Name :_____ ZID :_____

1. (10 pts) a) Give the definition of $\cos z$ for $z \in \mathbb{C}$ (Either in terms of a power series or exponential functions)

b) Prove that $\cos z$ is unbounded in $\{z \in \mathbb{C} : |\operatorname{Re} z| \le 1\}$.

2. (10 points) Let $f(z) = \sum_{n=1}^{\infty} 8^n (z-2i)^{3n}$. Find the maximum disk where f(z) is analytic, i.e. the radius of the convergence and the convergence disk, AND sketch the disk on the complex plane \mathbb{C} .

3. (10 pts) Let z = x + iy. Prove that the function $f(z) = -y + e^{-x} \sin y + i(x + e^{-x} \cos y)$ is analytic in $\mathbb C$ AND find $f'(\pi i)$.

4. (10 pts) Evaluate
$$\int_{|z+i|=2} (|z+i|^{2019} + \text{Im}(z)) |dz|.$$

5. (20 pts) Find a conformal one-to-one map from the upper-half unit disk $\{z \in \mathbb{C} : \text{Im} z > 0, |z| < 1\}$ to the unit disc D(0, 1).

6. (20 pts) Evaluate $\int_{\Gamma} \frac{e^z}{(4z-1)\cos(\pi z)} dz$, where: a) Γ is the circle |z| = 1/8 traversed once counterclockwise.

b) Γ is the circle |z|=2/3 traversed once counterclockwise.

c) Γ is the circle |z|=1 traversed once counterclockwise.

7. (15 pts) Let $f(z) = \frac{1}{z^2(e^z + 1)}$. (a) Find all isolated singularity of f and their residues.

(b) Evaluate the integral $\int_{|z|=2\pi} f(z) dz$.

- 8. (10 pts) (a) State Liouville's theorem for analytic functions.
 - (b) Let f be an entire function. Prove that f is constant if $f(\mathbb{C}) \cap D(0, 1) = \emptyset$.

9. (10 pts) Determine the number of solutions of the equation $z^{10} + 10z + 8 = 0$ in the annulus 1 < |z| < 2.

10. (10 pts) (a) State the Identity Principle for analytic functions on region Ω .

(b) If f is analytic on the unit disk D(0,1) and $f(\frac{1}{n}) = 0$ for all positive integers n, then f is identically equal to 0 on D(0,1).

11. (20 pts) Show that $\int_0^{\pi} \frac{d\theta}{2 + \cos \theta} = \frac{\pi}{\sqrt{3}}$ by using the Residue Theorem.

12. (15 pts) Find the Laurent series for the function $f(z) = \frac{z}{(z+1)(z-2)}$ in each of the following domains.

- (a) |z| < 1
- (b) 1 < |z| < 2
- (c) $2 < |z| < \infty$

13. (20 pts) Verify the integral:

$$\int_{-\infty}^{+\infty} \frac{e^{x/2}}{1+e^x} \, dx = \pi.$$

(Hint: You could consider a rectangular contour with height 2π and width 2R for any positive real number R.)

Name :__

14. (20 pts) **True-False.** If the assertion is true, quote a relevant theorem or reason, or give a proof; if false, give a counterexample or other justification.

(a) (**T** or **F**) The point 0 is an isolated singularity of the function $f(z) = (\sin \frac{1}{z})^{-1}$.

- (b) (**T** or **F**) Let z_0 be an isolated singularity of f. If $\text{Res}(f, z_0) = 0$, then z_0 is removable.
- (c) (**T** or **F**) The function $\frac{\sin z}{z}$ can be regarded as an entire function.
- (d) (**T** or **F**) The function $\frac{e^z \sin z}{z^3}$ has a pole at z = 0 of degree 3.
- (e) (**T** or **F**) Let f, g be analytic on the closure of the unit disk D(0, 1), i.e. $\overline{D(0, 1)}$. If $|f(z) g(z)| \le |f(z)| + |g(z)|$ for z with |z| = 1, then f and g have the same number of zeros in D(0, 1), counting the multiplicities.
- (f) (**T** or **F**) Let f be analytic on $\overline{D(0, 1)}$, i.e., f is analytic in a neighborhood of the unit disk D(0, 1). If f has exactly 5 zeros, counting the multiplicities, inside D(0, 1), then $\frac{1}{2\pi i} \int_{|z|=1} \frac{f'(z)}{f(z)} dz = 5.$
- (g) (**T** or **F**) Let $S(z) = \frac{z+i}{z-i}$. The Möbius transformation S(z) maps the real axis to the unit circle.
- (h) (**T** or **F**) The function $f(z) = z^2$ is conformal in the unit disc D(0, 1).