1. Let \(f(x) = x^4 - 12x^3 \).

 a. Use arrows to indicate the end behavior as \(x \) goes to \(\infty \) and \(-\infty \).

 b. Find all intercepts.

 \[
 \begin{align*}
 y\text{-int}: & \quad x = 0 \quad y = 0 \quad (0, 0) \\
 x\text{-int}(s): & \quad x^3(x-2) = 0 \\
 & \quad x = 0, 12 \\
 \end{align*}
 \]

 c. Use \(f'(x) \) to find the intervals where \(f(x) \) is increasing and decreasing. Then find the \((x, y) \) coordinates of any relative max or min points.

 \[
 f'(x) = 4x^3 - 36x^2 = 0 \\
 4x^2(x-9) = 0 \\
 x = 0, 9
 \]

 Increasing on the interval(s):

 \((0, \infty) \)

 Decreasing on the interval(s):

 \((-\infty, 9) \)

 Local minimum point(s) (if any):

 \((9, -2187) \)

 \[f(9) = -2187 \]

 d. Use \(f''(x) \) to find the intervals where \(f(x) \) is concave up and concave down. Then find the \((x, y) \) coordinates of any inflection points.

 \[
 f''(x) = 12x^2 - 72x = 0 \\
 12x(x-6) = 0 \\
 x = 0, 6
 \]

 Changes concavity at both

 Concave up on the interval(s):

 \((-\infty, 0), (6, \infty) \)

 Concave down on the interval(s):

 \((0, 6) \)

 Inflection point(s):

 \((0, 0) \) and \((6, -1296) \)

 e. On a separate page, sketch the graph of \(y = f(x) \), clearly showing all intercepts, relative max/min points, inflection points, concavity, and the general shape of the graph.
Local and absolute min

Point: (9, -2187)
2. Let \(f(x) = 4x^3 - 12x^2 + 9x \).

a. Use arrows to indicate the end behavior as \(x \) goes to \(\infty \) and \(-\infty \).

b. Find all intercepts.

\[
\begin{align*}
 \text{y-int:} & \quad x = 0 \\
 y &= 0 \\
 y &= 0 \quad (0,0) \\
 \text{x-int(s):} & \quad y = 0 \\
 \frac{4x^3 - 12x^2 + 9x}{x(4x^2 - 12x + 9)} &= 0 \\
 x &= 0, \quad 3/2, \quad 1.5 \\
 (\text{crosses} \quad x = 0) \\
 (\text{bounces} \quad f' \quad @ \quad x = 1.5) \\
\end{align*}
\]

c. Use \(f'(x) \) to find the intervals where \(f(x) \) is increasing and decreasing. Then find the \((x, y)\) coordinates of any relative max or min points.

\[
\begin{align*}
 f'(x) &= 12x^2 - 24x + 9 = 0 \\
 \text{gcf} &= 3 \\
 3(4x^2 - 8x + 3) &= 0 \\
 \text{factor:} \quad a &= 4, \quad b = -8, \quad c = -6 \\
 4x^2 - 2x - 6 &= 0 \\
 2x(2x - 1) - 3(2x - 1) &= 0 \\
 (2x - 3)(2x - 1) &= 0 \\
 x &= 3/2, \quad 1.5 \\
 (\text{local max} \quad \frac{\Delta f}{\Delta x} \quad \text{local min}) \\
 x &= \sqrt{2}, \quad x = 1.5 \\
 f' &= 0 \\
 f'' &= 0 \\
\end{align*}
\]

Increasing on the interval(s):

\((-\infty, \sqrt{2}) \cup (1.5, \infty)\)

Decreasing on the interval(s):

\((1.5, 1.5)\)

Local minimum point(s) (if any):

\((1.5, 0)\)

Local maximum point(s) (if any):

\((1.5, 2)\)

d. Use \(f''(x) \) to find the intervals where \(f(x) \) is concave up and concave down. Then find the \((x, y)\) coordinates of any inflection points.

\[
\begin{align*}
 f''(x) &= 24x - 24 = 0 \\
 24(x - 1) &= 0 \\
 x &= 1 \\
 f'' &= 0 \\
\end{align*}
\]

Concave up on the interval(s):

\((1, \infty)\)

Concave down on the interval(s):

\((-\infty, 1)\)

Inflection point(s):

\((1, 1)\)

e. On a separate page, sketch the graph of \(y = f(x) \), clearly showing all intercepts, relative max/min points, inflection points, concavity, and the general shape of the graph.
3. Let \(f(x) = e^{2x}(x + 3) \). Use product rule to find the \((x, y)\) coordinates of any relative max or min points.

\[
\begin{align*}
\frac{d}{dx} f(x) &= e^{2x} (1 + 2(x+3)) + (x+3) e^{2x} (2) = 0 \\
e^{2x} (1 + 2x + 6) &= 0 \\
e^{2x} (2x + 7) &= 0 \\
\uparrow & \quad \uparrow \\
\ne^0 & \quad x = \frac{-7}{2} = -3.5 \\
\text{Local min} & \quad (3.5, e^{-7/2})
\end{align*}
\]

4. Use Newton’s Method to approximate the solution to \(y = x^3 - 3x + 4 = 0 \), using a first guess of \(x = -2 \).
Show how you have set up the problem, and write the resulting estimates that you get until it converges in the first 6 decimal places.

\[
\begin{array}{c|c|c}
\hline
x & y = x^3 - 3x + 4 & y' = 3x^2 - 3 \\
\hline
-2 & 2 & 2 \\
\hline
\end{array}
\]

\[
x_1 = 2, \quad x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} \quad \text{etc.}
\]

\[
x_2 = -2.2 \\
x_3 = -2.196215 \\
x_4 = -2.1958234
\]

Which of the following numbers would NOT make sense to use as a first guess, and why?
-3, -1, 0, 1, 2, 3

-1: \(m = 0 \), won't give you a 2nd guess
0: slope sends next guess in wrong direction
1: \(m = 0 \), won't give you a 2nd guess
2, 3, would send you near \(x = 1 \)
5. Find the dimensions of a \textit{closed} box that will \textbf{maximize volume} if the length of the box is twice the width and the surface area is 96 square inches.

\[
V = L \cdot W \cdot h
= 2w \cdot wh
= 2w^2 h
\]

\[
V(w) = 2w^2 \left(\frac{96 - 4w^2}{6w} \right)
= \frac{1}{3} (96w - 4w^3)
\]

Find the volume:

\[
V'(w) = \frac{1}{3} (96 - 12w^2)
= 32 - 4w^2 = 0
\]

\[
4w^2 = 32
w^2 = 8
w = \sqrt{8} = 2\sqrt{2} \approx 2.83
\]

\[
V' = + \quad \text{max}
\]

\[\text{Vol is maximized when}
\text{the width is about 2.83'', length is 5.66'',}
\text{and height is about 3.77''.}\]
6. Find the dimensions of a closed box with a square base that will minimize cost of materials if the volume is to be 2400 cubic inches and the top and bottom cost 5 cents per square inch and the sides cost 3 cents per square inch.

\[V = x^2 h = 2400 \]

\[h = \frac{2400}{x^2} \]

\[x, h > 0 \]

\[C = 10x^2 + 12xh \]

\[C(x) = 10x^2 + 12x \left(\frac{2400}{x^2} \right) \]

\[= 10x^2 + \frac{28800}{x} \]

\[= 10x^2 + 28800x^{-1} \]

\[C'(x) = 20x - \frac{28800}{x^2} = 0 \]

\[20x = \frac{28800}{x^2} \]

\[x^3 = \frac{28800}{20} \]

\[x = \sqrt[3]{1440} \approx 11.29 \text{ in} \]

\[h = \frac{2400}{x^2} \approx 18.83'' \]

\[C' = 0 \]

\[C' \text{ neg} \quad \text{pos} \]

\[\therefore \text{ cost is minimized when the base is approx } 11.29'' \times 11.29'' \text{ and the height is approx } 18.83''. \]
7. Use L'Hospital's Rule as appropriate to find the indicated limits. Show your work, and use notation correctly.

\[\lim_{x \to 0} \frac{x^2}{\sin(2x) - x^2} \]

\[\lim_{x \to 0} \frac{2x}{2 \cos(2x) - 2x} = \lim_{x \to 0} \frac{2}{4 \sin(2x) - 2} = \frac{2}{0 - 2} = -1 \]

Answer: -1

b. \[\lim_{x \to 1} \frac{\ln(x)}{x^2 - x} \]

\[\lim_{x \to 1} \frac{1}{x^3 - 1} = \frac{1}{4 - 1} = \frac{1}{3} \]

c. \[\lim_{x \to \infty} \frac{\ln(x)}{\sqrt{x}} \]

\[\lim_{x \to \infty} \frac{1}{\frac{1}{2 \sqrt{x}}} = \lim_{x \to \infty} \frac{1}{\frac{1}{2 \sqrt{x}}} = \lim_{x \to \infty} \frac{2}{\sqrt{x}} = 0 \]