Final Exam

Rules for take-home exam

- 1 I will turn in the final exam (take-home part) on Monday, 04/30/2018, by 3pm before our final exam takes place in OS2009.
- 2 I know there is ABSOLUTELY NO EXTENSIONS and late submission will be severely penalized.
- 3 I write all solutions completely by myself and do not show it or discuss it with anybody.
- 4 I may use my class notes, textbook, and publicly available materials, including books, online, etc. I may ask Dr. Ye for limited hints.

By signing my name below, I certify that I have read, understand and comply with the above rules.

Name (PRINT) :______. Signature :_____. Date :_____.

1. (15 pts) (a) Give the definition of an algebra.

(b) Give the definition of an σ algebra.

(c) Let $X = \mathbb{N}$, the set of natural numbers, and $\mathcal{A} = \{A \subset \mathbb{N} : A \text{ is finite or } A^c \text{ is finite}\}$. Prove that \mathcal{A} is not an σ -algebra. (Hint: Consider $A_n = \{2j : 1 \leq j \leq n\}$).

- 2. (10 pts) Let \mathcal{A} be an algebra and $A_n \in \mathcal{A}$, for all $n \in \mathbb{N}$. Then there exists a sequence of sets B_n such that
 - i) $B_n \in \mathcal{A}$, for all $n \in \mathbb{N}$; ii) $B_n \cap B_m = \emptyset$, if $m \neq n$; iii) $\bigcup_{n=1}^{\infty} A_n = \bigcup_{n=1}^{\infty} B_n$.

3. (15 pts) (a) Give the definition of an outer measure on a set X.

(b) Prove that if (X, \mathcal{A}) is a measurable space, μ^* is an outer measure on $X, B \in \mathcal{A}$, and we define $\nu^*(A) = \mu^*(A \cap B)$ for $A \in \mathcal{A}$, then ν^* is an outer measure.

4. (15 pts) (a) Define a measure on a measurable space (X, \mathcal{A}) .

- (b) Define a measurable function on a measurable space (X, \mathcal{A}) .
- (c) Suppose (X, \mathcal{A}) is a measurable space, f is a real-valued function, and $\{x : f(x) > r\} \in \mathcal{A}$ for each rational number r. Prove that f is measurable.

5. (20 pts) (a) Let (X, \mathcal{A}, μ) be a measure space and f is a non-negative function on X. Define $\int f d\mu$. (Hint: You have to start with measurable characteristic functions, then simple functions, and so on.)

(b) Rigorously **state** and **prove** Fatou's Lemma.

6. (10 pts) Find the limit

$$\lim_{n \to \infty} \int_0^n \left(1 + \frac{x}{n}\right)^{-n} \log\left(2 + \cos\frac{x}{n}\right) dx$$

and justify your reasoning (clearly state the convergence theorem you may use).

7. (10 pts) Let f be integrable on (X, \mathcal{A}, μ) , f > 0 a.e., and $A \subset X$ a measurable set. If $\int_A f = 0$, prove that $\mu(A) = 0$.

8. (15 pts) Let $\{f_n\}$ be a sequence of non-negative integrable functions such that $\sum_{n=1}^{\infty} f_n = f$ is integrable. Prove that

$$\int \Big(\sum_{n=1}^{\infty} f_n\Big) d\mu = \sum_{n=1}^{\infty} \int f_n d\mu.$$

9. (20 pts) Let
$$A = \left\{\frac{1}{n} : n \in \mathbb{N}\right\}$$
 and
$$f(x) = \begin{cases} 0, \\ 0 \end{cases}$$

$$f(x) = \begin{cases} 0, & \text{if } x \in A \cap [0. \ 1], \\ xe^{x^2}, & \text{if } x \in [0, \ 1] \setminus A. \end{cases}$$

Prove that f is measurable, Riemann integrable on [0, 1], and find, if any,

$$(R) \int_0^1 f(x) dx$$
 and $(L) \int_{[0, 1]} f(x) dx$

10. (20 pts) (a) Let f be a function on an interval [a, b]. Define that f is of bounded variation on [a, b].

(b) If f is of bounded variation on [a, b], then f can be written as a difference of two increasing functions on [a, b].

11. (15 pts) (a) Let f be a function on an interval [a, b]. Define that f is absolutely continuous on [a, b].

(b) If f' is bounded on an interval [a, b], prove that f is absolutely continuous on [a, b].

12. (35 pts) True-False. If the assertion is true, quote a relevant theorem or reason, or give a proof; if false, give a counterexample or other justification.

(a) Let $A_{2n} = [0, 1)$ and $A_{2n+1} = [1, 2)$. Then $\liminf_{n \to \infty} A_n = \{0\}$.

- (b) Let $E \subset \mathbb{R}$ and m be the Lebesgue measure on \mathbb{R} . If m(E) = 0, then E is countable.
- (c) Suppose that f is a bounded measurable function in an interval I, then f is continuous at least at one point in the interval I.
- (d) Let A be a subset in \mathbb{R} , then χ_A is a measurable function.
- (e) If f is a measurable function on $[0, 1] \subset \mathbb{R}$, then for every $\delta > 0$, there are a continuous function g and a closed set $F \subset [0, 1]$ such that $m([0, 1] \setminus F) < \delta$ and f(x) = g(x) for $x \in F$, where m is the Lebesgue measure.
- (f) Let $f_n \ge 0$ be a sequence of integrable functions. If $\lim_{n \to \infty} f_n = f$, then

$$\lim_{n \to \infty} \int f_n = \int \lim_{n \to \infty} f_n = \int f.$$

- (g) Let f be integrable, and $\mu(A) = 0$. Then $\int_{X \setminus A} f = \int_X f$.
- (h) Let $A = \mathbb{Q}$, $B = \mathbb{R} \setminus \mathbb{Q}$ and $f = \chi_A \chi_B$. Then f is Riemann integrable on the interval [0, 1].
- (i) Any bounded variation function is differentiable almost everywhere.

- 13. (Bonus 10 pts). Let I = [a, b] and m be the Lebesgue measure. Suppose f is a positive increasing function in I, and put $M = \sup_{x \in I} f(x)$ and $E = \{x \in I : f(x) = M\}$. Prove
 - a) $\lim_{n \to \infty} \int_{I} \left(\frac{f(x)}{M} \right)^{n} dx = m(E).$ b) $\lim_{n \to \infty} \int_{I} f'(x) \left(\frac{f(x)}{M} \right)^{n} dx = 0.$ Hint: $m(E) = \int \chi_{E}.$