
Applications of Context-Free Grammers
Gur Saran Adhar

Grammars are used to describe programming languages. Most importantly there is
a mechanical way of turning the description as a Context Free Grammar (CFG) into
a parser, the component of the compiler that discovers the structure of the source
program and represents that structure as a tree.
For example, The Document Type Definition (DTD) feature of XML (Extensible
Markup Language) is essentially a context-free grammar that describes the allowable
HTML tags and the ways in which these tags may be nested. For example, one could
describe a sequence of characters that was intended to be interpreted as a phone
number by <PHONE> and </PHONE> .
Example-1: Typical programming languages use parentheses and or brackets in a
nested and balanced fashion. That is, we must be able to match some left parenthesis
against a right parenthesis that appears immediately to its right, remove both of
them and repeat. If we eventually eliminate all the parenthesis, then the string was
balanced. Example of strings with balanced parenthesis are (()), ()(), (()()), while)(,
and (() are not balanced.
A grammar with the following productions generates all and only the strings with
balanced parenthesis:

B → BB | (B) | λ

The first production, B → BB, says that concatenation of two strings of balanced
parenthesis is balanced. That is, we can match the parenthesis in two strings inde-
pendently.
The second production, B → (B), says that if we place a pair of parenthesis around
a balanced string, then the result is balanced.
The third production, B → λ is the basis, which says that an empty string is balanced.
Example-2: There are numerous aspects of typical programming language that be-
have like balanced parentheses. Beginning and ending of code blocks, such as begin
and end in Pascal, or the curly braces { . . . } of C, are examples. There is a related
pattern thar appears occasionally, where ”parentheses” can be balanced with the ex-
ception that there can be a unbalanced left parentheses. An example is the treatment
of if and else in C. An if-clause can appear unbalanced by any else-clause, or it may
be balanced by a matching else-clause. A grammer that generates the possible se-
quence of if and else (represented by i and e, respectively) is:

S → SS | iS | iSe | λ

For instance, ieie, iie, and iei are possible sequences of if and else’s and each of these
strings is generated by the above grammer. Some examples of illegal sequences not
generated by the grammer are, ei, ieeii, iee.

1

Example-3: We give below CFG that describes some parts of the structure of HTML
(Hypertext Markup Language).

Char → a | A | . . .

Text → λ | Char Text

Doc → λ | Element Doc

Element → Text |< EM > Doc < /EM >|< P > Doc |< OL > List < /OL >

List → λ | ListItem List

ListItem →< LI > Doc
Example-4: Let G be a grammar with the set of variables:

V = {S, < Noun phrase >, < V erb phrase >, < Adjective phrase >,

< Noun >, < V erb >, < Adjective >}

the alphabet set:
Σ = {big, stout, John, bought, white, car, Jim, cheese, ate, green} with the rules:

(1) S →< Noun phrase >< V erb phrase >
(2) < Noun phrase >→< Noun >|< Adjective phrase >< Noun >| λ
(3) < V erb phrase >→< V erb >< Noun phrase >
(4) < Adjective phrase >→< Adjective phrase >< Adjective >| λ
(5) < Noun >→ John | car | Jim | cheese
(6) < V erb >→ bought | ate
(7) < Adjective >→ big | stout | white | green

Then the grammar generates, in particular, the following strings:

John bought car
Jim ate cheese
big Jim ate green cheese
John bought big car
big stout John bought big white car
Unfortunately, the grammer also generates sentences like:
big stout car bought big stout car
big cheese ate Jim
green Jim ate green big Jim

2

