrays and the squaring problem maps
matrices to matrices. The path and acceptance problems are decision problems, with the
result being either a yes or no response.

A complexity function describes the resources required or the number of steps involved
in the solution of the problem. The items measured may vary based on the problem: number
of data movements, number of arithmetic operations performed, number o f instructions
executed, the amount of space used, and so forth. The goal is not to calculate the exact
resource requirement for every possible input but rather provide information that can be
used to assure sufficient resources are available for each input.

14.1 M e a s u r e m e n t o f C om plex i ty 435

TABLE 14.1 C o m p o n e n t s o f C om plex ity F u n c t io n s

Problem Input Complexity Resource Usage Measured

Sort Size of array Number of data movements

Square Dimension of matrix Number of scalar multiplications

Path Number of nodes in the graph Number of nodes visited in search

Acceptance Length of input string Number of transitions in a computation

The analysis of the complexity of an algorithm requires three items: the identification of
the resources to be considered, a partition of the input instances based upon their complexity,
and the construction of a function that relates input complexity to the resource utilization.

After identifying the resources to be measured, the next step is to partition the set of
input instances. Each set in the partition contains instances with similar characteristics and
has an associated natural number that characterizes the complexity of the instances in the
set. Table 14.1 gives standard partitions of the input domains of our four sample problems.
For example, the input instances of the sorting problem are grouped by the size of the array.
The resulting partition consists of sets A0, A,, A2, . . . , where A, contains all arrays of size
/. The number i is the input complexity associated with the instances in the set A, .

Let P be a problem whose input instances are partitioned into complexity classes Iq,
I], I j , . . . , where the subscript represents the numeric complexity assigned to each class.
The complexity function for a solution to P specifies the maximum resource usage for
any problem instance in a class I,. That is, a complexity function is a mapping from the
natural numbers (the complexity measure of the input) to the natural numbers (the resource
utilization) that provides an upper bound on resource usage for each problem instance in
the class I„.

When comparing algorithms that solve the same problem, the input complexity and re
sources examined are frequently given in problem-specific terms. For example, the analysis
of sorting algorithms uses measures similar to those in Table 14.1. Bubble sort, merge sort,
and insertion sort all take an array as input and, in one manner or another, move data. Con
sequently, it is reasonable to use the number of data movements to compare the efficiency
of the algorithms.

Problem-specific measures do not make sense when comparing algorithms that solve
different problems. What is the relationship between the number of data movements of a
sort algorithm and the number of nodes visited in a graph traversal? Even if we know the
complexity functions of each algorithm, we are in no position to compare the efficiency of
the algorithms or the relative difficulty of the problems. The assessment of input complexity
is even more problematic; there is no reason to believe that the resources required for sorting
an array of size n should in any way be related to those required for searching a graph with

436 C h a p te r 14 T im e C om plex ity

n nodes. However, this is the information given by complexity functions defined in terms

of the high-level components in these problems.
To be able to compare problems, the solutions must be implemented in a common al

gorithmic system so that the complexity can be analyzed in terms of the same input measure
and resource utilization. The Turing machine provides the ideal algorithmic system for the
study of problem complexity. A Turing machine has no artificial limitations on the memory
or time available for a computation. Moreover, the Church-Turing Thesis assures us that any
effective procedure can be implemented on a Turing machine. The common input measure
for all problems is the length of the input string. The time and space complexity of the Turing
machine describe the number of transitions and tape squares needed by a computation.

14.2 Rates o f Growth

Obtaining the exact relationship between input complexity and resource utilization is some
times quite difficult and almost always provides more information than we require. For this
reason, time complexity is often represented by the rate of growth of the complexity function
rather than by the function itself. Before continuing with our evaluation of the complexity of
algorithms, we detour for a brief review of the mathematical analysis of the rate of growth
of functions.

The rate of growth of a function measures the asymptotic performance o f the function
as the input gets arbitrarily large. Intuitively, the rate of growth is determined by the most
significant contributor to the growth of the function. The contribution of the individual
terms to the values of a function can be seen by examining the growth of the functions n2
and n 2 + 2n + 5 in Table 14.2. The contribution of n2 to n2 + 2n + 5 is measured by the
ratio of the function values in the bottom row. The linear and constant terms of the function
n2 + 2n + 5 are called the lower-order terms. Lower-order terms may exert undue influence
on the initial values of the functions. As n gets large, it is clear that the lower-order terms
do not significantly contribute to the growth of the function values. The order of a function
and the “big oh” notation are introduced to describe the asymptotic growth of the values of
a function.

Definition 14.2.1

Let / : N -» N and g : N -»• N be one-variable number-theoretic functions.

i) The function / is said to be of order g if there is a positive constant c and a natural
number n0 such that f (n) < c • g(n) for all n > n0.

ii) The set of all functions of order g is denoted O (g) = { / | / is of order g) and called
“big oh of g."

A function / is of order g if the values of / are bounded by a constant multiple of the
values of g. Because of the influence of the lower-order terms, the inequality f (n) < c • g(n)

14.2 R a tes o f G ro w th 437

TABLE 14 .2 G ro w th o f F u n c t io n s

n 0 5 10 25 50 100 1,000

n2 0 25 100 625 2,500 10,000 1,000,000

n2 + 2n + 5 5 40 125 680 2,605 10,205 1,002,005

n 2/ (n 2 + 2/1 + 5) 0 0.625 0.800 0.919 0.960 0.980 0.998

is required to hold only for input values greater than some specified number. When / is of
order g, we say that g provides an asymptotic upper bound on / .

Traditionally, the notation / = O (g) is used to indicate that / is o f order g. Since
O (g) is a set, it is more mathematically precise to write / e O(g). The rationale for the
unconventional use of “= ” is that O (g) is frequently used in an expression to denote an
arbitrary element from the set. For example, a function may be written / (n) = n2 + O(n)
to indicate that / consists of n 2 plus some lower-order terms that are asymptotically bounded
by n, without specifically indicating the lower-order terms. We will write / e 0 (g) to
indicate that / is of order g. This is frequently read “/ is big oh of g."

Example 14.2.1

Let f (n) = n2 and g(n) = n 3. Then / e O(g) and g g O (/) . Clearly, n2 e 0(w3) since
n2 < w3 for all natural numbers.

Let us suppose that w3 e 0 (n 2). Then there are constants c and n0 such that

n3 < c • n2 for all n > n0.

Choose n , to be the maximum of n0 + 1 and c + 1. Then n^ = n t • n j > c - n] and n ! > /i0,

contradicting the inequality. Thus our assumption is false and n3 £ O (n2). □

Two functions / and g are said to have the same rate of growth if / 6 0 (g) and
g e O (/) . When / and g have the same rate of growth, Definition 14.2.1 provides the
two inequalities

/ (”) < c , - g (n) forn > n t

g(n) < c 2 - f (n) for n > n2,

where Cj and c2 are positive constants. Combining these inequalities, we see that each of
these functions is bounded above and below by constant multiples of the other:

f (n) / c \ < g(n) < c2 • f (n)

g(n)/c2 < f (n) < C] • g(n).

These relationships hold for all n greater than the maximum of n, and n2. Because of these
bounds, it is clear that neither / nor g can grow faster than the other.

438 C h a p t e r 14 T im e C om plex ity

Example 14.2.2

Let / («) = n2 + 2n + 5 and g(n) = n2. Then / e O(g) and g 6 0 (/) . Since

n2 < n2 + 2n + 5

for all natural numbers, setting c to 1 and n0 to 0 satisfies the conditions ofDefinition 14.2.1.

Consequently, g e 0 (/) .
To establish the opposite relationship, we begin by noting that 2n < 2n 2 and 5 < 5n2

for all n > 1. Then

f (n) = n2 + 2n + 5

< n2 + 2n2 + 5n2

= 8 n2

= 8 • g(n)

whenever n > 1. In the big oh terminology, the preceding inequality shows that n2 + 2n +

5 6 O (n2). □

If / has the same rate of growth as g, g is said to be an asymptotically tight bound on
/ . The set

©(g) = { / I / e 0 (g) and g g 0 (/) }

consists of all functions for which g provides an asymptotically tight bound. Employing
the same notation as used for the big oh, we write / e © (g) to indicate that g is an
asymptotically tight bound for / .

A polynomial with integral coefficients is a function of the form

/ (n) = cr • nr + cr_i • nr~ l H------- 1- c, • n + c0,

where the c0, c)t . . . , cr_ i are arbitrary integers, cr is a nonzero integer, and r is a positive
integer. The constants q are the coefficients of / , and r is the degree of the polynomial. A
polynomial with integral coefficients defines a function from the natural numbers into the
integers. The presence of negative coefficients may produce negative values. For example, if
/ (n) = n2 — 3/i — 4, then / (0) = —4, / (l) = —6, / (2) = —6, and /(3) = —4. The values
of the polynomial g(n) = —n2 — 1 are negative for all natural numbers n.

The rate of growth has been defined only for number-theoretic functions. The absolute
value function can be used to transform an arbitrary polynomial into a number-theoretic
function. The absolute value of an integer i is the nonnegative integer defined by

... j i if i > 0
| —i otherwise.

14.2 R ates o f G ro w th 439

Composing a polynomial / with the absolute value produces a number-theoretic function
| / | . The rate of growth of a polynomial / is defined to be that of | / | .

The techniques presented in Examples 14.2.1 and 14.2.2 can be used to establish a
general relationship between the degree of a polynomial and its rate of growth.

Theorem 14.2.2

Let / be a polynomial of degree r. Then

i) / € ®{nr)

ii) / e 0(n*) for all k > r

iii) / £ O (nk) for all k < r.

One of the consequences of Theorem 14.2.2 is that the rate of growth o f any polynomial
can be characterized by a function of the form nr. The first condition shows that a polynomial
of degree r has the same rate of growth as nr. Moreover, by conditions (ii) and (iii), its growth
is not the same as that of nk for any k other than r .

Other important functions used in measuring the performance of algorithms are the
logarithmic, exponential, and factorial functions. A number-theoretic logarithmic function
with base a is defined by

f i n) = |k>g0(n)J.

Changing the base of a logarithmic function alters the value by a constant multiple. More
precisely,

l°ga (n) = logfl(fc)logfe(n).

This identity indicates that the rate of growth of the logarithmic functions is independent
of the base.

Examples 14.2.1 and 14.2.2 used the definition of big oh to compare the rates of growth
of polynomial functions. When the functions are more complicated, it is frequently easier
to use limits to determine the asymptotic complexity of two functions. Let / and g be two
number-theoretic functions, then

1. If lim £$-1 = o, then / e O(g) and g & O(/) .
"-*■«> gin)

f (n\
2. If lim ------ = c with 0 < c < oo, then / € 0 (p) and g e ©(f) .

/l->00 g („) J s '■*

3. If lim = oo, then / £ O (g) and g e 0 (f) .
n-oo g („)

The determination of the rate of growth of a function in this manner often requires the
application of 1’Hospital’s Rule to obtain the limit.

440 C h a p t e r 14 T im e C om plex ity

The version of l’Hospital’s Rule used in complexity analysis asserts that if / and g are
functions from R + to R + that are continuous and differentiable as n approaches infinity, then

f i n) / ' («)
lim ------= lim -------- ,

n-»oo g (n) n~*oo g ' (n)

where f and g’ are the derivatives of f and g, respectively. Example 14.2.3 uses limits
and l’Hospital’s Rule to show that n loga (n) G 0 (n 2) for the logarithmic function with any
base a.

Example 14.2.3

Let f { n) = n loga (n) and g(n) = n2. Two applications of l’Hospital’s Rule to the ratio
f{ .n)/g(n) produce

n log„(n)
lim lim

n—►oo
loga («) + «(loga (c)/n)

In

lim
loga (n)

lim
loga (e)

n—*oo In ^-►00 2 n

lim
log a(e)/n

+ 0
n—nX) 2

lim
loga (e)

n—*>00 2 n -

0,

where e is the base of the natural logarithm. Since the limit is 0, / e 0 (g). □

Theorem 14.2.3 compares the growth of logarithmic, exponential, and factorial func
tions with each other and the polynomials. The proofs are left as exercises.

Theorem 14.2.3

Let r be a natural number and let a and b be real numbers greater than 1. Then

i) logfl(rt) G O(n)

ii) n $ 0(loga (n))

iii) nr G O (bn)

iv) bn 0 (n r)

v) b” gO («!)

vi) n\ ? 0 (b n).

A function / is said to polynomially bounded if / G O (nr) for some natural number
r. Although not a polynomial, it follows from Example 14.2.3 that n log2(w) is bounded by
the polynomial n2. The polynomially bounded functions, which include the polynomials,

14.2 R ates o f G ro w th 4 4 1

TABLE 14.3 A Big O h H ie ra rc h y

Big Oh Asymptotic Upper Bound

0(1) Constant

0(loga (n)) Logarithmic

O(M) Linear

O(n log0 (rt)) n log n

0(n2) Quadratic

0 (n3) Cubic

O(n') Polynomial r > 0

O (V) Exponential b > 1

O(nl) Factorial

TABLE 14.4 Growth o f Several Common Functions

rt log2 (n) n n2 n3 2" n!

5 2 5 25 125 32 120
10 3 10 100 1,000 1,024 3,628,800

20 4 20 400 8,000 1,048,576 2.4-1018

30 4 30 900 27,000 1.0 -109 2 .6 -1032

40 5 40 1.600 64,000 1.1 -1012 8.1 -1047

50 5 50 2,500 125,000 1.1 -1015 3 .0 -1064

100 6 100 10,000 1,000,000 1.2-1030 > 10'57

200 7 200 40,000 8,000,000 1.6 -1060 > 10374

constitute an important family of functions that will be associated with the time complexity
of efficient algorithms. Conditions (iv) and (vi) show that the exponential and factorial
functions are not polynomially bounded. The big oh hierarchy in Table 14.3, which lists
functions in increasing order of their rates of growth, is obtained from the relationships
outlined in Theorems 14.2.2 and 14.2.3. It is standard practice to refer to a function / for
which 2" e O(/) as having exponential growth. With this convention, nn and n \ are both
said to exhibit exponential growth.

The efficiency of an algorithm is commonly characterized by its rate of growth. A
polynomial algorithm is one whose complexity is polynomially bounded. That is, c(ri) 6
Q(nr) for some r € N. The distinction between polynomial and nonpolynomial algorithms
is apparent when considering the growth of these functions as the size of the input increases.
Table 14.4 illustrates the enormous resources required by an algorithm whose complexity
is not polynomial.

442 C h a p t e r 14 T im e C om plex ity

14.3 Time Complexity o f a Turing Machine

The time complexity of a computation measures the amount of work expended by the
computation. The time of a computation of a Turing machine is quantified by the number
of transitions processed. The issues involved in determining the time complexity of a
Turing machine are presented by analyzing the computations of the machine M that accepts
palindromes over the alphabet [a, b}.

a/aR
b/bR

A computation of M consists of a loop that compares the first nonblank symbol on the
tape with the last. The first symbol is recorded and replaced with a blank by the transition
from state q x. Depending upon the path taken from q t, the final nonblank symbol is checked
for a match in state qA or q1. The machine then moves to the left through the nonblank
segment of the tape and the comparison cycle is repeated. When a blank is read in states
<?2 or qs, the string is an odd-length palindrome and is accepted in state q9. Even-length
palindromes are accepted in state q t.

The computations of M are symmetric with respect to the symbols a and b. The upper
path from q t to qs is traversed when processing an a and the lower path when processing a
b. The computations in Table 14.5 contain all significant combinations of symbols in strings
of length 0, 1,2, and 3.

As expected, the computations show that the number of transitions in a computation
depends upon the particular input string. Indeed, the amount of work may differ radically
for strings of the same length. Rather than attempting to determine the exact number of
transitions for each input string, the time complexity of a Turing machine measures the
maximum amount of work required by the strings of a fixed length.

14.3 T im e C om plex ity o f a T ur ing M a c h in e 443

TABLE 14.5 C o m p u ta t io n s o f M

Length 0 Length 1 Length 2 Length 3

q0B B q0B aB q0B aaB q0BabB q0BabaB q0BaabB

h Bq\B 1- B q ta B 1- B q taaB 1- Bq\abB 1- Bq^abaB h Bq\aabB

I- B B q 2B b B B q 2a B B B q 2bB 1- B B q 2baB h B B q 2abB

h B BBqgB 1- B B a q 3B h B B b q 3B \- B B b q y iB \- BBaqybB

\- B B q 4aB h BBq^bB h BBbaq i B b BBabq^B

h B q ^B B B 1- BBbq^aB h B B a q 4bB

1- B B q xB B 1- B B q ^b B B

h Bq%B b B B

B B q f i B B

h B B B q 5B B

h B B B B q 9B

Definition 14.3.1

Let M be a standard Turing machine. The time complexity of M is the function tcM :
N -* N such that rcM(n) is the maximum number of transitions processed by a computation
of M when initiated with an input string of length n.

When evaluating the time complexity of a Turing machine, we assume that the compu
tations terminate for every input string. It makes no sense to attempt to discuss the efficiency,
or more accurately the complete inefficiency, of a computation that continues indefinitely.

Definition 14.3.1 serves equally well for machines that accept languages and compute
functions. The time complexity of deterministic multitrack and multitape machines is
defined in a similar manner. The complexity of nondeterministic machines will be discussed
in the next chapter.

Our definition of time complexity measures the worst-case performance of the Tur
ing machine. In analyzing an algorithm, we choose the worst-case performance for two
reasons. The first is that we are considering the limitations of algorithmic computation.
The value tcM(n) specifies the minimum resources required to guarantee that the compu
tation of M terminates when initiated with any input string of length n. The other reason is
strictly pragmatic; the worst-case performance is often easier to evaluate than the average
performance.

The computations of the machine M that accepts the palindromes over {a, b] is used to
demonstrate the process of determining the time complexity. A computation of M terminates
when the entire input string has been replaced with blanks or the first nonmatching pair of
symbols is discovered. Since the time complexity measures the worst-case performance, we
need only concern ourselves with the strings whose computations cause the machine to do
the largest possible number of match-and-erase cycles. For the machine M, this condition
is satisfied when the input is accepted.

444 C h a p t e r 14 T im e C om plex ity

Using these observations, we can obtain the initial values of the function tcm from the

computations in Table 14.5.
*cM(0) = 1

fcM(1) = 3

tcM(2) = 6

fcM(3) = 10

Determining the remainder of the values of tcM requires a detailed analysis of the com
putations of M. Consider the actions of M when processing an even-length input string.
The computation alternates between sequences of right and left movements o f the machine.
Initially, the tape head is positioned to the immediate left of the nonblank segment of the
tape.

• Rightward movement: The tape head moves to the right, erasing the leftmost nonblank
symbol. The remainder of the string is read and the machine enters state q4 or q-j. This
requires k + 1 transitions, where k is the length of the nonblank portion o f the tape.

• Leftward movement: M moves left, erasing the matching symbol, and continues through
the nonblank portion of the tape. This requires k transitions.

The preceding actions reduce the length of the nonblank portion of the tape by two.
The cycle of comparisons and erasures is repeated until the tape is completely blank. As
previously noted, the worst-case performance for an even-length string occurs when M
accepts the input. A computation accepting a string of length n requires n /2 iterations of
the preceding loop.

Iteration Direction Transitions

1 Right n + l
Left n

2 Right n - 1
Left n - 2

3 Right n — 3
Left n - 4

n/2 Right 1

The total number of transitions of a computation can be obtained by adding those of each
iteration. As indicated by the preceding table, the maximum number of transitions in a
computation of a string of even length n is the sum of the first n + 1 natural numbers. An
analysis of odd-length strings produces the same result. Consequently, the time complexity
of M is given by the function

n+1
Icm(«) = ^ 2 i = (n + 2)(n + l) /2 € 0 (n 2).

i=i

14.3 T im e C om plex ity o f a Tur ing M a c h in e 445

Example 14.3.1

The two-tape machine M'

[a/a R. B/a /?] [B/B S, a/a L\ [a/a L, a/a /?]
[b/b R. B/b R] [B/B S, b/b L] [b/b L b/b R]

M': X § >
[B/BR, B/BR] [B/B S, B/B L]

Q -
[B/B L. B/B R] [B/BR, B/BR],

also accepts the set of palindromes over [a, b). A computation of M' traverses the input,
making a copy on tape 2. The head on tape 2 is then moved back to tape position 0. At this
point, the heads move across the input, tape 1 right to left and tape 2 left to right, comparing
the symbols on tape 1 and tape 2. If the tape heads ever encounter different symbols, the
input is not a palindrome and the computation halts and rejects the string. When the input
is a palindrome, the computation halts and accepts when blanks are simultaneously read on
tapes 1 and 2.

For an input of length n, the maximum number of transitions occurs when the string
is a palindrome. An accepting computation requires three complete passes: the copy, the
rewind, and the comparison. Counting the number of transitions in each pass, we see that
the time complexity of M' is rcM-(n) = 3(n + 1) + 1. □

A transition of the two-tape machine utilizes more information and performs a more
complicated operation than that of a one-tape machine. There is a trade-off between the
complexity of a transition and the number that must be processed, as illustrated by the
complexities of the machines M and M' that accept the palindromes. The precise relationship
between the time complexity of one-tape and multitape Turing machines is established in
Section 14.4.

The first step in determining the time complexity of a Turing machine is the identifi
cation of the strings that exhibit the worst-case behavior. In the machines that accepted the
palindromes, these were the strings in the language. This is not always the case, as illustrated
by the following example.

Example 14.3.2

Let M be the two-tape Turing machine

where the symbols x and y can be any symbol in [a, b, c } and x ^ y. The language of M
consists of all strings over {a , b, c} in which there is at least one value k such that the Xrth
and the kth to last position of the string have the same symbol. For example, abaa, abcccc,
abcbbc, and all odd length strings are in L(M).

[x/x R, B/x R] [x/x L B/B 5] [x/x R. y/y L]

X5>
[B/B R, B/B R] [B/B L, B/B S] [B/B R, B/B L] [B/B R, B/B L]

446 C h a p t e r 14 T im e C om plex ity

A computation of M employs the same strategy as the machine in Example 14.3.1. The
input string is copied to tape 2 and the head on tape 1 is returned to the initial position. The
symbols on tapes 1 and 2 are compared with tape head 1 moving left to right and tape head
2 moving right to left. The computation halts and accepts when the two heads scan identical

symbols.
The worst-case performance for an odd-length string occurs when no match is dis

covered prior to the middle position. In this case the computation for a string of length n
requires |(n + 1) transitions. The worst-case performance for an even length string occurs
when the string is rejected by M. In a rejecting computation, tape head 1 scans the entire
input three times. Thus

i _ { |(n + 1) if n is odd
I 3(n + 1) if n is even.

The acceptance of an even-length string takes at most §« + 2 transitions, which is always
less than the worst-case performance. □

14.4 Complexity and Turing Machine Variations

Several variations on the Turing machine model were presented in Chapter 8 to facilitate
the design of machines that perform complex computations. In the study of decidability,
the selection of the Turing machine model was irrelevant. We proved that any problem
solvable using one Turing machine architecture was solvable using any of the others. In
complexity theory, however, the choice matters. The machines in Section 14.3 that accept
the palindromes over [a, b) exhibit the potential differences in computational resources
required by one-tape and two-tape machines. In this section we examine the relationship
between the complexity of computations in various Turing machine models.

Theorem 14.4.1

Let L be the language accepted by a fc-track deterministic Turing machine M with time com
plexity tcM(n). Then L is accepted by a standard Turing machine M' with time complexity

= tcM(n).

Proof. This follows directly from the construction of a one-track Turing machine M' from
a fc-track machine in Section 8.4. The alphabet of the one-track machine consists of fc-tuples
of symbols from the tape alphabet of M. A transition of M has the form S(<?, , xk),
where x x...........x k are the symbols on track 1, track 2........... track it. The associated transition
of M' has the form & (qt, [jtj......... **]), where the fc-tuple is the single alphabet symbol of
M'. Thus the number of transitions processed by M and M' are identical for every input
string and icM = rcM.. B

14.4 Com plex ity a n d T ur ing M a c h in e V a r ia t io n s 447

Theorem 14.4.2

Let L be the language accepted by a A:-tape deterministic Turing machine M with time
complexity tcM(n) = f (n) . Then L is accepted by a standard Turing machine N with time

complexity tcN(n) e O (f (n) 2).

Proof. The construction of an equivalent one-tape machine from a fc-tape machine uses a
2k + 1-track machine M' as an intermediary. By Theorem 14.4.1, all that is required is to
show that tcM' e O(/ (n)2).

The argument follows the construction of the multitrack machine M' that simulates the
actions of a multitape machine described in Section 8.6. We begin by analyzing the number
of transitions of M' that are required to simulate a single transition of M.

Assume that we are simulating the /th transition of M. The farthest right that a tape
head of M may be at this time is tape position t. The first step in the simulation records the
symbols on the odd-numbered tapes marked by the X ’s on the even-numbered tapes. This
consists of the following sequence of transitions of M':

Find X on second track

and return to tape position 0 2t
Find X on fourth track

and return to tape position 0 2/

Find X on 2*th track

and return to tape position 0 21

After finding the symbol under each X , M' uses one transition to record the action taken
by M. The simulation of the transition of M is completed by

Action
Maximum Number of
Transitions of M'

Action
Maximum Number of
Transitions of M'

Write symbol on track 1, reposition X on track 2,

and return to tape position 0

Write symbol on track 3, reposition X on track 4,
and return to tape position 0

2(/ + 1)

2(/ + 1)

Write symbol on track 2k — 1, reposition X on track 2k,
and return to tape position 0 2 (/ + 1)

448 C h a p te r 14 T im e C om plex ity

Consequently, the simulation of the t th transition of M requires at most 4kt + 2k + \
transitions of M'. The computation of M' begins with a single transition that places the
markers on the even-numbered tracks and the # on track 2k + 1. The remainder of the
computation consists of the simulation of the transitions of M. An upper bound on
the number of transitions of M' needed to simulate the computation of M with input of

length n is

f in)

tcw (n) < 1 + J 2 (4kt + 2k + 1) e ■
t = I

14.5 Linear Speedup

The time complexity function /cm(«) of a Turing machine M gives the maximum number
of transitions required for a computation with an input string of length n. In this section we
show that a machine that accepts a language L can be “sped up” to produce another machine
that accepts L in time that is faster by an arbitrary multiplicative constant.

LetM = (Q, E , T, S, q0, F) be a it-tape Turing machine, k > 1, that accepts a language
L. The underlying strategy involved in the speedup is to construct a machine N that accepts
L in which a block of six transitions of N simulates m transitions of M, where the value of m
is determined by the desired degree of speedup. For example, selecting tm = 12 reduces the
number of transitions by approximately one-half since six transitions of N achieve the same
result as 12 of M. The word approximately is included in the previous sentence because of
some initial overhead required by N prior to the simulation of the computation of M.

Since the machines M and N accept the same language, the input alphabet of N is also
E. The tape alphabet of N includes that of M, as well as the symbol # and all ordered
m -tuples of symbols of T. A computation of N consists of two phases, initialization and
simulation. The initialization translates the input into a sequence of m-tuples. The remainder
of the computation of N simulates the computation of M.

During the simulation of M, a tape symbol of N is an m -tuple of symbols of M, and
the states of N are used to record the portion of the tapes of M that may be affected by the
next m transitions of M. In this phase of the computation of N, a state of N consists of

i) the state of M;

ii) for « = 1 to k, the m -tuple currently scanned on tape i of N and the M-tuples to the
immediate right and left; and

iii) an ordered Ar-tuple [f(......... /*], where ij is the position of the symbol on tape j being
scanncd by M in the m-tuple being scanned by N.

A sequence of six transitions of N uses the information in the state to simulate m transitions
of M.

The process will be demonstrated using the two-tape machine M' from Example 14.3.1
with m = 3 and input abbabba. The input configuration of N is exactly that o f M', with the
input string on tape 1 and tape 2 entirely blank. The first action of N is to encode the input

14.5 Linear S p e e d u p 449

string into ^-tuples. The process begins by writing # on position zero of both tapes. For
every three consecutive symbols on tape 1, an ordered triple is written on tape 2. The final
ordered triple written on tape 2 is padded with blanks since the length of Babbabba is not
evenly divisible by three. The tape heads of N are repositioned at tape position one and the
original input string is erased from tape 1. For the remainder of the computation, tape 2 of
N will simulate tape 1 of M \ and tape 1 of N will simulate tape 2 of M'.

The next diagram shows the initial configuration of M' with input abbabba and the

configuration of N after the encoding.

M ' N # | [Bab] | [bab] [baB] B

t t
a b b a b b a # | [BBB] | [BBB] [BBB] B

After the initialization, each blank on the tape of N will be considered to represent an
encoded triple [BBB] of blanks of M'. To illustrate the difference in the diagrams, the
blanks of N will be written B. After the encoding of the input, N will enter the state

(.ft; ?, [BBB], ?; ?, [Bab], ?; [1, 1]).

The m -tuples [BBB] and [Bab] are those currently scanned by N on tapes I and 2, respec
tively. The ordered pair [1,1] indicates that the computation of M' is scanning the symbol
that occurs in the first position in each of the triples [BBB] and [Bab] in the state of N.
The symbol ? is a placeholder; subsequent transitions will cause N to enter states in which
each ? is replaced with information concerning the triples to the left and right of the position
currently being scanned.

The simulation of m moves of M' is demonstrated by considering the configurations of
M' and N

M ' b b a b b a N # [Bah] [bab] [bBB] B

t 1
a b b a b b # [BBb] [bab] [baB] B

I f
that would be obtained during the processing of abbabba. Upon entering this configuration,
the state of N is

(q3\ ?, [BBb], ?; ?, [bBB], ?; [3, 1]).

450 C h a p te r 14 T im e C om plex ity

The ordered pair [3, 1] in the state indicates that the computation of M' is reading the b in
the triple [BBb] on tape 1 and the b in the triple [bBB] on tape 2.

The machine N then makes a move to the left on each tape, scans the squares, and enters

state

(q3; #, [BBb], ?; [bab], [bBB], ?; [3, 1]),

which records the triples to the left of the originally scanned squares in the state. The role
of the marker # is to ensure that N will not cross a left-hand tape boundary in this phase of
the simulation. Two moves to the right leaves N in state

(q i ; #, [BBb], [bab]; [bab], [bBB], [BBS]; [3, 1]),

recording the triple to the right of the originally scanned positions. N then moves its tape
heads left to return to the original position. After these transitions, the state o f N contains a
copy of the segment of the tape of M' that can be altered by three transitions.

At this point, N rewrites its tapes to match the configuration that M' will enter after
three transitions

M' N # [Bab] [bBB] [BBB] B

a b b

and enters state

[BBB] [BBb] [baB] B

(qy, ?, [BBb], ?; ?, [bBB], ?; [3,1])

to begin the simulation of the next three transitions of M'. Since each tape square of N has
three symbols of M', the portion of the tape of M' that can be altered by three transitions
is contained in the tape square currently being scanned by N and either the square to the
immediate right or immediate left of the square being scanned, but not both. Consequently,
at most two transitions of N are required to update its tape and prepare for the continuation
of the simulation of M'. The simulation of transitions of M' continues until M' halts, in
which case N will halt and return the same indication of membership as M'.

Theorem 14.5.1

Let M be a fc-tape Turing machine, k > 1, that accepts L with tcM(n) = / (n). For any
constant c > 0, there is a fc-tape machine N that accepts L with tcN(n) < \ c f (w)l + 2n + 3.

Proof. The construction of the machine N has just been described. Encoding an input
string of length n as m -tuples and repositioning the tape heads require 2n + 3 transitions.

14 .6 P ro p e r t ie s o f T im e C om plex ity o f L a n g u a g e s 451

The remainder of the computation of N consists of the simulation of the computation
of M. To obtain and record the information needed to simulate m transitions of M, machine
N takes one move to the left, two to the right, and one to reposition the head at the original
position. At most two transitions are then required to reconfigure the tapes of N. Thus six
transitions of N are sufficient to produce the same result as m of the machine M. Choosing
m > 6/c produces

tCtf(n) = f(6/m)f(n)~l + 2n + 3

< |c / (») l + 2 n + 3,

as desired. ■

Corollary 14.5.2

Let M be a one-tape Turing machine that accepts L with tcM(n) = f (n) . For any constant
c > 0, there is a two-tape machine N that accepts L with /cN(«) < [c/(m)1 + 2n + 3.

Proof. In the standard manner, the one-tape machine M can be considered to be a two-tape
machine in which the second tape is not referenced in the computation. Theorem 14.5.1 can
then be used to speed up the two-tape machine. ■

The speedup in Theorem 14.5.1 was obtained at the expense of creating a larger tape
alphabet and vastly increasing the number of states. The exact determination of the size of
these sets is left as an exercise.

14.6 Properties of Time Complexity of Languages

The definition of the time complexity function rcM is predicated on the computations of the
machine M and not on the underlying language accepted by the machine. We know that many
different machines can be constructed to accept the same language, each with a possibly
different time complexity. We say that a language L is accepted in deterministic time / (n)
if there is a standard (one-tape deterministic) Turing machine M with tcM(n) e O (/(«)) .
Using the results from the preceding section, we know that a language L is 0 (/ (n)2)
whenever there is a multitape Turing machine that accepts L with time complexity 0 (/ («)).

In this section we establish two interesting results on the bounds of the time complexity
of languages. First, we show that for any computable total function f{n) , there is a language
whose time complexity is not bounded by f (n) . We then show that there are languages for
which no “best” accepting Turing machine exists. Theorem 14.5.1 has already demonstrated
that a machine accepting a language can be sped up linearly. That process, however, does
not change the rate of growth of the accepting machine. We will now show that there are
languages which, when accepted by any machine, are also accepted by a machine whose
time complexity grows at a strictly smaller rate than the original machine.

452 C h a p te r 14 T im e C om plex ity

Both of these results utilize the ability to encode and enumerate all multitape Turing
machines. An encoding of one-tape machines as strings over {0, 1} was outlined in Sec
tion 11.5. This approach can be extended to an encoding of all multitape machines with input
alphabet {0, /}. The tape alphabet is assumed to consist of elements { 0 ,1, B , x y.........
The tape symbols are encoded as follows:

Symbol Encoding

0 1

I 11

B 111

1111

y / j + 3

As before, a number is encoded by its unary representation and a transition by its
encoded components separated by O's; encoded transitions are separated by 00. With these
conventions, a k -tape machine may be encoded

000k000ert(acccp\mg states)000en(transitions)O00,

where k is the unary representation of k and en denotes the encoding of the items in
parentheses.

With this representation, every string u € (0, /}* can be considered to be the encoding
of some multitape Turing machine. If u does not satisfy the syntactic conditions for the
encoding of a multitape Turing machine, the string is interpreted as the representation of
the one-tape, one-state Turing machine with no transitions.

In Exercise 8.32 a Turing machine E that enumerated all strings over {0,1} was con
structed. Since every such string also represents a multitape Turing machine, the machine
E can be equally well thought of as enumerating all Turing machines with input alphabet
{0, /}. The strings enumerated by E will be written u0, u t, u2, . . . and the corresponding
machines by M0, M,, M2..........

We will now show that there is no upper bound on the time complexity of languages.
More precisely, for any computable function / we will build a recursive language L such
that no Turing machine M with fcM(n) < f(rt) accepts L. The proof uses diagonalization
to obtain a contradiction from the assumption of the existence of such a machine.

Theorem 14.6.1

Let / be a total computable function. Then there is a language L such that tcM is not bounded
by / for any deterministic Turing machine M that accepts L.

Proof. Let F be a Turing machine that computes the function / . Consider the language
L = {m, | M, does not accept m, in f (n) or fewer moves, where n = length(Uj)}. First, we

14 .6 P ro p e r t ie s o f T im e C om plex ity o f L a n g u a g e s 453

show that L is recursive and then that the number of transitions of any machine that accepts

L is not bounded by f (n) .
A machine M that accepts L is described below. The input to M is a string m, in [0,]}*.

Recall that the string m, represents the encoding of the Turing machine M, in the enumeration

of all multitape Turing machines. A computation of M

1. determines the length of m(, say, length(Uj) = n;

2. simulates the computation of F to determine / («) ;

3. simulates M, on «, until M; either halts or completes f (ti) transitions, whichever comes
first; and

4. M accepts m, if either M, halted without accepting m, or M, did not halt in the first / (n)
transitions. Otherwise, ut is rejected by M.

Clearly, the language L(M) is recursive, since step 3 ensures that each computation will
terminate.

The language L has been designed so that diagonalization and self-reference can be
used to produce a contradiction to the claim that L is accepted by a Turing machine with
time complexity bounded by / (n) . Let M be any Turing machine that accepts L. Then M
occurs somewhere in the enumeration of Turing machines, say M = My. The self-reference
is obtained by considering the membership of uj in L. Since L(My) = L, M; accepts Uj if,
and only if, M; halts without accepting Uj in / (n) or fewer transitions or My does not halt
in the first f (n) transitions.

The proof that My is not bounded by / is by contradiction. Assume that the time
complexity of My is bounded by / and let n = length(Uj). There are two cases to consider:
either uj e L or uj £ L.

If Uj € L, then My accepts uj in / («) or fewer transitions (since the computations of
My are assumed to be bounded by /) . But, as previously noted, My accepts iij if, and only
if. My halts without accepting Uj or M; does not halt in the first / (n) transitions.

If uj <jL L, then the computation of My halts within the bound of / (n) steps and does
not accept Uj. In this case, uj e L by the definition of L.

In either case, the assumption that the number of transitions of M; is bounded by /
leads to a contradiction. Consequently, we conclude that time complexity of any machine
that accepts L is not bounded by / . ■

Next we show that there is a language that has no fastest accepting machine. To illustrate
how this might occur, consider a sequence of machines N0, N b . . . that all accept the same
language over 0*. The argument uses the function t that is defined recursively by

i) r(1) = 2

ii) /(n) = 2 '(" - 1).

Thus f (2) = 22, t (3) = 22\ and t(n) is a series of n 2’s as a sequence of exponents. The
number of transitions of machine N, when ran with input 0j is given in the [j, y]th position

454 C h a p t e r 14 T im e C om plex ity

TABLE 14 .6 M a c h in e s N,- a n d T h e ir C o m p u ta t io n s

A. 0 00 o3 O4 O5 O6

N0 * 2 4 f(3) r(4) K5) t(6)

N, * * 2 4 f(3) t{ 4) 1(5)

n 2 * * * 2 4 f(3) K 4)

n 3 * * * * 2 4 K 3)
n4 * * ♦ * * 2 4

of Table 14.6. A * in the [i, y']th position indicates that the number of transitions of this
computation is irrelevant.

If such a sequence of machines exists, then

t c ^ n) = log2(/cNi_1(n))

for all n > i + 1. Consequently, we have a sequence of machines that accept the same
language in which each machine has a strictly smaller rate of growth than its predecessor.
A language that exhibits the “this can always be accepted more efficiently” property is
constructed in Theorem 14.6.2.

The speedup in both the motivating discussion and in the construction in Theo
rem 14.6.2 uses the property that rates of growth measure the performance o f the function as
the input gets arbitrarily large. From the pattern in Table 14.6, we see that the computations
of machines N, and N,+1 are compared only on input strings of length i + 2 or greater.

Theorem 14.6.2

There is a language L such that, for any machine M that accepts L, there is another machine
M' that accepts L with tcM-(n) e 0 (log2(/cM(«»).

Let t be the function defined recursively by r (1) = 2 and t(n) = 2,(n-1) for n > 1
as before. A recursive language L c {0}* is constructed that satisfies the following two
conditions:

1. If M; accepts L, then tcM.(n) > t (n — i) for all n greater than some n,.

2. For each k, there is a Turing machine My with L(M;) = L and tcM .(n) < t (n - k) for
all n greater than some nk.

Assume that L has been constructed to satisfy the preceding conditions. For every
machine M, that accepts L there is an M; that also accepts L with

rcMy(n)€ 0 (lo g 2(/cM (n))),

14.6 P ro p e r t ie s o f T im e C om plex ity o f L a n g u a g e s 455

as desired. To see this, set k = i + 1. By condition 2, there is a machine My that accepts L
and tcM.(n) < t(n - i - 1) for all n > nk. However, by condition 1,

fcM (n) > t(n — i) for all n > n, .

Combining the two inequalities with the definition of t yields

/cM,(n) > t(n - 0 = 2,<"_' _1) > 2,CM/ n) for all n > max{n(, nk}.

That is, tcM (n) < log2 (/cM.(n)) for all n > max{/ij, nk}.
We now define the construction of the language L. Sequentially, we determine whether

strings 0”, n = 0, 1 ,2 are in L. During this construction, Turing machines in the
enumeration M0, M,, M2, . . . are marked as cancelled. In determining whether 0" e L, we
examine a machine M?(n) where g(n) is the least value j in the range 0...........n such that

i) My has not been previously cancelled, and

ii) tcM.(n) < t (n - j) .

It is possible that no such value j may exist, in which case g(«) is undefined. The string
0" e L if, and only if, g(n) is defined and Mg(n) does not accept 0”. If g(n) is defined, then
Mg(„) is marked as cancelled. The definition of L ensures that a cancelled machine cannot
accept L. If Mg(n) is cancelled, then 0" € L if, and only if, 0" is not accepted by M^(n).
Consequently, L(M^(n)) L.

The proof of Theorem 14.6.2 consists of establishing the following three lemmas. The
first shows that the language L is recursive. The final two demonstrate that conditions 1 and
2 stated earlier are satisfied by L.

Lemma 14.6.3

The language L is recursive.

Proof. The definition of L provides a method for deciding whether 0" e L. The decision
process for 0" begins by determining the index g(n), if it exists, of the first machine in the
sequence M0, . . . , M„ that satisfies conditions 1 and 2. To accomplish this, it is necessary
to determine the machines in the sequence Mq, M j...........M „_(that have been cancelled in
the analysis of input X, 0, . . . , 0 n~ i. This requires comparing the value of the complexity
functions in Table 14.7 with the appropriate value of t. The input alphabet consists of the
single character 0, therefore /cM (m) can be determined by simulating the computation of
M, with input ff”.

After the machines that have been cancelled are recorded, the computations with input
0" are used to determine g(n). Beginning with j = 0, if My has not previously been
cancelled, then t(n — j) is computed and the computation of My on 0" is simulated. If
,CM; (”) < t (n — j) , then g(n) = j . If not, j is incremented and the comparison is repeated
until g(n) is found or until all the machines M0, . . . , M„ have been tested.

If g (n) exists, Mg(n) is run with input 0 The result of this computation determines
the membership of 0" in L: 0" e L if, and only if, Mg(n) does not accept it. The preceding

456 C h a p te r 14 T im e C om plex ity

TABLE 14.7 C o m p u ta t io n s t o D e te r m in e C an c e l le d M ac h in e s

Input m Comparison rcM.(m) < t(m — i)

X 0 tcMo(0) < t (0 - 0) = t(0)

0 1 tcMo(l) < t (l - 0) = t(l)

fcM, (l) < / (l - l) = f(0)

00 2 »cMo(2) < r (2 - 0) = r(2)

fcMl(2) < / (2 - 1) = /(1)
fcM2(2) < /(2 — 2) = f(0)

0»-l n - 1 t c ^ i n - 1) < I(n - 1 - 0) = t(n - 1)

- 1) < — 1 - 1) = l(n ~ 2)
fCM2(n - 1) < t(n - 1 - 2) = /(n - 3)

- 1) < t(n - 1 - (n - 1)) = /(0)

process describes a decision procedure that determines the membership of any string 0" in
L; hence, L is recursive. ■

Lemma 14.6.4

L satisfies condition 1.

Proof. Assume M, accepts L. First note that there is some integer p t such that if a machine
M0, M j...........M, .is ever cancelled, it is cancelled prior to examination o f the string 0Pi.

Since the number of machines in the sequence M0, Mj, . . . , that are cancelled is finite,
at some point in the generation of L all of those that are cancelled will be so marked. We
may not know for what value of p, this occurs, but it must occur sometime and that is all
that we require.

For any 0" with n greater than the maximum of p t and i, no M* with k < i can be
cancelled. Suppose tcM,(n) < t(n — i). Then M, would be cancelled in the examination of
0". However, a Turing machine that is cancelled cannot accept L. It follows that tcMXn) >
t(n — i) for all n > max{p,, i }. ■

Lemma 14.6.5

L satisfies condition 2.

Proof. We must prove, for any integer k, that there is a machine M that accepts L and
tcM(n) < t (n — k) for all n greater than some value nk. We begin with the machine M
that accepts L described in Lemma 14.6.3. To decide if 0" is in L, machine M determines
the value g(n) and simulates Mg(n) on Of'. To establish g(n), M must determine which of

the M ,’s, i < n, have been cancelled during the analysis of strings X, 0, 00, . . . , 0n~ i.

14.6 P ro p e r t ie s o f T im e C om plex ity o f L a n g u a g e s 457

Unfortunately, a straightforward evaluation of these cases as illustrated in Table 14.7 may
require more than t(n — k) transitions.

As noted in Lemma 14.6.4, any Turing machine M, , i < k, that is ever cancelled is
cancelled when considering some initial sequence X, 0, 00, . . . , 0Pk of input strings.
This value pk can be used to reduce the complexity of the preceding computation. For
each m < pk, the information on whether f f” is accepted is stored in states o f the machine
M that accepts L.

The computation of machine M with input 0" then can be split into two cases.

Case 1: n < pk. The membership of 0" in L is determined solely using the information
recorded in the states of M.

Case 2: n > pk. The first step is to determine g(n). This is accomplished by simulating the
computation of Turing machines M,, i = k + 1, . . . , n on inputs CT, m = k + \n
to see if M, is cancelled on or before 0". We only need to check machines in the range
M*+1, . . . , M„ since no machine M0, . . . , M k will be cancelled by an input of length
greater than pk.

The ability to skip the simulations of machines M0, . . . , M* reduces the number of
transitions needed to evaluate an input string 0" with n > pk. The number o f simulations
indicated in Table 14.7 is reduced to

Input m Comparison tcM (m) < t(m — i)

0 t + ! k -)- 1 tCMl+l(k + 1) < t(k + 1 - (k + 1)) := 1(0)

0 * + 2 k + 2 fcM4+1(^ + 2) < t(k + 2 — (k + 1))
tcMk̂ (k + 2) < t(k + 2 — (k + 2))

= /(1)
= f(0)

or ft , c m » + 1 (") £ ' (” - (* + 1))
, c M 1 + 2 (") £ ' (" - (* + 2))

tC M jn)< f (n -n) = t(0)

Checking whether machine M, is cancelled with input 0m requires at most t(m — i)
transitions. The maximum number of transitions required for any computation in the pre
ceding sequence is t(n — k — 1), which occurs for i = it + 1 and m = n .

The machine M must perform each of the indicated comparisons. At most
t(n — k — 1) transitions are required to simulate the computation of M, on O'". Erasing
the tape after the simulation and preparing the subsequent simulation can be accomplished
in an additional 2t(n — k — 1) transitions. The simulation and comparison cycle must be
repeated for each machine M,, i = k + 1, . . . , n, and input 0™, m = k + 1, . . . , n. Thus

458 C h a p t e r 14 T im e C om plex ity

the process of simulation is repeated at most (n — k)(n — k + l) /2 times. Consequently,
the number of transitions required by M is less than 3(n — k)(n — k + l)r(” — k — l)/2.

That is,

fcM(n) < 3(n - k)(n - k + l)t(n - k - l)/2 .

However, the rate of growth of 3(n — k)(n — k + \)t(n — k — l) /2 is less than that of
t(n — k) = 2,(" - * - |>. Consequently, tcM(n) < t (n - k) for all n greater than some nk. ■

The preceding proof demonstrated that for any machine M accepting L, there is a
machine M' that accepts L more efficiently than M. Now, M' accepts L so, again by
Theorem 14.6.2, there is a more efficient machine M" that accepts L. This process can
continue indefinitely, producing a sequence of machines each of which accepts L with
strictly smaller rate of growth than its predecessor.

Theorem 14.6.2 reveals a rather nonintuiti ve property of algorithmic computation; there
are decision problems that have no best solution. Given any algorithmic solution to such a
problem, there is another solution that is significantly more efficient.

14.7 Simulation of Computer Computations

Our study of the complexity of an algorithm is based on the number of transitions in the
computations of a Turing machine implementation of the algorithm. However, the vast
majority of the computational work that we do is usually not done on a Turing machine
but rather on a computer. To illustrate the practical application of the analysis of Turing
machine computations, we will compare the time complexity of an algorithm run on a
standard computer with the complexity of running the same algorithm on a Turing machine,
where the time complexity of a computation on a computer is measured by the number of
machine instructions executed during the computation.

We will not produce a theorem that precisely relates the number of- instructions to
the number of transitions. This is impossible since different computers have different
architectures, instruction sets, memory sizes, and computational capabilities. What we will
do, however, is define a general type of machine instruction that subsumes those of standard
machine or assembly languages. In fact, the flexibility and computational power that we give
to our instructions far surpass that found in typical computer architectures.

The first thing to note is that we are interested in comparing a real computer, not a
theoretical machine, with a Turing machine. Thus our machine must have a finite memory.
The memory can be as large as desired, but finite. The machine memory is divided into
fixed-length addressable words. In practice, a word usually consists of 32 or 64 bits, but we
will allow the length of the words in our machine to be of any fixed finite length. The sole
restriction on the length of a word is that it be large enough to hold our machine instructions.
Each word has an associated numeric address that is used to retrieve and store data.

14 .7 S im u la t io n of C o m p u te r C o m p u t a t i o n s 459

A machine instruction consists of an operation code, which indicates the operation to
be performed, followed by operands. An instruction may move data, perform arithmetic
or Boolean calculations, adjust the program flow, or allocate additional memory. Memory
allocation may be required for temporary calculations or to dynamically increase the amount
of memory available during a computation. We will assume that there is a maximum amount
of memory, say, ma words, that can be allocated by the execution of a single instruction.
The number ma, of course, can be as large as we wish.

The operands designate locations from which to retrieve data, locations in which to
store the results, or other addresses to be used in the operation. An instruction usually has
one or two operands, but we will allow every instruction to have up to a fixed number t
of operands. Since t is the maximal number of addresses that can be explicitly given in an
instruction, we assume that the result of a single instruction can change at most t words in
the memory. Our final restriction, if it can be called a restriction, is that the instruction set
must be finite.

Summarizing these conditions, we will be considering the time complexity of a com
puter whose architecture and instruction set satisfy the following conditions:

Component Conditions

Memory: Finite
Word size: Fixed word length, each word containing mw bits
Instruction set: Finite
Instruction: Operation code and at most t operands.

fits within a single word
Operation: Changes at most t words.

allocates at most ma words of memory

It should be clear that most, if not all, standard computer architectures and instruction sets
satisfy these rudimentary limitations. The details of how memory is accessed, an instruction
is performed, and program flow is maintained in a particular computer architecture are not
of interest to us. We are only concerned with the number of instructions that are executed.

We will now design a Turing machine to simulate a computation consisting of a
sequence of instructions. We will use the 4 + r-tape Turing machine model depicted in
Figure 14.1, where t is the number of operands in an instruction. The program and input
are stored on tape 1. Like the computer memory, we will consider tape 1 to be divided into
words: tape positions 0 to m w — 1 constitute word 0, m w to 2m w — 1 constitute word 1, and
so on. Our memory allocation scheme is simple: Memory is allocated sequentially and once
allocated it is never freed. The memory counter contains the address of the next free word
of memory on tape 1.

The program counter contains the location of the next instruction to be executed. Pro
gram control is sequential unless an instruction specifies the location of the next instruction
as the value of one of its operands. The input counter contains two addresses, the location

460 C h a p t e r 14 T im e C om plex ity

>• t Register tapes

Work tape

Input counter

Program counter

| | I | | _ Input tape

FICURE 14.1 Turing machine architecture for computer simulation.

of the beginning of the input and the location of the next word to be read. There is an ad
ditional counter tape used in locating addresses on tape 1. Finally, there are t work tapes,
one associated with each operand of an instruction. These tapes may be considered to be
the Turing machine equivalent of registers; operations on data are performed only when the
pertinent data have been moved to these tapes. Figure 14.1 shows the configuration of our
Turing machine.

We now want to produce an upper bound on the number of transitions that are required
for the Turing machine to simulate the execution of the klh instruction of a computation.
An instruction may fetch data, store data, allocate memory, and perform a calculation. The
simulation of an instruction by our Turing machine consists of the following actions:

i) loading the data specified by operand i onto its associated tape (for each operand
required by the operation),

ii) performing the indicated operation, and

iii) storing the result in the position indicated by operand i (for each operand required by
the operation).

In the first step, the data to be processed may be in the instruction itself or the instruction
may contain the address of the desired data.

To obtain an upper bound on the number of transitions needed to simulate the execution
of an instruction, we will unrealistically assume that each instruction does the maximal
amount of each type of action. That is, we will calculate the number of transitions as if each
instruction fetches t words, performs an operation, stores t words, and allocates ma words
of memory. Thus we need to determine the number of transitions required for each of these
actions.

Since there are only a finite number of instructions and each instruction uses at most t
operands with the data in known locations on the register tapes, we can find the maximum
number of transitions needed to perform any operation. This number, which we will call
tg, depends solely on the instruction set and is independent of the input, the data, and the

number of instructions in a computation.
The number of transitions needed to load the operands and store the results depends

upon the amount of memory that is being used by the Turing machine. We let m p be the
number of bits used to store the instructions, m(- be the number of bits to store the input, and
m k the total memory “allocated" by the Turing machine at the beginning of the simulation
of instruction k. Thus

mk — m p + m i + k ■ ma

is the maximum amount of memory allocated by the Turing machine prior to the simulation
of the &th transition.

During the simulation of the fcth transition, the Turing machine can locate any address
in m k transitions. To find the beginning of a word, the address is loaded onto the counter
tape. While the address is not 0, the program tape head moves m w squares to the right and the
counter tape is decremented. This process halts when the counter tape is 0, in which case the
program tape head is reading the first bit in the desired word. Copying the address requires
fewer than m w transitions. Finding the address requires fewer than m k — inw transitions
since the bits in the last word will not be read in this process.

An upper bound on the number of transitions required to simulate the execution of the
kth instruction is

14.7 S im u la t io n o f C o m p u te r C o m p u t a t i o n s 461

Action Transitions

Find the instruction mk
Load the operands t mk

Return the register tape heads 1 mk

Perform the operation

Store the information

Return the register tape heads ‘ ■ "U+i

Since the operation may allocate additional memory, the storing operation may access
>nk+\ tape squares. Adding the transitions associated with each step in the simulation of
an instruction produces an upper bound of

(21 + 1)mk + 2 tm k+1 + t0

= (21 + l)(mp + m, + k ■ ma) + 2 t(m p + ntj + k ■ ma + ma) + t0

= (4/ + 1)mp + (4/ + 1)m, + 2 1 ■ ma + t0 + (41 + 1)* ■ ma

462 C h a p te r 14 T im e C om plex ity

transitions to simulate the Jtth instruction. The values m p, ma, and t0 are constants indepen
dent of the input. If a computation of the computer with input length m, = n requires / (n)
steps, the simulation on our Turing machine requires

/(")
F ((4f + 1)mp + (4/ -I- l)n + 21 m a + t 0 + (4/ + 1)* ■ ma)
k=I

f in)

= f(n) ((4 t + l)mp + (41 + l)n + 2t ma + ta) + £] (4 r -I- 1)k ■ n.
k=l

/r>

= /(n)((4 / + 1)mp + (41 + l)n + 2t ■ ma + tQ) + (4/ t- l)ma k.
k= 1

Thus the rate of growth is the larger of O (n f («)) or O (/ (n)2). The transition from computer
to Turing machine simulation increases the order of the time complexity at most polyno
mially. In particular, any algorithm that runs in polynomial time on a computer can be
simulated on a Turing machine in polynomial time.

Exercises

1. For each of the functions below, choose the “best” big Oh from Table 14.3 that describes”̂
the rate of growth of the function.

a) 6n2 + 500

b) 2n2 + n2 log2(n)

c) L(” 3 + 2n)(n + 5) /n 2J

d) n2 • 2" + n!

e) 25 • n - sqrt(n) + 5n2 + 23

2. Let / be a polynomial of degree r. Prove that / and nr have the same rate of growth.

3. Use Definition 14.2.1 or the limit rule to establish the following relationships.

a) n • sqr t(n) € 0 (n 2)

b) log2(n) log2(n) e O (n)

c) nr e 0(2")

d) 2” jf 0 (n r)

e) 2" € 0 (n !)

f) n \ £ 0 (2")

4. Is 3" 6 0 (2")? Prove your answer.

E xerc ises 463

5. Let a be a natural number greater than 1 and c be a constant greater than 0. Is
logu(n + c) e 0(logu(n))? Prove your answer.

6. L e t / (n) = Mlo*2<n>.

a) Show that f (n) £ 0 (nr) for any r > 0. That is, f (n) is not in bounded by a
polynomial.

b) Show that 2" £ O(/ (n)). That is, / (n) is not exponential.

7. Let / and g be two unary functions such that / € Q (nr) and g € © (« ')■ Give the
polynomial “big theta” that has the same rate of growth as the following functions.
Prove your answer.

a) f + g

b) f g

c) f 2

d) f o g

8. Determine the time complexity of the following Turing machines.

a) Example 8.2.1, page 260

b) Example 8.6.3, page 274

c) Example 9.1.2, page 298

d) Example 9.2.1, page 301

9. Let M be the Turing machine

b/bL

a) Trace the computation of M with input X, a, and abb.

b) Describe the string of length n for which the computation of M requires the maxi
mum number of transitions.

c) Give the function rcM.

464 C h a p te r 14 T im e C om plex ity

10. Let M be the Turing machine

at a R
c/c R a/a L

M: > (§ }
B/BR

Q -
b/bL B/BR

<s)

a) Trace the computation of M with input abc, aab, and cab.

b) Describe the string of length n for which the computation of M requires the maxi
mum number of transitions.

c) Give a regular expression for L(M).

d) Give the function

11. Let L be the language over [a, b) that contains a string u if it satisfies one of the
following conditions:

i) u = a'b' and length(u) < 100, or

ii) length(u) > 100.

a) Design a standard Turing machine M that accepts L.

b) Give the function tcM.

c) What is the best polynomial rate of growth that describes the time complexity
function /cM?

12. Let M = (Q, E , T, 8, q0, F) be a two-tape Turing machine that accepts a language
L, and let N be the machine constructed following Theorem 14.4.2 with m = 12.
Determine the size of the tape alphabet and the number of states of N.

* 13. Design a standard Turing machine M that accepts the language {a'b' \ i > 0(with time
complexity tcM e 0 (/i log2(n» . Hint: On each pass through the data, mark half of the
a ’s and half of the b’s that have not been previously marked.

Bibliographic Notes

We have presented computational complexity in terms of the time required by a computa
tion. The relationships between time and space complexity will be examined in Chapter 17.
An axiomatic approach to abstract complexity measures was introduced in Blum [1967]
and developed further by Hartmanisand Hopcroft [1971]. In the 1985 Association of Com
puting Machinery Turing Award Lecture, Richard Karp [1986] gave an interesting personal
history of the initial development and directions of complexity theory.

CHAPTER 1 5

T , and Cook’s Theorem

Computability theory is concerned with establishing whether decision problems are theo
retically decidable. In complexity theory we further subdivide the solvable problems into
those that have practical solutions and those' that are solvable in principle only. A problem
that is theoretically solvable may not have a practical solution; there may be no algorithm
that solves the problem without requiring an extraordinary amount of time or memory. Prob
lems for which there is no efficient algorithm are said to be intractable. Because of the rate
of growth of the time complexity, nonpolynomial algorithms are not considered feasible for
all but the simplest cases of the problem. The division of the class of solvable decision prob
lems into polynomial and nonpolynomial problems is generally considered to distinguish
the efficiently solvable problems from the intractable problems.

There are many famous problems that have polynomial-time nondeterministic solutions
for which there are no known polynomial-time deterministic solutions. In this chapter
we explore the relationship between solvability using deterministic and nondeterministic
polynomial-time algorithms. Whether every problem that can be solved in polynomial time
by a nondeterministic algorithm can also be solved deterministically in polynomial time is
currently the outstanding open question of theoretical computer science.

The duality between solvable decision problems and recursive languages allows us to
define complexity classes in terms of recursive languages. Because time complexity relates
the length of an input string to the number of transitions, the selection of the representation
of the instances of a decision problem may alter the complexity of the algorithm. To separate
the effect of the representation from the inherent difficulty of the problem, we will impose
some simple constraints on the representations so that a change in representation only
polynomially affects the complexity of the solution.

465

466 C h a p t e r 15 3 \ X T , a n d C o o k 's T h e o r e m

15.1 Time Complexity o f Nondeterministic Turing Machines

Nondeterministic computations are fundamentally different from their deterministic coun
terparts. A deterministic machine often generates and examines multiple possibilities in
its search for a solution, while a nondeterministic machine employing a guess-and-check
strategy need only determine if one of the possibilities provides the solution. Consider the
problem of deciding whether a natural number k is a composite (not a prime). A construc
tive, deterministic solution can be obtained by sequentially examining every number in the
interval from 2 to to see if it is a factor of k. If a factor is discovered, then k is a
composite. A nondeterministic computation begins by arbitrarily choosing a value in the
designated range. A single division determines if the guess is a factor. If k is a composite,
one of the nondeterministic choices will produce a factor and that computation returns the
affirmative response.

A string is accepted by a nondeterministic machine if at least one computation termi
nates in an accepting state. The acceptance of the string is unaffected by the existence of
other computations that halt in nonaccepting states or do not halt at all. The worst-case
performance of the algorithm, however, measures the efficiency over all computations.

Definition 15.1.1

Let M be a nondeterministic Turing machine. The time complexity of M is the function
tcM :N —*■ N such that fcM(/i) is the maximum number of transitions processed by a
computation, employing any choice of transitions, of an input string of length n.

The preceding definition is identical to that of the time complexity of a deterministic
machine. It is included to emphasize that the nondeterministic analysis must consider all
possible computations for an input string. As in the case of deterministic machines, our
definition of time complexity assumes that every computation of M terminates.

Nondeterministic computations utilizing a guess-and-check strategy are generally sim
pler than their deterministic counterparts. The simplicity reduces the number of transitions
required for a single computation. Employing this strategy, we can construct a nondeter
ministic machine to accept the palindromes over [a, b}.

Example 15.1.1

The two-tape nondeterministic machine M

[a/a R, B/a /?]
[b/b R, B/b /?)

[a/a R, a/a L]
[b/b R, b/b L]

[a/a S, B/B L]
[b/b S, B/B L]
[B/B S. B/B L)

15.1 Time Complexity of Nondeterministic Turing Machines 467

accepts the palindromes over [a, b}. Both tape heads move to the right with the input being
copied on tape 2. The transition from state q\ “guesses" the center of the string. A transition
from q\ that moves the tape head on tape 1 to the right and tape 2 to the left is checking
for an odd-length palindrome, while a transition that leaves the head on tape 1 in the same
location is checking for an even-length palindrome. The maximum number of transitions
occurs in an accepting computation, which halts when a blank is simultaneously read by
tape heads 1 and 2. The time complexity

reflects the additional transition required for the acceptance of an even-length string. □

The strategy employed in the transformation of a nondeterministic machine to an
equivalent deterministic machine given in Section 8.7 does not preserve polynomial time
solvability. It does, however, provide an upper bound on the time complexity needed by a
deterministic machine to accept the language of the original nondeterministic machine.

Theorem 15.1.2

Let L be the language accepted by a one-tape nondeterministic Turing machine M with time
complexity r c ^ n) = f («). Then L is accepted by a deterministic Turing machine M' with
time complexity tcM'(n) € O (f (n)c^{n)), where c is the maximum number of transitions
for any state, symbol pair of M.

Proof. Let M = (Q, E , T, S, q0) be a one-tape nondeterministic Turing machine that
halts for all inputs, and let c be the maximum number of distinct transitions for any state,
symbol pair of M. The transformation from nondeterminism to determinism is obtained .by
associating a unique computation of M with a sequence (/w1, . . . , m„), where 1 < m, < c.
The value m, indicates which of the c possible transitions of M should be executed on the
i th step of the computation.

In Section 8.7, a three-tape deterministic machine M' was described whose computation
with input w iteratively simulated all possible computations of M with input w. We will
analyze the number of transitions required by the machine M' to simulate all computations
of M. For an input of length n, the maximum number of transitions of any computation of
M is at most / («) ■ To simulate a single computation of M, machine M'

1. generates a sequence of integers (/ « , , . . . , m„) with 1 < mt < c;

2. simulates the computation of M specified by the sequence (»i|, . . . , m„); and

3. if the computation does not accept the string, the computation of M' continues with

In the worst case, c^ (n) sequences need to be examined. The simulation of a single
computation of M can be performed using O (/(«)) transitions of M'. Thus, the time
complexity of M' i s 0 (/ (n) c ^ <n)). ■

The time complexity O (f (n) c f{n)) produced in Theorem 15.1.2 is an artifact of the
particular construction used to produce M' from M. Other approaches considering the

step 1.

468 C h a p te r 15 CP, >f3>, a n d C o o k ’s T h e o r e m

properties of the particular language in question may be used to design deterministic
machines with time complexity significantly lower than the upper bound indicated by
Theorem 15.1.2. For example, the nondeterministic machine in Example 8.7.1 that accepts
(a U b U c)*(abc U cab)(a U fc U c) ' uses at most n + 3 transitions when processing an
input string of length n. The construction used in Theorem 15.1.2 produces a deterministic
machine that accepts the language with time complexity 0 (n • 3"). However, this language
is also accepted by a standard Turing machine with time complexity n + 1.

In the next several sections we will explore the relationship between the class of
problems that can be solved deterministically in polynomial time and the class of problems
that can be solved nondeterministically in polynomial time.

15.2 The Classes CP and NT

A language L over £ is decidable in polynomial time, or simply polynomial, if there is an
algorithm that determines membership in L for which the growth in the time required by a
computation increases at most polynomially with the length of the input string. The notion
of polynomial time decidability is formally defined using transitions of the standard Turing
machine to measure the time of a computation.

Definition 15.2.1

A language L is decidable in polynomial time if there is a standard Turing machine M that
accepts L with fcM e 0 (n r), where r is a natural number independent of n. The family of
languages decidable in polynomial time is denoted CP.

The class CP is defined in terms of the time complexity of an implementation of an al
gorithm on a standard Turing machine. We could just as easily have chosen a multitrack,
multitape, or two-way deterministic machine as the computational model on which algo
rithms are evaluated. The class CP of polynomially decidable languages or solvable decision
problems is invariant under the choice of the deterministic Turing machine model chosen for
the analysis. In Section 14.4 it was shown that a language accepted by a multi track machine
in time O (nr) is also accepted by a standard Turing machine in time 0 (n r). The transi
tion from multitape to standard machine also preserves polynomial solutions. A language
accepted in time O(nr) by a multitape machine is accepted in 0 (n 2r) time by a standard
machine.

The relationship between the complexity of running a program on a computer and its
simulation on a Turing machine was analyzed in Section 14.7. The number of transitions in
the Turing machine simulation increases only polynomially with the number of instructions
executed by the computer. A consequence of this is that any problem that we would consider
polynomially solvable on a standard computer is in CP. The robustness of the class CP under
changes of machines and architectures provides support for its selection as defining the
border between tractable and intractable problems.

The computation of a nondeterministic machine that solves a decision problem exam
ines one of the possible solutions to the problem. The ability to nondeterministically select
a single potential solution, rather than systematically examining all possible solutions, re
duces the complexity of the computation of the nondeterministic machine. In a manner
completely analogous to the definition of the class T, we can define the family of languages
accepted by nondeterministic Turing machines in polynomial time.

Definition 15.2.2

A language L is said to be accepted in nondeterministic polynomial tim e if there is a
nondeterministic Turing machine M that accepts L with /cM € 0 (n r), where r is a natural
number independent of n. The family of languages accepted in nondeterministic polynomial

time is denoted NT.

The family N T is a subset of the recursive languages; the polynomial bound on the
number of transitions ensures that all computations of M eventually terminate. Since every
deterministic machine is also a nondeterministic machine, T c NT. The status of the reverse
inclusion is the topic of the remainder of this chapter.

15.3 P r o b le m R e p r e s e n ta t io n a n d C om ple x i ty 469

15.3 Problem Representation and Complexity

The development of a Turing machine solution to a decision problem consists of two steps:
the representation of the problem instances as strings, followed by the design of the machine
that analyzes the resulting strings and solves the problem. In the study of decidability, the
sole concern was the discovery of an algorithm to solve a problem and the resources required
by a computation were not considered. Since the time complexity of a Turing machine
relates the length of the input to the number of transitions in the computations, the selection
of the representation may have important consequences for the amount of work required by
a computation.

In Chapter 11 we designed two simple Turing machines to solve the problem of deciding
whether a natural number is even. The input to machine Mi uses the unary representation
of the natural numbers and M 2 the binary representation:

470 C h a p te r 15 7, >S7, a n d C o o k ’s T h e o r e m

The time complexities of both of these machines is linear and the difference in representation
does not significantly affect the complexity. Unfortunately, this is not always the case. A
modification to the machine M! will have a considerable impact on the complexity.

A Turing machine T can be built to transform a natural number represented in binary
to its unary representation (Exercise 6). The sequential operation of T with M) produces

which is another solution to the even number problem. Let us examine the complexity of
this solution. The following table shows the increase in string length that results from the
conversion of a binary to a unary representation. The second column gives the maximal
binary number for the string length given in column one, and the final column has the
corresponding unary representation.

String
Length

Maximal Binary
Number

Decimal
Value

Unary
Representation

1 I 1 11= I2

2 11 3 1111 = I4

3 111 7 111111111 = Is

i r 2' - 1 F

The time complexity of M3 is determined by the complexities of T and M,. For an input
of length i, the string V requires the maximum number of transitions of M3. The time
complexity of M3 is

= tCf(n) + rcM|(2")

= /cT(n) + 2(2") + 2,

which is exponential even without adding the work required for the transformation. The
strategy employed by M] for answering the problem is unchanged; the increase in time
complexity occurs because of the decrease in the length of the input string using the binary
representation.

The following hypothetical situation further illustrates the importance o f the represen
tation in assessing the time complexity of a decision problem. Imagine a problem P whose
instances are represented by strings over an alphabet E that is solved by a Turing machine
M with time complexity tcM(n) = 2". We can construct another representation for P as fol
lows: a new symbol # is added to the alphabet and a problem instance that is represented by a
string w of length rt in the original representation is now represented by w#2"~n. A machine
M' that solves P can be trivially obtained from M. The computations of M' are identical to
those of M, except M' treats # in the same manner that M treats a blank. Because of the
increase in the length of the input string, = n.

15.3 P r o b le m R e p r e s e n ta t io n a n d C om plex i ty 4 7 1

The preceding example provides a method for manipulating the time complexity func
tion to artificially make inefficient algorithms appear efficient. If the length of the input
strings can be increased without changing the underlying computation, there will be a cor
responding decrease in the time complexity function.

The dependence of the time complexity on the size of the representation shows that
not every representation should be acceptable for complexity analysis. Using the smallest
representation would avoid the possibility of the length of the representation affecting the
complexity. Such a requirement, however, would be both too restrictive and unnecessary. We
introduce the notion of a polynomial time transformation of representations to informally
describe conditions for the suitability of a representation for complexity analysis.

A representation of a decision problem P with instances p0, p h p 2, . . . i s a mapping rep
from problem instances to strings over an alphabet £ , where rep(pj) is the representation
of p j. Let repi and rep2 be two representations of P over alphabets E [and Z 2, respectively.
Representation rep t is polynomial-time transformable to rep2 if there is a function r : L f —>•
££ such that

i) t (r e p \ (p j)) = r e p 2(p j) for all i;

ii) if u € E* is not the representation of a problem instance, then t (u) is not the represen
tation of a problem instance in ar)d

iii) t is computable in polynomial time by a standard Turing machine T.

If r e p | is transformable to r e p 2 in polynomial time, the length of the string t i r e p ^ p j))

cannot increase more than polynomially with respect to the length of r e p \ (p t)\ the number
of symbols that can be added to the representation is necessarily less than the number of
transitions of T.

Now, assume that P is solvable in polynomial time by a Turing machine M using
representation rep2. The serial combination of T and P

produces a polynomial-time solution using representation r e p Thus differences in the
length of representations that differ only polynomially do not affect the tractability of
the problem. Most reasonable representations of a problem differ only polynomially in
length from the smallest representation. An obvious exception to this is the use of the unary
representation of natural numbers, in which case the length of the input strings increases
exponentially from their length in binary representation. For this reason, in complexity
analysis the natural numbers will always be represented in binary. From this point on, the
notation i will be used to denote the binary representation of the number i.

Following the guidelines described, a decision problem that has a polynomial solution
using the unary representation of natural numbers but no polynomial solution using the
binary representation is not considered to be solvable in polynomial time. A problem with
this property is sometimes called pseudo-polynomial because the solution with the unary
representation appears to be a polynomial-time solution to someone not aware of the impact
of the representation in the analysis of decision problem complexity.

472 C h a p t e r 15 7, V7, a n d C o o k ’s T h e o r e m

15.4 Decision Problems and Complexity Classes

In this section we list several decision problems from 7 and NT. We will not describe details
of algorithms that solve these problems since solutions have previously been presented or
will be examined in detail in the next several chapters. The objective of this listing is to
provide examples of familiar problems in each class in an attempt to identify properties
shared by algorithms that solve the problems within a class.

Acceptance of Palindromes
Input: String u over alphabet £

Output: yes; u is a palindrome

no; otherwise.
Complexity: in O’—yes

Path Problem for Directed Graphs

Input: Graph G = (N, A), nodes v,, vj e N
Output: yes; if there is a path from v, to in G

no; otherwise.

Complexity: in T—yes

Derivability in Chomsky Normal Form Grammar
Input: Chomsky normal forhi grammar G, string w

Output: yes; if there is a derivation 5 => w

no; otherwise.

Complexity: in 7 —yes

Each of the preceding problems has polynomial-time solutions. The palindromes are
accepted by a standard Turing machine with time complexity O (n2) as demonstrated in
Section 14.3. Dijkstra’s algorithm can be used to discover if there is a path between two
nodes in a directed graph in time 0 (n 2), where n is the number of nodes in the graph. The
CYK algorithm in Section 4.6 determines membership in a language defined by a Chomsky
normal form grammar using 0 (/i3) steps to complete the dynamic programming table.

Satisfiability

Input: Boolean formula u in conjunctive normal form
Output: yes; there is a truth assignment that satisfies u

no; otherwise.

Complexity: in J*—unknown
in ~N7—yes

15.4 Decision Problems and Complexity Classes 473

Hamiltonian Circuit Problem
Input: Directed graph G = (N, A)
Output: yes; if there is a simple cycle that visits all vertices of G exactly once

no; otherwise.

Complexity: in 7 —unknown
in NCP—yes

Subset Sum Problem
Input: Set S, value function u : S ->■ N, number k
Output: yes; if there is a subset S' of S whose total value is k

no; otherwise.

Complexity: in T—unknown
in NT—yes

Each of these problems can easily be solved nondeterministically using a guess-and-
check strategy. The guess for the Satisfiability Problem is a single truth assignment. The
verification of whether a particular truth assignment satisfies a conjunctive normal form
formula can be accomplished in time polynomially related to the length of the formula. The
guess for the Hamiltonian Circuit Problem produces a sequence of n + 1 vertices and the
verification checks if the sequence defines a tour of the graph. Similarly, a guess for the
Subset-Sum Problem is a subset and the check simply adds the values of the items in
the subset.

For problems not known to be in T, deterministic solutions often do not provide insight
into the nature of the problem but rather have the flavor of an exhaustive search. This will be
demonstrated in the next section where we present both a deterministic and nondeterministic
solution to the Hamiltonian Circuit Problem.

We add one problem that is outside of the complexity classes that have been introduced.
The problem considers the determination of the language described by a regular expression
that can contain u2 as an abbreviation of uu. For example, (a 2)*b(a U b)* represents all
strings that have an even number of a ’s occurring before the first b.

Regular Expressions with Squaring
Input: Regular expression a over an alphabet Y.

Output: yes; if a / E*

no; otherwise.
Complexity: in 7 —no

in tMCP—no

After introducing space complexity, we will show that any solution to this problem
requires space and time that grows exponentially with the length of the regular expression.

474 C h a p te r 15 “P, N!P, a n d C o o k ’s T h e o r e m

15.5 The Hamiltonian Circuit Problem

The Hamiltonian Circuit Problem is used to demonstrate the difference in both the strategy
and the complexity of deterministic and nondeterministic solutions of decision problems.
We begin by presenting a more detailed description of the problem than given in the

preceding section.
Let G be a directed graph with n vertices numbered 1 to n. A Hamiltonian circuit is a

path i0, «'|i„ in G that satisfies

i) *'o = in
ii) ij ^ ij whenever i j and 0 < i, j < n.

That is, a Hamiltonian circuit is a path that visits every vertex exactly once and terminates at
its starting point. A Hamiltonian circuit is frequently called a tour. For example, the graph
G] has a tour V|, v2, v5, v4, v3, ti,, and G 2 does not have a tour.

The Hamiltonian Circuit Problem is to determine whether a directed graph has a tour. Since
each vertex is contained in a tour, we may assume that every tour begins and ends at vertex 1.

The deterministic solution in Example 15.5.1 performs an exhaustive search of se
quences of vertices to determine if one is a tour. The sequences are systematically generated

and tested until a tour is found or until all possibilities have been examined. The nondeter-
ministic solution is obtained by eliminating the generate portion of the generate-and-test
cycle. A nondeterministic guess produces a sequence of vertices, which is subsequently
checked using the same procedure employed in the deterministic computation.

Example 15.5.1

We will describe the actions of a four-tape deterministic Turing machine that solves the
Hamiltonian Circuit Problem. The first step is to design a representation for a directed graph
with vertices numbered 1 to n. The alphabet of the representation is {0, 1, #} and a vertex
of the graph is denoted by its binary representation. A graph with n vertices and m arcs is
represented by the input string

J ,# y ,## . . . ##Jm#ym###n,

where [jc,-, y,] are the arcs of the graph and x denotes the binary representation of the
number*.

15.5 T h e H a m i l to n ia n C ircu it P r o b le m 475

Throughout the computation, tape 1 maintains the representation of the arcs. The
computation generates and examines sequences of n + 1 vertices 1, i (, • - ■ . |, 1 to
determine if they form a tour. The sequences are generated in numeric order on tape 2.
The representation of the sequence 1, n, . . . , n, 1 is written on tape 4 and used to trigger
the halting condition. The techniques employed by the machine in Figure 8.1 can be used
to generate the sequences on tape 2.

A computation is a loop that

1. generates a sequence B~\Bi\Bi2B . . . Bi„_\B~\B on tape 2,

2. halts if tapes 2 and 4 are identical, and

3. examines the sequence 1, i |*n-i> * an£l halts if it is a tour of the graph.

If the computation halts in step 2, all sequences have been examined and the graph does not
contain a Hamiltonian circuit.

The analysis in step 3 begins with the machine configuration

Tape 4 B \(B n)n~ xB \B

Tape 3 B lB

Tape 2 B~\Bi\B . . . B in_\B~\B

Tape 1 ,## . . . ##3rm# y m B m t n B .

Sequentially, the vertices i]...........in_ i are examined. Vertex ij is added to the sequence on
tape 3 if

i) i j * i;
ii) ij ^ ik for 1 < k < j — 1; and

iii) there is an arc [«;_i, ij] represented on tape 1.

That is, ij is added if 1, i j...........ij is an acyclic path in the graph. If every vertex ij ,
j = i n — 1, in the sequence on tape 2 is added to tape 3 and there is an arc from
i„_ i to 1, the path on tape 2 is a tour and the computation accepts the input.

A computation examines and rejects each sequence 1, i'j, i2, ■ ■ ■ , j, 1 when the
input graph does not contain a tour. For a graph with n vertices, there are nn~ l such
sequences. Disregarding the computations involved in checking a sequence, the number of
sequences grows exponentially with the number of vertices of the graph. Since the binary
representation is used to encode the vertices, increasing the number of vertices to 2n (but
adding no arcs to the graph) increases the length of the input string by a single character.
Consequently, incrementing the length of the input causes an exponential increase in the
number of possible sequences that must be examined. □

We have shown that the Hamiltonian Circuit Problem is solvable in exponential time. It
does not follow that the problem cannot be solved in polynomial time. So far, no polynomial
algorithm has been discovered. This may be because no such solution exists or maybe

476 C h a p t e r 15 J 1, X T , a n d C o o k ’s T h e o r e m

we have just not been clever enough to find one! The likelihood and ramifications of the
discovery of a polynomial-time solution are the topics of the remainder of the chapter.

Nondeterministic computations utilizing a guess-and-check strategy are generally sim
pler than their deterministic counterparts. The simplicity reduces the number of transitions
required for a single computation. A nondeterministic machine employing this strategy is
constructed that solves the Hamiltonian Circuit Problem in polynomial time.

Example 15.5.2

A three-tape nondeterministic machine that solves the Hamiltonian Circuit Problem in
polynomial time is obtained by altering the deterministic machine from Example 15.5.1.
The fourth tape, which is used to terminate the computation when the graph does not contain
a tour, is not required in the nondeterministic machine. The computation

1. halts and rejects the input if the graph has fewer than n + 1 arcs,

2. nondeterministically generates a sequence 1, i' i, . . . , i„_ i, 1 on tape 2, and

3. uses tapes 1 and 3 to determine whether the sequence on tape 2 defines a tour.

To show that the nondeterministic machine is polynomial, we construct an upper
bound to the number of transitions in a computation. The maximum number of transitions
occurs when the sequence of vertices defines a tour. Otherwise, the computation terminates
examining fewer than n + 1 arcs on tape 2. Since the nodes are represented in binary, the
maximum amount of tape needed to encode any node is flog2(n)1 -I- 1.

The worst-case performance occurs for graphs with more than n + 1 arcs. The compu
tations for graphs with fewer arcs halts in step 1 and avoids the transitions required by the
check in step 3. Thus the length of the input for the worst-case performance o f the algorithm
depends upon the number of arcs in the graph. Let k be the number of arcs. We will show
that the rate of growth of the number of transitions is polynomial in k. Since the length of
the input cannot grow more slowly than k (each arc requires at least three tape positions),
it follows that the time complexity is polynomial.

Rejecting the input in step 1 requires the computation to compare the number of
arcs in the input with the number of nodes. This can be accomplished in time that grows
polynomially with the number of arcs.

If the computation does not halt in step 1, we know that the number of arcs is greater ‘
than the number of nodes. Generating the guess on tape 2 and repositioning the tape head
processes O (n log2(n)) transitions. Now assume that tape 3 contains the initial subsequence
B l#i)# . . . #/ y_ i of the sequence on tape 2. The remainder of the computation consists of
a loop that

1. moves tape heads 2 and 3 to the position of the first blank on tape 3 (O (n log2(n))
transitions),

2. checks if the encoded vertex on tape 2 is already on tape 3 (0(n log2 («)) transitions),

15.6 Po lynom ia l -T im e R e d u c t io n 477

3. checks if there is an arc from ij to is (0 (k log2(«)) transitions examining all arcs and
repositioning the tape head), and

4. writes i j on tape 3 and repositions the tape heads (0(n log2(w)) transitions).

A computation consists of the generation of the sequence on tape 2 followed by
examination of the sequence. The loop that checks the sequence is repeated for each vertex
1 1.......... i„_i on tape 2. The repetition of step 3 causes the number of transitions of the entire
computation to grow at the rate 0 (k 2 log2(fc)).

The rate of growth of the time complexity of the nondeterministic machine is deter
mined by the portion of the computation that searches for the presence of a particular arc
in the arc list. This differs from the deterministic machine in which the exhaustive search
of the entire set of sequences of n vertices dominates the rate of growth. □

15.6 Polynomial-Time Reduction

A reduction of a language L to a language Q transforms the question of membership in
L to that of membership in Q. Reduction played an important role in establishing the
decidability of languages and will play an equally important role in classifying problems by
their tractability. Let r be a reduction of L to Q computed by a machine R. If Q is accepted
by a machine M, then L is accepted by a machine that

i) runs R on an input string w e E*, and

ii) runs M on r(w).

The string r(w) is accepted by M if, and only if, w e L. In complexity analysis, the time
complexity of the composite solution to the question of membership in L includes both the
time required to transform the instances of L and the time required by the solution to Q.
Since we are equating efficiently solvable problems with polynomial time complexity, it
seems reasonable to place the same conditions on the time complexity of a reduction.

Definition 15.6.1

Let L and Q be languages over alphabets E j and E 2, respectively. We say that L is reducible
in polynomial time to Q if there is a polynomial-time computable function r : EJ —► E 2
such that w € L if, and only if, r(w) e Q.

Polynomial-time reductions are important because the bound on the number of transi
tions of the reduction limits the length of the string that is input to the subsequent machine.
This property guarantees that the combination of a polynomial-time reduction and polyno
mial algorithm produces another polynomial algorithm.

Theorem 15.6.2

Let L be reducible to Q in polynomial time and let Q e 7. Then L e 7.

478 C h a p te r IS J>, WtP, a n d C o o k ’s T h e o r e m

Proof. As before, we let R denote the machine that computes the reduction of L to Q and
M the machine that decides Q. L is accepted by a machine that sequentially runs R and M.
The time complexities tcR and tcj^ combine to produce an upper bound on the number of
transitions of a computation of the composite machine. The computation o f R with input
string w generates the string r(w) e which is the input to M. The function tcR can be
used to establish a bound on the length of r(w). If the input string u> to R has length n, then
the length of r(w) cannot exceed the maximum of n and tcR(n).

A computation of M processes at most tcj^(k) transitions, where k is the length of its
input string. The number of transitions of the composite machine is bounded by the sum of
the estimates of the two separate computations. If rcR e 0 (n J) and tcM e O («'), then

tcK(n) + tcM(tcR(n)) e 0 (n sl). ■

Example 15.6.1

The Turing machine R

z/BL

y / B L

z / B L

reduces the language L = [x 'y 'zk | i > 0, k > 0} to Q = {a'b' \ i >0}. The motivation for
this reduction was given in Section 11.3; here we are concerned with analyzing its time
complexity.

For strings of length 0 and 1, /cR(0) = 2 and /cR(l) = 4. The worst-case computation
for the remainder of the strings occurs when an x or y follows a z. In this case, the input
string is read in states q x, q2, and and erased in state q4. The computation is completed
by writing an a in the input position. The time complexity is tcR(n) = 2n + 4, for n > 1.

Consider the combination R with the machine M

15.7 9=>S7> 479

that accepts Q with time complexity tCf^(n) = (n2 + 3n + 4)/2 . The worst-case perfor
mance for the composite machine occurs for strings x n/2y nf2 if n is even and * <«+»/2 ^ («-1) /2

if n is odd. The complexity of the resulting solution to the membership problem of L is

tcR(n) + tcM(tcR(n)) = 2n + 2 + (n2 + 3n + 4)/2 ,

which is within the upper bound 0 (n 3) given in the proof of Theorem 15.6.2. □

Problem reduction gives us the basis for a comparison of the relative difficulty of two
problems. We begin by noting that we will consider two problems to be of equal difficulty if
the time complexity of their solutions differs only polynomially. It may be pointed out, and
correctly so, that (~)(n2) algorithms are preferred to 0 (« 3) algorithms and that considerable
time and ingenuity has been spent to reduce the complexity of many algorithms. That is
true (and a worthwhile endeavor), but our emphasis is on distinguishing between tractable
and intractable problems. In this regard, polynomial differences between the complexity of
algorithms are not significant.

If L is reducible to Q in polynomial time, then Q may be thought of as being at least
as hard of a problem as L. Finding a solution to Q automatically yields a solution to L; the
solution obtained by sequentially performing the reduction followed by the solution to Q.
Moreover, the complexity of the composition of the reduction and the solution to Q shows
that if Q is tractable, so is L. The relation between reduction and the relative hardness of
languages can be extended to classes of languages.

Definition 15.6.3

Let e be a class of languages. A language Q is hard for the class C if every language in C
is reducible to Q in polynomial time.

If Q is hard for a class e and is solvable in polynomial time, then every problem in e
is solvable in polynomial time and e c j > .

15.7 ? =

A language accepted in polynomial time by a deterministic multitrack or multitape machine
is in 7 . The construction of an equivalent standard Turing machine from one o f these alter
natives preserves polynomial-time complexity. A technique for constructing an equivalent
deterministic machine from the transitions of a nondeterministic machine was presented in
Section 8.7. Unfortunately, this construction does not preserve polynomial-time complexity
as shown in Theorem 15.1.2.

The two solutions to the Hamiltonian Circuit Problem dramatically illustrate the dif
ference between deterministic and nondeterministic computations. To obtain an answer,
the deterministic solution generates sequences of vertices in an attempt to discover a tour.
In the worst case, this process requires the examination of all possible sequences of ver
tices that may constitute a tour of the graph. The nondeterministic machine avoided this

480 C h a p t e r 15 7, W T, a n d C o o k 's T h e o r e m

by “guessing” a single sequence of vertices and determining if this sequence forms a tour.
The philosophic interpretation of the T = N T question is whether constructing a solution
to a problem is inherently more difficult than checking to see if a single possibility satisfies
the conditions of the problem. Because of the additional complexity of currently known
deterministic solutions over nondeterministic solutions across a wide range of important
problems, it is generally believed that 7 ^ NT. The 7 = N T question is, however, a pre
cisely formulated mathematical problem and will be resolved only when the equality of the
two classes or the proper inclusion of 7 in N T is proved.

One approach for determining whether T = NT is to examine the properties of each
language or decision problem on an individual basis. For example, considerable effort has
been expended attempting to develop a deterministic polynomial algorithm to solve the
Hamiltonian Circuit Problem. On the face of it, finding such a solution would resolve
the question for only one language. What is needed is a universal approach that resolves the
issue of deterministic polynomial solvability for all languages in NT at once. The notion of a
language being hard for the class N T allows us to transform the question of polynomial-time
solvability for all problems in N T to that of a single problem.

Definition 15.7.1

A language Q is called N P-hard if for every L € NT, L is reducible to Q in polynomial
time. An NP-hard language that is also in N T is called NP-complete.

One can consider an NP-complete language as a universal language in the class NT.
The discovery of a polynomial-time machine that accepts an NP-complete language can
be used to construct machines to accept every language in N T in deterministic polynomial
time. This, in turn, yields an affirmative answer to the T = N T question.

Theorem 15.7.2

If there is an NP-complete language that is also in T, then T = NT.

Proof. Assume that Q is an NP-complete language that is accepted in polynomial time by
a deterministic Turing machine. Let L be any language in NT. Since Q is NP-hard, there is
a polynomial time reduction of L to Q. Now, by Theorem 15.6.2, L is also in T. ■

The definition of NP-completeness utilized the terminology of recursive languages
and Turing computable functions because of the precision afforded by the concepts and
notation of Turing computability. The duality between recursive languages and solvable
decision problems permits us to speak of NP-hard and NP-complete decision problems. It
is worthwhile to reexamine these definitions in the context of decision problems.

Reducibility of languages using Turing computable functions is a formalization of the
notion of reduction of decision problems that was developed in Chapter 11. A decision
problem is NP-hard or NP-complete whenever the language accepted by a machine that
solves the problem is. Utilizing the universal reducibility of problems in N T to an NP-hard
problem P, we can obtain a solution to any N T problem by combining the reduction with
the machine that solves P.

15.8 T h e Satisfiability P r o b le m 481

Regardless of whether we approach NP-completeness from the perspective of lan
guages or decision problems, it is clear that this is an important class of problems. Unfor
tunately, we have not yet shown that such a universal problem exists. Although it requires
a substantial amount of work, this omission is remedied in the next section.

15.8 The Satisfiability Problem

The Satisfiability Problem, which is concerned with the truth values of formulas in prepo
sitional logic, was the first decision problem shown to be NP-complete. The truth value of
a formula is obtained from those of the elementary propositions occurring in the formula.
The objective of the Satisfiability Problem is to determine whether there is an assignment of
truth values to propositions that makes the formula true. Before demonstrating that the Sat
isfiability Problem is NP-complete, we will briefly review the fundamentals of propositional
logic.

A Boolean variable is a variable that takes on values 0 and 1. Boolean variables are
considered to be propositions, the elementary objects of propositional logic. The value of
the variable specifies the truth or falsity of the proposition. The proposition x is true when
the Boolean variable is assigned the value 1. The value 0 designates a false proposition. A
truth assignment is a function that assigns a value 0 or 1 to every Boolean variable.

The logical connectives A (and), v (or), and -« (not) are used to construct propositions
known as well-formed formulas from a set of Boolean variables. We will use the symbols
x , y, and z to denote Boolean variables an d u, v, and w to represent well-formed formulas.

Definition 15.S.1

Let V be a set of Boolean variables.

i) If x € V, then jc is a well-formed formula.

ii) If u, v are well-formed formulas, then (u), (-•«), (u a v) , and (u v v) are well-
formed formulas.

iii) An expression is a well-formed formula over V only if it can be obtained from the
Boolean variables in the set V by a finite number of applications of the operations in
(ii).

The expressions ((-■(* v >>)) a z), (((* a y) v z) v “ ■(*)), and (((- a) v y) a (x v
z)) are well-formed formulas over the Boolean variables x, y, and z. The number of
parentheses in a well-formed formula can be reduced by defining a precedence relation
on the logical operators. Negation is considered the most binding operation, followed
by conjunction and then disjunction. Additionally, the associativity of conjunction and
disjunction permits the parentheses in sequences of these operations to be omitted. Utilizing
these conventions, we can rewrite the preceding formulas as ->(* v y) a z, x a y v z v ->x,
and (->* v y) a (x v z).

482 C h a p t e r IS 3>, M T, a n d C o o k ’s T h e o r e m

The truth values of the variables are obtained directly from the truth assignment. The
standard interpretation of the logical operations can be used to extend truth values from
variables to the well-formed formulas. The truth values of formulas ->«, u a v , and u v v

are obtained from the values of u and v according to the rules given in the following tables.

u —•u u V U A l l u V u V V

0 1 0 0 0 0 0 0

1 0 0 1 0 0 1 1

1 0 0 1 0 1

1 1 1 1 1 1

A formula u is satisfied by a truth assignment if the values of the variables cause u to assume
the value 1. TWo well-formed formulas are equivalent if they are satisfied by the same truth
assignments.

A c la u s e is a well-formed formula that consists of a disjunction of variables or the
negation of variables. An unnegated variable is called a p o s i t iv e li te ra l and a negated
variable a n e g a t iv e l i te ra l . Using this terminology, a clause is a d is ju n c t io n o f li te ra ls .

The formulas x v ->y, -<x v z v ->y, and x v z v - a are clauses over the set of Boolean
variables {*, y, z }. A formula is in conjunctive normal form if it has the form

U] A « 2 A • • • A U „ ,

where each u, is a clause. A classical theofem of propositional logic asserts that every
well-formed formula can be transformed into an equivalent formula in conjunctive normal
form.

Stated precisely, the Satisfiability Problem is the problem of deciding if a formula in
conjunctive normal form is satisfied by some truth assignment. The formulas

u = (x v y) a (~>y V z)

u = (x V - y V - - z) A (x V z) A (—>jc V ->y)

built from the variables {x, y, z] are satisfied by the truth assignment

t

X 1

y 0

z 0

The first clause in u is satisfied by x and the second by —>y. The first clause o f v is satisfied
by all three variables, the second by x , and the third by -■>>. The formula

I f = - 'X A (x V y) A (->y V X)

15.8 T h e Satisfiability P r o b le m 483

is not satisfied by t. Moreover, it is not difficult to see that w is not satisfied by any truth
assignment.

A deterministic solution to the Satisfiability Problem can be obtained by checking
every truth assignment. The number of possible truth assignments is 2", where n is the
number of Boolean variables. An implementation of this strategy is essentially a mechanical
method of constructing the complete truth table for the formula. Clearly, the complexity of
this exhaustive approach is exponential. The work expended in checking a particular truth
assignment, however, grows polynomially with the number of variables and the length of
the formula. This observation provides the insight needed for designing a polynomial-time
nondeterministic machine that solves the Satisfiability Problem.

Theorem 15.8.2

The Satisfiability Problem is in NT.

Proof. We begin by developing a representation for the well-formed formulas over a set
of Boolean variables {xj, A variable is encoded by the binary representation of its
subscript. The encoding of a literal consists of the encoded variable followed by #7 if the
literal is positive and #0 if it is negative.

Literal Encoding

Xj i#I

-'Xi i#0

The number following the encoding of the variable specifies the Boolean value that satisfies
the literal.

A well-formed formula is encoded by concatenating the literals with the symbols
representing disjunction and conjunction. The conjunctive normal form formula

(x, v ->x2) a (->*, v x3)

is encoded as

7# 7 v 10#0 A]#0 v 77#7.

Finally, the input to the machine consists of the encoding of the variables in the formula
followed by ## and then the encoding of the formula itself. The input string representing
the preceding formula is

/ # 7 0 # / / # # 7 # / v 7 0 # o a 7 # o v 7 7 # 7

L variables -I I---------------- fo rm ula------------------ 1

The representation of an instance of the Satisfiability Problem is a string over the
alphabet £ = {0, 7, A , v , #}. The language LSAT consists of all strings over E that represent
satisfiable conjunctive normal form formulas.

484 C h a p t e r 15 3 \ N 3 \ a n d C o o k 's T h e o r e m

A two-tape nondeterministic machine M that solves the Satisfiability Problem is de
scribed below. M employs the guess-and-check strategy; the guess nondeterministically
generates a truth assignment. Configurations corresponding to the computation initiated
with the input string representing the formula (jct v - a j) a (- '* 1 v jr3) are given to illustrate
the actions of the machine. The initial configuration of the tape contains the representation
of the formula on tape 1 with tape 2 blank:

Tape 2 BB

Tape 1 B1#10#11M1#1 v 1 (MO a 1#0 v 1W1B

1. If the input does not have the anticipated form, the computation halts and rejects the
string.

2. The encoding of the first variable on tape 1 is copied onto tape 2. This is followed
by printing # and nondeterministically writing 0 or 1. If this is not the last variable,
is written and the procedure is repeated for the next variable. Nondeterministically
choosing a value for each variable defines a truth assignment t. The value assigned to
variable x t is denoted r(Xj). Using this notation, the tapes have the form

Tape 2 Bl#t(xi)##10#t(x2)## l]# t(x3)B

Tape 1 B1#10#11M1#1 v 10#0 a J#0 v 11MB

The tape head on tape 2 is repositioned at the leftmost position. The head on tape 1 is
moved past ## into a position to read the first variable of the formula.

The generation of the truth assignment is the only instance of nondeterminism of
M. The remainder of the computation checks whether the formula is satisfied by the
nondeterministically selected truth assignment.

3. Assume that the encoding of the variable is scanned on tape 1. The encoding of
is found on tape 2. The subsequent actions of the machine are determined by the result
of comparing the value /(*,) on tape 2 with the Boolean value following *, on tape 1.

4. If the values do not match, the current literal is not satisfied by the truth assignment.
If the symbol following the literal is a B or a , every literal in the current clause has
been examined and failed. When this occurs, the truth assignment does not satisfy the
formula and the computation halts in a nonaccepting state. If v is read, the tape heads
are positioned to examine the next literal in the clause (step 3).

5. If the values do match, the literal and current clause are satisfied by the truth assignment.
The head on tape 1 moves to the right to the next A or B. If a B is encountered, the
computation halts and accepts the input. Otherwise, the next clause is processed by
returning to step 3.

The matching procedure in step 3 determines the rate of growth of the time complexity
of the computations. In the worst case, the matching requires comparing the variable on
tape 1 with each of the variables on tape 2 to discover the match. This can be accomplished
in O (k • n2) time, where n is the number of variables and k the number of literals in the
input. ■

15.8 T h e Satisfiability P r o b le m 485

We now must show that Ljat *s NP-hard, that is, that every language in NO5 is
polynomial-time reducible to Ljat- At the outset, this may seem like an impossible task.
There are infinitely many languages in NT, and they appear to have little in common.
They are not even restricted to having the same alphabet. The lone universal feature of
the languages in NCP is that they are all accepted by a polynomial-time-bounded nonde
terministic Turing machine. Fortunately, this is enough. Rather than concentrating on the
languages, the proof will exploit the properties of the machines that accept the languages. In
this manner, a general procedure is developed that can be used to reduce any language in NT

t 0 L s a t -

Theorem 15.8.3 (Cook’s Theorem)

The Satisfiability Problem is NP-hard.

Proof. Let L be a language accepted by a nondeterministic Turing machine M whose
computations are bounded by a polynomial p. The reduction of L to the Satisfiability
Problem is achieved by transforming the computations of M with an input string u into a
conjunctive normal form formula / (w) so that u € L(M) if, and only if, / («) is satisfiable.
We then must show that the construction of / (u) requires time that grows only polynomially
with the length of u.

Without loss of generality, we assume that all computations of M halt in one of two
states. All accepting computations terminate in state qA and rejecting computations in qR.
Moreover, we assume that there are no transitions leaving these states. An arbitrary machine
can be transformed into an equivalent one satisfying these restrictions by adding transitions
from every accepting configuration to qA and from every rejecting configuration to qR. This
alteration adds a single transition to every computation of the original machine. The trans
formation from computation to well-formed formula assumes that all computations with
input of length n contain p(n) configurations. The terminating configuration is repeated, if
necessary, to ensure that the correct number of configurations are present.

The states, final state, and alphabets of M are denoted

.. Qm)

r = {B = a 0, a {, aJ+1......... a,)

£ = K + i , as+2, a,}

F = {<?„,).

The blank is assumed to be the tape symbol numbered 0. The input alphabet consists of the
elements of the tape alphabet numbered s + 1 to t. The lone accepting state is qm and the
rejecting state is qm-\. .

Let u € E* be a string of length n. Our goal is to define a formula / (u) that encodes the
computations of M with input u. The length of / (u) depends on p(n), the maximum number
of transitions in a computation of M with input of length n. The encoding is designed so
that there is a truth assignment satisfying / (u) if, and only if, u e L(M). The formulas are

built from three classes of variables; each class is introduced to represent a property of a

machine configuration.

486 Chapter 1S !P, JVP, and Cook’s Theorem

Variable Interpretation (when satisfied)

Q..* 0 < i < m M is in state qj at time k.

0 < k < p(n)

0 < j < p(n) M is scanning position j at time k.

0 < k < p(n)

S}.r,k

£XVIVI
©

Tape position j contains symbol

0 < r < t a, at time k.

0 < * < p(n)

The set of variables V is the union of the three sets defined in the table. A computation of
M defines a truth assignment on V. For example, if tape position 3 initially contains symbol
a,-, then S3 j 0 is true. Necessarily, S3 ; 0 must be false for all / ^ j . A truth assignment
obtained in this manner specifies the state, position of the tape head, and the symbols on the
tape for each time k in the range 0 < k < p(n). This is precisely the information contained
in the sequence of configurations produced by the computation.

An arbitrary assignment of truth values to the variables in V need not correspond to a
computation of M. Assigning 1 to both P0 0 and P 1>0 indicates that the tape head is at two
distinct positions at time 0. Similarly, a truth assignment might specify that the machine is
in several states at a given time or might designate the presence of multiple symbols in a
single position.

The formula / («) should impose restrictions on the variables to ensure that the in
terpretations of the variables are identical with those generated by the truth assignment
obtained from a computation. Eight sets of formulas are defined from the input string u and
the transitions of M. Seven of the eight families of formulas are given directly in clause
form. The clauses are accompanied by a brief description of their interpretation in terms of
Turing machine configurations and computations. The notation

k k

A V< V V‘
i = l i' = i

represents the conjunction and disjunction of the literals vlf y2, . . . , vk, respectively.
A truth assignment that satisfies the set of clauses defined in (i) in the following

table indicates that the machine is in a unique state at each time. Satisfying the first
disjunction guarantees that at least one of the variables Q, k holds. The pairwise negations
specify that no two states are satisfied at the same time. This is most easily seen using the
tautological equivalence of the disjunction -•A v B to the implication A=>B to transform
the clauses - Q a v - > Q * into implications. Writing -Q , *. v --Qr k as an implication
produces Qi k => - ■ Q w h i c h can be interpreted as asserting that if the machine is in state
qt at time k, then it is not also in qt' for any i ' ^ i.

Clause

15.8 The Satisfiability Problem 4 8 7

Conditions Interpretation (when satisfied)

i) State

\/Qi.k
i=0

”’Qi.k v “’Qi'.k

ii) Tape head position
pin)

Vpy.*
>=0

-Vj.k V -P ;

iii) Symbols on tape
/

V s ■/>•*
<•=0

~'Sj.r.k V - S ;>U

iv) Initial conditions for input

string u = ar|a,2 . . . ar/|

Qo.o

Po.o
So,o.o

Sl.r,.0

S2.I-2.0

0 < k < p(n)

0 < i < i’ < m
0 < k < p(n)

0 < k < p(n)

0 < j < j ' < p(n)
0 < k < p(n)

0 < 7 < P(«)
0 < k < p (n)

0 < j < p (n)

0 < r < r ’ < t

0 <k < p (n)

For each time it, M is in at
least one state.

M is in at most one state

(not two different states

at the same time).

For each time k, the tape head

is in at least one position.

At most one position.

For each time k and position j ,
position j contains at least

one symbol.

At most one symbol.

The computation begins reading

the leftmost blank.

The string u is in the input
position at time 0.

5p(n). 0,0

v) Accepting condition

Qm,p(n)

The remainder of the tape is

blank at time 0.

The halting state of the

computations is qm.

488 C h a p t e r 15 “P, K 3 5, a n d C o o k ’s T h e o r e m

Since the computation of M with input of length n cannot access the tape beyond
position p(n), a machine configuration is completely defined by the state, position of the
tape head, and the contents of the initial p{n) positions of the tape. A truth assignment
that satisfies the clauses in (i), (ii), and (iii) defines a machine configuration for each time
between 0 and p(n). The conjunction of the clauses (i) and (ii) indicates that the machine
is in a unique state scanning a single tape position at each time. The clauses in (iii) ensure
that the tape is well-defined; that is, the tape contains precisely one symbol in each position
that may be referenced during the computation.

A computation does not consist of a sequence of unrelated configurations but rather a
sequence in which each configuration differs from its predecessor by the result of a single
transition. We must add clauses whose satisfaction specifies the configuration at time 0 and
links consecutive configurations. Initially, the machine is in state q0, the tape head scanning
the leftmost position, the input on tape positions 1 to n, and the remaining tape squares blank.
The satisfaction of the p(n) + 2 clauses in (iv) ensures the correct machine configuration
at time 0.

Each subsequent configuration must be obtained from its successor by the application of
a transition. Assume that the machine is in state qh scanning symbol ar in position j at time
k. The final three sets of formulas are introduced to generate the permissible configurations
at time k + 1 based on the transitions of M and the variables that define the configuration
at time k.

The effect of a transition on the tape is to rewrite the position scanned by the tape head.
With the possible exception of position Pj k, every tape position at time k + 1 contains the
same symbol as at time k. Clauses must be added to the formula to ensure that the remainder
of the tape is unaffected by a transition.

Clause Conditions Interpretation (when satisfied)

vi)Tape consistency

" • S j .r .k V P J.k V S j.r ,k+ l 0 < j < p (n) Symbols not at the position of
0 < r < t the tape head are unchanged.
0 < k < p(n)

This clause is not satisfied if a change occurs to a tape position other than the one
scanned by the tape head. This can be seen by noting that

v P M V S j ^ t+l

is equivalent to

~^j.k ̂ ^j.r.k ̂ Sj,r,k+1)>

which clearly indicates that if the tape head is not at position j at time A:, then the symbol
at position j is the same at time k + 1 as it was at time k.

15.8 T h e Satis fiab il i ty P r o b le m 489

Now assume that for a given time k, the machine is in state qt scanning symbol ar in
position j . These features of a configuration are designated by the assignment of 1 to the
Boolean variables Q, Pj k, and Sy- r The clause

a) —'Q/,* v ~*Pj k v ~ 'S j r h v
is satisfied only when Q,<,*+i is true. In terms of the computation, this signifies that M has
entered state at time k 4- 1. Similarly, the symbol in position j at time k + 1 and the tape
head position are specified by the clauses

h) —’Qi,* V - 'Pj,/c v ~'Sj rj c V S j y and

c) -Qi.k V - ,Pj.k V - ’Sy,r,* V ?j+n(d).k+l<

where n(L) = —1 and n(R) = 1. The conjunction of clauses of (a), (b), and (c) is satisfied
only if the configuration at time k + 1 is obtained from the configuration at time k by the
application of the transition [qy, ar’, d] € S(qh ar).

The clausal representation of transitions is used to construct a formula whose satis
faction guarantees that the time k + 1 variables define a configuration obtained from the
configuration defined by the time k variables by the application of a transition of M. Except
for states qm and qm- \ , the restrictions on M ensure that at least one transition is defined
for every state, symbol pair.

The conjunctive normal form formula

(“ •Qi,k v - ,P v - ’Sy-r,* v Q ,'jt+ |) (new state)

A (-’Q/,k v - ’Pj,k v ~'Sj,r,k v Py+nwj.t+i) (new taPe head position)

M-'Qi.k v “ ’P;,* v "'Sj.r.k v $j,r’.k+1) (new symbol at position r)

is constructed for every

0 < k < p(n) (time)

0 < i < m — 1 (nonhalting state)

0 < j < p(n) (tape head position)

0 < r < t (tape symbol)

where [<?,-, ar-, d] e <5(qh ar) except when the position is 0 and the direction L is specified
by the transition. The exception occurs when the application of a transition would cause the
tape head to cross the left-hand boundary of the tape. In clausal form, this is represented
by having the succeeding configuration contain the rejecting state qm-\. This special case
is encoded by the formulas

(~'Qi.k v - ,P<u v - ’s o.r.k v Q m -u + i) (entering the rejecting state)

a (- ,Q/,* v “ ’Po,* v “ 'So.r.i v P0,*+i) (same tape head position)

A(~‘Q/.jt v “ 'Po.t v - ,So.r.k v ^o.r.k+i) (same symbol at position r)

for all transitions [<?,/, a rS L] e S(qh ar).

490 C h a p te r 15 3*, K P , a n d C o o k ’s T h e o r e m

Since M is nondeterministic, there may be several transitions that can be applied to a
given configuration. The result of the application of any of these alternatives is a permissible
succeeding configuration in a computation. Let trans(i, j , r, k) denote disjunction of the
conjunctive normal form formulas that represent the alternative transitions for a configura
tion at time k in state qiy tape head position / and tape symbol r. The formula trans{i, j , r , k)
is satisfied only if the values of the variables encoding the configuration at time k -I- 1 rep
resent a legitimate successor to the configuration encoded in the variables with time k.

Formula Interpretation (when satisfied)

vii) Generation of successor configuration Configuration k + 1 follows from configuration k
transit, j , r, k) by the application of a transition.

The formulas trans(i, j , r, k) do not specify the actions to be taken when the machine
is in state qm or qm_ t, the halting states of the machine. In this case the subsequent
configuration is identical to its predecessor.

Clause Interpretation (when satisfied)

viii) Halted computation

- ’Qi.t v ^ P j * v v Q, *+ l (same state)

“ ’Q i.t v “ ’P /.* v ~'Sj,r,k v P j./t+ i (same tape head position)
- ’Qi.* v - ’P j.k v “ ’•Sy.r,* v Sj,r,k+ i (same symbol at position r)

These clauses are built for all j , r, k in the appropriate ranges and i = qm_ j, qm.
Let / '(«) be the conjunction of the formulas constructed in (i) through (viii). When

f '{u) is satisfied by a truth assignment on V, the variables define the configurations of a
computation of M that accepts the input string u. The clauses in condition (iv) specify that
the configuration at time 0 is the initial configuration of a computation of M with input u.
Each subsequent configuration is obtained from its successor by the result of the application
of a transition. The string u is accepted by M since the satisfaction of condition (v) indicates
that the final configuration contains the accepting state qm.

A conjunctive normal form formula f { u) can be obtained from f ' (u) by converting
each formula trans(i, j , r, k) into conjunctive normal form using the technique presented
in Lemma 15.8.4 that follows. All that remains is to show that the transformation of a string
u € E* to / (u) can be done in polynomial time.

The transformation of u to f (u) consists of the construction of the clauses and the
conversion of trans to conjunctive normal form. The number of clauses is a function of

i) the number of states m and the number of tape symbols t,

ii) the length n of the input string u, and

iii) the bound p(n) on the length of the computation of M.

15.8 T h e Satisfiability P r o b le m 491

The values m and t obtained from the Turing machine M are independent of the input string.
From the range of the subscripts, we see that the number of clauses is polynomial in pin).
The development of f (u) is completed with the transformation into conjunctive normal
form which, by Lemma 15.8.4, is polynomial in the number of clauses in the formulas
trans(i, j , r, k).

We have shown that the conjunctive normal form formula can be constructed in a
number of steps that grows polynomially with the length of the input string. What is really
needed is the representation of the formula that serves as input to a Turing machine that
solves the Satisfiability Problem. Any reasonable encoding, including the one developed in
Theorem 15.8.2, requires only polynomial time to convert the high-level representation to
the machine representation. ■

The one step missing in the preceding proof is the conversion of the formulas
trans(i, j , r, k) to conjunctive normal form. The following lemma will show that any dis
junction of conjunctive normal form formulas can be converted to conjunctive normal form
in polynomial time.

Lemma 15.8.4

Let u — W \V w2 v • • • v wn be the disjunction of conjunctive normal form formulas
wj, w2.........w„ over the set of Boolean variables V. Also let V' = V U {jy,, y2, . . . , ;yn_|}
where the variables y, are not in V. The formula u can be transformed into a formula u' over
V' such that

i) u' is in conjunctive normal form;

ii) u' is satisfiable over V' if, and only if, u is satisfiable over V; and

iii) the transformation can be accomplished in O (m • n2), where m is the number of clauses
in the w ’s.

Proof. The transformation of the disjunction of two conjunctive normal form formulas is
presented. This technique may be repeated n — 1 times to transform the disjunction of n
formulas. Let u = v w2 be the disjunction of two conjunctive normal form formulas.
Then and w2 can be written

492 C h a p t e r 15 7, KP, a n d C o o k ’s T h e o r e m

where r, is the number of clauses in w,, Sj is the number of literals in the y th clause of u>j,
and tj is the number of literals in the y th clause of w2. Define

r\ / si \ n / 'i

«'=A (>v V vj *)A AI v V
i=\ \ k=i / j=i \ *=i

The formula u' is obtained by disjoining y to each clause in u)! and ->y to each clause in

W2-
We now show tha t« ' is satisfiable whenever u is. Assume that Wj is satisfied by a truth

assignment t over V. Then the truth assignment t'

, \ t (x) if at e V
i 0 if jc = y

satisfies u'. When w2 is satisfied by f, the truth assignment t' may be obtained by extending
t by setting t '(y) = 1.

Conversely, assume that u' is satisfied by the truth assignment Then the restriction
of t' to V satisfies u. If t '(y) = 0, then w t must be true. On the other hand, if t '(y) = 1, then
w2 is true.

The transformation of

u = w t v w 2 v . . . v wn

requires n — 1 iterations of the preceding process. The repetition adds n — 1 literals to each
clause in u>i and w2, ft — 2 literals to each clause in u>3, n — 3 literals to each clause in w4,
and so on. The transformation requires fewer than m ■ n 2 steps, where m is the total number
of clauses in the formulas W], w2...........w„. ■

15.9 Complexity Class Relations

We end this chapter with two diagrams that illustrate the possible relationships between the
classes that have been introduced. The class consisting of all NP-complete problems, which
the Satisfiability Problem ensures us is nonempty, is denoted N7C.

E xerc ises 493

If CP 5̂ NO5, then T and NTC are nonempty, disjoint subsets of NT. This scenario is believed
to be true by most mathematicians and computer scientists. In the unlikely case that T does
equal NT, the sets collapse to a single class. Exercise 17 asks you to identify the set of
NP-complete problems in this eventuality.

Exercises

1. Let M be the Turing machine

a) Trace all computations of M with input k, a, and aa.

b) Describe the computation of M with input a" that requires the maximum number
of transitions.

c) Give the function /c^-

2. Let M be the Turing machine

where x represents either a or b.

a) Trace the computations of M with input bbabb.

b) Give a set-theoretic definition of the language of M.

c) What strings of length n require the maximum number of transitions? Why?

d) Give the function tcM.

3. Show that the class T is closed under union, concatenation, and complementation.

4. Show that the class N T is closed under union, concatenation, and the Kleene star
operation.

*5. Let L = {/f(M)iy | M accepts w using at most 2lenglh<w) transitions}.

a) Prove that L is not in T. Hint: Use the closure of 7 under complementation to
conclude that if L is in 7 , then there is a Turing machine M' that accepts all
representations /?(M) of machines M that do not accept their own representations
in transitions. Then use self-reference to obtain a contradiction.

b) Prove that L is not in NT.

a/a R a /aL a/a R

M: X 5 >
B/BR a/aL a!a R

Q

[x/x R, B /x R] [x/xR, B/BS] [x/x L x/x L]

M :X§>
[B/B R, B /B R] [a/#R, B /BS] [B/B L, B /B L] [m s , B/BS]

494 C h a p te r 15 7, 749, a n d C o o k ’s T h e o r e m

6. Design a two-tape Turing machine that transforms unary numbers to binary numbers.
Determine the time complexity of your machine.

7. Design a two-tape Turing machine that transforms binary numbers to unary numbers.
Explain why this transformation cannot be accomplished in polynomial time.

8. Let P be a decision problem whose input consists of a single natural number and let M
be a Turing machine that solves P using the binary representation in polynomial time.
Design a machine, using M, that solves P using the base 3 representation of natural
numbers. Show that this solution is also polynomial.

* 9. Let M be a nondeterministic machine and p a polynomial. Assume that every string of
length n in L(M) is accepted by at least one computation of p(n) or fewer transitions.
Note this makes no claim about the length of nonaccepting computations or other
accepting computations. Prove that L(M) is in NT.

10. Construct a deterministic Turing machine that reduces the language L to Q in poly
nomial time. Using the big oh notation, give the time complexity of the machine that
computes the reduction.

a) L = {a W 11 > 0, j > 0} Q = {a'c' | / > 0}

b) L = [a^bby \ i > 0} Q = {a'ZV 11 > 0}

c) L = {a'fcV 11 > 0} Q = { cV | i > 0}

11. The machine R performs a polynomial-time reduction of the language L =aa(a U b)*
to the language Q=ccc(e U d)*.

a /cR
b/dR

b /dR d /d L

a) Trace the computation of R with the input strings aabb and abbb.

b) What strings of length n will cause R to require the maximum number o f transitions?
Why?

c) Give the time complexity function tcR(n).

E xerc ises 495

12. The machine R

a /c L
b /d L

computes a function from {a, b* to (c, d)*.

a) Use the I- notation to trace the computation o f R with input string abba.

b) W hat string of length n will cause R to use the greatest number o f transitions? Why?

c) Give /c R(n). Give both a formula and an explanation o f why your form ula is correct.

d) Does the machine R reduce the language L =abb(a U b)* to the language Q =
(c U d)cdd*l If yes, prove that the function computed by R is a reduction. If no,

give a string that demonstrates that the mapping is not a reduction.

13. For each o f the formulas that follow, give a truth assignment that satisfies the formula.

a) (x V y V -•z) A (~,jc V y) A (->* V ->y V ->z)

b) (-rx V y V -•z) A (x V ->y) A (y V ->z) A (->* V -<y V z)

c) (.* V y) A (->x V ->y V z) A (x V -iz) A (->y V ->z)

14. Show that the formula (x v ->y) A (->jc v z) a (y v ->z) a (-vx v ->y) a (y v z) is

not satisfiable.

15. Construct four clauses over {x, y , z} such that the conjunction o f any three is satisfiable
but the conjunction of all four is unsatisfiable.

16. Prove that the formula u' is satisfiable if, and only if, u is satisfiable.

a) u = v, u ' = (v V y V z) A (v V ->y V z) A (v V y V -<z) A (v V ->y V ->z)

b) u = v V w, u ' = (v V ui V y) A (v V w V ->y)

17. Assume that 7 — X T.

a) Let L be a language in N T with L £ 0 and L ^ 0. Prove that L is NP-complete.

b) Why is NTC a proper subset o f N T ?

496 C h a p te r 15 7, X P , a n d C o o k 's T h e o r e m

Bibliographic Notes

The family 7 was introduced in Cobham [1964]. XT was first studied by Edmonds [1965].
The foundations of the theory of NP-completeness were presented in Cook [1971]. This
work includes the proof that the Satisfiability Problem is NP-complete. The classic book
by Garey and Johnson [1979] provides an excellent introduction to complexity analysis
and NP-completeness. In addition, it serves as an encyclopedia of problems known to be
NP-complete at the end of the 1970s.

CHAPTER 1 6

NP-Complete Problems

The Satisfiability Problem was shown to be NP-complete by associating Turing machine
computations with conjunctive normal form formulas. If every proof of NP-completeness
required the ingenuity of this transformation, the number of problems known to be NP-
complete would not be very large. Fortunately, problem reduction provides an alternative
and frequently simpler method for demonstrating that problems are NP-complete. Reducing
an NP-complete problem to another problem in N T proves that the latter is also NP-
complete. Using this technique we will obtain NP-completeness results for problems from
a number of disciplines. We also extend the notion of NP-completeness to optimization
problems.

Once a problem is shown to be NP-complete, attempting to discover a polynomial
time solution will most likely be unsuccessful. Instead of looking for efficient algorithms
to solve the problem, it may be more profitable to adopt a different strategy when an NP-
complete problem is encountered. One alternative is to design algorithms that have a good
average time complexity, but have some cases that exhibit exponential performance. In
optimization problems, accepting a near optimal solution may reduce the time complexity of
the problem. In the final section we consider alternatives to be considered when confronting
an NP-complete problem.

16.1 Reduction and NP-Complete Problems

Two conditions are required for a language to be NP-complete: the problem must be in
NT and it must be NP-hard. The most common way of satisfying the former condition is
simply to design a nondeterministic algorithm that solves the problem in polynomial time.

497

498 C h a p t e r 16 N P -C o m p le te P r o b le m s

To prove that a language L is NP-hard, it is necessary to show that every language in NT
is reducible to L in polynomial time. Rather than directly producing reductions to L, a
known NP-complete problem can be used as an intermediate step. Theorem 16.1.1 shows
that employing an intermediate step decreases the number of reductions needed to prove
that a language is NP-hard from infinitely many to one.

Theorem 16.1.1

Let Q be an NP-complete language. If Q is reducible to L in polynomial time, then L is
NP-hard.

Proof. Let r be the computable function that reduces Q to L in polynomial time and let
Q i be any language in N T . Since Q is NP-complete, there is a computable function g, that
reduces Q, to Q. The composite function r o g, is a reduction of Q, to L. A polynomial
time-bound to the reduction can be obtained from the bounds on r and g; . ■

The composition used to establish that a language is NP-hard by reduction can be
represented pictorially as a two-step process:

Q, Q2 • • • Q, • • NP languages

The first level shows the polynomial-time reducibility of any language Q, in N T to Q via
a function g,. Following the arrows from Q,• to L illustrates the reducibility of any NT
language to L. If the time complexity of the machines that compute g,- and r are 0 (n s) and
O(n'), respectively, the time complexity of the composite function r o g,- is 0 (n st) and the
reduction of Q, to L is accomplished in polynomial time. In the next three sections we will
use Theorem 16.1.1 to show that several additional problems are NP-complete.

The 3-Satisfiability Problem is a subproblem of the Satisfiability Problem that is NP-
complete in its own right. A formula is said to be in 3-conjunctive normal form if it is
in conjunctive normal form and each clause contains precisely three literals. The objective
of the 3-Satisfiability Problem is to determine whether a 3-conjunctive normal form formula
is satisfiable.

NP-complete language

r

L

16.2 The 3-Satisfiability Problem

16.2 T h e 3-Satisfiabil ity P r o b le m 499

Using the description of reductions introduced in Chapter 11, the condition needed to
establish that the 3-Satisfiability Problem is NT-hard can be written

Reduction Input Condition

Satisfiability conjunctive normal form formula u u is satisfiable
to 4 if, and only if,

3-Satisfiability 3-conjunctive normal form formula u' u' is satisfiable.

That is, the reduction must transform an arbitrary conjunctive normal form formula into a
3-conjunctive normal form formula that satisfies the prescribed condition. In addition, the
construction of u' must be accomplished in time that is polynomial in the length of u.

Theorem 16.2.1

The 3-Satisfiability Problem is NP-complete.

Proof. Clearly, the 3-Satisfiability Problem is in NT. The machine that solves the Satisfia
bility Problem for arbitrary conjunctive normal form formulas also solves it for the subclass
of 3-conjunctive normal form formulas.

We must show that every conjunctive normal form formula u = v ■ ■ ■ v wm can be
transformed to a 3-conjunctive normal form formula u' such that u is satisfiable if, and only
if, u' is satisfiable. The construction of u is accomplished by independently transforming
each clause w, in u into a 3-conjunctive normal form formula w'. The formula u' is the
conjunction of the resulting 3-conjunctive normal form formulas. The transformation must
be designed to ensure that w' is satisfiable if, and only if, there is a truth assignment that
satisfies the original clause w,-. The variables added in the transformation of a clause are
assumed not to occur elsewhere in

If w, has three literals, then no transformation is required and w' = u j , . Let w be a
clause of u that does not have three literals. The transformation of w into a 3-conjunctive
normal form formula is based on the number of literals in w.

Length 1: w = vt

w ' = (i>i V y V z) A (i> | V ->y v z) A (i>i V y V -> z) A (u L V ->y V -> z)

Length 2: w = t>] v u2

w' = (U] V l»2 V y) A (l>! V l>2 V - i y)

Length n >3: w = vt v v2 V • ■ ■ v v„

w ’ = (l) , V v2 v > ,) A (V 3 V —ij! , V y2) A • • • A (Vj V ->yj_2 V y ; _ ,) A • • •

A (vn_2 V - y „ _ 4 V yn _ 3) A V I) , V - % _ 3)

Establishing the relationship between the satisfiability of clauses of length one and
two and their transformations is left as an exercise. Let V be the variables in the clause

500 C h a p te r 16 N P -C o m p le te P r o b le m s

u j = D | v d 2 v ■ ■ ■ v and let t be a truth assignment that satisfies w. Since w is satisfied
by r, there is at least one literal satisfied by t. Let vj be the first such literal. Then the truth
assignment

/'(x) =
t (x) i f x e V

1 i fx = y i......... y j - 2

0 if x = y„_3

satisfies w'. The first j — 2 clauses are satisfied by literals y j - 2- The final n — j + 1
clauses are satisfied by - ,y /_ i......... - ,y#i-3 - The remaining clause, Vj v ->),y_ 2 v Vj-\< *s
satisfied by Vj.

Conversely, let t ’ be a truth assignment that satisfies w'. The truth assignment t obtained
by restricting / ' to V satisfies w. The proof is by contradiction. Assume that t does not
satisfy w. Then no literal Vj, 1 < j < n, is satisfied by t. Since the first clause of w' has
the value 1, it follows that t'(yt) = 1. Now, t '(y2) = 1 since the second clause also has the
value 1. Employing the same reasoning, we conclude that t'(yk) = 1 for all 1 < k < n — 3.
This implies that the final clause of w' has value 0, a contradiction since r' was assumed to
satisfy u'.

The transformation of each clause into a 3-conjunctive normal form formula is clearly
polynomial in the number of literals in the clause. The work required for the construction
of the 3-conjunctive normal form formula is the sum of the work of the transformation of
the individual clauses. Thus, the construction is polynomial in the number of clauses in the
original form. ■

It is not the case that a subproblem of an NP-complete problem is automatically
NP-complete. The 2-Satisfiability Problem, determining whether conjunctive normal form
formulas with clauses containing exactly two literals, has a deterministic polynomial-time

solution (Exercise 1). Thus 2-satisfiability is not NP-complete unless 7 = NO3.

16.3 Reductions from 3-Satisfiability

The two problems that we have shown to be NP-complete are both concerned with the
satisfaction of logical formulas. In this section we expand the scope of our set of NP-
complete problems to include questions about covering sets, paths in graphs, and the
accumulation of values. The structure of 3-conjunctive normal form formulas makes them
well suited for designing reductions to problems in other domains. In the remainder of
this chapter, reductions will be described using high-level representations o f the problem
instances.

The first problem that we consider is the Vertex Cover Problem. A vertex cover of an
undirected graph G = (N, A) is a subset VC of N such that for every arc [u, u] in A at least
one of m or v is in the set VC. The Vertex Cover Problem can be stated as follows: For
an undirected graph G and an integer k, is there a vertex cover of G containing k or fewer

16.3 R e d u c t io n s f r o m 3-Satisfiab il ity 501

vertices? Example 16.3.1 shows that the size of a vertex cover is not necessarily related to

the number of nodes or arcs in the graph.

Example 16.3.1

The arcs of the graph Gj are covered by the single vertex vj. The smallest vertex cover of
G2 requires n /2 vertices, one for each arc in the graph.

Theorem 16.3.1

The Vertex Cover Problem is NP-complete.

Proof. The Vertex Cover Problem can easily be seen to be in 'N'P. The nondeterministic
solution strategy consists of choosing a set of k vertices and determining whether they cover
the arcs of the graph. We show that the Vertex Cover Problem is NP-hard by reducing the
3-Satisfiability Problem to it:

Reduction Input Condition

3-Satisfiability 3-conjunctive normal form formula u u is satisfiable
to I if, and only if.

Vertex Cover Problem undirected graph G = (N, A), integer k G has a vertex cover of size k

That is, for any 3-conjunctive normal form formula u, we must construct a graph G so that
G has a vertex cover of some predetermined size k if, and only if, u is satisfiable.

be a 3-conjunctive normal form formula where each Ujj, l < i < m and 1 < j < 3, is a literal
over the set V = { jc j, . . . , jc „ } of Boolean variables. The symbol U j j is used to indicate the
position of a literal in a 3-conjunctive normal form formula; the first subscript indicates
the clause and the second subscript the position of the literal in the clause. The reduction
consists of constructing a graph G from the 3-conjunctive normal form formula in which the
satisfiability of u is equivalent to the existence of a cover of G containing n + 2m vertices.

□

Let

U = (hu V u u2 v U, 3) a • • • A («v, V Mm 2 V Um,3)

502 C h a p te r 16 N P -C o m p le te P r o b le m s

To transform the question of the existence of a satisfying truth assignment into a
question of a vertex cover, we must represent truth assignments and formulas as graphs.
Three sets of arcs are introduced to build a graph from a 3-conjunctive normal form formula:
the set T of truth setting arcs model truth assignments, the clausal graphs Ck represent the
clauses of u, and the linking arcs L* link the clause graphs with truth values.

The vertices of G consist of the sets

i) {*,, | 1 < « < «}, and

>i) Wij I 1 < < £ m, 1 < j < 3}.

The set of arcs of G is the union of the truth setting arcs, clausal arcs, and linking arcs:

T = { [*„-* ,] I l < i <«}

c* = {[«<u> “k . i l K . 2 . “ *,iB for l < k < m

L* = [uk 2, vk 2], [m*-3, t>*,3]} for 1 < k < m,

where vkj is the literal from {jc; , ->jc,• | 1 < i < n } that occurs in position uk j o f the formula.
We begin by considering the form of the graphs defined by T and Ck and the size of sets
needed to cover them.

An arc in T connects a positive literal jc(to its corresponding negative literal

A vertex cover must include one vertex from each pair jc, , ->jc,- . At least n vertices are needed
to cover the arcs in T. A vertex cover of T with n vertices selects exactly one of x t or —>jc,- .

This, in turn, can be considered to define a truth assignment on V.
Each clause Ujtl v u j 2 v uj 3 generates a subgraph C; of the form

The subgraph Cj connects the literals u;1 , uj 2, and 3. A set of vertices that covers Cy
must contain at least two vertices. Thus a cover of the arcs in the set T and the Ck’s must
contain at least n + 2m vertices.

The arcs in L; link the symbols u, j that indicate the positions of the literals to the
corresponding literal xk or ~'xk in the formula. Figure 16.1 gives the graph obtained from
the formula (* 1 v ->jc2 v jc3) A (- > * 1 v jc2 v ->jr4). It is easy to see that the construction
of the graph is polynomially dependent upon the number of variables and clauses in the
formula. All that remains is to show that the formula u is satisfiable if, and only if, the
associated graph has a cover of size n + 2m.

16.3 R e d u c t io n s f ro m 3-Satisfiab il ity 503

FIGURE 16.1 Graph representing reduction o f (* | v -> *2 v x3) a (—>JC| v x 2 v ~'Xi).

First, we show that a cover VC of size n + 2m defines a truth assignment on V that
satisfies the formula u. By the previous remarks, we know that every cover must contain
at least n + 2m vertices. Consequently, exactly one vertex from each arc —•jc,] and two
vertices from each subgraph C y are in VC. A truth assignment is obtained from VC by

That is, the literal from the pair x t or - ’Xi in the vertex cover is assigned truth value 1 by /.
To see that t satisfies each clause, consider the covering of the subgraph C y . Only two

of the vertices u j t, u j 2, and 3 can be in V C . Assume uj k is not in V C . Then the arc
[My *, tiy *] must be covered by V jk in V C . This implies that t (u j k) = 1 and the clause is
satisfied.

Now assume that / : V —> {0, 1} is a truth assignment that satisfies u. A vertex cover
VC of the associated graph can be constructed from the truth assignment. VC contains the
vertex x, if /(*,•) = 1 and - a , if t(x,) = 0. Let u j k be a literal in clause j that is satisfied
by t. The arc [« y ,* , Vj k] is covered by Vj k. Adding the two other vertices o f C y completes
the cover. Clearly, card{VC) = n + 2m, as desired. ■

We now return to our old friend, the Hamiltonian Circuit Problem. This problem
has already been shown to be solvable in exponential time by a deterministic machine
(Example 15.5.1) and in polynomial time by a nondeterministic machine (Example 15.5.2).
A reduction of the form

t
0 otherwise.
1 if Xj € VC

Reduction Input Condition

3-Satisfiability

to

Hamiltonian Circuit Problem

3-conjunctive normal form formula u

4-
directed graph G = (N, A)

u is satisfiable

if, and only if,

G has a tour

504 C h a p te r 16 N P -C o m p le te P r o b le m s

establishes that the Hamiltonian Circuit Problem is NP-complete. Since the satisfiability
of a formula is determined by examining possible truth assignments, the reduction must
represent truth assignments as graphs. The proof begins by defining subgraphs in which
tours correspond to truth assignments.

Theorem 16.3.2

The Hamiltonian Circuit Problem is NP-complete.

Proof. The reduction of the 3-Satisfiability Problem to the Hamiltonian Circuit Problem
is accomplished by constructing a directed graph G(«) from a 3-conjunctive normal form
formula u. The construction is designed so that the presence of a Hamiltonian circuit in
G(u) is equivalent to the satisfiability of u. Let u = Wj A w2 A • • • A wm be a 3-conjunctive
normal form formula and V = {*[, x2......... x„) be the set of variables occurring in u. The
j th clause of u is denoted uj { v u j 2 v Uj 3 , where each Uj k is a literal over V.

For each variable xh let r, be the larger of the number of occurrences of in u or
the number of occurrences of -a,- in u. A graph V,- is constructed for each variable jc, as
illustrated in Figure 16.2(a). Node et is considered the entrance to V, and o, the exit. There
are precisely two paths through V, that begin with e,, end with o,, and visit each vertex
once. These are depicted in Figure 16.2(b) and (c). The arc from e, to ti 0 or / l 0 determines
the remainder of the path through V, .

The subgraphs V, are joined to construct the graph G' depicted in Figure 16.2(d). The
two paths through each V, combine to generate 2" Hamiltonian circuits through the graph G'.
A Hamiltonian circuit in G' represents a truth assignment on V. The value o f x, is specified
by the arc from e ,. An arc from e, to f, 0 designates a truth assignment of 1 for x t . Otherwise,
X j is assigned 0. The graph constructed from the formula

(* 1 V I 2 V ->*3) A (- t f - , V X 2 V ->*4) A (* ! V -ix2 V x4) A (- ■ * , V x 3 V * 4)

is given in Figure 16.3. The tour highlighted by bold arcs in the graph defines the truth
assignment t(xj) = 1, t (x 2) = 0, t (x 3) = 0, and / (jc4) = 1. The Hamiltonian circuits of G'
encode the possible truth assignments of V. We now augment G' with subgraphs that encode
the clauses of the 3-conjunctive form formula.

For each clause Wj, we construct a subgraph Cj that has the form shown i n Figure 16.4.
The graph G(u) is constructed by connecting these subgraphs to G ' as follows:

i) If Xj is a literal in Wj, then pick some f ik that has not previously been connected to a
graph C. Add an arc from f ik to a vertex inJm of Cj that has not already been connected
to G'. Then add an arc from outj m to ^ t+1.

ii) If ->Xj is a literal in Wj, then pick some ti k that has not previously been connected to a
graph C. Add an arc from to a vertex in j m of Cj that has not already been connected
to G'. Then add an arc from outj m to /;.*+1.

The graph in Figure 16.5 is obtained by connecting the subgraph representing the clause
(*! v x 2 v - a 3) to the graph G' from Figure 16.3.

16.3 R e d u c t io n s f ro m 3-Satisfiab il ity 505

r

(a) (b) (c)

FICURE 16.2 Subgraph for each variable x,.

(d)

A truth assignment is represented by a Hamiltonian circuit in the graph G'. If x, is a
positive literal in the clause wj, then there is an arc from some vertex / ,* to one of the in
vertices of Cj. Similarly, if ~'Xi is in Wj, then there is an arc from some vertex ti k to one of
the in vertices of Cj. These arcs are used to extend the Hamiltonian circuit in G' to a tour
of G(«) when the associated truth assignment satisfies u.

506 C h a p te r 16 N P -C o m p le te P r o b le m s

r
*i.o h ,

' H '
' i.i "/i.

' H '
'1.2 " / l.

°l
♦

'2.0 / 2.I

" S '
'2.1 /2 .

'2 .2 /a .:

O,
f

' 3.0 /j.O

'3.1 / 3.I

♦

'4 .0 /4 .0

’H ''4.1 / 4.1

'4 .2' •/«

° 4

V_____)

FIGURE 16.3 Truth assignm ent by Hamiltonian circuit.

16.3 R e d u c t io n s f r o m 3-Satisfiab il i ty 507

FIGURE 16.4 Subgraph representing clause wj.

Let t be a truth assignment on V that satisfies u. We will construct a Hamiltonian circuit
through G(u) based on the values of t . We begin with the tour through the V, ’s that represents
t. We now detour the path through the subgraphs that encode the clauses. An arc f i k \
in the path V,- indicates that the value of the truth assignment t(Xj) = 1. If the path reaches
a node f ik by an arc [ti k, f i k], f i k is not already connected to a clause graph, and f i k
contains an arc to a subgraph C ; that is not already in the path, then connect C y to the tour
in G' as follows:

i) Detour to C y via the arc from f i k to in jm in C y .

ii) Visit each vertex of C y once.

iii) Return to V,- via the arc from outj m to f,■,*+!•

The presence of a detour to Cy indicates that the truth assignment encoded in G' satisfies
the clause Wj.

On the other hand, a clause can also be satisfied by the presence of a negative literal -<xi
for which t (xt) = 0. A similar detour can be constructed from a vertex ti k . Since f (*,-) = 0,
the vertices ti k are entered by an arc [/, *, ti k]. Choose a tl k that has not already been
connected to one of the subgraphs Cy. Construct the detour as follows:

i) Detour to C y via the arc from ti k to irij m in C y .

ii) Visit each vertex in C y once.

iii) Return to V,- via the arc from outj m to fi,k+\-

Since each clause is satisfied by the truth assignment, a detour from G' can be constructed
that visits each subgraph Cy. In this manner, the Hamiltonian cycle of G ' defined by a
satisfying truth assignment can be extended to a tour of G(u).

Now assume that a graph G (u) contains a Hamiltonian circuit. We must show that u is
satisfiable. The Hamiltonian circuit defines a truth assignment as follows:

1 if the arc [e, , 0] *s *n the tour
0 if the arc [e, , f i 0] is in the tour.

508 C h a p t e r 16 N P -C o m p le te P r o b le m s

FICURE 16.5 Connection o f C| to G'.

16.3 R e d u c t io n s f ro m 3-Satisfiabil ity 509

If / (jc,-) = 1, then all of the arcs [/,*, f uk] are in the tour. On the other hand, the tour contains
the arcs [/ ,* , /, *.] whenever t (jc,) = 0.

Before proving that / satisfies u, we examine several properties of a tour that enters
the subgraph Cj. Upon entering at the vertex i t i j m, the path may visit two, four, or all
six vertices in Cj. A path that exits C; at any position other than outJm cannot be a
subpath of a tour. Assume that Cj is entered at i n j f, the following paths in Cj are not
subpaths of a tour because the vertices listed cannot be reached without visiting some vertex
twice.

Path Unreachable Vertices

i n j . l[» OUtj, 3 o u t j . 2 o u t j . ,

i n j . !• i n i.-21. ‘ " j . 3. o u t J 3 ,, OUtj,2 o u t j , 1

l n J. !• l n i . l!. o u t j . 2 o u t j , ,

l n J. I- l n j .:!, OUt j,2, o u t j 1. ° u t j , 3 3

Thus the only paths entering C;- at in] X that are subpaths of tours must exit at outj \. The
same property holds for in j 2 and in j 3.

Each of the Cj's must be entered by the tour. If Cy is entered at vertex in j m by an arc
from a vertex f i k , then the tour exits Cj via the arc from outj m to /,-,*+[. The presence of
the arc [/ t , in j m] in G(u) indicates that wj, the clause encoded by Cj, contains the literal
Xj. Moreover, when Cj is entered by an arc [/ ,* , in j m], the vertex f ik must be entered by
the arc [/,*, / , *]. Otherwise, the vertex tlk is not in the tour. Since [/,*, f i k] is in the tour,
we conclude that /(jc,-) = 1. Thus, Wj is satisfied by t. Similarly, if Cj is entered by an arc
[/,-*, in j m], then ->jc,- is in wj and / (jc,) = 0.

Combining the previous observations, we see that the truth assignment generated by a
Hamiltonian circuit through G(u) satisfies each of the clauses of u and hence u itself. All
that remains is to show that the construction of G(k) is polynomial in the number of literals
in the formula u. The number of vertices and arcs in a subgraph V,- increases linearly with
the number of occurrences of the variable jc,- in u. For each clause, the construction of Cj
adds 6 vertices and 15 arcs to G(u). m

Many problems associate numeric values with objects: costs, weights, worth, and so
forth. The final problem that we consider in this section shows that problems dealing with the
accumulation or assessment of a set of numeric values can be NP-complete. A whimsical
example of such a problem is posed by a person who goes on shopping spree with the
intention of spending every cent that he has. The question: Is there a set of objects whose
total cost will be exactly the amount of money in his possession? The Subset-Sum Problem
formalizes the preceding example. An instance of the Subset-Sum Problem consists of a set
S, a value function v : S —> N, and an integer k. The answer is positive if there is a subset

510 C h a p te r 16 N P -C o m p le te P ro b lem s

S' C S such that the sum of the values of all the elements in S' is k. For simplicity, we will
let v(A) denote the total of the values of the elements in a set A.

The Subset-Sum Problem clearly is in XP. A nondeterministic guess selects a subset of
S. The remainder of the computation adds the values of the items in the subset and compares
the total with the value k given in the problem definition. All that remains is to show that
the Subset-Sum Problem is NP-hard.

Theorem 16.3.3

The Subset-Sum Problem is NP-complete.

Proof. A reduction of the 3-Satisfiability Problem to the Subset-Sum Problem has the form

Reduction Input Condition

3-Satisfiability 3-conjunctive normal form formula u u is satisfiable

We need to construct a set S, a value function v on S, and an integer k from a 3-conjunctive
normal form formula u such that S has a subset with total value k if, and only if, u is
satisfiable. As in the previous problems, we let u = u>| a w 2 a • • • a wm be a 3-conjunctive
normal form formula with V = {*,, x2, . . . , x„) the set of variables in u.

The set S consists of the items

i) x h i = 1 , . . . , n,

ii) ->Xj, i = l n,

iii) yj, j = 1 , . . . , m, and

iv) y'p) = 1......... m.

Thus S has 2n + 2m objects. We must now assign a value to every object in S. Each value
will be an integer with n + m digits. The rules for assigning the values are

x t : the / th digit from the right is 3,
if Xj is in clause Wj, then the n + ; th digit from the right is 1,
all other digits are 0,

the same construction as jr,-,

yy. the n + _/th digit from the right is 1,
all other digits are 0,

-•yy. the same as Wj.

to

Subset-Sum Problem
I

set S, function v : S -*■ N, integer k
if, and only if,

there is a subset S' C S

with d(S') = k

16.3 R e d u c t io n s f ro m 3-Satisfiabil ity 511

The integer k has m + n digits all of which are 3. The Subset-Sum Problem obtained in this
manner from a 3-conjunctive form formula u will be called S(«).

To appreciate the motivation behind this construction we consider the digits in the
values assigned to the objects to be entries in a 2n + 2m by m + n table:

w, Xn x2 Xl

Xl . . 0 0 3

-* l - . 0 0 3

*2 - . 0 3 0

“*2 - . 0 3 0

. . 3 0 0

'*n - . 3 0 0

yi 0 1 0 0 0

y\ 0 1 0 0 0

yi 1 0 0 0 0

*2 1 0 0 0 0

The m + n positions in each value correspond to the n + m columns of the table. The entries
in the first 2n rows contain the values assigned to the literals. The rightmost n columns are
used to describe truth assignments. The leftmost m columns indicate whether a literal occurs
in a clause.

When Xj occurs in a clause wj and ->*,■ does not, the rows of the table associated with
the literals jc, and —>jc, have the form

w m ■ ■ ■ V j ■ ■ ■ «J| Xn . . . Xj . . . X,

: - ... 1 . .. 0 0 . .. 3 . . . 0
-•Xj : - ... 0 ... 0 0 ... 3 . . . 0

The occurrence of the 1 in the column associated with clause Wj and row corresponding to
Xj indicates that x{ occurs in the clause and, consequently, that Wj is satisfied if /(*,-) = 1.
The 0 in the Wj position indicates that -a,- does not occur in Wj.

Before proving that the preceding construction is a reduction of the 3-Satisfiability
Problem to the Subset-Sum Problem, we will consider the instance of the Subset-Sum
Problem generated from the 3-conjunctive normal form formula

U = Ui! A W 2 = (J t i V X 2 V ->X3) A (—>JC| V Jf3 v —*JC4) .

512 C h a p te r 16 N P -C o m p le te P r o b le m s

The corresponding set S is { jC |, jc2 , x 3 , x 4 , ->*lt - \ x 2 , - ,x$, - ,x4, y\, y[, y2, y2) and the values
assigned to each of the objects of S, given in tabular form, are

w2 u>, * 4 * 3 *2 * i
Values

*1 0 1 0 0 0 3 u (j C |) = 010003

1 0 0 0 0 3 ■>(-*,) = 100003

*2 0 1 0 0 3 0 u (jc2) = 010030

“■•*2 0 0 0 0 3 0 u(-’*2) = 000030

* 3 i 0 0 3 0 0 v(x3) - 100300

~ ’* 3 0 1 0 3 0 0 v (- x 3) = 010300

* 4 0 0 3 0 0 0 v(x4) - 003000

- * 4 l 0 3 0 0 0 w(-«4) = 103000

yi 0 1 0 0 0 0 u(y,) = 010000

y; 0 1 0 0 0 0 i)(yj)= 010000

yi l 0 0 0 0 0 IIrs

>2 l 0 0 0 0 0

ii/*“«N
«.

<N

By our definition of S(w), k = 333333.
The formula u is satisfied by the truth assignment r (jc |) = 1, t (x2) = 1, r (jcj) = 0, and

t (jc4) = 0. The literals satisfied by the truth assignment, jc(, x2, -•x3, and ~,x4, along with y2
and y'v form a subset that affirmatively answers the Subset-Sum Problem. That is, the sum
of the values of these elements is k. The example exhibits the role of the y,-’s and y"s in the
set S. When a clause wj is satisfied by only one or two of its literals, these objects can be
added to the set to bring the sum of the column associated with Wj to 3.

The values in the table show that the sum of the digits in a column labeled by a clause is
five and in a column labeled by a variable is six. Thus there are no carries and no interaction
between columns when adding the values of the objects in any subset of S.

First, we show that if a 3-conjunctive normal form formula u is satisfiable, then S(n)
has a subset whose objects have a total value of k. Let t : V —> {0, 1} be a truth assignment
that satisfies u. We will build the subset S' from the truth assignment. Initially, S' contains
one of Xj or for each variable Xj; jc,- if t (jc,-) = 1 and ->x,- if t (jc,-) = 0. Since each jc,- occurs
exactly once in this set, either as a positive or a negative literal, the rightmost n digits in the
sum of the values of these objects are all 3.

Each clause Wj must be satisfied by some literal. This literal has a 1 in the column
associated with w j . Thus the sum of the digits in the w y column from the rows corresponding
to literals in the truth assignment is at least 1 and at most 3. If the sum is 1, we add y j and
y'j to S'. If the sum is 2, we simply add v' to S'. After the potential addition of yj and y'.,
the sum of the digits in the Wj column becomes 3, as desired.

Now let S(u) be an instance of the Subset-Sum Problem obtained by the preceding
construction that has a subset S' whose sum is k. We must show that u is satisfiable. First
note that one, but not both, of jc,- or ->jc,- is in S'. If neither are in the set, the sum of the values

16 .4 R e d u c t io n a n d S u b p r o b le m s 513

of the objects in S' has a 0 in the i th position from the right digit. If both x , and ~ 'x i are in
the set, the sum has a 6 in that position. Thus the occurrences of the literals in S' define a
truth assignment:

t (x) = 1 1 if € S
' I 0 otherwise.

For each clause Wj, the sum of the values of the objects in S' in the Wj column is three. This
total can include a maximum of two from yj and y'.. Thus there must be a literal that has a
1 in the Wj column and this literal satisfies the clause Wj.

The construction of S(w) is clearly polynomial in the length of u since each variable
and each clause generate two objects of S. ■

16.4 Reduction and Subproblems

Each of the reductions in the previous section transformed problems from one domain to
an unrelated domain: 3-conjunctive form formulas to vertex covers, to path generation,
and to the analysis of the values of sets of objects. A reduction between domains requires
the ability to reconfigure problems from the first domain as equivalent problems in the
second. Such a transformation is not always obvious or straightforward. Fortunately, the vast
majority of NP-completeness proofs do not require a change in domains. We have already
seen one example of a reduction between problems in the same domain— satisfiability to 3-
satisfiability. The domain of both of these problems is the satisfaction of Boolean formulas
and the reduction simply transformed formulas to formulas.

The most common technique for showing that a problem is NP-complete is to find a
similar problem among the thousands of known NP-complete problems. The rule of thumb is
that the more similar the problems, the less work that is likely to be involved in the reduction.
Ideally we show that a problem P is NP-hard by finding an NP-complete problem Q that
is a subproblem of P or one in which the instances of Q can easily be transformed into
instances of P. This strategy will be demonstrated using reductions from problems that we
have previously shown to be NP-complete. The proofs will include neither the design of
a nondeterministic algorithm that solves the problem in polynomial time nor an argument
that the reduction can be accomplished in polynomial time. The satisfaction o f both of these
essential components of an NP-completeness proof will be obvious from the definition of
the problem and the transformation involved in the reduction.

The Partition Problem

Partition Problem

Input: Set A, value function v : A -> N
Output: yes; if there is a subset A' of A such that v(A') = u(A - A')

no; otherwise

5 1 4 C h a p te r 16 N P -C o m p le te P r o b le m s

asks if the elements of a set can be divided into two disjoint subsets of equal value. The
result of both the Partition Problem and the Subset-Sum Problem are determined by the
existence of a set of objects with a predetermined total value. Using this similarity, we
will show that the Partition Problem is NP-complete by reducing the Subset-Sum Problem

to it.

Theorem 16.4.1

The Partition Problem is NP-complete.

Proof. A reduction of the Subset-Sum Problem to the Partition Problem

Reduction Input Condition

Subset-Sum Problem set S, function t : S -» N, integer k there is a subset S 'C S

with u(S') = k

to I if, and only if.

Partition Problem set A, function i / : A -> N there is a subset A' C A

with u'(A') = i/(A — A')

requires the construction of a set A and a value function v' from the components S, v, and
k of an instance of the Subset-Sum Problem. The set A and value function v' are defined
by

A = S U {y, z}

v'(x) = 2v(x) for all x € S

i/(y) = 3t - 2 k

t/(z) = t + 2k,

where t = v(S) is the sum of the values of all the elements in the set S. The sole reason for
the multiplication of u(at) by two is to ensure that the total value of the set A is even and
consequently a partition is possible. The total value of all the elements in the set A, using
the value function v', is 2t + (3/ - 2k) + (r + 2k) = 6 1.

First, we show that we can construct a solution to the Partition Problem from a solution
S' to the Subset-Sum Problem. Since S' is a solution, we know that

l>(S') = £ !>(*)=*.
* € S '

16.4 R ed u c t io n a n d S u b p r o b l e m s 515

v'(A') = v'(a ̂
a € A '

= v'(y) + ^ 2 v'(x)
xeS’

= 3 t - 2 k + 2k

= 31,

which is one-half of the total value of A. Thus A' is a solution to the Partition Problem.
Now assume that A and v' are obtained by a reduction from S, v, and k and that A has

partitioning subsets X and Y with d'(X) = r '(Y) = 3t. We must show that there is a subset
S' whose elements have total value k.

The elements y and z cannot belong to the same set in the partition of A, since the value
+ t;'(z) = 41 is greater than half of the total value of A. The element y is in one of the

sets, assume that it is X. Then

u'(X - {>}) = v'(X) - v'OO

= 3/ - (3t - 2k)

= 2k.

Now X — {y} is a subset of S and its value v(X — {>() = k. Thus X — {>} is a solution to
the Subset-Sum Problem. ■

Consider the dilemma of a school principal who wants to form a council with a
representative of every club in the school. There are 15 clubs and a student may belong
to any number of clubs. The principal wants the council to have only 10 members. Can he
form a council that satisfies his requirements? This question is an example of the Hitting
Set Problem. Formally, an instance of the Hitting Set Problem consists of a set S, a finite
collection C = {Cj......... C„} of subsets of S, and an integer k. A set C is a hitting set of G
if C fl C, ^ 0 for each C,. That is, every set C, is hit by an element of C. The problem has
an affirmative answer if there is a hitting set of size k or less.

Instead of an element of C hitting a set C,-, we may think of the element as covering C,-.
This interpretation reveals the similarity between the Vertex Cover and Hitting Set problems.
We will reduce the Vertex Cover Problem to the Hitting Set Problem and conclude that the
latter is NP-complete.

Theorem 16.4.2

The Hitting Set Problem is NP-complete.

Proof. An instance of the Hitting Set Problem can be obtained from an instance G = (N,
A), k of the Vertex Cover Problem in the following manner. The elements of S are the nodes
of G. Each arc [nf, nj] defines a two element set {n(, nj}. The class e consists of all of the

Defining A' to be the set S' U (y), we get

516 Chapter 16 NP-Complete Problems

two element sets obtained from the arcs of G. Finally, the integer k is the same for both
problems. Now we show that G has a vertex cover of size k if, and only if, there is a hitting
set of the associated class C of size k or less.

Assume that there is a vertex cover VC of size k. This set is a hitting set of C of the
appropriate size. Conversely, assume that e has a hitting set C of size k or less. Then each
set {«,, rij] e e is hit by an element of C. In terms of the graph G, every arc [«,, rij] is
covered by a vertex from C. Thus C is a vertex cover of size at most k. ■

With the interpretation of arcs as two element sets and covering as hitting, the Vertex
Cover Problem becomes a subproblem of the Hitting Set Problem. The ability to interpret
a known NP-complete problem as a subproblem of the problem under consideration often
makes the ensuing NP-completeness proof almost trivial. The Bin-Packing Problem

Bin Packing Problem

Input: Set A, a size function s : A -» N, positive integers k and m
Output: yes; if there is a partition A|, Aj , A* of A such that j(A,-) < m for 1 < i < k

provides another example of this phenomenon. We show that the Partition Problem can be
easily transformed into a subproblem of bin packing.

Theorem 16.4.3

The Bin Packing Problem is NP-complete.

Proof. The reduction has the form

Reduction Input Condition

Partition Problem set A, function v : A -*• N there is a subset A ' c A

As indicated in the description of the reduction, the same set and function are used for both
problems. What remains is to select integers k and m for the Bin Packing Problem. Since the
Partition Problem attempts to divide A into two equally valued subsets, we let k = 2. The
reduction is complete by setting m = s(A)/2, one half of the total value of all the elements
in A.

This reduction identifies the Partition Problem as bin packing limited to two bins with
maximum capacity s(A)/2. If a set A ' C A satisfies the Partition Problem, then A' and
A — A' constitute a partition that satisfies the Bin Packing Problem. Conversely, a solution
A lt A2 to the Bin Packing Problem with capacity bound s(A)/2 is a solution to the Partition
Problem. ■

no; otherwise

to
Bin Packing Problem

i
set A, function s = v

integers k and m

with d(A') = v(A — A')

if, and only if,
there is a partition A), A2, A*

with s(Aj) < m for all i

16.5 O p t im iz a t io n P r o b le m s 517

16.5 Optimization Problems

There are many problems in which the goal is not just to determine whether a solution exists,
but to find an optimal solution. An optimal solution may minimize the cost, maximize
the value, most efficiently utilize resources, and so forth. Since the result is not a yes or
no answer, an optimization problem does not match our definition of a decision problem.
However, the complexity issues that we have considered for decision problems are equally
pertinent to optimization problems.

We will use the Traveling Salesman Problem to illustrate the technique employed for
establishing the NP-completeness of an optimization problem. The Traveling Salesman
Problem is a generalization of the Hamiltonian Circuit Problem that seeks to find the
minimal cost tour of a weighted directed graph, where the cost of a path is the sum of
the weights of the arcs in the path. The name of the problem describes the situation of a
salesman who wishes to visit every town on his route exactly once, and do so while traveling
the shortest distance possible.

The Traveling Salesman Problem can be converted to a decision problem by adding a
distance bound to the problem instances:

Traveling Salesman Decision Problem

Input: Weighted directed graph G = (N, A, u j) , integer k
Output: yes; if G has a tour of cost less than or equal to k

no; otherwise.

Placing the bound k on the cost of the tour changes the desired answer from a path to a yes
or no response.

A solution to the decision problem can be iteratively employed to produce a solution
to the original optimization problem. Let n be the number of nodes of G, I be the sum of
the cost of the n arcs with the least cost, and u the sum of the n highest cost arcs. The cost
of any tour of G must be between / and u. The cost of the least-cost tour can be obtained
by iteratively solving the sequence of decision problems

G = (N, A, w), k =1
G = (N, A, ui), k = / + 1
G = (N, A, u j), k = / + 2

G = (N, A, w),k = u

until an affirmative answer is produced or all the problem instances have returned negative
responses. In the latter case, there is no tour of the graph.

Theorem 16.5.1

The Traveling Salesman Problem is NP-complete.

518 C h a p te r 16 N P -C o m p le te P r o b le m s

Proof. The Hamiltonian Circuit Problem can be considered to be a subproblem of the
Traveling Salesman Problem. Let G = (N, A) be an instance of the Hamiltonian Circuit
Problem. To obtain an instance of the Traveling Salesman Problem we need only define a
weight function w and bound k for G. Let w assign the value 1 to each arc and let k be the
number of nodes of G. The graph G has a tour if, and only if, the corresponding weighted
directed graph (N, A, ui) has a tour of cost k. ■

The Knapsack Problem is a classic optimization problem concerned with selecting a
set of objects of maximal value subject to a size constraint. The most colorful description
of this problem describes the plight of a burglar who must decide which items to put in
his knapsack. His objective is to maximize the value of the objects, but his selection is
constrained by the size of the knapsack. The decision problem version of the Knapsack
Problem is

Knapsack Decision Problem
Input: Set S, size function s : S -*■ N, value function u : S -*■ N,

size bound b, minimal value m
Output: yes; if there is a subset of S' C S with i(S') < b and u(S') > m,

no; otherwise.

Theorem 16.5.2

The Knapsack Problem is NP-complete.

Proof. The reduction

Reduction Input Condition

Partition Problem set A, function v : A —*■ N there is a subset A ' C A

with v(A') = v(A — A')

to I if, and only if,
Knapsack Problem set A, function s = v, v. there is a subset A ' with

integers b and m s(A') < b, v(A') > m

creates a Knapsack Problem with the same domain as the Partition Problem. The value
and size functions of the Knapsack Problem are both set to the value function of the
Partition Problem. The reduction is completed by defining b and m as s(A)/2 . Because
of the identification of the size and value functions of the Knapsack Problem with the size
function of the Partition Problem, a set A' satisfies the requirement of the Partition Problem
if, and only if, it satisfies the requirements of the corresponding Knapsack Problem. ■

16.6 A p p ro x im a t io n A lg o r i t h m s 519

16.6 Approximation Algorithms

The significance of the class ~N7 is not theoretical, but practical. NP-complete problems
arise naturally in many areas including pattern recognition, scheduling, decision analysis,
combinatorics, network design, and graph theory. Determining that a problem is NP-
complete does not mean that solutions are no longer needed, only that it is quite unlikely
that a polynomial-time algorithm will be found to produce them.

We will consider the process of dealing with a problem that is NP-complete through
the deliberations of a salesman who wishes to automate the process by which he determines
his route. The cities and roads are represented by the nodes and arcs of a weighted directed
graph G = (N, A, w), and the weight function w(x, y) gives the distance of the road from
city x to city y. The cities that the salesman must visit are subject to change, at which
time he must produce a new route. His objective, of course, is to visit every city exactly
once and return home while spending as little time traveling as possible. Knowing that
the Traveling Salesman Problem is NP-complete, how should the salesman approach the
problem of determining his route?

The first step is to decide whether the NP-completeness of the problem is relevant for
his particular situation. If the route contains only a few cities, the asymptotic performance of
algorithms that solve the problem is immaterial. The number of nodes that constitute a small
problem instance depends upon the computational resources available and the frequency of
the application of the algorithm.

If the algorithm is used frequently, even with a relatively small number of nodes, it may
be worthwhile to investigate the use of techniques from the theory of algorithms to refine
the search technique. Exhaustive testing of all sequences of nodes, the strategy employed
by the Turing machine in Example 15.5.1 that solves the Hamiltonian Circuit Problem,
requires examining nn~ l potential paths where n is the number of cities. Branch-and-bound
algorithms can be used to prune the search tree and reduce the number of paths that need
to be considered. A dynamic programming algorithm produces minimum-distance tours in
0 (n 2 n) time. Although still exponential, this is a considerable reduction in complexity from
the exhaustive search strategy.

The next step, if needed, is for the salesman to consider reformulating the problem as
another problem that can be solved in polynomial time. The solutions to the new problem
may not be optimal tours, but they may be acceptable for his purposes. Following this
approach, the salesman marks all the cities that he must visit on a map and decides to design
a route that begins with the farthest east city and goes to the farthest west city traveling solely
in an east-to-west direction. The tour is completed by returning to the original city using a
strictly west-to-east route.

The motivation for an east-to-west strategy is that a short route from the two cities
should not contain legs that move away from the goal. While this method often produces
good approximations. Figure 16.6 gives a graph in which the optimal tour has distance 82,
but the two-directional solution has distance 140. The pattern in the graph formed by nodes
a4 to a i2 can be continued by adding more “switchbacks" to get from a4 to a 12. This will

520 C h a p t e r 16 N P -C o m p le te P r o b le m s

FIGURE 16.6 Solution to two-directignal Traveling Salesman Problem.

not increase the minimal-cost tour, but the cost of the least-cost two-directional tour can be
made as large as desired.

Realizing that his two-direction strategy may produce excessively long tours, the
salesman asks the following two questions:

1. Is there a polynomial-time algorithm that solves the two-direction problem without the
tour becoming arbitrarily longer than the optimal tour?

2. If the answer to the preceding question is no, what other conditions could be added to
obtain an approximate solution in polynomial time?

These questions will be answered after introducing measures to characterize the perfor
mance of an approximation algorithm.

The solution to an optimization problem includes a numeric value that we will gener-
ically refer to as the cost of the solution. For example, the solution to an instance of the
Traveling Salesman Problem consists a tour with the total distance being the cost of the
tour. A solution to the Knapsack Problem consists of a set of objects and the associated cost
is the total value of the objects in the set. An approximation algorithm produces a solution
that may not have the optimal cost. The error of an approximation is the difference between
the costs of the optimal and approximate solutions.

Let c(pi) denote the cost of the solution produced by an approximation algorithm
and c*(pi) be the optimal cost for a problem instance p t of an optimization problem P.
The quality of an approximation algorithm is measured by a comparison of the cost of the
approximate solution to that of an optimal solution.

Definition 16.6.1

An algorithm that produces approximate solutions to an optimization problem P is said to
be an a-approxim ation algorithm if

i) the problem is a minimization problem and c (p t) < a • c * (p t), or

ii) the problem is a maximization problem and c*(p j) < a • c (p t)

for a constant a > 1 and all instances p, of P.

16.6 Approximation Algorithms 521

A 2-approximation algorithm for a minimization problem produces solutions that have
a cost at most twice that of an optimal solution. For a maximization problem, the cost of
the 2-approximate solution is at least half of the optimal cost.

The salesman’s questions can now be restated as: “Is there a polynomial-time a-
approximation algorithm for the Traveling Salesman Problem?” and “What changes in
the problem are necessary to obtain a polynomial-time a-approximation algorithm?” The
answer to the first question is no unless 7 = NT. One answer to the second is that a 2-
approximation algorithm can be obtained if the graph is totally connected and the distances
satisfy the triangle inequality.

Theorem 16.6.2

If 7 N 7 , there is no polynomial-time a-approximation algorithm for the Traveling
Salesman Problem.

Proof. We will prove that a polynomial-time a-approximation algorithm to the Traveling
Salesman Problem can be used to solve the Hamiltonian Circuit Problem in polynomial time.
Since the latter cannot be done if 7 ^ NCP, it follows that there can be no such approximation
algorithm under the same assumption.

We begin by defining a transformation of instances of the Hamiltonian Circuit Problem
to instances of the Traveling Salesman Problem. Let G = (N, A) be an instance of the
Hamiltonian Circuit Problem with n = card(N). The corresponding Traveling Salesman
Problem is a totally connected graph G' = (N, A', w), where w is defined by

w (x ,y) = \ 1 , i f [*’ ^ € A
(a • n + 1 otherwise.

Clearly, the construction of G' from G can be accomplished in time polynomial with the
length of a representation of G.

If G has a tour, the corresponding tour in G' has cost n. If G does not have a tour, every
tour of G' has cost greater than a - n since it must contain at least one arc that is not in A. In
the former case, running an a-approximation algorithm on G' must produce a tour of cost
n because all other tours exceed the approximation bound. Consequently, G has a tour if,
and only if, the a-approximation algorithm returns a tour of cost n.

The preceding equivalence describes a solution to the Hamiltonian Circuit Problem:
Construct G' from G and obtain a tour of G' using the approximation algorithm. By the
preceding observation, the tour returned by the approximation algorithm has length n if,
and only if, G has a tour. If the a-approximation algorithm is computable in polynomial
time, so is the corresponding solution to the Hamiltonian Circuit Problem. ■

We can easily produce a 2-approximation algorithm for the Traveling Salesman Prob
lem when the graph G = (N, A, w) is totally connected and the distance function is com
mutative and satisfies the triangle inequality. That is,

w(x, y) = w(y, x) and,

y) < w(x, z) + w (z , y)

522 C h a p te r 16 N P -C o m p le te P ro b le m s

for all x, y, z e N. The Traveling Salesman Problem with these added conditions is some
times called the Euclidean Traveling Salesman Problem.

The approximation algorithm first constructs a minimum cost spanning tree of G. A
spanning tree of an undirected connected graph is a connected acyclic subgraph that contains
all nodes of the graph. The cost of a spanning tree is the sum of the weights o f the arcs in
the tree. A weighted directed graph G that is totally connected with a commutative distance
function can be considered to be an undirected graph. For each arc [x, y], there is an arc

[>>, x] with the same weight.
With the interpretation of G as a undirected graph, Prim’s algorithm can be used to

generate a minimum cost spanning tree in time 0 (n 2), where n is the number of nodes of G.
The following four-step procedure defines a 2-approximation algorithm for the Euclidean
Traveling Salesman Problem:

1. Select a node x € N to be the root of the spanning tree.

2. Build the minimum-cost spanning tree of G.

3. Construct the sequence of nodes visited by a preorder traversal of the spanning tree.

4. Delete nodes that occur more than once in the sequence.

Figure 16.7 illustrates the process of obtaining a tour from a spanning tree. A preorder
traversal begins with the root c, visits all nodes (many, several times), and finishes at c. To
obtain a tour from the path produced by the traversal, we sequentially delete multiple visits
to the same node. In the sequence in Figure 16.7, the node c is revisited after a and before
d. Deleting this occurrence of c may be thought of as taking a direct road from a to d that
bypasses c. The total connectivity of the graph assures us of the presence of an arc from a
to d, and the triangle inequality guarantees that the alternative route is no longer than the
original.

This process can be repeated to remove multiple occurrences of all nodes except for
the occurrence of the root at the beginning and ending of the path. The resulting path is a
tour. To analyze the cost of the tour, we let /*, m*, p, and t be the costs of the minimum-cost
tour, the minimum-cost spanning tree, the path generated by the preorder traversal, and the
tour obtained using the node removal strategy, respectively.

We can obtain a spanning tree by deleting any single arc from a minimal-cost tour
of the graph. The cost of the resulting spanning tree is an upper bound on the cost of the
minimum-cost spanning tree M. Consequently,

m* < t*.

The path generated by the preorder traversal contains each arc of the spanning tree
twice, so

p = 2m*

16.7 A p p ro x im a t io n S c h e m e s 523

The cost of the tour produced by the algorithm is bounded by the cost of the preorder path,
since the node deletion process cannot increase the cost of the resulting path. Combining
the inequalities,

t < p < I t * ,

yields the 2-approximation bound on the tours constructed in this manner.
In this section we outlined a strategy for constructing solutions when confronted with

an NP-complete problem. The steps employed by our mythical salesman were

a) determine whether the asymptotic complexity is relevant to the problem,

b) reformulate the problem into an efficiently solvable problem, or

c) develop algorithms that produce approximate solutions.

These steps provide a good starting place for obtaining suitable solutions to NP-complete
optimization problems.

16.7 Approximation Schemes

An ideal system for approximating an NP-complete problem would allow the user to
specify the degree of error that is permissible for a particular application. For problems
in which extremely high accuracy is critical, an error bound would be selected to achieve
the necessary precision. For problems that do not require a high degree of precision, less
accurate approximate solutions could be produced in a more efficient manner. For a number
of NP-complete problems, this ideal can be realized.

524 C h a p t e r 16 N P -C o m p le te P r o b le m s

An approximation scheme is an algorithm in which an input parameter is used to specify
the acceptable error bound. An approximation scheme with parameter k for a minimization
problem generates approximating algorithms that satisfy

C*(Pi) < c(Pi) < • C*(Pj)
k

for all problem instances p(. For a maximization problem, the bounds become

— 7 - • C*(Pj) < c (Pi) < C*(Pi).
k + 1

In either case, increasing the value of k increases the precision of the approximations. A
polynomial-time approximation scheme is an approximation scheme in which the time
complexity is polynomial for all values of the parameter k.

We will use the Knapsack Problem to demonstrate the properties of an approximation
scheme. The simplest approximation scheme for the Knapsack Problem initially places a
number of items in the knapsack and completes the selection using a greedy algorithm.
An instance of the optimization version of the Knapsack Problem consists of a set S
= {fl|......... a„), size function s : S —> N, value function v : S —»• N, and size bound b. We
let c* denote the optimal value of a solution of a Knapsack Problem and c the value of an
approximation, respectively.

A greedy strategy for the Knapsack Problem is to select the item a, with highest relative
value v(ai)/s{a i) that fits into the knapsack. The process is repeated until no additional
items can be put into the knapsack. Unfortunately, there is no bound on the error that may
be produced using this approach (Exercise 14).

The approximation scheme with parameter k selects a set in the following manner:

1. All subsets I,- C S of cardinality k or less are generated.

2. For each subset with size s(I,-) < b, a set G, is generated using the greedy algorithm on
the set S — I, with the original value and size functions and bound b — s (I,). The sets
I, and G, are combined to produce the set T, = I, U G, .

3. The result is a set T; that has maximum value.

Generating all subsets with k or fewer elements and testing to determine if they satisfy the
size bound produces a family of initial sets I, . Each initial set is completed by producing a
set G, using the greedy algorithm. The total set T, for the initial set I, is the union I, U G,.
We need to show that, for every problem instance and every k > l , (he algorithm produces
an approximation that satisfies

Assume that an optimal solution is given by a set T with j elements. We consider two cases:
j < k and j > k.

16.7 A p p ro x im a t io n S c h e m e s 525

Case 1: j < k. The set T is one of the initial sets generated in step 1, and an optimal solution

is produced by the algorithm.

Case 2: j > k. The optimal solution T can be split into two sets I = {fl!, . . . , ak) and
R = {ak+l......... aj] where I contains the k highest valued items of T and R contains the
remaining items listed in the order of their relative value:

” (‘5 / t + i) M « * + i) > v(ak+2)/s(ak+2) > • • • > v(aj) /s(aj) .

First we note that for each a, € R, v(a,) < c*/(k + 1). Each a, € I has value greater than a„
so t>(I) > k • t>(a,). Thus

c* = v(T) = t>(I) + i»(R) > k • v(a,) + v(a,) > (k + l)v(a,)

and the inequality follows.
Consider the approximate solution generated from the set I using the greedy algorithm.

If the greedy algorithm selects all the items in the optimal solution R, then the algorithm
produces an optimal solution.

If not, let G be the extension of I produced by the greedy algorithm and let am be the
first item in the set R that is not selected by the greedy algorithm. This occurs only if there is
insufficient space remaining in the knapsack when am is considered. Now, let Gm be the set
of objects that have been selected by the greedy algorithm at the time when am is not taken.
This set contains ak+x, ak+2......... from R and other items with relative value greater
than am. We now use Gm to produce an upper bound on the value of the set R. The elements
in Gm have greater relative value than the initial items in R whose size totals s(Gm). This
follows since Gm contains all the objects of relative value greater than v(am)/s(am) that
are in R. All the other objects in Gm have relative value greater than v(am)/s (am), whereas
all other elements in R have relative value less than v(am)/s(am). Note that the size of the
items in R need not add exactly to s(Gm). We may consider dividing an item to obtain a
subset of R of size s(Gm).

The maximum possible value that can be added to Gm to fill the knapsack is less than
v(am), since less than s(a„,) space remains and the greedy algorithm has already passed am
in its relative value ordered search. This is also an upper bound on the value of filling the
remaining space in R since the items am......... in R all have relative values of at most
v(am)/s{am). Putting these observations together, we see that

c* = u(I) + tKR) < t>(I) + v(Gm) + v(am) < i>(I) + v(G) + v(am).

Using the inequality v(am) < c*/(k + 1), we get

c* < v(I) + u(G) + v(am) < c + c*/(k + 1)

or

as desired.

526 C h a p t e r 16 N P -C o m p le te P r o b le m s

We also need to show that the approximating algorithm produced for every value k > 1
is polynomial in the size of the instance of the Knapsack Problem. Letting C (n , «) be the
number of combinations of n things taken i at a time, the number of subsets of cardinality
at most A: of a set of n objects is

1=0 i = l

< i + E

k
< 1 + nk

1=1

= 1 + k - n k.

Extending each of these with the greedy algorithm requires time 0(n). Thus the time
complexity is O (k • n*+1).

Although the preceding approximation algorithm is polynomial for each k, the time
complexity grows exponentially with the parameter k. Thus decreasing the error is ac
companied by an exponential growth in the time needed to produce approximations. An
approximation scheme that is polynomial in both n and k is called fully polynomial. There
is an O (k • n2) fully polynomial approximation scheme for the Knapsack Problem that com
bines the greedy algorithm with dynamic programming to reduce the time complexity.

Exercises

* 1. A formula is in 2-conjunctive normal form if it is the conjunction of clauses consisting
of the disjunction of two literals. Prove that the Satisfiability Problem for 2-conjunctive
normal form formulas is in IP.

2. A formula is in 4-conjunctive normal form if it is the conjunction of clauses consisting
of the disjunction of four literals. Prove that the Satisfiability Problem for 4-conjunctive
normal form formulas is NP-complete.

3. Design a string representation for the Subset-Sum Problem and describe the compu
tations of a nondeterministic Turing machine that solves the problem in polynomial
time.

4. Design a polynomial-time reduction of the Partition Problem to the Subset-Sum Prob
lem. A polynomial-time reduction of the Subset-Sum Problem to the Partition Problem
was given in Theorem 16.4.1.

5. A clique in an undirected graph G is a subgraph of G in which every two vertices are
connected by an arc. The Clique Problem is to determine, for an arbitrary graph G

E xerc ises 527

and integer k, whether G has a clique of size k. Prove that the Clique Problem is NP-
complete. Hint: To show that the Clique Problem is NP-hard, establish a relationship
between cliques in a graph G and vertex covers in the complement graph G. There is
an arc between vertices x and y in G if, and only if, there is no arc connecting these

vertices in G.

* 6. Let e = (C|, C„} be a collection of subsets of a set S. A subcollection C c G is
said to cover S if

s = U C-'
c.ee'

The Minimum Cover Problem asks whether a collection C has a subcollection of size
k or less that covers S. Prove that the Minimum Cover Problem is NP-complete.

7. Let e be a collection of finite sets and k an integer less than or equal to the cardinality
of e . Prove that the problem of determining whether C contains k disjoint sets is NP-
complete.

* 8. An instance of the Longest Path Problem is a graph G = (N, A) and an integer k < |A|.
Show that the problem of determining whether G has an acyclic path with k or more
edges is NP-complete.

* 9. The input to the Multiprocessor Scheduling Problem consists of a set A of tasks, a
length function / : A —» N that describes the running time of each task, and the number
k of available processers. The objective is to find a partition A b A2.........A k of A
that minimizes the time needed to complete the all the tasks, that is, that minimizes
max{/(Ai) 11 = 1 , . . . , n) over all partitions.

a) Formulate the Multiprocessor Scheduling Problem as a decision problem.

b) Show that the associated decision problem is NP-complete.

10. The Integer Linear Programming Problem is: Given an n by m matrix A and a column
vector b of length n, does there exist a column vector x such that Ax > b? Use a
reduction of 3-satisfiability to prove that the integer linear programming problem is
NP-hard. (The Integer Linear Programming Problem is also in.?sfCP; the proof requires
knowledge of some of the elementary properties of linear algebra.)

11. Show that the Traveling Salesman Decision Problem for undirected graphs is NP-
complete.

12. The objective of the optimization version of the Vertex Cover Problem is to find a
minimum size vertex cover of an undirected graph G. An approximation strategy
constructs a cover VC by selecting an arbitrary arc [*, >’] from G and adding it for
VC, removing [x, y] and all arcs incident to [*, y] from G, and repeating the selection
and deletion cycle until VC covers the original graph. Prove that this strategy yields a
polynomial-time 2-approximation algorithm for the Vertex Cover Problem.

13. The input to the optimization version of the Bin Packing Problem consists of a set A, a
size function s : A —> N, and a bin size n greater than the maximum size of any object.

528 C h a p t e r 16 N P -C o m p le te P r o b le m s

The objective is to determine the minimum number of bins needed to store the objects
in A, where the bin size n is an upper bound on the total size of the objects that can be
placed in a single bin. A first-fit algorithm takes an object and places it in the first bin
in which it fits. If it does not fit in any of the current bins, the object is placed in a new
bin. This process is repeated until all the objects have been stored. Show that the first-
fit strategy produces a polynomial-time 2-approximation algorithm for the Bin Packing

Problem.

14. A greedy strategy for the Knapsack Problem is to select the item a with highest relative
value v(a)/s(a) that fits into the knapsack. The process is repeated until no additional
items can fit into the knapsack. Show that there is no upper bound on the possible error
using the greedy choice strategy.

* 15. An approximation algorithm for the Knapsack Problem can be obtained by modifying
the greedy strategy as follows: The algorithm returns either the solution produced by
the greedy algorithm or the solution that consists of the single item with largest value
that fits into the knapsack. Prove that the modification produces a 2-approximation
algorithm for the Knapsack Problem.

Bibliographic Notes

Karp’s [1972] seminal paper proved the NP-completeness of the 3-Satisfiability Problem,
the Vertex Cover Problem, and the Hamiltonian Circuit Problem. All of the problems in this
chapter, and many more, are examined in Garey and Johnson’s [1979] classic book on NP-
completeness. This book also includes a description of the reductions that are required for
most of the exercises.

Because of the importance of NP-complete problems, an extensive literature has been
developed on the topic of approximation algorithms. An introduction to the field of approxi
mation algorithms can be found in the previously mentioned book by Garey and Johnson and
in Papadimitriou and Steiglitz [1982] and Hochbaum [1997], Christofides [1976] designed
a polynomial-time 1.5-approximation algorithm for the classic Traveling Salesman Prob
lem. The approximation scheme for the Knapsack Problem given in Section 16.6 is from
Sahni [1975], Ibbara and Kim [1975] used dynamic programming to develop an 0 (k • n2)
fully polynomial approximation scheme for the Knapsack Problem.

There are a number of excellent books on the general theory of algorithms including
Cormen, Leiserson, Rivest, and Stein [2001], Levitin [2003], and Brassard and Bratley
[1996]. In addition to NP-complete problems and approximation algorithms, these books
cover the graph algorithms, greedy algorithms, and dynamic programming strategies used
in the approximation algorithms mentioned in this chapter.

CHAPTER 1 7

Additional Complexity Classes

Complexity theory is concerned with assessing the resources required to determine mem
bership in a language, to solve a decision problem, or to compute a function. The study of
time complexity has identified the class T of problems that can be solved by polynomial
time algorithms as comprising the efficiently solvable problems. We begin this chapter by
examining the properties of several complexity classes that can be derived from the classes 7
and NT. This is followed by developing relationships between the amount of time and space
required for a computation. Finally, properties of space complexity are used to demonstrate
the existence of problems that are not solvable by any polynomial-time or polynomial-space
algorithm.

17.1 Derivative Complexity Classes

Our study of tractability introduced the class 7 of languages decidable deterministically in
polynomial time and the class N T of languages decidable in polynomial time by nonde
terministic computations. The question of whether these classes are identical is currently
unknown. We now consider several additional classes of languages that provide insight into
the 7 = N T question. Interestingly enough, properties of these classes are often dependent
upon the relationship between T and NT. The majority of the following discussion will pro
ceed under the assumption that T ^ NT. However, this condition will be explicitly stated
in any results that utilize the assumption.

The classes T and N T e are both nonempty subsets of NT, but what is the relationship
between these two classes? By Theorem 15.6.2, if T fl N T e is nonempty, then T = NT.

529

530 C h a p te r 17 A d d it iona l C om plex ity C la ss e s

Consequently, under the assumption IP ^ NIP, IP and NIPC must be disjoint. The diagram
in Section 15.9 shows the inclusions of IP and NIPC in NIP if IP 5^ NIP. One question
immediately arises when looking at this diagram: Are there languages in NIP that are not in

either IP or NIPG?
We define the family of languages NIPD, where the letter 0 represents intermediate,

to consist of all languages that are in NIP but in neither NIPC nor IP. The use of the word
intermediate in this context is best explained in terms of solving decision problems. A
problem in NIPD is not NP-hard and therefore not considered to be as difficult as the problems
in NIPC. On the other hand, since it is not in IP, it is considered to be more difficult than
problems in that class. The term intermediate comes from this interpretation of problems
in NIPO being harder than the problems in IP and not as hard as problems in NIPe.

If IP = NO5, the class NIP3 is empty. Theorem 17.1.1, stated without proof, guarantees
the existence of intermediate problems if IP ^ NIP.

Theorem 17.1.1

If 05 ^ NO5, then NPU is not empty.

Recall that the complement of a language L over an alphabet E , denoted L, consists
of all strings not in L; that is, L = E* — L. A family of languages J is closed under com
plementation if L e J whenever L e J . The family 05 is closed under complementation;
a deterministic Turing machine that accepts a language in polynomial time can be trans
formed to accept the complement with the same polynomial bound. The transformation
simply consists of interchanging the accepting and rejecting states of the Turing machine.

The asymmetry of nondeterminism has a dramatic impact on the complexity of ma
chines that accept a language and those that accept its complement. To obtain an affirmative
answer, a single nondeterministic “guess" that can verify the affirmative answer is all that
is required. A negative answer is obtained only if all possible guesses fail. The Satisfiabil
ity Problem is used to demonstrate the asymmetry of the complexity of nondeterministic
acceptance of a language and its complement.

The input to the Satisfiability Problem is a conjunctive normal form formula u over a
set of Boolean variables V, and the output is yes if u is satisfiable and no otherwise. Theo
rem 15.5.2 described the computation of a nondeterministic machine that solves the Satisfi
ability Problem in polynomial time. This was accomplished by guessing a truth assignment
on V. Checking whether a truth assignment satisfies a formula u is a straightforward process
that can be accomplished in time polynomial in the length of u.

The complement of the Satisfiability Problem is to determine whether a conjunctive
normal form formula is unsatisfiable; that is, it is not satisfied by any truth assignment. An
affirmative answer is obtained for a formula u if u is false for every possible truth assignment.
A nondeterministic strategy to solve the “unsatisfiability problem” requires a guess that
can verify the unsatisfiability of u. The guess cannot be a single truth assignment since
discovering that one truth assignment does not satisfy u is not sufficient to conclude that
u is unsatisfiable. Intuitively, the truth values of u under all possible truth assignments are
required. If card (V) = n, there are 2" truth assignments to be examined. It seems reasonable

17.1 Deriva tive C om plex ity C la s s e s 531

to conclude that this problem is not in NtP. Note the use of the terms intuitively and it seems
reasonable in the previous sentences. These hedges have been included because it is not
known whether the unsatisfiability problem is in NT.

Rather than considering only the complement of the Satisfiability Problem, we will
examine the family of languages consisting of the complements of all languages in NT.

The family co-NT = {L | L G NT}.

Theorem 17.1.2

If N T 5* co-NT, then T # NT.

Proof. As noted previously, T is closed under complementation. If N T is not closed under
complementation, the two classes of languages cannot be identical. ■

Theorem 17.1.2 provides another method for answering the T = NT question. It is
sufficient to find a language L e NT with L £ NT. Proving that N T = co-NT does not
answer the question of the identity of T and NT. At this time, it is unknown whether
N T = co-NT. Just as it is generally believed that T ^ NT, it is also the consensus of
theoretical computer scientists that N T ^ co-NT. However, the majority does not rule in
deciding mathematical properties and the search for a proof of these inequalities continues.
Theorem 17.1.3 provides one approach for establishing the equality of N T and co-NT.

Theorem 17.1.3

If there is an NP-complete language L with L € NT, then NT = co-NT.

Proof. Assume that L is a language that satisfies the above conditions. We first show that,
under these conditions, the complement of any language Q in NT is also in NT. Since L is
NP-complete, there is a polynomial-time reduction of Q to L. This reduction also serves as
a reduction of Q to L.

By our assumption that L e NT, L is accepted in polynomial time by a nondeterministic
Turing machine. Combining the machine that performs the reduction of Q to L with the
machine that accepts L produces a nondeterministic machine that accepts Q in polynomial
time. Thus, co-NT c NT.

To complete the proof that N T = co-NT, it is necessary to establish the opposite
inclusion. Let Q be any language in NT. By the preceding argument, Q is also in NT.
The complement of Q, which is Q itself, is then in co-NT. ■

The Satisfiability Problem and its complement were used to initiate the examination
of the family co-NT. At that point we said that it seems reasonable to believe that the
complement of the Satisfiability Problem is not in NT. By Theorem 17.1.2, LSAT is in NT
if, and only if, N T = co-NT. The presumed relationships between T, NT, N T e , and co-NT
are shown in Figure 17.1.

532 C h a p te r 17 A dd it iona l C om plex i ty C la ss e s

FICURE 17.1 Inclusions if 7 j= T<7 and K 7 £ co-N(P.

17.2 Space Complexity

The focus of the preceding chapters has been the time complexity of Turing machines and
decision problems. We could have equally as well chosen to analyze the space required by
a computation. In high-level algorithmic problem solving, the amount of time and memory
required by a program are often related. We will show that the time complexity of a Turing
machine provides an upper bound on the space required and vice versa. Unless otherwise
stated, the properties of space complexity that we present hold for both deterministic
and nondeterministic Turing machines. The effect of limiting the space available for a
computation on the acceptance of languages will be examined in Section 17.3.

The Turing machine architecture depicted in Figure 17.2 is used for measuring the space
required by a computation. Tape 1, which contains the input, is read-only. With an input
string of length n, the head on the input tape must remain within tape positions 0 through
n + 1. The Turing machine reads the input tape but performs its work on the remaining
tapes. Providing a read-only input tape separates the amount of space required for the input
from the work space needed by the computation. The space complexity provides an upper
bound on the amount of space used on the work tapes. A Turing machine that satisfies the
preceding conditions is sometimes referred to as an off-line Turing machine, since the input
may be considered to be provided off-line prior to the computation and is not included
in the assessment of resource utilization. Unless otherwise specified, for the remainder
of the chapter all Turing machines are assumed to be designed for the analysis of space
complexity.

Definition 17.2.1

The space complexity of a k + 1-tape Turing machine M is the function 5cM : N -*■ N such
that scM(n) is the maximum number of tape squares read on any work tape by a computation
of M when initiated with an input string of length n.

This definition serves equally well for deterministic and nondeterministic Turing ma
chines. For nondeterministic machines, the maximum is taken over every possible com
putation for each string of length n. Unlike time complexity, we do not assume that the
computations of a Turing machine terminate for every input. The tape heads of a machine

17.2 S p a c e C om plex i ty 533

Tape k

Tape k- 1 Work tapes

Tape 2

Tape 1 Input tape

FICURE 17.2 Turing machine architecture for space complexity.

may remain within a finite length initial segment of the tape even though computation never
terminates.

The space complexity is always greater than 0. Even if a Turing machine does not
take any transitions, the leftmost position on the work tapes must be read to make this
determination. Since space complexity measures only the work tapes, it is possible that
scM(rt) < ” • That is, the space needed for computation may be less than the length of the
input. In Example 17.2.1 we design yet another machine that accepts the palindromes to
demonstrate computations with space complexity 0(log2(n)).

Example 17.2.1

A two-tape Turing machine that accepts the palindromes over {a, b) was constructed in
Example 14.3.1. This machine conforms to the specifications of a machine designed for
space complexity analysis. The input tape is read-only and the tape head reads only the
input string and the blanks on either side of the input. The space complexity of M' is n + 2;
a computation reproduces the input on tape 2 and compares the strings on tapes 1 and 2 by
reading the strings in opposite directions.

We now design a three-tape machine M that accepts the palindromes with sc^ (n) =
0(log2(n)). The work tapes are used as counters and hold the binary representation of a
natural number. The strategy is to use the counters to identify and compare the i th element
of the string with the / th element from the right. If they match, the counter is incremented
and the i + 1st elements are compared. This process continues until a pair of elements is
discovered that do not match or until all elements have been compared. In the former case
the string is rejected, and in the latter it is accepted.

A computation of M with input u of length n consists of the following steps:

1. A single 1 is written in tape position 1 on tape 3.

2. Tape 3 is copied to tape 2.

3. The input tape head is positioned at the leftmost square.

534 C h a p t e r 17 A dd itiona l C om plex ity C la ss e s

Let i be the integer whose binary representation is on tapes 2 and 3.

4. While the number on tape 2 is not 0,

a) Move the tape head on the input tape one square to the right.

b) Decrement the value on tape 2.

5. If the symbol read on the input tape is a blank, halt and accept.

6. The ith symbol of the input is recorded using machine states.

7. The input tape head is moved to the immediate right of the input (tape position n + 1).

8. Tape 3 is copied to tape 2.

9. While the number on tape 2 is not 0,

a) Move the tape head of the input tape one square to the left.

b) Decrement the value on tape 2.

10. If the (/ i—« + l)st symbol matches the ith symbol, the value on tape 3 is incremented,
the tape heads are returned at their initial positions, and the computation continues with
step 2. Otherwise the computation rejects the input.

The operations on tapes 2 and 3 increment and decrement the binary representation of
a natural number. Since n + 1 is the largest number written on either of these tapes, each
tape uses at most flog2 (w + 1) 1 + 2 tape squares. □

An off-line Turing machine is said to be s(n) space-bounded if the maximum number
of tape squares used on a work tape during a computation with an input of length n is at most
max{ 1, j(n)}. The space complexity function scM(n) specifies the maximum space actually
required by a computation of M with input n, while a space bound provides an upper bound
that may not be achieved. As previously noted about space complexity, a Turing machine
may be space-bounded even though it has computations that do not terminate.

The computations of a k + 1-tape Turing machine M with space bound s (n) > n can
be simulated by a machine with one work tape that is also s(n) space-bounded. This differs
from measurement of time complexity where a reduction in the number of tapes produces
an increase in the time complexity. The proof utilizes the construction of a 2k + 1-track
machine from a A:-tape Turing machine presented in Section 8.6. The number of tape
squares scanned by the resulting multitrack machine is exactly the maximum number read
on any work tape of the original multitape machine. This observation is summarized in the
following theorem.

Theorem 17.2.2

Let L be a language accepted by a k + 1-tape Turing machine M with space bound s(n) > n.
Then L is accepted by an s(n) space-bounded Turing machine with one work tape.

As in Theorem 17.2.2, we will frequently use the assumption that a Turing machine has
space complexity scM(«) > n or has a space bound s(n) > n. These conditions are added
to the statement of a theorem to ensure the availability of at least n tape squares. The first

17.3 R e la t ions b e tw e e n S p a c e a n d T im e C om ple x i ty 535

condition implies the second, since the space complexity function is itself a space bound.
The reverse is not true. The Turing machine M described in Example 17.2.1 is s(n) = rt + 2
space-bounded, but its space complexity does not satisfy scM(rt) > rt.

Although our definition of space complexity is based on the computations of multitape
off-line Turing machines, the notion of a space bound is also applicable to one-tape Turing
machines. A one-tape Turing machine is s(n) space-bounded if the maximum number of
tape squares used is at most max{n + 1, s(n)}. With only one tape, the space required to
store the input is included in the bound.

With the assumption that a machine is s(n) > n space-bounded and Theorem 17.2.2
we can, when convenient, restrict our attention to machines with a single work tape. In
fact, any language that is accepted with a space bound s(n) > n is accepted by a one-tape
deterministic Turing machine that satisfies the same space bound (Exercise 9). The argument
uses the same reduction from multitrack to single-track machine.

The reason for the selection of the off-line Turing machine for studying space complex
ity is to have a single Turing machine model suitable for the analysis of all space bounds.
Many interesting languages are accepted by machines with space bounds less than the length
of the input. In particular, the class of languages accepted by log2(w) space-bounded Turing
machines has been extensively studied. Our attention, however, has focused on problems
that may require a significant amount of resources and a restriction that the available space
be at least the size of the input is reasonable for these problems.

17.3 Relations between Space and Time Complexity

The time complexity of a Turing machine can be used to obtain an upper bound on the
space complexity. The number of tape squares that a single tape head can read during a
computation is limited by the number of transitions in the computation.

Theorem 17.3.1

Let M be a + 1-tape Turing machine with time complexity rcM(n) = f (n) . Then ,scM(rt) <

/ («) + I-

Proof. The maximum amount of tape is used when each transition of M moves the heads
on the work tapes to the right on each transition. In this case the maximum number of tape
squares read on any work tape is f (n) + 1 . ■

Obtaining the restriction on time complexity imposed by a known space bound is more
complicated since a machine may read a particular segment of the tape multiple times. A
two-tape machine M is used to demonstrate the bound on the time of a computation of a
deterministic machine that can be obtained from the space complexity of the machine. We
assume that M halts for all input strings since this is a requirement of time complexity. The
generalization from two-tape to k + 1-tape machines is straightforward.

536 C h a p t e r 17 A d d it iona l C om plex ity C la ss e s

Theorem 17.3.2

Let M be a two-tape deterministic Turing machine that halts for all inputs with space bound
s(n). Then fcM(n) < m • s(n) • (n + 2) • fI(n), where m is the number of states and t the

number of tape symbols of M.

Proof. Le t M = (Q, E, T, 5, q0, F) be a two-tape Turing machine with m = card (Q)
and t = card (T). For an input of length n, the space bound restricts the computation of M
to at most s(n) positions on tape 2. Limiting the computation to a finite length segment of
the tape allows us to count the number of distinct machine configurations that M may enter.

The work tape may have any of the t symbols in each position, yielding tsin> possible
configurations. The head on tape 1 may read any of the first n + 2 positions, while the head
on tape 2 may read positions 0 through s(n) — 1. Thus there are s(n) • (n + 2) • possible
combinations of tape configurations and head positions. For any of these, the machine may
be in one of m states, producing a total of m • s(n) • (w + 2) • r*<n) distinct configurations.

The repetition of a configuration by a deterministic machine indicates that the machine
has entered an infinite loop. Since M halts for all computations, the computation must halt
prior to m • s(n) • (n + 2) ■ tsM transitions. ■

For a nondeterministic machine, a terminating computation may have more transitions
than the number of possible configurations. When a configuration is repeated, the compu
tation may select a different transition. In Corollary 17.3.3 we use the limit on the number
of configurations to produce an exponential bound on the number of transitions required
for the acceptance of a string by any space-bounded Turing machine. The bound is given
in exponential form to facilitate the comparison of the amount of space required by deter
ministic and nondeterministic computations in the next section. By Theorem 17.2.2, it is
sufficient to consider Turing machines with one work tape.

Corollary 17.3.3

Let M be a Turing machine with space bound s(n) > n. There is a constant c that depends
on number of states and tape symbols of M such that any string of length n accepted by M
is accepted by a computation with at most cJ(n) transitions.

Proof. Again we let M = (Q, E , F, S, q0, F) be a two-tape Turing machine with
m = card(Q) and t = card(T). By the argument in Theorem 17.3.2, there are m • s(n)-
(n + 2) • t sin) possible configurations for a computation with input of length rt. The deriva
tion of an exponential bound on the number of machine configurations uses the inequality

(n + 2)s(n) < 3*(n),

which holds whenever n < s(n) and s(n) > 0. The exponential bound on the number of
transitions is obtained by replacing the terms in m • s(n) • (n + 2) • rs(n) with functions that
have s(n) as an exponent:

17.3 R e la t ions b e tw e e n S p a c e a n d T im e C om ple x i ty 537

m • j(n) • (« + 2) ■ ts M < m sM ■ a(n) • (« + 2) • tsM

< msM • 3i(n) • / J(n)

= (3 m t)s(n)

= csM

and the constant c is obtained directly from the number of states and tape symbols of the

Turing machine M.
Any computation of M that has more than cs(n> transitions must repeat a configuration.

A computation of this form that accepts a string w can be written

q0 : .BxvB, .BB

Is- qt : B u .v B , x.y

I3- <7(: Bu.vB , x .y

F- qj : B u . v B , x'.y',

where the first string after the semicolon represents tape 1, the second string represents tape
2, and the dot indicates that the tape head is reading the symbol to the immediate right.
Removing the portion of the computation between the repeating configuration produces
another accepting computation

<7o: .Bw B , .BB

f1- qt : Bu.vB , x .y

F- qj : B u . v B , x '.y '

of strictly smaller length. This process can be repeated until a computation of length less
than cI(n) is produced. ■

The upper bound on the number of transitions needed by a Turing machine M to accept
a string can be used to construct a machine that accepts the same language as M, has the
same space complexity, and halts for all input strings. The idea is to add another tape to
M that is used to count the number of transitions. The counter tape is initialized to the
bound provided by Corollary 17.3.3. With each transition, the counter is decremented. The
computation halts and rejects the input if the counter reaches zero. The sole concern with
this construction is to ensure that the counter tape uses no more tape than permitted by the
space bound of M. This can be accomplished by selecting a suitable base b and representing
the numbers on the counter tape in the base b system.

Corollary 17.3.4

Let L be a language accepted by a Turing machine with space bound s(n) > n. Then L is
accepted by a Turing machine M' with space bound s(n) that halts for all inputs.

538 C h a p te r 17 A dd it io n a l C om plex ity C la s s e s

A space bound s(n) is fully space constructible if there is a Turing machine M for
which the computation of every string of length n accesses exactly s(/i) tape squares. If
M is a Turing machine with space complexity scm(n) = s(n) > n, then s(n) is fully space
constructible (Exercise 5). The set of fully space constructible functions includes nr, 2",
and n\ and most common number-theoretic functions. In addition, if 5j(n) and s2(n) are
functions that are fully space constructible, so are s t(n)s2(n), and s2(n)Sl<n>. The
preceding observations allow us to conclude that the function

.2"

s(n) = 22'

is fully space constructible for any number of 2’s in the exponential chain. Thus there is no
limit on the amount of space required for Turing machine computations. Theorem 17.3.5
gives conditions under which increasing the space available for a computation increases the
family of languages that can be accepted.

Theorem 17.3.5

Let J |(n) > n and s2{n) > n be functions from N to N such that

"-*•<» s2(n)

and 5 2 is fully space constructible. Then there is a language L accepted by an s2(n) space-
bounded Turing machine that is not accepted by any Sf(n) space-bounded Turing machine.

Proof. We will construct a five-tape s2(n) space-bounded Turing machine M whose lan
guage is not accepted by any Jj(n) space-bounded machine. The input to M is a string over
{0 ,1) and the computation uses the interpretation of such a string as a two-tape Turing
machine. The computation of M when run with an input string w consists of the simulation
of a computation of two Turing machines. The first configures a tape of M to enforce the
s2(n) space bound. The second simulates the computation of the machine encoded by the
string w, which we will call M „, when run with input w. A diagonalization argument is
given to show that the language of M is not accepted by any Ji(n) space-bounded Turing
machine.

We use the encoding of multitape Turing machines described in Section 14.6, but
we allow any number of 7’s to precede the string 000 that begins the encoding. Thus if
w e {0, /}* is the encoding of a Turing machine, the strings Iw, U w , l l l w , . . . are
encodings of the same machine. With this modification, an enumeration of the strings in
{0,1)* contains an infinite number of encodings of each Turing machine. Any string w that
does not satisfy the requirements for an encoding of a two-tape machine is considered to
represent the two-tape, one-state machine with no transitions.

The computation of M with input w begins by marking the s2(n) — 1st position of
tape 5 with a 1. Since s2(n) is fully space constructible, there is a Turing machine that will
use exactly s2(n) squares when run with input w. The computation of this machine with

17.3 R ela t io n s b e tw e e n S p a c e a n d T im e C om plex ity 539

input w can be simulated on tapes 2 through 4 and the furthest right square accessed in the

computation is recorded on tape 5.
After establishing the tape bound, M simulates the computation of the machine M„,

with input w on tapes 2 through 4. At the beginning of this phase, the machine M can be

pictured as

s 2 (n) - 1
Space bound

State

Work tape S- Simulation
of

Input

Input

During the simulation of M B, the heads on tapes 3 and 5 move synchronously. If the tape
heads attempt to move to the right of the marker on tape 5, the computation of M halts and
rejects the input. Thus M is guaranteed to be s2(n) space-bounded. The machine M accepts
the string input w only if the computation is not terminated by the space bound and Mu,
halts without accepting w.

We now show that L(M) cannot be accepted by any ^ (n) space-bounded Turing
machine. The proof is by contradiction.

Assume that L(M) is accepted by an Si(«) space-bounded Turing machine M'. By
Corollary 17.3.4 we may assume that M' halts for all inputs. Recall that the encoding of
M' occurs an infinite number of times in the enumeration of {0,])*. Since

5,(n)
inf

n-*oo s2(n)
= 0,

there is some rt > length(w) such that i](«) < s2(n). The string w can be padded with
leading 1's to produce an encoding w' of M' with length exactly n.

Now consider the computation of M when run with input w'. Since S|(n) < s2(n), M
has sufficient space to simulate the computation of M'. Thus M accepts w' if, and only if,
M' does not. Consequently, L(M) ^ L(M'). It follows that there is no si(n) space-bounded
machine that can accept L(M). ■

The space constructibility of 2" and 22" combine with Theorem 17.3.5 to guarantee
the existence of a language L that is not accepted by any machine with space bound 2".
The latter bound has a rate of growth greater than any polynomial. Thus there is no Turing
machine with polynomial space complexity that accepts L. Since space complexity provides
a lower bound for time complexity, L cannot be accepted in polynomial time. Consequently,
the membership problem for the language L is intractable.

540 C h a p te r 17 A dd it io n a l C om plex ity C la ss e s

The preceding argument establishes the existence of intractable languages without
identifying a particular language whose space or time complexity is not polynomially
bounded. In Section 17.5 we will show that a question concerning the language described
by a regular expression requires exponential space.

17.4 T-Space, !NT-Space, and Savitch’s Theorem

The classes T and X T contain the languages that can be accepted in polynomial time by
deterministic and nondeterministic Turing machines, respectively. In a similar manner, we
can define classes of languages that are accepted by Turing machines in which the amount
of space required for a computation grows only polynomially with the length of the input.

Definition 17.4.1

A language L is decidable in polynomial space if there is a Turing machine M that accepts
L with 5CM e 0 (/ir), where r is a natural number independent of/i. The family of languages
decidable in polynomial space by a deterministic Turing machine is denoted T-Space.
Similarly, the family of languages decidable in polynomial space by a nondeterministic
Turing machine is denoted XT-Space.

There are some obvious inclusions concerning these new complexity classes. Clearly,
T-Space C XT-Space. Moreover, by Theorem 17.3.1, T c T-Space and X T c XT-Space.
The surprising relation is that between T-Space and XT-Space. Whether T is a proper
subset of XT is an open question that has defied all attempts at a solution since it was
posed in the 1960s. The answer to the analogous question for space complexity is known,
T-Space= XT-Space. The fundamental difference between time and space complexity is
that space can be reused during a computation.

We will show that every language accepted by a nondeterministic s(n) space-bounded
Turing machine is accepted deterministically with an 0(.s(«)2) space bound. It follows
immediately that a language accepted in polynomial space by a nondeterministic Turing
machine is also accepted in polynomial space by a deterministic machine. As usual, we
will limit ourselves to the consideration of two-tape machines.

The construction of an equivalent deterministic machine from a nondeterministic Tur
ing machine must specify a method for systematically examining all alternative com
putations of the nondeterministic machine. We begin by considering the potential space
requirements of a standard approach for constructing the alternative computations of a non
deterministic Turing machine for an input string to. The critical feature for the space analysis
of this approach is the need to store each machine configuration in the current computa
tion to be able to generate successive computations. The configurations are maintained and
accessed through a stack, producing a depth-first analysis of the nondeterministic compu
tations.

17.4 3>-Space, J ^ P -S p a c e , a n d S av i tc h ’s T h e o r e m 541

L etM = (Q, £ , T, 8, q0, F) be a two-tape Turing machine with space bound s(n).

A computation of M with input w has the form

q0 : .Bw B , .BB

I1- : Bu.vB , x .y

I- qj : B u . v B , x ' . y .

If there is no transition for machine configuration q j : Bu'.v'B, x '.y ' and qj is not an accept
ing state, or all applicable transitions have already been examined, the computation must
“back up" to <7, : Bu.vB , x .y to try alternative transitions. A stack of machine configura
tions provides the last-in first-out strategy needed to test all the alternative computations.
Two questions must be answered to determine the space complexity of this strategy: “How
much space is required for the representation of a machine configuration?" and “What is
the maximum number of configurations that may be stored?"

The representation of a configuration of a two-tape Turing machine with space bound
s(n) requires encoding the state of the machine, the location of the tape head on the read
only tape, the location of the tape head on the work tape, and the first s (n) tape squares
on the work tape. For an input string of length n , the space required is Pog2 (car<7(Q))]
squares for the state, ["log2(« -I- 2) 1 squares for the input tape head position, flog2 (s(/i))l
squares for the work tape head position, and s (n) squares for the work tape. Thus the entire
configuration can be encoded in O (s (n)) space.

The answer to the second question shows that this straightforward approach to trans
forming a nondeterministic machine into a deterministic machine will not produce the de
sired bound on the space complexity of the deterministic computation. By Theorem 17.3.2,
the number of configurations that need to be stored on the stack may grow exponentially
with s (n) . Another approach is needed.

The critical observation for effectively reusing space is that a computation of k tran
sitions,

<7o : .B w B , .BB

I1- qj : Bu.vB , x . y ,

can be broken into two computations

q0 : .B w B , .BB

^ qj : Bu'.v 'B, x '.y '

t1- qt : Bu .vB , x .y ,

each with k /2 transitions. If the two computations are done sequentially, the space used in
the first computation will be available for the second.

We will employ this memory reuse strategy to determine if a string w is accepted by
a two-tape nondeterministic Turing machine M = (Q, £ , f , 8, q0, F) with space bound

542 C h a p te r 17 A d d itiona l C om plex ity C la s s e s

s(n). Let c f h c f2, . . c f p be a listing of all possible machine configurations with w on the
input tape, where c f i is the representation of the initial configuration q0 : .B w B , .BB. The
space bound s(n) ensures us that the number of configurations is finite (Theorem 17.3.2).

The algorithm uses a divide-and-conquer technique to determine if a configuration c f 2
is derivable from a configuration e/} in k or fewer transitions. To answer this question, it
suffices to find a configuration c / (, such that

1. c f p- c/l, in k /2 transitions or fewer, and

2. cfi I1- cfj2 in k /2 transitions or fewer.

Similarly, to discover if cfj p- c/i, in k /2 transitions or fewer, it suffices to find configuration
c f such that

1. cfj p- c/;4 in k / 4 transitions or fewer, and

2. c f p- c f in k / 4 transitions or fewer.

The procedure Derive in Algorithm 17.4.4 uses recursion to perform this search. The
recursion tree associated with a call to D erive(cfj, c f i2, k) is pictured in Figure 17.3. The
node [m , m] represents a call to determine if cfj is derivable from cfj . As illustrated in the
figure, the evaluation of Derive(cf , c f t , k) has at most flog2(fc)l nested recursive calls.
The preceding observations are now used to produce a space bound for the deterministic
algorithm that accepts the language defined by a nondeterministic machine.

Theorem 17.4.2 (Savitch’s Theorem)

Let M be a two-tape nondeterministic Turing machine with space bound s(n). Then L(M)
is accepted by a deterministic Turing machine with space bound 0 (s (n)2).

Proof. Algorithm 17.4.4 describes a recursive search for a derivation o f string w. By
Corollary 17.3.3, every string w € L(M) is accepted by a computation with at most cJ(n)
transitions. The machine configurations are sequentially examined and the recursive search
procedure Derive is called for each accepting configuration of M in step 3.2. The parameters
in the call are the initial configuration of M, an accepting configuration, and the transition
bound cs(n>. If one of the calls to Derive discovers a derivation, the algorithm halts and
accepts the string. If all of the calls fail, then w is not derivable and the string is rejected.

All that remains is to determine the amount of memory required for this approach. On
a recursive call, the calling procedure Derive stores an activation record that contains the
values of its parameters and local variables. When the call is completed, activation record
is used to restore the values. The activation record for Derive consists of the two machine
configurations and the integral valued transition bound.

A Turing machine implementation of this algorithm must store the activation records
on a tape. As previously noted, a machine configuration requires only 0 (j(/ i)) tape squares
and consequently the space required by an activation record is also 0(s(n)). The maximum
number of nested calls is

riog2(cJ(">)l = [j (h) log2(c)l € 0 (j (/i)).

Thus the total space for the 0 (s(n)) activation records is 0 (s (n)2).

17.4 5>-Space, JsTCP-Space, a n d S av i tch ’s T h e o r e m 543

Size of
Computation

[1.2] k

[1.4] [4,3] [3,5] [5,2] k/4

[1,6] [6,4] [4,7] [7,3] [3,8] [8,5] [5.9] [9,2] k/8

[1, (k/2) + 2] 1

FICURE 17.3 Recursion tree for Deriveicf^, cfi2, k).

The bound on the space complexity in Theorem 17.4.2 can be used to show that T-Space
= JvflP-Space.

Corollary 17.4.3

If L is in XP-Space, then L is in T-Space.

Proof. If L is in KT-Space, it is accepted by a nondeterministic Turing machine with a
polynomial space bound p(n). By Theorem 17.4.2, L is accepted by a deterministic Turing
machine with space bound O (p(n)2) and consequently is in 9-Space. ■

Algorithm 17.4.4
Recursive Simulation o f Nondeterministic Turing Machine

input: Turing Machine M = (Q, E , T, S, qo,F)
string w € E*
configurations c f x, c f2, . . c f p of M
constant c = 3 • card{Q) • card(T)
space bound s(n)

1. fo u n d = false
2. / = 1
3. while not fo u n d and i < p do (check all accepting configurations)

3.1 i := / + 1

544 C h a p te r 17 A dd it io n a l C om plex ity C la s s e s

FIGURE 17.4 Relation of CP-Space to other complexity classes.

3.2 if cfj is an accepting configuration of M
then f o u n d = Derive(cf |, cfj, csM)

end while
4. if f o u n d then accept else reject

Derive(cfs, cfe, k)\
begin

Derive = false
if k = 0 and cfs = cfe then Derive = true
if k = 1 and cfs I- cfe then Derive = true
if k > 1 then do

i = 1
while not Derive and i < p do (check all intermediate configurations)

i i + 1
Derive = Derive(cfs, c fj, |7:/2D) and Derive(cfj, cfe, [k/2 \))

end while
end if

end.

Figure 17.4 shows the relationships between T-Space and the other complexity classes.
It is not known whether T-Space = N T or T-Space = T. However, it is believed that all of
the inclusions in Figure 17.4 are proper.

17.5 IP-Space Completeness

The notion of T-Space completeness is introduced to characterize the universal problems of
the class T-Space and to provide a method for determining which, if any, o f the inclusions
y C T-Space or XT c T-Space are equalities.

17.5 T - S p a c e C o m p le t e n e s s 545

A language Q is called T-Space hard if for every L e T-Space, L is reducible to Q in
polynomial time. A T-Space hard language that is also in T-Space is called T-Space

complete.

Note that the reductions in the definition of T-Space completeness have polynomial
time, not space constraints. This requirement ensures that the discovery of a polynomial
time solution to a T-Space complete problem implies T-Space = T.

Theorem 17.5.2

Let Q be a T-Space complete language. Then

i) If Q is in T, T-Space = T.

ii) If Q is in X T, T-Space = XT.

The proof of Theorem 17.5.2 follows from the reducibility of all languages in T-Space
to a T-Space complete language and the now familiar process of obtaining a polynomial
time bound on the sequential execution of two machines with polynomial-time bounds.
Theorem 17.5.2 shows that finding a T-Space complete language in either T or X T answers
the question of the proper inclusion of these classes in T-Space.

The remainder of this section is devoted to showing that the decision problem defined
by

Input: Regular expression a over an alphabet E

Output: yes; if a ^ Z*

no; otherwise

is T-Space complete. Two steps are required to prove that this problem is T-Space complete.
First, we must design a string representation for regular expressions and a Turing machine
that solves the problem in polynomial space. That is, the Turing machine accepts a string if,
and only if, it is the representation of a regular expression whose language does not consist
of all strings over its alphabet. This step is done at the level of the acceptance of strings and
is left as an exercise. The language consisting of representations of regular expressions that
do not describe all strings will be denoted Lreq.

The second step is to show that every language in T-Space is reducible to LREG in
polynomial time. The proof employs the strategy utilized in the proof of NP-completeness
of the Satisfiability Problem. To show that a language L in T-Space is reducible to L ^ , we
transform computations of a space-bounded Turing machine M that accepts L into regular
expressions. For each string w € EjJ,, we construct a regular expression a w such that M
accepts w if, and only if, a w does not contain all strings over its alphabet.

Let M = (Q, £ m, r M , S, q0, F) be a one-tape deterministic Turing machine with
space bound s(n). The alphabets of M are subscripted to differentiate them from the alphabet
of the regular expression that we will build from M and w. Without loss o f generality, we
assume that there are no transitions from the accepting states of M.

Definition 17.5.1

546 C h a p te r 17 A d d itiona l C om plex ity C la s s e s

First, we define an alphabet E that allows us to represent computations o f M as strings
over E . The alphabet contains ordered pairs of the form [<?, , a] and [*, a] for each e Qand
a € Tm. In addition to the ordered pairs, E contains the symbol K Intuitively, an ordered
pair [qj, a] represents a tape position containing an a that is being scanned by the tape head.
The asterisk in the first position, [*, a], indicates that the tape head is not scanning this
symbol. A sequence of s{n) symbols can be used to represent any machine configuration
of a computation of the machine M with an input of length n.

The initial configuration of M with input w = a x . . . a„ is represented by the string

[<?o- #][*> a2l ■ ■ ■ [*•

where the exponent represents the concatenation of s(n) — n — 1 copies o f [*, B}. The
addition of the blanks following the input produces a representation of s(n) tape squares,
which is an upper bound on the space required by a computation. We will represent every
configuration with exactly s(n) symbols. The representation of a computation of M consists
of a sequence of machine configurations separated by the symbol K

Now we design a regular expression a w that contains all strings over E that are not the
representation of a computation that accepts w. If we are successful in constructing such a
regular expression,

a w ^ £* if, and only if, there is a computation of M that accepts w

if, and only if, w € L(M)

if, and only if, u ie L .

Consequently, an algorithm that decides LREG will be able to determine whether a string w
is in L. The construction of a w utilizes the space bound on the computation of M.

Three conditions must be satisfied for a string over E to be the representation of an
accepting computation of w:

1. The first s(n) symbols must represent the initial configuration of M with input w.

2. The symbol h separates configurations and each configuration must follow from the
preceding configuration by a transition of M.

3. The final configuration must have an accepting state.

For each of the preceding conditions, we construct a regular expression that contains strings
over E that do not satisfy the condition. The union of these expressions defines the set of
all strings that are not the representation of an accepting computation of M with input w.

A string does not satisfy the first condition if its first symbol is not [q0, B], or if its
first symbol matches [q0, B] but its second symbol is not [*, aj], or if its first two symbols
match but its third is not [*, a2], and so on. Exactly s(n) statements of the preceding form
describe the strings that do not match the initial configuration. The language of the regular
expression

17.5 !P-Space C o m p le t e n e s s 547

«l = (E - { [9 0.

U fo0, 5](E - {[*, fl,]})E*

U [q0,

u [<?(>' S J[*’ a l i - ■ ■ [*• a n - l K S " {[*' a J)) £ *

u [<?0- «2] • • ■ [*- «/■-][*. - {[*, B]})S*

U [q& o2] . . . [*, «„-][*> aj[*> B f (B)_n-2(S - {[*, B]))£*

generates these strings. The notation (S — A) is used as an abbreviation of the regular
expression for the subset of the alphabet obtained by deleting the elements in A.

The regular expression

a 3 = (E — {[<?,-, a] | a G TM, qt £ F})’

generates every string that does not contain a symbol with an accepting state.
The second condition requires that successive configurations be obtained as prescribed

by a transition of M. Since each machine configuration has exactly s(n) symbols, we
construct a regular expression a 2 in which symbols s(n) + 1 tape positions apart do not
agree with the result of a transition. A transition S(q,-, a) = [b, qj, /?] that specifies a move
to the right produces a substring in the representation

••• [* , x][<7 ,, «][=*=, x] ■ ■ ■ I------ [*, *][*, b][qj, x] ■ ■ ■ ,

in which [qh a\ and [*, b] are separated by exactly s(n) symbols.
For each transition S(qh a) = [b, q j , /?], the regular expression

(J E*[<7,, a][*. X) (E J<n>(E - [qp x])E* U E I<n- ,)(E - [*, J>])E*)
jr€rM

generates strings that differ from the result of the transition. A string produced by this
expression has an occurrence of [qh a][*. x] and symbols other than [*, b][q; , x] s(n) + 1

positions later. Consequently, a string matching this condition cannot be the representation
of a computation of M. In a similar manner, a regular expression is obtained for each
transition that specifies a move to the left. The regular expression a 3 is the union of the
expressions for each transition.

The transformation from space-bounded standard Turing machine to regular expression
is used to show that L req is T-Space complete. Let L be any language in T-Space. Then
L is accepted by a standard Turing machine M with a polynomial-space bound p(n) with
no transitions from the accepting states (Exercise 10). For a string w of length «, we must
show that the size of the resulting regular expression grows polynomially in n. The regular
expression ct\ is the union of p in) subexpressions, each of size O (p(n)). The size of the
subexpressions in a 2 is also Q(p(n)) and the number of subexpressions is independent of

548 C h a p te r 17 A d d itiona l C om plex ity C la s s e s

the length of the input. Finally, the size of <*3 is a constant determined by the number of states
and tape symbols of M. Thus the size of a = ctx U a 2 U grows only polynomially with the
length of a string w. The preceding argument demonstrates that L req is hard for the class
T-Space. Combining this with a polynomial-space decision procedure for membership in

Lreg> we conclude:

Theorem 17.5.3

The language LreG is T-Space complete.

Because of the inclusion of N T in (P-Space, every T-Space complete problem is also
NP-hard. Thus Lr£G is an example of an NP-hard problem for which there is no known
nondeterministic polynomial-time solution.

17.6 An Intractable Problem

One measure of the importance of the class of NP-complete problems is the frequency with
which they are encountered in diverse problem domains and applications. Even though there
is no known polynomial-time algorithm that solves these problems, we cannot conclude
that they are not in T. Generally speaking, showing that a language or a problem is in a
complexity class is more easily accomplished than showing that it is outside of a class.
Consider the ease in which we have been able to use a “guess-and-check" strategy to
demonstrate that the Satisfiability Problem, the Hamiltonian Circuit Problem, and the Vertex
Cover Problem are in NT. As of this time, no one has been able to prove that any of these
problems are not in the class T.

The reason for the difference in difficulty is that producing one algorithm is sufficient
to show that a problem is in 3* or or (P-Space. Proving that a problem is not in one
of these classes requires producing a lower bound on the time or space complexity of all
algorithms that solve the problem. In this section we will see that a variation o f the problem
of recognizing LREG is intractable, that is, that it is provably outside of "P. In fact, we show
that it is outside of T-Space and consequently not in either 7 or NT.

The family of regular expressions with squaring adds one more construction to the
standard definition of regular expression given in Chapter 2. The regular expressions with
squaring over an alphabet E are defined recursively from 0, X, and a, for every a e £ . If
u and v are regular expressions with squaring over E , then so are (u U v), (uv), (u*), and
(u2). As before, we can use associativity and operator precedence to reduce the number of
parentheses.

Since the expression u2 designates the same language as uu, the addition of squaring
does not increase the languages that can be represented by regular expressions. However,
the availability of the squaring operator reduces the length of expressions needed to describe
a language. The squaring operation allows us to write an expression for the concatenation
of 2" copies of a regular expression u in O(n) symbols,

(• • • ((«)2)2) • • -)2,

17 .6 An In t r a c ta b le P r o b le m 549

applying the squaring operation n times. Since complexity relates input length to time and
space, a more compact representation of input may be accompanied by an increase in the

complexity measures.
We will show that the problem of deciding whether the language of a regular expression

with squaring does not contain all strings over its alphabet is not in CP-Space. This is the
same problem considered in the previous section; the sole difference is the presence of
the squaring operator in regular expressions. The proof uses the representation of Turing
machine computations as regular expressions, this time with squaring, developed in the
preceding section.

Let L be a language accepted by a Turing machine with space bound 2" but not by
any Turing machine with space bound 2n^ . Theorem 17.5.3 assures us of the existence of
such a language. Let M be a one-tape deterministic Turing machine with space complexity
ic M(«) == 2" that accepts L. As in the previous section, the computations of M can be
represented as regular expressions over the alphabet £ = {[<?,•, a], [*, a]. I- | e Q, a € T}.

For each string u> = a i . . . an in ££,, we define a regular expression a w whose language
is all strings that do not represent a computation of M that accepts w. The construction of
a w uses the same approach as in Section 17.5, but we now use squaring to ensure that the
length of a w grows linearly with the length of w.

In Section 17.5, each machine configuration encoded in a w had s(n) tape squares where
s(n) was the space bound of the machine M. Here we choose 2" 4- n + 1 tape positions
for the simplicity of the numeric manipulation. The string representation of the initial
configuration of the computation of M with input w consists of

[?o . #] [* . « iK * . a2] • • ■ [* , a„]

followed by 2" copies of [*, B}. The squaring operation lets us describe this string with a
regular expression of length O(n). By examination, we see that subexpressions a], a 2, and
a j require only O(n) space when squaring is used to represent the exponential repetition of
[*, fl] and £ . Consequently, the length of a w is O(n).

Let LR E G 2 denote the set of all regular expressions with squaring of the form a w such
that the language of a w £*.

Theorem 17.6.1

The language L r£ G 2 is intractable.

Proof. Assume that membership in LR £ G 2 *s decided by a polynomially space-bounded
Turing machine M'. Combining the construction of a w with the computation o f M' produces
the following sequence operations:

1. Input: a string w e DjJ, of length n

2. Transformation: construction of the regular expression a w

3. Computation of M': determination if a w ^ E*

4. Result: w e L if, and only if, a w is accepted by M'.

550 C h a p te r 17 A d d itiona l C om plex ity C la s s e s

The entire process is completed in polynomial space and accepts the language L(M). This
is a contradiction since L(M) is not accepted by any Turing machine with space complexity
less than 2"/2. ■

The language L reG2 is clearly decidable. A simple strategy is to expand the occurrences
of the squares in a w to produce a standard regular expression for the same language.
By Exercise 13, the question for the resulting expression can be answered in space that
is polynomial to its length. Unfortunately, the space of the latter expression may grow
exponentially with the length of w.

Exercises

1. Let Q be a language reducible to a language L in polynomial time. Prove that Q is
reducible to L in polynomial time.

2. Design a two-tape Turing machine with space complexity 0(log2(n)) that accepts
{a'b1 | i > 0}.

3. Let L be a language that is accepted by a Turing machine M whose computations
with input of length n require at most s(n) space. Note that we do not require that
all computations of M terminate. Prove that L is recursive.

4. Show that T-Space is closed under union and complementation.

5. For each space bound, design a Turing machine that shows that the function is fully
space constructible:

a) s(n) = n

b) s(n) = 3n

c) s(n) = n2

d) s(n) = 2"

6. Let M be a Turing machine with space complexity acM(n) = f (n) > n . Recall that
this means that there is some input of length n for which M uses exactly s c m (m) tape
squares. Show that f (n) is fully space constructible.

*7. Design a one-tape deterministic Turing machine with input alphabet {7} that uses
exactly 2" tape squares for input of length n > 1.

8. Let s(n) be a fully space-constructible function with s (n) > n and s(0) > 0. Show that
there is a one-tape Turing machine that uses s(n) tape squares for any input of length
n.

9. Let M be an s(n) space-bounded Turing machine with s(n) > n. Prove that there is a
one-tape s(n) space-bounded Turing machine that accepts L(M).

B ib liog raph ic N o te s 551

10. Let L be a language in T-Space. Prove that there is a one-tape Turing machine with
no transitions from the accepting states that accepts L whose computations have a
polynomial-space bound.

11. Prove that the set of languages accepted by Turing machines with an s(n) = log2(n)
space bound is a proper subset of languages accepted with an s(n) = n space bound.

* 12. Is the set of languages accepted by Turing machines with an s(n) = nr space bound
a proper subset of languages accepted with a s(n) = 2nr space bound? Prove your
answer.

13. Show that the language L req is in T-Space. Hint: Use the equivalence of T-Space and
XT-Space and design a nondeterministic polynomial space-bounded Turing machine
that decides membership in Lreq.

14. Prove Theorem 17.5.2.

15. Show that any T-Space complete language is NP-hard.

Bibliographic Notes
t

The existence of languages in XT3, given T ^ XT, was proved by Ladner [1975]. Karp
[1972] provided the first proofs of T-Space completeness. The presentation of space com
plexity follows that given in Hopcroft and Ullman [1979]. Additional results on space
complexity can be found in that book and in Papdimitriou [1994]. The intractability of
determining the language of extended regular expressions is from Meyer and Stockmeyer
[1973],

PART V

Deterministic Parsing

P rogramming language definition and program compilation provide a direct link be
tween the theory of formal languages and computer science applications. Compiling a

program is a multistep process in which source code written in a high-level programming
language is analyzed and transformed into executable machine or assembly language code.
The two initial steps of the process, lexical analysis and parsing, check the syntactic cor
rectness of the source code. Lexical analysis reads the characters in the source code and
constructs a sequence of tokens (reserved word, identifiers, special symbols, and the like)
of the programming language. A parser then determines whether the resulting token string
satisfies the syntactic requirements specified in the programming language definition.

In 1960, ALGOL 60 became the first programming language to have its syntax formally
defined using the rules of a grammar. Since that time, grammars have been the primary
tool for defining the syntax of programming languages. The Backus-Naur form grammar
for the programming language Java given in Appendix III defines the set o f syntactically
correct Java programs, but how can we determine whether a sequence of Java source code
constitutes a syntactically correct program? The syntax is correct if the source code is
derivable from the variable (CompilationUnit) using the rules of the grammar. To answer
a question about the syntactic correctness of a Java program, or that of a program written
in any language defined by a context-free grammar, parsing algorithms must be designed
to generate derivations for strings in the language of a grammar. When a string is not in the
language, these procedures should discover that no derivation exists.

In Chapter 18 we demonstrate the feasibility of algorithmic syntax checking. Both top-
down and bottom-up parsing are introduced via searching a graph of possible derivations.
The parsers perform an exhaustive search; the top-down parser examines all permissible
rule applications and the bottom-up parser performs all possible reductions. In either case,
the algorithms have the potential of examining many extraneous derivations. While these
algorithms demonstrate the feasibility of algorithmic syntax analysis, their inefficiency
makes them unacceptable for commercial compilers or interpreters.

In Chapters 19 and 20, we introduce two families of context-free grammars that can be
parsed efficiently. To ensure the selection of the appropriate action, the parsers “look ahead”

in the string being analyzed. A parser is deterministic if at each step there is at most one rule
that can successfully extend the current derivation. LL(fc) grammars permit deterministic
top-down parsing with a k symbol lookahead. LR(fc) parsers use a finite automaton and k
symbol lookahead to select a reduction or a shift in a bottom-up parse. The syntax of most
modem programming languages is defined by LL or LR grammars, or variations of these,
to permit efficient parsing. Throughout the introduction to parsing, we will assume that
the grammars are unambiguous. This is a reasonable assumption for any grammar used to
define a programming language.

CHAPTER 1 8

Parsing: An Introduction

In this chapter we introduce two simple parsing algorithms to demonstrate the properties of
top-down and bottom-up parsing. These algorithms are based on a breadth-first search of
a graph whose paths represent derivations of the grammar. The input to a parser is a string
over the alphabet of the grammar and the desired result is a derivation of the input string,
if the string is in the language of the grammar. If not, the parser should indicate this by
determining that no derivation is possible.

Top-down parsing begins with the start symbol of the grammar and systematically

applies rules in an attempt to generate the input string. Bottom-up parsing reverses the
procedure; it begins with the string itself and applies rules “backwards" in an attempt to
produce the start symbol. These simple algorithms demonstrate the potential effect of the
form of the rules on parsing. With an arbitrary grammar, the searches may not terminate.
However, using a Greibach normal form grammar ensures that the top-down algorithm will
halt and a noncontracting grammar without chain rules is sufficient to ensure the termination
of the bottom-up parser.

Grammars that define programming languages require additional conditions on the
rules to efficiently parse the strings of the language. Grammars specifically designed for
efficient parsing are presented in Chapters 19 and 20.

18.1 The Graph o f a Grammar

In this intuitive introduction, top-down parsing is described as searching a graph of deriva
tions. Since any derivable terminal string has a leftmost derivation (Theorem 3.5.1), we
will limit the search to leftmost derivations. If the grammar is unambiguous, the derivations

555

556 C h a p te r 18 P ars in g : An In t r o d u c t io n

form a tree whose root is the start symbol of the grammar. It is important to note that for
any interesting grammar, there are infinitely many derivations and the graph has infinitely

many nodes.

Definition 18.1.1

Let G = (V, E , P, S) be a context-free grammar. The graph of the gram m ar G, denoted
g(G), is the labeled directed graph where the nodes and arcs are defined by

i) N = {w e (V U E)* | S = ► w}

ii) A = {[i», u) ', i t] € N x N x N |u = > M) b y application of rule k}.

The nodes of the graph are the left sentential forms of the grammar, the strings derivable
from the start symbol by a leftmost derivation. A string w is adjacent to v in g(G) if v => tu,

that is, if w can be obtained from v by one leftmost rule application. The rules o f the grammar
are assigned numbers, which are used as the labels on the arcs of the graph and in the
subsequent parsing algorithms. If the application of rule k is used to create an arc from v to
w, the arc is labeled by k. A path from 5 to uj in g(G) represents a leftmost derivation of
w from S.

The graph of a grammar is defined for an arbitrary context-free grammar. If the grammar
is unambiguous, the resulting graph is a tree with the start symbol as the root. Since
grammars used for deterministic parsing are unambiguous, we will feel free to use the
terminology of trees and tree searching when describing the parsing strategies. In particular,
we will call g(G) the tree of derivations of the grammar G.

With the representation of derivations as paths in g(G), the problem of deciding whether
a string w is in the language of G is reduced to that of finding a path from S to w in g(G).
The representation of derivations as paths in a graph is illustrated in Figure 18.1 using the
grammar AE (additive expressions):

1. S -> A

2 . A ^ T \ A + T

3. A —> A -f- T

4. r - »

5. T -> (A).

The start symbol of AE is 5 and the language consists of arithmetic expressions constructed
from the operator + , the single operand b, and parentheses. Strings generated by AE include
b, ((b)), (b + b), and (b) + b. The grammar AE will be used throughout this chapter to
demonstrate the properties of the parsing algorithms.

The number of rules that can be applied to the leftmost variable of a sentential form
determines the number of children of the node. The presence of either direct or indirect
recursion produces infinitely many nodes in the tree. Repeated applications of the directly
recursive A rule and the indirectly recursive T rules generate arbitrarily long paths in the
tree in Figure 18.1.

18 .2 A T op-D ow n P a rs e r 557

Level 0

(A)

A+T - T+T

A+T+T-

(T)

(A+T)

b+T

(A)+T

T+T+T

■(b)

■ ((A))

■ (T+T)

■ (A+T+T)

■ b+b

■ b+(A)

(T)+T

' (A+T)+T

■ b+T+T

' (A)+T+T

■ T+T+T+T

'A+T+T+T+T

FIGURE 18.1 Tree of derivations o f AE.

Standard tree searching techniques are used to examine the derivations in the tree of
derivations. In tree searching terminology, the tree of derivations is called an implicit tree
since its nodes have not been constructed prior to the invocation of the search algorithm.
The search consists of building the tree as the paths are examined. An important feature of
the algorithm is to explicitly construct as little of the implicit tree as possible.

18.2 A Top-Down Parser

Paths in the tree of derivations of a grammar represent leftmost derivations of the grammar.
Our top-down parsing algorithm employs a breadth-first strategy to search the implicit tree
for derivations of an input string. The algorithm accepts the input if a derivation of the string
is discovered and rejects the input if the parser determines that no derivation is possible.

To limit the amount of searching required, the parser will use prefix matching to identify
sentential forms that cannot appear in a derivation of the input string. The terminal prefix
of a string is the substring occurring before the leftmost variable. That is, x is the terminal
prefix of x B y if B is the first variable in the string. When a terminal prefix x of a string

558 C h a p te r 18 P a rs ing : An In t ro d u c t io n

x B y does not match a prefix of the input string, the input string is not derivable from x By.
We will call such a string a dead end and omit its descendants from the search.

The parser builds a search tree T with pointers from a child node to its parent (parent
pointers). The search tree is the portion of the implicit tree that is explicitly examined during
the parse. The rules of the grammar are numbered and children of a node are added to the
tree according to the ordering of the rules. The process of generating the successors of a
node and adding them to the search tree is called expanding the node.

A queue is used to implement the first-in, first-out memory management strategy
required for a breadth-first tree traversal. The queue Q is maintained by three functions:
INSERT(x, Q) places the string x at the rear of the queue, REMOVE(Q) returns the item at
the front and deletes it from the queue, and EMPTY(Q) is a Boolean function that returns
true if the queue is empty, false otherwise.

Algorithm 18.2.1
Breadth-First Top-Down Parser

input: context-free grammar G = (V, E , P, 5)
string p e E *

data structure: queue Q

1. initialize T with root 5
INSERT(S , Q)

2. repeat
2.1. q := REMOVE(Q) (node to be expanded)
2.2. i := 0 (number of last rule used)
2.3. dont := fa ls e (Boolean indicator o f expansion completion)
Let q = uA v where A is the leftmost variable in q.

2.4. repeat
2.4.1. if there is no A rule numbered greater than i then done := true
2.4.2. if not done then

Let A -* w be the first A rule with number greater than i and
let j be the number of this rule.
2.4.2.1. if uw v £ E* and the terminal prefix of u w v matches

a prefix of p then
2.4.2.1.1. INSERT(uwv, Q)
2.4.2.1.2. Add node uw v to T. Set a pointer from

uw v to q.
end if

end if
2.4.3. i := j

until done or p = uw v
until EMPTY (Q) or p = uwv

3. if p = uw v then accept else reject

18.2 A T op-D ow n P a r s e r 559

The search tree is initialized with root 5 since a top-down algorithm attempts to find
a derivation of an input string p from 5. The algorithm consists of two nested repeat-until
loops. The outer loop selects the first node q in the queue for expansion. The inner loop,
step 2.4, generates the successors of q in the order specified by the numbering of the rules.
There are three possibilities for each string uw v generated in the expansion of a string uAv:
it may be a terminal string, it may be a dead end, or it may be a sentential form that requires
further expansion.

If uw v is a terminal string, it represents the completion of a derivation and is not added
to either the tree or the queue. The until statements check if it is the input string p. If so,
the computatioa halts and accepts the string. Otherwise, the expansion of u A w continues
with the generation of the next child.

The condition in step 2.4.2.1 checks for a prefix match. If the string is a dead end, it
is not added to the queue or the tree. Strings that satisfy the prefix match are added to the
queue and the tree in steps 2.4.2.1.1 and 2.4.2.1.1. In either of these two cases, the expansion
continues with the generation of the next child of uAv.

The cycle of node selection and expansion is repeated until the input string is generated
or the queue is emptied. The latter occurs only when all possible derivations have been
examined and have failed. The first-in, first-out ordering maintained by the queue produces
a breadth-first construction of the search tree.

The first five levels of the tree of derivations of the grammar AE are shown in Fig
ure 18.1. The parser evaluates the nodes of this tree in a level-by-level manner. The search
tree constructed by the parse of (b + b) is given in Figure 18.2. Sentential forms that are
generated but not added to the search tree are indicated by dotted lines.

The comparison in step 2.4.2.1 checks whether the terminal prefix of the sentential
form generated by the parser matches the input string. To obtain the information required
for the match, the parser “reads” the input string as it builds derivations. The parser scans
the input string in a left-to-right manner up to the leftmost variable in the derived sentential
form. The growth of the terminal prefix causes the parser to read the entire input string. The
derivation of (b + b) exhibits the correspondence between the initial segment of the string
scanned by the parser and the terminal prefix of the derived string:

Derivation Input Read by Parser

S => A A.
=> T A

=*(A) (
=> (A + T) (
=> (7- + T) (
=*(b + T) (b +
=> (b + b) (b + b)

560 C h a p t e r 18 P a rs ing : An In t ro d u c t io n

A + T

(b + T)--- (b + b)

m + T)

(T+ T+T)
(A + T+ T+ T)

T+T

A + T+T

b + T

<A) + T
.__(b) + T

(T)+T --- ((A))+ r

■T + T + T

(A + T) + T

b + T+T

(A) + T+T

A + T+ T+ T T+T+T+T"

A + T+ T+ T+ T

(T+ T) + T
(A + T+T) + T

(T) +T+T
(A + T) + T+T

b+T + T + T

(A) + T + T + T

T + T + T + T + T
A + T + T + T + T + T

FIGURE 18.2 A top-down parse of (b + b).

A parser must not only be able to generate derivations for strings in the language, it
must also determine when strings are not in the language. The bottom branch of the search
tree in Figure 18.2 can potentially grow forever. The direct recursion of the rule A -»■ A + T
builds strings with any number of + T ’s as a suffix. In the search for a derivation of a string
not in the language, the directly recursive A rule will never generate a prefix capable of
terminating the search.

It may be argued that the string A + T + T cannot lead to a derivation of (b + b)
and should be declared a dead end. It is true that the presence of two + ’s guarantees that
no sequence of rule applications can transform A + T + T to (b + b). However, such a
determination requires a knowledge of the input string beyond the initial segment that has
been scanned by the parser. The parsers in Chapter 19 will “look ahead” in the string,
scanning beyond the terminal prefix generated by the parse, to aid in the selection of the
subsequent action to be taken by the parser.

The possibility of entering an unending computation is caused by the presence of rules
whose application does not increase the length of the terminal prefix. One approach to
“fixing” Algorithm 18.2.1 is to use only grammars that do not allow this to happen. In
Chapter 4 we showed that any context-free language is generated by a grammar in Greibach
normal form. Every rule application in a Greibach normal form grammar either adds a
terminal to the prefix of the derived string or completes a derivation. This is sufficient to

18.3 R e d u c t io n s a n d B o t to m -U p P a r s in g 561

ensure that Algorithm 18.2.1 will halt for all input strings, since the explicit search tree will
have a depth that is limited by the length of the input string.

Although the breadth-first algorithm succeeds in constructing a derivation for any
string in the language, the practical application of this approach has several shortcomings.
Lengthy derivations and grammars with a large number of rules cause the size of the
search tree to increase rapidly. The exponential growth of the search tree is not limited
to parsing algorithms but is a general property of breadth-first tree searches. If the grammar
can be designed to utilize the prefix matching condition quickly or if other conditions
can be developed to find dead ends in the search, the combinatorial problems associated
with growth of the search tree may be delayed but not avoided. Better strategies are
required.

18.3 Reductions and Bottom-Up Parsing

In top-down parsing, the search for a derivation examines paths in the tree of derivations of a
grammar beginning with the start symbol. The search systematically constructs derivations
until the input string is found or until it is determined that no derivation is capable of
producing the input. The strategy is to perform an exhaustive search. With the exception of
the pruning that results from the identification of dead ends, the same tree is generated for
every input string. Searching in this manner examines many derivations that cannot possibly
generate the input string. For example, the entire subtree with root A + T in Figure 18.2
consists of derivations that cannot produce (b + b).

Bottom-up parsing constructs a search tree whose root is the input string p and applies
rules “backwards.” By beginning the search with the input string, the only derivations that
are examined are those that can generate p. This serves to focus the search and reduce the
size of the search tree. To limit the size of the implicit graph, the top-down parser generated
only leftmost derivations. Since the bottom-up parser constructs derivations backwards, it
will examine only rightmost derivations. Bottom-up parsing may be considered to be a
search of an implicit graph consisting of all strings that derive p by rightmost derivations.

The operation used to build a derivation in reverse is called a reduction. As may be
expected, rule applications and reductions have an inverse relationship:

Rule Application Reduction

string uAv uwv

rule A -> w A -» w

result uwv uAv

A reduction replaces the right-hand side of a rule with the single variable on the left-hand
side. As implied in its name, a reduction is intended to reduce the length of a string as
illustrated by the following examples.

562 C h a p te r 18 P a rs ing : An In t ro d u c t io n

string abb aA bAbbab B A A

rule A —* a b A —» bAb A —*■ AA

reduction Ab a A A b a b BA

Whenever the length of the right-hand side of the rule is greater than one, a reduction
produces a string of shorter length.

The grammar AE is used to illustrate the condition that is required to ensure that the
search examines only rightmost derivations. Consider the two reductions of the string b + b
using the rule T —► b:

This tree represents the derivations T + b => b + b and b + T =$■ b + b. Building another
level by adding all reductions of b + T and T + b produces

Notice that the string T + T occurs twice, once in the derivation T + T => T + b =>
b + b and once in T + T => b + T => b + b. The latter derivation is not rightmost and
the corresponding reduction should not be considered in the search.

A reduction to uwv by a rule A -*■ w produces a rightmost derivation only if the string
v has no variables. If there is a variable in v, the corresponding derivation u A v => uw v is
not rightmost since the variable in v occurs to the right of A. This condition is incorporated
into the bottom-up parser to ensure the generation of rightmost derivations. Example 18.3.1
illustrates the process of obtaining a rightmost derivation from a sequence o f reductions.

Example 18.3.1

A reduction of the string (b) + b to the start symbol S is given using the rules o f the grammar
AE.

18.4 A B o t to m -U p P a r s e r 563

Reduction Rule

(b) + b

{T) + b T —>■ b

(A) + b A - * T

T + b T -* (A)

A + b A - * T

A + T T b

A A -*■ A + T

S S -* A

Reductions with the rules T —*■ (A) and A —* A + T reduce the length of the string and
T -> b transforms an occurrence of the terminal b into the variable T . Reversing the order
of the sentential forms in the reduction of w to S produces the rightmost derivation

S=* A

=>A + T

=> A + b

= *T + b

= X A) + b

= *(T) + b

=> (b) + b.

Because the construction of a derivation terminates with the start symbol, bottom-up parsers
are often said to construct rightmost derivations in reverse. □

18.4 A Bottom-Up Parser

The implicit graph searched by a bottom-up parser is determined by both the grammar
G = (V, £ , P, S) and the input string p. The nodes of the graph are strings that can derive
p using rightmost rule applications. A node w is adjacent to a node v if w can be obtained
from v by one rightmost rule application.

A breadth-first bottom-up parser builds a search tree with root p in a level-by-level
manner. As with the top-down parser, the search tree T is constructed using the queue
operations INSERT, REMOVE, and EMPTY.

564 C h a p te r 18 P a rs ing : An In t r o d u c t io n

Algorithm 18.4.1
Breadth-First Bottom-Up Parser

input: context-free grammar G = (V, E , P, S)
string p e E*

data structure: queue Q

1. initialize T with root p
INSERT (p, Q)

2. repeat
q := REMOVE(Q)
2.1. for each rule A -*• w in P do

2.1.1. for each decomposition uw v of q with i; e E* do
2.1.1.1. !NSERT(uAv, Q)
2.1.1.2. Add node uA v to T. Set a pointer from u A v to q.

end for
end for

until q = S or EMPTY (Q)
3. if q = S then accept else reject

The search tree is initialized with root p. The remainder of the algorithm consists of
selecting a node q for expansion, generating the reductions of q, and updating the queue
and tree. Step 2.1.1 checks that no variable occurs to the right of the string w being reduced
to ensure that only rightmost derivations are inserted into the queue and added to the search
tree.

Figure 18.3 shows the search tree built when the string (b + b) is analyzed by the

bottom-up parser. Following the path from S to (b + b) yields the rightmost derivation

S => A

=> T

=>(A)

=> (A + T)

^ (A + b)

=>(T + b)

=» (b + b).

Compare the search tree produced by the bottom-up parse of (b + b) in Figure 18.3 with
that produced by the top-down parse in Figure 18.2. Restricting the search to derivations
that can produce (b + b) significantly decreased the number of nodes generated.

The dramatic difference in the size of the search trees generated by the top-down and
bottom-up parsers is shown for strings not in the language. Figure 18.4 shows the trees

18.4 A B o t to m -U p P a rs e r 565

(b + b) <

(5 + *)----- (5 + D ------ (S + A) ------(5 + 5)

^ (5)
(A + b) £— (A + T) (A) T ----- A -------5

(T + b)< (A + A) ---- (A + S)

(T + T) ---- (T + A) ------(7 + 5)

(b + T) ---- (b + A)----- (b + S)

FIGURE 18.3 Bottom-up parse of (b + b).

Top down
/b y ' (T)

- (A) ------ (A+T)

y b+T

A + T ------ T+T '----- (A)+T • • •

^ ^ A + r + r ------T+T+T

A+T+T+T

Bottom up

(b+)------- (T+)-------- (A+)-------- (5+)

FIGURE 18.4 Top-down and bottom-up parse of (b +).

produced by the analysis of the string (b +). Due to the left recursion in AE, the top-down
parse will never terminate. The bottom-up parse halts after examining four nodes.

One important step has been omitted in the preceding presentation— finding the reduc
tions of a string q. We will now rectify that omission. A string q has a reduction if

i) q can be written u w v , and

ii) there is a rule A -* w in the grammar.

Determining the reductions of a string q requires matching the right-hand sides of the rules
with substrings of the q.

A shift-and-compare strategy can be used to generate all reductions of a string q. The
string q is divided into two substrings, q — xy . The initial division sets x to the null string
and y to q. The right-hand side of each rule is compared with the suffixes of x. A match

566 C h a p te r 18 P a rs ing : An In t r o d u c t io n

occurs when x can be written uw and A —* w is a rule of the grammar. This combination
produces the reduction of q to uAy.

When all the rules have been compared with the suffixes of x for a given pair xy , q is
divided into a new pair of substrings x 'y ' and the process is repeated. The new decomposition
is obtained by setting x ' to x concatenated with the first element of y\ y ' is y with its first
element removed. The process of updating the division is known as a shift. The shift and
compare operations are used to generate all possible reductions of the string (A + T) in the

grammar AE.

X y Suffixes Rule Reduction

X (A + T) X

Shift (A + T) (,x

Shift (A + T) (A, A, X 5 -» A (S + T)

Shift (A + T) (A + , A + , + , X

Shift (A + T) (A + T , A + T, + T , T , X A - * A + T (A)

A —f T (A + A)

Shift (A + T) X (A + T), A + T), + T) ,T) ,) , X

In generating the reductions of the string, the right-hand side of the rule must match a suffix
of x. All other reductions in which the right-hand side of a rule occurs in x would have been
discovered prior to the most recent shift.

As seen in the preceding table, a X-rule will match a suffix in every decomposition
xy and produce n + 1 reductions for any string of length n. Consequently, this bottom-
up parsing algorithm should not be used for grammars with X-rules. However, X-rules will
cause no problems for the bottom-up parsers considered in Chapter 20.

Does the breadth-first bottom-up parser halt for every possible input string, or is it
possible for the algorithm to continue indefinitely in the repeat-until loop? If the string p
is in the language of the grammar, a rightmost derivation will be found. If the length of the
right-hand side of each rule is greater than 1, the reduction of a sentential form creates a
new string of strictly smaller length. For grammars satisfying this condition, the depth of the
search tree cannot exceed the length of the input string, assuring the termination of a parse
with either a derivation or a failure. This condition, however, is not satisfied by grammars
with rules of the form A —► B, A -> a, and A -*■ X. In Exercise 11 you are asked to give a
grammar and string for which Algorithm 18.4.1 will not terminate. Termination is assured
for grammars without X-rules and chain rules.

The efficiency of the bottom-up parser in Algorithm 18.4.1 is adversely affected by
possible discovery multiple actions for a sentential form. For example, the string A + T has
two reductions and b + b + b has three reductions using the rules of AE. The exhaustive
search strategy will preform each reduction, add the resulting sentential forms to the search

18.5 P a rs in g a n d C o m p i l in g 567

tree, and generate their descendants. The ability to select a single action at each step is
needed to produce a more efficient parse. Grammars that allow deterministic bottom-up

parsing are introduced in Chapter 20.

18.5 Parsing and Compiling

Parsing is the process of verifying that the source code of a program satisfies the syntactic
specification of the programming language. The entire process of transforming source
code written in a high-level programming language into executable machine or assembly
language code is compiling the program. Compiling a program consists of lexical analysis,
parsing, and code generation. In addition to the analysis of syntax, the first two steps of the
compilation process include semantic analysis and error identification and recovery. We will
briefly discuss the additions beyond simple syntax analysis included in the lexical analysis
and parsing of a program.

Lexical analysis scans the source code and creates a string of tokens of the programming
language. The tokens of a programming language are the identifiers, reserved words, literals,
and special symbols used in the language. The generation of a token string removes white
space, comments, carriage return characters, linefeed characters, and other symbols in the
source code that are not components of the language. The lexical analyzer also detects
errors when a sequence of characters do not form syntactically correct identifiers, constants,
or special symbols. The Java definition of. an identifier requires the first symbol to be a
letter, an underscore, or a dollar sign. When the lexical analyzer encounters a string of
symbols that does not satisfy this requirement, or match any other Java reserved word or
symbol, it generates an error message. Since the tokens of a programming language form
a regular language, the lexical analysis is often performed with the aid o f a finite-state
machine.

The parser checks if the string of tokens produced by the lexical analyzer defines a
syntactically correct program. This is accomplished by constructing a derivation, either in
a top-down or bottom-up manner, of the string using the rules of the grammar that defines
the programming language. A successful parse yields a derivation or parse tree (see Section
3.1) of the program.

The result of the parsers presented in the preceding two sections was simply an in
dication of the correctness of the input string— accept or reject. The parsing phase of a
compiler must identify syntactic errors, generate informative error messages for the pro
grammer, and recover from errors to continue the parse. Statement terminators, separators,
and special symbols are invaluable for error recovery. If an error is discovered while parsing
a sequence of statements, an error message is generated and the parser continues to read the
token string until it encounters a symbol such as a semicolon or a bracket that designates the
end of statement. At this point the parser will attempt to continue the parse o f the remainder
of the token string based on the token being read.

568 C h a p te r 18 P a rs in g : An In t r o d u c t io n

Semantic analysis uses information obtained during the parse to check for the semantic
correctness of the statements generated by the parser. Semantic errors that may be identified
in this phase of compilation include the declaration of a reserved word as an identifier,
referencing a variable that has not been declared, multiple declarations of an identifier, and
type incompatibility in assignments or operations.

After successful syntactic and semantic analysis, the parse tree is frequently used
to create a representation of the program in an intermediate language. The intermediate
representation is designed to facilitate the final step in the compilation: the translation into
and optimization of the machine or assembly language code.

Exercises

1. Build the subgraph of the graph of the grammar of G consisting of the left sentential
forms that are generated by derivations of length 3 or less.

G: 5 -> aS | A B | B

A —> abA | ab

B -* B B \ ba

2. Build the subgraph of the graph of the grammar of G consisting of the left sentential
forms that are generated by derivations of length 4 or less.

G : S —* a SA | aB

A -> bA | k

B cB \c

Is G ambiguous?

In Exercises 3 through 7, trace the actions of the algorithm as it parses the input string using
the grammar AE. If the input string is in the language, give the derivation constructed by
the parser.

3. Algorithm 18.2.1 with input (b) + b.

4. Algorithm 18.2.1 with input b + (b).

5. Algorithm 18.2.1 with input ((b)).

6. Algorithm 18.4.1 with input (b) + b.

7. Algorithm 18.4.1 with input (b)).

8. Give the first five levels o f the search tree generated by Algorithms 18.2.1 and 18.4.1
when parsing the string b) + b.

B ib lio g ra p h ic N o te s 569

9. Let G be the grammar

1. S aS

2. S —► AB

3. A - ► bAa

4. A - ► a

5. B —► bB

6. B —+■ b.

a) Give a set-theoretic definition for L(G).

b) Give the tree built by the top-down parse of baab.

c) Give the tree built by the bottom-up parse of baab.

10. Let G be the grammar

1. S -> A

2 . S ^ - A B

3. A —*■ abA

4. A —*■ b

5. B -» baB

6. B —► a.

a) Give a regular expression for L(G).

b) Give the tree built by the top-down parse of abbbaa.

c) Give the tree built by the bottom-up parse of abbbaa.

11. Construct a grammar G without k -rules and a string p e E* such that Algorithm 18.4.1
loops indefinitely in attempting to parse p.

12. Assume that the start symbol S of the grammar is nonrecursive. Modify Algorithm
18.4.1 to not continue the search whenever a string contains S. Trace the parse of your
modified algorithm with grammar AE and input (b + b). Compare your tree with the
search tree in Figure 18.3.

Bibliographic Notes

The parsers presented in this chapter are graph searching algorithms modified for this
particular application. A thorough exposition of graph and tree traversals is given in Knuth
[1968] and in most texts on data structures. A comprehensive introduction to syntax analysis
and compiling can be found in Aho, Sethi, and Ullman [1986]. Grammars amenable to
deterministic parsing techniques are presented in Chapters 19 and 20. For references to
parsing, see the bibliographic notes following those chapters.

CHAPTER 1 9

LL(k) Grammars

The fundamental cause of the inefficiency of the algorithms presented in Chapter 18 is the
possibility of having several options when expanding a node in the search tree. The top-down
parser extends the derivation by applying every A rule, where A is the leftmost variable in
the sentential form. The bottom-up parser may have several reductions for a given string. In
either case, the parsers perform all the possible actions, add the resulting sentential forms
to the search tree, and generate their descendants.

A parsing algorithm is deterministic if, at each step, there is sufficient information to
select a single action to be performed. For a top-down parser, this means being able to
determine which of the possible rules to apply. The LL(jt) grammars constitute the largest
subclass o f context-free grammars that permits deterministic top-down parsing using a k-
symbol lookahead. The notation LL describes the parsing strategy for which these grammars
are designed; the input string is scanned in a left-to-right manner and the parser generates
a leftmost derivation. The lookahead, reading beyond the portion of input string generated
by the parser, provides the additional information needed to select the appropriate action.

Throughout this chapter, all derivations and rule applications are leftmost. We also
assume that the grammars are unambiguous and do not contain useless symbols. Techniques
for detecting and removing useless symbols were presented in Section 4.4.

19.1 Lookahead in Context-Free Grammars

A top-down parser attempts to construct a leftmost derivation of an input string p. The
parser extends derivations of the form S => uAv, where u is a prefix of p, by applying an

571

572 C h a p te r 19 LL(fc) G r a m m a r s

A rule. “Looking ahead” in the input string can reduce the number of A rules that must
be examined. If p = uaw, the terminal a is obtained by looking one symbol beyond the
prefix of the input string that has been generated by the parser. Using the lookahead symbol
permits an A rule whose right-hand side begins with a terminal other than a to be eliminated
from consideration. The application of any such rule generates a terminal string that is not

a prefix of p.
Consider a derivation of the string acbb in the regular grammar

G: S —> a S \ c A

A -*■ bA \ cB | k

B ^ c B \ a \ k .

The derivation begins with the start symbol S and lookahead symbol a. The grammar
contains two S rules, S -*■ aS and S —► cA. Clearly, applying S -*■ cA cannot lead to a
derivation of acbb since c does not match the lookahead symbol. It follows that a derivation
of acbb must begin with an application of the rule 5 -*■ aS.

After the application of the S rule, the lookahead symbol is advanced to c. Again, there
is only one S rule that generates c. Comparing the lookahead symbol with the terminal in
each of the appropriate rules permits the deterministic construction of derivations in G.

Prefix
Generated

Lookahead
Symbol Rule Derivation

k a S -* aS S => aS

a c S -*■ cA => acA

ac b A -* b A => acb A
acb b A -* bA => acbbA

acbb k A -> k ^ acbb

Looking ahead one symbol is sufficient to construct derivations deterministically in the
grammar G. A more general approach allows the lookahead to consist of the portion of the
input string that has not been generated. An intermediate step in a derivation of a terminal
string p has the form S uA v, where p = ux. The string x is called a lookahead string for
the variable A. The lookahead set of A consists o f all lookahead strings for that variable.

Definition 19.1.1

LetG = (V, E , P, S) be a context-free grammar and A € V.

i) The lookahead set of the variable A, LA(A), is defined by

LA(A) = {jc | 5 ^ u A v ux € E*}.

ii) For each rule A —► w in P, the lookahead set of the rule A —*■ w is defined by

LA(A -*■ w) = {x | wv x where x e E* and 5 ^ uAv}.

19.1 L o o k a h e a d in C ontex t-F ree G r a m m a r s 573

LA(A) consists of all terminal strings derivable from strings Av, where uA v is a
left sentential form of the grammar. LA(A —> w) is the subset of LA(A) in which the

subderivations A v => x are initiated with the rule A -* w.
Let A —► u)], . . . , A —> w„ be the A rules of a grammar G. The lookahead string can

be used to select the appropriate A rule whenever the sets LA(A —> uj,) partition LA(A),
that is, when the sets LA(A —► uj,) satisfy

i) LA(A) = (J LA(A -»• uj,), and
i=i

ii) LA(A -»■ Wj) fi LA(A —> Wj) = 0 for all 1 < i < j < n.

The first condition is satisfied for every context-free grammar; it follows directly from

the definition of the lookahead sets. If the lookahead sets satisfy (ii) and 5 => uA v is
a partial derivation of a string p = ux e L(G), then x is an element of exactly one set
LA(A —>• wk). Consequently, A —► wk is the only A rule whose application can lead to a
successful completion of the derivation.

Example 19.1.1

The lookahead sets are constructed for the variables and the rules of the grammar

Gj: 5 -*■ Aabd \ cAbcd

A —»• a | ft | A.

LA(S) consists of all terminal strings derivable from S. Every terminal string derivable from
the rule 5 —>■ Aabd begins with a or b. On the other hand, derivations initiated by the rule
S —> cAbcd generate strings beginning with c.

LA(S) = [aabd, babd , abd, cabcd, ebbed , ebed)

LA(5 -> Aabd) = {aabd, babd, abd)

LA(5 -*■ cAbcd) = {cabcd, ebbed, ebed)

Knowledge of the first symbol of the lookahead string is sufficient to select the appropriate
S rule.

To construct the lookahead set for the variable A we must consider derivations from
all the left sentential forms of G] that contain A. There are only two such sentential forms,
Aabd and cAbcd. The lookahead sets consist of terminal strings derivable from Aabd and
Abed. ■‘j zoc

LA(A ->■ a) = {aabd!abkd)

LA(A -*■ b) = [babd, bbed)

LA(A -*■ A) = {abd, bed)

The substring ab can be obtained by applying A -*■ a to Abed and by applying A -*■
A to Aabd. Thus a two-symbol lookahead is not sufficient for selecting the correct A

574 C h a p te r 19 LL(<c) G r a m m a r s

rule. Looking ahead three symbols in the input string provides sufficient information to
discriminate between these rules. A top-down parser with a three-symbol lookahead can
deterministically construct derivations in the grammar G]. □

A lookahead string of the variable A is the concatenation of the results of two deriva
tions, one from the variable A and one from the portion of the sentential form following A.
Example 19.1.2 emphasizes the dependence of the lookahead set on the sentential form.

Example 19.1.2

A lookahead string of G2 receives at most one terminal from each of the variables A, B,
and C.

G2: S —*■ AB C abcd

A - y a |X

f l -» i> |X

C -> c | X

The only left sentential form of G2 that contains A is ABCabcd. The variable B appears
in aBC abcd and BCabcd, both of which can be obtained by the application of an A rule
to ABCabcd. In either case, BCabcd is used to construct the lookahead set. Similarly, the
lookahead set LA(C) consists of strings derivable from Cabcd.

LA(A -» a) = {abcabcd , acabcd, ababcd, aabcd}

LA(A -> X) = {bcabcd, cabcd, babcd, abed]

LA (B -> b) = {bcabcd, babcd]

LA(B -* k) = {cabcd, abed]

LA(C - ► c) = {cabcd]

LA(C —v X) = {abed]

One-symbol lookahead is sufficient for selecting the B and C rules. A string with prefix
abc can be derived from the sentential form A BC abcd using the rule A -* a or A -> X.
Four-symbol lookahead is required to parse the strings of G2 deterministically. □

The lookahead sets LA(A) and LA(A —>■ w) may contain strings of arbitrary length.
The selection of rules in the previous examples needed only fixed-length prefixes of strings
in the lookahead sets. The k -symbol lookahead sets are obtained by truncating the strings of
the sets LA(A) and LA(A —> w). A function trunck is introduced to simplify the definition
of the fixed-length lookahead sets.

Definition 19.1.2

Let G = (V, E , P, S) be a context-free grammar and let it be a natural number greater
than zero.

19.1 L o o k a h e a d in C ontex t-F ree G r a m m a r s 575

i) trunck is a function from ? (£ *) to T(E*) defined by

trunck(X) = {« | u e X with length(u) < k or uv € X with length(u) = k}

for all X € T(E*).

ii) The length-fc lookahead set o f the variable A is the set

LA*(A) = trunck(LA(A)).

iii) The length-fc lookahead set of the rule A - y w is the set

LA*(A —> w) = trunck(LA(A -*■ w)).

Example 19.1.3

The length-three lookahead sets for the rules of the grammar Gi from Example 19.1.1 are

LA3(S —*■ Aabd) = [aab, bab, abd]

LA3(5 -* cAbcd) = {cab, ebb, ebe]

LA3(A —y a) = {aab, abc}

LA3(A -»• b) = {bab, bbc}

LA3(A —> k) — {abd, bed).

Since there is no string in common in the length-three lookahead sets of the S rules or the
A rules, a three-symbol lookahead is sufficient to determine the appropriate rule of Gj. □

Example 19.1.4

The language {a'abc‘ | i > 0} is generated by each of the grammars G ^ G2, and G3. The
minimal-length lookahead sets necessary for discriminating between alternative produc
tions are given for these grammars.

Rule Lookahead Set

G,: 5 -* aSc [aaa]
S -y aabc {aab}

G2: S -y a A .
A -y Sc [aa]
A -y abc {ab}

G3: S -y aaAc
A —► aAc la)
A —y b W

576 C h a p te r 19 LL(/c) G r a m m a r s

A one-symbol lookahead is insufficient for determining the S rule in G | since both
of the alternatives begin with the symbol a. In fact, three-symbol lookahead is required to
determine the appropriate rule. Grammar G 2 is constructed from Gj by using the S rule
to generate the leading a. The variable A is added to generate the remainder of the right-
hand side of the S rules of Gj. This technique is known as left factoring since the leading a
is factored out of the rules S —> a Sc and S —*■ aabc. Left factoring the S rule reduces the
length of the lookahead needed to select the rules.

A lookahead of length 1 is sufficient to parse strings with the rules of G3. The recursive
A rule generates an a while the nonrecursive rule terminates the derivation by generating
a b. □

19.2 FIRST, FOLLOW, and Lookahead Sets

We have seen that lookahead sets can be used to select the appropriate rule to apply to derive
a desired string. To incorporate this information into a parser, it is necessary to be able to
generate the lookahead sets for each variable and rule. In this section we introduce the
FIRST and FOLLOW sets, which will be used for constructing the lookahead sets directly
from the rules of the grammar.

The lookahead set LA* (A) contains prefixes of at most length k of strings that can be
derived from the variable A. If A derives strings of length less than k, the remainder of the
lookahead comes from derivations that follow A in the sentential forms o f the grammar.
For each variable A, sets FIRST*(A) and FOLLOW*(A) are introduced to provide the
information required for constructing the lookahead sets. FIRST*(A) contains prefixes of
terminal strings derivable from A. FOLLOW*(A) contains prefixes of terminal strings that
can follow the strings derivable from A. For convenience, a set FIRST* is defined for every
string in (V U £)*.

Definition 19.2.1

Let G be a context-free grammar. For every string u 6 (V U E)*andfc > 0, the set FIRST* (u)
is defined by

FIRST*(w) = trunck((x \ u x , x € £*}).

Example 19.2.1

FIRST sets are constructed for the strings S and A B C using the grammar G 2 from Exam
ple 19.1.2.

FIRST,(ABC) = [a, b, c, X}

FIRST2(ABC) = {ab, ac, be, a, b, c, X}

FIRST3(S) = {abc, aca, aba, aab, bca, bab, cab) □

19.2 FIRST, FOLLOW, a n d L o o k a h e a d S e ts 577

Recall that the concatenation of two sets X and Y is denoted by juxtaposition, XY =
{xy | x € X and y e Y }. Using this notation, we can establish the following relationships

for the FIRST* sets.

Lemma 19.2.2

For every k > 0,

1. FIRST*(X) = {X}

2. FIRST*(a) = {a}

3. FIRST*(aw) = [av \ v e FIRST*_[(k)}

4. FIRST*(«i>) = /r«nc*(FIRST*(tt)FIRST*(tO)

5. if A —► w is a rule in G, then FIRST*(u>) c FIRST*(A).

Definition 19.2.3

Let G be a context-free grammar. For every A € V and k > 0, the set FOLLOW*(A) is
defined by

FOLLOW*(A) = {x | S uA v and x e FIRST*(u)}.

The set FOLLOW*(A) consists of prefixes of terminal strings that can follow the
variable A in derivations in G. Since the null string follows every derivation from the
sentential form consisting solely of the start symbol, X e FOLLOW* (5).

Example 19.2.2

The FOLLOW sets of length 1 and 2 are given for the variables of G 2 .

FOLLOW ,(5) = {X} FOLLOW2(S) = {X}

FOLLOW,(A) = {a, b, c) FOLLOW2(A) = {ab , be, ba, ea]

FOLLOWj(B) = la, c} FOLLOW2(fi) = {ca, ab)

FOLLOW ,(C) = {a} FOLLOW2(C) = [ab] □

The FOLLOW sets of a variable B are obtained from the rules in which B occurs on the
right-hand side. Consider the relationships generated by a rule of the form A -*■ uBv. The
strings that follow B include those generated by v concatenated with all terminal strings
that follow A. If the grammar contains a rule A -»• uB, any string that follows A can also
follow B. The preceding discussion is summarized in Lemma 19.2.4.

Lemma 19.2.4

For every k > 0,

1. FOLLOW* (5) contains X, where S is the start symbol of G

2. if A —► uB is a rule of G, then FOLLOW*(A) C FOLLOW*(S)

3. if A - ► u B v is a rule of G, then rrunc*(FIRST*(u)FOLLOW*(A)) C FOLLOW*(5).

578 C h a p te r 19 LL(fc) G r a m m a r s

The FIRST* and FOLLOW* sets are used to construct the lookahead sets for the rules
of a grammar. Theorem 19.2.5 follows immediately from the definitions of the length-fc

lookahead sets and the function fr«nc*.

Theorem 19.2.5

Let G = (V, E , P, S) be a context-free grammar. For every k > 0, A € V, and rule

A —► w = M] « 2 • • ■ H/i in P,

i) LA*(A) = /r«Mc*(FIRST*(A)FOLLOW*(A))

ii) LA*(A -*• w) = jrnnc*(FIRST*(u;)FOLLOW*(A))
= / t w ic * (FIRST*(w j) . . . FIRST*(k„)FOLLOW*(A)).

Example 19.2.3

The FIRST3 and FOLLOW3 sets for the symbols in the grammar

Gp S -*■ Aabd \ cAbcd

A —► a | b | X

from Example 19.1.1 are

FIRST3 (S) = {aab, bab, abd, cab, ebb, ebe)

FIRST3 (A) = {a,b , X}

FIRST3 (a) = [a]

FIRST3 (fc) = [b]

FIRST3 (c) = {c}

FIRST3 (d) = {d)

FOLLOW3 (S) = {X}

FOLLOW3 (A) = {abd, bed).

The set LA3(S -*• Aabd) is explicitly constructed from the sets FIRST3 (A), FIRST3 (a),
FIRST3 (i>), FIRST3 (rf), and FOLLOW3 (S) using the strategy outlined in Theorem 19.2.5.

LA3(S ->• Aabd) = frH/ic3 (FIRST3 (A)FIRST3 (a)FIRST3 (fc)FIRST3 (*/)FOLLOW3 (S))

= trunc3({a, b, X}{a}{fe}{d}{X})

= trunc3({aabd, babd, abd))

= {aab, bab, abd)

The remainder of the length-three lookahead sets for the rules of Gj can be found in
Example 19.1.3. □

19.3 S t r o n g LL(k) G r a m m a r s 579

19.3 Strong LL(k) Grammars

We have seen that the lookahead sets can be used to select the A rule in a top-down parse
when LA(A) is partitioned by the sets LA(A -*• to,). This section introduces a subclass of
context-free grammars known as the strong LL(fc) grammars. The strong LL(fc) condition
guarantees that the lookahead sets LA*(A) are partitioned by the sets LA*(A —► to,).

When employing a it-symbol lookahead, it is often helpful if there are k symbols to
be examined. An endmarker #* is concatenated to the end of each string in the language to
guarantee that every lookahead string contains exactly k symbols. If the start symbol S of
the grammar is nonrecursive, the endmarker can be concatenated to the right-hand side of
each 5 rule. Otherwise, the grammar can be augmented with a new start symbol S' and rule
S' -*• S#*.

Definition 19.3.1

Let G = (V, E , P, 5) be a context-free grammar with endmarker #*. G is strong LL(fc)
if whenever there are two leftmost derivations

5 => u tA v t = ► mi-ri>| u^zW]

S => u2A v2 => u2yv2 => u2zw 2,

where u(, wh z g E* and length(z) = k, then x = y.

We now establish several properties of strong LL(ifc) grammars. First, we show that
the length-A: lookahead sets can be used to parse strings deterministically in a strong LL(fc)
grammar.

Theorem 19.3.2

A grammar G is strong LL(fc) if, and only if, the sets LA*(A -> w,) partition LA*(A) for
each variable A G V.

Proof. Assume that the sets LA*(A —► u>,) partition LA* (A) for each variable A g V. Let
z be a terminal string of length k that can be obtained by the derivations

S u iAv\ => = ► i^zto!

5 u2A v2 => u2y v 2 => u2zw 2.

Then z is in both LA*(A —* x) and LA*(A —*■ y). Since the sets LA*(A —*• to,) partition
LA*(A), x = y and G is strong LL(fc).

Conversely, let G be a strong LL(fc) grammar and let z be an element o f LAJk(A). The
strong LL(fc) condition ensures that there is only one A rule that can be used to derive
terminal strings of the form uzw from the sentential forms uA v of G. Consequently, z is in
the lookahead set of exactly one A rule. This implies that the sets LA* (A ->• to,) partition
LA* (A). a

580 C h a p te r 19 LL(fc) G r a m m a r s

Theorem 19.3.3

If G is strong LL(ifc) for some k, then G is unambiguous.

Intuitively, a grammar that can be deterministically parsed must be unambiguous; there
is exactly one rule that can be applied at each step in the derivation of a terminal string. The
formal proof of this proposition is left as an exercise.

Theorem 19.3.4

If G has a left-recursive variable, then G is not strong LL(fc), for any k > 0.

Proof. Let A be a left-recursive variable. Since G does not contain useless variables, there
is a derivation of a terminal string containing a left-recursive subderivation o f the variable
A. The proof is presented in two cases.

Case 1: A is directly left-recursive. A derivation containing direct left recursion uses A rules
of the form A -*■ Ay and A -*■ x , where the first symbol of x is not A.

S => uAv => uA yv => u xyv => uw e £*

The prefix of w of length k is in both LA* (A —> Ay) and LA*(A —► x). By Theorem 19.3.2,
G is not strong LL(/t).

Case 2: A is indirectly left-recursive. A derivation with indirect recursion has the form

S => uA v => u B tyv => • • • => uBnvn ^ uAvn+l => uxv„+l uw € E*.

Again, G is not strong LL(fc) since the sets LA*(A S ^ J a n d LA* (A -*• x) are not disjoint.

19.4 Construction o f FIRST* Sets

We now present algorithms to construct the length-* lookahead sets for a context-free gram
mar with endmarker #*. This is accomplished by generating the FIRST* and FOLLOW*
sets for the variables of the grammar. The lookahead sets can then be constructed using the
technique presented in Theorem 19.2.5.

The initial step in the construction of the lookahead sets begins with the generation of
the FIRST* sets. Consider a rule of the form A -* u xu2 . ■ ■ u„. The subset o f FIRST*(A)
generated by this rule can be constructed from the sets F IR S T * ^), FIRST*(w2)> • • • ,
FIRST*(«„), and FOLLOW*(A). The problem of constructing FIRST* sets for a string
reduces to that of finding the sets for the variables in the string.

19 .4 C o n s t r u c t io n o f FIRST* S e ts 581

Algorithm 19.4.1
Construction o f FIRST* Sets

input: context-free grammar G = (V, E , P, S)

1. for each a e £ do F '(a) := [a]

„ , , | (A.) if A -» X is a rule in P
2. for each A € V do F(A) := { * '

[0 otherwise
3. repeat

3.1 for each A e V do F'(A) := F(A)
3.2 for each rule A -*■ u xu2 ■ ■ ■ un with n > 0 do

F(A) := F(A) U frM/ic*(F'(M,)F'(M2) . . . F'(tt„))
until F(A) = F'(A) for all A € V

4. FIRST*M) = F(A)

The elements of FIRST*(A) are generated in step 3.2. At the beginning o f each iteration
of the repeat-until loop, the auxiliary set F'(A) is assigned the current value o f F(A). Strings
obtained from the concatenation F (« 1)F '(« 2) . . . F '(«n), where A —* u\u2 . ■ ■ u„ is a rule
of G, are then added to F(A). The algorithm halts when an iteration occurs in which none
of the sets F(A) are altered.

Example 19.4.1

Algorithm 19.4.1 is used to construct the FIRSTj sets for the variables of the grammar

G: S —► A##

A —► a A d | BC

B - ► bBc | X

C -*■ acC | ad.

The sets F '(a) are initialized to {a} for each a e l . The action of the repeat-until loop
is prescribed by the right-hand side of the rules of the grammar. Step 3.2 generates the
assignment statements

F(S) := F(S) U trunc2(F'(A){#}{#})

F(A) := F(A) U trunc2({a}F'(A){d}) U /r««c2(F '(B)F '(C))

F (S) := F(B) U trunc2({b}F'(B){c))

F(C) := F(C) U trunc2([a}lc}F'(C)) U trunc2(la}ld})

582 C h a p te r 19 LL(/r) G r a m m a r s

from the rules of G. The generation of the FIRST2 sets is traced by giving the status of the sets
F(5), F(A), F (S), and F(C) after each iteration of the loop. Recall that the concatenation

of the empty set with any set yields the empty set.

F(S) * F(A) F(B) F(C)

0 0 0 M 0

1 0 0 {X, be) {ad)

2 0 {ad, be] [X, be, bb) {ad, ac)

3 {ab, be) {ad, be, aa, ab, bb, ac) {A., be, bb) {ad, ac)

4 {ad, be, aa, ab, bb, ac) {ad, be, aa, ab, bb, ac) {A., be, bb) {ad, ac)

5 {ad, be, aa, ab, bb, ac] {ad, be, aa, ab, bb, ac) [X, be, bb) {ad, ac)

Theorem 19.4.2

Let G = (V, £ , P, S) be a context-free grammar. Algorithm 19.4.1 generates the sets
FIRST* (A), for every variable A e V.

Proof. The proof consists of showing that the repeat-until loop in step 3 terminates and,
upon termination, F(A) = FIRST*(A).

i) Algorithm 19.4.1 terminates. The number of iterations of the repeat-until loop is bounded
since there are only a finite number of lookahead strings of length k or less.

ii) F(A) = FIRST*(A). First we prove that F(A) C FIRST*(A) for all variables A e V. To
accomplish this we show that F(A) C FIRST*(A) at the beginning of each iteration of the
repeat-until loop. By inspection, this inclusion holds prior to the first iteration. Assume
F(A) C FIRST*(A) for all variables A after m iterations of the loop.

During the m + 1st iteration, the only additions to F(A) come from assignment state
ments of the form

F(A) := F(A) U rr«/ic*(F'(Ml)F '(« 2 > • ■ • F '(«n» .

where A ->• u xu2 . ■ ■ u„ is a rule of G. By the inductive hypothesis, each of the sets F'(w,)
is the subset of FIRST*(h;)- If u is added to F(A) on the iteration then

u € trunck(F7(uJF '(« 2) • ■ • F '(«„))

c rrunc*(FIRST*(u,)FIRST*(u2) . . . FIRST* (u„))

= FIRST*(m,m2 . . . u„)

C FIRST*(A)

and u 6 FIRST*(A). The final two steps follow from parts 4 and 5 of Lemma 19.2.2.
We now show that FIRST*(A) c F(A) upon completion of the loop. Let Fm(A) be the

value of the set F(A) after m iterations. Assume the repeat-until loop halts after j iterations.
We begin with the observation that if a string can be shown to be in Fm (A) for some m > j ,

19.5 C o n s t r u c t io n o f FOLLOW * S e ts 583

then it is in Fj (A). This follows since the sets F(A) and F'(A) would be identical for all
iterations of the loop past iteration j . We will show that FIRST*(A) C Fj (A) .

Let x be a string in FIRST*(A). Then there is a derivation A ^> w, where w e]T* and
x is the prefix of w of length k. We show that x 6 Fm(A). The proof is by induction on the
length of the derivation. The basis consists of terminal strings that can be derived with one
rule application. If A -> w € P, then x is added to F^A).

Assume that trunck({w \ A => w € E*}) C Fm(A) for all variables A in V. Let x e

trunck({w \ A w e E*}); that is, x is a prefix of terminal string derivable from A by
m + 1 rule applications. We will show that x € Fm+1(A). The derivation of w can be written

A = ► u tu2 . , . u „ ^ x xx2 . . . x „ = w,

where «, € V U E and «, ^ Xj. Clearly, each subderivation ut =4- jc, has length less than
m + 1. By the inductive hypothesis, the string obtained by truncating x, at length k is in

On the m + 1st iteration, Fm+1(A) is augmented with the set

t r u n c ^ F '^ iU i) . . . F ^+1(wn)) = trunck(Fm(u {) . . . Fm(u„)).

Thus,

{*) = trunck(x,x2 . . . x„) C t ru n c ^ F ^ u O . . . F„(«„))

and x is an element o f Fm+i(A). It follows that every string in FIRST*(A) is in Fy(A), as
desired. ■

19.5 Construction o f FOLLOW* Sets

The inclusions in Lemma 19.2.4 form the basis of an algorithm to generate the FOLLOW*
sets. FOLLOW* (A) is constructed from the FIRST* sets and the rules in which A occurs
on the right-hand side. Algorithm 19.5.1 generates FOLLOW*(A) using the auxiliary set
FL(A). The set FL'(A), which triggers the halting condition, maintains the value assigned
to FL(A) on the preceding iteration.

Algorithm 19.5.1

Construction o f FOLLOW* Sets

input: context-free grammar G = (V, E , P, S)
FIRST*(A) for every A e V

1. FL(S) := {A.}
2. for each A e V - {5} do FL(A) := 0

584 Chapter 19 LL(fc) Grammars

3. repeat
3.1 for each A G V do FL'(A) := FL(A)
3.2 for each rule A -*■ w = u xu2 ■ ■ • u„ with w & E* do

3.2.1. L := FL'(A)
3.2.2. if u„ G V then FL(«„) := FL(w„) U L
3.2.3. f o r « := n — 1 to 1 do

3.2.3.1. L := //wic*(FIRST*(k1+1)L)
3.2.3.2. if Uj G V then FL(u,) := FL(n,) U L

end for
end for

until FL(A) = FL'(A) for every A e V
4. FOLLOW*(A) :=FL(A)

The inclusion FL(A) c FOLLOW*(A) is established by showing that every element
added to FL(A) in statements 3.2.2 or 3.2.3.2 is in FOLLOW*(A). The opposite inclusion
is obtained by demonstrating that every element of FOLLOW*(A) is added to FL(A) prior
to the termination of the repeat-until loop. The details are left as an exercise.

Example 19.5.1

Algorithm 19.5.1 is used to construct the set FOLLOW2 for every variable o f the grammar
G from Example 19.4.1. The interior of the repeat-until loop processes each rule in a right-
to-left fashion. The action of the loop is specified by the assignment statements obtained
from the rules of the grammar.

Rule Assignments

5 -*• A## FL(A) := FL(A) U rrunc2({##}FL'(5))

A -* a Ad FL(A) := FL(A) U rrunc2({</)FL'(A))

A - + B C FL(C) := FL(C) U FL'(A)

FL(B) := FL(B) U frunc2(FIRST2(C)FL'(A))

= FL(fl) U trunc2(.{ad, ac}FL'(A))

B —► bBc FL(B) := FL(B) U /ru/ic2((c)FL'(B))

The rule C -»• acC has been omitted from the list since the assignment generated by this
rule is FL(C) := FL(C) U FL'(C). Tracing Algorithm 19.5.1 yields

FL(S) FL(A) FL(B) FL(C)

0 {X} 0 0 0
1 {A.} {##} 0 0

2 {A} {##, </#} [ad, ac] (##}

3 {A) {m ,d* ,dd \ {ad ,ac ,ca } {##,</#}

19 .6 A S t r o n g LL(1) G r a m m a r 585

FL(S) F L(j4) F L (B) F L(C)

4 (A.) (##, d#, dd) {ad, ac, ca, cc) {##, dtt, d d)

5 {A.} {##, dU, dd) {ad, ac, ca, cc] {##, d#, dd)

Example 19.5.2

The length-two lookahead sets for the rules of the grammar G are constructed from the
FIRST2 and FOLLOW2 sets generated in Examples 19.4.1 and 19.5.1.

LA2(S -*■ A M) = {ad, be, aa, ab, bb, ac}

LA2(A -*■ aA d) = {aa, ab)

LA2(A —*■ B C) = {be, bb, ad, ac)

LA2(B -» bBc) = {bb, be)

LA2(B -*■ X) = {ad, ac, ca, cc]

LA2(C —y acC) = {ac}

LA2(C -» ad) = {ad}

G is strong LL(2) since the lookahead sets are disjoint for each pair of alternative rules. □

The preceding algorithms provide a decision procedure to determine whether a gram
mar is strong LL(fc). The process begins by generating the FIRST*, and FOLLOW* sets
using Algorithms 19.4.1 and 19.5.1. The techniques presented in Theorem 19.2.5 are then
used to construct the length-* lookahead sets. By Theorem 19.3.2, the grammar is strong
LL (i) if, and only if, the sets LA*(A -*• x) and LA*(A —>■ y) are disjoint for each pair of
distinct A rules.

19.6 A Strong LL(1) Grammar

The grammar AE was introduced in Section 18.1 to generate infix additive expressions
containing a single variable b. AE is not strong LL(fc) since it contains a directly left-
recursive A rule. In this section we modify AE to obtain a strong LL(1) grammar that
generates the additive expressions. To guarantee that the resulting grammar is strong LL(1),
the length-one lookahead sets are constructed for each rule.

The transformation begins by adding the endmarker # to the strings generated by AE.
This ensures that a lookahead set does not contain the null string. The grammar

AE: S -> A#

A —>• 7"

A - y A + T

T -> b

T -*■ (A)

586 C h a p te r 19 LL(k) G r a m m a r s

generates the strings in L(AE) concatenated with the endmarker #. The direct left recursion
can be removed using the techniques presented in Section 4.5. The variable Z is used to
convert the left recursion to right recursion, yielding the equivalent grammar AEj.

AE,: S -» A#

A-*- T

A —*■ T Z

Z -> + T

Z -> + T Z

T -+ b

T -*■ (A)

AE] still cannot be strong LL(1) since both A rules have T as the first symbol occurring
on the right-hand side. This difficulty is removed by left factoring the A rules using the new
variable B. Similarly, the right-hand side of the Z rules begin with identical substrings. The
variable Y is introduced by the factoring of the Z rules. AE2 results from making these
modifications to AE).

AE2: 5 -* A#

A - * T B

B - + Z

B - y X

Z -> + T Y

Y Z

y a

T - > b

T —► (A)

To show that AEj is strong LL(1), the length-one lookahead sets for the variables of the
grammar must satisfy the partition condition of Theorem 19.3.2. We begin by tracing the
sequence of sets generated by Algorithm 19.4.1 in the construction o f the FIRSTi sets.

F(S) F(A) F(B) F(Z) F(K) F(7)

0 0 0 M 0 w 0
1 0 0 M {+} w ib, 0
2 0 {*. 0 IX, +) {+} {>.. +} Ib. 0
3 {*. 0 (b. (} {*,+} (+) {*.+} {b, 0
4 [b, (} lb, (} {*.+} {+) {A ..+ } lb, (}

19.7 A Strong LL(k) Parser 587

Similarly, the FOLLOW2 sets are generated using Algorithm 19.5.1.

FL(S) FL(A) FL(B) F UZ) FL(y) FL(D

0 {X} 0 0 0 0 0

1 (M {#.)) 0 0 0 0

2 (M (#.)) (#,)} 0 0 0

3 {X} {#.)) (#,)} {#.)} 0 0

4 W (#.)) {#.)} (#.)) {#,)) 0

5 W {#,)} {#. » {#.)} {#,)} (#.)}
6 {X} {#.)) (#,)} (#.)) {#.)} {#.»

The length-one lookahead sets are obtained from the FIRSTi and FOLLOW, sets.

LA,(S -*• A#) = {b, (}

LA,(A -> T B) = {b , (}

LA ,(2? -*• Z) = {+}

LA,(B - * k) = {#,)}

LA ,(Z —> + 7 T) = {+}

L A ,(y -» Z) = {+}

L A ,(y k) = {#,)}

LA ,(T -> b) = {b}

LA ,(T (A)) = {(}

Since the lookahead sets for alternative rules are disjoint, the grammar AE2 is strong LL(1).

19.7 A Strong LL(Hr) Parser

Parsing with a strong LL(fc) grammar begins with the construction of the lookahead sets
for each of the rules of the grammar. Once these sets have been built, they are available
for the parsing of any number of strings. The strategy for parsing strong LL(ifc) grammars
presented in Algorithm 19.7.1 consists of a loop that compares the lookahead string with
the lookahead sets and applies the appropriate rule.

Unlike the examination of multiple rules in the top-down parser given in Algorithm
18.2.1, node expansion using a strong LL(£) grammar is limited to the application of at
most one rule. The lookahead string and lookahead sets provide sufficient information to
eliminate other rules from consideration.

588 C h a p te r 19 LL(fc) G r a m m a r s

Algorithm 19.7.1
Deterministic Parser for a Strong LL(fc) Grammar

input: strong LL(Jk) grammar G = (V, E , P, S)
string p e E*
lookahead sets LA* (A —► to) for each rule in P

1. q := S (q is the sentential form to be expanded)

2. repeat
Let q = u A v where A is the leftmost variable in q and
let p = uyz where leng th (y) = k.
2.1. if y e LA*(A —► w) for some A rule then q := uw v

until q = p or y & LA*(A —*■ w) for all A rules
3. if q = p then accept else reject

The presence of the endmarker in the grammar ensures that the lookahead string y
contains k symbols. The input string is rejected whenever the lookahead string is not an
element of one of the lookahead sets. When the lookahead string is in LA* (A —► w), a new
sentential form is constructed by applying A —*■ w to the current string uAv. The input is
accepted if this rule application generates the input string. Otherwise, the loop is repeated
for the sentential form uwv.

Example 19.7.1

Algorithm 19.7.1 and the lookahead sets of the strong LL(1) grammar AE2 from Sec
tion 19.6 are used to parse the string (b + £>)#. Each row in the table that follows represents
one iteration of step 2 of Algorithm 19.7.1.

u A V Lookahead Rule Derivation

A. S k (S - > A# S=0 A#
k A # (A-*- T B = * T B *

X T B* (T -* (A) => (A)B#

(A)fi# b A - * T B => (r f l) B #

(T B)B # b T -* b =>(bB)B#

(b B)B # + B -> Z =>(frZ)fl#
(b Z) B # + Z - * + T Y =>(*+ T Y) B #

0 b + T Y)B # b T -*■ b =*(b + b Y)B *

(b + b r) B #) Y -* k =>(b + b)B#

Cb + b) B # # B —* k => (b + />)#

19.8 LL(fc) G r a m m a r s 589

19.8 LL(Ac) Grammars

The lookahead sets in a strong LL(Ar) grammar provide a global criterion for selecting a
rule. When A is the leftmost variable in the sentential form being extended by the parser,
the lookahead string generated by the parser and the lookahead sets provide sufficient
information to select the appropriate A rule. This choice does not depend upon the sentential
form containing A. The LL(fc) grammars provide a local selection criterion; the choice of
the rule depends upon both the lookahead and the sentential form.

Definition 19.8.1

Let G = (V, E , P, S) be a context-free grammar with endmarker #*. G is LL(fc) if
whenever there are two leftmost derivations

S ^ uA v => u xv u z w i

S =$■ uA v =$■ uyv =*• uzw 2,

where «, u>,, z € E* and length(z) = k, then x = y.

Notice the difference between the derivations in Definitions 19.3.1 and 19.8.1. The
strong LL(/t) condition requires that there be a unique A rule that can derive the lookahead
string z from any sentential form containing A. An LL(Ar) grammar only requires the rule to
be unique for a fixed sentential form uAv. The lookahead sets for an Lh(k) grammar must
be defined for each sentential form.

Definition 19.8.2

LetG = (V, E , P, S) be a context-free grammar with endmarker#* and u A v a sentential
form of G.

i) The lookahead set o f the sentential form u Av is defined by LA* (m Au) = FIRST^Au).

ii) The lookahead set for the sentential form uA v and rule A -> w is defined by
LAk(uAv, A -» w) = FIRST*(u>t;).

A result similar to Theorem 19.3.2 can be established for LL(fc) grammars. The unique
selection of a rule for the sentential form u A v requires the set L A k(uAv) to be partitioned
by the lookahead sets LA*(«Ai;, A —► «;,) generated by the A rules. If the grammar is
strong LL(Ar), then the partition is guaranteed and the grammar is also LL(/t).

Example 19.8.1

An LL(fc) grammar need not be strong LL(fc). Consider the grammar

Gj: S —► Aabd | cAbcd

A —> a | | X

590 C h a p te r 19 LL(<c) G r a m m a r s

whose lookahead sets were given in Example 19.1.1. Gj is strong LL(3) but not strong LL(2)
since the string ab is in both LA2(A —► a) and LA2(A -*■ X). The length-two lookahead sets
for the sentential forms containing the variables S and A are

LA2(S, 5 —>■ Aabd) = {aa, ba, ab)

LA2(S, S —*■ cAbcd) = {ca, cb]

L A 2(Aabd, A - * a) — [aa] LA2(cAbcd, A -> a) = {ab}

LA2(Aabd, A —>■ b) = {ba} LA2(cAbcd, A -> b) = {bb}

LA2(Aabd, A —► X) = {ab} LA2(cAbcd, A —► A.) = {be}.

Since the alternatives for a given sentential form are disjoint, the grammar is LL(2). □

Example 19.8.2

A three-symbol lookahead is sufficient for a local selection of rules in the grammar

G: S ^ - a B A d \ b Bb Ad

A —> a b A | c

B —*■ ab | a.

The S and A rules can be selected with a one-symbol lookahead; so we turn our attention
to selecting the B rule. The lookahead sets for the B rules are

LA3(aBA d, B —> ab) = {aba, abc)

LA3(aBA d, B -*■ a) = {aab, a cd }

LA3(bBbAd, B->-ab) = {abb}

LA3(bBbAd, B -> a) = {aba, abc}.

The length-three lookahead sets for the two sentential forms that contain B are partitioned
by the B rules. Consequently, G is LL(3). The strong LL(fc) conditions can be checked by
examining the lookahead sets for the B rules.

LA(B -> ab) = ab(ab)*cd U abb(ab)*cd

LA (B ->• a) = a(ab)*cd U ab(ab)*cd

For any integer k, there is a string of length greater than k in both L A (5 -v ab) and
LA(B —► a). Consequently, G is not strong LL(&) for any k. □

Parsing deterministically with LL(fc) grammars requires the construction of the local
lookahead sets for the sentential forms generated during the parse. The lookahead set for
a sentential form can be constructed directly from the FIRST* sets of the variables and

Exerc ises 5 9 1

terminals of the grammar. The lookahead set L A k(uAv, A -> w), where w — w x . . . wn

and v = . . . vm, is given by

trunck(FIRST*(u;i). . . F IR S T ^ iu JF IR S T ^ i;,) . . . F IR ST *(uJ).

A parsing algorithm for LL(fc) grammars can be obtained from Algorithm 19.7.1 by adding
the construction of the local lookahead sets.

Algorithm 19.8.3
Deterministic Parser for an LL(fc) Grammar

input: LL(fc) grammar G = (V, £ , P, S)
string p e l *
FIRST* (A) for every A e V

1. q : = S
2. repeat

Let q = u Av where A is the leftmost variable in q and
let p = uyz where length(y) = k.
2.1. for each rule A -> w construct the set LAk(uAv, A -*■ w)
2.2. if y 6 L A k(uAv, A -> w) for some A rule then q := uwv

until q = p or y & L A k(uAv, A w) for all A rules
3. if q = p then accept else reject

The family of strong LL(/:) grammars is a proper subset of the LL(fc). The local
lookahead sets permit more contextual information to be used in the selection of the
appropriate rule, In the determination of the rule to apply to a sentential form uAv, a
strong LL(&) grammar considers the variable A and the lookahead string. The terminal
prefix u already generated by the parser may also be used in rule selection in an LL(&)
grammar. The LL(fc) grammars do not generate every context-free language that can be
parsed deterministically. Exercise 14 gives an example o f a language that can be parsed by
a deterministic pushdown automaton, but is not generated by any LL(fc) grammar.

Exercises

1. Let G be a context-free grammar with start symbol S. Prove that LA(S)=L(G).

2. Give the lookahead sets for each variable and rule of the following grammars.

a) S —* A B a b \ bAcc b) 5 —*• a S \ A
A -* a \ c A - > a b \ b

c) S -> A B | ab
A —► a A | A.
B - ► bB |X

d) 5 -*■ a A b B c
A -* a A | cA | X
B —► bB c | be

592 C h a p te r 19 LL(fc) G r a m m a r s

3. Give the FIRST! and FOLLOW! sets for each of the variables of the following gram
mars. Which of these grammars are strong LL(1)?

a) 5 a A B # b) S ^ A B #
A -»■ a | X A - * a A b \ B
B - > b \X B -* a B c \ X

c) S -* A B C # d) S ^ - a A d #
A —* aA | X A —* B C D
B —► b B c | X B -* b B \ X
C -*■ c A \ d B | X C - * c C \ X

D -+ bD | X

4. Give strong-LL(l) grammars that generate each of the following languages.

a) {a'b-'c1 | i > 0, j > 0}

b) {a 'V c | i > 1, j > 0}

5. Show that the grammar

S -> aSa | bSb \ X

is strong LL(2) but not strong LL(1).

6. Use Algorithms 19.4.1 and 19.5.1 to construct the FIRST2 and FOLLOW2 sets for
variables of the following grammars. Construct the length-two lookahead sets for the
rules of the grammars. Are these grammars strong LL(2)?

a) 5 ->■ A B C # # b) 5 —► A##
A -*■ a A | a A -* b B A \ B cA a \ X
B - > b B \ X B —► acB \ b
C - + c C \ a \ b \ c

7. Prove parts 3 ,4 , and 5 of Lemma 19.2.2.

*8. Prove Theorem 19.3.3.

9. Show that each of the grammars defined below is not strong LL(fc) for any k. Construct
a deterministic PDA that accepts the language generated by the grammar.

a) S -* aSb \ A b) 5 -»• A | B
A -* a A c | X A - * a A b \ a b

B -> a B c j ac

c) S - * A
A —*■ a A b | B
B -* a B \ a

10. Prove that Algorithm 19.5.1 generates the sets FOLLOW*(A).

11. Modify the grammars given below to obtain an equivalent strong LL(1) grammar. Build
the lookahead sets to ensure that the modified grammar is strong LL(1).

a) S -* A# b) 5 -> a A# | a b B # \ abcC#
A -* a B | Ab | Ac A -*■ a A | A.
B -> bB c | A. B - > b B \ X

C - * c C \X

B ib liog raph ic N o te s 593

12. Parse the following strings with the LL(1) parser and the grammar AEj. Trace the
actions of the parser using the format of Example 19.7.1. The lookahead sets for AE2

are given in Section 19.6.

a) b + 00#

b) ((*>))#

c) b + b + b#

d) b + +b#

13. Construct the lookahead sets for the rules of the grammar. What is the minimal k such
that the grammar is strong LL(fc)? Construct the lookahead sets for the combination of
each sentential form and rule. What is the minimal k such that the grammar is LL(fc)?

a) S -* aAcaa \ bAbcc b) S -*■ aAbc | bABbd
A —* a \ a b \ k A - ► a | A.

B -*■ a | b

c) S - * a A b B | b A b A
A —* a b \ a
B —*■ a B | b

* 14. Prove that there is no LL(fc) grammar that generates the language

L = {«' | i > 0} U {a‘b‘ \ i > 0}.

Design a deterministic pushdown automaton that accepts L.

* 15. Prove that a grammar is strong LL(1) if, and only if, it is LL(1).

16. Prove that a context-free grammar G is LL(Jt) if, and only if, the lookahead set
L A k(uAv) is partitioned by the sets L A k(uAv, A —► w,) for each left sentential form
uAv.

Bibliographic Notes

Parsing with LL(fc) grammars was introduced by Lewis and Steams [1968]. The theory
of LL(fc) grammars and deterministic parsing was further developed in Rosenkrantz and
Steams [1970]. Relationships between the class o f LL(fc) languages and other classes of
languages that can be parsed deterministically are examined in Aho and Ullman [1973].
The LL(fr) hierarchy was presented in Kurki-Suonio [1969], Foster [1968], Wood [1969],
Steams [1971], and Soisalon-Soininen and Ukkonen [1979] introduced techniques for
modifying grammars to satisfy the LL(fc) or strong LL(ifc) conditions.

The construction of compilers for languages defined by LL(1) grammars frequently
employs the method of recursive descent. This approach allows the generation of machine
code to accompany the syntax analysis. A comprehensive introduction to syntax analysis
and compiling can be found in Aho, Sethi, and Ullman [1986].

CHAPTER 20

LR(k) Grammars

A bottom-up parser generates a sequence of shifts and reductions to reduce the input string
to the start symbol of the grammar. A deterministic parser must incorporate additional
information into the process to select the correct alternative when more than one operation
is possible. A grammar is LR(fc) if a ^-symbol lookahead provides sufficient information
to make this selection. LR signifies that these strings are parsed in a left-to-right manner to
construct a rightmost derivation. The LR(fr) grammars are theoretically significant because
every context-free language that can be parsed deterministically reading the input string in
a left-to-right manner is generated by an LR(fc) grammar. The practical significance is that
the LR approach provides the foundation for bottom-up parser generators, programs used
to automatically generate a parser directly from the rules of the grammar.

All derivations in this chapter are rightmost. We also assume that grammars have a
nonrecursive start symbol and that all the symbols in a grammar are useful.

20.1 LR(0) Contexts

A deterministic bottom-up parser attempts to reduce the input string to the start symbol of
the grammar. Nondeterminism in bottom-up parsing is illustrated by examining reductions
of the string aabb using the grammar

G: 5 -*■ aA b \ BaAa

A -*■ a b \ b

B —>■ Bb \ b.

595

596 C h a p te r 2 0 LR(k) G r a m m a r s

The parser scans the prefix aab before finding a reducible substring. The suffixes b and ab
of aab both constitute the right-hand side of a rule of G. Three reductions o f aabb can be
obtained by replacing these substrings.

Rule Reduction

A b aaAb

A -* ab aAb

B -* b aaBb

The objective of a bottom-up parser is to repeatedly reduce the input string until the
start symbol is obtained. Can a reduction of aabb initiated with the rule A —y b eventually
produce the start symbol? Equivalently, is aaAb a right sentential form of G? Rightmost
derivations of the grammar G have the form

S => aAb => aabb

S => aAb => abb

S => BaAa ==> Baaba => Bb'aaba => bb'aaba i > 0

S => BaAa => Baba => Bb'aba => bb'aba i > 0.

Successful reductions of strings in L(G) can be obtained by “reversing the arrows” in
the preceding derivations. Since the strings aaAb and aaBb do not occur in any of these
derivations, a reduction of aabb initiated by the rule A -*■ b or B -> b cannot produce 5.
With this additional information, the parser need only reduce aab using the rule A —► ab.

Successful reductions were obtained by examining rightmost derivations o f G. A parser
that does not use lookahead must decide whether to perform a reduction with a rule A -> w
as soon as a string uw is scanned by the parser. We now introduce the set of LR(0) contexts
of a rule A - y w, which defines the contexts in which a reduction should be performed when
w is read by the scanner.

Definition 20.1.1

Let G = (V, E , P, S) be a context-free grammar. The string uw is an LR(0) context of a
rule A —y w if there is a derivation

5 => uA v => uwv,
K R

where u e (V U £)* and v € £*. The set of LR(0) contexts of the rule A —y w is denoted
LR(0)-CONTEXT(A -> w).

The LR(0) contexts of a rule A -y w are obtained from the rightmost derivations that
terminate with the application of the rule. In terms of reductions, uw is an LR(0) context
of A ► w if there is a reduction of a string uw v to S that begins by replacing w with A. If
uw & LR(0)-CQNTEXT(A -*■ w) then there is no sequence of reductions beginning with

20.1 LR(0) C o n te x ts 597

A -* w that produces 5 from a string of the form uw v with v € 2*. The LR(0) contexts,
if known, can be used to eliminate reductions from consideration by the parser. The parser
need only reduce a string uw with the rule A w when uw is an LR(0) context of A —»• w.

The LR(0) contexts of the rules of G are constructed from the rightmost derivations of
G. To determine the LR(0) contexts of S —>■ aAb, we consider all rightmost derivations that
contain an application of the rule S -*• aAb. The only two such derivations are

S => aA b => aabb

S => aAb ^ abb.

The only rightmost derivation terminating with the application of 5 -*■ a A b is S => aAb.
Thus LR(0)-CONTEXT(5 -» aAb) = {a A b }.

The LR(0) contexts of A -*■ ab are obtained from the rightmost derivations that termi
nate with an application of A -*• ab. There are only two such derivations. The reduction is
indicated by the arrow from ab to A. The context is the prefix of the sentential form up to
and including the occurrence of ab that is reduced.

^ ? i
S = > aAb => aabb

< A
S BaAa = > Baaba

Consequently, the LR(0) contexts of A —»■ ab are aab and Baab. In a similar manner we
can obtain the LR(0) contexts for all the rules of G.

Rule LR(0) Contexts

5 -*■ a A b {a A b }

S -* B aAa (B a A a }

A —*• ab {aab, B a a b }

A - > b {ab, Bab)

B ^ Bb {Bb)

B -> b (b)

Example 20.1.1

The LR(0) contexts are constructed for the rules of the grammar

S ^ a A \ b B

A —> a b A | b B

B -* bBc | be.

598 C h a p te r 20 LR(/c) G r a m m a r s

The rightmost derivations initiated by the rule S -»• a A have the form

S => a A => a(ab)‘ A ^ a(ab)'bB 4 a(ab)'bb-*Bd =$■ a(ab)‘bb-'bcc*,

where i, j > 0. Derivations beginning with S —> bB can be written

S= > bB 4 bb‘Bc‘ = ► bVbcc1.

The LR(0) contexts can be obtained from the sentential forms generated in the preceding
derivations.

Rule LR(0) Contexts

S -* aA M)

S —* bB {&*}

A -* abA \a(ab)‘ A 11 > 0}

A - * bB {a(ab)‘bB \ i > 0)

B -* bBc {a(ab)'bbJ Be, bb1 Be 11 > 0, j > 0}

B —*■ be {a(ab)'bb^c, bb!c \ i > 0, j > 0}

The contexts can be used to eliminate reductions from consideration by the parser.
When the LR(0) contexts provide sufficient information to eliminate all but one action, the
grammar is called an LR(0) grammar.

Definition 20.1.2

A context-free grammar G = (V, E , P, S) with nonrecursive start symbol S is LR(0) if,
for every u e (V U E)* and t> € E*,

u 6 LR(0)-CC)NTEXT(A ->■ u>,) and uv € LR(0)-CC>NTEXT(B -+ w2)

implies v = X, A = B, and uj] = w2.

The grammar from Example 20.1.1 is LR(0). Examining the table of LR(0) contexts,
we see that there is no LR(0) context of a rule that is a prefix of an LR(0) context of another
rule.

The contexts of an LR(0) grammar provide the information needed to select the appro
priate action. Upon scanning the string u, the parser takes one of three mutually exclusive
actions:

1. If u € LR(0)-CONTEXT(A —► ui), then u is reduced with the rule A - > w.

2. If u is not an LR(0) context but is a prefix of some LR(0) context, then the parser effects
a shift.

3. If u is not the prefix of any LR(0) context, then the input string is rejected.

20.2 An LR(O) P a rs e r 599

Since a string u is an LR(O) context for at most one rule A —*■ w, the first condition specifies
a unique action. A string u is called a viable prefix if there is a string v 6 (V U E)* such
that mu is an LR(0) context. If u is a viable prefix and not an LR(O) context, a sequence of
shift operations produces the LR(0) context uv.

Example 20.1.2

The grammar

G: S —► aA \ aB

A -*■ aA b | b

B —* bBa |b

is not LR(0). The rightmost derivations of G have the form

S => a A => aa' Ab' => aa'bb'

S => aB 4 ab' Ba' =*■ ab'ba'

for i > 0. The LR(0) contexts for the rules of the grammar can be obtained from the right
sentential forms in the preceding derivations.

Rule LR(0) Contexts

S aA [aA\

S -* aB {.uB}

A -* aAb [aa' Ab \ i > 0}

A —y b laa‘b | i > 0}

B -* bBa {ab'Ba \ i > 0}

B —* b {ab1 11 > 0}

The grammar G is not LR(0) since ab is an LR(0) context of both B -*■ b and A —► b. □

20.2 An LR(0) Parser

Incorporating the information provided by the LR(0) contexts of the rules of an LR(0)
grammar into a bottom-up parser produces a deterministic parsing algorithm. The input
string p is scanned in a left-to-right manner. The action of the parser in Algorithm 20.2.1
is determined by comparing the LR(0) contexts with the string scanned. The string u is the
prefix of the sentential form scanned by the parser, and v is the remainder o f the input string.
The operation shift(u, u) removes the first symbol from t> and concatenates it to the right
end of u.

600 C h a p t e r 2 0 LR(k) G r a m m a r s

Algorithm 20.2.1
Parser for an LR(0) Grammar

input: LR(0) grammar G = (V, E , P, S)
string p € E*

1. u := X, v := p
2. dead-end :=false
3. repeat

3.1. if u e LR(0)-CONTEXT(A -* w) for the rule A -*■ w in P
where u = xw then u := xA

else if u is a viable prefix and v ^=X then shift (u, v)
else dead-end := true

until u = S or dead-end
4. if u = S then accept else reject

The decision to reduce with the rule A -*■ w is made as soon as a substring u = x w
is encountered. The decision does not use any information contained in v, the unscanned
portion of the string. The parser does not look beyond the string x w, hence the zero in LR(0)
indicating no lookahead is required.

One detail has been overlooked in Algorithm 20.2.1. No technique has been provided
for deciding whether a string is a viable prefix or an LR(0) context of a rule o f the grammar.
In the next section we will design a finite automaton whose computations identify LR(0)
contexts and viable prefixes.

Example 20.2.1

The string aabbbbcc is parsed using the rules and LR(0) contexts of the grammar presented
in Example 20.1.1 and the parsing algorithm for LR(0) grammars.

u V Rule Action

X aabbbbcc shift

a abbbbcc shift

aa bbbbcc shift

aab bbbcc shift

aabb bbcc shift

aabbb bcc shift

aabbbb cc shift

aabbbbc c B -*• be reduce

aabbbB c shift

aabbbBc X B -*• bBc reduce

20.3 T h e LR(0) M a c h in e 601

v Rule Action

k A -*■ bB reduce

k A -* abA reduce

k S —► c A reduce

____________________ O

20.3 The LR(0) Machine

To select the appropriate action, the LR(0) parser compares the string u being processed
with the LR(0)-contexts of the rules of the grammar. Since the set of LR(0) contexts of a
rule may contain infinitely many strings and strings in set may be arbitrarily long, we cannot
generate these sets for a direct comparison. The problem of dealing with infinite sets was
avoided in LL(*) grammars by restricting the length of the lookahead strings. Unfortunately,
the decision to reduce a string requires knowledge of the entire scanned string (the context).
The LR(0) grammars Gi and G2 demonstrate this dependence.

The LR(0) contexts o f the rules A —*• aA b and A —* ab of G] form disjoint sets that
satisfy the prefix conditions. If these sets are truncated at any length k, the string ak will be
an element of both of the truncated sets. The final two symbols of the context are required
to discriminate between these reductions.

Rule LR(0) Contexts

Gj: S —► A (A)

A -» aAa {a'Aa | (>0}

A —* aAb la' Ab | i > 0 }

A —► ab {a'b | i >0}

One may be tempted to consider only fixed-length suffixes of contexts, since a reduction
alters the suffix of the scanned string. The grammar G2 exhibits the futility o f this approach.

Rule LR(0) Contexts

G2 : S —► A (A)
S —► bB {bB)

A —► a A la'A 11 > 0)

A ab {a‘b 11i > 0}

B -* aB Iba'B 1 >' > 0}

B -*• ab Iba'b 1 / > 0}

u

aabbB

aabA

aA

S

602 C h a p t e r 2 0 LR(fc) G r a m m a r s

The sole difference between the LR(0) contexts of A —> ab and B —* ab is the first
element of the string. A parser will be unable to discriminate between these rules if the
selection process uses only fixed-length suffixes of the LR(0) contexts.

The grammars G] and G2 demonstrate that the entire scanned string is required by
the LR(0) parser to select the appropriate action. Fortunately, this does not imply that the
complete set of LR(0) contexts is required. For a given grammar, a finite automaton can
be constructed whose computations determine whether a string is a viable prefix of the
grammar. The states of the machine, called LR(0) items, are constructed directly from the
rules of the grammar.

Definition 20.3.1

Let G = (V, E , P, S) be a context-free grammar. The LR(0) items of G are defined as
follows:

i) If A -*■ uv € P, then A —► u.v is an LR(0) item.

ii) If A -* k e P, then A -*■ . is an LR(0) item.

The LR(0) items are obtained from the rules of the grammar by placing the marker
in the right-hand side of a rule. An item “A -*■ u." is called a complete item. A rule whose
right-hand side has length n generates n + 1 items, one for each possible position of the
marker.

Definition 20.3.2

Let G = (V, E , P, 5) be a context-free grammar. The nondeterministic LR(0) machine
of G is an NFA-A. M = (Q, V U E , <5, q0, Q), where Q is the set of LR(0) items augmented
with the state q0. The transition function is defined by

i) 8(q0, k) = [S -*■ .w | S -*• w e P)

ii) <S(A —► u.av, a) = {A —>• ua.v]

iii) 5(A ->■ u.B v, B) = {A -»■ u B .v}

iv) <5(A -*■ u .B v , A.) = {B —► .w | B —► w € P).

The computations of the nondeterministic LR(0) machine M of a grammar G com
pletely process strings that are viable prefixes of the grammar. All other computations halt
prior to reading the entire input. Since all the states of M are accepting, M accepts precisely
the viable prefixes of the original grammar. A computation of M records the progress made
toward matching the right-hand side of a rule of G. The item A -*■ u.v indicates that the
string u has been scanned and the automaton is looking for the string t> to complete the
match.

The symbol following the marker in an item defines the arcs leaving a node. If the
marker precedes a terminal, the only arc leaving the node is labeled by that terminal. Arcs
labeled B or k may leave a node containing an item of the form A ->• u.Bv. To extend the
match of the right-hand side of the rule, the machine is looking for a B. The node A —► uB .v

20.3 T h e LR(0) M a c h in e 603

is entered if the parser reads B. It is also looking for strings that may produce B. The variable
B may be obtained by a reduction using a B rule. Consequently, the parser is also looking
for the right-hand side of a B rule. This is indicated by X-transitions to the items B —> .w.

Definition 20.3.2, the LR(0) items, and the LR(0) contexts of the rules o f the grammar
G given in the following table are used to demonstrate the recognition of viable prefixes by
the associated NFA-X.

Rule LR(0) Item s LR(0) C ontexts

A B S -* .A B {AB}

S -*• A .B

S -* A B .

Aa A -*■ .Aa [Aa]

M

B - ► bBa B -* .bBa [A h 'B a \i> 0)

B -»• b.Ba
B —*■ bB.a
B ->• bBa.

B -*■ ba B -* .ba {A b'ba \ i > 0}

.A B

s —*■ A.B

s —► A B .

A —>■ .Aa

A -*■ A.a

A -*• Aa.

A -*■ .a

A —► a.

B -* .bBa

B - ► b.Ba

B -* bB.a

B - ► bBa.

B -» .ba

B -> b.a

B ba.

The NFA-X in Figure 20.1 is the LR(0) machine of the grammar G. A string w is a
prefix of a context of the rule A -*■ uv if A -*■ u.v € S(q0, w). The computation S(q0, A) of
the LR(0) machine in Figure 20.1 halts in the states containing the items A —>• A.a, S —►
A .B , B —► .bBa, and B ->• .ba. These are precisely the rules that have LR(0) contexts
beginning with A. Similarly, the computation with input AbB indicates that A bB is a viable
prefix of the rule B -*• bBa and no other.

The techniques presented in Chapter 5 can be used to construct an equivalent DFA
from the nondeterministic LR(0) machine of G. This machine, the determ inistic LR(0)
machine of G, is given in Figure 20.2. The start state qs o f the deterministic machine is the
X-closure of q0, the start state o f the nondeterministic machine. The state that represents
failure, the empty set, has been omitted. When the computation obtained by processing the
string u successfully terminates, u is an LR(0) context or a viable prefix. Algorithm 20.3.3
incorporates the LR(0) machine into the LR(0) parsing strategy.

604 C h a p t e r 2 0 LR(/c) G r a m m a r s

>(5o)— - — » (s —> . A B ^ -— - — » (A —> .a T)— ------A —> a.~~)

A—> . A a)---------- *^ A —> A.~a)-------------(^A—> Aa. j

{ 5 —> A B .)

(is—> bB^a)----------- »~(b —> fcBa.)

FIGURE 20.1 Nondeterministic LR(0) machine o f G.

Algorithm 20.3.3
Parser Utilizing the Deterministic LR(0) Machine

input: LR(0) grammar G = (V, E , P, 5)
string p € E*
deterministic LR(0) machine of G

1. u := X, v := p
2. dead-end :=false
3. repeat

3.1. if S(qs, u) contains A —> tf . where u = xw then u := xA

else if &(qs, u) contains an item A —► y.z and v 5 6 X then shift(u, v)
else dead-end := true

until u = S or dead-end
4. if u = S then accept else reject

20.3 T h e LR(0) M a c h in e 605

(f i—> bB.a)— - — - (f i —> frfia.)

FIGURE 20.2 Deterministic LR(0) machine of G.

The decision of which action to take is made in step 3.1 based on the result of the
computation 8(qs, u) by the LR(0) machine. If 8(qs, u) contains a complete LR(0) item
A -* w., then a reduction with the rule A -* w is performed and the loop is repeated
with the resulting string. If 8(qs, u) contains an LR(0) item A —► y.z, a shift is performed
to extend the match of the viable prefix. Finally, the computation halts if 8(qs, u) is
empty.

Example 20.3.1

The string aabbaa is parsed using Algorithm 20.3.3 and the deterministic LR(0) machine in
Figure 20.2. Upon processing the leading a , the machine enters the state A ->■ a., specifying
a reduction using the rule A —*■ a. Since 8(qs, A) does not contain a complete item, the parser
shifts and constructs the string Aa. The computation 8(qs, Aa) = {A —► Aa.) indicates that
Aa is an LR(0) context of A -*• Aa and that it is not a prefix of a context of any other rule.

Having generated a complete item, the parser reduces the string using the rule A —* Aa. The
shift and reduction cycle continues until the sentential form is reduced to the start symbol S.

606 C h a p t e r 2 0 LR(/c) G r a m m a r s

u V Computation Action

A aabbaa & { q „ A.) = {5 -* .AB,

A -* .a,

A -* .Aa)

Shift

a abbaa h q 5 , a) — (A a.) Reduce

A abbaa h q s . A) = {A —* A.a,

S —► A.B,

B —► .bBa,

B - ► .ba]

Shift

Aa bbaa S (q „ Aa) = {A —► Aa.} Reduce

A bbaa II

«■©

[A ->■ A.a,

S-+ A.B,

B - * .bBa,

B -*■ .ba)

Shift

Ab baa H q s < Ab) = {B - ► .bBa,

B - * b.Ba,

B - * .ba,

B —* b.a)

Shift

Abb aa % , Abb) = { B -*• .bBa,

B —► b.Ba,

B ->• .ba,

B - f b.a]

Shift

Abba a l(qs,Abba) = {B -*• ba.) Reduce

AbB a & (q s . AbB) = {B -»• f>B.a) Shift

AbBa A. S (q s , AbBa) = (B -> bBa.) Reduce

AB A h q s < AB) = (5 —► AB.) Reduce
S

---. --- □

20.4 Acceptance by the LR(0) Machine

The LR(0) machine has been constructed to decide whether a string is a viable prefix of the
grammar. Theorem 20.4.1 establishes that computations of the LR(0) machine provide the
desired information.

20.4 A c c e p ta n c e by t h e LR(0) M a c h in e 607

Theorem 20.4.1

Let G be a context-free grammar and M the nondeterministic LR(0) machine of G. The
LR(0) item A -*■ u.v is in 8(q0, w) if, and only if, w = pu, where puv is an LR(0) context
of A —► uv.

Proof. Let A —► u.v be an element of 8(q0, w). We prove, by induction on the number of
transitions in the computation <5(<?0, u>), that wv is an LR(0) context of A -> uv.

The basis consists of computations of length 1. All such computations have the form

X§) — ~ s ~ *)
where S -* q is a rule of the grammar. These computations process the input string w = k.
Setting p = k , u = k, and v = q gives the desired decomposition of w.

Now let 8(q0, w) be a computation of length k > 1 with A -*■ u.v in 8(q0, w). Isolating
the final transition, we can write this computation as 8(S(qo, y), x) , where w = y x and
x e V U E U {X}. The remainder of the proof is divided into three cases.

Case 1: x = a 6 E. In this case, u = u'a. The final transition of the computation has the
form

By the inductive hypothesis, pu 'av = w v is an LR(0) context of A —► uv.

Case 2: x € V. The proof is similar to that of case 1.

Case 3: x = k. If x = k, then y = w and the computation terminates at an item A —► .v.
The final transition has the form

(* ± Z) — - — ^ A—>.v)

The inductive hypothesis implies that w can be written w = p r, where p rA s is an LR(0)
context of B -> r As. Thus there is a rightmost derivation

S =>■ p B q = ► p rA sq .

The application of A —► v yields

S =>• pB q =>• p rA sq => prvsq .

The final step of this derivation shows that pr v = iuv is an LR(0) context of A -* v.

To establish the opposite implication, we must show that S(q0, pu) contains the item
A —>■ u.v whenever pu v is an LR(0) context of a rule A —>■ uv. First, we note that if
S(<7o. P) contains A —*■ .uv, then 8(qo, pu) contains A —* u.v. This follows immediately
from conditions (ii) and (iii) of Definition 20.3.2.

608 Chapter 20 LR(fc) Grammars

Since puv is an LR(0) context of A -*• uv, there is a derivation

5 pA q => puvq.
R R

We prove, by induction on the length of the derivation S => pAq, that &(qo, p) contains

A —*■ .uv. The basis consists of derivations S => p A q of length 1. The desired computation
consists of traversing the X-arc to S —>■ .pAq followed by the arcs that process the string p.
The computation is completed by following the X-arc from S —*■ p .A q to A —»■ .uv.

Now consider a derivation in which the variable A is introduced on the fcth rule
application. A derivation of this form can be written

5 = > xBy => xwAzy.
R R

The inductive hypothesis asserts that <5(<?0, x) contains the item B —► .wAz. Hence B —►
w .A z 6 S(q0, xw). The X-transition to A —► .uv completes the computation. ■

The relationships in Lemma 20.4.2 between derivations in a context-free grammar and
the items in the nodes of the deterministic LR(0) machine of the grammar follow from
Theorem 20.4.1. The proof of Lemma 20.4.2 is left as an exercise. Recall that qs is the start
symbol of the deterministic machine.

Lemma 20.4.2

Let M be the deterministic LR(0) machine of a context-free grammar G. Assume 8(qs, w)
contains an item A —► u.Bv.

i) If B => X, then 8(qs, w) contains an item of the form C —»•. for some variable C e V .

ii) If B => x e E +, then there is an arc labeled by a terminal symbol leaving the node

S(qs, w) or S(qs, w) contains an item of the form C -*• . for some variable C e V .

Lemma 20.4.3

Let M be the deterministic LR(0) machine of an LR(0) grammar G. Assume S(qs, u)
contains the complete item A —*■ w.. Then S(qs, ua) is undefined for all terminal symbols
a e S .

Proof. By Theorem 20.4.1, u is an LR(0) context of A —v w. Assume that &(qs, ua) is
defined for some terminal a. Then ua is a prefix of an LR(0) context of some rule B —*■ y.
This implies that there is a derivation

S => pBv => pyv = uazv

with z € (V U S)* and D e l * . Consider the possibilities for the string z. If z e S*, then uaz
is an LR(0) context of the rule B —* y. If z is not a terminal string, then there is a terminal
string derivable from z

z rC s => rts r , s , t e E*
R

20.4 Acceptance by the LR(0) Machine 609

where C —* t is the final rule application in the derivation of the terminal string from z.
Combining the derivations from S and z shows that uart is an LR(0) context of C —*■ t. In
either case, u is an LR(0) context and ua is a viable prefix. This contradicts the assumption

that G is LR(0). ■

The previous results can be combined with Definition 20.1.2 to obtain a characterization
of LR(0) grammars in terms of the structure of the deterministic LR(0) machine.

Theorem 20.4.4

Let G be a context-free grammar with a nonrecursive start symbol. G is LR(0) if, and only
if, the extended transition function <5 of the deterministic LR(0) machine of G satisfies the
following conditions:

i) If 8(qs, u) contains a complete item A -> w. with w ^ X, then 8(qs, u) contains no
other items.

ii) If S(qs, u) contains a complete item A -* ■., then the marker is followed by a variable

in all other items in 8(qs,u) .

Proof. First we show that a grammar G with nonrecursive start symbol is LR(0) when the
extended transition function satisfies conditions (i) and (ii). Let u be an LR(0) context of
the rule A -*■ w. Then 8(qs, uv) is defined only when v begins with a variable. Thus, for
all strings v € £*, uv e LR(0)-CONTEXT(£ -» j c) implies v = X, B = A, and w = x.

Conversely, let G be an LR(0) grammar and u an LR(0) context of the rule A —► w. By
Theorem 20.4.1, 8(qs, u) contains the complete item A —► w.. The state 8(qs, u) does not
contain any other complete items B -*■ v. since this would imply that u is also an LR(0)
context of B -> v. By Lemma 20.4.3, all arcs leaving 8(qs, u) must be labeled by variables.

Now assume that 8(qs, u) contains a complete item A —> w. where w X. By Lemma

20.4.2, if there is an arc labeled by a variable with tail &(qs, «). then 8(qs, u) contains a
complete item C —*■ .o r 8(qs,u) has an arc labeled by a terminal leaving it. In the former
case, u is an LR(0) context of both A -*■ w and C —> X, contradicting the assumption that
G is LR(0). The latter possibility contradicts Lemma 20.4.3. Thus A —► n>. is the only item
in 8(qs, u). m

Intuitively, we would like to say that a grammar is LR(0) if a state containing a complete
item contains no other items. This condition is satisfied by all states containing complete
items generated by nonnull rules. The previous theorem permits a state containing A -+ . to
contain items in which the marker is followed by a variable. Consider the derivation using
the rules S —>• aA B c, A —> X, and B —> b.

S => a A B c => a Abc => abc
K R R

The string a is an LR(0) context of A —* X and a prefix of a A b , which is an LR(0) context
of B ->■ b. The effect of reductions by X-rules in an LR(0) parser is demonstrated in
Example 20.4.1.

610 Chapter 20 LR(fc) Grammars

Example 20.4.1

The deterministic LR(0) machine for the grammar

G: S -* B A A b

A-*- k

B b

C B->b.) (s-tBA A b.')

The analysis of the string bb is traced using the computations of the machine to specify the
actions of the parser.

u V Computation Action

k bb k q s, k) = (5 -* .BAAb

B -* .b }

Shift

b b k q s, b) = IB - b.} Reduce

B b hq„ B) = {5 -* B.AAb

A -* .}

Reduce

BA b S(q„ BA) = (S-» BA.Ab
A - . }

Reduce

BAA b l (q s , BAA) = {5 - > ■ BAA.b} Shift

BAAb

S

k S(q„ BAAb) = {S -* BAAb.) Reduce

The parser reduces the sentential form with the rule A —► k whenever the LR(0)
machine halts in a state containing the complete item A -* ■.. This reduction adds an A
to the end o f the currently scanned string. In the next iteration, the LR(0) machine follows
the arc labeled A to the subsequent state. An A is generated by a A. reduction only when its
presence adds to the prefix of an item being recognized. □

Theorem 20.4.4 establishes a procedure for deciding whether a grammar is LR(0). The
process begins by constructing the deterministic LR(0) machine of the grammar. A grammar

20.4 Acceptance by the LR(0) Machine 611

with a nonrecursive start symbol is LR(0) if the restrictions imposed by conditions (i) and
(ii) of Theorem 20.4.4 are satisfied by the LR(0) machine.

Example 20.4.2

The grammar AE augmented with the endmarker #,

AE: S -> A#

A —y A + T \ T

T -» b | (A),

is LR(0). The deterministic LR(0) machine of AE is given in Figure 20.3. Since each of the
states containing a complete item is a singleton set, the grammar is LR(0). □

Example 20.4.3

The grammar

is not LR(0). This grammar is obtained by adding the variable F (factor) to AE to generate

multiplicative subexpressions. We show that this grammar is not LR(0) by constructing two
states of the deterministic LR(0) machine.

5 -> A#

T - ► T -F | F

F -*> b | (A)

r ° \

A -> .A + T

T—» .T -F
T—» .F

T

The computation generated by processing T contains the complete item A - + T . and
the item T -> T .- F. When the parser scans the string T , there are two possible courses of
action: Reduce using A - * T or shift in an attempt to construct the string T -F . □

612 Chapter 20 LR(fc) Grammars

20.5 LR(1) Crammars

The LR(0) conditions are generally too restrictive to construct grammars that define pro
gramming languages. In this section the LR parser is modified to utilize information ob
tained by looking beyond the substring that matches the right-hand side of the rule. The
lookahead is limited to a single symbol. The definitions and algorithms, with obvious mod
ifications, can be extended to utilize a lookahead of arbitrary length.

20.5 LR(1) Grammars 613

A grammar in which strings can be deterministically parsed using a one-symbol look
ahead is called LR(1). The lookahead symbol is the symbol to the immediate right of the
substring to be reduced by the parser. The decision to reduce with the rule A —► w is made
upon scanning a string of the form uwz, where z € E U {X}. Following the example of LR(0)
grammars, a string uw z is called an LR(1) context if there is a derivation

S => u A v =>■ uwv,
R R

where z is the first symbol of v or the null string if v = X. Since the derivation constructed
by a bottom-up parser is rightmost, the lookahead symbol z is either a terminal symbol or
the null string.

The role of the lookahead symbol in reducing the number of possibilities that must be
examined by the parser is demonstrated by considering reductions in the grammar

G: S -» A | Be

A —>■ a A \a

B —> a | ab.

When an LR(0) parser reads the symbol a, there are three possible actions:

i) Reduce with A -»■ a.

ii) Reduce with B -* a.

iii) Shift to obtain either a A or ab.

One-symbol lookahead is sufficient to determine the appropriate operation. The symbol
underlined in each of the following derivations is the lookahead symbol when the initial a
is scanned by the parser.

S => A S ^ A S => Be S =» Be
=> a_ =* aA => ac => abc

=> aaA
=>■ aaa

In the preceding grammar, the action of the parser when reading an a is completely
determined by the lookahead symbol.

String
Scanned

Lookahead
Symbol Action

a K Reduce with A -* a
a a Shift
a b Shift
a c Reduce with B -* a

614 Chapter 20 LR(lc) Grammars

The action of an LR(0) parser is determined by the result of a computation of the
LR(0) machine of the grammar. An LR(1) parser incorporates the lookahead symbol into
the decision procedure. An LR(1) item is an ordered pair consisting of an LR(0) item and
a set containing the possible lookahead symbols.

Definition 20.5.1

LetG = (V, E , P, 5) be a context-free grammar. The LR(1) items of G have the form

[A -* u.v, {z,, z2......... z„}],

where A —► uv 6 P and z, e E U {X}. The set [zh z2, . . . , z„} is the lookahead set of the
LR(1) item.

The lookahead set of an item [A -* u.v, {z1(. . . , z„}] consists of the first symbol in
the terminal strings y that follow mu in rightmost derivations.

S => x A y => xuvy
R R

Since the S rules are nonrecursive, the only derivation terminated by a rule 5 -> w is the
derivation S=> w. The null string follows w in this derivation. Consequently, the lookahead
set of an S rule is always the singleton set {X}.

As before, a complete item is an item in which the marker follows the entire right-
hand side of the rule. The LR(1) machine, which specifies the actions of an LR(1) parser,
is constructed from the LR(1) items of the grammar.

Definition 20.5.2

L etG = (V, E , P, 5) be a context-free grammar. The nondeterm inistic LR(1) m achine
of G is an NFA-X M = (Q, V U E , S, qQ, Q), where Q is a set of LR(1) items augmented
with the state q0. The transition function is defined by

i) S(q0, X) = [{5 .w, {X}] I 5 - ► w e P)

ii) S([A - ► u .B v , {z,......... z„)], B) = {[A -> uB .v , {zx...........z„}]}

iii) 5([A u m v , {Z |,. . . , z„}], a) = {[A - ► ua.v, {zl t . . . , z„}]}

iv) S([A ->■ u.B v , [zt, zn) \ X) = {[B -»• .w, {>>i,. . . , yt }] |B - > u i e P where
yt e FIRSTi(vzj) for some j) .

If we disregard the lookahead sets, the transitions of the LR(1) machine defined in
(i), (ii), and (iii) have the same form as those of the LR(0) machine. The LR(1) item
[A -*■ u.v, {zh . . . , z„}] indicates that the parser has scanned the string u and is attempting
to find v to complete the match of the right-hand side of the rule. The transitions generated
by conditions (ii) and (iii) represent intermediate steps in matching the right-hand side of a
rule and do not alter the lookahead set. Condition (iv) introduces transitions of the form

([A-*u.Bv, (z.......zn}])---- -----^ [B—>.w, {y....... y>}] ~)

20.5 LR(1) G r a m m a r s 615

Following this arc, the LR(1) machine attempts to match the right-hand side of the rule
B -*■ w. If the string w is found, a reduction of uw v produces uB .v , as desired. The
lookahead set consists of the symbols that follow u;, that is, the first terminal symbol in

strings derived from v and the lookahead set [zl t . . . , z„] if v = ► X.
A bottom-up parser may reduce the string uw to uA whenever A -+ w is a rule of the

grammar. An LR(1) parser uses the lookahead set to decide whether to reduce or to shift
when this occurs. If S(q0, uw) contains a complete item [A —*■ w., { z ,,. . . , z„}], the string
is reduced only if the lookahead symbol is in the set {zx, . . . , z„).

The state diagrams of the nondeterministic and deterministic LR(1) machines of the
grammar G are given in Figures 20.4 and 20.5, respectively.

X

([A—» .aA, {X}])---- - -----»-{[A—> a .A, {X}])---- ------—([A—> aA„ (X}j)

* ([A -> .a , (XQ)---- ------» ([A -> a.,{X}j)

[5-» .A, (X}])---- - ---- - ([S -> A ..{ X |])

[S-> ,Bc,(X}])---------- - ([5 -» B.c, {X}])---- ----- —([5 —> Be., (X}j)

* (j g —» - a , (c }]) -------------» ([B —> a . , (c }])

([B—> .a i> ,{c |j)----- - ------> a .fc ,(c }])---------------- - ------» ([B—> q b .,(c }])

FIGURE 20.4 Nondeterministic LR(1) machine of G.

6 1 6 C h a p t e r 2 0 LR(/c) G r a m m a r s

^ — Q - > A ,{ X } l)

B.c, {X}])---- £-----Be.. (X)])

/ [A-> a.A, {X}\

[A->a,(X }] '

[A—> .o4,{X}]
(A—> .<2,{X}]
[S->o.,{c}]

y [g - > a.fc.(c}]J

a A

f [A—> aA ,{X }]\

[A- > .o4.{X}] r ^ \ a
[A-> .a,{X}] L y

y[A -»a.,{X }] J

FIGURE 20.5 Deterministic LR(1) machine of G.

G: S -*• A | Be

A —* a A \a

B —>■ a \ab

A grammar is LR(1) if the actions of the parser are uniquely determined using a single
lookahead symbol. The structure of the deterministic LR(1) machine can be used to define
the LR(1) grammars.

Definition 20.5.3

Let G be a context-free grammar with a nonrecursive start symbol. The grammar G is LR(1)
if the extended transition function 8 of the deterministic LR(1) machine of G satisfies the
following conditions:

(f r - > ab., {c}])

— > a4.,(X}])

f % \

[5—> -4, (X)]
[5 -» .Be, {X}]

/ [A—> .oA. {A.,}]
[A—> .a,{X,}]
[B-> .a.{c}]

\ [g - > ■ab,{c}] J

a

20.5 LR(1) G r a m m a r s 617

i) If 8(qs, u) contains a complete item [A -*■ w., {Z |,. . . . z„}] and 8(QS< m) contains an
item [fi -»■ r.as, {y,......... y*}], then a ^ z, for all 1 < i < n.

ii) If 8{qs, u) contains two complete items [A —► w., (zl t . . . , zn}] and
[B -*■ v., {y j,. . . , y*}], then y, # z j for all 1 < i < k, 1 < j < n.

Example 20.5.1

The deterministic LR(1) machine is constructed for the grammar AE.

90 \ [5—> .A . |X}] ̂

[a —> . r , { X ,+)]

[a —> . a + r,{X.+}]

[T—> .b,[K+}] j
V [7 -> . (A),{X,+(] /

[5—> A.,(X(]

[A— ̂A. +

([A > 7’..(X,+}])

/ [A -> A +.r,{X ,+ }]

[7 -> .(A). JX .+}]

u r - > (X .+ n

(.A),{X,+ }] \

/ [A—> .A + T, {X,+}]

[A -> • T, IX.+)]

[T —> .fc, {X,+}]

\ [r - > • (A),{X,+)] y

\

/ [7—> (A.), {X,+}]

[A -» A. + T, {X,+}]

)

([A -» A + r„ (X,+ }j) ([r -X A) .. (X , + n)

61 8 C h a p t e r 20 LR(fc) G r a m m a r s

The state containing the complete item S —* A. also contains A A. + T . ll follows
that AE is not LR(0). Upon entering this state, the LR(1) parser halts unsuccessfully unless
the lookahead symbol is + or the null string. In the latter case, the entire input string has
been read and a reduction with the rule S —* A is specified. When the lookahead symbol is
+ , the parser shifts in an attempt to construct the string A + T. □

The action of a parser for an LR(1) grammar upon scanning the string u is selected by
the result of the computation 8(qs, u). Algorithm 20.5.4 gives a deterministic algorithm for
parsing an LR(1) grammar.

Algorithm 20.5.4
Parser for an LR(1) Grammar

input: LR(1) grammar G = (V, E , P, S)
string p e E*
deterministic LR(1) machine of G

1. Let p = zv where z e E U {X} and v e E*
(z is the lookahead symbol, v the remainder of the input)

2. u — X
3. dead-end :=false
4. repeat

4.1. if 8(qs, u) contains [A —»■ w., {z(......... z„}]
where u = x w and z = z, for some 1 < i < n then u : = x A

else if z ^ X and 8(qs, u) contains an item A -* p .zq then
(shift and obtain new lookahead symbol)
4.1.1. u := uz

4.1.2. Let u = zv ' where z € E U {X} and v' 6 E*
4.1.3. v : = v '

end if
else dead-end := true

until u = S or dead-end
5. if u = S then accept else reject

For an LR(1) grammar, the structure of the LR(1) machine ensures that the action
specified in step 4.1 is unique. When a state contains more than one complete item, the
lookahead symbol specifies the appropriate operation.

Example 20.5.2

Algorithm 20.5.4 and the deterministic LR(1) machine in Figure 20.5 are used to parse the
strings aaa and ac using the grammar

20.5 LR(1) G r a m m a r s 6 1 9

u

A

a

aa

aaa

aaA

aA

A

G: S - y A | Be

A -* a A \a

B -^y a | ab.

Computation Action

aa A.) =

S(qs, a) =

{ [S -y .A .l*.}],
[5 ->• .Be, (X)],

[A - ► .aA, {A}],

[A - m , {A.}],

[B -y .a {c}],

IB -y .ab {c}]}

Shift

{[A - ► a.A, {A.}],
[A - a ., {A}],

[A ->• .aA, {A}],

[A ->■ .a, {A}],

[B - a.. |c)],

IB - a.b, (c)]}

Shift

{[A - ♦ a.A, {A}],

[A - ► mA, (A)],

[A -> .a, {A}],

[A - a., (A)]}

Shift

{[A - a.A, {A}],

[A - ► a A, {A}],

[A - ► a , {A}],

[A - a., {A}])

Reduce

{[A - aA., {A}]} Reduce

{[A -*• aA., {A}]) Reduce

{[5 -y A., (A)]) Reduce

S

u z v Computation

620 C h a p t e r 2 0 LR(/t) G r a m m a r s

Action

A a c Uqs,k) = ([S->-.A,{A}], Shift
[S -> .Be, {X}],

[A -y .aA. {A}],

[A -> .a, {A}],
[B -* .a (c)],
[fl - .ab {c}]}

a c A S(qs,a) = {[A -* a.A, (A)], Reduce

[A -*■ a., (A)],

[A -+ .aA. {A}],

[A -*• .a, {A}],

IB - a., {c}],
[fl - ► a.b, {c)](

B e k 8(q„ B) = {[5 - ♦ B.c, {A}]) Shift

Be k A &(qs, Be) = {[5 -*• Be., {A}]) Reduce

5

Exercises

1. Give the LR(0) contexts for the rules of the following grammars. Build the nondeter
ministic LR(0) machine. Use this to construct the deterministic LR(0) machine. Is the
grammar LR(0)?

a) S —► A B
A - y a A \ b
B —y b B \ a

c) S —► A
A —* a A b \ b A a \ k

e) S - + B A | b A B
A - y a A \ k
B —y Bb | b

2. Build the deterministic LR(0)

S -y aA b \ aB

A -y Aa \ k

B —y Ac.

b) S ^y Ac
A -y B A \k
B -y aB | b

d) 5 -» aA | AS
A —yaAb \ b
B -y a b \b

f) S -y A \aB
A -y BC | k
B -y B b \C
C -y Cc | c

machine for the grammar

B ib l iog raph ic N o te s 621

Use the technique presented in Example 20.3.1 to trace the parse of the strings aaab

and ac.

3. Show that the grammar AE without an endmarker is not LR(0).

4. Prove Lemma 20.4.2.

5. Prove that an LR(0) grammar is unambiguous.

6. Define the LR(fc) contexts of a rule A -*■ w.

7. For each of the following grammars, construct the nondeterministic and deterministic
LR(1) machines. Is the grammar LR(1)?

a) S —y Ac b) S —► A
A - y B A | A. A - y A a A b \ k

e) S -* A
/i —*• AAa | AAb \ c

8. Construct the LR(1) machine for the grammar introduced in Example 20.4.3. Is this
grammar LR(1)?

9. Parse the following strings using the LR(1) parser and the grammar AE. Trace the
actions of the parser using the format of Example 20.5.2. The deterministic LR(1)
machine of AE is given in Example 20.5.1.

a) b + b

b) (b)

c) b + +b

Bibliographic Notes

LR grammars were introduced by Knuth [1965], The number of states and transitions in the
LR machine made the use of LR techniques impractical for parsers of computer languages.
Korenjak [1969] and De Remer [1969, 1971] developed simplifications that eliminated
these difficulties. The latter works introduced the SLR (simple LR) and LALR (lookahead
LR) grammars. The relationships between the class of LR(ifc) grammars and other classes of
grammars that can be deterministically parsed, including the LL(jfc) grammars, are presented
in Aho and Ullman [1972, 1973].

B ^ a B \ b
c) 5 -* A d) S —► A

A —► a A b | B
B -*■ B b \ b

A -y BB
B —y aB \ b

APPENDIX I

Index of Notation

Symbol Page

€ 8

* 8

I* 1 • • ■} 8

N 8

0 8

c 8

3>(X) 9

U 9

n 9

- 9

X 9

X 11

[*. y] 11

f :X -y Y 12

f (x) 12

f i x) t 13

/ (* H 13

Interpretation

is an element of

is not an element of

the set of x such that . . .

the set of natural numbers

empty set

is a subset of

power set of X

union

intersection

X — Y: set difference

complement

X x Y: Cartesian product

ordered pair

/ is a function from X to Y

value assigned to x by the function /

f (x) is undefined

/ (x) is defined

623

624 A p p en d ix I Index o f N o ta t io n

Symbol Page Interpretation

div 13 integer division

= IS equivalence relation

[] . 15 equivalence class

card 16 cardinality

5 24,300 successor function
m
£ 31,398 bounded summation
l'sn

— 39,395 proper subtraction

X 42 null sting

E* 42 set of strings over 2

length 43 length of a string

uv 44 concatenation of u and v

u" 44 concatenation of u n times

uR 45 reversal of u

XY 47 concatenation of sets X and Y

X' 47 concatenation of X with itself i times

X* 48 strings over X

X+ 48 nonnull strings over X

oo 48 infinity

0 50 regular expression for the empty set

X 50 regular expression for the null string

a 50 regular expression for the set (a)

U 50 regular expression union operation

-* 65,69,326 rule of a grammar

=> 67,69,326 is derivable by one rule application

=> 69,326 is derivable from

=* 69 is derivable by one or more rule applications

=► 69 is derivable by n rule applications

L(G) 70,326 language of the grammar G

nx(u) 84 number of occurrences of x in u

=> 91 leftmost rule application

Symbol

Appendix I Index of Notation 6 2 5

Page Interpretation

=!> 91
*

A opt 94, 631

s 147, 163,222, 256

L(M) 148, 163, 234,260

1- 149, 224, 258

K 149,224, 258

S 151, 185

k-closure 170

r 222, 256

B 256

lo 286

Xl 298

Xl 298

i 299,471

z 300, 390

e 300

pV 300, 390

id 301

pred 301

o 308

311,391

w 320

p 343

u 356

Lh 357, 365

P 372
1 393
n
n 398
i=0

400,413

M*[p] 401

rightmost rule application

occurrence of A is optional

transition function

language of the machine M

yields by one transition

yields by zero or more transitions

extended transition function

lambda closure function

stack or tape alphabet

blank tape symbol

lexicographical ordering

characteristic function of language L

partial characteristic function of language L

representation of i

zero function

empty function

^-variable projection function

identity function

predecessor function

composition

fc-variable constant function

greatest integer less than or equal to x

decision problem

universal Turing machine

language of the Halting Problem

property of recursively enumerable languages

factorial

bounded product

unbounded minimalization

bounded minimalization

626 A p p e n d ix I Index o f N o ta t io n

Symbol Page Interpretation

quo 404 quotient function

pn(i) 405 ith prime function

g"k 406 (k + Invariable Godel numbering function

dec(i, x) 407 decoding function

gnf 408 bounded Godel numbering function

417,420 TUring machine trace function

9 431,468 class of polynomial languages

m 431,469 class of nondeterministically polynomial languages

o (g) 436 big oh of g, the order of the function g

e(g) 438 big theta of g

l>l 438 absolute value of i

443 time complexity function

M 451 least integer greater than or equal to x

rep(p) 471 representation of problem instance p

A 481 conjunction

V 481 disjunction

- 481 negation

l sa t 483 language of the Satisfiability Problem

m e 492 class of NP-complete languages

Co-WP 531 complement of M̂P

SCM 532 space complexity function

in f 538 infimum, greatest lower bound

y-Space 540 class of polynomial space languages

N3>-Space 540 class of nondeterministic polynomial space languages

g(G) 556 graph of the grammar G

LA (A) 572 lookahead set of variable A

LA (A —*• w) 572 lookahead set of the rule A -* ui

trunck 575 length-/: truncation function

FIRST*(u) 576 FIRST* set of the string u

FOLLOW*(i4) 577 FOLLOW* set of the variable A

shift 599 shift function

APPENDIX II

The Creek Alphabet

Uppercase Lowercase Name

A or alpha
B fi beta
r Y gamma
A & delta
E e epsilon
z f zeta
H ' r> eta
© e theta
I i iota
K K kappa
A A. lambda
M mu
N V nu
3 { xi
o 0 o micron
n 71 Pi
p P rho
£ a sigma
T X tau
T V upsilon
<t <t> phi
X X chi
* + psi
Q CO omega

627

APPENDIX III

The ASCII Character Set

The American Standard Code for Information Interchange, more commonly referred
to as the ASCII code, is a code that represents printable symbols and special functions
using the binary representation of the numbers 0 to 127. Numbers 0 through 31 are control
characters and the column labeled Name gives an abbreviation for the action associated
with the character. For example, numbers 14 and IS indicate that the printer should begin a
new line (LF, line feed) or a new page (FF, form feed) when this character is encountered.
Numbers 32 (a blank space) to 126 have become widely accepted as the standard encoding
for text documents.

Code Char Name

0 NUL

1 “A SOH
2 "B STX
3 ETX
4 ‘D EOT
5 *E ENQ
6 *F ACK
7 "G BEL
8 ‘H BS
9 ‘I TAB

10 AJ LF
11 *K VT

Code Char Code

32 64

33 ! 65
34 " 66
35 # 67
36 $ 68
37 % 69
38 & 70
39 ’ 71
40 (72
41) 73
42 • 74
43 + 75

Char Code Char

@ 96 •

A 97 a
B 98 b
C 99 c
D 98 d
E 101 e
F 102 f
G 103 g
H 104 h
I 105 i
J 106 j
K 107 k

629

630 A p p en d ix III T h e ASCII C h a r a c te r Se t

Code Char Name Code Char Code Char Code Char

12 ‘L FF 44 76 L 108 1

13 CR 45 - 77 M 109 m

14 “N SO 46 78 N 110 n

15 "O SI 47 / 79 O 111 0

16 “P DLE 48 0 80 P 112 P
17 *Q DCl 49 1 81 Q 113 q
18 ‘R DC2 50 2 82 R 114 r

19 "S DC3 51 3 83 S 115 s
20 *T DC4 52 4 84 T 116 t
21 ‘U NAK 53 5 85 U 117 u
22 'V SYN 54 6 86 V 118 V

23 *w ETB 55 7 87 w 119 w
24 'X CAN 56 8 88 X 120 X

25 *Y EM 57 9 89 Y 121 y
26 'Z SUB 58 90 Z 122 z
27 ESC 59 ; 91 [123 (
28 “\ FS 60 < 92 \ 124 1
29 *1 GS 61 = 93] 125 }
30 A* RS 62 > 94 * 126 ~
31 *- US 63 7 95 - 127 DEL

APPENDIX IV

Backus-Naur Form
Definition of Java

The programming language Java was developed under the direction of James Gosling at
Sun Microsystems. Java was introduced in 1995 as a platform independent, object-oriented
programming language particularly suitable for Internet and network applications. Since
its introduction, Java has become one of the most commonly used languages for Internet
applications.

The grammar for the language Java is derived from the BNF definition in Gosling et al.
[2000], The rules have been transformed into the standard context-free grammar notation,
with the exception of retaining the designation of a terminal or a variable as optional by
placing the subscript opt on the symbol. The use of opt reduces the number of rules that
are needed, but rules with optional components can easily be transformed into equivalent
context-free rules. A rule with a variable Bopl on the right-hand side can be replaced by two
rules; in one, the occurrence of Bopt is replaced with B, and it is deleted in the other. For
example, A —► BoptC is replaced by A —*■ BC | C. A rule with n occurrences of symbols
subscripted with opt creates 2" context-free rules. The start symbol of the grammar is the
variable (CompilationUnit).

1. (CompilationUnit) —► {PackageDeclaration)opl{ImportDeclarations)op,
(TypeDeclarations) opt

Declarations

2. (ImportDeclarations) -*■ (ImportDeclarations) \ (ImportDeclarations)
{ImportDeclaration)

3. (TypeDeclarations) —► (TypeDeclaration) |
(TypeDeclarations) (TypeDeclaration)

631

632 A p p e n d ix IV B a c k u s -N a u r F orm D efin i t ion o f Java

4. (PackageDeclaration) -> package (PackageName) ;

5. (ImportDeclaration) —► (SingleTypelmportDeclaration) \ (TypelmportOnDemand)

6. (SingleTypelmportDeclaration) -> im port {TypeName) ;

7. (TypelmportOnDemandDeclaration) -> im port (PackageName) . * ;

8. (TypeDeclaration) -*■ (ClassDeclaration) \ (Declaration) |;

9. (Type)-*- (PrimitiveType)(ReferenceType)

10. (PrimitiveType) -* (NumericType) boolean

11. {NumericType) -*■ (IntegralType) \ (FloatingPointType)

12. (IntegralType) -»■ byte | short | in t | long | char

13. (FloatingPointType) —► float | double

Reference Types and Values

14. (ReferenceType) -> (ClassOrlnterfaceType) | (ArrayType)

15. (ClassOrlnterfaceType) -* (ClassType) \ (InterfaceType)

16. (ClassType) —*• (TypeName)

17. (InterfaceType) —*■ (TypeName)

18. (ArrayType) —>■ (Type) []

Class Declarations

19. (ClassDeclaration) -*• (ClassModifier)opt class (Identifier)(Super)opt(Interfaces)opl
(Classbody)

20. (ClassModifiers) -* (ClassModifier) \ (ClassModifiers)(ClassModifier)

21. (ClassModifier) -> public | abstract | final

22. (Super) -*■ extends (ClassType)

23. (Interfaces) —>■ im plem ents (InterfaceTypeList)

24. (InterfaceTypeList) -* (InterfaceType) \ (InterfaceTypeList) (InterfaceType)

25. (ClassBody) —► { (ClassBodyDeclarations)opt }

26. (ClassBodyDeclarations) -*■ (ClassBodyDeclaration) \
(ClassBodyDeclaration) (ClassBodyDeclarations)

27. (ClassBodyDeclaration) (ClassMemberDeclaration) \ (Staticlnitializer) |
(Const ructorDeclarations)

28. (ClassMemberDeclaration) —* (FieldDeclaration) \ (MethodDeclaration)

Field Declarations

29. (FieldDeclaration) —*■ (FieldModifiers)op,(Type)(VariableDeclarators)\

30. (VariableDeclarators) —► (VariableDeclarator) \ (VariableDeclarators) ,
(VariableDeclarator)

31. {VariableDeclarator) —► (Variable Declarator ID) |
{VariableDeclaratorsID) = (Variablelnitializer)

32. {VariableDeclaratorlD) —*■ {Identifier) | {VariableDeclaratorsID) []

33. (Variablelnitializer) -*■ {Expression) \ {Arraylnitializer)

34. {FieldModifiers) -*■ {FieldModifier) \ {FieldModifiers)(FieldModifier)

35. {FieldModifier) ->• public | protected | private | final | static | transient | volatile

Method Declarations

36. (MethodDeclaration) —► (MethodHeader) {MethodBody)

37. {MethodHeader) -* {MethodModifiers)op,(ResultType){MethodDeclarator)

(Throws) opt

38. (ResultType) -*■ (Type) | void

39. (MethodDeclarator) —>■ (Identifier) ((FormalParameterList)op,)
(MethodDeclarator) []

40. (FormalParameterList) -*■ (FormalParameter) \
(FormalParameterList) (FormalParameter)

41. (FormalParameter) -* (Type)(VariableDeclaratorld)

42. (MethodModifiers) —► (MethodModifier) \ {MethodModifiers)(MethodModifiers)

43. (MethodModifier) -*■ public | protected | private | abstract | final |
static | synchronized | native

44. (Throws) -> throws (ClassTypeUst)

45. (ClassTypeUst) —* (ClassType) \ (ClassTypeUst) , (ClassType)

46. (MethodBody) (Block) \ ;

Constructor Declarations

47. (ConstructorDeclaration) -*■ (ConstructorModifiers)opl(ConstructorDeclarator)
(Throws) op,(ConstructorBody)

48. (ConstructorDeclarator) —* (SimpleTypeName) ((FormalParameter L ist)opt)

49. (ConstructorModifiers) -*■ (ConstructorModifier) \
(ConstructorModifiers) (ConstructorModifier)

50. (ConstructorModifier) -*• public | private | protected

51. (ConstructorBody) -*■ { (ExplicitConstructorlnvocation)op,(BlockStatements)opl }

52. (ExplicitConstructorlnvocation) —*■ this ((ArgumentUst)opl } ; m id
super ((ArgumentUst)opl };

Interface Declarations

53. (InterfaceDeclaration) -*■ (InterfaceModifiers)opl interface (Identifier)
(Ex tends In terface)opt (InterfaceBody)

A p p en d ix IV B a c k u s -N a u r F o rm D efin it ion o f Java 63 3

634 A ppe nd ix IV B a c k u s -N a u r F o rm D efin it ion o f Java

54. {InterfaceModifiers) —> {InterfaceModifier) \ (InterfaceModifiers) (InterfaceModifier)

55. {InterfaceModifier) -*■ public | abstract

56. {Extendslnterfaces) —> extends (InterfaceType) \
{Extendslnterfaces) , (InterfaceType)

57. (InterfaceBody) -»■ { (InterfaceMemberDeclaration) opt }

58. (InterfaceMemberDeclarations) —> (InterfaceMemberDeclaration) \
{InterfaceMemberDeclarations)(InterfaceMemberDeclaration)

59. (InterfaceMemberDeclaration) —* (ConstantDeclaration) |
{AbstractMethodDeclaration)

Constant Declarations

60. (ConstantDeclaration) —► {ConstantModifiers)opl(Type)(VariableDeclarator)

61. (ConstantModifiers) —* public | static | final

Abstract Method Declarations

62. {AbstractMethodDeclaration) —*■ (AbstractMethodModifiers)op,(ResultType)
(MethodDeclarator) (Throws) opt

63. (AbstractMethodModifiers) -* (AbstractMethodModifier) \
(AbstractMethodModifiers)(AbstractMethodModifier)

64. (AbstractMethodModifier) —> public | abstract

Array Initializers

65. (Arraylnitializer) —*■ { (Variablelnitializers)opt , op, }

66. {Variablelnitializers) -»■ (Variablelnitializer) \
(Variablelnitializers) (Variablelnitializers)

Blocks and Local Variable Declaration

67. (Block) —*• { {BlockStatements)opl }

68. (BlockStatements) —*■ (BlockStatement) \ (BlockStatements) (BlockStatement)

69. (BlockStatement) -*■ (LocalVariableDeclarationStatement) | (Statement)

70. (Staticlnitializer) —> static (Block)

71. (LocalVariableDeclarationStatement) -*■ {LocalVariableDeclaration)

72. (LocalVariableDeclaration) -*■ (Type)(VariableDeclarators)

Statements

73. (Statement) -*■ (StatementWithoutTrailingSubstatement) | (LabeledStatement) \
(IJThenStatement) \ (IfThenElseStatement) \
(WhileStatement) \ (ForStatement)

A p p e n d ix IV B ac k u s -N a u r F o rm D efin it ion o f Java 635

74. (StatementNoShortlf) -*■ (StatementWithoutTrailingSubstatement) \
(LabeledStatementNoShortlf) \
(IfThenStatementNoShortlf) \
(IfThenElseStatementNoShortlf) \

(ForStatementNoShortlf)

75. (StatementWithoutTrailingSubstatement) —*■ {Block)
{EmptyStatement) \ {ExpressionStatement) \
{SwitchStatement) \ {DoStatement) \
{BreakStatement) | {ContinueStatement) \
(RetumStatement) \ (SynchronizedStatement) |
{ThrowStatement) \ {TryStatement)

Empty, Labeled, and Expression Statements

76. (EmptyStatement) —* ;

77. (LabeledStatement) -*■ (Identifier) : (Statement)

78. {LabeledStatementNoShortlf) —>■ (Identifier) : (StatementNoShortlf)

79. {ExpressionStatement) —> (StatementExpression) ;

80. (StatementExpression) —► (Assignment) \ (PreincrementExpression) \
(PredecrementExpression) \ (PostincrementExpression) \
(PostdecrementExpression) \ (Methodlnvocation) \
(ClassInstanceCreationExpression)

If Statements

81. (IfThenStatement) —> if ((Expression)) (Statement)

82. (IfThenElseStatement) -> if ((Expression)) (StatementNoShortlf) else (Statement)

83. (IfThenElseStatementNoShortlf) —► if ((Expression)) (StatementNoShortlf)
else (StatementNoShortlf)

Switch Statement

84. (SwitchStatement) —> switch ((Expression)) (SwitchBlock)

85. (SwitchBlock) —► { (SwitchBlockStatementGroups)op,(SwitchLabel)op, }

86. (SwitchBlockStatementGroups) —*■ (SwitchBlockStatementGroup) \
(SwitchBlockStatementGroups)(SwitchBlockStatementGroups)

87. (SwitchBlockStatementGroup) -*■ (SwitchLabels) (BlockStatements)

88. (SwitchLabels) —* (SwitchLabel) | (SwitchLabels) (SwitchLabel)

89. (SwitchLabel) -*■ case (ConstantExpression) : | default :

While, Do, and For Statements

90. (WhileStatement) —*■ while ((Expression)) (Statement)

636 A p p e n d ix IV B a c k u s -N a u r F o rm D efin it ion o f Java

91. (WhileStatementNoShortlf) -*■ while ((Expression)) (StatementNoShortlf)

92. (DoStatement) —► do (Statement) while ((Expression)) ;

93. (ForStatement) for ((ForInit)opl; (Expression)op, ; (ForUpdate)opt) (Statement)

94. (ForStatementNoShortlf) -*■ for ((ForInit)opl; (Expression)opl; (ForUpdate)opt)
(StatementNoShortlf)

95. (Forlnit) -*■ (StatementExpressionList) \ (LocalVariableDeclaration)

96. (ForUpdate) —* (StatementExpressionList)

97. (StatementExpressionList) —► (StatementExpression) \
(StatementExpressionList) , (StatementExpression)

Break, Continue, Return, Throw, Synchronized, and Try Statements

98. (BreakStatement) —> break (Identifier)opt ;

99. (ContinueStatement) -> continue (Identifier)opt ;

100. (RetumStatement) —*■ return (Expression)opt ;

101. (ThrowStatement) —*• throw (Expression);

102. (SynchronizedStatement) —*■ synchronized ((Expression)) (Block)

103. (TryStatement) —► try (Block) (Catches) \
try (Block)(Catches)opt(Finally)

104. (Catches) —*■ (CatchClause) \ (Catches)(CatchClause)

105. (CatchClause) -*• catch ((FormalParamenter)) (Block)

106. (Finally) —*■ finally (Block)

Creation and Access Expressions

107. (Primary) —>■ (PrimaryNoNewArray) \ (ArrayCreationExpression)

108. (PrimaryNoNewArray) —► (literal) \ this |
((Expression)) \ (ClassInstanceCreationExpression) |

(FieldAccess) \ (Methodlnvocation) |
(ArrayAccess)

109. (ClassInstanceCreationExpression) -*■ new (ClassType) ((ArgumentUst)opt)

110. (ArgumentUst) -*■ (Expression) \ (ArgumentUst) , (Expression)

111. (ArrayCreationExpression) —► new (PrimitiveType)(DimExprs)(Dims)op, \

new (TypeName)(DimExprs) (Dims)opt

112. (DimExprs) —*■ (DimExpr) \ (DimExprs) (DimExpr)

113. {DimExpr) -> [(Expression)]

114. (Dims) —► [] | (Dims) []

115. (FieldAccess) —► (Primary) . (Identifier) | super . (Identifier)

A p p e n d ix IV B a c k u s -N a u r F o rm D efin it ion of Java 637

116. (Methodlnvocation) -* (MethodName) ((ArgumentUst)opt) |
(Primary) . (Identifier) ((ArgumentUst)opl) |
super . (Identifier) ((ArgumentUst)opt)

117. {ArrayAccess) —► (ExpressionName) [(Expression)] |
(PrimaryNoNewArray) [(Expression)]

Expressions

118. (Expression) -* (AssignmentExpression)

119. (ConstantExpression)—*■ (Expression)

Assignment Operators

120. (AssignmentExpression) —*■ (ConditionalExpression) | (Assignment)

121. (Assignment) -»• (LefiHandSide)(AssignmentOperator)(AssignmentExpression)

122. (LeftHandSide) —► (ExpressionName) \ (FieldAccess) \ (ArrayAccess)

123. (AssignmentOperator) —► = | * = | / = | % = | + = | — = | < < = |
> > = | > > > = | & = | = | | =

Postfix Expressions

124. (PostfixExpression) -*■ (Primary) | (ExpressionName) \
(PostlncrementExpression) \ (PostDecrementExpression)

125. (PostlncrementExpression) —*■ (PostfixExpression) + +

126. (PostDecrementExpression) -*■ (PostfixExpression)-----

Unary Operators

127. (UnaryExpression) -> (PrelncrementExpression) \ (PreDecrementExpression) \
+ (UnaryExpression) \ — (UnaryExpression) \
(UnaryExpressionNotPlusMinus)

128. (PrelncrementExpression)- * + + (UnaryExpression)

129. (PreDecrementExpression) —*■----- (UnaryExpression)

130. (UnaryExpressionNotPlusMinus) —> (PostfixExpression) \ (UnaryExpression) \
! (UnaryExpression) | (CastExpression)

131. (CastExpression) -*■ ((PrimitiveType)(Dims)op,)(UnaryExpression) |
((PrimitiveType))(UnaryExpressionNotPlusMinus)

Operators

132. (MultiplicativeExpression) —► (UnaryExpression) |
(MultiplicativeExpression) * (UnaryExpression) |
(MultiplicativeExpression) / (UnaryExpression) |
(MultiplicativeExpression) % (UnaryExpression)

638 A p p en d ix IV B ac k u s -N a u r F o rm D efin it ion o f Java

133. (AdditiveExpression) —> (MultiplicativeExpression) |
(AdditiveExpression) + (MultiplicativeExpression) \
(AdditiveExpression) — (MultiplicativeExpression)

134. (ShiftExpression) -> (AdditiveExpression) |
(ShiftExpression) < < {AdditiveExpression) \
(ShiftExpression) > > (AdditiveExpression) \
(ShiftExpression) > > > (AdditiveExpression)

135. (RelationalExpression) —» (ShiftExpression) \
(RelationalExpression) < (ShiftExpression) \
(RelationalExpression) > (ShiftExpression) \
(RelationalExpression) < = (ShiftExpression) \
(RelationalExpression) > = (ShiftExpression) \
(RelationalExpression) instanceof (ReferenceType)

136. (EqualityExpression) -* (RelationalExpression) \
(RelationalExpression) —■= (RelationalExpression) \
(RelationalExpression) ! = (RelationalExpression)

137. (AndExpression) -*■ (EqualityExpression) | (AndExpression) & (EqualiltyExpression)

138. (ExclusiveOrExpression) —► (EqualityExpression) \
(ExclusiveOrExpression) (AndExpression)

139. (InclusiveOrExpression) -*■ (ExclusiveOrExpression) \
(InclusiveOrExpression) \ (AndExpression)

140. (ConditionalAndExpression) —* (InclusiveOrExpression) |
(ConditionalAndExpression) &&

(InclusiveOrExpression)

141. (ConditionalOrExpression) —► (ConditionalAndExpression) |
(ConditionalOrExpression) ||

(ConditionalAndExpression >

142. (ConditionalExpression) —> (ConditionalOrExpression) |
(ConditionalOrExpression) ? <Expression) :

{ConditionalExpression)

Literals

143. (Literal) —+ (IntegerLiteral) \ (FloatingPointLiteral) \ (BooleanLiteral) \
(CharacterLiteral) \ (StringLiteral) \ (NullLiteral)

144. (IntegerLiteral) —>• (DecimallntegerUteral) \ (HexIntegerLiteral) \
(OctallntegerLiteral)

145. (DecimallntegerLiteral) —*■ (DecimalNumeral)(IntegerTypeSuffix)opl

146. (HexIntegerLiteral) —>■ (HexNumeral)(IntegerTypeSuffix)opt

147. (HexIntegerLiteral) -> (HexNumeral)(IntegerTypeSujfix)nnt

A p p en d ix IV B a c k u s -N a u r F o rm D efin it ion o f Java 639

148. {OctallntegerUteral) ->■ (OctalNumeral)(IntegerTypeSuffix)op,

149. {IntegerTypeSuffix) —► 1 | L

150. (DecimalNumeral) —* 0 | (NonZeroDigit) (Digits) op,

151. (Digits) -* (Digit) \ (Digits) (Digit)

152. (Digit) -*■ 0 | (NonZeroDigit)

153. (NonZeroDigit) -*■ 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

154. (HexNumeral) ->• Ox(HexDigit) | OX(HexDigit) \ (HexNumeral)(HexDigit)

155. (HexDigit) - * - 0 | l | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | a | f > | c | < / | e | A | f l | C | D | £

156. (OctalNumeral) ->• O(OctalDigit) \ 0(OctalNumeral)(OctalDigit)

157. (OctalDigit) - > 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

158. (FloatingPointLiteral) —► (Digits) . (Digits)op,(ExponentPart)opt
(FloatTypeSuffix)op, \

. (Digits) (ExponentPart)opt (FloatTypeSuffix) opt \
(Digits)(ExponentPart) (FloatTypeSuffix)opt |
(Digits) (ExponentPart) opt (FloatTypeSuffix)

159. (ExponentPart) -* (ExponentIndicator)(Signedlnteger)

160. (Exponentlndicator) —► e | E

161. (Signedlnteger) -* (Sign)opl(Digits)

162. (S ig n) ^ + | -

163. (FloatTypeSuffix) —> f | F | d | D

164. (BooleanLiteral) -*■ true | false

165. (CharacterLiteral) —► ' (InputCharacter)' | ' (EscapeCharacter)'

166. (StringLiteral) -> "(StringCharacters)op

167. (NullLiteral) -> null

Identifier

168. (Identifier) —► (IdentifierChars)

169. (IdentifierChars) —► (JavaLetter) | (IdentifierChars)(JavaLetterOrDigit)

The variables (SingleCharacter), (InputCharacter), (EscapeSequence), and
(JavaLetter) define the subsets of the 16-bit Unicode character set that can be used in
input, literals, and identifiers.

Identifiers are defined by the variable (Identifier) and use characters from the Unicode
alphabet so that programmers can write the source code in their own language. The first
character of an identifier must be a letter, an underscore (_), or a dollar sign ($) followed
by any number of Java letters or digits. Java letters and digits consist of Unicode characters
for which the method Character.isJavaldentifierPart returns true. The Java keywords are
reserved and cannot be used as identifiers.

640 A p p en d ix IV B a c k u s -N a u r F o rm D efin it ion o f java

Input characters are Unicode characters, not including the representation of linefeed or
carriage return. A (SingleCharacter) is an input character but n o t' or \ . An escape sequence
consists of a \ followed by an ASCII symbol to signify a nongraphic character. For example,
\n is the escape sequence representing linefeed. Details on both the syntax and semantics
of the Java programming language can be found in Gosling et al. [2000].

Bibliography

Ackermann, W. [1928], “Zum Hilbertschen Aufbau der reellen Zahlen,” Mathematische
Annalen, 99, pp. 118-133.

Aho, A. V., and J. D. Ullman [1972], The Theory o f Parsing, Translation and Compilation,
Vol. I: Parsing, Prentice Hall, Englewood Cliffs, NJ.

Aho, A. V., and J. D. Ullman [1973], The Theory o f Parsing, Translation and Compilation,
Vol. II: Compiling, Prentice Hall. Englewood Cliffs, NJ.

Aho, A. V., J. E. Hopcroft, and J. D. Ullman [1974], The Design and Analysis o f Computer
Algorithms, Addison-Wesley, Reading, MA.

Aho, A. V., R. Sethi, and J. D. Ullman [1986], Compilers: Principles, Techniques and Tools,
Addison-Wesley, Reading, MA.

Backus, J. W. [1959], "The syntax and semantics of the proposed international algebraic lan
guage of the Zurich ACM-GAMM conference,” Proc. o f the International Conference
on Information Processing, pp. 125-132.

Bar-Hillel, Y., M. Perles, and E. Shamir [1961], “On formal properties of simple phrase-
structure grammars,” Zeitschrift fu r Phonetik, Sprachwissenschaft, und Kommunika-
tionsforschung, 14, pp. 143-177.

Bavel, Z. [1983], Introduction to the Theory o f Automata, Reston Publishing, Reston, VA.

Blum, M. [1967], “A machine independent theory of the complexity of recursive functions,”
J. ACM, 14, pp. 322-336.

Blum, M., and R. Koch [1999], “Greibach normal form transformation, revisited,” Infor
mation and Computation, 150, pp. 112-118.

Bobrow, L. S., and M. A. Arbib [1974], Discrete Mathematics: Applied Algebra fo r Com
puter and Information Science, Saunders, Philadelphia, PA.

Bondy, J. A., and U. S. R. Murty [1977], Graph Theory with Applications, Elsevier, New
York.

Brainerd, W. S., and L. H. Landweber [1974], Theory o f Computation, Wiley, New York.

641

642 B ibliography

Brassard, G., and P. Bratley [1996], Fundamentals o f Algorithms, Prentice Hall, Englewood

Cliffs, NJ.

Busacker, R. G., and T. L. Saaty [1965], Finite Graphs and Networks: An Introduction with

Applications, McGraw-Hill, New York.

Cantor, D. C. [1962], “On the ambiguity problems of Backus systems,” J. ACM, 9, pp. 477-

479.

Cantor, G. [1947], Contributions to the Foundations o f the Theory o f Transfinite Numbers
(reprint), Dover, New York.

Chomsky, N. [1956], “Three models for the description of languages,” IRE Trans, on
Information Theory, 2, pp. 113-124.

Chomsky, N. [1959], “On certain formal properties of grammars,” Information and Control,
2, pp. 137-167.

Chomsky, N. [1962], “Context-free grammar and pushdown storage,” Quarterly Progress
Report 65, M.I.T. Research Laboratory in Electronics, pp. 187-194.

Chomsky, N., and G. A. Miller [1958], “Finite state languages,” Information and Control,
1, pp. 91-112.

Chomsky, N., and M. P. Schutzenberger [1963], “The algebraic theory of context free lan
guages,” in Computer Programming and Formal Systems, North-Holland, Amsterdam,
pp. 118-161.

Christofides, N. [1975], “Worst case analysis of a new heuristic for the traveling salesman
problem,” Research Report 338, Management Sciences, Carnegie Mellon University,
Pittsburgh, PA.

Church, A. [1936], “An unsolvable problem of elementary number theory,” American
Journal o f Mathematics, 58, pp. 345-363.

Church, A. [1941], “The calculi o f lambda-conversion,” Annals o f Mathematics Studies, 6,
Princeton University Press, Princeton, NJ.

Cobham, A. [1964], “The intrinsic computational difficulty of functions,” Proceedings o f
the 1964 Congress fo r Logic, Mathematics and Philosophy o f Science, North-Holland,
New York, pp. 24-30.

Cook, S. A. [1971], ‘T he complexity of theorem proving procedures,” Proc. o f the Third
Annual ACM Symposium on the Theory o f Computing, Association for Computing
Machinery, New York, pp. 151-158.

Cook, S. A., and R. A. Reckhow [1973], “Time bounded random access machines,” Journal
o f Computer and System Science, 7, pp. 354—375.

Cormen T. H., C. E. Leiserson, R. L. Rivest, and C. Stein. [2001], Introduction to Algo
rithms, McGraw-Hill, New York, NY.

Davis, M. D. [1965], The Undecidable, Raven Press, Hewlett, NY.

Davis, M. D., and E. J. Weyuker [1983], Computability, Complexity and Languages:
Fundamentals o f Theoretical Computer Science, Academic Press, New York.

B ib l iog raphy 643

Denning, P. J., J. B. Dennis, and J. E. Qualitz [1978], Machines, Languages, and Compu
tation, Prentice Hall, Englewood Cliffs, NJ.

De Remer, F. L. [1969], “Generating parsers for BNF grammars,” Proc. o f the 1969 Fall
Joint Computer Conference, AFIPS Press, Montvale, NJ, pp. 793-799.

De Remer, F. L. [1971], “Simple LR(jfc) grammars,” Comm. ACM, 14, pp. 453-460.

Edmonds, J. [1965], “Paths, trees and flowers,” Canadian Journal o f Mathematics, 3,
pp. 449^67 .

Engelfriet, J. [1992], “An elementary proof of double Greibach normal form,” Information
Processing Letters, 44, pp. 291-293.

Evey, J. [1963], “Application of pushdown store machines,” Proc. o f the 1963 Fall Joint
Computer Science Conference, AFIPS Press, pp. 215-217.

Fischer, P. C. [1963], “On computability by certain classes of restricted Turing machines,”
Proc. o f the Fourth Annual Symposium on Switching Circuit Theory and Logical
Design, pp. 23-32.

Floyd, R. W. [1962], “On ambiguity in phrase structure languages,” Comm. ACM, 5,
pp. 526-534.

Floyd, R. W. [1964], New Proofs and Old Theorems in Logic and Formal Linguistics,
Computer Associates, Wakefield, MA.

Foster, J. M. [1968], “A syntax improving program,” Computer J., 11, pp. 31-34.

Fraenkel, A. A., Y. Bar-Hillel, and A. Levy [1984], Foundations o f Set Theory, 2d ed.,
North-Holland, New York.

Garey, M. R., and D. S. Johnson [1979], Computers and Intractability: A Guide to the
Theory o f NP-Completeness, Freeman, New York.

Ginsburg, S. [1966], The Mathematical Theory o f Context-Free Languages, McGraw-Hill,
New York.

Ginsburg, S., and H. G. Rice [1962], ‘Two families of languages related to ALGOL,”
J. ACM, 9, pp. 350-371.

Ginsburg, S., and G. F. Rose [1963a], “Some recursively unsolvable problems in ALGOL-
like languages,” J. ACM, 10, pp. 29-47.

Ginsburg, S., and G. F. Rose [1963b], “Operations which preserve definability in lan
guages,” J. ACM, 10, pp. 175-195.

Ginsburg, S., and J. S. Ullian [1966a], “Ambiguity in context-free languages,” J. ACM, 13,
pp. 62-89.

Ginsburg, S., and J. S. Ullian [1966b], “Preservation of unambiguity and inherent ambiguity
in context-free languages,” J. ACM, 13, pp. 364-368.

Godel, K. [1931], “Uber formal unentscheidbare Satze der Principia Mathematica und
verwandter Systeme, I,” Monatschefte fiir Mathematik und Physik, 38, pp. 173-198.
(English translation in Davis [1965].)

644 B ibliography

Gosling, J., B. Joy, G. Steele, and G. Bracha [2000], The Java Language Specification, 2d
ed., Addison-Wesley, Boston, MA.

Greibach, S. [1965], “A new normal form theorem for context-free phrase structure gram
mars,” J. ACM, 12, pp. 42-52.

Halmos, P. R. [1974], Naive Set Theory, Springer-Verlag, New York.

Harrison, M. A. [1978], Introduction to Formal Language Theory, Addison-Wesley, Read
ing, MA.

Hartmanis, J., and J. E. Hopcroft [1971], “An overview of the theory o f computational
complexity,” J. ACM, 18, pp. 444-475.

Hennie, F. C. [1977], Introduction to Computability, Addison-Wesley, Reading, MA.

Hermes, H. [1965], Enumerability, Decidability, Computability, Academic Press, New
York.

Hochbaum, D. S., ed. [1997], Approximation Algorithms fo r NP-Complete Problems, PWS
Publishing, Boston, MA.

Hopcroft, J.E . [1971], “Ann log n algorithm for minimizing the states in a finite automaton,”
in The Theory o f Machines and Computation, ed. by Z. Kohavi, Academic Press, New
York, pp. 189-196.

Hopcroft, J. E., and J. D. Ullman [1979], Introduction to Automata Theory, Languages and
Computation, Addison-Wesley, Reading, MA.

Ibarra, O.H., and C. E. Kim [1975], “Fast approximation problems for the knapsack and
sum of subsets problems,” J. ACM, 22, no. 4, pp. 463-468.

Jensen, K., and N. Wirth [1974], Pascal: User Manual and Report, 2d ed., Springer-Verlag,
New York.

Karp, R. M. [1972], “Reducibility among combinatorial problems,” in Complexity o f Com
puter Computations, Plenum Press, New York, pp. 85-104.

Karp, R. M. [1986], “Combinatorics, complexity and randomness,” Comm. ACM, 29, no. 2,
pp. 98-109.

Kfoury, A. J, R. N. Moll, and M. A. Arbib [1982], A Programming Approach to Com
putability, Springer-Verlag, New York.

Kleene, S. C. [1936], “General recursive functions of natural numbers,” Mathematische
Annalen, 112, pp. 727-742.

Kleene, S. C. [1952], Introduction to Metamathematics, Van Nostrand, Princeton, NJ.

Kleene, S. C. [1956], “Representation of events in nerve nets and finite automata,” in
Automata Studies, ed. by C. E. Shannon and J. McCarthy, Princeton University Press,
Princeton, NJ, pp. 3-42.

Knuth, D. E. [1965], “On the translation of languages from left to right,” Information and
Control, 8, pp. 607-639.

B ib liog raphy 645

Knuth, D. E. [1968], The Art o f Computer Programming, Vol. 1: Fundamental Algorithms,
Addison-Wesley, Reading, MA.

Koch, R., and N. Blum [1997], “Greibach normal form transformation revisited,” Proceed
ings STACS 97, Lecture Notes in Computer Science 1200, Springer-Verlag, New York,
pp. 47-54.

Korenjak, A. J. [1969], “A practical method for constructing LR(fc) processors,” Comm.
ACM, 12, pp. 613-623.

Kurki-Suonio, R. [1969], “Notes on top-down languages,” BIT, 9, pp. 225-238.

Kuroda, S. Y. [1964], “Classes of languages and linear-bounded automata” Information
and Control, 7, pp. 207-223.

Ladner, R. E. [1975], “On the structure of polynomial time reducibility,” Journal o f the
ACM. 22, pp. 155-171.

Landweber, P. S. [1963], “Three theorems of phrase structure grammars of type 1,” Infor
mation and Control, 6, pp. 131-136.

Levitin, A. [2003], The Design and Analysis o f Algorithms, Addison-Wesley, Boston, MA.

Lewis, H. R., and C. H. Papadimitriou [1981], Elements o f the Theory o f Computation,
Prentice Hall, Englewood Cliffs, NJ.

Lewis, P. M., II, and R. E. Steams [1968], “Syntax directed transduction,” J. ACM, 15,
pp. 465-488.

Markov, A. A. [1961], Theory o f Algorithms, Israel Program for Scientific Translations,
Jerusalem.

McNaughton, R., and H. Yamada [1960], “Regular expressions and state graphs for au
tomata,” IEEE Trans, on Electronic Computers, 9, pp. 39-47.

Mealy, G. H. [1955], “A method for synthesizing sequential circuits,” Bell System Technical
Journal, 34, pp. 1045-1079.

Meyer, A. R., and L. J. Stockmeyer [1973], “The equivalence problem for regular expres
sions with squaring requires exponential space,” Proc. o f the Thirteenth Annual IEEE
Symposium on Switching and Automata Theory, pp. 125-129.

Minsky, M. L. [1967], Computation: Finite and Infinite Machines, Prentice Hall, Englewood
Cliffs, NJ.

Moore, E. F. [1956], “Gendanken-experiments on sequential machines,” in Automata Stud
ies, ed. by C. E. Shannon and J. McCarthy, Princeton University Press, Princeton, NJ,
pp. 129-153.

Myhill, J. [1957], “Finite automata and the representation of events,” WADD Technical
Report 57-624, Wright Patterson Air Force Base, OH, pp. 129-153.

Myhill, J. [1960], “Linear bounded automata,” WADD Technical Note 60-165, Wright
Patterson Air Force Base, OH.

Naur, P., ed. [1963], “Revised report on the algorithmic language ALGOL 60,” Comm.
ACM, 6, pp. 1-17.

646 B ibliography

Oettinger, A. G. [1961], “Automatic syntax analysis and the pushdown store,” Proc. on
Symposia on Applied Mathematics, 12, American Mathematical Society, Providence,
RI, pp. 104-129.

Ogden, W. G. [1968], “A helpful result for proving inherent ambiguity,” Mathematical
Systems Theory, 2, pp. 191-194.

Ore, O. [1963], Graphs and Their Uses, Random House, New York.

Papadimitriou, C. H. [1994], Computational Complexity, Addison-Wesley, Reading, MA.

Papadimitriou, C. H., and K. Steiglitz [1982], Combinatorial Optimization: Algorithms and
Complexity, Prentice Hall, Englewood Cliffs, NJ.

Parikh, R. J. [1966], “On context-free languages,” J. ACM, 13, pp. 570-581.

P6ter, R. [1967], Recursive Functions, Academic Press, New York.

Post, E. L. [1936], “Finite combinatory processes— formulation I,” Journal o f Symbolic
Logic, l,p p . 103-105.

Post, E. L. [1946], “A variant of a recursively unsolvable problem,” Bulletin o f the American
Mathematical Society, 52, pp. 264—268.

Post, E. L. [1947], “Recursive unsolvability of a problem of Thue,” Journal o f Symbolic
Logic, 12, pp. 1-11.

Pratt, V. [1975], “Every prime has a succinct certificate,” SIAM Journal o f Computation, 4,
pp. 214-220.

Rabin, M. O., and D. Scott [1959], “Finite automata and their decision problems,” IBM J.
Res., 3, pp. 115-125.

Rice, H. G. [1953], “Classes of recursively enumerable sets and their decision problems,”
Trans, o f the American Mathematical Society, 89, pp. 25-29.

Rice, H. G. [1956], “On completely recursively enumerable classes and their key arrays,”
Journal o f Symbolic Logic, 21, pp. 304—341.

Rogers, H., Jr. [1967], Theory o f Recursive Functions and Effective Computation, McGraw-
Hill, New York.

Rosenkrantz, D. J., and R. E. Steams [1970], “Properties of deterministic top-down gram
mars,” Information and Control, 17, pp. 226-256.

Sahni, A. [1975], “Approximate algorithms for the 0/1 knapsack problem,” J. ACM, 22, no.
l ,p p . 115-124.

Salomaa, A. [1973], Formal Languages, Academic Press, New York.

Salomaa, S. [1966], ‘Two complete axiom systems for the algebra of regular events,”
J. ACM, 13, pp. 156-199.

Savitch, W. J. [1970], “Relationships between nondeterministic and deterministic tape
complexities,” J. Computer and Systems Sciences, 4, no. 2, pp. 177-192.

Nerode, A. [1958], “Linear automaton transformations,” Proc. AMS, 9, pp. 541-544.

B ib l iog raphy 647

Scheinberg, S. [1960], “Note on the Boolean properties of context-free languages,” Infor
mation and Control, 3, pp. 372-375.

Schutzenberger, M. P. [1963], “On context-free languages and pushdown automata,” Infor

mation and Control, 6, pp. 246-264.

Sheperdson, J. C. [1959], “The reduction of two-way automata to one-way automata,” IBM
J. Res., 3, pp.. 198-200.

Sheperdson, J. C., and H. E. Sturgis [1963], “Computability of recursive functions,” J. ACM,
10, pp. 217-255.

Soisalon-Soininen, E., and E. Ukkonen [1979], “A method for transforming grammars into
LL(fc) form,” Acta Informatica, 12, pp. 339-369.

Steams, R. E. [1971], “Deterministic top-down parsing,” Proc. o f the Fifth Annual Princeton
Conference o f Information Sciences and Systems, pp. 182-188.

Stoll, R. [1963], Set Theory and Logic, W. H. Freeman, San Francisco, CA.

Thue, A. [1914], “Probleme iiber Veranderungen von Zeichenreihen nach gegebenen
Regeln,” Skrifter utgit av Videnskappsselskapet i Kristiana, I., Matematisk-
natur-videnskabelig klasse, 10.

Turing, A. M. [1936], “On computable numbers with an application to the Entschei-
dungsproblem,” Proc. o f the London Mathematical Society, 2, no. 42, pp. 230-265;
no. 43, pp. 544-546.

von Neumann, J. [1945], First Draft o f a Report on EDVAC, Moore School of Electrical
Engineering, University of Pennsylvania, Philadelphia, PA. Reprinted in: Stem, N.
[1981], From Eniac to Univac, Digital Press, Bedford, MA.

Wand, M. [1980], Induction, Recursion and Programming, North-Holland, New York.

Wilson, R. J, [1985], Introduction to Graph Theory, 3d ed., American Elsevier, New York.

Wood, D. [1969], “The theory of left factored languages,” Computer Journal, 12, pp. 349-
356.

Younger, D. [1967], “Recognition and parsing of context-free languages in time n3,” Infor
mation and Control, 10, no. 2, pp. 189-208.

Subject Index

Abnormal termination, 257
Abstract machine, 147
Acceptance

by deterministic finite
automaton, 147-148

by empty stack, 230
by entering, 263, 289
by final state, 229, 260
by halting, 262-263
by nondeterministic finite

automaton, 161
by nondeterministic Turing

machine, 274
by pushdown automaton, 224,

229-230
by Turing machine, 260

Accepted string, 148, 224
Accepting state, 146-147
Ackermann’s function, 411-413
Acyclic graph, 33
Adjacency relation, 32
AE, 205,556, 585

nonregularity of, 205
ALGOL, 1,94, 553
Algorithm, 343-344
Alphabet, 4 2 ^ 3 , 147, 163

input, 222, 256
stack, 222
tape, 256

Ambiguity, 91-93
inherent, 92

Ancestor, 34-35
Approximation algorithm,

519-521
Approximation schema,

523-526
fully polynomial, 526

Arithmetization, 416
ASCII character set, 21-22

Associativity, 44-45
Atomic pushdown automaton,

227
Atomic Turing machine, 290

Backus-Naur Form (BNF), 94,
553.631

Barber’s paradox, 21-22
Big oh, 436-438
Big theta, 438
Bin Packing Problem, 516
Binary relation, 11-12
Binary tree, 35
Blank Tape Problem, 366-368
BNF (Backus-Naur Form), 94,

553.631
Boolean variable, 481
Bottom-up parser, 555, 561-567

depth-first, 563-567
LR(0), 599-601,604
LR(1), 618

Bounded operators, 398-404
Bounded sum, 398
Breadth-first bottom-parser,

563-567
Breadth-first top-down parser,

557-561

Cardinality, 16-21
Cartesian product. 11-12
Chain, 114
Chain rule, 113

elimination of, 113-116
Characteristic function, 298-299
Child, 33
Chomsky hierarchy, 64,

338-339
Chomsky normal form,

121-124, 239-240

Church-Turing Thesis, 2, 253,
344,352-354,421-423

Clause, 482
Closure properties

of context-free languages,
243-246

of countable sets, 18-19
of regular languages, 200-203

C o -m , 531
Compatible transitions, 225
Compilation, 567
Complement, 9

acceptance of, 158
Complete binary tree, 40
Complete item, 602
Complexity, 433-436

nondeterministic, 466-468
space complexity, 532-535
time complexity, 442-446

Composition of functions,
308-309

Computable function, 7, 296,
353

Church-Turing Thesis for,
353-354,421-423

Concatenation
of languages, 47
of strings, 43-44

Conjunctive normal form,
482

Context, 69
Context-free grammar, 68-69

ambiguous, 91, 384
equivalent, 79
for Java, 94-97,631-639
language of, 70
left-linear, 220
left-regular, 219-220
right-linear, 102,219

650 S u b je c t Index

Context-free grammar (contin
ued)

undecidable problems of,
382-386

Context-free language, 70
acceptance by pushdown

automaton, 232-239
closure properties of, 243-246
examples of, 76-81
inherently ambiguous, 92
pumping lemma for, 239-242

Context-sensitive grammar,
332-334

Context-sensitive language, 333
Context-sensitive Turing

machine, 290
Cook’s Theorem, 485
Countable set, 7, 17-19
Countably infinite set, 17-19
Course-of-values recursion, 409
Cycle, 33
Cyclic graph, 33
CYK algorithm, 124-128

Dead end ,558
Decidable

language, 260
in polynomial space, 540
in polynomial time, 468
problem, 343-344

Decision problem, 343-346
Bin Packing Problem, 516
Blank Tape Problem, 366-368
Church-Turing Thesis for, 353
Halting Problem, 357,

362-365
Hamiltonian Circuit Problem,

473-477,503-509
Hitting Set Problem, 515-516
intractable, 431,465,548-550
Knapsack Problem, 518
NP-complete, 480
Partition Problem, 513-515
Post Correspondence

Problem, 377-382
reduction of, 348-352
representation of, 344-346,

469-471
Satisfiability Problem, 472,

481-483
Subset-Sum Problem, 473,

509-513

3-Satisfiability Problem,
498-500

Traveling Salesman Problem,
517-518

undecidable, 361
Vertex Cover Problem,

500-503, 527
Word Problem, 373-376

DeMorgan’s Laws, 9-10
Denumerable set, 17-19
Depth of a node, 34
Derivable string, 69, 326
Derivation, 66-67,69

directly left recursive, 129
leftmost, 71, 89-91
length of, 69
recursive, 71
rightmost, 71

Derivation tree, 71-74
Descendant, 34-35
Deterministic finite automaton

(DFA), 2-3, 147
examples. 150-159
extended transition function,

151
incompletely specified, 158
language of, 148
minimization, 178-183
state diagram of, 146-147,

151-153
transition table, 150

Deterministic LR(0) machine,
603

Deterministic pushdown
automaton, 225

DFA. See Deterministic finite
automaton

Diagonalization, 7,19-23
Difference of sets, 9
Direct left recursion, removal of,

129-131
Directed graph, 32-33, 347
Disjoint sets, 9
Distinguishable state, 178
Distinguished element, 32
Domain, 12
Dynamic programming, 125

Effective procedure, 253, 344
Empty set, 8
Empty stack (acceptance by),

230

Enumeration, by Turing
machine, 282-288

Equivalence class, 15
Equivalence relation, 14-16

right-invariant, 212
Equivalent

grammars, 79
machines, 158
regular expressions, 53
states, 178

Essentially noncontracting
grammar, 110

Expanding a node, 558
Exponential growth, 441
Expression graph, 193-196
Extended pushdown automaton,

225
Extended transition function,

151

Factorial, 392-393
Fibonacci numbers, 407
Final state, 147, 259

acceptance by, 229,260
Finite automaton. See

Deterministic finite
automaton, Finite-state
machine, Nondeterministic
finite automaton

Finite-state machine, 145-147
FIRST* set, 576

construction of, 580-583
Fixed point, 20
FOLLOW* set, 577

construction of, 583-585
Frontier (of a tree), 35
Fully space constructible, 538
Function, 14

Ackermann’s, 411-413
characteristic, 298-299
composition of, 308-309
computable, 7
computation of, 295-298
identity, 301
input transition, 170
macro-computable, 430
/*-recursive, 414
n-variable, 12
number-theoretic, 299
one-to-one, 13-14
onto, 13-14
partial, 13

S u b je c t Index 651

polynomially bounded,
440-441

primitive recursive, 389-391
projection, 300, 390
rates of growth, 436-441
total, 13
transition, 147, 163, 166, 222
Turing computable, 296
uncomputable, 312-313

Godel numbering, 406
Grammar. See also Context-free

grammar; Regular grammar
context-sensitive, 332-334
essentially noncontracting,

110
graph of, 556
language of, 70
linear, 250
LL(*), 571,589-591
LR(0), 598,609
LR(1), 612-618
noncontracting, 107
phrase-structure, 325-326
regular, 81-83, 196
right-linear, 102, 219
strong LL(/c), 579-580
unrestricted, 254, 325-332

Graph
acyclic, 33
cyclic, 33, 358
directed, 32-34, 347
expression, 193-196
of a grammar, 556

Graph of a grammar, 556
Greibach normal form, 131-138,

232-233
Grep, 55-58

Halting, 257
acceptance by, 262-263

Halting Problem, 357, 362-365
Hamiltonian Circuit Problem,

473-477, 503-509
Hard for a class, 479
Hitting Set Problem, 515-516
Home position, 314
Homomorphic image, 219
Homomorphism, 219,257

Identity function, 301
Implicit tree, 557

In-degree of a node, 32
Indistinguishable

state, 178
string, 211-212

Induction. See Mathematical
induction

Infinite set, 17
Infix notation, 205
Inherent ambiguity, 92
Input alphabet, 222
Input transition function, 170
Intersection of sets, 9
Intractable decision problem,

431,465,548-550
Invariance, right, 212
Inverse homomorphic image,

251
Item

complete, 602
LL(0), 602
LR(1), 614

Java, 94-97,631-639

Kleene star operation, 47-48
Kleene's Theorem, 196
Knapsack Problem, 518

approximation algorithm for,
524-526

LreG’ 545
Lsat* 483
X-closure, 170
X-rule, 69

elimination of, 106-113
X-transition, 165-166
Language, 41-43, 326

context-free, 70
context-sensitive, 332
finite specification of, 45-49
of finite-state machine, 63,

148
inherently ambiguous, 92
of nondeterministic finite

automaton, 163
nonregular, 203-204
of phrase-structure grammar,

326
polynomial, 468
of pushdown automaton, 224
recognition, 260
recursive, 260

recursive definition of, 46-47
recursively enumerable, 260
regular, 49,82, 200
ofTuring machine, 260

Language acceptor, Turing
machine as, 259-262

Language enumerator, Turing
machine as, 282-288

LBA. See Linear-bounded
automaton

Leaf, 34
Left factoring, 576
Left-linear context-free

grammar, 220
Left-recursive rule, 129
Left-regular context-free

grammar, 219-220
Leftmost derivation, 71,89-91

ambiguity and, 91-93
Lexical analysis, 553, 567
Lexicographical ordering, 286
L’Hospital’s Rule, 439-440
Linear-bounded automaton

(LBA), 334-338
Linear grammar, 250
Linear speedup, 448-451
Literal, 482
LL(*) grammar, 571,589-591

strong, 579-580
Lookahead

set, 572, 575, 589
string, 572

Lower-order terms, 436
LR(0)

context, 595-596
grammar, 598, 609
item, 602
machine, 602-603,606-610
parser, 599-601, 604

LR(1)
context, 613
grammar, 612-618
item, 614
machine, 614-617
parser, 618

Machine configuration
of deterministic finite

automaton, 149
of pushdown automaton, 224
ofTUring machine, 256-258

Macro, 302-305

652 S u b je c t Index

Macro-computable function,
430

Mathematical induction, 27-32
simple, 30
strong, 30

Microsoft Word, 58
Minimal common ancestor,

34-35
Minimalization, 400

bounded, 401
unbounded, 413

Monotonic rule, 333
Moore machine, 156
pi-recursive function, 414

Turing computability of,
414-415

Multitape Turing machine,
268-274

time complexity of, 447-448
Multitrack Turing machine,

263-265
time complexity of, 446

Myhill-Nerode Theorem,
211-217

n-ary relation, 12
n-variable function, 12
Natural language, 1,5
Natural numbers, 8

recursive definition of, 24
NFA. See Nondeterministic

finite automaton
NFA-A., 165-166
Node, 32
Noncontracting derivation,

333
Noncontracting grammar, 107
Nondeterminism, removing,

170-178
Nondeterministic complexity,

442-446
Nondeterministic finite

automaton (NFA), 159-163
acceptance by, 161
examples, 164-165
input transition function, 169
^.-transition, 165-166
language of, 163

Nondeterministic LR(0)
machine, 602-603

Nondeterministic LR(1)
machine, 616

Nondeterministic polynomial
time, 469

Nondeterministic Turing
machine, 274-282

Nonregular language, 203-205
Nonterminal symbol, 65,69
Normal form, 103

Chomsky, 121-124,239-240
conjunctive, 482
Greibach, 131-138, 232-235
3-conjunctive, 498

m , 431,469
X Te, 492
NP-complete problem, 480

Bin Packing Problem, 516
Hamiltonian Circuit Problem,

473-477,503-509
Hitting Set Problem, 515-516
Knapsack Problem, 518
Partition Problem, 513-515
Satisfiability Problem, 473,

481-483
Subset-Sum Problem, 473,

509-513
3-Satisfiability Problem,

498-500
Traveling Salesman Problem,

517-518
Vertex Cover Problem,

500-503,527
NP-hard problem, 480
X T), 530
MT-Space, 540
NuU

path, 33
rule, 69
string, 42

Nullable variable, 107
Number-theoretic function, 299
Numeric computation, 299-301

One-to-one function, 13-14
Onto function, 13-14
Operator, bounded, 398-404
Optimization problem, 517-518
Order of a function, 436
Ordered n -tuple, 12
Ordered tree, 33-34
Out-degree of a node, 32
Output tape, 282

? , 431,468

IP-Space, 540
completeness, 544-545

Palindrome, 60,77-78, 204,226
Parsing, 553,567-568

bottom-up parser, 555,
561-567

breadth-first bottom-parser,
563-567

breadth-first top-down parser,
557-561

CYK algorithm, 124-128
deterministic, 554, 571
LL(*), 591
LR(0), 599-601,604
LR(1), 618
strong LL(fc), 587-588
top-down, 555

Partial function, 13
Partition, 9
Partition Problem, 513-515
Path, 32-33

null, 33
PDA. See Pushdown automaton
Phrase-structure grammar,

325-326
Pigeonhole principle, 206
Polynomial with integral

coefficients, 438
Polynomial language, 468
Polynomially bounded function,

440-441
Post Correspondence Problem,

377-382
Post correspondence system,

377
Power set, 9, 20
Prefix, 45

terminal prefix, 129, 557
viable, 599

Primitive recursion, 390-391
Primitive recursive function,

389-391,410-413
basic, 389-390
examples of, 391-398
Turing computability of,

393-394
Primitive recursive predicate,

395
Problem reduction, 348-352,

365-367
and NP-completeness,

497-498, 513-514

Subject Index 653

polynomial-time, 477
and undecidability, 365-368

Projection function, 300, 390
Proof by contradiction, 19-23
Proper subset, 9
Proper subtraction, 39, 395
Pseudo-polynomial problem,

471
Pumping lemma

for context-free languages,
239-242

for regular languages,
205-209

Pushdown automaton (PDA),
2-3,221-222

acceptance, 224
acceptance by empty stack,

230
acceptance by final state, 229
atomic, 227
context-free language and,

232-239
deterministic, 225
extended, 228
language of, 230
stack alphabet, 222
state diagram, 222-223
variations, 227-232

Random access machine, 323
Range, 12
Rates of growth, 436-441
Reachable variable, 119
Recognition of language, 260
Recursion

course-of-values, 409
primitive, 390-391,413-414
removal of direct left

recursion, 129-131
simultaneous, 427

Recursive definition, 23-27,
45-46

Recursive language, 260, 346
Recursive variable, 71, 390
Recursively enumerable

language, 260
Reduction, 555-556, 561. See

also Problem reduction
Regular expression, 42, 50

defining pattern with, 54-58
equivalent, 53
examples, 51-53

with squaring, 548-550
Regular grammar, 81-83, 1%

finite automaton and, 196-200
Regular language, 49, 82,200

acceptance by finite
automaton, 191-193

closure properties of, 200-203
decision procedures for,

209-210
generation by regular

grammar, 198-199
pumping lemma for, 205-209

Regular set, 49-50
finite automaton and, 191-193

Relation
adjacency, 32
binary, 11-12
characteristic function of, 299
equivalence, 14-16
/i-ary, 12
Turing computable, 299

Reversal of a string, 45
Rice's Theorem, 371-373
Right invariant equivalence

relation, 212
Right-linear grammar, 102, 219
Rightmost derivation, 71
Root, 33
Rule, 65, 326

chain rule, 113
context-free, 65-66,69
X-rule, 69
left-recursive, 70, 129
monotonic, 333
null, 69
of phrase-structure grammar,

326
recursive, 67-68,70
regular, 81
right recursive, 70, 130
of semi-Thue system, 373
of unrestricted grammar, 326

Russell’s paradox, 21-23

Satisfiability Problem, 472,
481-483

NP-completeness of, 483-492
Savitch’s Theorem, 542
Schrttder-Bemstein Theorem,

16-17
Search tree, 558-561
Self-reference, 21-23, 363-364

Semi-Thue system, 373-376
Sentence, 65-68, 70
Sentential form, 70

terminal prefix of, 129
Set, 8-11

cardinality of, 16-21
complement, 9
countable, 7,17-19
countably infinite, 17-19
denumerable, 17-19
difference, 9
disjoint, 9
empty, 8
equality, 8,11
infinite, 17
intersection, 9
lookahead, 572, 575,

589
partition, 9
power, 9, 20
proper subset of, 9
regular, 49-50
subset of, 8
uncountable, 7 ,17
union, 9

Shift, 556
Simple cycle, 33
Simple induction, 30
Space bounded Turing machine,

534
Space complexity, 532-535
Speedup Theorem, 448-451
Stack

acceptance by empty stack,
230

alphabet, 222
Standard Turing machine,

255-257
State, 145-147

accepting, 147
equivalent, 178
start, 147,256

State diagram, 146-147
of deterministic finite

automaton, 151-153
of multitape machine, 268
of nondeterministic finite

automaton, 163
of pushdown automaton,

222-223
ofTuring machine, 254

Strictly binary tree, 35-36

654 S u b je c t Index

String, 41-45
accepted string, 148, 224
concatenation, 43-44
derivable, 69
homomorphism, 219, 257
languages and, 41,43
length, 43
lookahead, 572
null. 42
prefix of, 45
reversal, 45
substring, 44-45
suffix of, 45

Strong induction, 30
Strong LL(*)

grammar, 579-580
parser, 587-588

Subset, 8
Subset-Sum Problem, 473,

509-513
Substring, 44—45
Successful computation, 224
Suffix, 45
Symbol

nonterminal, 65, 69
terminal, 65
useful, 116
useless, 116

Tape, 147-148, 255-256
multitrack, 263-265
output, 282-283
two-way infinite, 265-268

Tape alphabet, 256
Tape number, 416
Terminal prefix, 129, 557
Terminal symbol, 65
Termination, abnormal, 257
3-conjunctive normal form, 498
3-Satisfiability Problem,

498-500
reductions from, 500-513

Time complexity, 442-446
nondeterminisitic, 466
properties of, 451-458
and representation, 469-471

Token, 553, 567
Top-down parser, 555

breadth-first, 557-561
LL(*), 591
strong LL(fc), 587-588

Total function, 13
Tour, 359, 474
Transition function

of deterministic finite
automaton, 147

extended, 151
input, 170
multitape, 268
multitrack, 264
of NFA-A., 166
of nondeterministic finite

automaton, 163
of nondeterministic Turing

machine, 274-275
of pushdown automaton,

222-223
of Turing machine, 256

Transition table, 150
Traveling Salesman Problem,

517-518
approximation algorithm for,

521-523
Tree, 33

binary, 35
complete binary, 40
derivation, 71-74
frontier of, 35
ordered, 33-34
search, 558-561
strictly binary, 35-36

Truth assignment, 481-482
Turing computable

function, 296
relation, 299

TUring machine, 2, 255-257
abnormal termination of, 296
acceptance by entering, 263,

289
acceptance by final state, 260
acceptance by halting,

262-263
arithmetization of, 416-417
atomic, 290
context-sensitive, 290
halting, 257
Halting Problem for, 357,

362-365
as language acceptor, 259-262
as language enumerator,

282-288
linear speedup, 448-451

multitape machine, 268-274
multitrack machine, 263-265
nondeterministic Turing

machine, 274-282
sequential operation of,

301-302
space complexity, 532-535
standard, 255-257
state diagram, 257
time complexity of, 442-443,

466
two-way, 265-268
universal, 354-358

Two-way Turing machine,
265-268

Unary representation, 299
Uncomputable function,

312-313
Uncountable set, 7, 17

examples of, 19-20
Undecidable problem, 361

Blank Tape Problem, 366-368
for context-free grammars,

382-386
Halting Problem, 362-365
Post Correspondence

Problem, 377-382
Word Problem, 373-376

Union of sets, 9
Universal Turing machine,

354-358
Unrestricted grammar, 254,

325-332
Useful symbol, 116
Useless symbol, 116

removal of, 116-121

Variable
Boolean, 481
of a grammar, 65,68-69
nullable, 107
reachable, 119
recursive, 71, 390

Vertex, 32
Vertex Cover Problem, 500-503,

527
Viable prefix, 599

Well-formed formula, 481
Word Problem, 373-376

	Preface
	Contents
	Introduction
	I Foundations
	1 Mathematical Preliminaries
	1.1 Set Theory
	1.2 Cartesian Product, Relations, and Functions
	1.3 Equivalence Relations
	1.4 Countable and Uncountable Sets
	1.5 Diagonalization and Self-Reference
	1.6 Recursive Definitions
	1.7 Mathematical Induction
	1.8 Directed Graphs
	Exercises
	Bibliographic Notes

	2 Languages
	2.1 Strings and Languages
	2.2 Finite Specification of Languages
	2.3 Regular Sets and Expressions
	2.4 Regular Expressions and Text Searching
	Exercises
	Bibliographic Notes

	II Grammars, Automata, and Languages
	3 Context-Free Grammars
	3.1 Context-Free Grammars and Languages
	3.2 Examples of Grammars and Languages
	3.3 Regular Grammars
	3.4 Verifying Grammars
	3.5 Leftmost Derivations and Ambiguity
	3.6 Context-Free Grammars and Programming Language Definition
	Exercises
	Bibliographic Notes

	4 Normal Forms for Context-Free Grammars
	4.1 Grammar Transformations
	4.2 Elimination of λ-Rules
	4.3 Elimination of Chain Rules
	4.4 Useless Symbols
	4.5 Chomsky Normal Form
	4.6 The CYK Algorithm
	4.7 Removal of Direct Left Recursion
	4.8 Greibach Normal Form
	Exercises
	Bibliographic Notes

	5 Finite Automata
	5.1 A Finite-State Machine
	5.2 Deterministic Finite Automata
	5.3 State Diagrams and Examples
	5.4 Nondeterministic Finite Automata
	5.5 λ-Transitions
	5.6 Removing Nondeterminism
	5.7 DFA Minimization
	Exercises
	Bibliographic Notes

	6 Properties of Regular Languages
	6.1 Finite-State Acceptance of Regular Languages
	6.2 Expression Graphs
	6.3 Regular Grammars and Finite Automata
	6.4 Closure Properties of Regular Languages
	6.5 A Nonregular Language
	6.6 The Pumping Lemma for Regular Languages
	6.7 The Myhill-Nerode Theorem
	Exercises
	Bibliographic Notes

	7 Pushdown Automata and Context-Free Languages
	7.1 Pushdown Automata
	7.2 Variations on the PDA Theme
	7.3 Acceptance of Context-Free Languages
	7.4 The Pumping Lemma for Context-Free Languages
	7.5 Closure Properties of Context-Free Languages
	Exercises
	Bibliographic Notes

	III Computability
	8 Turing Machines
	8.1 The Standard Turing Machine
	8.2 Turing Machines as Language Acceptors
	8.3 Alternative Acceptance Criteria
	8.4 Multitrack Machines
	8.5 Two-Way Tape Machines
	8.6 Multitape Machines
	8.7 Nondeterministic Turing Machines
	8.8 Turing Machines as Language Enumerators
	Exercises
	Bibliographic Notes

	9 Turing Computable Functions
	9.1 Computation of Functions
	9.2 Numeric Computation
	9.3 Sequential Operation of Turing Machines
	9.4 Composition of Functions
	9.5 Uncomputable Functions
	9.6 Toward a Programming Language
	Exercises
	Bibliographic Notes

	10 The Chomsky Hierarchy
	10.1 Unrestricted Grammars
	10.2 Context-Sensitive Grammars
	10.3 Linear-Bounded Automata
	10.4 The Chomsky Hierarchy
	Exercises
	Bibliographic Notes

	11 Decision Problems and the Church-Turing Thesis
	11.1 Representation of Decision Problems
	11.2 Decision Problems and Recursive Languages
	11.3 Problem Reduction
	11.4 The Church-Turing Thesis
	11.5 A Universal Machine
	Exercises
	Bibliographic Notes

	12 Undecidability
	12.1 The Halting Problem for Turing Machines
	12.2 Problem Reduction and Undecidability
	12.3 Additional Halting Problem Reductions
	12.4 Rice’s Theorem
	12.5 An Unsolvable Word Problem
	12.6 The Post Correspondence Problem
	12.7 Undecidable Problems in Context-Free Grammars
	Exercises
	Bibliographic Notes

	13 Mu-Recursive Functions
	13.1 Primitive Recursive Functions
	13.2 Some Primitive Recursive Functions
	13.3 Bounded Operators
	13.4 Division Functions
	13.5 Gödel Numbering and Course-of-Values Recursion
	13.6 Computable Partial Functions
	13.7 Turing Computability and Mu-Recursive Functions
	13.8 The Church-Turing Thesis Revisited
	Exercises
	Bibliographic Notes

	IV Computational Complexity
	14 Time Complexity
	14.1 Measurement of Complexity
	14.2 Rates of Growth
	14.3 Time Complexity of a Turing Machine
	14.4 Complexity and Turing Machine Variations
	14.5 Linear Speedup
	14.6 Properties of Time Complexity of Languages
	14.7 Simulation of Computer Computations
	Exercises
	Bibliographic Notes

	15 P, NP and Cook’s Theorem
	15.1 Time Complexity of Nondeterministic Turing Machines
	15.2 The Classes P and NP
	15.3 Problem Representation and Complexity
	15.4 Decision Problems and Complexity Classes
	15.5 The Hamiltonian Circuit Problem
	15.6 Polynomial-Time Reduction
	15.7 P=NP?
	15.8 The Satisfiability Problem
	15.9 Complexity Class Relations
	Exercises
	Bibliographic Notes

	16 NP-Complete Problems
	16.1 Reduction and NP-Complete Problems
	16.2 The 3-Satisfiability Problem
	16.3 Reductions from 3-Satisfiability
	16.4 Reduction and Subproblems
	16.5 Optimization Problems
	16.6 Approximation Algorithms
	16.7 Approximation Schemes
	Exercises
	Bibliographic Notes

	17 Additional Complexity Classes
	17.1 Derivative Complexity Classes
	17.2 Space Complexity
	17.3 Relations between Space and Time Complexity
	17.4 P-Space, NP-Space, and Savitch’s Theorem
	17.5 P-Space Completeness
	17.6 An Intractable Problem
	Exercises
	Bibliographic Notes

	V Deterministic Parsing
	18 Parsing: An Introduction
	18.1 The Graph of a Grammar
	18.2 A Top-Down Parser
	18.3 Reductions and Bottom-Up Parsing
	18.4 A Bottom-Up Parser
	18.5 Parsing and Compiling
	Exercises
	Bibliographic Notes

	19 LL(k) Grammars
	19.1 Lookahead in Context-Free Grammars
	19.2 FIRST, FOLLOW, and Lookahead Sets
	19.3 Strong LL(k) Grammars
	19.5 Construction of FOLLOWk Sets
	19.6 A Strong LL(1) Grammar
	19.7 A Strong LL(k) Parser
	19.8 LL(k) Grammars
	Exercises
	Bibliographic Notes

	20 LR(k) Grammars
	20.1 LR(0) Contexts
	20.2 An LR(0) Parser
	20.3 The LR(0) Machine
	20.4 Acceptance by the LR(0) Machine
	20.5 LR(1) Grammars
	Exercises
	Bibliographic Notes

	Index of Notation
	The Greek Alphabet
	The ASCII Character Set
	Backus-Naur Form Definition of Java
	Bibliography
	Subject Index

